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Abstract

Photovoltaics (PV) are already an important part of the emerging global energy system. Rapidly
decreasing production costs due to high throughput production havemade this development pos-
sible. To meet market demands, it will remain important to further scale up global production.
However, during the production of solar cells, several defects can occur. Current approaches in
quality inspection based on electroluminescence (EL) are reaching their speed limits. The goal
of this thesis project is to advance current solar cell quality inspection by using deep learning-
based computer vision (CV) algorithms to detect production defects without human supervision
at high speeds. The goal is to achieve this while reducing the necessary manual efforts to label
(annotate) defects in the training data of such algorithms. Next to developing and evaluating
algorithms, the second goal of this project is to investigate in which ways and to which extent
the technical innovation can impact the sustainability performance of the production process.
Multiple scenarios are investigated using a Life Cycle Assessment (LCA) model. The LCA results
are used to estimate the potential large-scale impact of increasing solar cell production through-
put.

The results show it is possible to detect defects in EL measurements taken at very high process
speeds using convolutional neural networks (CNNs). This could enable much higher throughput
rates than current state-of-the-art solutions. A slight reduction in detection accuracy currently
has to be expected compared to non-moving measurements. From a sustainability perspective,
no reasons were found that would advise against deploying high throughput quality inspection.
The environmental impact of the developed algorithm due to energy consumption is neglectable
on a per-cell level. However, it is emphasized that future projects aiming at the further scale-up of
PV production should automatically integrate an end-of-life (EoL) perspective. This is required
to mitigate possible negative impacts made possible by technological advancements that happen
faster than the development of EoL schemes.

II



CONTENTS

Contents

1 Introduction 3

2 Fundamentals 6
2.1 Crystalline Silicon (c-Si) Solar Cells and Their Future . . . . . . . . . . . . . . . 6
2.2 Spatially Resolved Characterization of Solar Cells . . . . . . . . . . . . . . . . . 6
2.3 Machine Prototype for Faster Measurements in Mass Production . . . . . . . . . 9
2.4 Machine Learning and Convolutional Neural Networks . . . . . . . . . . . . . . 10
2.5 Interdisciplinary Nature of This Project . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related Work 12
3.1 State of the Art Quality Inspection in Industry . . . . . . . . . . . . . . . . . . . 12
3.2 CNN-Based Inspection of PV Systems . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Innovation of Measurement Techniques . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Sustainability Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 How This Project Differs From Related Work . . . . . . . . . . . . . . . . . . . 13

4 Technical Approach 15
4.1 Goal and Requirements Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Data and Machine Learning Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Smart Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 RS Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 j0 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Technical Experiments 25
5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Neural Network Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Experiment 1: Still, Non-Blurred . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Measurements at Fraunhofer ISE . . . . . . . . . . . . . . . . . . . . . . 27
5.2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.4 Scenario Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Experiment 2: Artificial Motion Blur . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.3 Estimation of Realistic Motion Blur . . . . . . . . . . . . . . . . . . . . . 30
5.3.4 Scenario Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III



CONTENTS

5.4 Experiment 3: Moving, Real-World Blurred . . . . . . . . . . . . . . . . . . . . . 32
5.4.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.2 Measurements at Industrial Partner . . . . . . . . . . . . . . . . . . . . . 32
5.4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.4 Scenario Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Technical Results 36
6.1 Experiment 1: Still, Non-Blurred . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Experiment 2: Artificial Motion Blur . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Experiment 3: Moving, Real-World Blurred . . . . . . . . . . . . . . . . . . . . . 51
6.3.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Technical Discussion 62
7.1 Detection Accuracy and Impact of Motion Blur . . . . . . . . . . . . . . . . . . . 62
7.2 Smart Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Sustainability Approach and Initial Assessment 65
8.1 Framework Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2 Initial Application of Framework Levels . . . . . . . . . . . . . . . . . . . . . . . 66

8.2.1 Algorithm Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.2 Process Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.3 Life Cycle Assessment Model . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Sustainability Assessment 70
9.1 Rigorous Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.2 Efficiency Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.3 Additional Scenarios and LCA Connection . . . . . . . . . . . . . . . . . . . . . 77
9.3.1 Definition of Additional Scenarios . . . . . . . . . . . . . . . . . . . . . 77
9.3.2 Modeling Cleanroom Usage . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.3 Factory Building Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 80

IV



CONTENTS

10 Integration of Sustainability Results 81
10.1 Main Results of Assessment Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 81
10.2 Process Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.3 Large-Scale Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

11 Sustainability Discussion 90

12 Conclusion 93
12.1 Technical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.2 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography VI

Appendix A - Code and Models XIII

Appendix B - LCA Unit Processes and Absolute Results XIV

V



CONTENTS

List of Abbreviations

PV Photovoltaics

CNN Convolutional neural network

CV Computer vision

DL Deep learning

EL Electroluminescence

PL Photoluminescence

STC Standard test conditions

c-Si Crystalline silicon

ReLU Rectified Linear Unit

C-DCR Dark saturation current and series resistance

TOPCon Tunnel Oxide Passivating Contact

PERC Passivated Emitter and Rear Contact

HJT Heterojunction

RS Series resistance

j0 Dark saturation current density

ML Machine learning

AI Artificial intelligence

ROI Region of interest

RSP Rotational screen printing

FSP Flatbed screen printing

LCA Life cycle assessment

GHG Greenhouse gas

EoL End-of-life

SDG Sustainable Development Goal

ITRPV International Technology Roadmap for Photovoltaic

1



CONTENTS

CAPEX Capital expenditure

COO Cost of ownership

OOE Overall equipment effectiveness

2



INTRODUCTION

1 | Introduction

Increasing the production throughput of solar cells is a central lever to reduce production costs
in photovoltaics (PV) and to meet global demand. Especially better machine and factory space
utilization help lower the capital expenditure (CAPEX) per cell significantly [1], [2]. In mass
production, solar cells have to be characterized at the end of the production line, i.e., their
technical characteristics have to be determined. This is an important step in quality inspec-
tion. Currently, this is either done by measuring the current and voltage (I-V ) of the cell or via
electroluminescence (EL) imaging. Nowadays, EL imaging can be regarded as one of the stan-
dard means of final quality inspection of solar cells in mass production [3]. The International
Technology Roadmap for Photovoltaic (ITRPV) (2021 Results) states a world market share of EL
imaging of 50 % in 2021 and predicts a share of above 90 % for 2032 [4].

When scaling up the production throughput of solar cells, existing quality inspection systems
such as EL imaging are too slow leading to the need of faster systems and advanced image
evaluation. Within the current state-of-the-art, solar cells are stopped on the conveyor belt to
take measurements such as EL images. This limits the production throughput. Prototypes for
faster systems are in development performing measurements while the solar cells are in motion.
Currently, EL images are often already interpreted using machine-learning techniques such as
convolutional neural networks (CNNs). However, when images are taken in motion, motion blur
occurs in the images which makes it hard to impossible for a human operator to find defects and
process abnormalities. This can be compared to the effects occurring when taking an image of
a quickly moving train. This leads to the main technical research question: How well can elec-

troluminescence images of TOPCon solar cells taken in motion at high production throughput be

analyzed by deploying CNNs?

The second major challenge of this project is to consider the sustainability impact in the early de-
velopment phase of this technical development. Often in innovation quality is prioritizedwithout
considering the sustainability impact. In themass production of solar cells, small process changes
potentially have a large impact. Critical decisions such as which cells are sorted out during pro-
duction and which are disposed are based on the output of defect detection algorithms whose
sustainability impact has not sufficiently been studied until now. E.g., EL imaging could also be-
come an important means of process feedback with the potential of stopping the production in
case of systematic defects [5] decreasing the quality of all following cells. The main sustainabil-
ity research question within this work is: What is the prospective sustainability impact of novel

quality inspection algorithms in high throughput PV production?

The technical research question of this project is approached via the development and evaluation
of a suitable defect detection algorithm that can detect production defects in moving measure-
ments. The challenge is demonstrated in Figure 1.1. The image in Figure 1.1a is taken on a
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INTRODUCTION

standard measurement system without moving the cell. Dark roundish spots indicate possible
process defects. In fast measurements, as shown in Figure 1.1b and Figure 1.1c even experts are
not able to safely predict defects, either due to low contrast at short illumination times or due to
motion blur at high illumination times. The algorithm trained within this project is capable of
predicting the defects.

(a) EL image in non-moving case
(reference)

(b) Moving EL image at 2 ms illu-
mination time

(c) Moving EL image at 7 ms illu-
mination time

Figure 1.1: Example of a measurement image (left) taken without moving the cell, a moving
image with motion blur at low illumination time (middle), and a moving image with motion blur
at high illumination time (right).

“Without new approaches, we become ’blind’ in quality inspection when scaling up
production throughput. ”The technical goal of the project is to set up an end-to-end pipeline from taking measurements of

solar cells in the laboratory, automatic labeling (annotation) of defects, training state-of-the-art
convolutional neural networks (CNNs), and evaluating the results. Around 500 TOPCon solar
cells are measured in the laboratory at Fraunhofer ISE. Three experiments are designed aiming
at training a defect detection algorithm that can predict the location of two types of defects in
EL images: series resistance (RS) defects and dark saturation current density (j0) defects. In the
first experiment, non-moving images such as those shown in Figure 1.1a are used to train a CNN
serving as a reference for the following two experiments. In the second experiment, measure-
ment images with simulated motion blur are used. In the third experiment, measurement images
with real-world motion blur such as shown in Figure 1.1c taken at an industrial partner company
are used.

To train the CNNs, a novel approach called “Smart Labeling” based on Kunze et al. [5] is devel-
oped to annotate defects in solar cells more quickly and reliably. In an industrial context, this
new labeling approach would allow a faster and potentially more accurate deployment of a defect
detection algorithm. It uses dark saturation current and series resistance (C-DCR) measurements
as a reference technique to create spatially resolved labels for the defects. The CNNs are then
trained with pairs of EL images and the smart labels as input coming from the three experiments,

4



INTRODUCTION

respectively. The performance of the defect detection algorithms is both evaluated quantitatively
by statistical scores and by a qualitative analysis focusing on specific defects in sample solar cells.

The sustainability research question is approached via the definition of a new framework that
allows viewing the technical innovation from three different perspectives: The algorithm level,
the process level, and the large-scale level. The framework is applied to the technical innovation
of this project. Different scenarios to estimate the impact of the algorithms are developed. These
scenarios are then tested for their prospective environmental impact using a life cycle assess-
ment (LCA) model. The LCA model estimates the environmental impact of producing 1 kWh
electricity using a 7 kWp slanted roof PV installation in Europe in different scenarios.

This document provides a brief outline of the required technical background in Chapter 2. Most
importantly, the used measurement techniques are introduced. In Chapter 3, an overview of cur-
rent research in the field of solar cell quality inspection and the sustainability impact of PV is
given. The technical research is grouped into four chapters, Chapter 4 describing the method-
ological approach, Chapter 5 defining the experiments, Chapter 6 providing the experimental
results, and finally Chapter 7 discussing the technical results.

The sustainability research begins with the definition of the aforementioned framework to view
the technical innovation from multiple perspectives in Chapter 8. In this chapter, the framework
is initially applied to the case and the innovation is viewed from algorithm level, process level,
and large-scale level in an initial assessment. In Chapter 9 different scenarios considering both
the algorithm and process level are defined and tested using an LCA model. In Chapter 10 the
findings from the initial assessment and the LCA scenarios are integrated and used to project the
large-scale impact. Furthermore, the results are discussed and ideas for the future are presented.
Finally, a combined conclusion states the main findings, implications, and limitations of this
research in Chapter 12.

5



FUNDAMENTALS

2 | Fundamentals

2.1 Crystalline Silicon (c-Si) Solar Cells and Their Future

Solar energy is an abundantly available energy source. Photovoltaics make use of the photo-
electric effect. In very simple terms, charge carriers are freed by solar energy in semiconductor
materials, mostly silicon. The generated free charge carriers are separated, creating a difference
in electric potential (voltage). This voltage can be used to drive electrical circuits. The crystalline
silicon solar cell using the photoelectric effect has been invented in 1954. Since then, solar cells
have become an important option for producing renewable electrical energy [6].

The computer vision (CV) algorithms that are developed and evaluated in this project will be
applied to Tunnel Oxide Passivating Contact (TOPCon) cells. TOPCon is one of the newest
crystalline silicon (c-Si) cell technologies that have the potential for mass production offering
a higher conversion efficiency than current Passivated Emitter and Rear Contact (PERC) cells. It
could replace PERC as the “actual ‘workhorse’ of the PV industry” [7, p. 10] because only evo-
lutionary upgrades are required in the production process [8]. This work focuses on TOPCon
solar cells in particular to make sure the findings generalize well to the future mass production
of c-Si solar cells.

2.2 Spatially Resolved Characterization of Solar Cells

Taking measurements of solar cells to understand their electrical and optical properties is re-
ferred to as “characterization”. In mass production, characterization is carried out at the end of
the production line. To understand the measurements taken in this project, a piece of fundamen-
tal knowledge of the electrical characteristics of solar cells is required.

Figure 2.1: Single-diode equivalent circuit of a solar cell.

6
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The current-voltage characteristics of an illuminated solar cell can be described with a simple
equivalent circuit as shown in Figure 2.1. In this circuit, it is assumed that the solar cell behaves
as an ideal diode [9]. The notation and its capitalization of currents or current densities differ in
literature. This work assumes current densities j instead of currents I .

The current source providing the current density jph represents the photo-generated current
density. The current density through the diode, j0, can be regarded as a measure of recombina-
tion. A diode with larger recombination has a larger j0 [10]. In case of recombination, free charge
carriers recombine and are therefore no longer available to drive an external circuit connected
at the terminals (right side of Figure 2.1) and the energy is lost. For this reason, it is desired to
keep recombination effects in solar cells low.

The series resistance RS models the series resistance loss of the solar cell. It represents the
resistance that the photo-generated current has to pass on its way to the terminals of the so-
lar cell. The main contributors to RS are the resistance of the metal electrodes connecting the
semiconductor material of the solar cell to an external circuit and the contact resistance of this
connection. Additionally, the bulk resistance of the junction of the solar cell contributes to RS

[9].

There are several imaging techniques for defect detection in solar cells. electroluminescence (EL)
measurements make irregularities in the crystal structure of the cell visible. Additionally, EL
measurements can be used to find process defects [11]. To take an EL measurement, the solar
cell needs to be contacted. Via the contacts, an external current is applied to the cell. The cell
then starts irradiating light due to radiative recombination of the provided charge carriers that is
captured by a camera. An example EL image is given in Figure 2.2a. The most important variable
parameters of EL measurements are the illumination time TL, the camera gainG, and the current
I applied to the solar cell. Especially these parameters will become relevant later in this project.

Photoluminescence (PL) measurements are mainly used to find material defects [12]. To take a
PL measurement, excitation light is applied to the cell. This light generates electron-hole pairs in
the semiconductor material that recombine. The recombination leads to the emission of photons
which can be captured by a camera.

In dark saturation current and series resistance (C-DCR) measurements, EL and PL are combined.
A C-DCR measurement consists of two images. One image shows the spatial distribution of the
dark saturation current density (j0), whereas the second image contains the spatial distribution
of the series resistance (RS) [13]. Example C-DCR images are given in Figure 2.2b and 2.2c. Note
that the pixel intensity values in C-DCR images have a physical unit. The j0 image shows a spatial
representation of the dark saturation current density in the unit A

cm2 . As j0 can be regarded as a
measure of recombination and recombination leads to losses in solar cells, i.e., a high j0 can be
regarded as a defect. The RS image shows a spatial representation of the series resistance. The
intensity of every pixel has the unit Ω cm2. As can be seen from the equivalent circuit in Figure

7
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2.1, the RS is on the main current path to the load. A higher series resistance leads to a higher
voltage drop across RS and therefore to higher losses.
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(c) C-DCR j0 image

Figure 2.2: Example of EL andC-DCRmeasurement images. Note that both EL andC-DCR images
show five contact bars. In these regions, the measurements of both techniques are undefined and
do not deliver meaningful measurement results.

