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Abstract

In this thesis, a computationally efficient model is proposed to determine different performance param-
eters of a conical horn antenna of arbitrary profile numerically over a wide range of frequencies. The
model is developed using modematching technique that solves the waveguide junction problem and an
integral equation technique that solves the waveguide aperture free-space transition. It has functions
to evaluate the S parameters, near-fields and far-fields of the antenna. Rigorous testing of the pro-
posed novel technique has been done using MATLAB and the results have been verified by comparing
them with the results obtained from commercial tools like FEKO and CST. This technique is capable
of finding the performance parameters of the antennas faster than the available solvers in commercial
tools like FEKO and CST. Furthermore, various goal functions are proposed for the optimization of
some of the performance parameters such as the S parameters, the cross-polarization levels, and the
aperture efficiency. These goal functions can be used to find optimum horn antenna feed profiles for
radio astronomy applications.
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1
Introduction

1.1. Research problems and objectives
At present, a global effort is underway within the radio astronomy instrumentation community to realize
wideband single-pixel feeds (WBSPFs) for reflector antenna based radio telescopes. Their aim is to
achieve high aperture efficiency over frequency bandwidths exceeding three octaves. Currently, there
are several different kinds of feeds being developed for the different frequency bands of operation for
the ”SKA-mid”. It has five single pixel feeds to cover five different frequency bands ( 350–1050 MHz
(Band 1), 950–1760MHz (Band 2), 1.65–3.05 GHz (Band 3), 2.8–5.18 GHz (Band 4) and 4.6–13.8 GHz
(Band 5) ). For the WBSPF, there are two bands of frequencies defined. The lower band (Band A) has
the frequencies from 0.35 till 2.6 GHz. The desired upper band (Band B) frequency range approaches
an 8:1 bandwidth [24], but that to date desired performance have only been demonstrated for just over
a 4:1 bandwidth [36].

However, there has been an increased development of wide band antenna feeds for the radio as-
tronomy application. These feeds operate with 10:1 bandwidth ratio [4]. They are being developed
to meet demanding requirements such as stable input impedance, lower losses and good polarimetric
properties over the entire bandwidth of operation. Various types of WBSPFs are explained in detail in
[4]. Some designs like the QSC (quasi-self-complementary) antennas from Cornell university [8] and
the conical-shaped sinuous antenna from the University of Virginia [11] have good match below -9 dB
over a decade of bandwidth. From 1.6 Ghz to 14 GHz, the Chalmer’s antenna group have shown that
their WBSPF design has matching less than -6 dB and 78 % of the band, it is below -10 dB [35]. The
antenna at the Allen Telescope Array achieves an input match of −14 dB over a 20:1 bandwidth (0.5 to
10 GHz) [34]. The design of such antennas are very difficult and for some antennas, designing the feed
system at higher frequencies is also a big challenge. These wide band feeds achieve almost 50 % or
more aperture efficiency [4]. Till date, no wide band feed has achieved all the challenging requirements
from the SKA.

To date, the majority of WBSPF horn antennas are designed by means of numerous parameter
sweeps in commercial computational electromagnetic simulation software packages. A process that
demands vast amounts of computational time and resources.

Therefore, the main goal of this thesis is to develop a computationally efficient technique to compute
the reflection coefficient, radiation patterns and polarimetric properties of the radiated field for a conical
horn with arbitrary profile. This computational technique will be used later (the follow up work) to
numerically optimize the horn profile to achieve desirable matching and radiation performance over
very large frequency band combined with physical compactness of the feed.

To check the validity of the implemented methods, optimization techniques are implemented on top

7



8 1. Introduction

of the theoretical solver to predict different horn geometries to achieve some requirements. The require-
ments are based on the applications for radio astronomy and presented by ASTRON (The Netherlands
Institute for Radio Astronomy). The output parameters, which are addressed for optimization in this
thesis are the return loss inside the conical horn, the cross polar electric far-field level and the aperture
efficiency in case of a smooth-walled conical horn-reflector problem.

So far for WBSPF, the bandwidth that is typically achieved is 10:1 [4]. The quad-ridged flared horn
(QRFH) is capable of achieving a bandwidth of 6:1 over a large degree of freedom when it comes to
beamwidths (35 to 115 degrees). The matching at the aperture is less than -15 dB for lower frequencies
and -10 dB for higher frequencies.

The relative cross polarization (XP) generally should be below -15 dB over the HPBW (Half Power
beamwidth).

𝑋𝑃 = 20 logኻኺ |(
𝐸፱፩
𝐸፨፦ፚ፱

)| (1.1)

For WBSPFs the aperture efficiencies achievable were more than 50%. It doesn’t go more than
that because at higher frequencies, the beamwidth is very narrow and for that the taper efficiency
drops and the overall aperture efficiency drops. Therefore, having a stable aperture efficiency over
a large bandwidth is very difficult. These basic requirements are taken from the analysis present in
[4] and used as optimization goals in the goal functions for smooth-walled horn antennas. The goal
functions are based on the hybrid method developed in the thesis (ModeMatching and the aperture-free
space transition and analytical far-field expressions). These requirements are first set as goals at one
frequency and then, with the optimized horn profile, the goal function values are analyzed over a wide
band of frequencies to observe if it is stable. The frequencies which are taken into consideration are
the frequencies present in the fundamental mode excitation for the throat waveguide of the conical horn
antenna. This is because that is the maximum frequency bandwidth which can be achieved without
altering the field patterns on the aperture of the flared horn. This is because as the aperture size in the
device increases over the axis of propagation, it excites higher order waveguide modes and because
of that the far-field symmetry is affected. However, as the antenna under test should only be excited
with the fundamental mode for application purposes, the frequency range for testing can further be
expanded (At lest till due to the flare of the horn, another mode with the same azimuthal variation is
excited, in this case the mode 𝑇𝐸ኻኼ). As this is a smooth-walled horn, the design and manufacture
process isn’t that expensive.

The optimization requirements are used from a configuration of an offset Gregorian dual reflector
system for SKA 1 baseline design (shown in figure 1.1 and figure 1.2). The main paraboloidal reflector
has a diameter about (𝐷፦) 15 [m]. The ellipsoidal sub-reflector diameters (𝐷፬) are 4, 5 or 6 meters.
Therefore, the system parameter of focal length to diameter ratio is now an effective focal length to
diameter ratio of the dual reflector system. It is generally 0.45, 0.5 or 0.55. The effective focal length
to the diameter ratio (𝑓/𝐷) is a measure of the subtended half angle of the feed-reflector system. The
subtended half angles for these ratios mentioned above are respectively 58, 53 and 49 degree [4]. In
the optimization of the aperture efficiency, the effective ratio of 𝑓/𝐷 used is 0.5. Effective 𝑓/𝐷 of a dual
reflector system is equivalent to the 𝑓/𝐷 ratio of a system where the two reflectors are replaced by a
single reflector.

1.2. Literature Review and chosen approaches
The problem of horn antenna parameters computation is widely considered in the literature. The fol-
lowing approaches/methods for the horn antenna simulation have been found.

• Finite Element Method (FEM)

• Method of Moments (MoM)
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Figure 1.1: Offset Gregorian dual reflector system. Taken from [4]

Figure 1.2: Offset Gregorian dual reflector system. Taken from [9]
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• Finite Difference Time Domain solver (FDTD)

• Mode Matching theoretical numerical solver

The solvers like FEM, MoM and FDTD full wave simulation techniques are already used in com-
mercial tools like FEKO and CST. These techniques use Maxwell equations to solve an approximate
version of the actual antenna by discretizing it into finer mesh. Therefore, these solvers use more
computational time and resources to solve different performance parameters of the antenna (espe-
cially when the antenna dimensions are electrically large and the output parameters are sensitive to
the geometry). From the transmission line point of view, the horn antenna can be considered as a com-
bination of the cascaded waveguide transition and a waveguide to free-space transition. An effective
way to compute waveguide transition is mode matching technique, which was widely used previously
for waveguide filters and transition analysis. Below the state of the art in the mode matching technique
and free-space transition technique are described.

1.2.1. Literature review Mode Matching Technique (MMT) and changes made in
MMT for the challenges in the thesis

Mode Matching technique is a very versatile method for waveguide junction problems. It is also used to
find the scattering parameters for filters, transformers, couplers, etc. It uses a General Scattering Matrix
(GSM) approach to solve waveguide junction problems. If the structure of the complex problem can be
divided into a number of waveguide junction problems, the GSM approach can be very accurate. The
GSM approach deals with energy conservation laws of classical electromagnetics. Several research
papers have been published with MM technique to solve different kinds of problems. For example, a
numerical surface integral form for GSM can be found in [13], [21] and [28].

Convergence criteria based on the number of waveguidemodes at each side of the junction problem
is addressed in papers like [13], [21] and [28]. The convergence criterion suggests that there should
be different number of modes included in the analysis of the junction problem based on the aspect
ratio between the 2 waveguides before and after the junction. The bigger the dimension of a structure
with respect to the wavelength, the more the number of waveguide modes should be included in the
analysis. For example, if a waveguide junction problem involves 2 circular waveguides with a radius
ratio 2:1, the bigger waveguide should have modes roughly 4 times as that of the smaller waveguide
(aspect ratio here is the ratio of areas ( ፀᑓᑚᑘፀᑤᑞᑒᑝᑝ

= ( ፫ᑓᑚᑘ
፫ᑤᑞᑒᑝᑝ

)ኼ = 4)). However, for a cascaded structure with
elements having a varying range of dimensions, for simplicity of implementation, the same number of
modes is used in all waveguides in the problem. This can be found in [28] and [31]. The number of
modes is decided by the element having the biggest dimension. With this approach to solve cascaded
waveguide problems, unnecessary time and computation resources are used because of the fact that
not all the waveguide elements in the problem have all those modes propagating for a particular fre-
quency. Therefore, this project also addresses some convergence criteria based on the aspect ratio
as well as the number of propagating modes on each waveguide element. Therefore, by the use of
different number of modes on each waveguide section in a cascaded waveguide problem, considerable
amount of computation time is saved.

However, the approach mentioned is very general to any waveguide junction problem and therefore
the GSM is not simplified for different types of waveguide junction problems. Analytical formulation of
the GSM can be found in papers such as [23] and [33]. However, after careful analysis, it is found that
some of the expressions are incomplete. Furthermore, in [33], the analytical formulation is done for a
rectangular to circular cross section waveguide junction problem. Therefore, the field expressions are
changed to a Cartesian coordinate system for the circular cross-section waveguide. As the aim of the
thesis is to determine the GSM for a circular to circular cross section waveguide, using that procedure
to find the GSM wouldn’t be elegant. Therefore, this project also carefully examines the integrals for
a circular to circular cross section waveguide junction problem to find elegant solutions for the GSM.
This is done by using the properties of Bessel functions and Lommel integrals [2] [5] .
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Furthermore, the physics behind the coupling between different modes is also explained in detail
with the analytical expressions. it also focuses on differences found between the MM technique and
different other solvers used in commercial tools like FEKO/CST.

1.2.2. Literature review of the aperture to free space transition in open waveg-
uides and choice of one of the many techniques for the thesis

Using the two port MM technique to solve various parameters of the conical horn antenna has one
limitation when it comes to designing a radiating antenna. For a radiating aperture antenna, the dis-
continuity at the aperture-free space transition needs to be considered. Therefore, some literature
study was done to model the aperture-freespace transition. The methods are discussed in detail in
chapter 5. There are several ways to address this problem.

One candidate for this problem is known as the Boundary Contour Mode Matching Technique
(BCMM). In this method, the free space is considered as the summation of several spherical TE (Trans-
verse Electric) and TM (Transverse Magnetic) modes. This implementation can be found in [26] [27].
This method requires a common origin for the co-ordinate systems considered for both the waveguide
and free space. This is difficult to determine as inside the conical waveguide the waves are cylindrical
in nature and outside the waveguide they are spherical in nature. This method is too involved as it
consists of many numerical integrals which need to be defined on a single frame of reference for both
the waveguide and free space.

The second technique is called the Gaussian Mode Beam Analysis (GBMA). This method is dis-
cussed in [10] and [32]. In this method, the fields on the aperture is approximated as scalar fields.
Therefore, these methods are accurate for electrically very large objects (a few orders of wavelengths).
Therefore, this is also not implemented in the thesis.

The third technique is based on Fredholm integral equations. This is based on energy conservation
law and in this case the far-field of an equivalent current distribution is approximated as cylindrical
waves. This is done by using Green’s functions of free space in the cylindrical co-ordinate system.
This method is elaborated in [7], [6] and [19]. The integrals mentioned in [19] are referred as Mishustin
integrals in this thesis. These integrals are inspired from [15]. The limitation of this method is that for
simplicity, it doesn’t include higher order modes excitation at the aperture-free space transition and only
calculates the reflection coefficient of the fundamental mode with itself. This is implemented in chapter
5. The results are compared with the fourth method mentioned below.

The fourth method that was explored is a spectral domain energy balance method which is based on
Rumsey’s reaction concept. The implementation of this can be found in [22] for rectangular waveguide
to free space transition. This method is based on energy conservation at the aperture with electric
and magnetic field continuity boundary conditions. This is used in the thesis in chapter 5. As it is a
spectral domain method, it doesn’t require to have a common reference frame to compute the fields.
In addition to that, it also considers higher order modes excitation at the aperture boundary. In [22],
this is developed for only rectangular waveguides, the fundamental mode of which is always linearly
polarized in one direction only. This makes the computation easier. In this thesis, this method is used
for cylindrical waveguides, where there exists both the polarizations even for the fundamental mode
(radial and azimuthal variation). Using the integrals developed for the reflection at the aperture-free
space transition for a cylindrical waveguide (Usually mentioned as K space integrals in the thesis),
the reflection coefficients are determined. Analytical expressions are also obtained to calculate the
far-fields of from a cylindrical waveguide using the aperture current distribution for the modes of type
𝑇𝐸ኻ,፧.

1.2.3. Chosen approaches

The mode matching technique was used for cylindrical to cylindrical waveguide junction problems and
the cascaded model to approximate a conical horn. This method is made purely analytical in the thesis.
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This method is a quicker way to find properties as the S parameters, the near-fields and the far-fields
of the conical horn antenna when it is perfectly matched (Theoretically for an infinite length waveguide
horn).

The Rumsey’s reaction concept (K space integrals) is further developed to determine the reflection
coefficients of modes (of the same azimuthal order as the fundamental mode) present in the aperture
and possible higher order mode excitation due to the discontinuity at the aperture of an open waveguide
problem.

Therefore, the entire software is a hybrid technique incorporating the MM and the K space integrals
to determine the S parameters, the near-fields and the far-fields of the finite length open waveguide
horn antenna.

1.3. The contributions made in this thesis project
There are several contributions made in the course of the thesis project. The following list covers them.

• Development of reflection at the aperture-free space transition using Rumsey’s method (with K
space integrals).

• A novel hybrid technique using both the MM software and the K space integrals to accurately
formulate the diffraction free near-fields on the aperture of the conical horn antenna and, far-
fields radiated due to the near-fields on the aperture.

• Analytical Mode Matching Software for cylindrical waveguide cascade model.

• Efficient and faster (improved CPU time and run time of simulation as compared to commer-
cial tools) coding techniques for the calculation of different properties of the horn antenna using
MATLAB.

• Goal functions for various output parameters of the horn like the return loss, the relative cross
polarization and aperture efficiency.

1.4. Structure of the document
Chapter 2 is dedicated to the electromagnetic modes propagating in a cylindrical waveguide and the
electric and magnetic field patterns on the aperture of a fully matched cylindrical waveguide. A com-
parison with the commercial tool called FEKO is also shown for the field patterns.

Chapter 3 introduces of MM technique with one waveguide junction (2 waveguide problem). This
chapter also includes analytical derivations for the General Scattering Matrix (GSM) for the 2 waveguide
problem. FEKO/CST simulations are also compared with the MM results from MATLAB for the scat-
tering parameters. Explanations to the comparison with FEKO/CST, convergence criteria and modal
analysis is also included for this problem.

Chapter 4 deals with the calculation of GSM when there are 3 or more than 3 cascaded cylindrical
waveguide elements. FEKO/CST comparison, convergence and modal analysis is also shown in this
chapter for a 3 waveguide, 5 waveguide and an approximate conical waveguide problem with different
number of cylindrical cascaded waveguide elements.

Chapter 5 introduces the aperture near-field distribution of a cascaded waveguide problem and for
an approximate conical waveguide problem. Comparisons with FEKO is also there in this chapter.
These simulations are done when a perfectly absorbing port is present at the far end of the waveguide,
or theoretically, the waveguide at the far end is infinite in length. Therefore, chapter 5 addresses the
free space-aperture transition of cylindrical waveguides as well.
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Chapter 6 deals with the explanations for the optimization routines and the goal functions to achieve
various requirements for the antenna design.

In chapter 7, the results are shown with commercial tool equivalent models as well. Chapter 8
consists of the conclusions drawn from the thesis project and future recommendations.





2
Circular Cross-Section Waveguides:

Near Field Patterns

2.1. Problem formulation
Let us consider circular waveguide formed by a closed perfectly electrically conducting (PEC) surface
with circular cross-section. The axis of this surface coincides with z-axis of the cylindrical coordinate
system. Two types of waveguide modes can propagate in such waveguide: TE (Transverse Electric)
and TM(Transverse Magnetic) modes. These modes are considered in details in the following sections.
This is done by a text book approach of [3].

2.2. 𝑇𝐸𝑧 modes:
The TE modes can be derived from the vector potentials 𝐴 (Electric field potential) and 𝐹 (Magnetic
field potential).

𝐴 = 0 (2.1)

𝐹 = �̂�𝐹፳(𝜌, 𝜙, 𝑧) (2.2)

A cylindrical coordinate system is preferred in this case because of the ease of analysis of a cylin-
drical domain. The vector potential F should satisfy the following Helmholtz equation:

∇ኼ𝐹፳((𝜌, 𝜙, 𝑧)) + 𝛽ኼ𝐹፳(𝜌, 𝜙, 𝑧) = 0 (2.3)

This reduces down to:

𝜕ኼ𝐹፳
𝜕𝜌ኼ +

1
𝜌
𝜕𝐹፳
𝜕𝜌 +

1
𝜌ኼ
𝜕ኼ𝐹፳
𝜕𝜙ኼ +

𝜕ኼ𝐹፳
𝜕𝑧ኼ = −𝛽

ኼ𝐹፳ (2.4)

If we assume a solution with three independent functions of 𝜌, 𝜙 and 𝑧, we have:

𝐹ፙ(𝜌, 𝜙, 𝑧) = 𝑓(𝜌)𝑔(𝜙)ℎ(𝑧) (2.5)
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Using this on equation 2.4, we have:

𝑔ℎ𝜕
ኼ𝑓
𝜕𝜌ኼ + 𝑔ℎ

1
𝜌
𝜕𝑓
𝜕𝜌 + 𝑓ℎ

1
𝜌ኼ
𝜕ኼ𝑔
𝜕𝜙ኼ + 𝑓𝑔

𝜕ኼℎ
𝜕𝑧ኼ = −𝛽

ኼ𝑓𝑔ℎ (2.6)

Dividing both sides by 𝑓𝑔ℎ, we have:

1
𝑓
𝜕ኼ𝑓
𝜕𝜌ኼ +

1
𝑓
1
𝜌
𝜕𝑓
𝜕𝜌 +

1
𝑔
1
𝜌ኼ
𝜕ኼ𝑔
𝜕𝜙ኼ +

1
ℎ
𝜕ኼℎ
𝜕𝑧ኼ = −𝛽

ኼ (2.7)

As the z dependence is only on the phase as it is a travelling wave along z, we can write:

𝜕ኼℎ
𝜕𝑧ኼ = −𝛽

ኼ
፳ ℎ (2.8)

Where, 𝛽፳ is the wavenumber along the z direction.

Substituting this on equation 2.7 and multiplying 𝜌ኼ we have:

𝜌ኼ
𝑓
𝜕ኼ𝑓
𝜕𝜌ኼ +

𝜌
𝑓
𝜕𝑓
𝜕𝜌 +

1
𝑔
𝜕ኼ𝑔
𝜕𝜙ኼ + 𝜌

ኼ(𝛽ኼ − 𝛽ኼ፳ ) = 0 (2.9)

We can replace the term ኻ
፠
ᎧᎴ፠
ᎧᎫᎴ as a constant as g only depends on 𝜙, therefore,

1
𝑔
𝜕ኼ𝑔
𝜕𝜙ኼ = −𝑚

ኼ (2.10)

⟹

𝜕ኼ𝑔
𝜕𝜙ኼ = −𝑚

ኼ𝑔 (2.11)

As we know that the wavenumber’s 𝜌 component can be found as 𝛽ኼ = 𝛽ኼ−𝛽ኼ፳ , we can reduce the
equation 2.9 as follows:

𝜌ኼ 𝜕
ኼ𝑓
𝜕𝜌ኼ + 𝜌

𝜕𝑓
𝜕𝜌 + [(𝛽𝜌)

ኼ −𝑚ኼ]𝑓 = 0 (2.12)

This resembles Bessel’s differential equation. The solutions are of the form:

𝐹፳(𝜌, 𝜙, 𝑧) = 𝑓(𝜌)𝑔(𝜙)ℎ(𝑧) = [𝐴ኻ𝐽፦(𝛽𝜌)+𝐵ኻ𝑌፦(𝛽𝜌)][𝐶ኼ cos(𝑚𝜙)+𝐷ኼ sin(𝑚𝜙)][𝐴ኽ𝑒ዅ፣ᎏᑫ፳+𝐵ኽ𝑒፣ᎏᑫ፳]
(2.13)

These solutions for 𝑓, 𝑔 and ℎwere chosen because for this cylindrical waveguide it is more practical
to think of standing waves along the 𝜙 direction, standing waves along the 𝜌 direction and travelling
waves on the 𝑧 direction. Here 𝐽፦ and 𝑌፦ are the Bessel functions of first and second kind.

To find out the constants, the boundary conditions have to be applied:

The boundary conditions (BCs) are (where 𝑎 is the radius of the cross section of the waveguide):
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• 𝐸Ꭻ(𝜌 = 𝑎, 𝜙, 𝑧) = 0

• The fields must be finite everywhere

• The field must repeat after 2𝜋 radian in 𝜙.

Following the second BC, we have 𝐵ኻ = 0 as 𝑌፦(𝜌 = 0) = ∞. According to the third BC of
DEeriodicity over 𝜙, we can conclude that 𝑚 = 0, 1, 2, 3.... If we consider no reflection from the other
boundary of the waveguide (𝐵ኽ = 0), we can rewrite the equation 2.13 as:

𝐹፳(𝜌, 𝜙, 𝑧) = 𝐴፦፧𝐽፦(𝛽𝜌)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒ዅ፣ᎏᑫ፳ (2.14)

Therefore, for this completely matched (No reflection) waveguide, the 𝜙 component of the electric
field is:

𝐸Ꭻ(𝜌, 𝜙, 𝑧) =
1
𝜖
𝜕𝐹፳
𝜕𝜌 = 𝐴፦፧

𝛽
𝜖 𝐽

ᖤ
፦(𝛽𝜌)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒ዅ፣ᎏᑫ፳ (2.15)

Using the first BC, we have:

𝐸Ꭻ(𝜌 = 𝑎, 𝜙, 𝑧) = 𝐴፦፧
𝛽
𝜖 𝐽

ᖤ
፦(𝛽𝑎)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒ዅ፣ᎏᑫ፳ (2.16)

This can only be true if:

𝐽ᖤ፦፧(𝛽𝑎) = 0 (2.17)

⟹

𝛽 =
𝜒ᖤ፦፧
𝑎 (2.18)

Where, 𝜒ᖤ፦፧ is the nth zero of the derivative of the Bessel’s function 𝐽፦ of the first kind of the order
m (0, 1, 2, 3,...).

The 𝛽፳ of the 𝑇𝐸፦፧ mode can be written as:

(𝛽፳)፦፧ = −𝑗√−(𝛽ኼ − 𝛽ኼ ) (2.19)

This way of representing makes it easier to visualise that (𝛽፳)፦፧ is purely real when 𝛽 > 𝛽, purely
imaginary when 𝛽 < 𝛽 and 0 when 𝛽 = 𝛽. Therefore, cut-off is determined by:

(𝛽፳)፦፧ = 0 (2.20)

⟹

𝛽 = 𝜔√𝜇𝜖 = 𝛽 (2.21)
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⟹

(𝑓)፦፧ =
𝜒ᖤ፦፧

2𝜋𝑎√𝜇𝜖
(2.22)

The electric field equations for a perfectly matched cylindrical waveguide are:

𝐸 = −
1
𝜖𝜌
𝜕𝐹፳
𝜕𝜙 = −𝐴፦፧

𝑚
𝜖𝜌𝐽፦(𝛽𝜌)[−𝐶ኼ sin(𝑚𝜙) + 𝐷ኼ cos(𝑚𝜙)]𝑒

ዅ፣ᎏᑫ፳ (2.23)

𝐸Ꭻ =
1
𝜖
𝜕𝐹፳
𝜕𝜌 = 𝐴፦፧

𝛽
𝜖 𝐽

ᖤ
፦(𝛽𝜌)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒ዅ፣ᎏᑫ፳ (2.24)

𝐸፳ = 0 (2.25)

The magnetic field equations for a perfectly matched cylindrical waveguide are:

𝐻 = −𝑗
1
𝜔𝜇𝜖

𝜕ኼ𝐹፳
𝜕𝜌𝜕𝑧 = −𝐴፦፧

𝛽𝛽፳
𝜔𝜇𝜖 𝐽

ᖤ
፦(𝛽𝜌)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒ዅ፣ᎏᑫ፳ (2.26)

𝐻Ꭻ = −𝑗
1
𝜔𝜇𝜖

1
𝜌
𝜕ኼ𝐹፳
𝜕𝜙𝜕𝑧 = −𝐴፦፧

𝑚𝛽፳
𝜔𝜇𝜖

1
𝜌𝐽፦(𝛽𝜌)[−𝐶ኼ sin(𝑚𝜙) + 𝐷ኼ cos(𝑚𝜙)]𝑒

ዅ፣ᎏᑫ፳ (2.27)

𝐻፳ = −𝑗
1
𝜔𝜇𝜖 (

𝜕ኼ
𝜕𝑧ኼ + 𝛽

ኼ)𝐹፳ = −𝑗𝐴፦፧
𝛽ኼ
𝜔𝜇𝜖 𝐽፦(𝛽𝜌)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒

ዅ፣ᎏᑫ፳ (2.28)

The impedance of the wave for TE modes, hence, can be determined as:

(𝑍፰)ፓፄ፦፧ =
𝐸
𝐻Ꭻ

=
−𝐸Ꭻ
𝐻

= 𝜔𝜇
(𝛽፳)፦፧

(2.29)

Therefore, impedance of the wave is real above cut-off and imaginary below the cut-off and induc-
tive. Below cut-off, it stores energy. Exactly at cut-off the impedance is very high (∞).

2.3. 𝑇𝑀𝑧 modes:
The same analysis can be done for the TM mode with the electric potential function.

𝐹 = 0 (2.30)

𝐴 = �̂�𝐴፳(𝜌, 𝜙, 𝑧) (2.31)

And the boundary conditions are:

• 𝐸Ꭻ(𝜌 = 𝑎, 𝜙, 𝑧) = 0
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• 𝐸፳(𝜌 = 𝑎, 𝜙, 𝑧) = 0

• The fields must be finite everywhere

• The field must repeat after 2𝜋 radians in 𝜙.

Using these, the solution to the partial differential equation (PDE) for a perfectly matched waveguide
(No reflection) can be written as:

𝐴፳(𝜌, 𝜙, 𝑧) = 𝐵፦፧𝐽፦(𝛽𝜌)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒ዅ፣ᎏᑫ፳ (2.32)

Using the second BC, it can be shown that,

𝐽፦(𝛽𝑎) = 0 (2.33)

⟹

𝛽 =
𝜒፦፧
𝑎 (2.34)

Where, 𝜒፦፧ is the nth zero of the Bessel’s function 𝐽፦ of the first kind of the order m (0, 1, 2, 3,...).

cut-off frequency can be given as:

(𝑓)፦፧ =
𝜒፦፧

2𝜋𝑎√𝜇𝜖
(2.35)

The magnetic field equations for a perfectly matched cylindrical waveguide are:

𝐻 =
1
𝜇𝜌
𝜕𝐴፳
𝜕𝜙 = 𝐵፦፧

𝑚
𝜇𝜌𝐽፦(𝛽𝜌)[−𝐶ኼ sin(𝑚𝜙) + 𝐷ኼ cos(𝑚𝜙)]𝑒

ዅ፣ᎏᑫ፳ (2.36)

𝐻Ꭻ =
1
𝜇
𝜕𝐴፳
𝜕𝜌 = −𝐵፦፧

𝛽
𝜇 𝐽

ᖤ
፦(𝛽𝜌)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒ዅ፣ᎏᑫ፳ (2.37)

𝐻፳ = 0 (2.38)

The electric field equations for a perfectly matched cylindrical waveguide are:

𝐸 = −𝑗
1
𝜔𝜇𝜖

𝜕ኼ𝐴፳
𝜕𝜌𝜕𝑧 = −𝐵፦፧

𝛽𝛽፳
𝜔𝜇𝜖 𝐽

ᖤ
፦(𝛽𝜌)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒ዅ፣ᎏᑫ፳ (2.39)

𝐸Ꭻ = −𝑗
1
𝜔𝜇𝜖

1
𝜌
𝜕ኼ𝐴፳
𝜕𝜙𝜕𝑧 = −𝐵፦፧

𝑚𝛽፳
𝜔𝜇𝜖

1
𝜌𝐽፦(𝛽𝜌)[−𝐶ኼ sin(𝑚𝜙) + 𝐷ኼ cos(𝑚𝜙)]𝑒

ዅ፣ᎏᑫ፳ (2.40)

𝐸፳ = −𝑗
1
𝜔𝜇𝜖 (

𝜕ኼ
𝜕𝑧ኼ + 𝛽

ኼ)𝐴፳ = −𝑗𝐵፦፧
𝛽ኼ
𝜔𝜇𝜖 𝐽፦(𝛽𝜌)[𝐶ኼ cos(𝑚𝜙) + 𝐷ኼ sin(𝑚𝜙)]𝑒

ዅ፣ᎏᑫ፳ (2.41)
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The impedance of the wave for TM modes, hence, can be determined as:

(𝑍፰)ፓፌ፦፧ =
𝐸
𝐻Ꭻ

=
−𝐸Ꭻ
𝐻

= (𝛽፳)፦፧
𝜔𝜖 (2.42)

2.4. Results: Near field or the field distribution on the aperture
The above equations for near field pattern were plotted in MATLAB. For the plots, I have taken the
constant 𝐶ኼ = 1 and 𝐷ኼ = 0. The plot is at a particular cross-section (z = 0).