Finger interruptions are common process-related defects in crystalline silicon solar cells that
appear as bar-shaped dark areas in the EL image. Figure 2.2a and 2.2b both show some finger
interruptions. Fingers are part of the metallization of the solar cell and are collecting and trans-
porting currents in the solar cell. Damaged fingers lead to a reduction in cell performance [14].
Finger interruptions are well visible in RS images from C-DCR measurements as can be seen as
bright areas in Figure 2.2b.

Commonmaterial-related defects are dislocation structures, i.e., irregularities in the crystal struc-
ture of the cell leading to higher recombination. Process-related recombination losses often occur
in the edge regions due to imperfections in the cut edges [15]. In the pre-industrial TOPCon cells
used in this project these defects occur regularly. They can be well seen in the example j0 image
in Figure 2.2c. As a general rule a locally increased value in C-DCR images can indicate a defect.
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2.3 Machine Prototype for Faster Measurements in Mass Produc-
tion

In current state-of-the-art mass production of solar cells, a production throughput of around
5,000 wafers per hour on a single production line is achieved [16]. In the end-of-line characteri-
zation, the cells are currently stopped to contact the cells to the measurement device and to take
EL measurements. In a typical production cycle, the steps move-in of cells and contacting and
decontacting and move-out of cells take about 450 ms each [3] which are multiples of the mea-
surement time itself. This is too slow when the production throughput on a single production
line should be doubled or even quadrupled.

EL Imaging 
System

Belt

Solar cells

Contact sledge

Figure 2.3: Concept sketch of existing prototype to test moving EL measurements.1

Therefore, the industrial partner company of this project has developed a hardware prototype
of a measurement system that consists of a moving contact sledge as shown in Figure 2.3. The
concept entails that the cells would be contacted and measured “on-the-fly” removing the pre-
viously mentioned time consuming contacting steps. At the current state of the development, a
solar cell is inserted into the sledge manually one at a time. The sledge moves the cell below a
camera that takes a measurement image at a given illumination time TL while the cell is moving
at a belt speed of vb = 1.9m

s . This way, more than 16,000 cells per hour could be measured2. In
the real-world experiments later in this project, TL is varied to investigate different trade-offs
between camera gain (amplification), cell current, and illumination time.

The moving sledge is contacted to the measurement system via a bar of sliding contacts. The
sliding contacts are connected to contact bars that are pushed on the solar cell under test. The
contact bars are used to connect the solar cell to the EL measurement device.
1Adopted with permission from Leslie Kurumundayil (Fraunhofer ISE). Internal Team Presentation.
2Johannes Greulich (Fraunhofer ISE). NextTec Equipment Data Input Sheet for Quality Inspection Processes. July 2nd,
2020.
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2.4 Machine Learning and Convolutional Neural Networks

Deep Neural Networks (DNNs), a machine learning technique using Artifical Neural Networks
(ANNs) [17], are an important technique used in this research project. In particular, CNNs, a
type of DNNs, are used for the computer vision (CV) tasks. CNNs have various applications in
computer vision, speech and natural language processing, and are one of the most extensively
studied type of DNNs [18]. Generally, this thesis assumes some basic familiarity with the ap-
proach of deep learning. For reference, the book Hands-On Machine Learning with Scikit-Learn

and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems is recommended [19].
The book focuses on using the open-source library TensorFlow while this project uses PyTorch
[20], but the core concepts are similar.

This project will apply a supervised learning approach, i.e., several models are trained on input
data (EL images) that is labeled with the defects in a spatially resolved manner that the neural
network should predict. A detailed overview of the applied network architecture is given in
Section 4.4. The neural network models in this project are supposed to perform spatially resolved
defect detection in EL images. Thismeans every pixel should be assigned to one of the four classes
NoRS defect, RS defect, No j0 defect, or j0 defect. A pixel can be part of both aRS defect and a
j0 defect. Using four classes allows the model to predict both j0 andRS defect for the same pixel
as there are multiple combinations possible, such as RS defect and No j0 defect or RS defect
and j0 defect [5]. Assigning each pixel a class is referred to as a semantic segmentation task in
literature [21].

2.5 Interdisciplinary Nature of This Project

This project aims at combining the fields of Industrial Ecology, Machine Learning and Electrical
Engineering to advance the quality inspection technologies used within the production of solar
cells. The background knowledge of the target audience is diverse, and not all readers may be
acquainted with the field of Industrial Ecology.

The field of Industrial Ecology is a discipline mainly involving scientists, engineers, and policy-
makers. It shows “sympathy for multidisciplinary and interdisciplinary research and analysis"
[22, p. 6]. There is no distinct definition of the field, especially due to the involvement of multiple
disciplines [23]. However, the following statement by Graedel and Allenby describes the general
concept of the field well:
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“ Industrial ecology is the means by which humanity can deliberately and rationally
approach and maintain sustainability, given continued economic, cultural, and tech-
nological evolution. The concept requires that an industrial ecosystem be viewed not
in isolation from its surrounding system, but in concert with them. It is a systems
view in which one seeks to optimize the total materials cycle from virgin material,
to finished material, to component, to product, to obsolete product, and to ultimate
disposal. Factors to be optimized are resources, energy and capital.

Graedel and Allenby (2003) [24, p. 18]”
The main contribution of this project takes place on the technological side of the field. The
advancement of defect detection techniques for solar cells aims at increasing eco-efficiency by
reducing material waste and using machines more efficiently. At a greater level, it potentially
contributes to make affordable and clean energy more accessible. However, this is to be verified
in this research. An important element within the Industrial Ecology toolbox is the LCA method-
ology [25]. In this project, an LCA model is used to estimate the potential environmental impact
of the developed defect detection algorithm in multiple scenarios.
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3 | Related Work

3.1 State of the Art Quality Inspection in Industry

EL imaging for end-of-line quality inspection of solar cells can be regarded as the current industry
standard. As brieflymentioned in the introduction, the ITRPV (2021 results) states aworldmarket
share of EL imaging of 50 % in 2021 and predicts a share of above 90 % for 2032 [4]. In mass
production, production rates of around 5,000 wafers an hour on a single production line can be
achieved [16]. At these or even higher production rates, a human inspection of every EL image
is hardly possible. Therefore, analyzing these images with machine learning approaches, most
commonly CNNs, is already the standard. The most common approach applied in industry today
is using human-made labels to train the algorithms, i.e., human experts need to annotate a set of
existing images [3].

3.2 CNN-Based Inspection of PV Systems

While also being developed and deployed by industrial companies, CNN-based inspection of both
solar cells and modules is extensively studied in research. Many approaches focus on finding de-
fects in production on the cell level, whereas others focus on finding defects in modules either
in production or in-field.

Su et al. [26], [27] propose defect detection in EL images of solar cells using their own CNN archi-
tecture with an emphasis on microcracks and finger interruptions. There is several other work
focusing on detecting microcracks in solar cells using CNNs [28]–[32]. Other authors use EL
images of PV modules instead of cell images to detect defects either on cell or module level [33]–
[36]. Sovetkin et al. [37] investigated various encoder-decoder semantic segmentation models
for defect detection on module level with an emphasis on identifying suitable network architec-
tures. There is also work focusing not only on images taken in a production environment but
also on in-field applications. Pierdicca et al. [38] employ a CNN for the thermographic inspection
of ground-based PV systems. Another focus is to predict physical quantities from measurement
images. E.g., Kovvali et al. [39] propose a network that can provide a spatial prediction of j0 from
photoluminescence (PL) images.

It should be mentioned that there are approaches to extract information about finger interrup-
tions and other defects from EL images using classical/human-made image processing methods
rather than CNNs. Some, like Tsai et al. [40], rely on threshold values. Others [41] rely on other
observed features. CNNs have mostly replaced these approaches, however, for this research they
are relevant to extract information from C-DCR reference measurements.
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3.3 Innovation of Measurement Techniques

State-of-the-art CNN-based quality inspection heavily relies on innovative measurement tech-
niques. To a certain extent, there is some competition between the deployment of CNNs and
the advancement of measurement techniques. Dost et al. [42] propose a method to perform “Ad-
vanced Series Resistance Imaging” on solar cells to extract physical information directly from EL
images. C-DCR as proposed by Glatthaar et al. [13] even provides information about theRS and
j0 of the cell. However, the two mentioned approaches are currently not applied inline in mass
production due to its limitations such as speed or required hardware.

3.4 Sustainability Aspects

Vinuesa et al. [43] assesses the potential of artificial intelligence (AI) on achieving the Sustainable
Development Goals (SDGs) from a very high-level perspective. The multi-level perspective from
Geels [44] is commonly applied to view technological transitions from multiple levels (micro,
meso, macro) as a nested hierarchy.

Verlinden [45] has investigated which challenges the PV industry has to overcome to reach Ter-
awatt scale manufacturing rates. Kafle et al. [8] explore technology options for cost-efficient
industrial manufacturing of TOPCon cells. Aßmus et al. [46] have investigated the performance
requirements of crack detection systems.

Müller et al. [47] have carried out a comparative life cycle assessment study of silicon PVmodules,
especially considering the manufacturing location. Blanco et al. [48] have focussed on evaluating
technological developments in the field of PV during early research and development stages.

3.5 How This Project Differs From Related Work

As mentioned in the introduction, current EL inspection is approaching limitations when fur-
ther increasing production throughput. Especially contacting the cells is time-consuming [3] as
it takes longer than the measurement itself. Moving the cells while taking measurements could
speed up the process which creates motion blur.

There is no known work investigating the impact of moving EL measurements at cell-level on
defect detection performance. Wu et al. [49] proposed an algorithm to remove motion blur oc-
curring at automated optical inspection. Some research at Fraunhofer ISE has focused on archi-
tectures to remove motion blur from EL images of solar cells but has not been published yet.

Additionally, most existing work relies on human labels as a reference for training and evalu-
ating their algorithms. Kunze et al. [5] and Greulich et al. [50] consider expert labels poorly
reproducible. Different experts produce different labels of the same defects [50]. Additionally,
expert labeling is expensive and existing labels cannot easily be adapted to new cell production
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processes. The approach chosen in this project can detect relevant RS and j0 defects with-
out requiring additional hardware in production (such as PL equipment) with a well-established
method (EL) in moving measurements using C-DCR as a reference to label defects for algorithm
training. Using C-DCR as an “offline” reference has several advantages. C-DCR is not available
as an inline technique, and it could certainly not be applied on moving measurements because
it requires taking multiple images to calculate the RS and j0 image. C-DCR images allow for a
separation of defect structures based on the two distinct RS and j0 images which is not easily
possible in EL images. However, the reference measurement approach still requires some classi-
cal feature engineering as carried out by Tsai et al. [40].

For the sustainability perspective, there is no known approach to directly assess the impact of
deploying an AI algorithm to an existing manufacturing process in the PV production chain.
There is the need for an approach on the one hand allowing to go more into detail than high-
level publications such as from Vinuesa et al. [43] or Verlinden [45] but allows for viewing a
broader picture than purely economical and technical assessments as carried out by Aßmus et al.
[46] on the other hand.
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4 | Technical Approach

4.1 Goal and Requirements Definition

The overarching goal of this project is to investigate the feasibility of spatially resolved high-
throughput solar cell quality inspection. As part of the investigation, it has to be assessed how
well CNN-based semantic segmentation can cope with artificial and real-world motion blur in
the application of defect detection for solar cells at high production throughputs. Another part
of the project is to develop and apply a simplified labeling approach for solar cells that allow for
faster deployment of defect detection algorithms. For all investigations, a dataset of measure-
ments of TOPCon solar cells has to be created over the course of this research based on real cells.
The same cells have to be measured at the industrial partner company which has developed a
prototype to test fast EL measurements.

In this project, the absolute achieved detection performance of the defect detection algorithm is
not of utmost importance. Due to the high number of new concepts and the explorative charac-
teristic of the research, it is difficult to find baseline performance data. The performance of the
defect detection algorithm on still (non-moving) images can serve as a baseline to rate the per-
formance. Other algorithms applied in the industry already achieve high accuracies. Therefore,
this work focuses on defect detection in blurry images rather conceptionally as proof of concept
than optimizing for the highest accuracies.

A new labeling approach called Smart Labeling based on RS and j0 C-DCR reference measure-
ments is developed and applied to TOPCon solar cells. The general concept of this labeling
approach has only been used in one publication before [5]. It should be redeveloped and im-
proved using a new approach to make it more robust against variations between different solar
cell batches and process variations. Hence, finding the optimal neural network architecture is
not the goal of the project either as several authors such as Sovetkin et al. (2020) have focused
on finding suitable models for EL defect detection. In this project a slightly modified well estab-
lished architecture is used.

The main requirements derived from the above goals are:

• Development of a functional Smart Labeling algorithm that can be applied to TOPCon,
including data collection in the laboratory.

• Defect detection algorithm requirement 1: Separate RS and j0 defects in still EL images
in a spatially resolved manner. Other defects could be added later, but not in this research
project.

• Defect detection algorithm requirement 2: As requirement 1, but on images with artificial
motion blur simulating moving measurements.
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• Defect detection algorithm requirement 3: As requirement 1 but on images taken at high
production throughput with motion blur.

From the above requirements, there are several sub-questions arising that are supposed to be
answered by experiments:

• How do labels need to be changed in case of motion blur? Can they remain in the same
position, as the features move within the image?

• Do we need to increase the size of the image region as the cell could blur out of the still
image sizes?

• How does the chosen approach perform on real-world motion-blurred cell data?

4.2 Data and Machine Learning Pipeline

Smart
Labeling

EL (still)

EL (art. blur)

EL (real blur)

C-DCR Labels

Network predictions

Loss ➝
 M

odel optim
izationModelartificial

Modelreal

Modelstill

Figure 4.1: Overview of the data and machine learning (ML) pipeline including Smart Labeling
based on C-DCR reference measurements. After applying Smart Labeling (first row) the neural
network models are trained on three different datasets: Still EL images (second row), EL images
with artificial motion blur (third row), and moving EL images taken on a novel prototype mea-
surement device (fourth row).

This project uses an end-to-end supervised machine learning approach as shown in Figure 4.1.
In the first row, it can be seen that based on the C-DCR images, the defect labels are calculated by
Smart Labeling. The labels are shown as white areas. Following that, CNNs are trained within

16



TECHNICAL APPROACH

three different experiments as shown in rows 2-4. The training is carried out with pairs of either
still or blurry EL images and the corresponding labels.

Training the CNNs requires the acquisition of real-world data. Fraunhofer ISE develops new
cell architectures and experiments with new production technologies. The experimental cells of
future mass-produced cell technologies are usually produced in batches of 10-200 cells. These
experimental cell batches are available for measurements. Therefore, this project requires the
planning of those measurements and practical lab work (sorting suitable cells into carriers of 100
cells each, coordination with the measurement team at the cell testing machine), and defining
suitable measurement parameters. The cell testing machine at Frauhofer ISE is unique as it is
customized for the specific requirements of solar cell characterization in pre-mass-production
research. The device integrates several measurement devices and can, among others, provide
IV-curve measurements, EL, and C-DCR. A selection of cells is measured on the prototype in-
troduced in Section 2.3 at the industrial partner company to create a dataset with EL images
showing real motion blur.