The TE modes are shown in figure 2.1. For TE modes, the surface plot is the Electric field and the
quiver plots (field lines) are for the magnetic field. The TM modes are shown in figure 2.2. For TM
modes, the surface plots are magnetic field and the quiver plots (field lines) are for the electric field.

In all these MATLAB simulations, the frequency was chosen to be a little bit higher than the cut-off
frequency of the respective modes.

Some results from Feko simulation are shown in figure 2.3. The patterns exactly match the analytical
solution plotted in MATLAB. The solver in Feko was Method of Moments (MoM). The source for this
cylindrical structure was chosen to be a waveguide source which allows a certain mode. The cylinder
is shown in figure 2.4. It is a cylinder of which one of the sides is absorbing (waveguide port with no
excitation) and the other side is excited by a waveguide source.

2.5. Conclusions
In this chapter, TE and TM propagating modes of a circular cross section (cylindrical) waveguide have
been studied. Analytical expressions for the near fields have been derived. The analytical expressions
have been implemented on MATLAB and have been compared with direct full wave numerical solu-
tions of Maxwell’s equation in FEKO commercial tool with Method of Moments (MoM) solver. A good
agreement has been observed between the two implementations which verifies the correctness of the
MATLAB routines built with the analytical solutions.
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(a) ፓፄᎳᎳ (b) ፓፄᎴᎳ

(c) ፓፄᎲᎳ (d) ፓፄᎵᎳ

(e) ፓፄᎶᎳ (f) ፓፄᎳᎴ

(g) ፓፄᎷᎳ (h) ፓፄᎴᎴ

Figure 2.1: E and H fields of TE mode. E field surface plot. H field quiver plot.
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(i) ፓፄᎲᎴ (j) ፓፄᎸᎳ

(k) ፓፄᎵᎴ (l) ፓፄᎳᎵ

(m) ፓፄᎹᎳ (n) ፓፄᎶᎴ

(o) ፓፄᎺᎳ (p) ፓፄᎴᎵ

Figure 2.1: E and H fields of TE mode. E field surface plot. H field quiver plot.(cont.)
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(a) ፓፌᎲᎳ (b) ፓፌᎳᎳ

(c) ፓፌᎴᎳ (d) ፓፌᎲᎴ

(e) ፓፄᎵᎳ (f) ፓፌᎳᎴ

(g) ፓፌᎶᎳ (h) ፓፌᎴᎴ

Figure 2.2: E and H fields of TM mode. H field surface plot. E field quiver plot.
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(i) ፓፌᎲᎵ (j) ፓፌᎷᎳ

(k) ፓፌᎵᎴ (l) ፓፌᎸᎳ

(m) ፓፌᎳᎵ

Figure 2.2: E and H fields of TM mode. H field surface plot. E field quiver plot. (Cont.)
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Figure 2.3: Feko Cylinder structure.



26 2. Circular Cross-Section Waveguides: Near Field Patterns

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

x [m]

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

y
 [

m
]

Field data in Linear scale

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) E field ፓፄᎳᎴ
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(b) E field ፓፄᎵᎳ
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(c) H field ፓፌᎴᎴ
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(d) H field ፓፌᎳᎳ

Figure 2.4: E- and H-fields in Feko for some TE and TM modes.



3
Two Circular Cross-Section Waveguides

with Mode Matching Technique

3.1. Problem formulation
In this chapter, two circular cross-section waveguides are studied. They are connected to each other
at 𝑧 = 0.The problem is shown in figure 3.1. The junction problem is studied with the mode matching
technique (MM).

Figure 3.1: Two circular waveguides of different radii connected at z = 0.

3.2. Field Expressions for Circular Cross Section Waveguide
This problem can be solved by determining the GSM (General Scattering Matrix). Here, the two sec-
tions at the junctions can be thought as two ports and the characteristic of the reflection and transmis-
sion coefficients can be determined using the GSM. From previous chapter we already know the field
equations for the two waveguides. For the waveguide P, the total electric field can be written simply
as,

27
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�⃗�ፏ፭ |ፀᑇ ,፳ኺᎽ =
ፍᑇ
∑
፧ኻ
(𝑎ፏ፧ + 𝑏ፏ፧)�⃗�ፏ፧ (3.1)

�⃗�ፏ፭ |ፀᑇ ,፳ኺᎽ =
ፍᑇ
∑
፧ኻ
(𝑎ፏ፧ − 𝑏ፏ፧)�⃗�ፏ፧ (3.2)

Similarly for the waveguide R, it can be written as,

�⃗�ፑ፭ |ፀᑉ ,፳ኺᎼ =
ፍᑉ
∑
፦ኻ

(𝑎ፑ፦ + 𝑏ፑ፦)�⃗�ፑ፧ (3.3)

�⃗�ፑ፭ |ፀᑉ ,፳ኺᎼ =
ፍᑉ
∑
፦ኻ

(𝑏ፑ፦ − 𝑎ፑ፦)�⃗�ፑ፧ (3.4)

Here, 𝑁ፏ and 𝑁ፑ are the number of modes considered in waveguide P and R respectively. Every
mode is orthogonal.

3.3. Mode Matching Technique (The MM analytical software)

3.3.1. Formulation of the Normalization Constant Q for each Mode and its Nu-
merical solution

Normalization constant for a waveguide is necessary in themodematching software because themodel
is based on energy conservation or balance between two different waveguides for a junction problem.
The normalization makes sure that the energy is noramlized on both sides of the junction in a similar
way.

An arbitrary normalization coefficient for each mode in the waveguides can be calculated by the
following relation.

∫∫
ፀᑒᑣᑖᑒ

(�⃗�ፚ፫፞ፚ፧ × �⃗�ፚ፫፞ፚ፦ ).�̂�𝑑𝑆 = 𝑄ፚ፫፞ፚ፧ 𝛿፧፦ (3.5)

Here 𝑎𝑟𝑒𝑎 can be both P and R. The 𝛿 function is 1, when 𝑚 = 𝑛 and 0 otherwise. This explains
that the modes are orthogonal.

This quantity shows how many modes are propagating and how many are evanescent. It is slightly
different from the Poynting vector which is given as:

∫∫
ፀᑒᑣᑖᑒ

(�⃗�ፚ፫፞ፚ፧ ×𝐻∗
ፚ፫፞ፚ
፦ ).�̂�𝑑𝑆 = 𝑌∗፦∫∫

ፀᑒᑣᑖᑒ
(�⃗�ፚ፫፞ፚ፧ .𝐸∗

ፚ፫፞ፚ
፦ )𝑑𝑆 = 𝑍፧∫∫

ፀᑒᑣᑖᑒ
(�⃗�ፚ፫፞ፚ፧ .𝐻∗

ፚ፫፞ፚ
፦ )𝑑𝑆 = 𝑃ፚ፫፞ፚ፧ 𝛿፧፦

(3.6)

Therefore, the normalization constant Q is related to the Poynting vector P as the following:
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𝑃፧ =
√𝑍፧
√𝑍∗፧

|𝑄፧| (3.7)

For verification, the normalization constant Q was plotted at a certain frequency for a number of
modes in both TE and TM. The plot is shown in figure 3.2. The double integral is done on the cross-
section surface of the waveguide. In this case the double integral looks like ∫ፚኺ ∫

ኼ
ኺ to specify the circle

in cylindrical coordinates.
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Figure 3.2: Normalization constant for the modes both in TE and TM

The radius of the waveguide for this simulation was kept as 𝑟 = 2.03[𝑐𝑚] and the frequency of
operation was 90 GHz. It can be seen from the figure that for the TEmodes, at 𝑇𝐸ኽኺ,ኼ, the normalization
becomes purely imaginary. And before that from 𝑇𝐸ኼ,ኻ to 𝑇𝐸ኼዃ,ኼ, the nornalization was purely real
suggesting that there is no real power after 𝑇𝐸ኼዃ,ኼ mode for 90 GHz. It was found that the cut-off for
𝑇𝐸ኼዃ,ኼ is 88.414 GHz and the cut-off for 𝑇𝐸ኽኺ,ኼ is 90.963 GHz. As the operational frequency was 90
GHz, it couldn’t excite modes after 𝑇𝐸ኽኺ,ኼ. Similarly for TM mode, at 𝑇𝐸ኼዂ,ኼ mode, the normalization
becomes purely imaginary because the cut-off at 𝑇𝑀ኼ,ኼ is 88.949 GHz and the cut-off at 𝑇𝑀ኼዂ,ኼ is
91.553 GHz.

3.3.2. An analytical approach for Solving for Normalization Constant Q

Using equation (3.5) we have at 𝑧 = 0:

𝑄ፚ፫፞ፚ፧ 𝛿፧፦ = ∫∫
ፀᑒᑣᑖᑒ

(�⃗�ፚ፫፞ፚ፧ × �⃗�ፚ፫፞ፚ፦ ).�̂�𝑑𝑆 = ∫∫
ፀᑒᑣᑖᑒ

[�⃗�ፚ፫፞ፚ፧ �⃗�ፚ፫፞ፚᎫ፦ − �⃗�ፚ፫፞ፚᎫ፧ �⃗�ፚ፫፞ፚ፦ ]𝜌𝑑𝜌𝑑𝜙 (3.8)

Using equations from chapter 2 (2.23, 2.24, 2.26 and 2.27) for TE modes, we get:

𝑄ፚ፫፞ፚ፧ 𝛿፧፦ = ∫∫
ፀᑒᑣᑖᑒ

𝐾፦፧ፓፄ[
𝑚ኼ
𝜌ኼ 𝐽

ኼ
፦(𝛽(፦,፧)𝜌) sinኼ(𝑚𝜙) + 𝛽ኼ(፦,፧)𝐽

ᖤኼ
፦ (𝛽(፦,፧)𝜌) cosኼ(𝑚𝜙)]𝜌𝑑𝜌𝑑𝜙 (3.9)

Where 𝐾፦፧ፓፄ is defined as:

𝐾፦፧ፓፄ =
𝐴ኼ፦፧𝛽፳,፦፧𝐶ኼኼ
𝜔𝜇𝜖ኼ (3.10)
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From properties of Bessel’s function of the first kind, we know that,

𝐽ᖤ(𝑍) =
𝐽ዅኻ(𝑍) − 𝐽ዄኻ(𝑍)

2 (3.11)

And,

2𝜈𝐽(𝑍)
𝑍 = 𝐽ዅኻ(𝑍) + 𝐽ዄኻ(𝑍) (3.12)

Using these properties the integral can be re-written as:

𝑄ፚ፫፞ፚ፧ 𝛿፧፦ = 𝐾፦፧ፓፄ
𝛽ኼ(፦,፧)
4 [(𝐼ፀ + 𝐼ፂ)(𝐼፬።፧ + 𝐼፨፬) + 2𝐼ፁ(𝐼፬።፧ − 𝐼፨፬)] (3.13)

The terms in the above equation (3.13) are defined as:

𝐼፬።፧ = ∫
ኼ

ኺ
𝑠𝑖𝑛ኼ(𝑚𝜙)𝑑𝜙 = 𝜋 (3.14)

𝐼፨፬ = ∫
ኼ

ኺ
𝑐𝑜𝑠ኼ(𝑚𝜙)𝑑𝜙 = 𝜋 (3.15)

𝐼ፀ = ∫
፫

ኺ
𝐽ኼ፦ዅኻ(𝛽(፦,፧)𝜌)𝜌𝑑𝜌 (3.16)

𝐼ፁ = ∫
፫

ኺ
𝐽፦ዅኻ(𝛽(፦,፧)𝜌)𝐽፦ዄኻ(𝛽(፦,፧)𝜌)𝜌𝑑𝜌 (3.17)

𝐼ፂ = ∫
፫

ኺ
𝐽ኼ፦ዄኻ(𝛽(፦,፧)𝜌)𝜌𝑑𝜌 (3.18)

Here, the surface integral is divided into two parts; one dependent on 𝜌 and the other one dependent
on 𝜙. This was possible because it was assumed in chapter 2 that the field solutions to a cylindrical
(circular cross-section) waveguides are a multiplication of independent functions.

𝐼ፀ and 𝐼ፂ can be solved analytically by using Lommel’s integrals [2] and [5] (Equation 3.19).

∫
፫

ኺ
𝐽ኼ(𝛽(፦,፧)𝜌)𝜌𝑑𝜌 =

1
2𝑎

ኼ(𝐽(𝛽(፦,፧)𝑎)ኼ − 𝐽ዅኻ(𝛽(፦,፧)𝑎)𝐽ዄኻ(𝛽(፦,፧)𝑎)) (3.19)

Finding out B is difficult and involves hyper-geometric functions as it has Bessel functions of different
orders. However, using equation (3.14) and (3.15) (𝐼፬።፧ = 𝐼፨፬ = 𝜋), the final integral of equation (3.13)
becomes:

𝑄ፚ፫፞ፚ፧ፓፄ 𝛿፧፦ = 𝐾፦፧ፓፄ
𝛽ኼ(፦,፧)
4 [(𝐼ፀ + 𝐼ፂ)(𝐼፬።፧ + 𝐼፨፬)] (3.20)
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Therefore, the expression with 𝐵 vanishes.

For TM mode also the solution is identical except the constant 𝐾፦፧ፓፌ which is given as:

𝐾፦፧ፓፌ =
𝐵ኼ፦፧𝛽፳,፦፧𝐶ኼኼ
𝜔𝜇ኼ𝜖 (3.21)

Therefore, the solution is:

𝑄ፚ፫፞ፚ፧ፓፌ 𝛿፧፦ = 𝐾፦፧ፓፌ
𝛽ኼ(፦,፧)
4 [(𝐼ፀ + 𝐼ፂ)(𝐼፬።፧ + 𝐼፨፬)] (3.22)

The plots with both numerical and the analytical solution is given in figure 3.3 withm = 1 and n varying
from 1 to 50 at 200 GHz frequency. The analytical result matches the numerical result perfectly. For
the numerical result, discretization in 𝜌 dimension was taken as ፫

ኻኺኺኺ and in 𝜙 dimension it was 
ኼኺኺኺ .
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Figure 3.3: Normalization constant for the modes both in TE and TM

3.3.3. Mode Matching Technique

Here, 𝐴ፑ is a subset of 𝐴ፏ (𝐴ፏ = 𝐴ፑ + 𝐴፣) and 𝐴፣ is the excess area which is not connected to the
waveguide R. The E- and H-field boundary conditions must be satisfied at the boundary of the two
waveguides where they are connected.

• For E field:

–
�̂� × �⃗�ፏ = 0, 𝑖𝑛 𝐴፣ , 𝑧 = 0 (3.23)

–
�̂� × �⃗�ፏ = �̂� × �⃗�ፑ , 𝑖𝑛 𝐴ፑ , 𝑧 = 0 (3.24)

• For H field:

–
�̂� × �⃗�ፏ = �̂� × �⃗�ፑ , 𝑖𝑛 𝐴ፑ , 𝑧 = 0 (3.25)
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For boundary condition of electric field, we can project it to a magnetic field of all modes in the P
waveguide. Therefore,

∫∫
ፀᑇ
(�̂� × �⃗�ፏ).�⃗�ፏ፦፨፝፞ �̂�𝑑𝑆 =

ፍᑇ
∑
፧ኻ
(𝑎ፏ፧ + 𝑏ፏ፧)∫∫

ፀᑇ
(�̂� × 𝐸፧

ፏ
).�⃗�ፏ፦፨፝፞ �̂�𝑑𝑆 (3.26)

Where 𝑚𝑜𝑑𝑒 refers to any waveguide mode.

As the modes are orthogonal to each other this can be rewritten as:

∫∫
ፀᑇ
(�̂� × �⃗�ፏ).�⃗�ፏ፦፨፝፞ �̂�𝑑𝑆 = (𝑎ፏ፦፨፝፞ + 𝑏ፏ፦፨፝፞)𝑄ፏ፦፨፝፞ (3.27)

The left hand side of equation (3.26) can be calculated by dividing it into two sections (one over 𝐴ፑ
and one over 𝐴፣).

∫∫
ፀᑇ
(�̂� × �⃗�ፏ).�⃗�ፏ፦፨፝፞ �̂�𝑑𝑆 = ∫∫

ፀᑉ
(�̂� × �⃗�ፏ).�⃗�ፏ፦፨፝፞ �̂�𝑑𝑆 + ∫∫

ፀᑛ
(�̂� × �⃗�ፏ).�⃗�ፏ፦፨፝፞ �̂�𝑑𝑆 (3.28)

From first boundary condition of electric field, we know that the second term in the right hand side
of the equation (3.28) is 0. Therefore also using the second boundary condition,

∫∫
ፀᑇ
(�̂� × �⃗�ፏ).�⃗�ፏ፦፨፝፞ �̂�𝑑𝑆 = ∫∫

ፀᑉ
(�̂� × �⃗�ፑ).�⃗�ፏ፦፨፝፞ �̂�𝑑𝑆 =

ፍᑉ
∑
፦ኻ

(𝑎ፑ፦ + 𝑏ፑ፦)∫∫
ፀᑉ
𝐸፦

ፑ
× �⃗�ፏ፦፨፝፞ .�̂�𝑑𝑆 (3.29)

The term ∫∫ፀᑉ 𝐸፦
ፑ
× �⃗�ፏ፦፨፝፞ .�̂�𝑑𝑆 is called the inner cross product and it includes the fields in the

two waveguides at one integral. Therefore, the above relation can be rewritten as:

(𝑎ፏ፦፨፝፞ + 𝑏ፏ፦፨፝፞)𝑄ፏ፦፨፝፞ =
ፍᑉ
∑
፦ኻ

𝑋፦,፦፨፝፞(𝑎ፑ፦ + 𝑏ፑ፦) (3.30)

Where 𝑋፦,፦፨፝፞ is the inner cross product of between the mode 𝑚 of waveguide P and the mode
𝑚𝑜𝑑𝑒 of the waveguide 𝑅.

This can be calculated for all the modes 𝑚𝑜𝑑𝑒 = 1, 2, ...𝑁ፏ.

Similarly using the magnetic field boundary conditions, we have:

∫∫
ፀᑉ
(�̂� × �⃗�ፏ).�⃗�ፑ፦፨፝፞ �̂�𝑑𝑆 = ∫∫

ፀᑉ
(�̂� × �⃗�ፑ).�⃗�ፑ፦፨፝፞ �̂�𝑑𝑆 = 𝑄ፑ፦፨፝፞(𝑏ፑ፦፨፝፞ − 𝑎ፑ፦፨፝፞) (3.31)

⟹

ፍᑇ
∑
፧ኻ

𝑋፦፨፝፞,፧(𝑎ፏ፧ − 𝑏ፏ፧) = 𝑄ፑ፦፨፝፞(𝑏ፑ፦፨፝፞ − 𝑎ፑ፦፨፝፞) (3.32)
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This can be done for all modes 𝑚𝑜𝑑𝑒 = 1, 2, ...𝑁ፑ.

In matrix form, equations can be written as:

𝑄ፏ(𝑎ፏ + 𝑏ፏ) = 𝑋፭(𝑎ፑ + 𝑏ፑ) (3.33)

𝑄ፑ(𝑏ፑ − 𝑎ፑ) = 𝑋(𝑎ፏ − 𝑏ፏ) (3.34)

The superscript 𝑡 denotes transverse component of the fields. Where, 𝑄ፏ and 𝑄ፑ are diagonal matrices
of order 𝑁ፏ × 𝑁ፏ and 𝑁ፑ × 𝑁ፑ respectively. From definition of the inner cross product 𝑋, we know that
the dimensions for X should be 𝑁ፑ ×𝑁ፏ. From the coefficients 𝑎ፏ and 𝑎ፑ, 𝑏ፏ and 𝑏ፑ can be calculated
using the Generalised Scattering Matrix (GSM).

[𝑏፩𝑏፬] = [
𝑆ፏፏ 𝑆ፏፑ
𝑆ፑፏ 𝑆ፑፑ] [

𝑎፩
𝑎፬] (3.35)

The entries of the GSM matrix can be found by the following,

𝐺𝑆𝑀 = [𝑄
ዅኻ
ፏ 𝑋፭𝐹𝑋 − 𝐼ፏ 𝑄ዅኻፏ 𝑋፭𝐹𝑄ፑ

𝐹𝑋 𝐹𝑄ፑ − 𝐼ፑ ] (3.36)

Here 𝐼ፏ and 𝐼ፑ are identity matrices of order 𝑁ፏ × 𝑁ፏ and 𝑁ፑ × 𝑁ፑ respectively and 𝐹 is given by:

𝐹 = 2(𝑄ፑ + 𝑋𝑄ዅኻፏ 𝑋፭)ዅኻ (3.37)

Note: The projections here mentioned are Galerkin’s projections. A Galerkin’s projection is made
with the same type of quantity. Therefore, for boundary condition of electric field, for �̂� × 𝐸, a magnetic
field is projected and for boundary condition of magnetic field, for �̂� × 𝐻, an electric field is projected.

3.3.4. Formulation of the Inner Cross-Product X

First of all the transverse (without the phase term dependent on z) fields can be written as:

TE:

�⃗�፧ = 𝐾
Ꮃ
Ꮄ
፦፧ፓፄ𝑍

Ꮃ
Ꮄ
፦፧ፓፄΦ⃗ፄ፧ = 𝐾

Ꮃ
Ꮄ
፦፧ፓፄ𝑍

Ꮃ
Ꮄ
፦፧ፓፄ∇፭Φ፧ × �̂� (3.38)

�⃗�፧ = 𝐾
Ꮃ
Ꮄ
፦፧ፓፄ𝑌

Ꮃ
Ꮄ
፦፧ፓፄΦ⃗ፇ፧ = 𝐾

Ꮃ
Ꮄ
፦፧ፓፄ𝑌

Ꮃ
Ꮄ
፦፧ፓፄ∇፭Φ፧ (3.39)

�⃗�፳፧ = 0�̂� (3.40)
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�⃗�፳፧ = −𝐾
Ꮃ
Ꮄ
፦፧ፓፄ𝑌

Ꮃ
Ꮄ
፦፧ፓፄ

𝛽ኼ
𝛽፳
Φ፧�̂� (3.41)

Here, Φ፧ is a scalar function like the potential function described in chapter 2 without the phase
term containing z. The Φ፧s are the solution to the differential equations of the form Δ፭Φ፧ + 𝛽ኼΦ፧ = 0.

The expression for the scalar Φ function is given as:

Φፓፄ = 𝐽፦(𝛽𝜌) cos(𝑚𝜙) (3.42)

TM:

�⃗�፧ = 𝐾
Ꮃ
Ꮄ
፦፧ፓፌ𝑌

Ꮃ
Ꮄ
፦፧ፓፌΦ⃗ፇ፧ = 𝐾

Ꮃ
Ꮄ
፦፧ፓፌ𝑌

Ꮃ
Ꮄ
፦፧ፓፌ∇፭Φ፧ × �̂� (3.43)

�⃗�፧ = 𝐾
Ꮃ
Ꮄ
፦፧ፓፌ𝑍

Ꮃ
Ꮄ
፦፧ፓፌΦ⃗ፄ፧ = 𝐾

Ꮃ
Ꮄ
፦፧ፓፌ𝑍

Ꮃ
Ꮄ
፦፧ፓፌ∇፭Φ፧ (3.44)

�⃗�፳፧ = 0�̂� (3.45)

�⃗�፳፧ = −𝐾
Ꮃ
Ꮄ
፦፧ፓፌ𝑍

Ꮃ
Ꮄ
፦፧ፓፌ

𝛽ኼ
𝛽፳
Φ፧�̂� (3.46)

The expression for the scalar Φ function is given as:

Φፓፌ = 𝐽፦(𝛽𝜌) cos(𝑚𝜙) (3.47)

The 𝑍 and 𝑌 are different for TE and TM (Expressions are given in chapter 2).

Using these expressions for the inner cross product, we have:

𝑋 = ∫∫
ፀᑉ
(�⃗�ፑ፫፦,፫፧ × �⃗�ፏ፩፦,፩፧).�̂�𝑑𝑆 = (𝐾ፑ፫፦,፫፧)

Ꮃ
Ꮄ (𝑍ፑ፫፦,፫፧)

Ꮃ
Ꮄ �̄�(፫፦,፫፧)ዅጻ(፩፦,፩፧)(𝑌ፏ፩፦,፩፧)

Ꮃ
Ꮄ (𝐾ፏ፩፦,፩፧)

Ꮃ
Ꮄ (3.48)

Where �̄� is defined as:

�̄� = ∫∫
ፀᑉ
(Φ⃗ፑፄ፦ × Φ⃗ፏፇ፧).�̂�𝑑𝑆 = ∫∫

ፀᑉ
(Φ⃗ፑፄ፦ .Φ⃗ፏፄ፧)𝑑𝑆 = ∫∫

ፀᑉ
(Φ⃗ፑፇ፦ .Φ⃗ፏፇ፧)𝑑𝑆 (3.49)
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Therefore, the matrix �̄� is frequency independent. It can be solved with surface integrals over the
domain 𝐴ፑ. The simplifications to this integral can be found by the following formulae:

TE mode in P and TE mode in R Following equations (3.39) and (3.49)

�̄� = ∫∫
ፀᑉ
(Φ⃗ፑፇ፦ .Φ⃗ፏፇ፧)𝑑𝑆 = ∫∫

ፀᑉ
∇፭Φፑ .∇፭Φፏ𝑑𝑆 (3.50)

TE mode in P and TM mode in R Following equations (3.39), (3.43) and (3.49)

�̄� = ∫∫
ፀᑉ
(Φ⃗ፑፄ፦ × Φ⃗ፏፇ፧).�̂�𝑑𝑆 = ∫∫

ፀᑉ
(∇፭Φፑ × ∇፭Φፏ).�̂�𝑑𝑆 (3.51)

TM mode in P and TE mode in R Following equations (3.38), (3.44) and (3.49)

�̄� = ∫∫
ፀᑉ
(Φ⃗ፑፄ፦ × Φ⃗ፏፇ፧).�̂�𝑑𝑆 = ∫∫

ፀᑉ
(∇፭Φፏ × ∇፭Φፑ).�̂�𝑑𝑆 (3.52)

TM mode in P and TM mode in R

Following equations (3.44) and (3.30)

�̄� = ∫∫
ፀᑉ
(Φ⃗ፑፄ፦ .Φ⃗ፏፄ፧)𝑑𝑆 = ∫∫

ፀᑉ
∇፭Φፑ .∇፭Φፏ𝑑𝑆 (3.53)

3.3.5. Formulation of Inner Cross Product using Normalized Field Equations

The potential function used in the previous formulation wasn’t normalized. There is another way to
visualise the problem with normalized field equations where the potentials can be written as:

Ψ = (𝑁ፓፄ/ፓፌ)𝐽፦(𝛽𝜌) cos(𝑚𝜙) (3.54)

The potential function is a solution to the differential equation Δ፭Ψ፧ + 𝛽ኼΨ፧ = 0 with the boundary
condition that:

∫∫
ፒ
|∇፭Ψ፧|ኼ𝑑𝑆 = 1 (3.55)

Applying the boundary condition of orthogonality, we can find the normalization factor. The above
equation 3.55 can be rewritten as:

(𝑁ፓፄ/ፓፌ)ኼ∫∫
ፀᑒᑣᑖᑒ

[𝑚
ኼ

𝜌ኼ 𝐽
ኼ
፦(𝛽(፦,፧)𝜌) sinኼ(𝑚𝜙) + 𝛽ኼ(፦,፧)𝐽

ᖤኼ
፦ (𝛽(፦,፧)𝜌) cosኼ(𝑚𝜙)]𝜌𝑑𝜌𝑑𝜙 = 1 (3.56)
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Here, the integral exactly looks like the integral that appeared in the normalization factor Q in section
3.2.1 equation (3.9). Therefore, the solution as per equation (3.20) is:

∫∫
ፒ
|∇፭Ψ፧|ኼ𝑑𝑆 = (𝑁ፓፄ/ፓፌ)ኼ

𝛽ኼ(፦,፧)
4 (𝐼ፀ + 𝐼ፂ)2𝜋 (3.57)

𝐼ፀ and 𝐼ፂ are given in the equations 3.16 and 3.18. Using Lommel’s integral of equation 3.19, we
can further simplify the term 𝐼ፀ + 𝐼ፂ as,

For TE

We know that for TE,

𝐽ᖤ፦(𝛽𝑟) = 0 (3.58)

⟹

Using the Bessel’s function properties,

𝐽፦ዅኻ(𝛽𝑟) = 𝐽፦ዄኻ(𝛽𝑟) (3.59)

𝐽፦ዅኻ(𝛽𝑟) =
𝑚
𝛽𝑟

𝐽፦(𝛽𝑟) (3.60)

Using these properties, it is found that,

𝐼ፀ + 𝐼ፂ =
1
2𝑟

ኼ 𝐽
ኼ
፦(𝛽𝑟)
(𝛽𝑟)ኼ

2((𝛽𝑟)ኼ −𝑚ኼ) =
𝐽ኼ፦(𝛽𝑟)
(𝛽)ኼ

((𝛽𝑟)ኼ −𝑚ኼ) (3.61)

Using this on equation 3.57, we have,

∫∫
ፒ
|∇፭Ψ፧|ኼ𝑑𝑆 = (𝑁ፓፄ)ኼ

𝛽ኼ(፦,፧)
4 (𝐼ፀ + 𝐼ፂ)2𝜋 = (𝑁ፓፄ)ኼ

𝜋
2 𝐽

ኼ
፦(𝛽𝑟)((𝛽𝑟)ኼ −𝑚ኼ) = 1 (3.62)

⟹

𝑁ፓፄ =
√ ኼ


𝐽፦(𝛽(፦,፧)𝑟)√((𝛽(፦,፧)𝑟)ኼ −𝑚ኼ)
(3.63)

The term 𝛽(፦,፧)𝑟 is just the 𝑛th root of the derivative of the 𝑚th order Bessel function which is
written in chapter 2 as (𝜒ᖤ፦፧)
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𝑁ፓፄ =
√ ኼ


𝐽፦(𝜒
ᖤ
፦፧)√(𝜒ᖤኼ፦፧ −𝑚ኼ)

(3.64)

For TM

For TM using the property that 𝐽፦(𝛽𝑟) = 0 and the boundary condition of the normalized power
(3.55), it is found that,

𝑁ፓፌ =
√ ኼ


𝐽ᖤ፦(𝜒፦፧)𝜒፦፧
(3.65)

The term 𝛽(፦,፧)𝑟 for TM is just the 𝑛th root of the 𝑚th order Bessel function which is written in
chapter 2 as (𝜒፦፧)

Using this normalized potential scalar function Ψ, the equations from 3.38 to 3.47 can be rewritten
as,

TE:

�⃗�፧ = 𝑄
Ꮃ
Ꮄ
፦፧ፓፄ𝑍

Ꮃ
Ꮄ
፦፧ፓፄΨ⃗ፄ፧ = 𝑄

Ꮃ
Ꮄ
፦፧ፓፄ𝑍

Ꮃ
Ꮄ
፦፧ፓፄ∇፭Ψ፧ × �̂� (3.66)

�⃗�፧ = 𝑄
Ꮃ
Ꮄ
፦፧ፓፄ𝑌

Ꮃ
Ꮄ
፦፧ፓፄΨ⃗ፇ፧ = 𝑄

Ꮃ
Ꮄ
፦፧ፓፄ𝑌

Ꮃ
Ꮄ
፦፧ፓፄ∇፭Ψ፧ (3.67)

�⃗�፳፧ = 0�̂� (3.68)

�⃗�፳፧ = −𝑄
Ꮃ
Ꮄ
፦፧ፓፄ𝑌

Ꮃ
Ꮄ
፦፧ፓፄ

𝛽ኼ
𝛽፳
Ψ፧�̂� (3.69)

The expression for the scalar Ψ function is given as: (As listed in the Appendix of [28])

Ψፓፄ = (𝑁ፓፄ)𝐽፦(𝛽𝜌) cos(𝑚𝜙) (3.70)

TM:

�⃗�፧ = 𝑄
Ꮃ
Ꮄ
፦፧ፓፌ𝑌

Ꮃ
Ꮄ
፦፧ፓፌΨ⃗ፇ፧ = 𝑄

Ꮃ
Ꮄ
፦፧ፓፌ𝑌

Ꮃ
Ꮄ
፦፧ፓፌ∇፭Ψ፧ × �̂� (3.71)
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�⃗�፧ = 𝑄
Ꮃ
Ꮄ
፦፧ፓፌ𝑍

Ꮃ
Ꮄ
፦፧ፓፌΨ⃗ፄ፧ = 𝑄

Ꮃ
Ꮄ
፦፧ፓፌ𝑍

Ꮃ
Ꮄ
፦፧ፓፌ∇፭Ψ፧ (3.72)

�⃗�፳፧ = 0�̂� (3.73)

�⃗�፳፧ = −𝑄
Ꮃ
Ꮄ
፦፧ፓፌ𝑍

Ꮃ
Ꮄ
፦፧ፓፌ

𝛽ኼ
𝛽፳
Ψ፧�̂� (3.74)

The expression for the scalar Ψ function is given as: (As listed in the Appendix of [28])

Ψፓፌ = (𝑁ፓፌ)𝐽፦(𝛽𝜌) cos(𝑚𝜙) (3.75)

The difference between equations 3.38 to 3.47 and 3.66 to 3.75 is that the 𝐾፦፧ terms are replaced
by the normalization constant (conjugate power terms) 𝑄፦፧ andΦ is replaced byΨ. Here, the potential
function Ψ is different for TE and TM.