After collecting and processing the data, several experiments with artificial neural networks are
carried out as shown in Figure 4.1. In Experiment 1, several models are trained on pairs of still
(non-moving) EL images and labels from the Smart Labeling algorithm. Several scenarios are
executed to find the best-performing model. The best model from Experiment 1 is passed on to
Experiment 2. In Experiment 2, the same labels and the same EL images are used to train a net-
work, but while applying artificial motion blur representing different EL illumination times. The
results of the experiments are used to evaluate the change in detection performance at different
illumination times. Additionally, it is assessed how to adapt the labels and image dimensions to
the motion blur. The best-performing models for each illumination time are then passed on to
Experiment 3. In Experiment 3, real moving measurements taken at the industrial partner com-
pany are used. From this experiment, it can be derived how well the CNN adapts to real motion
blur and which trade-offs should be considered in the settings of EL measurements.

4.3 Smart Labeling

4.3.1 Overview

The Smart Labeling approach intends to extract finger interruptions from RS images and j0

defects from j0 images from C-DCR images. The C-DCR images provide a spatially resolved
measurement image with physical quantities, i.e., each image pixel intensity represents a phys-
ical value. A threshold value can be applied from which a pixel is considered a “defective area”.
Ideally, this leads to spatially resolved defect labels based on real physical quantities.

However, in the case of real C-DCR images of real experimental solar cell batches, several prac-
tical problems need to be considered. The experimental cell batches at Fraunhofer ISE vary sig-
nificantly in their electrical and optical characteristics which inhibits the application of a single
threshold. Furthermore, the C-DCR images can be inhomogeneous, i.e., pixels of similar physical
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value in the real cell are assigned higher pixel intensities in one image region (bottom region)
than in another (top region). Another challenge is that EL images and the C-DCR images need to
be aligned. This means the cells in the images need a common coordinate system. This is impor-
tant to ensure that the location of the generated labels and the EL images match. This alignment
is carried out using the internal “alignment tool” developed at Fraunhofer ISE in earlier machine
learning projects. It detects the edges of the solar cell in the measurement images, rectifies the
image, and crops it to the cell dimensions.

Not the entire image region can be used for labeling and defect detection. The regions with
contact bars, as can be seen in Figure 2.2 in Chapter 2, are excluded as the measurements are not
defined at those positions. The cell is separated into six regions of interest (ROIs). This is shown
in Figure 4.2. The separation for the separate processing of each ROI.

Contact
bar

Region of
interest (ROI)

ROI 0

ROI 1

ROI 2

ROI 3

ROI 4

ROI 5

Figure 4.2: Concept of separating the solar cell in regions of interest (ROIs). The information at
the contact bar locations cannot be used to label defects of the cell. The following figures will
showcase the application of the respective algorithm to one ROI.

Figure 4.3 gives an overview of the developed Smart Labeling algorithm, where the left side
shows the determination of the RS and the right side of the j0 relevant labels, respectively. The
details of the flowchart are explained in the following sections.
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Create ROIs 
Allows for separate treatment

of ROIs.

RS image

Clean ROIs 
Remove negative,

unrealistically high, and NaN
values.

ROIs

Perform Row
Normalization 

Compensates for gradient of
RS image in y-direction.

Finger 
interruptions

Apply Adaptive
Mean

Thresholding 
Find finger

interruptions. 

Normalized ROIs

Cleaned ROIs

Suspicious 
regions

Apply Batch
Threshold 

Find possible
defect regions. 

Normalized ROIs

Combined RS label

AND

Apply Morphology 
Remove undesired small labels. 

Create ROIs 
Allows for separate treatment

of ROIs.

j0 image

Clean ROIs 
Remove negative,

unrealistically high, and NaN
values.

ROIs

Cleaned ROIs

Defect regions

Apply Batch Threshold 
Find defect regions using

threshold. 
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Figure 4.3: Detailed flowchart of Smart Labeling for both RS and j0 labels. While the RS ap-
proach makes use of the geometric properties of finger interruptions in adaptive thresholding,
the j0 approach follows a simple global thresholding approach. Because the global thresholding
is less robust against variations in the absolute pixel intensities I(x, y), more care is required in
the threshold definition for each cell batch.

4.3.2 RS Labels

Note that the coordinate system in this section is rotated by 270° with respect to plots of other
sections in this document. This leads to swapped x and y axes in this section but enables a more
document-compatible presentation of figures that focus on one ROI.

Extracting finger interruptions from theRS images of the C-DCR referencemeasurements comes
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with challenges. Due to the limitations of the measurement technique and its post-processing,
the image quality is rather low. Because of the camera properties and the contacting technique,
the image shows brightness variations in the y direction while changes in the x direction can be
attributed to finger interruptions.

To overcome the undesired variations in y direction, a technique called “row normalization” is
developed. A sliding window of height H moves across each ROI with a step size s of H

2 . The
procedure is visualized in Figure 4.4. At each window position, the mean pixel intensity within
the window is subtracted from each pixel inside the window. The result is copied to a new result
image, i.e., the consecutive window positions are not affected by the subtraction. After applying
row normalization, the global mean, i.e., the mean across all pixels of all ROIs, is added to every
pixel of the resulting image to sustain the physical meaning of each pixel intensity.

Region of
interest (ROI)

Window height

Step size Movement by

Sliding
window

ROI n

Figure 4.4: Concept of row normalization. The sliding window of heightH moves with step size
s. The arithmetic mean of all pixel intensities within the sliding window is calculated. Then, the
mean is subtracted from all pixels within the window.

On the “row normalized” images, thresholding is performed to find the finger interruptions ex-
ceeding a now comparable threshold value. Global thresholding is one of the easiest forms of
separating the foreground and background of an image, i.e. in defect and non-defect areas, re-
spectively. It applies a global threshold Tglobal to each pixel of an image as described by Equation
4.1.

b(x, y) =

{
0, if I(x, y) ≥ Tglobal

1, otherwise
(4.1)

With:

b(x, y) : Binarized image

I(x, y) : Intensity of pixel at location (x, y)

However, in this case, this global thresholding is not sufficient due to variations in contrast and
intensity in the RS images between two contacting bars. Here the series resistance increases
with increasing distance from the contact units. Therefore, local thresholding is applied that
uses a spatially dependent threshold T (x, y). It can generally be expressed by Equation 4.2 [52].

b(x, y) =

{
0, if I(x, y) ≥ T (x, y)

1, otherwise
(4.2)
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Due to high variations of the RS between different solar cell batches, the local threshold adopts
independently of the cell type. Local adaptive thresholding is a common technique in image
processing, e.g., in the digitization of documents to separate letters from the paper background
[52]. There are several implementations available, such as in OpenCV [53]. A common approach
is to calculate the local arithmetic meanm(x, y) of the pixel intensities within a window of size
W ×W centered around the pixel P (x, y) at position (x, y) of intensity I(x, y). m(x, y) is then
used to determine the local threshold T (x, y) as shown in Equation 4.3.

T (x, y) = m(x, y)− C ·m(x, y) = (1− C) ·m(x, y) (4.3)

The constant C can be used to control the sensitivity of the thresholding. A negative C will
increase the threshold, i.e., the detection becomes more selective.

The adaptive thresholding implementation of OpenCV in the function cv.adaptiveThreshold only
allows a rectangular window for the mean calculation [53]. Therefore, for the local thresholding
to find finger interruptions, a customized version of local adaptive thresholding is developed.
Figure 4.5 illustrates the concept of adaptive thresholding applied to the detection of finger in-
terruptions in RS images. The customized version allows a custom window dimensionW ×H .
The window size is chosen based on the assumption that fingers are higher than wide. This is
to make sure that the window always contains a sufficiently large share of areas without finger
interruptions as shown in Figure 4.5. In the actual implementation, W = 65 px and H = 11 px

is used on RS images with a resolution of 1024× 1024 pixels.

Region of interest (ROI)
with varying background

Sliding
window

Finger interruptions
(above window mean)

Figure 4.5: Concept of adaptive thresholding with rectangular window dimensions implemented
to detect finger interruptions inRS image. The center pixel P (x, y) at position (x, y) of intensity
I(x, y) is well below the mean of the surrounding sliding window and would therefore be classi-
fied as “no finger interruption”. When the window reaches finger interruptions as illustrated as
black bars, the corresponding pixels would be classified as “finger interruption” as their intensity
I(x, y) lies well above the window mean.

As shown in the flowchart in Figure 4.3 a global threshold is applied in parallel to the local adap-
tive thresholding. This threshold can either be defined for each batch of solar cells or one global
threshold can be used. In total, this combined approach can be considered local adaptive thresh-
olding with a global threshold as a boundary condition. The global threshold finds potential RS
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defects. From potential RS defects real defects are filtered based on local adaptive thresholding.

4.3.3 j0 Labels

The approach to extract labels from j0 images is different compared to the RS related one as it
cannot rely on the geometric properties of the defect. However, this poses challenges as well.
As shown on the right side in Figure 4.3, a batch threshold is applied. The arithmetic mean of
pixel intensities varies significantly between the different TOPCon cell batches. This means, that
one threshold valid for a batch of cells has to be defined. Several approaches to defining those
thresholds automatically have been tested. Among others, defining a threshold based on statis-
tical properties, e.g., a deviation from the mean pixel value across the batch, has been tested.
However, a manual definition following a clearly defined approach has proven to be the most
robust. This section presents this developed approach.

As shown in Figure 4.6, the batch threshold is defined based on a histogram plot for a defective
and a non-defective region in a j0 image of at least one cell from a particular batch. On the y-axis,
the histogram shows the number of pixels with the pixel value within the respective bin that is
shown on the x-axis. In many cases, it is possible to observe a clear separation between the value
ranges of the defect and non-defect regions.
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Figure 4.6: Example for j0 threshold definition from a sample image of a batch. A defective region
and a non-defective region are chosen. Then, the histograms of those regions are plotted. The
threshold is chosen at a j0 value at which the two histograms begin to overlap only slightly. In
this example, this would be around 1.2e− 12 A

cm2 .

For every sample of each batch, the corresponding batch threshold is applied followed by a mor-
phological operation on the resulting label mask. In particular, this includes the removal of very
small defective areas that are smaller than a defined threshold. This operation is performed be-
cause very small defective areas can be caused by noise in the j0 image.
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4.4 Network Architecture
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Figure 4.7: U-Net-based architecture applied in all experiments. Plotted using PlotNeuralNet
[54]. Zoom in to read the dimensions of layers.

In all experiments, a modified U-Net architecture is used as an encoder and decoder network.
The U-Net is a fully convolutional network and one of the most commonly applied models to
perform semantic segmentation tasks [21]. Originating from biomedical image processing, it has
successfully been applied in the field of PV before [5], [51].

The models architecture is visualized in Figure 4.7. It consists of a contracting path (left side)
and an expansive path (right side) [21]. The contracting part compresses the images semanti-
cally with respect to the target variable, i.e., defect labels, while the expansive part assigns the
extracted and compressed defect information to the corresponding pixels making use of skip
connections. The input image of size I × I is fed into the contracting path. Each block in the
contracting path consists of two 3 × 3 convolutional layers with a Rectified Linear Unit (ReLU)
activation function. After each block, a 2 × 2 max pooling layer reduces the dimensions of the
feature maps until the bottleneck is reached. At the bottleneck, the feature maps have a size of
I/16. In the case of EL images with a resolution of 256x256 pixels, this equals a feature map
size of 16 × 16 pixels. In contrast to the original U-Net architecture, the used architecture uses
a maximum of 256 feature map channels whereas the original goes up to 1024 channels in the
bottleneck. This reduces the number of trainable parameters and therefore model complexity.

After the bottleneck, the expansive path begins. The blocks in the expensive parts begin with a
transposed convolution layer increasing the dimensions of the feature maps. The result of the
transposed convolution is concatenatedwith the output of the corresponding blockwith the same
feature map dimensions from the contracting path. These connections, indicated by blue arrows
in Figure 4.7, are called skip connections. The concatenated feature maps are passed through
two 3 × 3 convolutional layers followed by a ReLU activation function. With each block in the
expansive path, the dimensions of the feature map double. This is repeated until the dimensions
equal the input dimensions I × I . In both the contracting path and the expansive path batch
normalization [55] is applied after each block.
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The output segmentation map has four channels for each class: No RS defect, RS defect, No
j0 defect, j0 defect. Finally, a Softmax layer is applied that converts the real numbers from the
output segmentation map into a probability map. Each channel of the probability map assigns
each pixel a probability to belong to the respective class.
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5 | Technical Experiments

5.1 General
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Figure 5.1: The full experiment workflow providing an overview. Includes measurements at ISE
and consecutive Smart Labeling as well as measurements at industrial partner.

5.1.1 Neural Network Settings

This section states all neural network design choices and details that apply to all experiments.
All networks are trained on an Nvidia TITAN Xp with 12 GiByte of memory. They are imple-
mented in the open source machine learning framework PyTorch [20]. In all experiments, the
cross entropy loss [56] function is used. It is a common choice for a multi-class classification
task. The loss function calculates the difference between the output of the neural network and
the target labels. The class balance parameter is used to take the imbalance of classes into ac-
count. The underlying assumption is that there are more non-defective pixels in the EL images
than there are pixels that are classified as defective. If this is not considered in the loss function,
the network may be incentified to predict no defect as this is correct in most cases.
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The Adam optimization algorithm [57] is used to calculate the updated trainable neural network
parameters based on the value of the loss function. One of the most important parameters of an
optimization algorithm is the learning rate, i.e., the step size with which the trainable parameters
(weights) of the neural networks are updated with. Weight decay, also calledL2 regularization, is
a technique aiming at penalizing complexity by avoiding that the weights of the neural network
grow to large [19]. The learning rate and weight decay settings will be varied in experiment 1
within a grid search. The results of Experiment 1 determine the learning rate and weight decay
choices for the consecutive experiments.

5.1.2 Evaluation Metrics

Quantitative Evaluation

The performance of each model is evaluated on the validation set using the F1 score. To under-
stand the F1 score, the concepts of precision and recall are required knowledge.
Precision can be regarded as a measure of how many of the positive predictions are actually
correct (Equation 5.1).

Precision =
TP

TP + FP
(5.1)

With:

TP : Number of true positive predictions

FP : Number of false positive predictions

Recall is a measure of how many actual positives are correctly identified by the algorithm (Equa-
tion 5.2).

Recall =
TP

TP + FN
(5.2)

With:

FN : Number of false negative predictions

Applied to the task at hand, a model not predicting any defects in the solar cell where no defects
are present has a high precision of 1. A model that finds all actual defects has a high recall of
1. However, this results in two separate scores but both of them should be maximized for ideal
model performance. For this reason, the F1 score exists. It is the harmonic mean of precision
and recall, see Equation 5.3 [19], [58]. For the interested reader, a more detailed definition and
investigation is provided by Sasaki (2007) [58].

F1 =
2 · precision · recall
precision+ recall

=
TP

TP + 1
2(FP + FN)

(5.3)

The F1 score is suitable to evaluate algorithms performing binary classification tasks. Therefore,
the two defect classes RS and j0 are evaluated individually. To do so, the respective F1 score
for both binary classification tasks (RS defect, no RS defect as well as j0 defect, no j0 defect) is
calculated.
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In the investigation, the F1 score is calculated individually for each cell. The reported F1 score
is the arithmetic mean of all F1 scores across all cells of the validation set, and the test set, re-
spectively. The same holds for any reported precision and recall values.

In model selection, the F1 score on the validation set is used at a decision threshold of 0.5 the
respect to the predicted defect probability. This means if the predicted probability for a pixel
belonging to a defect class is above 0.5, it is classified as a defect. It could be reasonable to use
the value of the loss function (the loss) as well, however, the F1 score can be regarded as a more
accurate measure of how well the model performs on the actual task. The loss curves are still
plotted for the selected scenarios to ensure that the loss is also low at the chosen training epoch.
Usually, a low loss function value also corresponds with a high F1 score. This will be discussed
in greater detail in Chapter 6 (Technical Results).

Qualitative Evaluation

For each experiment, the results for one full solar cell from the test set are analyzed qualitatively.
For this, the EL image of the cell, the labels for both RS and j0 defects, and the corresponding
predictions of the network are visualized. In the qualitative analysis, one of the best performing
scenarios is used at a decision threshold of 0.7, i.e., a pixel is classified as a defect if the neural
network predicts a probability for the defect class of 0.7 or higher. Depending on the experiment,
the performance on RS defects is analyzed more rigorously at different degrees of motion blur.
This is done by investigating the performance of the algorithm in specified image regions.

5.2 Experiment 1: Still, Non-Blurred

5.2.1 Goals

In the first experiment, the dataset relevant for all following experiments is created, and the
entire experiment workflow is established. This includes the first training of a neural network
for defect detection on still, non-moving EL images. The hyperparameters for the neural network
training determined in this experiment serve as a reference for all following experiments.

5.2.2 Measurements at Fraunhofer ISE

This project focuses on a very diverse set of TOPCon cells with a large variety of defects. The
project includes taking measurements in the laboratory at Fraunhofer ISE as there is currently
no training data available using TOPCon cells. In the laboratory of Fraunhofer ISE, cells can be
produced under pre-industrial conditions in small batches, often 10-100 cells with varying pro-
cess parameters in the different manufacturing processes. These cells are well-suitable to train
a robust defect detection algorithm, as the defect variety is much higher than in an industrial
production process where process parameters are much more constant.

All measurements to create the dataset for this experiment are carried out on the PV-TEC cell

tester, a modern highly automized measurement system for solar cells. It can measure so-called
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carriers with 100 solar cells once at a time.

The EL images are taken on a measurement system from halm elektronik GmbH. The images are
taken at an illumination time TL of 45 ms and a camera gain of 3. The current is set to 10 A.
A higher illumination time with a constant gain and current results in brighter images because
more light reaches the sensor, and a lower illumination time in turn results in darker images. The
measurement configuration is chosen in a way that the images are not saturated even with the
cells that appear the brightest in the measurements, i.e., the brightest cell determines the upper
limit of the illumination time. This means that no pixels of the EL image exceed the maximum
intensity value of 255 (at an 8-bit image).

The C-DCR images are taken on a measurement system from ISRA Vision. The device is cus-
tomized for Fraunhofer ISE. The C-DCR settings are organized in so-called recipes. The measure-
ments are taken with a recipe developed for Heterojunction (HJT) cells, i.e., it is not adapted to
TOPCon cells. There is no TOPCon-specific recipe available at this point in time. The PL mea-
surements as part of the C-DCR technique are taken at a flash power of 36 W, equal to 1 sun,
which represents standard test conditions (STC).

In total, 509 TOPCon cells are measured. Some of the cells are among the first TOPCon cells
ever produced at Fraunhofer ISE. The cell architecture differs among the batches, e.g., some have
no busbars and some have multi-busbars. This leads to different optical characteristics, posing
additional challenges to the defect detection algorithm.

5.2.3 Dataset

Some of the 509 measured cells show such severe defects that render them unsuitable for mean-
ingful defect detection. For the neural network experiments, only cells meeting the selection
criteria open circuit voltage Voc < 630 mV and conversion efficiency η > 17.5% are chosen.
Cells with a lower η show a high number of finger interruptions mostly due to errors in the met-
alization process, most likely in the screen printing process to produce the contacts. It is difficult
to label these cells correctly because the cells show dark areas across the entire cell. If produced
in industry, these cells would be considered defective in every region. It should be avoided that
inconsistent labels impact the training process negatively. Within the dataset of 509 cells, around
380 cells fulfill the selection criteria.

The dataset of 380 cells is randomly sub-divided into training (70 %), validation (15 %), and test
(15 %) subsets. The training dataset is used to train the neural network. The validation dataset is
used to select the best-performing training configuration and model. Finally, the test dataset is
used to rate the final performance of the selected models.
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5.2.4 Scenario Definition

The goal of this experiment is to find suitable parameters for training networks. Several scenarios
with different neural network parameters are defined. All scenarios are trained for 100 epochs.
The batch size is 8. The network architecture described in Section 4.4 used. All measurement
images are scale to a size of 256× 256 px2.

In the scenarios, the learning rate, weight decay, class balance, and the padding region parameter
(explained in Experiment 2, Figure 5.2) are varied. Because the training of neural networks is
computationally expensive, only a limited number of scenarios can be tested. Two different
learning rates, two different settings for the class balance, and weight decay and no weight decay
are tested in all combinations. This results in 16 scenarios in total.

Table 5.1: Defined scenarios for still measurements.

scenario id lr wd class balance padding region

0 0.00010 0.001 [0.2, 0.8] True
1 0.00010 0.001 [0.2, 0.8] False
2 0.00010 0.001 [0.05, 0.95] True
3 0.00010 0.001 [0.05, 0.95] False
4 0.00010 0.000 [0.2, 0.8] True
5 0.00010 0.000 [0.2, 0.8] False
6 0.00010 0.000 [0.05, 0.95] True
7 0.00010 0.000 [0.05, 0.95] False
8 0.00001 0.001 [0.2, 0.8] True
9 0.00001 0.001 [0.2, 0.8] False
10 0.00001 0.001 [0.05, 0.95] True
11 0.00001 0.001 [0.05, 0.95] False
12 0.00001 0.000 [0.2, 0.8] True
13 0.00001 0.000 [0.2, 0.8] False
14 0.00001 0.000 [0.05, 0.95] True
15 0.00001 0.000 [0.05, 0.95] False

5.3 Experiment 2: Artificial Motion Blur

5.3.1 Goals

The goal of this experiment is to investigate how the approach from Experiment 1 can cope with
the presence of motion blur. In the initial phase of the project, there is no dataset with real
motion blur available. Therefore, a technique to add realistic motion blur is developed in this
experiment. Additionally, the models that are trained in this experiment are used in Experiment
3 to perform transfer learning. This is to investigate if better results on the data with real motion
blur can be achieved if a model is trained with artificial motion blur.
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Furthermore, the impact of adding a “padding region” is tested in this experiment. In Figure 5.2,
a still EL measurement is shown on the left and a moving measurement is shown on the right.
The size of the image region containing information increases when motion blur is present as the
information blurs against the direction of movement, highlighted by the red rectangle. Therefore,
additional space, called padding region, is added to the bottom of the image giving the models
the opportunity to gather information from a wider region and prevent information loss.

Padding region
height

Area with possible
information loss

Figure 5.2: Illustration of the padding region approach. The red region in the blurred right image
shows the area containing information that would be lost in case the image would be kept at its
original dimensions.

As a reference, some scenarios have been trained with a padding region in Experiment 1. This al-
lows isolating the impact of the padding region on the detection performance at different degrees
of motion blur.

5.3.2 Dataset

This experiment uses the exact same dataset as Experiment 1 in Section 5.2. In the different
scenarios of this experiment, motion blur corresponding to different EL illumination times is
applied as presented in the following section.

5.3.3 Estimation of Realistic Motion Blur

Because only limited real-world data is available (only 50 cells can be measured due to high
manual effort), it is important to understand the characteristics of the motion blur originating
from the movement of the cell during the measurement.
A simplified mathematical model is used to generate samples with artificial motion blur. It can
be described by Equation 5.4, where ∗ denotes the convolution operator. The blur kernel h(x, y)
is a two-dimensional matrix that is convolved with the input image f(x, y) [59].

g(x, y) = f(x, y) ∗ h(x, y) + n(x, y) (5.4)

with:
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g(x, y) : Blurred image

f(x, y) : Original (unblurred) image

h(x, y) : Blur kernel

n(x, y) : Additive noise

h(x, y) =


1

l
, if 0 ≤ |x| ≤ l · cos(θ), |y| = l · sin(θ)

0, otherwise
(5.5)

In this case, it holds that the blur angle is zero, i.e., θ = 0. In this application, the model from
Equation 5.4 is simplified by ignoring any further noise of the capturing process of the camera,
i.e., n(x, y) is not considered. Equation 5.6 can be used to estimate the approximate range l of
motion blur in the image taken at a given illumination time TL when the object is moving with
the belt speed vb [60].

l = vb · TL (5.6)

This physical length can then be converted into the number of affected pixels (equal to the kernel
size K if the pixel size is known. The pixel size P stands for the physical distance a single pixel
represents.

K =
l

P
(5.7)

Combining Equations 5.6 and 5.7, the kernel sizeK in pixels can easily be estimated:

K =
vb · TL

P
(5.8)

To give an example, the maximum kernel size in these experiments can be estimated at the max-
imum illumination time of this experiment (TLmax = 7 ms):

Kmax =
1.9 m

s · 7 ms

160µm
px

= 83.125 px (5.9)

Finally, some simplified experiments are carried out to compare real-world blurred images with
artificial motion blur. The comparison is carried out both visually and based on the structural
similarity index (SSIM) [61]. The analysis reveals that when the blur kernel h(x, y) is only filled
with ’1s’ from y = K

2 to K , the real motion blur can be estimated more accurately. The result-
ing blur is then uni-directional. Figure 5.2 shows the application of this motion blur kernel at
TLmax = 7 ms.

5.3.4 Scenario Definition

In this experiment, mainly the padding region is switched on or off. Additionally, it is investigated
whether using a pre-trainedmodel fromExperiment 1 or training the network from scratch yields
better results.
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Table 5.2: Defined scenarios for artificial measurements.

scenario
id

pretrained
switch

lr class
balance

TL (s) padding
region

0 True 0.0001 [0.2, 0.8] 0.002 True
1 True 0.0001 [0.2, 0.8] 0.002 False
2 True 0.0001 [0.2, 0.8] 0.004 True
3 True 0.0001 [0.2, 0.8] 0.004 False
4 True 0.0001 [0.2, 0.8] 0.006 True
5 True 0.0001 [0.2, 0.8] 0.006 False
6 True 0.0001 [0.2, 0.8] 0.007 True
7 True 0.0001 [0.2, 0.8] 0.007 False
8 False 0.0001 [0.2, 0.8] 0.002 True
9 False 0.0001 [0.2, 0.8] 0.002 False
10 False 0.0001 [0.2, 0.8] 0.004 True
11 False 0.0001 [0.2, 0.8] 0.004 False
12 False 0.0001 [0.2, 0.8] 0.006 True
13 False 0.0001 [0.2, 0.8] 0.006 False
14 False 0.0001 [0.2, 0.8] 0.007 True
15 False 0.0001 [0.2, 0.8] 0.007 False

5.4 Experiment 3: Moving, Real-World Blurred

5.4.1 Goals

The goal of the third experiment is to investigate whether the developed algorithm also works on
samples with real-world motion blur and which trade-offs should be considered in the settings of
moving ELmeasurements. Finally, it is assessed if usingmodels pre-trained on still images or pre-
trained on images with artificial motion blur has a significant impact on detection performance.

5.4.2 Measurements at Industrial Partner

For the real-world measurements with motion blur, only 50 TOPCon cells can be measured be-
cause those measurements require a lot of manual work, because of manual contacting of the
cell, changing measurement parameters, alignment of images, etc. Measuring one cell with four
different illumination times takes around 5 minutes including contacting and decontacting. Con-
sidering other overhead, such as getting familiar with the measurement device prototype, 50 cells
can realistically be measured per working day. Constraining the required time is important be-
cause visiting the industrial partner company requires a business trip including a hotel stay. The
50 cells are selected based on the measurements for Experiment 1.
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Initial experiments at the industrial partner company revealed that very faulty cells appear too
dark in EL images, especially in moving measurements. The partner company suggested using
the grid resistance and the open circuit voltage Voc as indicators for the cell selection. The grid
resistance is a measure of the resistance of the metal grid pattern on the front of the solar cell.
A high grid resistance can indicate a faulty metalization, i.e., the contacts are faulty. This both
inhibits measuring the cell and using the cell in-field to produce electricity because the current
flow is inhibited by the high grid resistance. The chosen indicators Rgridfront

and Rgridrear are
used by the measurement system at Fraunhofer ISE but not industry standard. Every other indi-
cator to ensure the resistance of the cell is not too high would be suitable as well.

To select around 50 cells, four cell categories are defined as shown in Table 5.3.

Table 5.3: Cell classes for measurements at industrial partner company.

Class 1

• Rgridfront
< 160 Ω

m

• Rgridrear < 130 Ω
m

• Voc ≥ 690 mV
• 12 cells

Class 2

• Similar Rgrid as Class 1
• 687 ≥ Voc ≥ 690 mV
• 25 cells

Class 3

• Manual selection by visual in-
spection, less strict boundaries
for Rgrid and Voc

• High diversity: Round defects,
dark edge regions, distributed
finger interruptions, cracks

• 6 cells

Class 4

• Similar to Class 3, even more se-
vere defects based on visual in-
spection

• 9 cells

The four classes aim at covering a large variety of defects that occur across the entire dataset.
The values are chosen by observing the distribution of the values of the three decision variables
across the dataset. The selection criteria have been chosen in a way that ensures that 50 samples
are available for the moving measurements, even though all cells cannot be considered “perfect”
by industrial standards.

The measurements with the prototype at the industrial partner company should cover different
measurement settings with different illumination times. This is to investigate the trade-off be-
tween different settings. On the one hand, it must be considered that the lower the illumination
time, the darker the image. The darker the image, the harder it becomes to separate useful infor-
mation, i.e. the signal, from the noise in the image, i.e. the signal-to-noise ratio decreases. On the
other hand, the higher the illumination time, the higher the motion blur that occurs due to the
movement of the cell. Therefore, each of the 50 cells is measuredwith four different measurement
settings, so-called recipes, as defined in Table 5.4.
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Table 5.4: Measurement recipes for moving measurements at industrial partner.

Recipe TL (ms) G I (A)

1 2 4 20
2 4 2 20
3 6 3 10
4 7 2 10

TL : EL illumination time
G : EL camera gain (multiplier)
I : Current applied to cell

5.4.3 Dataset

From the 50 measured cells, only 38 cells are available for the neural network experiments. This
is because some cells have been damaged when they have been measured again at Fraunhofer
ISE for new reference measurements. The dataset of 38 cells is divided into training (60 %),
validation (20 %), and test (20 %) subsets. The shares differ from the previous experiments because
of the low number of samples. Using validation and test shares of 20 %, at least 7-8 samples are
available to judge the model’s performance. This is a rather low number for machine learning
standards. However, it has to be considered in semantic segmentation that every pixel is subject
to a classification task. Even with 8 samples, at a resolution of 256 × 256 pixels, there are still
8 · 256 · 256 = 524, 288 classification tasks carried out that are evaluated by the quantitative
metrics.