Using this normalized potentials, the inner product is defined as:

𝑋 = ∫∫
ፀᑉ
(�⃗�ፑ፫፦,፫፧ × �⃗�ፏ፩፦,፩፧).�̂�𝑑𝑆 = (𝑄ፑ፫፦,፫፧)

Ꮃ
Ꮄ (𝑍ፑ፫፦,፫፧)

Ꮃ
Ꮄ ̄𝑋ጕ(፫፦,፫፧)ዅጻ(፩፦,፩፧)(𝑌ፏ፩፦,፩፧)

Ꮃ
Ꮄ (𝑄ፏ፩፦,፩፧)

Ꮃ
Ꮄ (3.76)

Where ̄𝑋ጕ is defined as:

̄𝑋ጕ = ∫∫
ፀᑉ
(Ψ⃗ፑፄ፦ × Ψ⃗ፏፇ፧).�̂�𝑑𝑆 = ∫∫

ፀᑉ
(Ψ⃗ፑፄ፦ .Ψ⃗ፏፄ፧)𝑑𝑆 = ∫∫

ፀᑉ
(Ψ⃗ፑፇ፦ .Ψ⃗ፏፇ፧)𝑑𝑆 (3.77)

3.3.6. Analytical Formulation of the Inner Cross Product for modes TE, TE and
TM, TM combination

The analytical formulation can be done using the same principles mentioned for the normalization
constant 𝑄 in the previous sub-section. Using equation (3.50), we have:

For TE and TE / For TM and TM

�̄� = ∫∫
ፀᑉ
∇፭Φፑ .∇፭Φፏ𝑑𝑆 =

𝛽(፩፦,፩፧)𝛽(፫፦,፫፧)
4 [(𝐼ፀ + 𝐼ፃ)(𝐼፨፬ + 𝐼፬።፧) − (𝐼ፁ + 𝐼ፂ)(𝐼፨፬ − 𝐼፬።፧)] (3.78)

Where 𝑝𝑚 and 𝑝𝑛 are the mode numbers for the waveguide P and rm and rn are the mode number
for the waveguide R.

Here, to make it simple, 𝑝𝑚 and rm are kept the same. (In the plots 𝑝𝑚 = 𝑟𝑚 = 1) to have a
simplified analytical solution for the inner cross product.
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The integrals mentioned in the equation (3.78) are:

𝐼፬።፧ = ∫
ኼ

ኺ
𝑠𝑖𝑛(𝑝𝑚𝜙)𝑠𝑖𝑛(𝑟𝑚𝜙)𝑑𝜙 = 𝜋 (𝑝𝑚 = 𝑟𝑚),= 0, (𝑝𝑚 ≠ 𝑟𝑚) (3.79)

𝐼፨፬ = ∫
ኼ

ኺ
𝑐𝑜𝑠(𝑝𝑚𝜙)𝑐𝑜𝑠(𝑟𝑚𝜙)𝑑𝜙 = 𝜋, (𝑝𝑚 = 𝑟𝑚),= 0, (𝑝𝑚 ≠ 𝑟𝑚) (3.80)

𝐼ፀ = ∫
፫

ኺ
𝐽፩፦ዅኻ(𝛽(፩፦,፩፧)𝜌)𝐽፫፦ዅኻ(𝛽(፫፦,፫፧)𝜌)𝜌𝑑𝜌 (3.81)

𝐼ፁ = ∫
፫

ኺ
𝐽፩፦ዅኻ(𝛽(፩፦,፩፧)𝜌)𝐽፫፦ዄኻ(𝛽(፫፦,፫፧)𝜌)𝜌𝑑𝜌 (3.82)

𝐼ፂ = ∫
፫

ኺ
𝐽፩፦ዄኻ(𝛽(፩፦,፩፧)𝜌)𝐽፫፦ዅኻ(𝛽(፫፦,፫፧)𝜌)𝜌𝑑𝜌 (3.83)

𝐼ፃ = ∫
፫

ኺ
𝐽፩፦ዄኻ(𝛽(፩፦,፩፧)𝜌)𝐽፫፦ዄኻ(𝛽(፫፦,፫፧)𝜌)𝜌𝑑𝜌 (3.84)

𝐼ፀ and 𝐼ፃ can be solved with Lommel’s integrals [2] and [5].

∫
፫

ኺ
𝐽(𝛽𝜌)𝐽(𝛽᎙𝜌)𝜌𝑑𝜌 =

𝑟
(𝛽ኼ − 𝛽ኼ᎙ )

( − 𝛽𝐽ዅኻ(𝛽𝑟)𝐽(𝛽᎙𝑟) + 𝛽᎙𝐽(𝛽𝑟)𝐽ዅኻ(𝛽𝑟)) (3.85)

The Lommel’s integral of (3.19) can be used when 𝑝𝑚 = 𝑟𝑚 and also 𝛽(፩፦,፩፧) = 𝛽(፫፦,፫፧) and the
Lommel’s integral of (3.85) can be used when 𝑝𝑚 = 𝑟𝑚 but 𝛽(፩፦,፩፧) ≠ 𝛽(፫፦,፫፧).

𝐼ፁ and 𝐼ፂ have complicated analytical solutions involving hyper-geometric functions. However, as
when 𝑝𝑚 = 𝑟𝑚, in the original expression of equation (3.76), the term with 𝐼ፁ + 𝐼ፂ vanishes because
𝐼፬።፧ = 𝐼፨፬ = 𝜋. Therefore, the inner cross product becomes:

�̄� = ∫∫
ፀᑉ
∇፭Φፑ .∇፭Φፏ𝑑𝑆 =

𝛽(፩፦,፩፧)𝛽(፫፦,፫፧)
4 [(𝐼ፀ + 𝐼ፃ)(𝐼፨፬ + 𝐼፬።፧)] (3.86)

If 𝑝𝑚 ≠ 𝑟𝑚, both 𝐼፬።፧ and 𝐼፨፬ are 0. Therefore, the inner cross product also becomes zero.

Therefore, for TE/TE and TM/TM combinations, the inner cross product is given by the table 3.1 .

conditions sub conditions �̄�

𝑝𝑚 = 𝑟𝑚 𝛽(፩፦,፩፧) = 𝛽(፫፦,፫፧)
ᎏᒖ(ᑡᑞ,ᑡᑟ)ᎏᒖ(ᑣᑞ,ᑣᑟ)

ኾ [(𝐼ፀ + 𝐼ፃ)(𝐼፨፬ + 𝐼፬።፧)], 𝐼ፀ, 𝐼ፃ from eq (3.19)

𝛽(፩፦,፩፧) ≠ 𝛽(፫፦,፫፧)
ᎏᒖ(ᑡᑞ,ᑡᑟ)ᎏᒖ(ᑣᑞ,ᑣᑟ)

ኾ [(𝐼ፀ + 𝐼ፃ)(𝐼፨፬ + 𝐼፬።፧)], 𝐼ፀ, 𝐼ፃ from eq (3.85)

𝑝𝑚 ≠ 𝑟𝑚 0

Table 3.1: Inner Cross Product in case of TE/TE and TM/TM mode configuration.

It suggests that there is no coupling in case of 𝑇𝐸ኻ,፧, 𝑇𝐸ኼ,፧, 𝑇𝐸ኽ,፧ and so on. same holds for TM
modes.
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For TM in R(smaller waveguide) and TE (larger waveguide)

This is a combination where the smaller waveguide (R) and the larger waveguide (P) have a TM and a
TE mode respectively. Then, the inner cross product can be found from appendix A, which is zero.

For TE in R(smaller waveguide) and TM (larger waveguide)

In this case, the inner cross product becomes,

�̄� = ∫∫
ፀᑉ
((−∇፭Φፑ × �̂�) × (∇፭Φፏ × �̂�)).�̂�𝑑𝑆 = ∫∫

ፀᑉ
(∇፭Φፏ × ∇፭Φፑ).�̂� (3.87)

Which looks like the previous case (TM in R and TE in P) in appendix A. In this case also the 𝐼ኻኼ and
𝐼ኼኼ terms (These terms are defined in appendix A) are zero because of the integrals ∫

ኼ
ኺ cos(𝑟𝑚𝜙) sin(𝑝𝑚𝜙)𝑑𝜙 =

0 and ∫ኼኺ cos(𝑝𝑚𝜙) sin(𝑟𝑚𝜙)𝑑𝜙 = 0. However, as the integral is over 𝐴ፑ (Area of cross section for R
or the smaller waveguide) and the waveguide having TM mode is the large waveguide, equation (2.32)
doesn’t hold. So, 𝐽፩፦(𝛽(፩፦,፩፧)𝑟𝑟) ≠ 0. However, as only 𝐼ኻኼ and 𝐼ኼኼ are zero, the inner cross product
is zero.

The difference between these two configurations (TM in R and TE in P/TE in R and TM in p) is that
the radial integrals 𝐼ኻኻ and 𝐼ኼኻ are zero for the former because the integration domain is the smaller
waveguide cross-section and for the same reason, these integrals are non-zero for the later case.

So, for both TM/TE and TE/TM modes, the inner cross product is zero.

3.4. Convergence of Mode Matching Technique
Convergence of the mode matching technique is studied by adding higher order modes on the input
section keeping the ratio of the number of modes as the aspect ratio (in this case the ratio of the areas
of the two different cross-sections for the two waveguides).

Example 1

The first test was donewhen the radii of waveguide P andR are almost the same. (𝑟፩ = 2[𝑐𝑚], 𝑟፫ =
1.9[𝑐𝑚]). As the radii are almost the same the convergence study was carried out by fixing the ratio
of number of modes as one and increasing the number of modes. The results are shown in figure 3.4.
The frequency was chosen to be a frequency with which all modes that are included are propagating
modes on both waveguides. The plot shows the various S-parameters of the fundamental mode only.

The figure 3.4 suggests that the convergence of results occurs when we include higher order modes
till 25 or more on both waveguides. The relative convergence criterion is explained in [13] and [21].
The relative convergence criterion is important in convergence study. Only increasing the number of
modes doesn’t help in increasing accuracy unless the ratio of number of modes on both the sides is
appropriate.

Example 2

The same convergence study is carried out but with a different set of radii than in example 1. The
radii were chosen to be 𝑟፩ = 2[𝑐𝑚] and 𝑟፫ = 1[𝑐𝑚]. Therefore, the ratio of the areas become

፫Ꮄᑡ
፫Ꮄᑣ

= 4.
The results are shown in figure 3.5. Here, the modes on the x axes are the modes represented by
the modes in the smaller waveguide 𝑅. The larger waveguide 𝑃 has four times more modes than the
smaller waveguide 𝑅. It is seen that after 10 modes in R (40 modes in 𝑃), the S-parameter values are
converging.
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Figure 3.4: Convergence study when radii ratio is approximately 1.

The convergence for example 1 can be explained in the below figure 3.6 where 𝑆፩፩ is plotted for
𝑇𝐸ኻኻ mode. Better results are seen when higher order modes are considered.

3.4.1. FEKO/CST Simulations and Comparison

Example 1 stated above was simulated in both FEKO (Method of Moments solver with Surface equiva-
lence principle) and CST (time domain solver). The results are shown in figure 3.7 along with the results
of the MATLAB model using the mode matching techniques mentioned above. Here, the number of
modes on each waveguide is 20. The variation of phase is shown in figure 3.8.

3.4.2. Observations from the comparison of MM and FEKO/CST simulations and
Conclusions

The plots shown in figure 3.7 are plotted from the frequency where the fundamental mode (𝑇𝐸ኻኻ) is a
propagating mode on both the waveguides. It can be seen that at 9.5 GHz and at 16.5 GHz, there is a
discontinuity in the S parameter plots from the commercial tools like FEKO and CST MWS(Microwave
Studio). The reason why this discontinuity is not observed in the MATLAB implementation of Mode
Matching Technique is that the modes corresponding to those cut-off frequencies have no coupling
with the 𝑇𝐸ኻኻ mode. In other words, the modes 𝑇𝐸ኺኻ, 𝑇𝑀ኻኻ, 𝑇𝐸ኺኼ, 𝑇𝑀ኻኼ and so on are orthogonal to
the mode 𝑇𝐸ኻኻ. This can be observed in the inner cross product matrix formulation. The integral of
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Figure 3.5: Convergence study when radii ratio is 2.

the inner cross product becomes zero because these TE modes have different azimuthal variations
(𝑝𝑚 ≠ 𝑟𝑚 case in table 3.1). This is a result of the integrals 𝐼፨፬ and 𝐼፬።፧. However, in the results that
are obtained from Feko and CST MWS, it suggests that there is coupling between these TE modes
with 𝑇𝐸ኻኻ mode. This is a result of the discretization performed in Feko with MoM solver (triangular
mesh) and similarly in CST with time domain method. As the discretization of the geometry doesn’t
make the aperture a smooth circle, the coupling of these modes are observed with respect to 𝑇𝐸ኻኻ. To
investigate this in more detail, 3 simulation results are plotted from FEKO with varying discretization
length for the triangular mesh elements.

The results shown in figure 3.9 are the reflection coefficients of the 𝑇𝐸ኻኻ mode with respect to 𝑇𝑀ኻኻ
mode. 𝑇𝑀ኻኻ and 𝑇𝐸ኺኻ have the same cut-off frequencies. It can be seen that with finer meshing, the
value decreases. A coarse mesh also suggests that the values are below -40 dB. However, with mode
matching implementation with analytical formulation, we can see that the values of reflection coefficients
are around -200 dB. Apart from those discontinuities, the plots with MM and the plots from FEKO/CST
MWS are very similar to each other. As, the radii in this case are also almost same (difference of the
radii is one mili-meter which is electrically small), the transmission coefficients due to the coupling on
both waveguides should be one (zero in dB scale) for 𝑇𝐸ኻኻ mode after the cut-off frequency. It is also
observed on the plots of the Mode Matching implementation.
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Figure 3.6: ፒᑡᑡ for ፓፄᎳᎳ modes with different number of modes on each waveguide using MM technique. Ratio of number of
modes on each side is kept as 1.
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Figure 3.7: S-parameters for ፓፄᎳᎳ mode - FEKO/CST vs MM. 20 modes added for analysis on each waveguide

3.5. Conclusions
In this chapter a waveguide junction problem was studied with cricular cross section waveguides with
the mode matching technique (MM). Analytical expressions have been derived for the general scatter-
ing matrix (GSM) for the case of a circular to circular cross section waveguide transition. The resulting
analytical expressions have been implemented in MATLAB to find the general scattering matrix of the
junction problem and it was verified with numerical solutions available in commercial tools like FRKO
and CST. The MATLAB results of elements of the scattering matrix have good agreement with the
FEKO and CST results. It was found that higher order modes have to be included in the analysis for
the formulation of the GSM to get more accuracy for the S-parameters (elements of the GSM).
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Figure 3.8: S parameter phase for ፓፄᎳᎳ mode - FEKO vs CST vs MM. 20 modes added for the analysis on each waveguide
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4
Cascaded Circular Cross-Section
Waveguides with Mode Matching

Technique

4.1. Problem description
In the previous chapter, only two waveguides were studied with one GSM matrix. This chapter covers
the formulation of the scattering matrix when a number of waveguides are connected in a row. As in
the previous section the GSM was found at 𝑧 = 0, the phase term of 𝑒ዅ፣ᎏᑫ፥ didn’t come into picture.
As z dependence doesn’t affect the magnitude of S parameters, it was ignored. However, in a cas-
caded structure, the phase information is important as the discontinuities are at different points over
the z-axis. As described in [31], we first consider a simple structure with three waveguides. The two
waveguides remain the same as in the previous chapter and one bigger waveguide 𝑇 is cascaded after
the waveguide 𝑃 on the negative z axis. Therefore, the port on the outer surface of 𝑃 is now translated
to the outer surface of 𝑇. The figure 4.1 shows the Geometry and figure 4.2 shows the circuit structure
with GSM matrices of each junction. Figure 4.3 shows the equivalent circuit representation with one
equivalent GSM.

Figure 4.1: 3 waveguides configuration. 2 discontinuities.

47
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Figure 4.2: 3 waveguides cct configuration. 2 discontinuities.

Figure 4.3: 3 waveguides equivalent cct configuration. 2 discontinuities.

4.2. Formulation of GSM
Based on section 3.1.3, we can write the matrix form equations for all the three regions as:

[ 𝑏ፓ𝑏ፏፓ] = [
𝑆ኻኻ 𝑆ኻኼ
𝑆ኼኻ 𝑆ኼኼ] [

𝑎ፓ
𝑎ፏፓ] (4.1)

,

[𝑎ፏፓ𝑎ፏፑ] = [
0 𝑆ፋ
𝑆ፋ 0 ] [

𝑏ፏፓ
𝑏ፏፑ] (4.2)

And,

[𝑏ፏፑ𝑏ፑ ] = [
𝑆ኽኽ 𝑆ኽኾ
𝑆ኾኽ 𝑆ኾኾ] [

𝑎ፏፑ
𝑎ፑ ] (4.3)

Equations 4.1 and 4.2 yield,

𝑏ፓ = 𝑆ኻኻ𝑎ፓ + 𝑆ኻኼ𝑆ፋ𝑏ፏፑ (4.4)

𝑏ፏፓ = 𝑆ኼኻ𝑎ፓ + 𝑆ኼኼ𝑆ፋ𝑏ፏፑ (4.5)
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Equations 4.2 and 4.3 yield,

𝑏ፏፑ = 𝑆ኽኽ𝑆ፋ𝑏ፏ + 𝑆ኽኾ𝑎ፑ (4.6)

𝑏ፑ = 𝑆ኾኽ𝑆ፋ𝑏ፏፓ + 𝑆ኾኾ𝑎ፑ (4.7)

Solving 4.5 and 4.6 we have,

𝑏ፏፓ = 𝑈ኻ(𝑆ኼኻ𝑎ፓ + 𝑆ኼኼ𝑆ፋ𝑆ኽኾ𝑎ፑ) (4.8)

𝑏ፏፑ = 𝑈ኼ(𝑆ኽኽ𝑆ፋ𝑆ኼኻ𝑎ፓ + 𝑆ኾኾ𝑎ፑ) (4.9)

Where,

𝑈ኻ = (𝐼 − 𝑆ኼኼ𝑆ፋ𝑆ኽኽ𝑆ፋ)ዅኻ (4.10)

And,

𝑈ኼ = (𝐼 − 𝑆ኽኽ𝑆ፋ𝑆ኼኼ𝑆ፋ)ዅኻ (4.11)

Using 4.8 and 4.9 on 4.4 and 4.7, we have,

𝑏ፓ = (𝑠ኻኻ + 𝑆ኻኼ𝑆ፋ𝑈ኼ𝑆ኽኽ𝑆ፋ𝑆ኼኻ)𝑎ፓ + 𝑆ኻኼ𝑆ፋ𝑈ኼ𝑆ኽኾ𝑎ፑ (4.12)

𝑏ፑ = (𝑠ኾኾ + 𝑆ኾኽ𝑆ፋ𝑈ኻ𝑆ኼኼ𝑆ፋ𝑆ኽኾ)𝑎ፑ + 𝑆ኾኽ𝑆ፋ𝑈ኻ𝑆ኼኻ𝑎ፓ (4.13)

Therefore GSM is given by,

[𝑆ፓፓ 𝑆ፓፑ
𝑆ፑፓ 𝑆ፑፑ] = [

𝑠ኻኻ + 𝑆ኻኼ𝑆ፋ𝑈ኼ𝑆ኽኽ𝑆ፋ𝑆ኼኻ 𝑆ኻኼ𝑆ፋ𝑈ኼ𝑆ኽኾ
𝑆ኾኽ𝑆ፋ𝑈ኻ𝑆ኼኻ 𝑠ኾኾ + 𝑆ኾኽ𝑆ፋ𝑈ኻ𝑆ኼኼ𝑆ፋ𝑆ኽኾ] (4.14)

Here, 𝑆ፋ is a diagonal matrix with elements which are phase terms which depend on z and the
wavenumber 𝛽፳. Each diagonal element is for each mode.
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𝑆ፋ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒ዅ፣ᎏᑫᎳፋ 0 0 0 . . 0
0 𝑒ዅ፣ᎏᑫᎴፋ 0 0 . . 0
0 0 𝑒ዅ፣ᎏᑫᎵፋ 0 . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 . . . . 𝑒ዅ፣ᎏᑫᑅፋ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.15)

Here 𝛽፳። is the wavenumber for the mode 𝑖.

4.2.1. Convergence with three waveguide structure

The waveguide structure that was simulated in MATLAB and Feko is shown in figure 4.4. The radius
of the three waveguides are (rr = 1.93 [cm], rp = 2.03 [cm], rt = 2.13 [cm]). The waveguide length of
the 𝑅 waveguide in between the 𝑃 and 𝑇 is two centi-meter. The height of the cylinders 𝑅 and 𝑇 is also
one mili-meter.

Figure 4.4: 3 waveguides geometry used for simulation.

It is seen that with almost 20 modes on each waveguide, the S-parameter is converging at the point
of minimum reflection. However, for all other frequency points, convergence is achieved even with a
very few number of modes like five. It also can be seen that the matrix equations that different number
of modes can be used in different waveguides along the z-axis. This is useful when we have a large
number of waveguides with varying cross-sections. This is shown later with a five waveguides cascade
structure.

4.2.2. FEKO/CST simulation and comparison

The structure in figure 4.4 is simulated on Feko (MoM solver / Surface Equivalence Principle) and CST
(Time domain solver) and the results are shown in figure 4.6 where the length of the 𝑃 waveguide
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Figure 4.5: ፒᑋᑋ of ፓፄᎳᎳ mode using MM Technique with 3 circular cross-section waveguide when the height of the cylinder P is
2 [cm].

𝐿 = 2 [𝑐𝑚]. The frequency axis in the case of CST simulation has one 1001 points which is very
high than the MM and FEKO simulations (35 points). This is because of the fact that in CST, a time
domain solver was used. Therefore, the CST curves have more detailed pattern than the MM and
FEKO simulations.

The phase comparison is shown in figure 4.7.

In all these simulations with Mode Matching Technique, the height of the first and last waveguide in
the structure is also considered [21]. Therefore, the General scattering matrix is given as,

𝑆 = [𝑆ፋፓ 0
0 𝑆ፋፑ] [

𝑆ፓፓ 𝑆ፓፑ
𝑆ፑፓ 𝑆ፑፑ] [

𝑆ፋፓ 0
0 𝑆ፋፑ] (4.16)

Where, 𝑆ፋፓ is given as,

𝑆ፋፓ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒ዅ፣ᎏᑫᑋᎳፋᑋ 0 0 0 . . 0
0 𝑒ዅ፣ᎏᑫᑋᎴፋᑋ 0 0 . . 0
0 0 𝑒ዅ፣ᎏᑫᑋᎵፋᑋ 0 . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 . . . . 𝑒ዅ፣ᎏᑫᑋᑅፋᑋ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.17)

Here,𝛽፳ፓ። is the wavenumber for the mode 𝑖 in waveguide T. 𝐿ፓ is the height of the cylinder T.

And, 𝑆ፋፑ is given as,

𝑆ፋፑ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒ዅ፣ᎏᑫᑉᎳፋᑉ 0 0 0 . . 0
0 𝑒ዅ፣ᎏᑫᑉᎴፋᑉ 0 0 . . 0
0 0 𝑒ዅ፣ᎏᑫᑋᎵፋᑉ 0 . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 . . . . 𝑒ዅ፣ᎏᑫᑉᑅፋᑉ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.18)
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Here,𝛽፳ፑ። is the wavenumber for the mode 𝑖 in waveguide R.𝐿ፑ is the height of the cylinder R.
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Figure 4.6: S parameters for ፓፄᎳᎳ mode - Feko vs MM. 5 modes active on each waveguide when length of the P waveguide is
2 cm.

4.3. Cascade of more than 3 elements
The above method is iterated until the desired configuration is simulated. The length of the 3rd waveg-
uide is considered as a bridge (The new 𝑆ፋ is found from that length) and on the two sides there are 2
junctions with well defined GSMs.

The algorithm is given below at algorithm 1.

4.3.1. FEKO/CST simulations and comparison

The following figure 4.8 with 5 circular waveguides was simulated on FEKO and CST and simulated in
MATLAB with the Mode Matching technique. The results are shown below in figure 4.9 and 4.10.

In this case, the 5 waveguides were simulated with 19, 23, 24, 25 and 28 modes respectively. As
the maximum frequency in the plot was 21 GHz, the number of modes were decided based on the cut
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Initialization;
if Number of Junctions (𝐽 == 2) then

𝐺𝑆𝑀 = 𝐺𝑆𝑀2(𝑅1, 𝑅2);
𝑅𝑒𝑡𝑢𝑟𝑛(𝐺𝑆𝑀)

else
if J == 3 then

𝐺𝑆𝑀1 = 𝐺𝑆𝑀(𝑅1, 𝑅2);
𝐺𝑆𝑀2 = 𝐺𝑆𝑀(𝑅2, 𝑅3);

𝑆𝑙 = 𝑆𝐿(𝑅2);
𝐺𝑆𝑀 = 𝐺𝑆𝑀ፚ፬ፚ፝፞(𝐺𝑆𝑀1, 𝐺𝑆𝑀2, 𝑆𝑙);

𝑅𝑒𝑡𝑢𝑟𝑛(𝐺𝑆𝑀)
else

𝐺𝑆𝑀1 = 𝐺𝑆𝑀(𝑅1, 𝑅2);
𝐺𝑆𝑀2 = 𝐺𝑆𝑀(𝑅2, 𝑅3);

𝑆𝑙 = 𝑆𝐿(𝑅2);
𝐺𝑆𝑀ፂ = 𝐺𝑆𝑀ፚ፬ፚ፝፞(𝐺𝑆𝑀1, 𝐺𝑆𝑀2, 𝑆𝑙);

𝑚 = 3
while 𝑚 <= 𝐽 do

𝐺𝑆𝑀1 = 𝐺𝑆𝑀(𝑅(𝑚 + 1), 𝑅(𝑚));
𝐺𝑆𝑀2 = 𝐺𝑆𝑀ፂ ;
𝑆𝑙 = 𝑆𝐿(𝑅(𝑚));

𝐺𝑆𝑀ፂ = 𝐺𝑆𝑀ፚ፬ፚ፝፞(𝐺𝑆𝑀1, 𝐺𝑆𝑀2);
𝑚 = 𝑚 + 1;

end

𝑅𝑒𝑡𝑢𝑟𝑛(𝐺𝑆𝑀ፂ)
end

end
Algorithm 1: Algorithm to find multi junction GSM
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Figure 4.7: Phase of S parameters for ፓፄᎳᎳ mode - Feko vs MM. 5 modes active on each waveguide when length of the P
waveguide is 2 cm.

off frequencies of the modes with respect to the geometry.