5.4.4 Scenario Definition

In scenarios 0-3, a pre-trained model is loaded that is trained on artificial motion blur assuming
the same illumination time of the real images as shown in Table 5.5. Furthermore, in scenarios
4-7, the best performing pre-trained model trained on still images is loaded. This is to evaluate if
training images with artificial motion blur on a higher number of samples has a positive impact
on the model’s performance. All other network parameters are the same as the parameters of
the best-performing model from Experiment 1.
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Table 5.5: Defined scenarios for real measurements.

scenario
id

pretrained
switch

lr class
balance

TL (s) top
padding

0 Artificial 0.0001 [0.2, 0.8] 0.002 True
1 Artificial 0.0001 [0.2, 0.8] 0.004 True
2 Artificial 0.0001 [0.2, 0.8] 0.006 True
3 Artificial 0.0001 [0.2, 0.8] 0.007 True
4 Still 0.0001 [0.2, 0.8] 0.002 True
5 Still 0.0001 [0.2, 0.8] 0.004 True
6 Still 0.0001 [0.2, 0.8] 0.006 True
7 Still 0.0001 [0.2, 0.8] 0.007 True
8 False 0.0001 [0.2, 0.8] 0.002 True
9 False 0.0001 [0.2, 0.8] 0.004 True
10 False 0.0001 [0.2, 0.8] 0.006 True
11 False 0.0001 [0.2, 0.8] 0.007 True
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6 | Technical Results

6.1 Experiment 1: Still, Non-Blurred

6.1.1 Quantitative Results

Validation Set Performance and Model Selection

Table 6.1: Results of the still measurement scenarios on the validation set. These results are used
to select two of the best performing models, one with and one without padding region. The two
chosen scenarios are highlighted in colors corresponding to the scenario plots in Figures 6.1, 6.2,
and 6.3.

scenario id padding region best F1 RS best epoch RS best F1 j0 best epoch j0

0 True 0.691 45 0.845 43
1 False 0.692 54 0.848 50
2 True 0.612 99 0.818 46
3 False 0.597 98 0.815 99
4 True 0.683 44 0.847 50
5 False 0.694 46 0.840 49
6 True 0.598 46 0.817 58
7 False 0.587 52 0.804 58
8 True 0.667 99 0.826 99
9 False 0.670 86 0.836 99
10 True 0.558 85 0.773 99
11 False 0.535 99 0.750 99
12 True 0.663 73 0.837 99
13 False 0.669 78 0.833 99
14 True 0.538 53 0.741 88
15 False 0.550 81 0.758 99

Based on the validation set, two models have been selected for testing and further use in the fol-
lowing experiments. As can be seen from Figure 6.1, the class balance parameters has the most
significant influence on the F1 score for RS defects. Scenario 5 using a class balance of [0.2, 0.8]
is the best performing model without padding region achieving an F1 score for RS defects of
0.694. Changing the class balance in scenario 7 to [0.05, 0.95] alone reduces the F1 score to 0.598.
The impact of the class balance parameter on the RS detection performance can be seen well in
Figure 6.1. Scenario 4 is the best performing scenario with padding region using a class balance
of [0.2, 0.8]. Scenario 6 used exactly the same settings except for changing the class balance to
[0.05, 0.95], also significantly worsening the performance. The learning rate has the second most
significant influence with 0.0001 performing better than 0.00001. Only in very few cases weight
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decay has a positive influence.
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Figure 6.1: Validation accuracy forRS defects after each training epoch. Plot compares scenarios
4 and 5 (best results with and without padding region) and scenarios 6 and 7 (only changed class
balance to [0.05, 0.95]). It can be seen that the class balance parameter has a significant influence
on the RS F1 score.

The detection of j0 defects is much less sensitive towards parameter settings as shown in Figure
6.2. All scenarios show a very similar performance.
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Figure 6.2: Validation accuracy for j0 defects after each training epoch. The plot compares sce-
narios 4 and 5 (best results with and without padding region) and scenarios 6 and 7 (only changed
class balance to [0.05, 0.95]). The influence on the j0 F1 score is rather low.

The models are sensitive toward overfitting. Figure 6.3 shows that the value of the combined
loss function on the validation set increases for all plotted scenarios after around the 50th epoch.
This is because the models learn the training dataset too well (overfitting), negatively impacting
generalizability.
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Figure 6.3: Combined validation loss for j0 defects after each training epoch. The plot compares
scenarios 4 and 5 (best results with and without padding region) and scenarios 6 and 7 (only
changed class balance to [0.05, 0.95]). Especially for scenario 5, the validation loss increases
again after the 50th epoch which indicates overfitting.

Because detecting RS defects can be considered the more challenging task, the models are se-
lected based on their performance on RS defects. In particular, the models from scenarios 4 and
5 are selected based on their good performance on the RS defects. Due to their performance on
the validation set, scenario 4 (with padding region) and scenario 5 (without padding region) are
selected for evaluation on the test set as well as for transfer learning in later experiments.

Even though scenario 0 with weight decay performs slightly better by a very small margin than
scenario 4 without weight decay, scenario 4 is chosen to limit the complexity of parameters in
consecutive experiments. For both scenarios, the model from the training epoch performing best
on RS defects is selected.

Test Set Performance

Table 6.2: Results on the test set for selected scenarios of experiment 1. P: Precision, R: Recall,
F1: F1 score

scenario id TL (s) class threshold P RS R RS F1 RS P j0 R j0 F1 j0

4 0 0.3 0.493 0.921 0.636 0.743 0.969 0.826
5 0 0.3 0.522 0.886 0.651 0.718 0.947 0.798
4 0 0.5 0.593 0.852 0.695 0.799 0.940 0.850
5 0 0.5 0.622 0.805 0.695 0.787 0.906 0.823
4 0 0.7 0.698 0.739 0.715 0.853 0.891 0.857
5 0 0.7 0.727 0.687 0.698 0.855 0.832 0.823
4 0 0.9 0.850 0.486 0.608 0.920 0.751 0.810
5 0 0.9 0.877 0.435 0.565 0.938 0.614 0.715

In the evaluation on the test set, the analysis is carried out at different decision thresholds. The
meaning of the decision threshold is explained in Section 5.1.2. From Table 6.2 it can be seen that
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the F1 score for the RS defect is highest on either a decision threshold of 0.5 or 0.7. A decision
threshold of 0.7 is used for the discussion of qualitative results in all consecutive experiments
and analyses.

6.1.2 Qualitative Results

Analysis of Whole Cells

Figure 6.4 and Figure 6.5 show that the network from scenario 4 is capable of predicting defects in
still EL images of solar cells. The upper left image is the EL image as it is passed to the network. In
both figures, the two black images in the upper row show the labels forRS and j0 defects. White
areas represent defects. The two black images in the bottom row show the defects as predicted
by the network. The images show the performance on two cells from different batches selected
for a qualitative analysis. In both cases, the j0 prediction looks very similar to the corresponding
label. Severe RS defects that are clearly visible in the EL images are reliably detected as well.
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Figure 6.4: Performance of algorithm in scenario 4 on cell 210015ISE0748 at a decision threshold
of 0.7.
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Figure 6.5: Performance of algorithm in scenario 4 on cell 210266ISEn337 at a decision threshold
of 0.7. This cell shows a crack which is correctly predicted as j0 and partially as RS defect by
the algorithm.

6.2 Experiment 2: Artificial Motion Blur

6.2.1 Quantitative Results

Validation Set Performance and Model Selection

Similar to Experiment 1, the scenarios with the highest F1 score forRS defects on the validation
set is selected for both the qualitative analysis and to transform transfer learning in consecutive
experiments. For each illumination time, one scenario is selected based on Table 6.3.
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Table 6.3: Results of the artificial motion blur scenarios on the validation set. All results are based
on a decision threshold of 0.5. These results are used to select the best-performing models for
each illumination time. The four chosen scenarios are highlighted in colors corresponding to the
scenario plots in Figures 6.6, 6.6, and 6.8.

scenario
id

TL

(ms)
padding
region

pre-
trained

best F1

RS

best
epoch

RS

best F1

j0

best
epoch

j0

0 0.002 True True 0.646 18 0.838 27
1 0.002 False True 0.641 23 0.842 47
2 0.004 True True 0.615 32 0.839 26
3 0.004 False True 0.604 30 0.835 48
4 0.006 True True 0.614 24 0.846 26
5 0.006 False True 0.584 33 0.844 31
6 0.007 True True 0.607 29 0.842 31
7 0.007 False True 0.572 25 0.841 29
8 0.002 True False 0.638 48 0.841 49
9 0.002 False False 0.630 38 0.839 49
10 0.004 True False 0.592 49 0.814 49
11 0.004 False False 0.586 48 0.827 49
12 0.006 True False 0.589 49 0.825 49
13 0.006 False False 0.552 46 0.827 49
14 0.007 True False 0.574 49 0.830 45
15 0.007 False False 0.563 47 0.830 49

On the validation set, all scenarios using a padding region perform slightly better. The effect of
pretraining is higher for RS than for j0 as can, for example, be seen when comparing scenarios
2 and 10. Generally, the results show that the F1 score of the RS defect detection decreases with
increasing illumination time (see Figure 6.6) while the j0 detection performance remains almost
constant (see Figure 6.7).

Using models that are pretrained on still images can improve the results and training speed for
all illumination times. Similar to the results from Experiment 1 the performance on j0 defects is
higher and the impact of the motion blur on detecting these defects is lower.
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Figure 6.6: Validation accuracy for RS defects after each training epoch on artificially blurred
data set. Plot compares all chosen scenarios (one for each illumination time). Scenario 0 (2 ms),
scenario 2 (4 ms), scenario 4 (6 ms), scenario 6 (7 ms). It can be seen that the F1 score reduces
most significantly from 2 ms to 4 ms.
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Figure 6.7: Validation accuracy for j0 defects after each training epoch on artificially blurred data
set. The plot compares all chosen scenarios (one for each illumination time). Scenario 0 (2 ms),
scenario 2 (4 ms), scenario 4 (6 ms), scenario 6 (7 ms). It can be seen that the influence of motion
blur on the j0 F1 score is rather low compared to the influence on RS in Figure 6.6.
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Figure 6.8: Combined validation loss for j0 defects after each training epoch. The plot compares
all chosen scenarios (one for each illumination time). Scenario 0 (2ms), scenario 2 (4ms), scenario
4 (6 ms), scenario 6 (7 ms).
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Figure 6.9: Combined validation loss for j0 defects after each training epoch. The plot compares
all scenarios trained with artificial motion blur simulating an illumination time of 7 ms. The loss
of the scenarios without pre-trained models (scenarios 14 and 15) decreases significantly slower.
The scenario using a pre-trained model and a padding region (scenario 6) achieves the lowest
loss (i.e., best performance).

Test Set Performance

The evaluation on the test set is carried out for different decision thresholds between 0.3 and 0.9.
As the validation set results in Table 6.3 are based on a decision threshold of 0.5, this decision
threshold has to be used when comparing validation set performance and test performance from
Table 6.4. The test set results at a decision threshold of 0.5 are slightly better than the validation
set results. The share of the number of cells from each cell batch differs between the validation
and test dataset, i.e., more “challenging” cells could be included in the validation set.
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Table 6.4: Results on the test set for selected scenarios of experiment 2. P: Precision, R: Recall,
F1: F1 score

scenario id TL (s) class threshold P RS R RS F1 RS P j0 R j0 F1 j0

0 0.002 0.3 0.489 0.862 0.620 0.684 0.971 0.787
2 0.004 0.3 0.466 0.883 0.606 0.741 0.970 0.826
4 0.006 0.3 0.442 0.860 0.580 0.706 0.965 0.801
6 0.007 0.3 0.435 0.878 0.578 0.733 0.960 0.818
0 0.002 0.5 0.604 0.750 0.665 0.749 0.951 0.823
2 0.004 0.5 0.568 0.798 0.661 0.797 0.943 0.850
4 0.006 0.5 0.552 0.759 0.635 0.766 0.942 0.832
6 0.007 0.5 0.540 0.785 0.636 0.790 0.928 0.841
0 0.002 0.7 0.720 0.596 0.646 0.816 0.913 0.847
2 0.004 0.7 0.675 0.677 0.673 0.852 0.897 0.860
4 0.006 0.7 0.668 0.622 0.639 0.828 0.900 0.849
6 0.007 0.7 0.652 0.657 0.651 0.844 0.876 0.847
0 0.002 0.9 0.884 0.313 0.453 0.904 0.780 0.821
2 0.004 0.9 0.832 0.429 0.559 0.922 0.773 0.825
4 0.006 0.9 0.834 0.362 0.497 0.909 0.766 0.815
6 0.007 0.9 0.819 0.401 0.531 0.916 0.733 0.797

Figure 6.10 shows the distribution of F1 scores for both defect classes at each simulated illumi-
nation time on the test set with artificial motion blur. Each dot represents one cell in the test
set. The standard deviation for j0 defects is lower than for RS defects indicating a more reliable
prediction. For both classes, the mean F1 score is highest at TL = 4 ms but does not differ
significantly between the four illumination times.
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Figure 6.10: Boxplots showing the distribution of F1 scores for both defect classes at each illu-
mination time at a decision threshold of 0.7.
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6.2.2 Qualitative Results

Analysis of Whole Cells

The same cells as in Experiment 1 are selected for a qualitative inspection. Artificial motion blur
simulating TL = 4 ms is applied to the cells before they are passed to the model from scenario
2. Compared to Figure 6.5 and Figure 6.11 from Experiment 1, no significant degradation in
performance can be observed for both cells in Figur. Again the labels are shown in the first row
while the model’s predictions are visualized below them.
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Figure 6.11: Performance of algorithm in scenario 2 (TL = 4 ms) on cell 210015ISE0748 at a
decision threshold of 0.7.
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Figure 6.12: Performance of algorithm in scenario 2 (TL = 4 ms) on cell 210266ISEn337 at a
decision threshold of 0.7. This cell shows a crack that is correctly predicted as a j0 defect by the
algorithm.

Detailed Analysis of RS Defects

The insights gained from the quantitative results alone are not sufficient to understand the char-
acteristics of its predictions in different scenarios in detail. The F1 scores are similar. Addi-
tionally, they are computed based on the smart labels. The Smart Labeling algorithm uses very
sensitive settings, therefore it labeled also very minor finger interruptions hardly visible in EL
images. Hence, the shape of the predictions does not necessarily match the labels precisely even
though the prediction can still be sufficiently accurate.

Two cells are selected to test the preliminary result that little degradation in performance can be
observed when applying artificial motion blur. For both cells, a clearly visible finger interruption
in the still EL image is identified by a human expert. The defect region is then marked in both the
still and the EL images with motion blur. The images with motion blur from each illumination
time are then fed into the network trained with images taken at the same illumination time. Due
to the similarity of the 6 and 7 ms results, the 6 ms pictures are not plotted. An example of this
analysis can be seen in Figure 6.15. The first row shows the full still EL image of the cell (left), a
close-up image of the defect region (middle), and the label at this position (right). The other rows
follow the same scheme but with moving images taken at 2 ms, 4 ms, and 7 ms illumination time.
In these rows, the right plot shows the neural network prediction at the defect region instead of
the label.
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Figure 6.15 and Figure 6.14 reveal that the impact of the motion blur on the detection of finger
interruptions is insignificant reflecting the results from the quantitative results. The predicted
shape slightly changes, however, no general rule of how the shape changes can be observed.
Overall, it can be said that the labels can remain in the same position and do not need to be
changed in case of motion blur.
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(a) Still image reference and label from Smart Labeling
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(b) Image with artificial motion blur at TL = 2 ms and prediction using model from scenario 0
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(c) Image with artificial motion blur at TL = 4 ms and prediction using model from scenario 2
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(d) Image with artificial motion blur at TL = 7 ms and prediction using model from scenario 6

Figure 6.13: Finger interruption detection in images with artificial motion blur at different illumi-
nation times including still EL image as a reference for comparison (cell 210015ISE0748). Beware
that the close-up images of the defect region are cropped from the original EL image at 1024x1024
pixels resolution while the network is only provided with a downscaled input of 256x256 pixels.
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(a) Still image reference and label from Smart Labeling
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(b) Image with artificial motion blur at TL = 2 ms and prediction using model from scenario 0
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(c) Image with artificial motion blur at TL = 4 ms and prediction using model from scenario 2
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(d) Image with artificial motion blur at TL = 7 ms and prediction using model from scenario 6

Figure 6.14: Finger interruption detection in images with artificial motion blur at different illumi-
nation times including still EL image as a reference for comparison (cell 210015ISE0819). Beware
that the close-up images of the defect region are cropped from the original EL image at 1024x1024
pixels resolution while the network is only provided with a downscaled input of 256x256 pixels.