4.4. GSM for a conical structure
A conical waveguide with base radius 2 [cm] , top radius 4 [cm] and a height 5 [cm] was simulated
with both MM technique in MATLAB and also in FEKO (MoM/SEP solver) and in CST (Time domain
solver). With MM technique, the structure is simulated with different number of cylindrical waveguide
components.

4.4.1. Feko/CST simulations and comparison

The comparison of S parameters are shown in figure 4.14. With MM technique, the cone structure is
simulated with different number of cylindrical waveguide elements. The reflection coefficient are shown
for the TE11 mode and the transmission coefficient is shown for TM01 mode. Port T is at the top end
(larger radius) and port R is at the base end (smaller radius). The MM plots in figure 4.14 are with 30
cascaded cylindrical waveguide elements with the same axis for propagation(z). The convergence of
results from MM technique is shown in figure 4.13 for 𝑇𝐸ኻኻ mode. This figure shows the convergence
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Figure 4.8: Geometry of the 5 waveguide structure with circular waveguides

of 𝑆ፑፑ when the number of cascaded cylindrical waveguide elements is varied.

4.4.2. Observations

From figure 4.6 and 4.9, it can be seen that the reflection and transmission coefficients from commercial
tools like FEKO or CST are very similar to the one from MATLAB with the MM technique. However, at
some frequencies the discontinuities observed in FEKO/CST aren’t seen in the MM plots. The reason
for this is the same as 3.4.2 in chapter three. For the cone structure in figure 4.14, it is seen that the
convergence is good when there are more than ten cylindrical waveguide elements for MM technique.
They are very similar to the plots obtained from CST and FEKO. The phase of CST plots are not
aligned properly because of two reasons. First, the CST model shown in figure 4.12 has two cylindrical
waveguides of two mili-meter length at the two ends of the cone. This extra length causes the error.
Secondly, the number of modes on the waveguide ports for the CST model is less than the number of
modes chosen for FEKO model and for MM. For the second reason, at higher frequencies, phase and
magnitude obtained from CST are not well aligned with the plots of MM and FEKO. It is also interesting
to notice that the plots from MM technique seem a little shifted in the frequency axis than the results
from FEKO and CST. This is due to the fact that in CST and FEKO this is assumed to be a cone with
a linear taper where as with MM technique it always remains as a step waveguide junction problem.
However, the difference goes down with more number of cylindrical waveguide elements. Furthermore,
the length of the conical structure was five centi-meter which is nearly a wavelength of a EM wave with
a frequency of five GHz (wavelength is six centi-meter). A EMwave of five GHz frequency comes under
the 𝑇𝐸ኻኻ mode (fundamental) bandwidth of the first waveguide in the cascaded waveguide structure.
As from the S parameters plot it is seen that the results have good agreement with commercial tool
results when the cone structure when the cone is assumed to be a cascaded waveguide structure with
at least 10 elements, it can be concluded that, for accuracy, the length of each waveguide section has
to be at most of length ᎘

ኻኺ .

4.5. Conclusions
In this chapter, cascaded structures of circular cross section waveguides have been studied. The GSM
for the cascaded structure has been derived. The verification was done in a step by step approach. A
three waveguide cascaded structure was studied and implemented in MATLAB. The results from MAT-
LAB have been verified with FEKO and CST simulation results. It was found that higher order modes
have to be included in the analysis to have more accuracy in the results. The number of modes for anal-
ysis on each waveguide can be roughly estimated by the number of propagating modes that waveguide
can support at that particular frequency. By having different number of modes for different waveguides
in a cascaded junction problem instead of having the same number of modes (based on the biggest
waveguide) for every waveguide in the problem saves a lot of computation time. The number of the
higher order modes on each waveguide for better accuracy is also verified to be related with the aspect
ratio between waveguides (which is the ratio of the areas of the cross sections of the waveguides). A
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Figure 4.9: S parameters for ፓፄᎳᎳ mode - FEKO/CST vs MM. 5 modes active on each waveguide (5 waveguide structure)

five waveguide cascaded model was tested next and verified with FEKO and CST simulation results.
The MATLAB results have good agreement with the FEKO and CST results showing the correctness
of the algorithm for a problem involving three or more waveguides in a cascaded structure. Similarly, a
conical waveguide structure was approximated as a cascaded structure of cylindrical waveguides and
the resulting structure was implemented in MATLAB to find the GSM. The results have been verified
with FEKO and CST results. The results have good agreement with each other. Convergence in the
values of GSM was found with an increase of the number of cylindrical elements to approximate a
conical waveguide. It is concluded that for accuracy, the cone should be approximated as a cascade
cylindrical waveguide model in which each waveguide has a length of at most ᎘

ኻኺ .
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Figure 4.10: S parameter phase for ፓፄᎳᎳ mode - FEKO/CST vs MM. 5 modes active on each waveguide (5 waveguide structure)

Figure 4.11: Geometry of the conical structure in FEKO
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Figure 4.12: Geometry of the conical structure in CST
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Figure 4.14: S parameters FEKO/CST vs MM for the Cone Structure





5
Field Distribution on the Aperture and
Far Fields of both a perfectly matched
waveguide (Infinite length) and Open

ended waveguides (Open to free space)

5.1. Field Distribution on the Aperture of an infinitely long waveg-
uide horn

To find the near-field distribution on the aperture, the GSM is used from the MM technique.

�⃗�፭ =
ፍ

∑
፧ኻ
(𝑎፧ + 𝑏፧)�⃗�፧ (5.1)

This is from equation (3.1). The coefficients b associated with each mode can be calculated from
the GSM and the a coefficients (excitation given to each mode at the waveguide port.)

[𝑏
ፓ
፧
𝑏ፑ፧ ] = [

𝑆ፓፓ 𝑆ፓፑ
𝑆ፑፓ 𝑆ፑፑ] [

𝑎ፓ፧
𝑎ፑ፧] (5.2)

The GSM can be found by the examples given in chapter 3 and 4. The field equations are given in
chapter 2 and [3].

5.1.1. Example with two waveguide structure

The two waveguide structure of chapter two is simulated both on MATLAB (MM technique) and in FEKO
(MoM/SEP solver) to find out the near-field at the aperture (both before and after the junction). The
configuration is shown in figure 5.1. The plots of normalized aperture fields (Electric fields) after the
junction are shown in figure 5.2 for the two waveguide structure. The aperture fields at the aperture of
a five waveguide structure in figure 4.8 is shown in figure 5.3. The aperture fields of a conical structure
of figure 4.11 is shown in figure 5.4.
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5. Field Distribution on the Aperture and Far Fields of both a perfectly matched waveguide (Infinite

length) and Open ended waveguides (Open to free space)

Figure 5.1: Geometry of the five waveguide structure with circular waveguides

Boundary conditions

For this example, the boundary conditions at the bigger waveguide port is set as absorbing. In
FEKO, this is achieved by keeping the excitation for modes as 0 at the port. The port modes at the
smaller waveguide are excited with an amplitude 1 and with an orientation of zero degree.

Therefore, equation (5.2) becomes (as 𝑎ፓ = 0),

𝑏ፓ = 𝑆ፓፑ𝑎ፑ (5.3)

𝑏ፑ = 𝑆ፑፑ𝑎ፑ (5.4)

Results

The following figures 5.2, 5.3 and 5.4 show the normalised electric field on the aperture (both 𝜌 and
𝜙 components) for the two waveguide, five waveguide, and the cone structure respectively.

Observation

The near-field (aperture) patterns are similar for the MM technique in comparison to FEKO simu-
lations except for a few changes. This is due to the fact that especially for some modes the phase at
the ports are not similar (out of phase) for MM and FEKO. FEKO allows a waveguide port only on a
complete metal surface. For some modes especially, this introduces an extra phase of 180 degrees in
FEKO. The modes for which it is observed for transmission coefficient in the first 10 modes are 𝑇𝐸ኼኻ,
𝑇𝐸ኺኻ and 𝑇𝑀ኻኻ. From CST plots of S-parameters, however, this is not observed. An example is shown
in figure 5.5 below for 𝑇𝐸ኼኻ mode. Another reason for which the results from FEKO aren’t very similar
is due to the fact that indirectly FEKO introduces coupling for modes not having the same azimuthal
variation. The comparison of transmission coefficients for the cone model is shown in figure 5.6 at 14
GHz. The phase errors are larger sometimes. the phase error of 360 degrees are just the unwrapping
of the phase. Therefore, the phases are identical in that case.

5.2. Far-Fields of infinitely long waveguide horns
The far field patterns of the multi waveguide structure can be found by using the near-field pattern
of the aperture (which is derived from the MM technique). To calculate the far field patterns, first
the aperture current distribution has to be found out. To do this, equivalence principle is used. By
incorporating equivalene principle a E-field model is used. In this model, an imaginary PEC (Perfect
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Electric conductor) is placed behind the sources. By the use of image theory, it is found that the
equivalent surface has no electric currents 𝐽 = 0 and 2 times the equivalent magnetic current produced
by the incident electric field.

�⃗� = �̂� × 2𝐸፭ (5.5)

So, 𝑀 as a combination of 𝜌 and 𝜙 components are given below.

�⃗� ∝ −𝐸፭Ꭻ�̂� + 𝐸፭�̂�; (5.6)

The far field is given by the fast Fourier transform (FFT) of the near-field distribution, which is given
by

𝐸ፅፅ(𝜃, 𝜙) = ∫∫
ፒᖤ
𝐸፭(𝑥

ᖤ , 𝑦ᖤ)𝑒ዅ፣፤፫𝑑𝑆 (5.7)

Here 𝑟 is defined as |𝜌ኺ − 𝜌
ᖤ | , where 𝜌ኺ is the centre of this aperture and 𝜌

ᖤ is the distance from
any arbitrary point on the aperture from the aperture centre. This can be broken down to:

𝑟 = 𝜌ኺ − 𝜌
ᖤ sin𝜃፨፬ cos(𝜙፨፬ − 𝜙

ᖤ) (5.8)

Where 𝜃፨፬ and 𝜙፨፬ define the observation points in space and 𝜙
ᖤ defines the azimuth location of

a point on the aperture field domain.

The FFT due to the x and y components of the near-field pattern can be expressed as below:

𝐼፱(𝜃, 𝜙) = ∫∫
ፒᖤ
𝐸፭፱(𝑥

ᖤ , 𝑦ᖤ)𝑒ዅ፣፤
ᖤ
sin᎕ᑠᑓᑤ cos(ᎫᑠᑓᑤዅᎫ

ᖤ )𝜌ᖤ𝑑𝜌ᖤ𝑑𝜙ᖤ (5.9)

𝐼፲(𝜃, 𝜙) = ∫∫
ፒᖤ
𝐸፭፲(𝑥

ᖤ , 𝑦ᖤ)𝑒ዅ፣፤
ᖤ
sin᎕ᑠᑓᑤ cos(ᎫᑠᑓᑤዅᎫ

ᖤ )𝜌ᖤ𝑑𝜌ᖤ𝑑𝜙ᖤ (5.10)

Here, the integration is in the cylindrical aperture domain. The Cartesian components 𝐸፭፱ and 𝐸፭፲
can be found from the cylindrical components as:

𝐸፭፱ = cos𝜙𝐸፭(𝜌, 𝜙) − sin𝜙𝐸፭Ꭻ(𝜌, 𝜙) (5.11)

𝐸፭፲ = 𝑠𝑖𝑛𝜙𝐸፭(𝜌, 𝜙) + cos𝜙𝐸፭Ꭻ(𝜌, 𝜙) (5.12)

The far fields then become proportional to the following:

𝐸᎕ᑠᑓᑤ(𝜃፨፬ , 𝜙፨፬) ∝ (𝐼፱ cos𝜙፨፬ + 𝐼፲ sin𝜙፨፬) (5.13)
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length) and Open ended waveguides (Open to free space)

𝐸Ꭻᑠᑓᑤ(𝜃፨፬ , 𝜙፨፬) ∝ cos𝜃(−𝐼፱ sin𝜙፨፬ + 𝐼፲ cos𝜙፨፬) (5.14)

The far fields patterns are shown in figure 5.7 for two waveguide model at 14 GHz (10 modes
propagating for the first waveguide). Figure 5.8 and 5.9 show far fields from the aperture fields of the
cone problem at 6 GHz and 7.5 GHz respectively where port1 (at base radius) has two and three modes
propagating respectively.

5.3. Free-space reflection at the end of an open waveguide with a
metal flange

Till now the far-fields and the near-fields were measured by the aperture fields on the waveguide aper-
ture when it is infinitely long (perfectly matched to free-space). In the case of horn antennas, it was
considerd that the waveguide after the last transition is infinitely long. This was achieved in FEKO by
putting an absorbing boundary condition at the far end of the waveguide when computing the near-
fields. However, in practice, there should be an open end to the waveguide such that the energy is
radiated in the far-fields. Therefore, for accurate computation of fields in the far zone and near-fields
on the aperture, the reflection at the waveguide-free-space boundary needs to be taken into consider-
ation. The boundary can excite more waveguide modes into the waveguide. Therefore, the refection
from higher order modes needs to be taken care of as well.

There are ways to determine the reflection from the aperture of a waveguide. The methods in the
literature that is found are listed below.

• Spherical wave expansion of free-space along with boundary condition mode matching technique

• Gaussian Beam Mode Analysis (GBMA)

• Aperture admittance methods with Fredholm integral equations

• Spectral domain reaction integral methods on the basis of Rumsey’s reaction integrals with a
variational approach.

5.3.1. Spherical Wave Expansion Method

In spherical wave expansion method the Electromagnetic (EM) fields in free-space are assumed to
be the superposition of a number of TE/TM spherical modes. The implementation can be found in
the literature [26] [27] [17] [20]. These expansion along with the boundary condition mode matching
technique can determine the weights of each spherical mode in the eign expansion of free-space. This
method requires a common origin for both the waveguide and the free-space. As the waveguide in the
problem of this thesis is a conical waveguide (cylindrical waveguide), the waves are resp represented
in cylindrical coordinate system. However, outside the aperture, the fields are represented in spherical
coordinate system. To find a common origin for both modes, approximations have to be made. For
example, the best candidate for the origin of the reference is the phase center of the waveguide. To
determine that, an approximate concave surface has to be found for the waveguide where the phase
remains constant. Then, after extending the concave surface to a sphere, the center of that sphere
can be taken as the phase center. The method is too involved and the complexity becomes more
when a conical horn is considered instead of a simple cylindrical waveguide. The free-space tesseral
harmonics are expressed as [20],

𝑇 ፯፞፧(𝑚, 𝑛) = 𝐴 cos(𝑚𝜙)𝑃፦፧ (cos𝜃) (5.15)
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𝑇፨፝፝(𝑚, 𝑛) = 𝐴 sin(𝑚𝜙)𝑃፦፧ (cos𝜃) (5.16)

Where, 𝑃፦፧ are associated Legendre’s functions. These harmonics are used as potential functions
to find the field expressions in the spherical coordinate system for free-space.

There is another approach to make use of spherical wave expansion method where the waveguide
modes are expressed in spherical coordinate system as well. This is especially done for horn antennas
like the conical horn antennas where the waveguide eign-modes are already known in spherical modes
[29]. However, the complexity of that method is too high and also the computational complexity also is
very high.

In this thesis, spherical modes are not explored for verification.

5.3.2. Gaussian Beam Mode Analysis (GBMA)

Gaussian Beam analysis is another technique by virtue of which the radiated fields from the aperture of
a waveguide can be determined. This method assumes that the fields on the aperture of the waveguide
are scalar fields. The more this scalar fields resemble a Gaussian pattern, the better the approximation
works. Therefore, it is generally used for high frequencies. The electrical size of the device should be
very high so that this approximation that the fields on the aperture are scalar fits the observations. This
method is used in [32] [10]. This scalar field representation of the field on the aperture can be matched
to the spherical mode expansion of free-space to find the weights of the modes [18]. However, it is
useful when the device is electrically large. Therefore, this method is also not very useful to predict the
field patterns very accurately for the AUT (Antenna Under Test).

5.3.3. Aperture admittance methods with Fredholm integral equations

In this approach (Implemented for cylindrical waveguides with a metal flange at the aperture in [19],
[7] and [6]), a Green’s function approach is used to find the aperture admittance of the waveguide
free-space boundary. At first the equivalent magnetic current on the aperture is formulated. From
the equivalent magnetic currents, the magnetic field is determined using the Green’s function of free-
space. Then, by using the boundary conditions (continuity of tangential electric and magnetic fields
at the aperture), the equations for the aperture admittance is found out. The Green’s function for the
free-space is then expanded using a Fourier series expansion in cylindrical coordinates (for cylindrical
waveguides). However, in [19], [7] and [6] the higher order mode excitation at the aperture is not
considered due to the awkwardness of the expressions of the magnetic current at the aperture. In this
thesis, the expressions for the aperture admittance from this method is used from [19]. In later sections,
the results are mathched with the procedure done using the spectral domain representation of the EM
fields in free-space 5.3.4.

𝑦ፚ፩ =
𝑌ፚ፩
𝑌ፅፒ

=
2(Χᖤኻ,ኻ)ኼ(

ጔᖤᎳᎳ
፤Ꮂፑ
)ኼ

[(Χᖤኻኻ)ኼ − 1]√1 − (
ጔᖤᎳ,Ꮃ
፤Ꮂፑ
)ኼ
∫
ጼ

ኺ

𝜂√1 − 𝜂ኼ[𝐽ᖤኻ(𝑘ኺ𝑅𝜂)]ኼ

[( ጔ
ᖤ
ᎳᎳ
፤Ꮂፑ
)ኼ − 𝜂ኼ]

ኼ 𝑑𝜂+

2

[(Χᖤኻኻ)ኼ − 1]√1 − (
ጔᖤᎳ,Ꮃ
፤Ꮂፑ
)ኼ
∫
ጼ

ኺ
([𝐽ኻ(𝑘ኺ𝑅𝜂)]

ኼ

𝜂√1 − 𝜂ኼ
)𝑑𝜂

Where, Χᖤኻኻ is the first zero of derivative of the Bessel’s function of the first kind and of first order.
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𝑘ኺ is the free-space wave number, 𝑅 is the waveguide radius, 𝜂 is the ratio of the radial wavenumber
in free-space to the wave number in free-space. 𝑌ፅፒ is the free-space wave admittance.

𝜂 = 𝑘
𝑘ኺ
=
√𝑘ኼ፱ + 𝑘ኼ፲

𝑘ኺ
(5.17)

From this, the reflection coefficient can be found as,

Γ =
1 − 𝑦ፚ፩
1 + 𝑦ፚ፩

(5.18)

The term √1 − 𝜂ኼ is always computed as −1𝑗√−(1 − 𝜂ኼ) to maintain propagation characteristic of
the EM waves (explained in chapter 2). As in the above integral there are branch points present at

𝜂 = ±1 and poles at 𝜂 = ± ጔᖤᎳᎳ
፤Ꮂፑ

, the integration is carried out in complex plane. The branch cuts, branch
points, poles are shown in figure 5.10. The integration path should be chosen so that the poles are
avoided and the branch cuts aren’t crossed. The integral path shown in figure 5.10 should be followed
while integrating the above expression. It is interesting to notice that the integral from 0 to 1 yields the
real part of the aperture admittance whereas the integral from 1 to ∞ yields the imaginary part of the
aperture admittance. This happens because of the fact that the square root function becomes purely
imaginary when |𝜂| > 1.

5.3.4. Spectral domain solution using Rumsey’s reaction integrals

The coming subsections in the document explain the aperture reflection with the Rumsey’s reaction
integral method mentioned in [1]. It also has been verified and implemented in the PhD thesis [22] for
rectangular waveguide when excited only with the fundamental mode.

This procedure is very similar to the above mentioned method in section 5.3.3. However, it is carried
out in the spectral domain. Therefore, the fields of the free-space are expressed in terms of the spectral
domain Green’s functions of the potentials. The reaction integral is nothing but the conjugate power.
In the rectangular waveguide case in [22], it is assumed that at the aperture, due to the discontinuity,
higher order modes of the waveguide can be excited. Using the same principles, parameters such as
the aperture admittance, the reflection coefficient and the excitation coefficients for the higher order
modes at the aperture are derived for cylindrical waveguides in this thesis. In the circular waveguide
case also the fundamental mode excitation is considered in the beginning.

Rectangular Waveguide with a Metal Flange

In this section, for simplicity, a rectangular waveguide is tested with the fundamental mode exci-
tation (i.e the TE10 mode). It is assumed that there is an infinite ground plane which surrounds the
aperture. The electric field of TE10 mode has only one component which is the y component in this
case and therefore, there should be one component of magnetic field which is the x component. If
we incorporate the reflection from the aperture-free-space boundary, we can write the tangential com-
ponents as follows. Only 𝑇𝐸፦,ኺ higher order modes are taken in consideration at the aperture where
𝑚 = 3, 5, 7, ... (Remember to cite).

𝐸(ኻ)፲ = 𝐸ኺ(1 + Γ) cos(
𝜋𝑥
𝑎 ) +

ጼ

∑
፦ኽ,,...

𝐸ኺ(1 + Γ)𝐷፦ cos(𝑚𝜋𝑥𝑎 ) (5.19)
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𝐻(ኻ)፱ = −𝐸ኺ𝑌ኻኺ(1 − Γ) cos(
𝜋𝑥
𝑎 ) +

ጼ

∑
፦ኽ,,...

𝐸ኺ(1 + Γ)𝐷፦𝑌፦ኺ cos(
𝑚𝜋𝑥
𝑎 ) (5.20)

Here, 𝐸ኺ is the amplitude of the field for 𝑇𝐸ኻኺ mode. Γ is the refection from the boundary and 𝐷፦ is
the excitation constant of the higher order modes at the aperture. 𝑌ኻኺ is the characteristic admittance of
the mode 𝑇𝐸ኻኺ and 𝑌፦ኺ is the characteristic impedance of the mode 𝑇𝐸፦ኺ. (1) refers to the waveguide
(medium 1). Applying Rumsey’s reaction concept, the unknown quantities (Γ and 𝐷፦) can be found.
(Remember to cite).

< 1, 1 >= ∫∫
ፒᑒᑡᑖᑣᑥᑦᑣᑖ

𝐻(ኻ)(𝑥, 𝑦, 𝑧).(�̂� × 𝐸(ኻ)(𝑥, 𝑦, 𝑧))𝑑𝑆 (5.21)

which then can be further written as (using orthogonality of modes),

< 1, 1 >= 𝐸ኼኺ(1 + Γኼ)
𝑎𝑏
2 (𝑌ኻኺ

1 − Γ
1 + Γ −

ጼ

∑
፦ኽ,,...

𝐷ኼ፦𝑌፦ኺ) (5.22)

The aperture admittance in this can be written in terms of the reflection coefficient as,

𝑦ፚ፩ =
1 − Γ
1 + Γ (5.23)

In another form it can be written as [22],

𝑦ፚ፩ =
< 1, 1 >

ፚ
ኼ 𝐸

ኼ
ኺ(1 + Γ)ኼ𝑌ኻኺ

+
ጼ

∑
፦ኽ,,...

𝐷ኼ፦
𝑌፦ኺ
𝑌ኻኺ

(5.24)

The reaction integral outside the aperture (in free-space) also can be determined and which should
be essentially the same as the reaction integral of the inner fields inside the waveguide. (2) stands for
the seond medium and in this case it is free-space.

< 2, 2 >= ∫∫
ፒᑒᑡᑖᑣᑥᑦᑣᑖ

𝐻(ኼ)(𝑥, 𝑦, 𝑧).(�̂� × 𝐸(ኼ)(𝑥, 𝑦, 𝑧))𝑑𝑆 (5.25)

In spectral domain representation it can be written as,

< 2, 2 >= −∫∫
ፒᑒᑡᑖᑣᑥᑦᑣᑖ

𝐸(ኼ)፲ (𝑥, 𝑦)𝐻(ኼ)፱ (𝑥, 𝑦)𝑑𝑆 = − 1
4𝜋ኼ ∫

ጼ

ዅጼ
∫
ጼ

ዅጼ
𝐸(ኼ)፲ (𝑘፱ , 𝑘፲)𝐻(ኼ)፱ (𝑘፱ , 𝑘፲)𝑑𝑘፱𝑑𝑘፲

(5.26)

𝐸(ኼ)፲ (𝑘፱ , 𝑘፲) and 𝐻(ኼ)፱ (𝑘፱ , 𝑘፲) are spectral domain representation of the field components. They can
all be found in [[22]].
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Using the spectral domain field representations of [22], 𝐻(ኼ)፱ (𝑘፱ , 𝑘፲) can be written in terms of
𝐸(ኼ)፲ (𝑘፱ , 𝑘፲) and 𝐸(ኼ)፱ (𝑘፱ , 𝑘፲).

𝐻(ኼ)፱ (𝑘፱ , 𝑘፲) = −
1

𝜔𝜇𝑘፳
(𝑘፱𝑘፲𝐸(ኼ)፱ (𝑘፱ , 𝑘፲) + (𝑘ኼ − 𝑘ኼ፱)𝐸(ኼ)፲ (𝑘፱ , 𝑘፲)) (5.27)

From electric field boundary condition at the aperture we know,

𝐸(ኼ)፱ (𝑘፱ , 𝑘፲) = 𝐸(ኻ)፱ (𝑘፱ , 𝑘፲) |ፒᑒᑡ (5.28)

𝐸(ኼ)፲ (𝑘፱ , 𝑘፲) = 𝐸(ኻ)፲ (𝑘፱ , 𝑘፲) |ፒᑒᑡ (5.29)

As 𝐸(ኻ)፱ (𝑥, 𝑦) = 0, 𝐸(ኻ)፱ (𝑘፱ , 𝑘፲ , 𝑧ፚ፩) = 0. Therefore,

𝐻(ኼ)፱ (𝑘፱ , 𝑘፲) = −
1

𝜔𝜇𝑘፳
((𝑘ኼ − 𝑘ኼ፱)𝐸(ኻ)፲ (𝑘፱ , 𝑘፲)) (5.30)

Therefore, the reaction integral in the second medium can be written as,

< 2, 2 >= 1
4𝜋ኼ −∫

ጼ

ዅጼ
∫
ጼ

ዅጼ

1
𝜔𝜇𝑘፳

(𝑘ኼ − 𝑘ኼ፱)(𝐸(ኼ)፲ (𝑘፱ , 𝑘፲))ኼ𝑑𝑘፱𝑑𝑘፲ (5.31)

The spectral field representation of 𝐸(ኻ)፲ (𝑘፱ , 𝑘፲) can be given as,

𝐸(ኻ)፲ (𝑘፱ , 𝑘፲) = ∫∫
ፒᖤᑒᑡᑖᑣᑥᑦᑣᑖ

𝐸(ኻ)፲ (𝑥, 𝑦)𝑒፣፤ᑩ፱
ᖤዄ፤ᑪ፲

ᖤ
𝑑𝑆ᖤ (5.32)

It can be analytically found for the rectangular waveguides and is given by,

𝐸(ኻ)፲ (𝑘፱ , 𝑘፲) = 𝐸ኺ(1 + Γ)𝐶ኺ(𝑘፲)(𝐶ኻ(𝑘𝑥) +
ጼ

∑
፦ኽ,,...

𝐷፦𝐶፦(𝑘፱)) (5.33)

Where 𝐶ኺ(𝑘፲) and 𝐶፦(𝑘፱) are given by,

𝐶ኺ(𝑘፲) =
sin(፤ᑪኼ )

፤ᑪ
ኼ

(5.34)

𝐶፦(𝑘፱) = ∫
ᑒ
Ꮄ

ዅᑒᎴ
cos(𝑚𝜋𝑥2 )𝑒፣፤ᑩ፱ᖤ𝑑𝑥ᖣ =

2𝑚𝜋𝑎𝑗፦ዅኻ cos(፤ᑩፚኼ )
(𝑚𝜋)ኼ − (𝑘፱𝑎)ኼ

(5.35)
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Using the expression for 𝐸(ኻ)፲ (𝑘፱ , 𝑘፲), the reaction intgral can be formed and using the reaction
integral < 2, 2 >=< 1, 1 >, the aperture admittance can be formed.

The aperture admittance can be found as,

𝑦ፚ፩ =
𝑌፦፮፭,ኻኻ
𝑌ኻኺ

+ 2
ጼ

∑
፦ኽ,,...

𝑌፦፮፭,ኻ፦
𝑌ኻኺ

+
ጼ

∑
፦ኽ,,...

ጼ

∑
፧ኽ,,...

𝑌፦፮፭,፦፧
𝑌ኻኺ

+
ጼ

∑
፦ኽ,,...

𝐷ኼ፦
𝑌፦ኺ
𝑌ኻኺ

(5.36)

Here, 𝑌፦፮፭,፦፧ are the mutual admittance between modes of the waveguide and can be represented
by,

𝑌፦፮፭,፦፧ = −𝑗፦ዄ፧𝑛𝑚∫
ጼ

ዅጼ
∫
ጼ

ዅጼ

2𝑎𝑏(𝑘ኼ − 𝑘ኼ፱) sinኼ(
፤ᑪ
ኼ ) cos

ኼ(፤ᑩፚኼ )

𝜔𝜇𝑘፳(
፤ᑪ
ኼ )

ኼ[(𝑛𝜋)ኼ − (𝑘፱𝑎)ኼ][(𝑚𝜋)ኼ − (𝑘፱𝑎)ኼ]
𝑑𝑘፱𝑑𝑘፲ (5.37)

This can be reduced to a numerical integral in spacial domain which is given in the appendix of
[[22]].

The value of 𝑦ፚ፩ should be invariable and therefore the condition
Ꭷ፲ᑒᑡ
Ꭷፃᑞ

= 0 is applied and the result
of this application is presented in matrix form below.