As a second analysis, a region with no defects is analyzed to gain some visual understanding
of false positive predictions. In Figure 6.15 there is one false-positive prediction at TL = 4 ms
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while all other models do not predict any defects in the same region.
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(a) Still image reference and label from Smart Labeling
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(b) Image with artificial motion blur at TL = 2 ms and prediction using model from scenario 0
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(c) Image with artificial motion blur at TL = 4 ms and prediction using model from scenario 2
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(d) Image with artificial motion blur at TL = 7 ms and prediction using model from scenario 6

Figure 6.15: Example of false-positive detections at TL = 4 ms (cell 210015ISE0748). At other
illumination times, there is no false positive prediction.
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6.3 Experiment 3: Moving, Real-World Blurred

6.3.1 Quantitative Results

Validation Set Performance and Model Selection

Table 6.5: Results of the real measurement scenarios on the validation set. These results are used
to select the best-performing models for each illumination time. The four selected scenarios are
highlighted in light blue.

scenario
id

TL

(ms)
padding
region

pre-
trained

best F1

RS

best
epoch

RS

best F1

j0

best
epoch

j0

0 0.002 True Artificial 0.579 11 0.755 49
1 0.004 True Artificial 0.602 22 0.791 22
2 0.006 True Artificial 0.546 19 0.755 49
3 0.007 True Artificial 0.527 11 0.783 20
4 0.002 True Still 0.577 9 0.783 23
5 0.004 True Still 0.596 8 0.785 30
6 0.006 True Still 0.549 21 0.786 22
7 0.007 True Still 0.519 22 0.784 42
8 0.002 True False 0.549 44 0.738 48
9 0.004 True False 0.569 46 0.703 46
10 0.006 True False 0.483 49 0.722 49
11 0.007 True False 0.486 49 0.728 47

For every illumination time, one best-performing model is selected. Figure 6.16 shows the model
selection for the models at TL = 7 ms. Scenario 3 using a pre-trained model trained on artificial
motion blur performs best but only by a small margin. Not using any pre-trained model is not
recommended as it produces worse results. However, considering the small size of the training
dataset with real motion blur (22 samples) it is remarkable which accuracy is achieved without
pretraining. From the validation set results, it can be seen that pre-trained models help to achieve
better results. The difference between using models trained on artificial motion blur and still
images is low especially for j0 defects.
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Figure 6.16: Validation accuracy for RS defects comparing all scenarios trained on images at
TL = 7 ms. While the pre-trained models trained on artificial motion blur (scenario 3) and still
(scenario 7) lead to a similar performance on the moving images, the model without pretraining
(scenario 11) does not reach the same performance after 30 epochs.
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Figure 6.17: Validation accuracy for j0 defects comparing all scenarios trained on images at TL =
7 ms. Similar to RS defects, the pre-trained models perform significantly better.

Test Set Performance

The models selected based on the validation set performance are evaluated using the test set at
different decision thresholds. The results are presented in Table 6.6. The results between the
validation set and test set do not differ significantly. As for the results in Experiments 1 and 2, a
decision threshold of 0.7 yields the highest F1 scores.
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Table 6.6: Results on the test set for selected scenarios of experiment 3. P: Precision, R: Recall,
F1: F1 score

scenario id TL (s) class threshold P RS R RS F1 RS P j0 R j0 F1 j0

0 0.002 0.3 0.435 0.662 0.523 0.452 0.960 0.596
1 0.004 0.3 0.519 0.635 0.569 0.577 0.926 0.695
6 0.006 0.3 0.380 0.641 0.476 0.479 0.941 0.612
7 0.007 0.3 0.394 0.625 0.483 0.470 0.947 0.601
0 0.002 0.5 0.527 0.579 0.550 0.521 0.921 0.643
1 0.004 0.5 0.597 0.566 0.579 0.653 0.873 0.729
6 0.006 0.5 0.468 0.573 0.514 0.553 0.903 0.662
7 0.007 0.5 0.504 0.546 0.524 0.547 0.899 0.646
0 0.002 0.7 0.620 0.484 0.541 0.606 0.863 0.685
1 0.004 0.7 0.677 0.486 0.563 0.723 0.794 0.738
6 0.006 0.7 0.569 0.497 0.529 0.640 0.838 0.698
7 0.007 0.7 0.626 0.458 0.528 0.639 0.826 0.680
0 0.002 0.9 0.779 0.325 0.457 0.734 0.702 0.688
1 0.004 0.9 0.809 0.336 0.473 0.851 0.638 0.710
6 0.006 0.9 0.749 0.351 0.476 0.797 0.673 0.702
7 0.007 0.9 0.802 0.310 0.446 0.792 0.659 0.677

Figure 6.18 shows the distribution of F1 scores for both defect classes at each illumination time.
It can be seen that the average score is highest for TL = 4 ms. Each dot corresponds to one solar
cell in the test set. The low number of samples in the test set (8 samples) however limits the ability
to draw statistical conclusions. Therefore, the qualitative analysis carried out in the next section
is key to understanding the detection performance of the algorithm at different measurement
settings in detail.
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Figure 6.18: Boxplots showing the distribution of F1 scores for both defect classes at each illu-
mination time at a decision threshold of 0.7.
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6.3.2 Qualitative Results

Analysis of Whole Cells

Figure 6.19 shows convincing results for the j0 defects. Severe RS defects (finger interruptions)
are found as well. However, the network also predicts finger interruptions where no interrup-
tions are labeled. Given that the Smart Labeling is generally very sensitive towards finger inter-
ruptions, e.g. sometimes even interruptions hardly visible in the EL image are labeled, it can be
assumed that the network is predicting some non-existing interruptions.
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Figure 6.19: Performance of algorithm in scenario 1 (TL = 4 ms) on cell 210015ISE0748 at a
decision threshold of 0.7.

Detailed Analysis of RS Defects

To copewith thementioned limitations of the quantitative analysis, the algorithm performance is
evaluated in detail on different defects. At first, three different cells from the test set are selected
and regions with finger interruptions are chosen. Compared to Experiment 2, the qualitative
analysis of this experiment is more elaborate because the results differ between different illumi-
nation times.

In Figure 6.20, it can be seen that a clearly visible finger interruption is successfully found at
TL = 4 ms. At the other illumination times, the detection is less accurate but does not fail
completely as part of the defective regions are still detected.
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(a) Still image reference and label from Smart Labeling
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(b) Moving image at TL = 2 ms and prediction using model from scenario 0
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(c) Moving image at TL = 4 ms and prediction using model from scenario 1
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(d) Moving image at TL = 7 ms and prediction using model from scenario 3

Figure 6.20: Finger interruption detection in moving images at different illumination times in-
cluding still EL image as a reference for comparison (cell 210015ISE0748). Beware that the close-
up images of the defect region are cropped from the original EL image at 1024x1024 pixels reso-
lution while the network is only provided with a downscaled input of 256x256 pixels.

In Figure 6.21, the prediction works best at TL = 4 ms as well. At the other illumination times,
the network is totally unable to correctly predict the finger interruption.
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(a) Still image reference and label from Smart Labeling
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(b) Moving image at TL = 2 ms and prediction using model from scenario 0
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(c) Moving image at TL = 4 ms and prediction using model from scenario 1
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(d) Moving image at TL = 7 ms and prediction using model from scenario 3

Figure 6.21: Finger interruption detection in moving images at different illumination times in-
cluding still EL image as a reference for comparison (cell 210015ISE0709). Beware that the close-
up images of the defect region are cropped from the original EL image at 1024x1024 pixels reso-
lution while the network is only provided with a downscaled input of 256x256 pixels.

In the third cell, the network at 4 ms is the only one capable of detecting a strong finger inter-
ruption while the others do not find the defect (see Figure 6.22).

56



TECHNICAL RESULTS

0 1000
x (px)

0

500

1000

y 
(p

x)
Still EL (reference)

0 50
x (px)

0

20

40y 
(p

x)

Defect close-up 
 still

0 10
x (px)

0

5

10

y 
(p

x)

RS close-up label

5.0

2.5

0.0

2.5

5.0 Norm
. EL intensity

5.0

2.5

0.0

2.5

5.0 Norm
. EL intensity

(a) Still image reference and label from Smart Labeling
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(b) Moving image at TL = 2 ms and prediction using model from scenario 0
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(c) Moving image at TL = 4 ms and prediction using model from scenario 1
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(d) Moving image at TL = 7 ms and prediction using model from scenario 3

Figure 6.22: Finger interruption detection in moving images at different illumination times in-
cluding still EL image as a reference for comparison (cell 210015ISE0819). Beware that the close-
up images of the defect region are cropped from the original EL image at 1024x1024 pixels reso-
lution while the network is only provided with a downscaled input of 256x256 pixels.

In Figure 6.23 the detection of finger interruption of different severities is investigated. The
selected region is bigger than in the previous qualitative analyses. The prediction at TL = 7 ms
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is clearly the worst. It overlooks the strong interruption in the left side of the selected region
that is visible in the middle of Figure 6.23. At 2 ms, a higher number of small defect regions are
predicted while the prediction at 4 ms looks cleaner. Whether the prediction at TL = 2 ms or at
TL = 4 ms is better is therefore difficult to judge.
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(a) Still image reference and label from Smart Labeling
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(b) Moving image at TL = 2 ms and prediction using model from scenario 0
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(c) Moving image at TL = 4 ms and prediction using model from scenario 1
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(d) Moving image at TL = 7 ms and prediction using model from scenario 3

Figure 6.23: Finger interruption detection in moving images at different illumination times in-
cluding still EL image as a reference for comparison (cell 210015ISE0691). Beware that the close-
up images of the defect region are cropped from the original EL image at 1024x1024 pixels reso-
lution while the network is only provided with a downscaled input of 256x256 pixels.

Lastly, an image region that contains no defects is chosen in cell 210015ISE0748 to investigate
the false positive behavior of the networks. In Figure 6.24 it can be seen that the networks at
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TL = 2 ms or TL = 4 ms predict thin rectangular bar-shaped at different locations. The
false-positive prediction at TL = 2 ms is much bigger than at TL = 4 ms.
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(a) Still image reference and label from Smart Labeling
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(b) Moving image at TL = 2 ms and prediction using model from scenario 0
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(c) Moving image at TL = 4 ms and prediction using model from scenario 1
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(d) Moving image at TL = 7 ms and prediction using model from scenario 3

Figure 6.24: Finger interruption detection in moving images at different illumination times in-
cluding still EL image as a reference for comparison (cell 210015ISE0748). Beware that the close-
up images of the defect region are cropped from the original EL image at 1024x1024 pixels reso-
lution while the network is only provided with a downscaled input of 256x256 pixels.
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Generally, it can be said that the prediction at TL = 4 ms is the most reliable: In all presented
examples, it has been capable of detecting clearly visible interruptions. Low-contrast interrup-
tions are generally not found very well. It can be argued that some labeled interruptions are
not visible enough in the EL images, especially not in moving images with a low signal-to-noise
ratio, but they are most visible in the C-DCR reference used for labeling.

Generalizability to Other Cells

In an independent evaluation, a TOPCon cell provided by the measurement device prototype
manufacturer is measured at all illumination times. The cell is manufactured in China under
industrial conditions. The cell is considered non-defective by industrial standards. It has not
been included in the training. A moving EL image of this cell taken at TL = 4 ms is passed to
the model of scenario 1. The algorithm response to the unknown sample can be seen in Figure
6.25. The algorithm still predicts defects even though the cell is considered defect-free. This be-
havior is expected because the sample is out of the data distribution that the network has learned.

However, measuring the industrial TOPCon cell still provides important insights regarding the
industrial adaptability of the algorithm. The moving image in the upper left image in Figure
6.25 has been normalized using the pixel intensity mean and standard deviation of the moving
dataset from Experiment 3 at TL = 4 ms consisting of experimental cells from Fraunhofer ISE.
Comparing the industrial cell to an experimental ISE cell, e.g. see Figure 6.19, it can be seen
that the industrial cell is much brighter at the same illumination time. This indicates that other
measurement parameters can be chosen for industrial-grade cells, e.g. shorter illumination time
or lower gain, leading to higher quality images that are easier to be processed by the CNN.
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Figure 6.25: Performance of algorithm in scenario 1 (TL = 4 ms) on non-defective reference cell
5 at a decision threshold of 0.7.
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7 | Technical Discussion

7.1 Detection Accuracy and Impact of Motion Blur

Experiment 2 revealed that the impact of the artificial motion blur on the detection accuracy is
rather low, i.e., CNNs can deal well with artificial linear motion blur. Experiment 3 also shows
that the difference between using a pre-trained model with artificial motion blur or a model
trained on still images is relatively low. Therefore, it becomes obvious that the approach used to
estimate the motion blur is not comprehensive enough even though it looks realistic to a human
observer. The camera noise should be estimated as well to create a realistic estimate of moving
EL images.

Ideally, Experiment 3 would not require any additional training. This would require estimating
the characteristics of motion blur realistically enough in order to train a network with realistic
artificial samples. The dataset gathered in Experiment 3 can be used for a more realistic noise
estimation to create a new dataset with artificial motion blur for future experiments. Aligning
the moving images, i.e., cropping out only those regions where the cell is visible, from Experi-
ment 3 with the labels currently requires high manual effort because the blurry edges cannot be
detected reliably by the applied alignment algorithm.

For images with real motion blur, it can generally be said that the prediction at TL = 4 ms is the
most reliable. This indicates the required careful trade-off between motion blur and camera gain.
Images taken at TL = 2 ms at a high camera gain of 4 do not contain enough information to be
reconstructed by the applied approach. The focus in finding the right parameters for moving EL
images should not only be put on avoiding or reducing motion blur itself even though it strikes
the human observer the most on the first sine.

While the size of j0 defect areas is often predicted accurately, the exact size of finger interrup-
tions is hard to predict in moving images with the applied approach. The size of predicted finger
interruption regions tends to reduce in moving images. This could have implications when cal-
culating quantities, e.g., power loss, based on the size of the affected region. The reason why j0

defect areas are less impacted by motion blur can be explained by the geometric properties of the
defect: While the finger interruptions causing the RS defects have a bar shape perpendicular to
the direction of movement, the j0 defects generally form a larger closed area. Hence, the infor-
mation about the thin bar-shaped finger is more likely to be impacted by linear motion blur.

Clear advice is given that images with motion blur should not be cropped too tightly. This is
shown by the padding region experiments. The experimental results from Experiments 1 and 2
indicate that the hypothesis that the regions around the cell affected by motion blur contain im-
portant information that the CNN can recover is right. Another reason why the detection perfor-
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mance is better with a padding region that has been considered is that the area of non-defective
regions increases while the area containing defect regions remains constant. The assumption
would be that it is easy to predict that the padding region contains no defects. But Experiment 1
(without motion blur) included scenarios with and without padding region. On still images with-
out motion blur, no significant difference with and without a padding region could be observed.
This indicates the positive impact of a padding region on the F1 score for images with motion
blur.

Finally, it should be mentioned that comparing the performance on the real-world dataset and
the artificially blurred dataset is slightly “unfair” due to the very different sizes of the training
and validation dataset, as well as the necessarily different settings of the EL images.