⎡
⎢
⎢
⎣

𝑌፦፮፭,ኽኽ + 𝑌ኽኺ 𝑌፦፮፭,ኽ ... 𝑌፦፮፭,ኽጼ
𝑌፦፮፭,ኽ 𝑌፦፮፭, + 𝑌ኺ ... 𝑌፦፮፭,ጼ
. . ... .

𝑌፦፮፭,ጼኽ . ... 𝑌፦፮፭,ጼጼ + 𝑌ጼኺ

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐷ኽ
𝐷
.
𝐷ጼ

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

−𝑌፦፮፭,ኻኽ
−𝑌፦፮፭,ኻ

.
−𝑌፦፮፭,ኻጼ

⎤
⎥
⎥
⎦

(5.38)

From this, with an inverse operation the 𝐷፦ values can be found. Using the above relation, the
aperture admittance can be even more simplified and is given by,

𝑦ፚ፩𝑌ኻ,ኺ = 𝑌፦፮፭,ኻኻ + [𝐷ኽ 𝐷 ... 𝐷ጼ]
⎡
⎢
⎢
⎣

𝑌፦፮፭,ኻኽ
𝑌፦፮፭,ኻ
.

𝑌፦፮፭,ኻጼ

⎤
⎥
⎥
⎦

(5.39)

After the evaluation of 𝑦ፚ፩, the reflection coefficient Γ can be found from equation (5.19). Using
these values the aperture field can be computed as equation (5.15).

This model assumes that the aperture lies on a infinite ground plane. For this model the far-fields
can be computed in a very similar approach as equation (5.13) and (5.14) except for the fact that
here, 𝐼፱(𝑘፱ , 𝑘፲) = 0 and 𝐼፲(𝑘፱ , 𝑘፲) = 𝐸(ኻ)፲ (𝑘፱ , 𝑘፲). Therefore, the far-field of this configuration can be
expressed as,

𝐸ፅፅ᎕ᑠᑓᑤ ∝ 𝐸
(ኻ)
፲ (𝑘፱ , 𝑘፲) sin𝜙፨፬ (5.40)

𝐸ፅፅᎫᑠᑓᑤ ∝ 𝐸
(ኻ)
፲ (𝑘፱ , 𝑘፲) cos𝜃፨፬ cos𝜙፨፬ (5.41)
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Circular Waveguide with a Metal Flange

Similarly the same reaction integrals can be used for a circular cross section waveguide. The
tangential field component here has both a 𝜌 component and a 𝜙 component. It can be written as,

𝐸(ኻ) = √(𝑁ፓፄኻኻ )(1 + Γ)
1
𝜌𝐽ኻ(𝛽,(ኻ,ኻ)𝜌) sin(𝜙) +

ጼ

∑
፧ኼ,ኽ,..

√(𝑁ፓፄኻ፧ )(1 + Γ)
1
𝜌𝐽ኻ(𝛽,(ኻ,፧)𝜌) sin(𝜙)𝐷

ፓፄ
፧ (5.42)

𝐸(ኻ)Ꭻ = √(𝑁ፓፄኻኻ )(1+Γ)𝛽,(ኻ,ኻ)𝐽
ᖤ
ኻ(𝛽,(ኻ,ኻ)𝜌) cos(𝜙)+

ጼ

∑
፧ኼ,ኽ,..

√(𝑁ፓፄኻ፧ )(1+Γ)𝛽,(ኻ,፧)𝐽
ᖤ
ኻ(𝛽,(ኻ,፧)𝜌) cos(𝜙) (5.43)

Here, only the modes 𝑇𝐸ኻ፧ are considered because they have the same azimuthal variation with
𝑇𝐸ኻኻ mode and most likely to have coupling with 𝑇𝐸ኻኻ mode at the aperture. This can be assumed
because of the analysis of mode matching technique. Here, 𝑁ፓፄኻ,፧ is the normalization constants of the
modes 𝑇𝐸ኻ፧. They can derived by the same procedure mentioned in section 3.2.1. For TE modes, the
normalization is constant is,

𝑁ፓፄ፦፧ =
ኼ


𝐽ኼ፦(Χᖤ፦,፧)(Χᖤኼ፦,፧ −𝑚ኼ)
(5.44)

Similarly the magnetic fields are,

𝐻(ኻ) = −√(𝑁ፓፄኻኻ )(1−Γ)𝑌ፓፄኻኻ 𝛽,(ኻ,ኻ)𝐽
ᖤ
ኻ(𝛽,(ኻ,ኻ)𝜌) cos(𝜙)+

ጼ

∑
፧ኼ,ኽ,..

√(𝑁ፓፄኻ፧ )(1+Γ)𝛽,(ኻ,፧)𝐽
ᖤ
ኻ(𝛽,(ኻ,፧)𝜌) cos(𝜙)𝑌ፓፄኻ፧ 𝐷ፓፄ፧

(5.45)

𝐻(ኻ)Ꭻ = √(𝑁ፓፄኻኻ )(1 − Γ)𝑌ፓፄኻኻ
1
𝜌𝐽ኻ(𝛽,(ኻ,ኻ)𝜌) sin(𝜙) −

ጼ

∑
፧ኼ,ኽ,..

√(𝑁ፓፄኻ፧ )(1 + Γ)
1
𝜌𝐽ኻ(𝛽,(ኻ,፧)𝜌) sin(𝜙)𝑌

ፓፄ
ኻ፧ 𝐷ፓፄ፧

(5.46)

Therefore, the reaction integral can be written as,

< 1, 1 >= ∫∫
ፒᑒᑡ
(𝐸𝐻Ꭻ − 𝐻𝐸Ꭻ)𝑑𝑆 (5.47)
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This gives rise to (Incorporating the orthogonality property of the modes),

< 1, 1 >= ∫∫
ፒᑒᑡ
((𝑁ፓፄኻኻ )(1 + Γ)(1 − Γ)𝑌ፓፄኻኻ

1
𝜌ኼ 𝐽

ኼ
ኻ(𝛽,(ኻ,ኻ)𝜌) sinኼ 𝜙

+ (𝑁ፓፄኻኻ )(1 + Γ)(1 − Γ)𝑌ፓፄኻኻ 𝛽ኼ,(ኻ,ኻ)𝐽
ᖤኼ
ኻ (𝛽,(ኻ,ኻ)𝜌) cosኼ 𝜙

−
ጼ

∑
፧ኻ,ኼ..

(𝑁ፓፄኻ፧ )(1 + Γ)ኼ
1
𝜌ኼ 𝐽

ኼ
ኻ(𝛽,(ኻ,፧)𝜌) sinኼ 𝜙𝐷ኼ፧

−
ጼ

∑
፧ኻ,ኼ..

(𝑁ፓፄኻ፧ )(1 + Γ)ኼ𝑌ፓፄኻኻ 𝛽ኼ,(ኻ,፧)𝐽
ᖤኼ
ኻ (𝛽,(ኻ,፧)𝜌) cosኼ 𝜙𝐷ኼ፧)𝑑𝑆

This can be reduced to (using the integrals of section 3.2.1),

< 1, 1 >= 𝜋
2(1 + Γ)

ኼ[1 − Γ1 + Γ(𝑁
ፓፄ
ኻኻ )𝑌ፓፄኻኻ 𝐽ኼኻ(Χ

ᖤ
ኻ,ኻ)(Χ

ᖤኼ
ኻ,ኻ − 1)]

−
ጼ

∑
፧ኻ,ኼ,...

𝜋
2 (1 + Γ)

ኼ[(𝑁ፓፄኻ፧ )𝑌ፓፄኻ፧ 𝐽ኼኻ(Χ
ᖤ
ኻ,፧)(Χ

ᖤኼ
ኻ,፧ − 1)𝐷ኼ፧]

⟹

< 1, 1 >= (1 + Γ)ኼ[1 − Γ1 + Γ𝑌
ፓፄ
ኻኻ ] −

ጼ

∑
፧ኻ,ኼ,...

(1 + Γ)ኼ[𝑌ፓፄኻ፧ 𝐷ኼ፧] (5.48)

Considering aperture admittance as 𝑦ፚ፩ =
ኻዅጁ
ኻዄጁ , we can write,

𝑦ፚ፩ =
< 1, 1 >

(1 + Γ)ኼ𝑌ፓፄኻኻ
+

ጼ

∑
፧ኻ,ኼ,...

[𝐷ኼ፧
𝑌ፓፄኻ፧
𝑌ፓፄኻኻ

] (5.49)

Now it is time to calculate the reaction integral in the second medium (free-space). As the funda-
mental mode of a circular waveguide has both the x and y component, using the boundary conditions
for the continuity of tangential electric and magnetic fields, it can be said that the x and y component of
both components in the second medium are also finite (Unlike the rectangular waveguide case). Using
the Green’s function spectral domain representation of EM fields explained in [[22]], the magnetic field
components can be written as,

𝐻(ኼ)፱ (𝑘፱ , 𝑘፲) = −
1

𝜔𝜇𝑘፳
(𝑘፱𝑘፲𝐸(ኼ)፱ (𝑘፱ , 𝑘፲) + (𝑘ኼ − 𝑘ኼ፱)𝐸(ኼ)፲ (𝑘፱ , 𝑘፲)) (5.50)

𝐻(ኼ)፲ (𝑘፱ , 𝑘፲) =
1

𝜔𝜇𝑘፳
(𝑘፱𝑘፲𝐸(ኼ)፲ (𝑘፱ , 𝑘፲) + (𝑘ኼ − 𝑘ኼ፲)𝐸(ኼ)፱ (𝑘፱ , 𝑘፲)) (5.51)

Therefore, the reaction integral in the second medium is given by,
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< 2, 2 >= ∫∫
ፒᑒᑡᑖᑣᑥᑦᑣᑖ

𝐻(ኼ)(𝑥, 𝑦, 𝑧).(�̂� × 𝐸(ኼ)(𝑥, 𝑦, 𝑧))𝑑𝑆 (5.52)

In spectral domain representation it can be written as,

< 2, 2 >= ∫∫
ፒᑒᑡᑖᑣᑥᑦᑣᑖ

(𝐸(ኼ)፱ (𝑥, 𝑦)𝐻(ኼ)፲ (𝑥, 𝑦) − 𝐸(ኼ)፲ (𝑥, 𝑦)𝐻(ኼ)፱ (𝑥, 𝑦))𝑑𝑆

= 1
4𝜋ኼ ∫

ጼ

ዅጼ
∫
ጼ

ዅጼ
(𝐸(ኼ)፱ (𝑘፱ , 𝑘፲)𝐻(ኼ)፲ (𝑘፱ , 𝑘፲) − 𝐸(ኼ)፲ (𝑘፱ , 𝑘፲)𝐻(ኼ)፱ (𝑘፱ , 𝑘፲))𝑑𝑘፱𝑑𝑘፲

The term < 2, 2 > can be written only in terms of the spectral electric fields as,

< 2, 2 >= ∫∫
ፒᑒᑡᑖᑣᑥᑦᑣᑖ

1
𝜔𝜇𝑘፳

(𝐸(ኼ)፱ (𝑥, 𝑦)𝐻(ኼ)፲ (𝑥, 𝑦) − 𝐸(ኼ)፲ (𝑥, 𝑦)𝐻(ኼ)፱ (𝑥, 𝑦))𝑑𝑆

= 1
4𝜋ኼ ∫

ጼ

ዅጼ
∫
ጼ

ዅጼ
(2𝑘፱𝑘፲𝐸(ኻ)፱ (𝑘፱ , 𝑘፲)𝐸(ኻ)፲ (𝑘፱ , 𝑘፲)+(𝑘ኼ−𝑘ኼ፲)𝐸(ኻ)፱ (𝑘፱ , 𝑘፲)ኼ+(𝑘ኼ−𝑘ኼ፱)𝐸(ኻ)፲ (𝑘፱ , 𝑘፲)ኼ)𝑑𝑘፱𝑑𝑘፲

The (2) is replaced with (1), because the reaction integrals are found at the aperture and the bound-
ary conditions suggest that the tangential fields should be continuous at the aperture.

The spectral domain representation of the fields can be computed efficiently if the Fourier transforms
of the fields 𝐸፱ and 𝐸፲ in spectral domain are known analytically. Therefore, the spectral integral was
carried out to find the analytical expressions for the spectra domain fields of 𝐸፱ and 𝐸፲.

Let’s now instead of finding a function of (𝑘፱ , 𝑘፲), functions of (𝑘, Θ) can be derived. The terms
(𝑘, Θ) are defined as,

𝑘 = √(𝑘ኼ፱ + 𝑘ኼ፲) (5.53)

Θ = arccos( 𝑘፱𝑘
) = arcsin(

𝑘፲
𝑘
) (5.54)

The example below is given for 𝐸ፓፄ፱ .

𝐸ፓፄ፱ (𝑘, Θ) = √(𝑁ፓፄኻኻ )(1+Γ)∫∫
ፒᑒᑡ
[ sin𝜙 cos𝜙(1𝜌𝐽ኻ(𝛽,(ኻ,ኻ)𝜌)−𝛽,(ኻ,ኻ)𝐽

ᖤ
ኻ(𝛽,(ኻ,ኻ)𝜌))]𝑒፤ᐎ cos(Ꭻዅጆ)𝜌𝑑𝜌𝑑𝜙

+
ጼ

∑
፧ኻ,ኼ,..

√(𝑁ፓፄኻ፧ )𝐷፧(1+Γ)∫∫
ፒᑒᑡ
[ sin𝜙 cos𝜙(1𝜌𝐽ኻ(𝛽,(ኻ,፧)𝜌)−𝛽,(ኻ,፧)𝐽

ᖤ
ኻ(𝛽,(ኻ,፧)𝜌))]𝑒፤ᐎ cos(Ꭻዅጆ)𝜌𝑑𝜌𝑑𝜙

It can be simply written as,
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𝐸ፓፄ፱ (𝑘, Θ) = √(𝑁ፓፄኻኻ )(1 + Γ)ö
ፓፄ
ኻኻ (𝑘, Θ) +

ጼ

∑
፧ኻ,ኼ,..

√(𝑁ፓፄኻ፧ )(1 + Γ)𝐷፧ö
ፓፄ
ኻ፧(𝑘, Θ) (5.55)

Where,

öፓፄኻ፧(𝑘, Θ) = ∫
ፑ

ኺ
((1𝜌𝐽ኻ(𝛽,(ኻ,፧)𝜌) − 𝛽,(ኻ,፧)𝐽

ᖤ
ኻ(𝛽,(ኻ,፧)𝜌))(∫

ኼ

ኺ
sin𝜙 cos𝜙𝑒፤ᐎ cos(Ꭻዅጆ)𝑑𝜙)𝜌𝑑𝜌) (5.56)

This integral can be analytically derived by using the bessel function properties of equation (3.11),
(3.12) and the equation given below (5.59).

𝐽፥(𝛽) =
1
2𝜋𝑗፥ ∫

ኼ

ኺ
𝑒፣፥Ꭻ𝑒፣ᎏ cosᎫ𝑑𝜙 (5.57)

Finally the integral öፓፄኻ፧ is given by,

öፓፄኻ፧(𝑘, Θ) = −𝜋𝛽(ኻ,፧) sin(2Θ)𝐼ኻ,፧ኼኼ (5.58)

Where, 𝐼ኼኼ is given by,

𝐼ኻ,፧ኼኼ (𝑘) = ∫
ፑ

ኺ
𝜌𝐽ኼ(𝛽(ኻ,፧))𝐽ኼ(𝑘𝜌)𝑑𝜌 (5.59)

This integral can be solved with the Lommel’s integral of the form (3.85).

Similarly the spectrum function of 𝐸፲(𝑥, 𝑦) can be found as,

𝐸ፓፄ፲ (𝑘, Θ) = √(𝑁ፓፄኻኻ )(1+Γ)∫∫
ፒᑒᑡ
[(1𝜌𝐽ኻ(𝛽,(ኻ,ኻ)𝜌) sin

ኼ 𝜙+𝛽,(ኻ,ኻ)𝐽
ᖤ
ኻ(𝛽,(ኻ,ኻ)𝜌) cosኼ 𝜙)]𝑒፤ᐎ cos(Ꭻዅጆ)𝜌𝑑𝜌𝑑𝜙

+
ጼ

∑
፧ኻ,ኼ,..

√(𝑁ፓፄኻ፧ )𝐷፧(1+Γ)∫∫
ፒᑒᑡ
[(1𝜌𝐽ኻ(𝛽,(ኻ,፧)𝜌) sin

ኼ 𝜙+𝛽,(ኻ,፧)𝐽
ᖤ
ኻ(𝛽,(ኻ,፧)𝜌) cosኼ 𝜙)]𝑒፤ᐎ cos(Ꭻዅጆ)𝜌𝑑𝜌𝑑𝜙

It can be simply written as,

𝐸ፓፄ፲ (𝑘፱ , 𝑘፲) = √(𝑁ፓፄኻኻ )(1 + Γ)ü
ፓፄ
ኻኻ (𝑘, Θ) +

ጼ

∑
፧ኻ,ኼ,..

√(𝑁ፓፄኻ፧ )𝐷፧(1 + Γ)ü
ፓፄ
ኻ፧(𝑘, Θ) (5.60)

The integral üፓፄኻ፧(𝑘, Θ) = ∫∫ፒᑒᑡ [(
ኻ
 𝐽ኻ(𝛽,(ኻ,፧)𝜌) sin

ኼ 𝜙+𝛽,(ኻ,፧)𝐽
ᖤ
ኻ(𝛽,(ኻ,፧)𝜌) cosኼ 𝜙)]𝑒፤ᐎ cos(Ꭻዅጆ)𝜌𝑑𝜌𝑑𝜙.

The integral can be found using a similar approach as öፓፄኻ፧ using Bessel function properties. There-
fore,
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üፓፄኻ፧(𝑘, Θ) = 𝜋𝛽(ኻ,፧)[𝐼ኻ,፧ኺኺ (𝑘) + 𝐼ኻ,፧ኼኼ (𝑘) cos(2Θ)] (5.61)

Where,

𝐼ኻ,፧ኺኺ (𝑘) = ∫
ፑ

ኺ
𝜌𝐽ኺ(𝛽(ኻ,፧))𝐽ኺ(𝑘𝜌)𝑑𝜌 (5.62)

This can also be evaluated using the Lommel’s integral of the form (3.85).

Finally applying equations of the form (in terms of 𝑘 and Θ)(5.55) and (5.60) into the expression of
< 2, 2 > and finally using it in the equation for the aperture admittance in (5.49), we have,

𝑦ፚ፩𝑌ፓፄኻኻ = Ξ፱፱ኻ,ኻ+Ξ፲፲ኻ,ኻ+Ξ፱፲ኻ,ኻ+2
ጼ

∑
፧ኼ,ኽ,..

(Ξ፱፱ኻ,፧+Ξ፲፲ኻ,፧+Ξ፱፲ኻ,፧)𝐷፧+
ጼ

∑
፦ኼ,ኽ,..

ጼ

∑
፧ኼ,ኽ,..

(Ξ፱፱፦,፧+Ξ፲፲፦,፧+Ξ፱፲፦,፧)𝐷፦𝐷፧+
ጼ

∑
፧ኼ,ኽ,..

𝐷ኼ፧𝑌ፓፄኻ,፧

(5.63)

Where,

Ξ፱፱፦,፧ = Υ(𝑚, 𝑛)∫∫
ጼ

ዅጼ

𝑘ኼ − 𝑘ኼ sin
ኼ(Θ)

𝜔𝜇𝑘፳(𝑘)
𝜋ኼ sinኼ(2Θ)𝐼ኻ,፧ኼኼ (𝑘)𝐼ኻ,፦ኼኼ (𝑘)𝑘𝑑𝑘𝑑Θ (5.64)

Ξ፲፲፦,፧ = Υ(𝑚, 𝑛)∫∫
ጼ

ዅጼ

𝑘ኼ − 𝑘ኼ cosኼ(Θ)
𝜔𝜇𝑘፳(𝑘)

𝜋ኼ[𝐼ኻ,፧ኺኺ (𝑘)+𝐼ኻ,፧ኼኼ (𝑘) cos(2Θ)][𝐼ኻ,፦ኺኺ (𝑘)+𝐼ኻ,፦ኼኼ (𝑘) cos(2Θ)]𝑘𝑑𝑘𝑑Θ
(5.65)

Ξ፱፲፦,፧ = Υ(𝑚, 𝑛)∫∫
ጼ

ዅጼ

2𝑘ኼ sin(Θ) cos(Θ)
𝜔𝜇𝑘፳(𝑘)

𝜋ኼ sin(2Θ)𝐼ኻ,፧ኼኼ (𝑘)[𝐼ኻ,፦ኺኺ (𝑘) + 𝐼ኻ,፦ኼኼ (𝑘) cos(2Θ)]𝑘𝑑𝑘𝑑Θ
(5.66)

Where,

Υ(𝑚, 𝑛) =
√𝑁ፓፄኻ,፧𝑁ፓፄኻ,፦𝛽,(ኻ,፧)𝛽,(ኻ,፦)

4𝜋ኼ (5.67)

For small variation of the fields at the aperture it is assumed that the changes of 𝑦ፚ፩ is small with
respect to 𝐷፧. Therefore,

𝜕𝑦ፚ፩
𝜕𝐷፧

= 0 (5.68)

Equation (5.63) can be written in a matrix form as,



5.3. Free-space reflection at the end of an open waveguide with a metal flange 75

𝑦ፚ፩𝑌ፓፄኻኻ = 𝜏ኻ,ኻ+2 [𝐷ኼ 𝐷ኽ 𝐷ኾ ... 𝐷ጼ]
⎡
⎢
⎢
⎢
⎣

𝜏ኻ,ኼ
𝜏ኻ,ኽ
𝜏ኻ,ኾ
.

𝜏ኻ,ጼ

⎤
⎥
⎥
⎥
⎦

+[𝐷ኼ 𝐷ኽ 𝐷ኾ ...𝐷ጼ]
⎡
⎢
⎢
⎣

𝜏ኼ,ኼ + 𝑌ፓፄኻ,ኼ 𝜏ኼ,ኽ ... 𝜏ኼ,ጼ
𝜏ኽ,ኼ 𝜏ኽ,ኽ + 𝑌ፓፄኻ,ኽ ... 𝜏ኽ,inf
.

𝜏ጼ,ኼ 𝜏ጼ,ኽ ... 𝜏ጼ,ጼ + 𝑌ፓፄኻ,ጼ

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐷ኼ
𝐷ኽ
𝐷ኾ
.
𝐷ጼ

⎤
⎥
⎥
⎥
⎦

(5.69)

Where,

𝜏፦,፧ = Ξ፱፱፦,፧ + Ξ፲፲፦,፧ + Ξ፱፲፦,፧ (5.70)

Taking the derivative with respect to 𝐷፧ and equating it to zero gives rise to,

⎡
⎢
⎢
⎣

𝜏ኼ,ኼ + 𝑌ፓፄኻ,ኼ 𝜏ኼ,ኽ ... 𝜏ኼ,ጼ
𝜏ኽ,ኼ 𝜏ኽ,ኽ + 𝑌ፓፄኻ,ኽ ... 𝜏ኽ,inf
.

𝜏ጼ,ኼ 𝜏ጼ,ኽ ... 𝜏ጼ,ጼ + 𝑌ፓፄኻ,ጼ

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐷ኼ
𝐷ኽ
𝐷ኾ
.
𝐷ጼ

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

−𝜏ኻ,ኼ
−𝜏ኻ,ኽ
−𝜏ኻ,ኾ
.

−𝜏ኻ,ጼ

⎤
⎥
⎥
⎥
⎦

(5.71)

The inversion in equation (5.71) yields the 𝐷፧ excitation coefficients. After 𝐷፧ is known, 𝑦ፚ፩ can be
found as (using equation (5.68) and (5.69)),

𝑦ፚ፩𝑌ፓፄኻኻ = 𝜏ኻ,ኻ + [𝐷ኼ 𝐷ኽ 𝐷ኾ ... 𝐷ጼ]
⎡
⎢
⎢
⎢
⎣

𝜏ኻ,ኼ
𝜏ኻ,ኽ
𝜏ኻ,ኾ
.

𝜏ኻ,ጼ

⎤
⎥
⎥
⎥
⎦

(5.72)

Using the 𝑦ፚ፩ the reflection coefficient Γ can be found using (5.23).

The expressions for 𝜏፦,፧ also can be simplified using integral over cylindrical system (𝑘 and Θ).
After separating the expressions for Θ and integrating it from 0 to 2𝜋, we can find the integral in terms
of only 𝑘 as,

𝜏፦,፧ = Ξ፱፱፦,፧ + Ξ፲፲፦,፧ + Ξ፱፲፦,፧ (5.73)

𝜏፦,፧ = ∫
ጼ

ኺ

√𝑁ፓፄኻ,፧𝑁ፓፄኻ,፦𝛽(ኻ,፧)𝛽(ኻ,፧)𝜋
4𝜔𝜇𝑘፳(𝑘)

((2𝑘ኼኺ − 𝑘ኼ)(𝐼ኻ,፧ኺኺ (𝑘)𝐼ኻ,፦ኺኺ (𝑘)+

𝐼ኻ,፧ኼኼ (𝑘)𝐼ኻ,፦ኼኼ (𝑘)) −
𝑘ኼ
2 (𝐼

ኻ,፧
ኺኺ (𝑘)𝐼ኻ,፦ኼኼ (𝑘) + 𝐼ኻ,፧ኼኼ (𝑘)𝐼ኻ,፦ኺኺ (𝑘)))𝑘𝑑𝑘

where,

𝑘፳(𝑘) = −𝑗√−(𝑘ኼ − 𝑘ኼ) (5.74)
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For example, for 𝜏ኻ,ኻ, the mutual admittance between the fundamental mode with itself (𝑇𝐸ኻኻ),

𝜏ኻ,ኻ = Ζኻኻ,ኻኻ∫
ጼ

ኺ

1
𝑘፳(𝑘)

((2𝑘ኼኺ − 𝑘ኼ፤ᐎ)[(𝐼
ኻ,ኻ
ኺኺ (𝑘))ኼ + (𝐼ኻ,ኻኼኼ (𝑘))ኼ] − 𝑘ኼ𝐼ኻ,ኻኺኺ (𝑘)𝐼ኻ,ኻኼኼ (𝑘))𝑘𝑑𝑘 (5.75)

Where Ζኻኻ,ኻኻ is a constant and defined as,

Ζኻኻ,ኻኻ =
𝑁ፓፄኻ,ኻ𝛽ኼ(ኻ,ኻ)𝜋

4𝜔𝜇 (5.76)

Where 𝐼ኻኻኺኺ and 𝐼ኻኻኼኼ are given by (Lommel’s integrals),

𝐼ኻኻኺኺ = 𝑅ኼ
𝛽(ኻ,ኻ)𝐽ኻ(𝛽(ኻ,ኻ)𝑅)𝐽ኺ(𝑘𝑅) − 𝑘𝐽ኺ(𝛽(ኻ,ኻ)𝑅)𝐽ኻ(𝑘𝑅)

𝛽ኼ(ኻ,ኻ) − 𝑘ኼ
(5.77)

𝐼ኻኻኼኼ = 𝑅ኼ
−𝛽(ኻ,ኻ)𝐽ኻ(𝛽(ኻ,ኻ)𝑅)𝐽ኼ(𝑘𝑅) + 𝑘𝐽ኼ(𝛽(ኻ,ኻ)𝑅)𝐽ኻ(𝑘𝑅)

𝛽ኼ(ኻ,ኻ) − 𝑘ኼ
(5.78)

Furthermore, as from chapter 3 we know that there are Lommel’s integral analytical expressions
when the argument to the two Bessel function expressions are same, those expressions can be used
at the locality of the pole locations in the above integral expression (𝜏፦,፧).

𝐼ኻኻኺኺ,(ᎏᒖ(Ꮃ,Ꮃ)፤ᐎ) =
1
2𝑅

ኼ([𝐽ኺ(𝛽(ኻ,ኻ)𝑅)]ኼ + [𝐽ኻ(𝛽(ኻ,ኻ)𝑅)]ኼ) (5.79)

𝐼ኻኻኼኼ,(ᎏᒖ(Ꮃ,Ꮃ)፤ᐎ) =
1
2𝑅

ኼ([𝐽ኼ(𝛽(ኻ,ኻ)𝑅)]ኼ − 𝐽ኻ(𝛽(ኻ,ኻ)𝑅)𝐽ኽ(𝛽(ኻ,ኻ)𝑅)) (5.80)

Hence, the integrals can be done in 3 parts. One is from 0 to 𝛽(ኻ,ኻ) − 𝜖, then from 𝛽(ኻ,ኻ) − 𝜖 to
𝛽(ኻ,ኻ) + 𝜖 and finally from 𝛽(ኻ,ኻ) + 𝜖 to ∞ (where 𝜖 is a very small quantity).

While doing the integral, it is also important not to cross the branch cut of the square root function
𝑘፳(𝑘). This multi-valued square root function is plotted in figure 5.11 (both real and imaginary quanti-
ties). It is seen that the real part has a branch cut because there is a immediate change of sign when
the real line is crossed. The imaginary quantity is always negative. In Riemann sheet convention, with

the expression 𝑘፳(𝑘) = −𝑗√−(𝑘ኼ − 𝑘ኼ) the bottom Riemann sheet is considered [25].

The integration path, branch cut and branch points for this K space integral is shown in figure 5.12.
Here, it is interesting to note that as in Mishustin integrals, here also the integral from 0 to 𝑘ኺ yields
the real part of the admittance where the integral from 𝑘ኺ to ∞ yields the imaginary part. Clearly, the
K space integrals have advantages over the Mishustin integrals as they also can compute the mutual
admittance between different eign-modes in the waveguide. Furthermore, they can be more accurate

than the Mishustin’s integral because the poles at |𝑘| = 𝛽(ኻ,ኻ) (same as 𝜂 = ጔᖤ (ኻ,ኻ)
፤Ꮂፑ

in Mishustin’s
case) can be avoided by using the Lommel’s integrals as a step function. Similarly in the case of mutual
admittance when (𝑚 ≠ 𝑛), the poles can be avoided at the points |𝑘| = 𝛽(ኻ,፦) and |𝑘| = 𝛽(ኻ,፧).
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5.3.5. Results related to the reflection at the aperture free-space transition

In this section the results of the reflection coefficient (Γ), aperture admittance (𝑦ፚ፩), higher order mode
excitation (𝐷፦) at the aperture free-space boundary of a circular cross section waveguide when excited
with only the fundamental mode (𝑇𝐸ኻኻ).