7.2 Smart Labeling

The refined Smart Labeling approach opens many opportunities for the simplified deployment
of neural networks for quality inspection as proposed by Kunze et al. (2020) [5]. The improved
approach in this work is more robust against variations of cells and therefore strengthens the
big advantage of Smart Labeling to adopt neural networks for quality inspection easily to new
production processes. Human labeling effort can be reduced and the physical meaning of the
reference measurement leads to a clear definition of labels defined. In this work, the labels have
been only evaluated qualitatively. For further research, it would be recommended to statistically
evaluate the advantage over human labels.

The clear physical definition of j0 defects based on physical thresholds seems to have a big advan-
tage in detection accuracy whereas the more feature-based RS labeling has a lower correlation
with the EL image. The C-DCR measurement technique has not fully been adopted to TOPCon
yet, especially resulting in inhomogeneousRS images. Therefore, it was not possible to rely only
on physical quantities for RS defects.

Fine-tuning C-DCR toworkmore reliablywith TOPConwould be key to generatingmore reliable
RS labels. This may include testing new measurement recipes in the laboratory. The developed
approach using dynamic adaptive thresholding for RS defect labeling is very sensitive. It labels
even some defects that can hardly be seen in the EL image. In this case, the neural network can
also not detect the defect and the loss function punishes the network for something that even the
best algorithm could detect. The statistical evaluation using the F1 score is negatively impacted
by this as well. The qualitative analyses however have proven to be a good means of coping with
this weakness by focusing on finger interruptions that are clearly visible in the still EL image.

7.3 Dataset

The dataset is rather imbalanced as it does not contain cells without any faults due to the ex-
perimental stage of the cells. Because the used cells stem from scientific experiments, they differ
much more from each other than on an industrial production line. It can be expected that the
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detection accuracy would increase if only one cell type is used in training. Additionally, the re-
sults could improve significantly when using industrial cells that generally appear brighter in
EL images as they have a higher open-circuit voltage and conversion efficiency. With brighter
industrial cells and therefore lower camera gain and lower illumination time (not higher than 4
ms), it can be assumed that defects clearly visible in EL images can be detected reliably by CNNs.
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8 | Sustainability Approach and
Initial Assessment

In this chapter, a general framework to assess the possible impacts of the technical innovation
in the field of PV quality inspection is defined. The algorithm and process level of the new
framework are directly applied to gain an overview of possible sustainability implications and to
allow for the definition of experimental scenarios in Chapter 9.

8.1 Framework Definition

On the one hand, the view for any large-scale consequences of developed technical innovations
can get lost easily in research with a strong technical focus. On the other hand, research that
takes more of a systems perspective on technology, environment, and society easily overlooks
important details or cannot even consider details by design.

To cope with these challenges and to leverage the full potential of combining technical research
and the field of sustainability, a framework to assess the possible impacts of the technical innova-
tion is defined. It makes use of three different perspectives: The algorithm level, the process level,
and the large-scale level as presented in Figure 8.1. The concept of approaching a sustainability
challenge from different perspectives or levels certainly draws inspiration from the multi-level
perspective of Geels [44], however, the developed framework is tailored towards the technical
development at hand. The framework provides general research questions at every level. It aims
at simplicity to reduce the burdens for researchers to make use of it. It should not require too
much specific knowledge in the field of sustainability. By embracing simplicity, it can be lever-
aged as an easy bridge between technical research and sustainability.

The innovation developed in this project can impact sustainability on all three levels. The de-
velopment of quality inspection algorithms always has a potential real-world impact. Often,
decisions such as sorting or quality grading are directly or indirectly influenced by algorithm
decisions. The algorithm level provides the opportunity to assess those impacts.
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Large-scale level 
In which large-scale developments is the innovation
embedded? 

What are factors that foster/inhibit contributions 
towards a more sustainable global system?

Process level 
In which larger development processes or
production processes is the innovation embedded? 

What contribution does the innovation make to this
process?

Algorithm level 
For which decisions is the algorithm
responsible?

What is the impact of the algorithm output on
consecutive processes?

Integration level 

On every level, ask
questions and
establish links/flows: 

What are affected real-
world social, material
or energy links/flows? 

How can flows be
linked to existing LCA
studies or other impact
assessments? 

How to do impacts
propagate up from
micro-level to macro-
level?

Micro

Macro

Figure 8.1: The designed framework that consists of three levels.

The process level looks at the larger process that is supposed to be changed by the application of
an AI algorithm. For example, this could be improving the overall quality of production output
or increasing production throughput. At the large-scale level, it can be estimated what impact
the process-level improvements have at a larger scale.

8.2 Initial Application of Framework Levels

As shown in Figure 8.2, the algorithm development and evaluation is the building block of this
project. In the initial assessment in this section, factors that have to be considered in the further
analysis are identified at each level and used for scenario definition in Chapter 9.

66



SUSTAINABILITY APPROACH AND INITIAL ASSESSMENT

Detection accuracy

Algorithm
development and

evaluation

Average cell efficiency / 
average Ag losses

Mass production
scenarios

Large-scale impact

Mass production in
several locations

Algorithm error
propagates when
applied in mass
production

Responsibilities

Algorithm level
(technical part of
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Figure 8.2: General research flow of the sustainability assessment: Knowledge gained from the
development and evaluation of the algorithm is used to project the potential impact at a large
scale.

8.2.1 Algorithm Level

At first, the greater context of solar cell quality inspection is studied. The knowledge and network
gained from the technical research are beneficial to gain further process insights. Reviewing
literature and the personal exchange with researchers at Fraunhofer ISE have revealed these two
main algorithm use cases:

I. EL images can be used for end-of-line binning, i.e., to sort solar cells into different qual-
ity classes [3], [62]. Currently, this is often done by measuring the current-voltage (I-V )
characteristics. EL images can reveal defects that I-V measurements do not show (e.g.,
microcracks) [3].

II. An important future vision is a highly connected PV production line (smart factory). The
concept is to constantly monitor each process along the solar cell manufacturing chain and
store digital twins of the cell [4], [63]. The major motivation is to find systematic process-
related defects faster and to optimize machine utilization by means of predictive mainte-
nance.

There are multiple decision consequences arising from use case I. If cells are binned incorrectly
based on EL images, it could lead to material losses. A good cell could be discarded and is there-
fore lost for electricity production. As cells are usually combined intomodules as shown in Figure
8.3, the error chain increases. In amodule, a single bad cell can limit the overall module efficiency.
Cells within a module should have similar efficiency to avoid mismatch loss [62]. Furthermore,
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a module should not contain any damaged cells. If a bad cell is not detected and it is installed in
a module, this could either lead to a fully damaged module or to increased mismatch loss.

Figure 8.3: Structure of a photovoltaic module. Image source: Wealth Daily [64]

The developed algorithm can contribute to the “smart factory” vision in use case II mainly by its
spatially resolved defect detection. In addition to the knowledge that a defect exists, the algo-
rithm also predicts the location. Spatially resolved defect detection comes with the opportunity
of finding systematic process defects faster. For example, defect detections can be superimposed
to visualize the frequency of a defect per pixel [5]. If for example, a defect always occurs in
the upper right corner, it can be concluded it is a systematic defect. This allows for faster trou-
bleshooting in production and finding the root cause faster, leading to fewer defective cells being
produced.

In use case II, the direct decision consequence is that a production line is stopped to resolve the
cause of a systematic defect. A false positive detection would lead to an undesired loss in pro-
duction yield as the line is stopped for no reason. In case the production is not stopped while
a systematic error is present, faulty cells are manufactured. Depending on the severity, these
cells either have a lower efficiency or the cell has to be dispensed. In both cases, this increases
the environmental impact of PV electricity production. Either the efficiency is reduced and less
energy is produced over the lifetime, or the good cells have to share the burden of production
impact with the bad cells.

To demonstrate the advantages of spatially resolved defect detection, the following two scenarios
are developed to test the impact of the algorithm in use case II, i.e., the case of detection of
systematic production defects:

1. Rigorous scenario: Every systematic defect is considered so severe that it leads to the
disposal of the produced cells. Using silver consumption as themain indicator, this scenario
is used to showcase that the absolute material losses in the production line might increase
even if the amount of silver per cell is significantly reduced.
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2. Efficiency scenario: Every systematic defect only leads to cells with lower conversion ef-
ficiency η. This scenario is used to show the possible benefits of a smart factory to increase
average cell conversion efficiency.

Both scenarios are evaluated at different production throughput rates. The baseline throughput
is 5,500 wafers per hour (wph) on one production line, the conservative prospective throughput
is 12,300 wph, and the progressive prospective throughput is 24,300 wph on a single production
line.

8.2.2 Process Level

As mentioned in the introduction, the research on fast quality inspection is part of the bigger
NextTec project aiming at identifying the next-generation production technologies with highly
increased throughput. This does not only require improvements in quality inspection and char-
acterization. Almost all manufacturing processes such as Emitter Diffusion and Oxidation have
to be improved to meet the target throughput.1 The most significant economic lever provided by
the innovation on the process level is reduced CAPEX per cell. Machinery may become slightly
more expensive due to increased complexity, but overall it can be assumed that the CAPEX re-
mains almost constant at doubled production rates.

Reducing factory space utilization is an important sustainability lever, especially due to reduced
cleanroom usage. This is assessed in greater detail in Section 9.3.2 in the Sustainability Assess-
ment chapter.

8.2.3 Life Cycle Assessment Model

The impact of the aforementioned scenarios is tested using an existing LCA model that has been
developed within the SiTaSol project [65]. This project explored pathways to increase the con-
version efficiency of c-Si solar cells to 30 % by combining them with III-V top absorbers [48],
[66]. The LCA model developed by Blanco [67] is modified: The processes for producing III-V
top absorbers are removed from the model, leaving a model equivalent to PERC solar cells at
the state of the art of 2018. The model includes the entire balance of system of the PV system
including the module, inverter, and mounting system [67].
To test the environmental impact of different scenarios the following main parameters, among
others, are varied:

• Average conversion efficiency based on the output of the efficiency scenario.

• Loss of cells in the production process based on the rigorous scenario.

• Change of silver use.

The LCA model is implemented in the open source LCA framework Brightway2 [68]. The Ac-
tivity Browser software [69] is used as a front-end to conduct the scenario analysis.
1Dr.-Ing. Sebastian Nold, Baljeet Goraya, Vasileios Georgiou-Sarlikiotis (Fraunhofer ISE). Presentation Techno-
Economical Analysis within Internal NextTec Project Meeting. March 31st, 2022.
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9 | Sustainability Assessment

To make use of the defined assessment framework from the previous chapter, scenarios have
to be created. Scenarios allow testing the impact of the “smart factory” vision to which new
defect detection algorithms are supposed to contribute. The third section introduces additional
scenarios, explains how all scenarios are connected to the LCA model, and how the impact of
cleanroom factory environments is modeled within the LCA.

9.1 Rigorous Scenario

9.1.1 Overview

The aim of the rigorous approach is to demonstrate the need for increased process monitoring at
increased production throughput. Furthermore, the scenario is used to showcase that an increase
in throughput can lead to higher absolute losses even if material usage is drastically reduced.

The scenario definition is based on a Fraunhofer ISE-internal cost of ownership analysis for in-
creasing the production throughput of screen printing processes while savingmaterial, especially
silver. In the majority of today’s solar cells, screen printing is used for the metalization process of
the solar cell. Metalization is required to form the electrical contacts of the cells. Screen printing
most commonly uses silver paste to print front- and rear-side contacts of the solar cell. Currently,
silver is responsible for around 10 % of the costs for a typical solar cell [70]. The current standard
process is flatbed screen printing (FSP). Rotary screen printing (RSP) is currently under devel-
opment. The cost of ownership analysis compares the application of FSP versus RSP for HJT
solar cells at different production throughputs. As shown in Figure 9.1, the key indicator is the
monetary cost of ownership. In all scenarios, the process consumables, meanly silver, make up
for by far the largest share of the cost of ownership (COO) per cell. The COO analysis compares
three different screen printing scenarios per production output (solar cell).

• The baseline FSP scenario is flatbed screen printing (FSP) at 5,500 wafers per hour. This
is the current industrial state of the art.

• The conservative RSP scenario assumes the application of RSP instead of FSP while
scaling up production to 12,300 wafers per hour.

• The progressive RSP scenario assumes the application of RSP instead of FSP while scal-
ing up production to 24,600 wafers per hour.
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Figure 9.1: Cost of ownership (COO) analysis for scaling up screen printing of HJT cells. Flatbed
screen printing (FSP) at 5,500 wafers per hour forms the baseline. The scenarios at increased
throughput of 12,300 wafers per hour and 24,600 wafers per hour assume the application of
rotary screen printing (RSP).1

An important advantage of the RSP over FSP is the reduced silver consumption. Researchers at
Fraunhofer ISE have observed a reduction in silver consumption of -40 % for the front grid and
-60 % for the rear grid of a HJT solar cell [16].

9.1.2 Methodology

It is assumed that the defect detection algorithm developed in the technical part of this thesis
project is applied to detect systematic defects. The assumption is that every systematic defect is
so severe that it leads to the disposal of the produced cells until the defect is resolved.

Table 9.1: Assumed parameters for the rigorous scenario.

Parameter Value

Probability loosing production of one hour (%) 1.00%
Production hours per year (h) 8760
Process stop time in case systematic defect (h) 0.0833 (5 minutes)
Expected number of defect occurances per year (-) 87.6
Price per kg silver (EUR/kg) 662.81 2

Table 9.1 shows the assumed parameters for the rigorous scenario. A production of 24 hours per
day at 365 days a year is assumed at an up-time of all processes of 100 %. The probability that a
1Adopted from Dr.-Ing. Sebastian Nold (Fraunhofer ISE). Presentation Internal NextTec Project Meeting. March 31st,
2022.

2Global silver price per May 31, 2022. Retrieved from silverprice.org.
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systematic error in screen printing occurs that renders all cells useless is assumed at 1 % per hour.
Finding realistic numbers on this probability is difficult. Dr.-Ing. Sebastian Nold, head of team
techno-economic and ecological analyses stated in a personal communication that 92-95 % up-
time is a common estimate for machines across the PV production chain.3 In the remaining 5-8 %
of the time, the machine is not available for production, e.g., due to maintenance. However, it is
difficult to find a temporal estimate of how often a systematic error affecting production occurs.
As this assessment has the purpose of a sensitivity analysis, the precise hourly production er-
ror rate is not of utmost importance. Production data of manufacturers could possibly reveal this
information, but detailed process insights are mostly kept confidential by the cell manufacturers.

Algorithm detection accuracy is defined as the probability of the defect detection algorithm find-
ing a systematic production defect within 5 minutes. A systematic defect is defined as a defect
that would lead to the disposal of cells produced within 1 hour.

Cells  
produced  

within 5 min. 
 affected

Cells
produced

within 1 hour
affected

No
production

effect

Production
stopped

unnecessarily 

Assumption 1: 

Assumption 2: 
Detection

accuracy may
change with
production
throughput 

Figure 9.2: Illustration of probability experiment

The above assumptions can be translated into a probabilistic experiment as shown in Figure 9.2.
A systematic defect occurs with the probability P (Defect)1 h = 1 %. It is assumed that if the
defect is detected by the algorithm, the production can be stopped after 5 minutes, i.e., only the
production of 5 minutes needs to be discarded. In case a defect occurs and the defect is not
detected by the algorithm, it is assumed that the production of the consecutive hour has to be
discarded.
For multiple detection accuracies, the expected number of defective and discarded wafers in case
of a single systematic defect event is calculated as given in Equation 9.1.