Higher order modes at the aperture

The higher order mode excitation are shown in figure 5.13 as a function of the ratio of diameter
to the wavelength (ኼፑ᎘Ꮂ ) of operation and number of higher order modes (𝑇𝐸ኻኼ, 𝑇𝐸ኻኽ and so on). The
far away the higher order mode in terms of cut-off frequency, the lower is the excitation. This trend is
expected at the aperture. Therefore, for analysis, only a few number of modes can be considered to
have reduced time complexity and better accuracy numerically.

Normalized Aperture Admittance

Figure 5.14 shows the normalized aperture admittance (𝑦ፚ፩ = 𝑔።፧ − 𝑗𝑏።፧). The 𝑔።፧ is the conduc-
tance and 𝑏።፧ is the susceptance. The susceptance is inductive and that is also expected at the aperture
[7]. The K space integrals are plotted in two different ways. The first is just the aperture admittance
given that there are no higher order modes excited at the aperture ( ᎡᎳ,ᎳፘᑋᐼᎳᎳ

). The second is when higher
order modes are included in the analysis 𝑦ፚ፩. Both are compared with the Mishustin integrals which
only considers the fundamental mode reflection at the aperture. The trend of all of the above men-
tioned parameters look very similar to one another when plotted as a function of the ratio of diameter
to the wavelength of operation. It is very interesting to notice that the more the ratio of the diameter to
wavelength (ኼፑ᎘Ꮂ ), the closer 𝑔።፧ to unity and 𝑏።፧ to zero. This suggests that the aperture admittance ap-
proaches free-space wave admittance when the waveguide operates at a frequency which is far away
from the cut-off frequency of the fundamental mode yet below the cut-off frequency of the next higher
order mode. This is also expected at the aperture. Therefore, at higher frequencies, the waveguide
tends to be perfectly matched to free-space.

Reflection coefficient

Figure 5.15 and 5.16 shows the reflection coefficient magnitude and phase respectively Γ with re-
spect to the ratio of diameter to the wavelength ኼፑ

᎘Ꮂ
. As reflection coefficient (Γ) is directly related to the

normalized aperture admittance as Γ = ኻዅ፲ᑒᑡ
ኻዄ፲ᑒᑡ

, it is also seen here that the waveguide becomes more
nearly matched to free-space atg higher frequencies (higher ratio of diameter to wavelength). The re-
flection coefficient is also compared with Mishustin integrals. Here, also like the normalized aperture
admittance, K space integrals are considered in two different ways. One with only the fundamental

mode reflection (Γ =
ኻዅ ᒙᎳ,Ꮃ

ᑐᑋᐼᎳᎳ
ኻዄ ᒙᎳ,Ꮃ

ᑐᑋᐼᎳᎳ

) and another way with higher order mode excitation Γ = ኻዅ፲ᑒᑡ
ኻዄ፲ᑒᑡ

.

5.4. Near field and far-field of one open endedwaveguidewithmetal
flange

5.4.1. Near Fields open ended circular waveguide with metal flange

After the determination of the parameters Γ and 𝐷፦, we can find the field distribution on the aperture
of an open ended waveguide.

In the case of the circular cross-section waveguide, as the Γ values are negative, the electric field
patterns should have a reduced value than that of an infinitely long waveguide (a waveguide with an
absorbing boundary condition at the aperture). It shows that the contribution of higher order modes
at the aperture is also reduced by a factor 1 + Γ. Therefore, the overall electric field should have
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reduced amplitudes at the aperture. However, as the magnetic fields have a 1 − Γ in the expression
for fundamental mode, the fundamental mode amplitude increases and therefore becomes dominant.
Therefore, the magnetic field distribution should have greater values at the aperture than that of an
infinitely long waveguide (absorbing condition). In the case of magnetic fields, the higher order modes
also are not dominant because of the factor 1 + Γ. The near-field patterns of a circular open ended
waveguide of radius 2[cm] at a frequency of 5 GHz is shown in figure 5.18 with FEKO results. At this
frequency this waveguide only supports TE11 mode internally (fundamental mode).

The FEKO configuration for the open ended waveguide problem (finite length) is shown in figure
5.17. In FEKO, for the open ended waveguide problem, there is a ground plane used at the aperture of
radius 70 [cm] for all the below mentioned results. Surrounding the ground plane, there is a magnetic
coaxial wall of thickness 10 [cm] and height 10 [cm] to ensure minimum reflection from the edge of
the ground plane. In FEKO, for the infinite length waveguide problem, the far end of the waveguide is
terminated with another waveguide port with no excitation to the fundamental mode (𝑇𝐸ኻኻ) to have a
absorbing boundary condition.

The right column figures of the figure 5.18 is taken from FEKO. It is seen that the magnetic field
distribution indeed has greater values when it is open to free-space than when it is infinitely long (with
absorbing boundary conditions). The values are shown at one point on the plots. FEKO result values
are close to the one which is derived from the spectral integral equation method mentioned in the
thesis. Similarly, the electric field values are lesser in the case of open ended waveguide than when
the waveguide is of infinite length. These values also match the values obtained from FEKO.

However, towards the edge of the waveguide cross section, FEKO results look a little different for
the case of open ended waveguide (finite length). This is due to the fact that FEKO uses MoM (Method
of Moments) solver and therefore assumes that the entire structure is filled with discrete triangles and
therefore, it is not a perfect circle. Apart from that, at the boundary, the edge of the waveguide produces
some fringing fields or diffraction fields which interfere with the pattern. The fringe field pattern near
the edge is visible in the FEKO plots. These fields change their pattern when the size of the ground
plane in the FEKO simulations change its dimensions.

5.4.2. Far-fields of an open ended circular waveguide with metal flange

The far-fields of the same configuration is plotted in figure 5.19. The far-field plot has both the pattern for
the finite waveguide and the infinite length waveguide case. The legend which says FEKO NFMATLAB
FF are the far-field plots obtained in MATLAB with numerical integration over the near-fields those are
obtained from FEKO. Rest of the plots are done using the spectrum analytical functions mentioned
in (5.58) and (5.61). For these plots the values of Γ, 𝐷፦ are used from the 𝐾 space integrals. For
the infinite waveguide case, Γ was kept as zero and 𝐷፦ also kept as zero. The analytical spectrum
expressions for the far-fields, when applied in MATLAB compute the far-fields in seconds. Therefore,
it is computationally very efficient. On the other hand, the far-fields obtained from the near fiels of
FEKO with the numerical FFT technique mentioned in equation (5.13) and (5.14) take up to three to
four minutes (for 180 points on azimuth and 100 points in the radial direction) for the Fourier transform.

Although the near-field patterns are a little different as depicted in figure 5.18, the far-fields show
promising resemblance. This is due to the fact that far-fields are forgiving. Far-field is an integral quan-
tity (average) over the near-field distribution. Therefore, small differences in near-fields are forgiven in
the case of far-field computation. It can be seen that FEKO results are very close to the MATLAB ones,
both for finite and infinite length waveguide cases. There is a clear difference between the patterns of a
finite and an infinite length waveguide. This is due to the result of reflection at the aperture free-space
transition.
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5.5. Conclusions
In this chapter first the theoretically infinite length (or perfectly matched) waveguide horn is discussed
for its near-field and far field patterns. The MM software is used to formulate the near-field patterns
and spatial Fourier transform was used to determine the far fields of the aperture near-fields obtained
from the MM software. The patterns implemented in MATLAB were compared with equivalent FEKO
simulations for a two waveguide/ five waveguide and a conical waveguide structure. The results came
out be very close to each other. In FEKO simulations, the far end of the waveguide is usually closed
with an absorbing port to mimimc the same conditions (infinite waveguide or perfectly matched condi-
tions). In the later half of the chapter, the reflection from free space is considered. Various approaches
were discussed and the Rumsey’s reaction concept was used to develop a numerical integral tool to
determine the reflection from the aperture free space boundary. This result of aperture admittance and
reflection coefficients were compared with Mishustin’s integrals [19]. The near and far fields from finite
length open cylindrical waveguides were then compared with FEKO results. The results have good
agreement with each other. The results show that the differences between aperture fields for an open
ended waveguide and a perfectly matched waveguide predicted using the MATLAB implementation
derived in this chapter, are in excellent agreement.
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Figure 5.2: Aperture electric field at 14 GHz for the 2 waveguide problem (perfectly matched) (10 modes propagating on both
waveguides) - Normalized in dB.
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Figure 5.3: Aperture electric field at 14 GHz for the 5 waveguide problem (perfectly matched) (10 modes propagating on the first
waveguide and 13 modes on the last waveguide) - Normalized in dB
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Figure 5.4: Aperture electric field at 14 GHz for the Cone problem (perfectly matched) (10 modes propagating at the first port
and 40 modes propagating at the the second port of waveguide) - Normalized in dB
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Figure 5.6: (1) and (2) - Amplitude of transmission coefficients for Cone model at 14 GHz. The ፱ axis shows modes considered
in the first waveguide port(smallest) and ፘ axis shows the modes of the last waveguide port(largest waveguide). (In the order
of their cut off frequencies). (3) - Phase error between FEKO and MM models for Cone structure for transmission coefficient (in
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Figure 5.7: Far field from the aperture field of the 2 waveguide structure (Pefectly matched) at 14 GHz Normalized. The plots
with MM are from MM software itself. ”NF From FEKO and FF MATLAB” refers to the plots which are computed in MATLAB
but the input to those are the Near field patterns drawn from FEKO. ”NF From FEKO FF FEKO” refers to the plots which are
computed in FEKO and input to those are the Near field distribution drawn from FEKO in a different experiment.
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Figure 5.8: Far field from the aperture field of the Cone (Perfectly matched) structure at 6 GHz Normalized. The plots with MM
are from MM software itself. ”NF From FEKO and FF MATLAB” refers to the plots which are computed in MATLAB but the input
to those are the Near field patterns drawn from FEKO. ”NF From FEKO FF FEKO” refers to the plots which are computed in
FEKO and input to those are the Near field distribution drawn from FEKO in a different experiment. The plots which says R=Base
radius are the patterns for only one waveguide structure when its radius is the base radius of the cone in the original problem.
This is present to show that the the increase in aperture in the horn makes the patterns more narrow for the main beam.
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Figure 5.9: Far field from the aperture field of the Cone structure (Perfectly matched) at 7.5 GHz Normalized. The plots with
MM are from MM software itself. ”NF From FEKO and FF MATLAB” refers to the plots which are computed in MATLAB but the
input to those are the Near field patterns drawn from FEKO. ”NF From FEKO FF FEKO” refers to the plots which are computed
in FEKO and input to those are the Near field distribution drawn from FEKO in a different experiment.
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5. Field Distribution on the Aperture and Far Fields of both a perfectly matched waveguide (Infinite

length) and Open ended waveguides (Open to free space)

Figure 5.10: Integration path, branch cuts, branch points and poles to integrate Mishustin’s integrals

(a) Real part of ዅ፣√ዅ(፤Ꮄ ዅ ፤Ꮄᐎ) (b) Imaginary part of ዅ፣√ዅ(፤Ꮄ ዅ ፤Ꮄᐎ)

Figure 5.11: Real and Imaginary part of ፤ᑫ
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Figure 5.12: Integration path, branch cuts, branch points and poles to integrate K space integral
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5. Field Distribution on the Aperture and Far Fields of both a perfectly matched waveguide (Infinite

length) and Open ended waveguides (Open to free space)
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5. Field Distribution on the Aperture and Far Fields of both a perfectly matched waveguide (Infinite

length) and Open ended waveguides (Open to free space)
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Figure 5.17: FEKO configuration of the open ended waveguide problem with a metal flange of radius 70 [cm]. There is a coaxial
magnetic wall surrounding the metal flange of thickness 10 [cm] and height 10 [cm].
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Figure 5.18: Aperture electric/magnetic fields at 5 GHz for a circular waveguide of radius 2[cm]. Plots with Rumsey’s method
consider an open ended waveguide, open end being open to free space. 29 higher order modes are considered at the aperture
for the same.
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5. Field Distribution on the Aperture and Far Fields of both a perfectly matched waveguide (Infinite

length) and Open ended waveguides (Open to free space)
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Figure 5.19: Far fields of an open ended circular waveguide (finite length) and an infinite length waveguide (with a absorbing
boundary condition) with metal flange. FEKO NF and MATLAB FF suggests that the Far fields are obtained in MATLAB but the
near-field patterns for the computation of the far-fields are taken from FEKO. In FEKO, the radius of the metal flange is 70 [cm].
There is a coaxial magnetic wall surrounding the metal flange of thickness 10 [cm] and height 10 [cm].
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6
Optimization Techniques for the design

of the smooth walled conical horn
antenna

6.1. Problem formulation
Till chapter 5, various properties of the conical horn antenna were discussed. The antenna under test
was always an aperture antenna, where the aperture is open to free space at the far end for practical
purposes. For the SKA application, these types of horn antennas are usedwith a reflector (dish) system.
The systems are designed so that the reflector-feed system should have optimum aperture efficiency,
better matching with free space at the far end (minimum return loss), lower cross polar levels and so on.
Using the hybrid method (Modematching technique and the Rumesy’s integrals), several goal functions
can be devised which then can be optimized using some known algorithms. This way, the geometry
of the horn can be determined for the requirements. The algorithms that are explored in this chapter
are the genetic algorithm and the minimum non-linear programming solver (𝑓𝑚𝑖𝑛𝑐𝑜𝑛 in MATLAB). The
reason to use these methods is that the goal functions in the case of conical horn antenna are non-
linear in nature. The three parameters that are explored in this chapter for optimization are the return
loss, the cross polar electric field level and the aperture efficiency of the reflector-feed system. The
optimized input parameters (Geometry of the horn) are tested for a wide range of frequencies to test
the consistency of the output parameters. This chapter has three sections. The first one describes
the two optimization algorithms used from MATLAB libraries. In the second section, the definitions
of the output parameters are discussed with the input parameters to be optimized. The third section
comprises of the definition of the goal functions created for the optimization routines. The results are
horn profiles for the requirements.

6.2. Optimization Algorithms
Optimization problems are used in a lot of fields including simple tasks in our daily lives. For example,
for designing a smart city, one has to know how many hospitals needed to be installed and where
should they be placed. Based on the requirement, certain design variables are chosen. After the
design variables are chosen, using some optimization algorithms, the values to the design variables are
found out for optimum performance. For example, some physical theories are a result of optimization
problems such as the Euler-Lagrange differential equation [12]. Another example of a optimization
problem is explained in this thesis in chapter 5. The variational approach with Rumesy’s reaction
concept to find the aperture admittance of aperture antennas is also an optimization problem in itself.

95
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The variational approach is applied there to find the higher order mode excitation at the aperture free
space transition and that was achieved by equating the change of aperture admittance with respect
to the higher order mode excitation to zero Ꭷ፲ᑒᑡ

Ꭷፃᑞ
= 0. This is done to make sure that the aperture

admittance is invariant of the higher order mode excitation. Similarly variational approaches are also
applied in quantum mechanics where the energy of a test state vector is minimized with respect to
some design parameters [12].

There are several ways to optimize a problem. Different algorithms are developed to address such
optimization problems. These algorithms find the values of the design variables that best fits the require-
ments. Some of the algorithms are the genetic algorithm, the pattern search optimization algorithm, the
simulated-annealing optimization algorithm and so on. In this thesis, two algorithms are discussed in
detail and they are the genetic algorithm and the MATLAB’s 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 non-linear optimization algorithm.

6.2.1. Genetic Algorithm

Genetic algorithm is a global minima optimizer. It uses the principles of genetics to avoid stopping at
local minima and find the true global minima by searching the entire solution space.

Process of optimization using genetic algorithm (GA)

In the GA optimizer, first an arbitrary initial population (sets of list of design variables) is created
(if not given manually). Then, iterations are done to create new populations. The new generation is
created based on fitness value maturity (return value from the goal function). Values for which the
fitness is very low, are directly carried to the next generation. If they aren’t very low, only some are
taken. Based on the current fitness value, some are chosen to be parents and those parents create
children population which then get forwarded for the next iteration. These children are derived based
on mutation and cross over between the design variables of the parents. This allows the algorithm not
to avoid potentially valid search spaces for global minima.

MATLAB implementation

In MATLAB, there are a broad range of arguments that can be passed to the GA algorithm function.
However, in the thesis, only a few arguments are used. The implementation looks like the following.

problem.fitnessfcn = @(x) goal(x(1), x(2), x(N)); %Fitness function
problem.nvars = N; %Number of design variables
problem.lb = Lower_Bounds; %Lower bounds of all design variables
problem.ub = Upper_Bounds; %Upper bounds of all design variables
problem.solver = 'ga';
Ip = Initial_population_matrix; %Initial Population Matrix
FitnessLimit = FL; %Fitness value limit (stop condition)

problem.options = optimoptions(@ga, 'PlotFcn',...
{'gaplotbestf', 'gaplotbestindiv'}, 'Display', 'iter',...
'InitialPopulationMatrix', [IP], 'UseParallel',...
true, 'FitnessLimit', FL); % Optimization options.

[r, fval, exf, output] = ga(problem); % Optimization call

% r - design variable optimized
% fval - fitness value for individual r
% exf - exit flag status
% output - various other attributes of the optimization
% Like maximum number of function calls or maximum number of generations
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6.2.2. MATLAB’s 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 non-linear optimization solution

Unlike the genetic algorithm, 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 is a local minima finder. It can be configured to find the first order
optimality based on the derivative rule of finding local minima. It is well suited for non-linear problems
and therefore it is tried in this context. The 𝑥0 (starting population) is chosen judiciously to avoid large
run time of the algorithm.

MATLAB implementation

The implementation used in this thesis is shown in below example.

problem2.objective = ...
@(x) GSM_N_opt_allvar(x(1), x(2), x(N));
%Objective function

problem.lb = [lb.']; % Lower bounds of design variables
problem.ub = [ub.'] % Upper bounds of design variables

problem.x0 = [x0]; % Starting point (design variables)
problem.solver = 'fmincon'; % solver name

problem.options = optimoptions(@fmincon,'PlotFcn', ...
{'optimplotx', 'optimplotfirstorderopt'},...
'UseParallel', true, 'MaxFunEval', Inf, 'MaxIter', Inf);

%fmincon options

[r, fval, exf, ouput] = fmincon(problem);

% r - design variable optimized
% fval - fitness value for individual r
% exf - exit flag status
% output - various other attributes of the optimization
% Like maximum number of function calls

6.3. Parameters for optimization

6.3.1. Return Loss

The return loss (RL) is defined in the MM (Mode Matching) software as the sum of the squares of
the first column entries of 𝑆ፑፑ matrix. 𝑆ፑፑ matrix is the matrix containing the reflection coefficients at
the waveguide port located the base element of the cone (at the throat) due to the excitation at the
same port. As the cone is approximated as a series of cylindrical waveguides, more number of higher
order modes get excited as we progress from the base to the top (open end) of the conical structure.
Therefore, the 𝑆ፑፑ matrix in theMM software contains the reflection coefficients of each and every mode
excited inside the horn with the modes excited at the base element. In the applications, it is required to
have only the fundamental mode excitation at the base element of the cone. Therefore, only the first
column entry of 𝑆ፑፑ is required to get the return loss of an antenna with only the fundamental mode
excitation at the waveguide R or at the base element of the cone.

𝑅𝐿 = |
ፍᑛ

∑
፣
𝑆ኻ,፣ፑፑ|ኼ (6.1)

In this chapter, for the optimization of the return loss, the reflection at the waveguide free space
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boundary is not considered. This is done to save computation time. Another reason for it is the reflection
of the fundamental mode at the aperture of a flared horn antenna is very negligible as these horn
antennas are well matched at the free space boundary.

6.3.2. Cross-polar levels

In this case of aperture antennas, cross polarizated fields are the fields which are anti-symmetric on
the aperture and can leak into the co polarized field of the radiation pattern [16]. The cross polar field
expression can be determined from the Ludwig’s definitions [14]. The co and cross polar components,
hence take the form given below,

𝐸፨ = 𝑒ዅ፣፤፫
𝑟 [𝐶𝑂(𝜃) + 𝑋𝑃(𝜃) cos(2𝜙)] (6.2)

𝐸፱፩ = 𝑒ዅ፣፤፫
𝑟 [𝑋𝑃(𝜃)𝑠𝑖𝑛(2𝜙)] (6.3)

Here, 𝐶𝑂(𝜃) and 𝑋𝑃(𝜃) are the radiation patterns which depend on 𝜃 and computed at 𝜙 = 
ኾ .

𝐶𝑂(𝜃) = 1
2[𝐴(𝜃) + 𝐵(𝜃)] (6.4)

𝑋𝑃(𝜃) = 1
2[𝐴(𝜃) − 𝐵(𝜃)] (6.5)

Here, 𝐴 and 𝐵 are defined as the radiation patterns with respect to 𝜃 on E and H planes. Therefore
𝐴(𝜃) is computed when 𝜙 = 0 and 𝐵(𝜃) is computed when 𝜙 = 

ኼ .

The co-polar and cross-polar fields also can be found from the 𝜃 and 𝜙 components of the electric
far-field.

𝐸፨ = sin𝜙𝐸᎕�̂� + cos𝜙𝐸Ꭻ�̂� (6.6)

𝐸፱፩ = cos𝜙𝐸᎕�̂� − sin𝜙𝐸Ꭻ�̂� (6.7)

The radiation patterns 𝐸᎕ and 𝐸Ꭻ can be computed from the spectrum functions (In the K-Space
domain). The spectrum functions in x and y components can be found in equations (5.55) and (5.60).
In the spectrum function, stationary phase approximation has to be used for the computation of far-
fields. Therefore, the spectral arguments 𝑘 and Θ in the equations (5.58) and (5.61) can be used as
the following in spacial domain.

𝑘 = √𝑘ኼ፱ + 𝑘ኼ፲ = 𝑘 sin𝜃√cosኼ 𝜙 + sinኼ 𝜃 = 𝑘 sin𝜃 (6.8)

And also the term Θ in the expressions of equation (5.58) and (5.61) is given by,

Θ = arccos( 𝑘፱𝑘
) = 𝜙 (6.9)

Therefore, the terms 𝐼ኺኺ(𝑘) and 𝐼ኼኼ(𝑘) can be expressed as 𝐼ኺኺ(𝜃) and 𝐼ኼኼ(𝜃).
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The requirement from SKA says that the cross polarization levels should be below -15 dB for the
HPBW (Half power Beamwidth). This should be consistent through out the bandwidth of operation.
These requirements are taken from [4] which are relevant to the quadruple-ridge flared horn (QRFH)
as well.

6.3.3. Efficiencies

There are several types of efficiencies related to the feed-reflector system. They are respectively the
taper efficiency, spillover efficiency, polarization efficiency, phase efficiency and the aperture efficiency.
Aperture efficiency is the multiplication of the illumination efficiency, spillover efficiency, polarization
efficiency and the phase efficiency.

Taper Efficiency

Taper efficiency is a measure of how effectively the reflector area with respect to the physical area
projected on the equivalent aperture. It is dependent on the distribution of phase, amplitude, and
polarization of the aperture field. It can be calculated from the aperture field as

𝜂፭ =
1

𝐴፩፡፲፬
| ∫ ∫ፒ 𝐸፨ፚ (𝜌

ᖤ , 𝜙ᖤ)𝑑𝑆|ኼ

∫∫ፒ |𝐸ፚ(𝜌
ᖤ , 𝜙ᖤ)|ኼ𝑑𝑆 (6.10)

The term 𝐸፨ፚ (𝜌
ᖤ , 𝜙ᖤ) is the incident electric field on the reflector from the feed. The incident field on

the reflector surface can be found from the far-fields of the feed as given below,

𝐸ፚ,(𝜌, 𝜙) = −𝐸ፅፅ᎕,፨፬(2arctan(
𝜌
2𝑓 , 𝜙))

4𝑓
4𝑓ኼ + (𝜌ኼ)𝑒

ኼ፣፤፟ (6.11)

𝐸ፚ,Ꭻ(𝜌, 𝜙) = −𝐸ፅፅᎫ,፨፬(2arctan(
𝜌
2𝑓 , 𝜙))

4𝑓
4𝑓ኼ + (𝜌ኼ)𝑒

ኼ፣፤፟ (6.12)

Therefore, the 𝜌 component of the aperture field on the reflector is equal in magnitude and opposite
in direction with the 𝜃 component of the incident far field of the feed. The 𝜙 component of the reflector
aperture field has the same relation with the 𝜙 component of the far field of the feed (incident field on
the reflector).

Here, 𝑓 is the focal length of the reflector system.

Spillover Efficiency

It is a measure of the feed power that is intercepted by the reflector: high spillover efficiency means
all the power is intercepted. It can be calculated from feed far field.

𝜂፬፩ =
∫ኼኺ ∫᎕Ꮂኺ 𝑈፟፞፞፝ sin𝜃𝑑𝜃𝑑𝜙
∫ኼኺ ∫/ኼኺ 𝑈፟፞፞፝ sin𝜃𝑑𝜃𝑑𝜙

(6.13)

In another form, it is,

𝜂፬፩ =
∫᎕Ꮂኺ [|𝐶𝑂(𝜃)|ኼ + |𝑋𝑃(𝜃)|ኼ] sin𝜃𝑑𝜃

∫
ᒕ
Ꮄ
ኺ [|𝐶𝑂(𝜃)|ኼ + |𝑋𝑃(𝜃)|ኼ] sin𝜃𝑑𝜃

(6.14)
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Here, 𝐶𝑂(𝜃) and 𝑋𝑃(𝜃) are taken from equations (6.4) and (6.5). Here, 𝑈፟፞፞፝ is defined as,

𝑈፟፞፞፝ =
|𝐸ፅፅ፟፞፞፝|ኼ
2𝜁 (6.15)

Here, 𝐸ፅፅ፟፞፞፝ is the far-field of the Feed and 𝜁 is the free space wave impedance (120𝜋). The elevation
angle on the denominator is here set as 𝜋/2 because the far field so far is calculated assuming that
there is a ground plane at the aperture of the feed which allows no radiation on the bottom half elevation
space (𝜋/2 < 𝜃 < 𝜋).

The angle 𝜃ኺ is defined as the subtended half angle of the feed-reflector system and it depends
on the focal length to diameter ratio of the reflector. For a typical SKA 1 dual reflector systems, this
angle is derived from the effective 𝑓/𝐷 ratio and they typically have the values 0.45, 0.5 and 0.55. The
angle 𝜃ኺ for these values of 𝑓/𝐷 are found to be 58, 53 and 49 degrees [4]. For the analysis in the
optimization routines, 𝑓/𝐷 of 0.55 is used typically in this thesis.

Polarization efficiency

Polarization efficiency is the ratio of the power carried by the co-polar component of the field to that
of the total field.

𝜂፩፨፥ =
∫᎕Ꮂኺ [|𝐶𝑂(𝜃)|ኼ + ኻ

ኼ |𝑋𝑃(𝜃)|
ኼ] sin𝜃𝑑𝜃

∫᎕Ꮂኺ [|𝐶𝑂(𝜃)|ኼ + |𝑋𝑃(𝜃)|ኼ] sin𝜃𝑑𝜃
(6.16)

These integrals are only on the 𝜃 domain because 𝐶𝑂(𝜃) and 𝑋𝑃(𝜃) are defined at 𝜙 = 45 degree
where the cross-polar levels are the worst.

Aperture Efficiency

This efficiency is one optimizaiton parameter which is considered in the thesis. It is the overall
efficiency of the reflector-feed system. It is defined as the multiplication of the taper, the spillover and
the polarization efficiencies.

𝜂ፚ፩ = 𝜂፭𝜂፬፩𝜂፩፨፥ (6.17)

Typically for the SKA 1 dual reflector system, the requirement is to have as much aperture efficiency
as possible. Typically it should be more than 50% for WBSPFs [4]. There is a trade off between the
spillover and the taper efficiency. Themore the ratio between the reflector diameter to the feed diameter,
the better is the spillover but the worse is the taper efficiency. Therefore, it is the duty of the engineer
to find a sweet spot where the trade off is not worse and we get maximum aperture efficiency.

6.3.4. Input parameters to be optimized for the smooth walled horn antenna

In the MM software along with the reflection coefficient software for free-space-waveguide boundary, it
is known that the variables that affect the performance of the conical horn antenna are the number of
cylindrical waveguide elements, the radius and height of each cylindrical element and the length of the
horn. In all optimization routines, the length of the base cylindrical element (the throat) is kept as 𝜆/4.
It remains a constant and this variable isn’t optimized. This is done to make sure all the evanescent
modes are died out before entering into the flared section of the horn.
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6.4. Goal/Objective Functions

6.4.1. Return loss goal function and optimization procedure

For the return loss, the output of the goal function is very straight forward. It is the square sum of the
first column of the matrix 𝑆ፑፑ as mentioned in the equation (6.1). It is derived from the MM software.

The horn in this case was divided into four conical sections and one throat cylindrical section (N =
5). The length of the cylindrical throat section was kept as one fourth of the wavelength of the frequency
used. The bottom and top radii of each conical section was kept as design variables. The overall length
of the flared section was the 5th design variable. Their upper and lower bounds are shown in table 7.1.
In the goal function, the input arguments are the radii of each conical section (top and bottom), the
overall length of the flared section. The overall structure was then divided into a number of cylindrical
waveguide sections of length 𝜆/10 each. After the radii and lengths of all cylindrical elements were
defined, it was used to find the return loss using the GSM software of mode matching.

This optimization is done by both the genetic algorithm (𝐺𝐴) and the non-linear programming solver
(𝑓𝑚𝑖𝑛𝑐𝑜𝑛) of MATLAB.

In 𝐺𝐴 algorithm, there is a fitness limit set to save computation time. In this case, the fitness limit
was kept at −25𝑑𝐵. The MATLAB routine looks like the following. The initial population matrix is a
equispaced cascaded structure of N conical waveguides whose radii vary linearly from throat to the
aperture. Similarly with 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 also it is simulated.

%% Fitness function

problem2.fitnessfcn = @(x) GSM_N_opt_allvar([x(1:N)], [l1 x(N+1:2*N-1)], F, HM);
problem2.nvars = 2*N - 1; % Number of variables to be optimized

lb = zeros(2.*N-1, 1); % Initialization of lower bounds
ub = zeros(2.*N-1, 1); % Initialization of upper bounds

lb(1) = R1; % lower bound radius of first element
ub(1) = R1 + R1/5; % upper bound radius of first element

for i = 2:N % radii upper and lower bounds
lb(i) = ub(i - 1) - R_test(1)/5;
ub(i) = R_test(i) + R_test(1)/5;

end

for m = N+1:2*N-1 % Length segment, upper and lower bounds
lb(m) = l(m - N) - lamb/5;
ub(m) = l(m - N) + lamb/5;

end

problem2.lb = [lb.'];
problem2.ub = [ub.'];

IP = [R_test l.']; % Initial population matrix

problem2.solver = 'ga'; % Solver

problem2.options = optimoptions(@ga, 'PlotFcn', {'gaplotbestf',...
'gaplotbestindiv'}, 'Display', 'iter',...

'InitialPopulationMatrix', [IP], 'UseParallel',...
true, 'FitnessLimit', 10^{-45/20}); % Optimization options.
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[r, fval2, exf2, ouput2] = ga(problem2); % Optimization call

Where 𝑅1 is the radius of the first element, 𝑅_𝑡𝑒𝑠𝑡 is a linear profile of all radii from the first to last
element. 𝑙𝑏 and 𝑢𝑏 are the vectors containing all the lower bounds and all the upper bounds of the
radius and length of each section respectively. The 𝐹 and 𝐻𝑀 arguments in the fitness function are the
frequency and the number of higher order modes to be considered in the MM software respectively.

The upper Δ𝐿፮ and lower bounds Δ𝐿፥of the length segments are kept as follows,

Δ𝐿፮ =
𝐿
𝑁 +

𝜆
5 (6.18)

Δ𝐿፥ =
𝐿
𝑁 −

𝜆
5 (6.19)

Where, 𝐿 is the length of the horn.

The Fitness function (Goal function) is the MM software to calculate the scattering matrix of a cas-
caded structure of cylindrical waveguide structures.

After the optimized variables are obtained, with the same geometry, the return loss at different
frequency points are tested.

6.4.2. Cross polarization goal function and optimization procedure

The optimization is performed as mentioned above for return loss. In this case, just that the fitness
function is a different function and it returns themaximum of relative cross-polarization level with respect
to the maximum of co-polar field. From the knowledge of cross-polarization in equation (6.2) and (6.3),
we know that the cross polarization has maximum values when the azimuth angle is 45 degree (𝜙 = 45
deg). Therefore, this fitness function has several steps. First it calculates the General Scattering
matrix using the MM software. After that it calculates the reflection coefficients of every mode that
can be present at the aperture (As due to the flare, more modes are excited) with the free space
boundary. Then, using the higher order mode excitation at the aperture-free space boundary and the
reflection coefficients of each mode at the aperture, the far fields are calculated analytically for every
mode separately. Furthermore, as only the dominant mode is the fundamental mode, using the general
scattering matrix information (Transmission coefficients), the far fields due to every mode is calculated
and added as a weighed sum where the weights are the transmission coefficients of each mode from
the base to the top of the horn with respect to the fundamental mode (𝑇𝐸ኻኻ).

Using the information of the far fields and the analytical analogy mentioned in equation (6.2) and
(6.3), the ratio of the maximum cross-polar field at 𝜙 = 45 to the maximum of co-polar field is returned
in dB scale.

The goal function in MATLAB looks like the following.

function [Max_Exp_diff] = MinXP_Goal(R, L, F, k, timesk0, HM)

n = length(R);

er = ones(1, n); % Relative Permittivity of each WG section
mur = ones(1, n); % Relative Permeability of each WG sectio
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dth = pi/180;
dph = pi/180;

[th, ph] = meshgrid(eps:dth:pi/2+eps, eps:dph:2*pi+eps);

[Gamma, Dm, ModeNumberAper, Transmission_sum] = ...
Feed_Gamma_Dm_opt(R, L, F, k, er, mur, timesk0, HM);

% MM software and aperture-freespace software to calculate
% the reflection coefficients at the aperture and GSM inside the horn.

[~, ~, Eco, Exp, ~, ~] = ...
Feed_FF_Superposition(ModeNumberAper, Gamma, Dm, th, ph, F, er, mur, R,...
Transmission_sum, HM);
% Fields calculation

Max_Exp_diff = - db(abs(max(max(abs(Eco)))./max(abs(Exp(46, :)))));

% Negative difference of co and cross polar fields in dB

end

Here, 𝑡𝑖𝑚𝑒𝑠𝑘0 is used as the maximum integration limit in the Rumsey’s reaction integrals present
in chapter 5 for the calculation of the reflection coefficients of modes at the free space-waveguide
boundaries (at the aperture). Here 𝑘 is the higher order modes used in MM software and 𝐻𝑀 is the
higher order modes in the aperture reflection software.

6.4.3. Aperture efficiency goal function and optimization procedure

In this case as the aperture efficiency has to be a maximum, the negative of the aperture efficiency is
taken into account as the return value from the goal function. The initial population is chosen by plotting
the aperture efficiency of linear taper conical profile for a fixed 𝑓/𝐷 ratio of the reflector but a variable
size of the aperture of the conical horn. The aperture radius at which the aperture efficiency comes out
to be maximum is chosen as one of the design variables of the initial population vector in the case of
genetic algorithm solver and the starting point vector in the 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 solver in MATLAB.

The goal function for that is given below.

function [e_ap] = Ga_opt_aper_eff(R, L, F, k, HM, timesk0, focal_length, d)

zeta = 120 .* pi;

n = length(R);

er = ones(1, n); % Relative Permittivity of each WG section
mur = ones(1, n); % Relative Permeability of each WG sectio

dth = pi/180;
dph = pi/180;

[th, ph] = meshgrid(eps:dth:pi/2+eps, eps:dph:2*pi+eps);

[Gamma, Dm, ModeNumberAper, Transmission_sum] = ...
Feed_Gamma_Dm_opt(R, L, F, k, er, mur, timesk0, HM);
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[Eth, Eph, ~, ~, CO, XP] = ...
Feed_FF_Superposition(ModeNumberAper, Gamma, Dm, th, ph, F, er, mur, R,...
Transmission_sum, HM);

C_spillover = 1/(2 .* zeta);

f_pattern_square = abs(Eth).^2 + abs(Eph).^2;

U_feed = C_spillover .* f_pattern_square;

CO_XP_square = abs(CO).^2 + abs(XP).^2;
CO_XP_half = abs(CO).^2 + 1./2 .* abs(XP).^2;

drho = d/200; dphi = pi/ 180;

[rho, phi] = meshgrid(eps:drho:d/2, eps:dphi:2*pi);

theta_ = 2 * atan(rho/(2 * focal_length));

f_hash = focal_length./d; %f/D ratio of reflector

% Spillover efficiency (eta_s)

theta_0 = 2 * acot(4 * f_hash); % subtended half angle

% numerator
Int_u_n = U_feed(:,th(1,:)<=theta_0) .* sin(th(:,th(1,:)<=theta_0)) .* dth .* dph;
n_f = sum(sum(Int_u_n));

%denominator
Int_u_d = U_feed .* sin(th) .* dth .* dph;
d_f = sum(sum(Int_u_d));

eta_s = n_f/d_f;

% Taper efficiency (eta_t)

[Eth_, Eph_, Eco_, ~, ~, ~] = ...
Feed_FF_Superposition(ModeNumberAper, Gamma, Dm, theta_, phi, F, er, mur, R,...
Transmission_sum, HM);

C = ((4 .* focal_length)./(4 .* focal_length.^2 + rho.^2));

Erho_ = - Eth_ .* C;
Eph_ = - Eph_ .* C;
Ecoa = - Eco_ .* C;

etp_n = abs(sum(sum(Ecoa .* rho .* drho .* dphi))).^2;

E_abs_rpz = abs(Erho_).^2 + abs(Eph_).^2;
Int_etp_d = E_abs_rpz .* rho .* drho .* dphi;
etp_d = sum(sum(Int_etp_d));

Area = pi .* (d^2)/4;
e_tp = (1/Area) * etp_n./etp_d;
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%Polarization efficiency

eta_pol_n = sum(sum((abs(CO_XP_half(:,th(1,:)<=theta_0))) .*...
sin(th(:,th(1,:)<=theta_0)) .* dth .* dph));
eta_pol_d = sum(sum(CO_XP_square(:,th(1,:)<=theta_0) .*...
sin(th(:,th(1,:)<=theta_0)) .* dth .* dph));

eta_pol = eta_pol_n./eta_pol_d;
% aperture efficiency
e_ap = -eta_s .* eta_pol .* e_tp;

end

The simulation results using these algorithms and the commercial tool equivalent models are shown
in the next chapter (chapter 7).





7
Optimization Results

This chapter contains the results of the optimization mentioned in chapter six. This chapter contains
three sections. The first part is about the return loss optimization. The second part is about the cross
polarization optimization. The third section is about the aperture efficiency optimization. All sections
include their corresponding commercial tool results for verification.

7.1. Results of return loss optimization

7.1.1. Genetic algorithm

With the genetic algorithm, the problem of return loss is a convex problem where with optimization
iteration, the return value of the objective function is decreasing and converging. The upper limits and
the lower limits of the design variables are shown in table 7.1. The horn is divided into four conical
sections and one throat cylindrical section. The radii of all these sections are considered as the design
variables. The way these design variables are used for the optimization is given in section 6.4.1. In
addition to that, the combined length of the four conical sections is used as the final design variable.

The initial profile of the horn is chosen to be a linearly increasing cross section where the radius of
the throat is two centimeter and the aperture radius is two times the wavelength (12 centimeter). The
intitial horn profile length is six times the wavelength (30 centimeter).

Design Variable lower bound upper bound
r1 2 [cm] 5 [cm]
r2 2 [cm] 7.5 [cm]
r3 4.5 [cm] 10 [cm]
r4 7 [cm] 12.5 [cm]
r5 9.5 [cm] 15 [cm]

Length 30 [cm] 48 [cm]

Table 7.1: Lower and upper bounds of the design variables

With genetic algorithm, it takes two generation of populations to reach a minimum threshold for the
fitness value (return value from the objective function). It is set to be -45 dB. The values of the design
variables retrieved from the genetic algorithm optimization is shown in the table 7.2.

The horn profile that is derived at five GHz is shown below in the figure 7.1. The base radius is
kept in a way that the frequency five GHz falls within the bandwidth of a waveguide of the same radius
for its fundamental mode (𝑇𝐸ኻኻ). This horn profile is used to further calculate the return loss of at

107
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Design Variable GA algorithm return value
r1 2.833 [cm]
r2 6.313 [cm]
r3 7.772 [cm]
r4 9.971 [cm]
r5 14.67 [cm]

Length 32.73 [cm]

Table 7.2: Horn profile retrieved from ፆፀ optimization for return loss
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Figure 7.1: Horn profile retrieved from ፆፀ optimization

different frequencies. The return loss of the optimized antenna is shown in figure 7.3 from four to eight
GHz. With the MM technique, it is still possible to compute the return loss for even higher frequencies.
However, in FEKO, it is very computationally expensive and sometimes it is not possible due to the
limited computational resources. The S-parameters of 𝑇𝐸ኻኻ mode with itself and 𝑇𝐸ኻኼ mode with 𝑇𝐸ኻኻ
mode is shown in figure 7.4. It is seen that they have excellent agreement with one another.

Although, it is assumed that, when determining the return loss, the structure of the antenna should
favour for only one frequency (in this case five GHz) and not for other neighbouring frequencies, sur-
prisingly it did favour the other frequencies in the band. For a wide range of frequencies the return loss
remained below -10 dB. The same structure is simulated in FEKO. Furthermore, the radius of the throat
is found to be 2.833 [cm]. It is a very good result from the optimizer because the frequency at which
the optimized antenna dimensions are calculated is five GHz and for a waveguide of radius 2.833 [cm],
five GHz is just below the cut off frequency of the first higher order mode (𝑇𝑀ኺኻ). For a waveguide
excited with the mode 𝑇𝐸ኻኻ, minimum reflection occurs at higher frequencies when the aperture size is
electrically big in size (in this case the higher frequencies supported by the fundamental mode).

The equivalent model simulated in FEKO is shown in figure 7.2. It uses two symmetry planes. On
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Figure 7.2: Horn profile simulated for a frequency band of 4 to 8 GHz in FEKO. The genetic algorithm optimized horn profile.

the 𝑧𝑦 plane 𝑥 = 0, there is a magnetic symmetry and on the 𝑥𝑧 plane 𝑦 = 0, there is an electric
symmetry plane. Symmetry planes are used for two reasons. One reason to use the symmetry planes
is to reduce the computational time and second is to have a more uniform mesh along the cuts of the
symmetry planes.

7.1.2. 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 algorithm
The horn profile is optimized with the goal function returning the reflection coefficient of the fundamental
mode 𝑇𝐸ኻኻ with itself at five GHz. The horn profile is shown in figure 7.5.

The lower bound and upper bounds for all design variables are taken the same as in table 7.1. The
starting point for all design variables are taken the same as in the case of return loss. The optimized
design variables are shown in table 7.3. The same profile is used to find the return loss at a band of
frequencies from 2.75 GHz to 9.43 GHz. The results are shown in figure 7.7 from the MATLAB model
and from an equivalent FEKO model of the same horn profile. The FEKO model is shown in figure
7.6. In the FEKO model, symmetry planes are used to reduce the computational time and resources.
However, for frequencies higher than 9.43 GHz, the computational resources and time are very high.
Therefore, the comparison is shown till 9.43 GHz. It covers an useful band of frequencies because
the cut off frequency of the second mode having the same type and same azimuthal variation as 𝑇𝐸ኻኻ,
which is 𝑇𝐸ኻኼ is 7.9 GHz for the cylindrical waveguide at the throat of the cone. The comparison shows
that the MATLAB model has good agreement with the commercial solver from FEKO. The comparison
for the reflection coefficient of 𝑇𝐸ኻኻ with 𝑇𝐸ኻኻ and also the reflection coefficient of 𝑇𝐸ኻኼ with 𝑇𝐸ኻኻ at the
throat of the cone is shown in figure 7.8.
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Figure 7.3: Return loss of the optimized horn profile with ፆፀ algorithm.
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Figure 7.4: Reflection coefficient of ፓፄᎳᎳ with ፓፄᎳᎳ and ፓፄᎳᎳ with ፓፄᎳᎴ

7.2. Results of cross polarization optimization

7.2.1. Genetic algorithm

The cross-polarization optimization is also done at five GHz frequency with the same initial points,
upper bounds and lower bounds for the return loss optimization. The results from optimization with
genetic algorithm are shown in table 7.4. The horn profile is shown in figure 7.9.

The same configuration is simulated in FEKO with a frequencies 2.6129 GHz, 5.0492 GHz and
7.7561 GHz. The FEKO configuration also has the symmetry planes as in the case of return loss
experiments. The FEKO configuration is shown in figure 7.10.

The co- and cross-polarization radiation patterns obtained from this profile is shown in figure 7.11.
The comparison shows that FEKO results and MM results have very good agreement with one another.
At higher frequencies (7.7561 GHz), however, there are differences observed between the two meth-
ods. This occurs because of two reasons. At higher frequencies, FEKO offers good results only when
the mesh is very fine. Furthermore, at high frequencies more higher order modes can be excited along
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Figure 7.5: Horn profile retrieved from ፟፦።፧፨፧ algorithm.

Figure 7.6: Horn profile simulated for a frequency band of 2.75 GHz to 9.43 GHz in FEKO. The ፟፦።፧፨፧ algorithm optimized
horn profile.
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Design Variable 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 algorithm return value
r1 3.23 [cm]
r2 4.87 [cm]
r3 7.27 [cm]
r4 9.34 [cm]
r5 11.82 [cm]

Length 37.22 [cm]

Table 7.3: Horn profile retrieved from ፟፦።፧፨፧ algorithm optimization for return loss
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Figure 7.7: Return loss of the optimized horn profile with ፟፦።፧፨፧ algorithm.

the flare of the horn. Hence, as discussed in chapter three, some modes can be coupled in FEKO
simulations but not in the proposed software. Therefore, some differences in the radiation pattern is
observed. As in the proposed technique, the geometry is considered to be a combination of perfect
cones, and the coupling is observed only with the modes having the same azimuthal variation, the field
patterns contain deep minimum values (not observed in FEKO results). It can also be observed that
at higher frequencies, the maximum cross polar level obtained from the proposed technique is greater
than the maximum cross polar level obtained from FEKO simulations. Therefore, the optimization with
respect to the goal function built from the proposed technique is effective as it considers the worst cross
polar levels (as it considers ideal conditions with respect to geometry).

7.3. Results of aperture efficiency optimization

7.3.1. 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 algorithm
The aperture efficiency optimization was carried out at three GHz. Here, the starting point was chosen
differently than the other two optimization performed in sections 7.1 and 7.2. The horn length in this
case was chosen to be smaller (around one wavelength). This is done to make sure that the directivity
is not very high (which results in lower taper efficiency). The initial radius of the throat section is chosen
to be 3.03 centimeter and the initial top radius of the last conical section is chosen to be 6.58 centimeter.
The intermediate radii follow a linear trend from 3.03 centimeter till 6.58 centimeter. The initial length of
the conical sections combined is chosen to be one wavelength (10 centimeter). Without the waveguide-
free space transition in consideration, the aperture efficiency of the initial profile of the antenna is found
to be 72%. The upper bound and lower bounds of the design variables are shown in table 7.5. The
subtended angle of the feed reflector system is chosen to be 50 degree.
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Figure 7.8: Reflection coefficient of ፓፄᎳᎳ with ፓፄᎳᎳ and ፓፄᎳᎳ with ፓፄᎳᎴ

Design Variable 𝐺𝐴 algorithm return value
r1 3.40 [cm]
r2 5.40 [cm]
r3 4.78 [cm]
r4 7.00 [cm]
r5 9.41 [cm]

Length 45 [cm]

Table 7.4: Horn profile retrieved from ፆፀ optimization for cross-polarization.

The optimized antenna dimensions are given in table 7.6. The horn profile is shown in figure 7.12.
The aperture efficiency of the optimized antenna at the frequency of optimization is found to be 74.23%.
The aperture efficiency is shown in figure 7.13 with respect to frequency. The aperture efficiecny in this
case is above 50% for a bandwidth of 2:1. The maximum aperture efficiency is observed at 2.998
GHz. As frequency increases, the taper efficiency decreases. For this reason, the aperture efficiency
decreases. The directivity of the optimized antenna is shown in figure 7.15b with the comparison to an
equivalent FEKO model (shown in figure 7.14) at frequency 2.998 GHz. The results have very good
agreement with one another. The normalized co-polar and cross-polar fields are shown in figure 7.15a
with the comparison to the FEKO results. The results also have good agreement with one another.

7.4. Conclusions
In this chapter, the goal functions defined in chapter six are used for optimization of the return loss, the
cross-polarization levels and the aperture efficiency. The horn profile was simulated over a band of
frequencies. The results are compared with equivalent FEKO model simulations. The results have ex-
cellent agreement with one another. Therefore, it can be concluded that with goal functions developed
in this thesis project based on the novel technique is very effective in finding out optimized antenna
profiles for minimum return loss, cross-polarization levels and aperture efficiency.
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Figure 7.9: Horn profile retrieved from ፆፀ optimization for cross-polarization

Figure 7.10: Horn profile simulated for frequencies 2.6129 GHz, 5.0492 GHz and 7.7561 GHz in FEKO. The ፆፀ optimized horn
profile.
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Figure 7.11: Co- and cross-polarized radiation patterns of ፆፀ optimized horn profile when excited with only the fundamental
mode ፓፄᎳᎳ

Design Variable lower bound upper bound
r1 3.03 [cm] 5.53 [cm]
r2 3.03 [cm] 6.42 [cm]
r3 3.92 [cm] 7.30 [cm]
r4 4.80 [cm] 8.19 [cm]
r5 5.69 [cm] 9.08 [cm]

Length 5 [cm] 20 [cm]

Table 7.5: Lower and upper bounds of the design variables for aperture efficiency optimization.

Design Variable 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 algorithm return value
r1 4.28 [cm]
r2 4.72 [cm]
r3 5.61 [cm]
r4 6.5 [cm]
r5 6.04 [cm]

Length 12.50 [cm]

Table 7.6: Horn profile retrieved from ፟፦።፧፨፧ optimization for aperture efficiency.
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Figure 7.12: Optimized horn antenna profile at 3 GHz for aperture efficiency.
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Figure 7.13: Aperture efficiency with frequency for the aperture efficiency optimized antenna profile.
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Figure 7.14: Horn profile simulated for frequencies 2.998 GHz in FEKO. The ፟፦።፧፨፧ optimized horn profile for aperture
efficiency.
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Figure 7.15: Co- and cross-polarized radiation patterns and directivity of ፟፦።፧፨፧ optimized horn profile for aperture efficiency
when excited with only the fundamental mode ፓፄᎳᎳ.





8
Conclusions and Recommendations

8.1. Conclusions
This thesis project has been formulated as support activity for the design of compact wide band single
pixel feeds (WBSPF) for the SKA1 offset Greogrian dual reflector system. Due to the demanding
requirements for the design of such feeds over a large operational bandwidth, high polarimetric purity
of the transmitted field and feed compactness, existing software commercial tools require considerable
computational time and resources. As the process of optimizing a feed with the current techniques
is not feasible with the existing solvers, a new semi-analytical or numerical tool should be developed
which can compute the transmitted fields of the feed efficiently. Therefore, the main objective was to
build a solver which can find various performance characteristics of smooth walled conical horn antenna
feeds efficiently.

The parameters in discussion are the S parameters, the near fields and the far fields. The first con-
tender for the objective was a theoretical full-wave technique called themodematching technique (MM).
In this technique, the conical feed is approximated as a sequential cascaded combination of waveg-
uides with constant cross section. Another contender for the same objective was the JWKB method
(Jeffreys-Wentzel–Kramers–Brillouin), which takes into account the slow variations of the waveguide
cross section. However, at turning points (discontinuities in the field equations at the evanescent-
propagating transitions [30]) , the model doesn’t predict the fields very accurately. Therefore, due
to the rigorous requirements and robust numerical accuracy, the analytical mode matching technique
(MM) was considered for the development.

Based on the mode matching technique, a novel hybrid technique was developed in this thesis. It
has got two parts, and those are,

• Mode matching technique to solve the general scattering matrix (GSM) of the conical horn an-
tenna when the far end of the horn is perfectly matched to free space. In a step by step approach,
MM software was developed. At first, a two waveguide junction problem was formulated. The
GSM was derived for the same problem using integrals which describe the nature of coupling
between modes of the waveguides in the junction problem. It was found that only modes having
similar azimuthal variations were coupled to one another of the same type (TE/TM). Analytical
expressions for the coupling matrices were developed using Bessel function properties. After the
development of the MM software to determine the GSM, a cascaded network of waveguides were
studied using the same approach. A three waveguide/ and a five waveguide structure were stud-
ied. Cascaded MM software is different than the actual MM software because in the cascaded
MM software the base is of a three waveguide model. An algorithm was used to iterate over this
three waveguide problem to formulate the GSM of a multi waveguide cascade problem.
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• The second part of the novel algorithm was the modelling of the aperture free space discontinuity.
Among the different methods, using Rumsey’s reaction concept, some numerical integrals on the
K space were developed to address the problem of this type of discontinuity. These K space
integral method assumes that at the discontinuity, higher order modes are excited. This solu-
tion existed for rectangular waveguides before and in this thesis it was developed for cylindrical
waveguides. The results of the aperture admittance and the reflection coefficients for the mode
𝑇𝐸ኻኻ were compared with Mishustin integrals and the results were very close to each other. The
computation of the integrals are a little computationally expensive as they are numerical integrals
on the complex plane.

As the reflection from free space-aperture discontinuity was formulated, a hybrid software was cre-
ated which comprises of both MM and the K space integrals to find different properties of the conical
horn antenna. This software first calculates the GSM of the cone and then it computes the aperture re-
flection coefficients using K space integrals and using both the information it computes the near and far
fields of the conical horn antenna. In this software, at the base element of the cone, only the fundamen-
tal 𝑇𝐸ኻኻ mode was excited. Therefore, at the aperture, going by the principles of coupling, only modes
having the same azimuthal modes were excited. Analytical expressions were developed to compute
such far fields (of modes type 𝑇𝐸ኻ,፧). The computation of single mode far field was very fast because
there was no need to compute the Fourier transform of the near field in each and every angular far field
direction numerically.

The results from the above algorithm were also extensively tested against the commercial software
solvers from FEKO/CST MWS. As the nature of the coupling was well analyzed, the computation was
very fast to determine the S parameters for a range of frequencies. In commercial tools, solvers like
Method of Moments (MoM) and time domain solvers in CST MWS took hours to compute the S param-
eters, where as the MM software on MATLAB on a MacOS/8GB MEM/with SSD system only took 20
minutes to compute the S parameters over 35 frequency points (Less than a minute per frequency). In
MM technique the coupling matrix is frequency independent and only geometry dependent. Therefore,
the computation is faster as half of the computation is required to find the coupling between modes and
that didn’t have to be iterated over all frequency points.

In all commercial solvers, the horn structure is modelled with fine meshgrids. Especially for S pa-
rameters and near fields, the mesh has to be very fine as these quantities are sensitive to the geometry
of the structure. Therefore, the computation time is non-uniform over the frequency axis. This is due to
the fact that the meshing is done with respect to wavelength. At higher frequencies, the wavelengths
are shorter, due to which the mesh becomes much finer leading to a higher computation time. There
are some differences observed between the MM software results and the commercial tool results. The
reason lies in the geometry.

In the developed solver, the geometry of the waveguides are purely cylindrical and due to which not
all modes on one side of the waveguide is coupled to all the modes on the other side of the waveguide.
However, in commercial tools it appears as if some modes do couple to some extent which were not
predicted by the MM software. This is because in commercial tools, the geometry of the waveguides
are not purely cylindrical and they comprise of triangular or tetrahedral mesh elements.

Convergence study was also done with increasing number of cylindrical waveguide elements and
number of modes (including evanescent modes) on each side of the junction. It was found that the
number of modes required to have a very good S parameter pattern was related to the number of prop-
agating modes a certain waveguide can support at the frequency of observation. A conical structure
was simulated both in CST and FEKO and the same model was approximated as a cascaded cylindri-
cal waveguide sturcture in the developed software. The results converge to the results of FEKO/CST
when the number of cylindrical waveguide elements was increased. Even 25 elements were sufficient
in the MM technique to have closer values with FEKO/CST for a frequency band from 5 to 21 GHz.

Using the MM software, near field and far fields were obtained for a perfectly matched waveguide.
The knowledge of GSM was used to calculate the near fields on a conical horn antenna as well which is
perfectly matched. Using spacial Fourier transform on the field distribution, the far fields were obtained.
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The results were analyzed and compared with FEKO models and they came out to be really close to
each other. In FEKO the far end of the waveguide used an absorbing boundary condition for perfect
matching.

Using the information of the reflection coefficients, the near- and far-fields of a open ended waveg-
uide were studied and compared with FEKO simulations. The results were close to each other except
for the near-fields where the results were a little different at the edges as FEKO doesn’t ignore the
diffraction fields. Near fields were little different but not far fields as far fields are forgiving because they
are integral (average) quantities over the near field distribution.

The novel hybrid technique developed in this thesis is computationally very effective to compute the
return loss, near field and far fields. The straight forward design of a smooth walled horn assumes a
linearly increasing radius over the axis of propagation (in this case z). However, for practical reasons
and requirements, the profile of the smooth walled horn can be different.

Therefore, after extensive testing and performance studies, the proposed novel algorithm was used
for antenna design via optimization techniques. Different goal functions were created using the novel
algorithm as mentioned in Chapter 6 for different requirements for the feeds of SKA 1 offset Gregorian
dual reflector systems. The results are put in Chapter 7. The parameters which define the geometry
of the horn were kept as design variables for the optimization routines. The variables are the radius of
each cylindrical waveguide section, the length of each cylindrical waveguide section and the length of
the complete horn antenna. This optimization results show that the developed novel algorithm (solver)
serves its purposes and can be used in future to do numerical design of conical horn antennas via
optimization techniques.

8.2. Recommendations for future
In the MM software, to calculate the inner cross product, iterations are used for each and every mode on
both sides of the junction for a waveguide junction problem. This can’t be avoided because the analyical
expressions for one mode couple always use Bessel’s functions (which are already integral/summation
functions). For different mode combinations (different orders of Bessel functions), there is no other
efficient way to calculate the inner cross product simultaneously except when parallel processes are
used in the computer. These problems are called ”embarrassingly parallel”. More thoughts can be put
forward to make it simultaneous without the use of parallel processes by defining Bessel’s functions in
a different way. This way, the computation time of S parameters per frequency can further be improved.
By extension, it can considerably decrease the simulation time of the optimization routines as callbacks
from the goal functions can be much faster.

For the far field computation involving the aperture-free space transition model (even for optimiza-
tion), only the fundamental (𝑇𝐸ኻኻ) mode excitation was explored in detail because that is of most interest
for the corresponding application. However, analytical methods can be formulated when more than one
mode is excited at the base element of the conical waveguide. These patterns can be used to further
optimize several parameters of the conical waveguide.

In the thesis, a step wise radius change is used to mimic a smooth walled horn and for that the
MM software was developed. However, designing a tapered waveguide using methods like JWKB
(Jeffreys-Wentzel–Kramers–Brillouin) approximation [30] can even improve the simulation time further
for calculation of the near and far fields of the antenna. In these methods, a smoothly varying conical
waveguide (not with steps of cylindrical waveguides) can be analyzed. Different smoothly varying horn
profiles also can be analyzed using this technique. A WKB solver when used as goal function also
can reduce the simulation time of the optimization routines. The procedure and derivation of the JWKB
approximation is given for a conical horn antenna with linearly varying cross section in the appendix E.





A
Derivation of Normalization

Constant/Inner Cross product analytical
expressions

Normalization constant is a special case of the inner cross product. Normalization constant can be
derived from the inner cross product by applying the potential functions for the same mode and the
dimensions of only one waveguide. Let’s see how the inner cross product is derived.

�̄� = ∫∫
ፀᑉ
Φ⃗ፑፄ፦ × Φ⃗ፏፇ፧𝑑𝑆 = ∫∫

ፀᑉ
Φ⃗ፑፄ፦ .Φ⃗ፏፄ፧𝑑𝑆 = ∫∫

ፀᑉ
Φ⃗ፑፇ፦ .Φ⃗ፏፇ፧𝑑𝑆 (A.1)

For TE/TE mode combinations

⟹

�̄� = ∫∫
ፀᑉ
Φ⃗ፑፇ፦ .Φ⃗ፏፇ፧𝑑𝑆 = ∫∫

ፀᑉ
∇Φፑ .∇Φ፩𝑑𝑆 (A.2)

⟹

∫∫
ፀᑉ
∇Φፑ .∇Φ፩𝑑𝑆 = ∫∫

ፀፑ
((∇Φፑ)(∇Φፏ) + (∇Φፑ)Ꭻ(∇Φፏ)Ꭻ)𝑑𝑆 (A.3)

⟹

∫
ፑ

ኺ
∫
ኼ

ኺ
[𝛽,(፩፦,፩፧)𝛽(፫፦,፫፧)𝐽

ᖤ
፩፦(𝛽,(፩፦,፩፧)𝜌)𝐽

ᖤ
፫፦(𝛽,(፫፦,፫፧)𝜌) cos(𝑝𝑚𝜙) cos(𝑟𝑚𝜙)+

(𝑝𝑚)(𝑟𝑚)
𝜌ኼ 𝐽፩፦(𝛽,(፩፦,፩፧)𝜌)𝐽፫፦(𝛽,(፫፦,፫፧)𝜌) sin(𝑝𝑚𝜙) sin(𝑟𝑚𝜙)]𝜌𝑑𝜙𝑑𝜌

Getting the terms dependent only on the azimuthal angle (𝜙), we have,
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∫
ፑ

ኺ
[𝛽,(፩፦,፩፧)𝛽(፫፦,፫፧)𝐽

ᖤ
፩፦(𝛽,(፩፦,፩፧)𝜌)𝐽

ᖤ
፫፦(𝛽,(፫፦,፫፧)𝜌)[∫

ኼ

ኺ
cos(𝑝𝑚𝜙) cos(𝑟𝑚𝜙)𝑑𝜙]+

(𝑝𝑚)(𝑟𝑚)
𝜌ኼ 𝐽፩፦(𝛽,(፩፦,፩፧)𝜌)𝐽፫፦(𝛽,(፫፦,፫፧)𝜌)[∫

ኼ

ኺ
sin(𝑝𝑚𝜙) sin(𝑟𝑚𝜙)𝑑𝜙]]𝜌𝑑𝜌

For the condition 𝑝𝑚 ≠ 𝑟𝑚, the integrals ∫ኼኺ sin(𝑝𝑚𝜙) sin(𝑟𝑚𝜙)𝑑𝜙 and ∫ኼኺ cos(𝑝𝑚𝜙) cos(𝑟𝑚𝜙)𝑑𝜙
are 0. Therefore, there is no coupling between modes which have different azimuthal variation. When,
the azimuthal variation is the same (𝑝𝑚 == 𝑟𝑚), then the integrals ∫ኼኺ sin(𝑝𝑚𝜙) sin(𝑟𝑚𝜙)𝑑𝜙 and
∫ኼኺ cos(𝑝𝑚𝜙) cos(𝑟𝑚𝜙)𝑑𝜙 are 𝜋, which reduces the expressions to,

when, 𝑝𝑚 == 𝑟𝑚,

𝜋∫
ፑ

ኺ
[𝛽,(፩፦,፩፧)𝛽(፩፦,፫፧)𝐽

ᖤ
፩፦(𝛽,(፩፦,፩፧)𝜌)𝐽

ᖤ
፩፦(𝛽,(፩፦,፫፧)𝜌) +

(𝑝𝑚)ኼ
𝜌ኼ 𝐽፩፦(𝛽,(፩፦,፩፧)𝜌)𝐽፩፦(𝛽,(፩፦,፫፧)𝜌)]𝜌𝑑𝜌

(A.4)

The following relations of Bessel’s function [2] are used to reduce the expression for the integral.

𝐽ᖤ(𝑍) =
𝐽ዅኻ(𝑍) − 𝐽ዄኻ(𝑍)

2 (A.5)

and,
2𝜈
𝑍 𝐽(𝑍) = 𝐽ዅኻ(𝑍) + 𝐽ዄኻ(𝑍) (A.6)

Therefore, the integral in A.4 becomes,

�̄� =
𝜋𝛽,(፩፦,፩፧)𝛽,(፩፦,፫፧)

2 ∫
ፑ

ኺ
(𝐽፩፦ዅኻ(𝛽,(፩፦,፩፧)𝜌)𝐽፩፦ዅኻ(𝛽,(፩፦,፫፧)𝜌)+𝐽፩፦ዄኻ(𝛽,(፩፦,፩፧)𝜌)𝐽፩፦ዄኻ(𝛽,(፩፦,፫፧)𝜌))𝜌𝑑𝜌

(A.7)

These integrals can be solved by the Lommel’s integrals of the form (3.85) [2]. Similar expression
can be formed for the combination of TM/TM as well. In all these above integrals the limit 𝑅 is the radius
of the smaller waveguide R.

TE/TM: TM on the smaller waveguide and TE in the larger waveguide

�̄� = ∫∫
ፀᑉ
(∇፭Φፑ × ∇፭Φፏ).�̂�𝑑𝑆 (A.8)

�̄� = ∫∫
ፀᑉ
(

�̂� �̂� �̂�
−𝛽(፫፦,፫፧)𝐽

ᖤ
፫፦(𝛽(፫፦,፫፧)𝜌) cos(𝑟𝑚𝜙)

፫፦
 𝐽፫፦(𝛽(፫፦,፫፧)𝜌) sin(𝑟𝑚𝜙) 0

𝛽(፩፦,፩፧)𝐽
ᖤ
፩፦(𝛽(፩፦,፩፧)𝜌) cos(𝑝𝑚𝜙) −፩፦ 𝐽፩፦(𝛽(፩፦,፩፧)𝜌) sin(𝑝𝑚𝜙) 0

) .�̂� (A.9)

⟹
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�̄� = ∫∫
ፀᑉ
( − 𝛽(፩፦,፩፧)

𝑝𝑚
𝜌 𝐽ᖤ፩፦(𝛽(፩፦,፩፧)𝜌) cos(𝑝𝑚𝜙)𝐽፫፦(𝛽(፫፦,፫፧)𝜌) sin(𝑟𝑚𝜙)

+ 𝛽(፫፦,፫፧)𝐽
ᖤ
፫፦(𝛽(፫፦,፫፧)𝜌) cos(𝑟𝑚𝜙)𝐽፩፦(𝛽(፩፦,፩፧)𝜌) sin(𝑝𝑚𝜙))𝑑𝑆

�̄� = 𝐼ኻ − 𝐼ኼ (A.10)

The terms in this integral can be divided into two independent integrals (with 𝜌 and 𝜙)

⟹

𝐼ኻ = 𝑝𝑚∫
፫፫

ኺ

1
𝜌
𝑑(𝐽፫፦(𝛽(፫፦,፫፧)𝜌))

𝑑𝜌 𝐽፩፦(𝛽(፩፦,፩፧)𝜌)𝜌𝑑𝜌∫
ኼ

ኺ
cos(𝑟𝑚𝜙) sin(𝑝𝑚𝜙)𝑑𝜙 = 𝑝𝑚𝐼ኻኻ𝐼ኻኼ (A.11)

Where 𝐼ኻኻ = ∫
፫፫
ኺ

፝(ፉᑣᑞ(ᎏᒖ(ᑣᑞ,ᑣᑟ)))
፝ 𝐽፩፦(𝛽(፩፦,፩፧)𝜌)𝑑𝜌 and 𝐼ኻኼ = ∫

ኼ
ኺ cos(𝑟𝑚𝜙) sin(𝑝𝑚𝜙)𝑑𝜙.

Similarly,

𝐼ኼ = 𝑟𝑚∫
፫፫

ኺ

1
𝜌
𝑑(𝐽፩፦(𝛽(፩፦,፩፧)𝜌))

𝑑𝜌 𝐽፫፦(𝛽(፫፦,፫፧)𝜌)𝜌𝑑𝜌∫
ኼ

ኺ
cos(𝑝𝑚𝜙) sin(𝑟𝑚𝜙)𝑑𝜙 = 𝑟𝑚𝐼ኼኻ𝐼ኼኼ (A.12)

Where 𝐼ኼኻ = ∫
፫፫
ኺ

፝(ፉᑡᑞ(ᎏᒖ(ᑡᑞ,ᑡᑟ)))
፝ 𝐽፫፦(𝛽(፫፦,፫፧)𝜌)𝑑𝜌 and 𝐼ኼኼ = ∫

ኼ
ኺ cos(𝑝𝑚𝜙) sin(𝑟𝑚𝜙)𝑑𝜙

It is interesting to note that 𝐼ኻኼ and 𝐼ኼኼ are always 0 and therefore, the inner cross product is also 0.
However, just for interest, let’s calculate the other two integrals 𝐼ኻኻ and 𝐼ኼኻ.

𝐼ኻኻ = ∫
፫፫

ኺ

𝑑(𝐽፫፦(𝛽(፫፦,፫፧)𝜌))
𝑑𝜌 𝐽፩፦(𝛽(፩፦,፩፧)𝜌)𝑑𝜌 (A.13)

Integrating by parts, we have,

𝐼ኻኻ = [𝐽፫፦(𝛽(፫፦,፫፧)𝜌)𝐽፩፦(𝛽(፩፦,፩፧)𝜌)]
፫፫

ኺ
−∫

፫፫

ኺ

𝑑(𝐽፩፦(𝛽(፩፦,፩፧)𝜌))
𝑑𝜌 𝐽፫፦(𝛽(፫፦,፫፧)𝜌)𝑑𝜌 (A.14)

As waveguide R has a TM mode, by equation (2.32), we know that 𝐽፫፦(𝛽(፫፦,፫፧)𝑟𝑟) = 0 and when
𝑝𝑚 = 𝑟𝑚 ≠ 0, we know that Bessel functions at 𝜌 = 0 are 0. Therefore, the first term in the above
equation (A.14), [𝐽፫፦(𝛽(፫፦,፫፧)𝜌)𝐽፩፦(𝛽(፩፦,፩፧)𝜌)]

፫፫

ኺ
= 0. Furthermore, the second term of equation

(A.14) interestingly is 𝐼ኼኻ which also we want to find out as a part of 𝐼ኼ. Therefore, equation (A.14)
becomes,

𝐼ኻኻ = −𝐼ኼኻ (A.15)

⟹
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𝐼ኻኻ + 𝐼ኼኻ = 0 (A.16)

As we have the equation with the sum of the two terms we need to figure out, let’s subtract these
two integrals and find another equation with these two unknowns.

𝐼ኻኻ − 𝐼ኼኻ = ∫
፫፫

ኺ
(
𝑑(𝐽፫፦(𝛽(፫፦,፫፧)𝜌))

𝑑𝜌 𝐽፩፦(𝛽(፩፦,፩፧)𝜌) +
𝑑(𝐽፩፦(𝛽(፩፦,፩፧)𝜌))

𝑑𝜌 𝐽፫፦(𝛽(፫፦,፫፧)𝜌))𝑑𝜌 (A.17)

⟹

𝐼ኻኻ − 𝐼ኼኻ = ∫
፫፫

ኺ
(
𝑑(𝐽፫፦(𝛽(፫፦,፫፧)𝜌)𝐽፩፦(𝛽(፩፦,፩፧)𝜌))

𝑑𝜌 )𝑑𝜌 (A.18)

⟹

𝐼ኻኻ − 𝐼ኼኻ = [𝐽፫፦(𝛽(፫፦,፫፧)𝜌)𝐽፩፦(𝛽(፩፦,፩፧)𝜌)]
፫፫

ኺ
= 0 (A.19)

As the sum and difference of 𝐼ኻኻ and 𝐼ኼኻ both are 0, the values of 𝐼ኻኻ and 𝐼ኼኻ are 0. Therefore, 𝐼ኻ
and 𝐼ኼ both are 0 and the inner cross product is 0.
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(f) ፒᑋᑉ of ፓፄᎵᎳ

Figure B.1: Reflection and Transmission coefficients of the 5 waveguide structure for different modes
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(f) ፒᑋᑉ of ፓፌᎴᎳ

Figure B.2: Reflection and Transmission coefficients of the Cone structure in 4.11. For MM, there are 30 cylindrical waveguides
inside.





C
Spectrum function of the electric fields in
a circular waveguide when excited with

a mode of kind 𝑇𝐸1𝑛
For the x component, the spectrum function looks like the following (Without the amplitude term)

öፓፄኻ፧(𝑘, Θ) = ∫
ፑ

ኺ
((1𝜌𝐽ኻ(𝛽,(ኻ,፧)𝜌) − 𝛽,(ኻ,፧)𝐽

ᖤ
ኻ(𝛽,(ኻ,፧)𝜌))(∫

ኼ

ኺ
sin𝜙 cos𝜙𝑒፤ᐎ cos(Ꭻዅጆ)𝑑𝜙)𝜌𝑑𝜌) (C.1)

The following identities of Bessel functions are used to solve the above integral.

𝐽ᖤ(𝑍) =
𝐽ዅኻ(𝑍) − 𝐽ዄኻ(𝑍)

2 (C.2)

and,
2𝜈
𝑍 𝐽(𝑍) = 𝐽ዅኻ(𝑍) + 𝐽ዄኻ(𝑍) (C.3)

Therefore C.1 looks like,

öፓፄኻ፧(𝑘, Θ) = ∫
ፑ

ኺ
(𝛽,(ኻ,፧)𝐽ኼ(𝛽,(ኻ,፧)𝜌)(∫

ኼ

ኺ

1
2𝐼𝑚𝑎𝑔(𝑒

፣ኼᎫ)𝑒፤ᐎ cos(Ꭻዅጆ)𝑑𝜙)𝜌𝑑𝜌) (C.4)

Using the following identity of Bessel integrals and as these work for any interval which spans over
a period (2𝜋), the above problem can be solved.

𝐽፥(𝛽) =
1
2𝜋𝑗፥ ∫

ኼ

ኺ
𝑒፣፥Ꭻ𝑒፣ᎏ cosᎫ𝑑𝜙 (C.5)

The solution to C.4 then can be written as,

öፓፄኻ፧(𝑘, Θ) = ∫
ፑ

ኺ
(𝛽,(ኻ,፧)𝐽ኼ(𝛽,(ኻ,፧)𝜌)𝐼𝑚𝑎𝑔(𝑒፣ኼጆ(∫

ኼ

ኺ

1
2𝑒

፣ኼ(Ꭻዅጆ)𝑒፤ᐎ cos(Ꭻዅጆ)𝑑𝜙))𝜌𝑑𝜌) (C.6)
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C. Spectrum function of the electric fields in a circular waveguide when excited with a mode of kind

𝑇𝐸ኻ፧

Substituting 𝜁 = 𝜙 − Θ, we have,

öፓፄኻ፧(𝑘, Θ) = ∫
ፑ

ኺ
(𝛽,(ኻ,፧)𝐽ኼ(𝛽,(ኻ,፧)𝜌)𝐼𝑚𝑎𝑔(𝑒፣ኼጆ(∫

ኼዅጆ

ዅጆ

1
2𝑒

፣ኼ᎓𝑒፤ᐎ cos(᎓)𝑑𝜁))𝜌𝑑𝜌) (C.7)

⟹

öፓፄኻ፧(𝑘, Θ) = −∫
ፑ

ኺ
(𝛽,(ኻ,፧)𝐽ኼ(𝛽,(ኻ,፧)𝜌)𝐼𝑚𝑎𝑔(𝑒፣ኼጆ𝜋𝐽ኼ(𝑘𝜌))𝜌𝑑𝜌) (C.8)

⟹

öፓፄኻ፧(𝑘, Θ) = −∫
ፑ

ኺ
(𝛽,(ኻ,፧)𝐽ኼ(𝛽,(ኻ,፧)𝜌)𝐼𝑚𝑎𝑔(𝑒፣ኼጆ𝜋𝐽ኼ(𝑘𝜌))𝜌𝑑𝜌) (C.9)

⟹

öፓፄኻ፧(𝑘, Θ) = −∫
ፑ

ኺ
(𝛽,(ኻ,፧)𝐽ኼ(𝛽,(ኻ,፧)𝜌) sin(2Θ)𝜋𝐽ኼ(𝑘𝜌)𝜌𝑑𝜌) (C.10)

Therefore,

öፓፄኻ፧(𝑘, Θ) = −𝜋𝛽,(ኻ,፧) sin(2Θ)∫
ፑ

ኺ
𝐽ኼ(𝛽,(ኻ,፧)𝜌)𝐽ኼ(𝑘𝜌)𝜌𝑑𝜌 (C.11)

The integral can be solved by Lommel’s integral of the kind (3.85) [2]. ⟹

öፓፄኻ፧(𝑘, Θ) = −𝜋𝛽,(ኻ,፧) sin(2Θ)𝐼ኻ,፧ኼኼ (𝑘) (C.12)

For the y component, the spectrum function looks like the following (without amplitude term)

üፓፄኻ፧(𝑘, Θ) = ∫∫
ፒᑒᑡ
[(1𝜌𝐽ኻ(𝛽,(ኻ,፧)𝜌) sin

ኼ 𝜙 + 𝛽,(ኻ,፧)𝐽
ᖤ
ኻ(𝛽,(ኻ,፧)𝜌) cosኼ 𝜙)]𝑒፤ᐎ cos(Ꭻዅጆ)𝜌𝑑𝜌𝑑𝜙 (C.13)

Using trigonometric properties (sinኼ 𝜙 = ኻዅcos(ኼᎫ)
ኼ and cosኼ 𝜙 = ኻዄcos(ኼᎫ)

ኼ )

üፓፄኻ፧(𝑘, Θ) = ∫∫
ፒᑒᑡ

1
2(
1
𝜌𝐽ኻ(𝛽,(ኻ,፧)𝜌) + 𝛽,(ኻ,፧)𝐽

ᖤ
ኻ(𝛽,(ኻ,፧)𝜌)+

cos(2𝜙)(−1𝜌𝐽ኻ(𝛽,(ኻ,፧)𝜌) + 𝛽,(ኻ,፧)𝐽
ᖤ
ኻ(𝛽,(ኻ,፧)𝜌)))𝑒፤ᐎ cos(Ꭻዅጆ)𝜌𝑑𝜌𝑑𝜙

Using the Bessel function properties of C.2 and C.3,

⟹



133

üፓፄኻ፧(𝑘, Θ) = ∫
ፑ

ኺ

𝛽,(ኻ,፧)
4 (∫

ኼ

ኺ
(2𝐽ኺ(𝛽,(ኻ,፧)𝜌) − 2𝐽ኼ(𝛽,(ኻ,፧)𝜌) cos(2𝜙))𝑒፤ᐎ cos(Ꭻዅጆ)𝑑𝜙)𝜌𝑑𝜌 (C.14)

üፓፄኻ፧(𝑘, Θ) = ∫
ፑ

ኺ

𝛽,(ኻ,፧)
2 (𝐽ኺ(𝛽,(ኻ,፧)𝜌)∫

ኼዅጆ

ዅጆ
𝑒፣ኺ᎓𝑒፤ᐎ cos(᎓)𝑑𝜁

− 𝐽ኼ(𝛽,(ኻ,፧)𝜌)𝑅𝑒𝑎𝑙(𝑒፣ኼጆ∫
ኼዅጆ

ዅጆ
𝑒፣ኼ᎓𝑒፤ᐎ cos(᎓)𝑑𝜁))𝜌𝑑𝜌

Using the identity of Bessel function in C.5, we have,

üፓፄኻ፧(𝑘, Θ) = 𝛽,(ኻ,፧)𝜋∫
ፑ

ኺ
(𝐽ኺ(𝛽,(ኻ,፧)𝜌)𝐽ኺ(𝑘𝜌) + 𝐽ኼ(𝛽,(ኻ,፧)𝜌)𝐽ኼ(𝑘𝜌) cos(2Θ))𝜌𝑑𝜌 (C.15)

⟹

üፓፄኻ፧(𝑘, Θ) = 𝛽,(ኻ,፧)𝜋∫
ፑ

ኺ
(𝐽ኺ(𝛽,(ኻ,፧)𝜌)𝐽ኺ(𝑘𝜌) + 𝐽ኼ(𝛽,(ኻ,፧)𝜌)𝐽ኼ(𝑘𝜌) cos(2Θ))𝜌𝑑𝜌 (C.16)

üፓፄኻ፧(𝑘, Θ) = 𝜋𝛽,(ኻ,፧)(𝐼ኻ,፧ኺኺ (𝑘) + cos(2Θ)𝐼ኻ,፧ኼኼ (𝑘)) (C.17)
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Terms Meaning
MoM Method of Moments
MM Mode Matching
TD Time Domain
CPU Central Processing Unit
Lin Linux
Mac Mac OS
Win Windows PC
RAM Random Access Memory
GB Giga Byte

Table D.2: Meaning of terms in table D.1





E
JWKB approach to solve near and far

fields of a conical horn antenna

From chapter 3 to 5, the parameters like the reflection coefficients, transmission coefficients, near-fields
and the far-fields, of a conical horn antenna approximated as a cascaded combination of cylindrical
waveguides are derived. In this appendix, another approach is discussed by virtue of which different
parameters of a perfectly matched conical horn antenna can be determined without assuming it to be
a cascaded structure of cylindrical waveguides. The approach is called as the JWKB approximation
(Jeffreys-Wentzel-Kramers-Brillouin) [30]. The JWKB approximation was developed to solve the one
dimensional time independent Schrödinger’s equation [25] of quantum mechanics. With this approach,
the conical horn antenna should have a slowly increasing cross section. Using this approach, near-
and far-fields are determined in this chapter.

E.1. JWKB approximation for a slowly varying cross section of a
conical waveguide

Using equation (2.8) again, we have,

𝜕ኼℎ
𝜕𝑧ኼ + 𝛽

ኼ
፳ (𝑧)ℎ = 0 (E.1)

Solution to this equation was a phase term (𝑒ዅ፣ᎏᑫ፳) in chapter 2 as the term 𝛽፳ was constant over
the axis z for a cylindrical waveguide. However, as in this case, we assume a slowly varying profile,
the propagation constant 𝛽፳ now depends on z.

𝛽፳(𝑧) = −1𝑗√−(𝛽ኼ − 𝛽ኼ (𝑧)) = −1𝑗√−(𝛽ኼ − (
𝜒፦,፧ 𝑂𝑟 𝜒ᖤ፦,፧

𝑟(𝑧) )
ኼ
) (E.2)

Where 𝜒፦,፧ and 𝜒
ᖤ
፦,፧ are used for TM and TE modes respectively. The 𝜒፦,፧ is the n’th zero of the

m’th order Bessel function of the first kind. 𝜒ᖤ፦,፧ is the n’th zero of the derivative of the m’th order Bessel
function of the first kind. The quantity 𝑟(𝑧) is the variation of the radius with respect to z.

If the term 𝛽ኼ፳ (𝑧) is assumed to be a slowly varying function in this case. Therefore, a crude approx-
imation that 𝛽ኼ፳ (𝑧) is constant leads to a solution which look like the following.
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ℎ(𝑧) = 𝑒፣᎔(፳) (E.3)

Therefore, the differential equation of E.1 can be rewritten as,

− (𝜂ᖤ)ኼ + 𝑗𝜂ᖦ + 𝛽ኼ፳ = 0 (E.4)

If 𝜂ᖦ is very small, the above relation can become an approximation and that is,

𝜂ᖤ = ±𝛽፳ (E.5)

⟹

𝜂(𝑧) = ±∫𝛽፳(𝑧)𝑑𝑧 (E.6)

Therefore, the condition for validity is,

|𝜂ᖦ | = 1
2|
(𝛽ኼ፳ )

ᖤ

𝛽፳
| << |𝛽ኼ፳ | (E.7)

Therefore, the validity condition can be simplified as,

|𝛽ᖤ፳(𝑧)| << 𝛽ኼ፳ (E.8)

Furthermore, there is a relation between the flare angle and the wavelength that has to be satisfied
[30].

𝑅፬(2𝜃፟)ኼ
8 << 𝜆 (E.9)

Where 𝑅፬, 𝜃፟ are defined in the figure E.1.

Substituting the approximation of equation (E.7) into equation (E.4), we have,

(𝜂ᖤ)ኼ = 𝛽ኼ፳ ±
𝑗
2
(𝛽ኼ፳ )

ᖤ

𝛽፳
(E.10)

⟹

𝜂ᖤ = ±𝛽፳ +
𝑗
4
(𝛽ኼ፳ )

ᖤ

𝛽ኼ፳
(E.11)

𝜂(𝑧) = ±∫𝛽፳(𝑧)𝑑𝑧 +
𝑗
4 ln𝛽

ኼ
፳ (E.12)

Using this in equation (6.3), we have,
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Figure E.1: Conical waveguide with slowly varying cross section

ℎ(𝑧) = 1
√𝛽፳

[𝐴𝑒፣ ∫ᎏᑫ(፳)፝፳ + 𝐵𝑒ዅ፣ ∫ᎏᑫ(፳)፝፳] (E.13)

The square root of propagation constant in the denominator of equation (E.13) suggests that the
function ℎ(𝑧) has a singularity at the places on z axis where a mode is excited. It is the point after
which (towards the increasing size of the flare) a cylindrical waveguide mode becomes propagating
and before which the cylindrical waveguide mode is evanescent. These points are also called as the
turning points. There are several techniques to avoid that singularity by using connection formulae.
However, in this thesis, as the aperture fields are of higher priority, there is no need to find the fields
everywhere on the z axis. If at the far end of the antenna, there is another cylindrical waveguide
connected in cascade, possible turning points near the aperture also can be avoided.

Therefore, using only one term from the equation (6.13), we have,

ℎ(𝑧) = 𝐵
√𝛽፳

𝑒ዅ፣ ∫ᎏᑫ(፳)፝፳ (E.14)

The negative exponential is chosen to satisfy the propagation condition. The integral above the
exponential is done from the aperture till the point where a certain waveguide mode is excited on the z
axis. Here, the aperture is considered as 𝑧 = 0 and the point on z axis where a certain mode is excited
is denoted as 𝑧 = 𝑑. Therefore, the potential functions for TE/TM (mentioned in chapter 2) can be
written as for the flared antenna case,

𝐹፳/𝐴፳(𝜌, 𝜙, 𝑧) = 𝐴፦,፧𝐽፦(𝛽𝜌)𝐶ኼ cos(𝑚𝜙)
𝐵
√𝛽፳

𝑒ዅ፣ ∫ᎏᑫ(፳)፝፳ (E.15)

The field equations mentioned in chapter 2 remain the same with the exponential term replaced with
ℎ(𝑧). In the case of TM electric field modes and TE magnetic field modes the derivatives with z are only
carried out for the ℎ(𝑧) term and not with the terms varying with 𝜌 and 𝜙 to get simplified expressions.
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The integral on the exponential function of ℎ(𝑧) can be found analytically for the conical waveguide.

The integral is defined as,

∫
ዅ፝

ኺ
𝛽፳(𝑧)𝑑𝑧 = ∫

ዅ፝

ኺ
√(𝛽ኼ − (𝜒፦,፧ 𝑂𝑟 𝜒ᖤ፦,፧

𝑟(𝑧) )
ኼ
)𝑑𝑧 (E.16)

⟹

Where, 𝑟(𝑧) = 𝑟፭፨፩ + 𝑧 tan𝜃፟. 𝑟፭፨፩ is the top radius of the cone. Therefore,

∫
ዅ፝

ኺ
𝛽፳(𝑧)𝑑𝑧 = ∫

ዅ፝

ኺ
√(𝛽ኼ − (𝜒፦,፧ 𝑂𝑟 𝜒ᖤ፦,፧

𝑟፭፨፩ + 𝑧 tan𝜃፟
)
ኼ
)𝑑𝑧 (E.17)

Substituting 𝑟፭፨፩ + 𝑧 tan𝜃፟ as 𝑢, we have,

∫
፫ᑥᑠᑡዅ፝ tan᎕ᑗ

፫ᑥᑠᑡ
√(𝛽ኼ − (𝜒፦,፧ 𝑂𝑟 𝜒ᖤ፦,፧

𝑢 )
ኼ
) 𝑑𝑢
tan𝜃፟

(E.18)

⟹

𝛽∫
፫ᑥᑠᑡዅ፝ tan᎕ᑗ

፫ᑥᑠᑡ
√(1 − (𝜒፦,፧ 𝑂𝑟 𝜒ᖤ፦,፧

𝛽𝑢 )
ኼ
) 𝑑𝑢
tan𝜃፟

(E.19)

Again substituting Ψ = arccos(Ꭴᑞ,ᑟ ፎ፫ Ꭴᖤᑞ,ᑟ
ᎏ፮ ), we have,

𝛽∫
ጕᎴ

ጕᎳ
tanኼΨ 𝑑Ψ

tan𝜃፟
(E.20)

Where,

Ψኻ = 𝑎𝑟𝑐𝑐𝑜𝑠
𝜒፦,፧ 𝑂𝑟 𝜒ᖤ፦,፧

𝛽𝑟፭፨፩
(E.21)

Ψኼ = arccos
𝜒፦,፧ 𝑂𝑟 𝜒ᖤ፦,፧
𝛽(𝑟፭፨፩ − 𝑑 tan𝜃፟)

(E.22)

Therefore, the integral can be found as,

𝛽∫
ጕᎴ

ጕᎳ
tanኼΨ 𝑑Ψ

tan𝜃፟
= 𝛽

tan𝜃፟
[tanΨ−Ψ]ጕᎴጕᎳ =

𝛽
tan𝜃፟

[(tanΨኼ −Ψኼ) − (tanΨኻ −Ψኻ)] (E.23)
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