3Dr.-Ing. Sebastian Nold (Fraunhofer ISE). Personal communication. May 17th, 2022.
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E(X) = P (Find ∩Defect) ·W5m + P (Find ∩Defect) ·W1h (9.1)

With:

E(X) : Expected number of defect wafers

W5m : Number of wafers produced within 5 minutes at given throughput rate

W1h : Number of wafers produced within 1 hour at given throughput rate

To calculate the expected number of yearly discarded wafers, E(X) is then multiplied by the
number of expected defect occurrences per year (87.6 occurrences per year at P (Defect)1 h =

1 % as presented in Table 9.1).

9.1.3 Results

Table 9.2: Results of the rigorous scenario. Even if silver usage per cell is drastically reduced, the
absolute losses increase at increased throughput if the defect monitoring is inaccurate.

Variable
Baseline Conservative Progressive

w/o insp. w/ insp. w/o insp. w/ insp. w/o insp. w/ insp.

Production rate
(%)

5,500 5,500 12,300 12,300 24,600 24,600

Defect detection
accuracy (%)

0.00 90.00 0.00 90.00 0.00 90.00

Ag/wafer front
(mg)

60.00 60.00 36.00 36.00 36.00 36.00

Ag/wafer rear
(mg)

120.00 120.00 48.00 48.00 48.00 48.00

Lost wafers if def.
detected (waf)

458 458 1,025 1,025 2,050 2,050

Lost wafers if def.
not detected (waf)

5,500 5,500 12,300 12,300 24,600 24,600

Expected loss in
def. case (waf)

5,500 963 12,300 2,153 24,600 4,305

Expected loss per
year (waf)

481,800 84,315 1,077,480 188,559 2,154,960 377,118

Ag in lost wafers
(kg)

86.72 15.18 90.51 15.84 181.02 31.68

Ag losses (EUR) 57,482 10,059 59,990 10,498 119,980 20,996
Yearly production
loss (%)

1.00 0.18 1.00 0.18 1.00 0.18
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From Table 9.2 and Figure 9.3 it can be seen that even though RSP uses less silver, scaling up
production without accurate monitoring can still lead to similar (at 12,300 wafers per hour) or
evenmore (at 24,600 wafers per hour) absolute silver losses. The higher the throughput, the more
significant accurate monitoring becomes if absolute losses should be minimized. For now, only
silver losses have been considered because specific numbers are available from ISE. However, the
expected yearly number of lost wafers can easily be translated into a change in average life-cycle
impact across the entire production. The table on the next page shows the calculated scenarios.
0.00 % detection accuracy equals the case of no inspection present.

FHG-SK: ISE-INTERNAL

Radical Approach: Silver (Ag) Loss Visualized
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Figure 9.3: Expected silver loss per year for the three different throughput scenarios (5,500 wph
with FSP, 12,300 wph with RSP, and 24,600 wph with RSP) at different detection accuracies.

9.1.4 Discussion

A personal interview with an expert from the industry revealed that cells with only little defects
visible in the EL image are indeed highly undesired in the industry and may either be sold at a
lower price or may even be discarded. Every manufacturer defines their own criteria for how
to make decisions based on EL images [3], therefore it is not possible to provide a conclusion
that is valid across the industry. The assumption that a defect that renders all cells of an hour
useless and is not noticed without visual inspection is still drastic. If the current-voltage (I-
V ) characteristics are still monitored simultaneously, a very severe defect would be noticed this
way. However, because I-V measurements become more challenging at increased throughput as
well, this scenario still allows for establishing a somewhat realistic initial link between algorithm
accuracy and sustainability performance.
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9.2 Efficiency Scenario

9.2.1 Overview

Similar to the rigorous scenario, the aim is to show the need for increased process monitoring
at increased production throughput. Therefore, the efficiency scenario makes use of similar as-
sumptions and the same probabilistic experiment as shown in Figure 9.2. However, the baseline
differs: Instead of the quite radical assumption that all cells which are affected by a systematic
production defect are discarded, it is assumed that the cell efficiency η is lower in the case of
a systematic defect. This can be considered more realistic because it is unlikely that cells with
minor differences in conversion efficiency are discarded even though every manufacturer makes
different trade-offs [3], [46].

9.2.2 Methodology

In this scenario, the best cell in a dataset of cells from a production line can be defined as the
baseline. In case no defect occurs, it is assumed cells with the conversion efficiency of the best cell
of the batch, ηgood, are produced. In case a systematic defect occurs, it is assumed that cells with
a lower η are produced until the defect is resolved because the defect is not noticed. The same
assumption from the rigorous scenario regarding faulty production applies: 5 minutes of faulty
production occurs in case the defect is detected and 1 hour in case the defect is not detected. It
is assumed that the faulty wafers have the low efficiency ηfaulty while good wafers are assumed
to have the high efficiency ηgood. The average efficiency is then calculated by Equation 9.2.

Eη(X) =
Wfaulty · ηfaulty +Wgood · ηgood

Wtotal
(9.2)

With:

Eη(X) : Expected average efficiency of production

Wfaulty : Number of “faulty” wafers with low efficiency

Wgood : Number of “good” wafers with high efficiency

Table 9.3: Assumed parameters for the efficiency scenario.

Parameter Value Notes

Probability of low eff. cell event per hour (%) 1.00
Production hours per year (h) 8760
Process stop time in case systematic defect (h) 0.0833 (5 minutes)
Expected number of systematic defect occurrences (-) 87.6
Efficiency of cell with defects (%) 23
Efficiency of cell without defects (%) 25

Table 9.3 states the assumptions for the efficiency scenario. As mentioned above, the best cell
in a dataset of cells from a production line can be defined as the baseline. However, the best
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experimental TOPCon cell in the dataset created within this project only shows an η of 21.981
%. This is rather low for a TOPCon cell. Therefore, an η of 22.5 % is assumed which is used in
existing LCA studies for current industrial PERC cells [47]. For a TOPCon cell inmass production,
this is still a conservative assumption. All other assumptions remain the same as for the rigorous
scenario.

9.2.3 Results

As can be seen in Table 9.4, the loss in average efficiency does not change with scaling up produc-
tion. The ratio of low-efficiency cells and total production stays constant. However, the expected
absolute number of wafers with ηfaulty changes significantly. In Figure 9.4 the impact of detec-
tion accuracy on both the absolute number of cells with low efficiency at 24,600 wph and on the
change in average conversion efficiency is shown. While the change in conversion efficiency be-
tween 0 % and 100 % detection accuracy seems low (0.0138 % difference in average efficiency), the
number of affected low-efficiency cells is still high, i.e., 2,154,960 affected cells without detection,
179,580 with 100 % detection accuracy. The low difference in average efficiency may indicate that
the assumptions for the efficiency scenario are too conservative.

Table 9.4: Results of the efficiency scenario. In the simplified model that has been used the loss
in average efficiency does not depend on the production throughput but the absolute number of
affected cells increases with increasing throughput.

Variable
Baseline Conservative Progressive

w/o insp. w/ insp. w/o insp. w/ insp. w/o insp. w/ insp.

Production rate
(waf)

5,500 5,500 12,300 12,300 24,600 24,600

Defect detection
accuracy (%)

0.00 90.00 0.00 90.00 0.00 90.00

Low eff. wafers if
detected (waf)

458 458 1,025 1,025 2,050 2,050

Wafers low eff. not
detected (waf)

5,500 5,500 12,300 12,300 24,600 24,600

Expected low eff.
wafers (waf)

5,500 963 12,300 2,153 24,600 4,305

Expected low eff.
wafers/year (waf)

481,800 84,315 1,077,480 188,559 2,154,960 377,118

Expected average
efficiency (%)

24.9800 24.9965 24.9800 24.9965 24.9800 24.9965

Expected loss in
avg. eff. (%)

0.0200 0.0035 0.0200 0.0035 0.0200 0.0035
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Less Radical Approach: η Loss Visualized
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Figure 9.4: Expected loss in average conversion efficiency at a production throughput of 24,600
wph) at different detection accuracies. The bar chart shows the expected absolute number of
wafers with ηfaulty , i.e.,Wfaulty .

9.3 Additional Scenarios and LCA Connection

The impact of the intermediate results from this experiment chapter is tested in the LCA model
from Blanco [67] introduced in Chapter 8. The chosen functional unit is 1 kWh electricity pro-
duced on a 7 kWp slanted roof PV installation in Europe.

9.3.1 Definition of Additional Scenarios

To consider more than only the two defined scenarios from the algorithm level, further scenar-
ios are defined in Table 9.5 to test for other potentially significant impact levers in a simplified
manner. In the reference scenario, the model assumes a production in China, i.e., it also consid-
ers the Chinese energy mix as modeled in the ecoinvent 3.6 database. In the quality inspection
process, a yield of 99.7 % is assumed, i.e., only 0.03 % of the cells that enter the quality inspection
process are discarded. The reference module conversion efficiency is assumed with 25 %. This
is an ambitious estimate as currently these efficiencies are currently achieved at cell level with
TOPCon cells while modules show efficiencies around 22.5 % [4]. Because mainly changes with
respect to the reference are investigated, the absolute number chosen only plays a minor role.
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Table 9.5: Definition of scenarios to be tested in LCA model including underlying assumptions.

Scenario
name

Changed
parameters

Value Underlying assumptions + motivation

Baseline No changes - Assumes conversion efficiency of 25.0 % and
wafer yield in sorting and testing of 0.997
(measurement system already present)

Rigorous 0
% acc.

Wafer yield in
sorting and testing

0.99 Assumes no algorithm present.
Process-related defects are only found
within an hour. Defect wafers are discarded.

Rigorous 90
% acc.

Wafer yield in
sorting and testing

0.9982 Assumes algorithm finding process-related
defects within 5 minutes of production with
90 % accuracy. Defect wafers are discarded.

Rigorous
bad process

Wafer yield in
sorting and testing

0.95 To test what would happen in a very
unstable process without quality inspection.

Efficiency 0
% acc.

PV conversion
efficiency

0.2498 Assumes algorithm finding process-related
defects within 5 minutes of production with
90 % accuracy. Defect wafers are discarded.

Efficiency 90
% acc.

PV conversion
efficiency

0.249965 Assumes algorithm finding process-related
defects within 5 minutes of production with
90 % accuracy. Defect wafers are discarded.

Efficiency
process
feedback
bonus

PV conversion
efficiency

25.5 Assumes significantly increased cell
efficiency due to better process monitoring
and fine-tuning.

Throughput
increase 2

Electricity for
clean room +
electricity and
pressured air in
cell testing and
sorting

2 Required clean room area and process
consumables of cell testing and sorting
reduce linearly with increasing throughput.

Throughput
increase 4

Electricity for
clean room +
electricity and
pressured air in
cell testing and
sorting

4 Required clean room area and process
consumables of cell testing and sorting
reduce linearly with increasing throughput.

Silver usage
50 %

Silver
consumption in
printing processes

0.5 Silver consumption in cell production is
reduced to 50 %. Tests RSP scenario.

Silver usage
10 %

Silver
consumption in
printing processes

0.1 Silver consumption in cell production is
reduced to 10 %. Tests RSP scenario.

Production
DE

Energy mix
location

DE
(instead

CN)

To roughly assess the impact of producing
in Germany instead of China. Ignored the
origin of other process consumables.

Very low
efficiency

PV conversion
efficiency

0.18 To test impact of low conversion efficiency.
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9.3.2 Modeling Cleanroom Usage

While most changes in the LCA model are sufficiently explained in Table 9.5, the cleanroom en-
ergy demand per cell requires additional documentation. Solar cell manufacturing is a contamination-
sensitive activity. Therefore, the manufacturing environment has to fulfill specific requirements
regarding air quality. To achieve this, cleanrooms are commonly used which control the partic-
ulate contamination of the air. Cleanrooms are usually classified by the ISO 14644-1 standard
[71] from ISO 9 (unclassified space such as a normal office) to ISO 1 (used in highly sensitive
environments such as chip manufacturing processes for space applications). For solar cell man-
ufacturing, vendors offer mixed ISO 7 and ISO 5 cleanrooms [72]. While the overall production
environment is classified as ISO 7, some processes require ISO 5 zones with purer air.

Based on personal communication with Dr.-Ing. Sebastian Nold, 13,000m2 perGWp production
capacity per year is a good estimate for the total required building area in cell production. The
sole manufacturing area makes up for around half of this estimate, i.e., 6,500m2 per GWp.4 It is
assumed that the cell manufacturing area of 6,500 m2 per GWp is certified as ISO 7 cleanroom.
Additionally, it is assumed that doubling production throughput leads to half the used factory
space per manufactured cell as shown in Equation 9.3.

Anew =
throughputold
throughputnew

·Aold (9.3)

Here, Anew and Anew represent the new and old factory space, respectively. Cleanroom Tech-
nology [73] states an average power demand of 0.22 kW per m2 for an ISO 7 cleanroom. This
information is used to calculate the cleanroom-related energy consumption per cell as shown in
Equations 9.4 and 9.5.

Ecell = Pclean room 1 m2 ·A1 GWp · operating hours · Pcell

1 GWp
(9.4)

With:

Ecell : Energy for cleanroom per produced solar cell

Pclean room 1 m2 : Power required to operate 1m2 of cleanroom

A1 GWp : Ar cells equivalent to 1 GWp

Pcell : Peak power of one solar cell

Using the assumptions from above, this amounts to:

Ecell = 0.22
kW

m2
· 6, 500 m2 · 8, 760 h · 7.5 Wp

1 GWp
= 0.093 kWh (9.5)

Ecell is added to the unit process 6.1 cell in the LCA model as a technosphere inflow. Currently,
the smaller ISO 5 cleanroom zones which are much higher in power demand (2.40 kW per m2)
[73] are not modeled. In order to get an even more detailed picture of possible impact reductions
by factory space reductions, it is recommended to model this in greater detail.
4Dr.-Ing. Sebastian Nold (Fraunhofer ISE). Personal communication. July 25th, 2022.
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9.3.3 Factory Building Materials

Next to the cleanroom-related energy consumption, the change in building materials used per
cell is modeled as well. The ecoinvent 3.6 database [74] contains a unit process photovoltaic cell
factory construction which is based on a solar cell factory built in 1999 in Germany for a yearly
production of 10 million cells. This factory is already out of service, but the use of construction
material to build this factory can still be used to estimate the difference in impact due to changing
facility needs.

Using the factory area of this factory from 1999 as well as the current estimate of 13,000 m2

per GWp production capacity per year, the number of factories per cell is calculated assuming
a factory lifetime of 25 years. The detailed calculations are shown in the 6.1 cells sheet of the
supplementary table of Appendix B - LCA Unit Processes. Based on the calculations, 5.50 · 10−11

units of the 1999 factory are required per cell at current production efficiency which is added to
the unit process 6.1 cell in the LCA model as a technosphere inflow.
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10 | Integration of Sustainability
Results

In this chapter, the findings from the initial assessment in Chapter 8 as well as the results from
the scenario experiments in Chapter 9 are combined to a comprehensive analysis. The results
on process level and algorithm level are projected into a large-scale level scenario as indicated
in Figure 8.2 in Chapter 8.

10.1 Main Results of Assessment Scenarios

The impact compared in six impact categories using the ILCD 2.0 2018 midpoint indicators [75].
Next to climate change total, the resources, ecosystem quality, and human health categories are of
special interest because the impact of silver usage reduction is investigated as well. Figure 10.1
shows a heatmap of the LCA results. Each row represents one tested scenario. The columns show
the different impact categories. Each cell shows the relative change in impact for the respective
scenario and impact category with respect to the baseline scenario. The cells are colored based on
the impact change. Blue stands for a reduction in impact and red stands for an increase in impact.

The rigorous bad process scenario shows what would happen if 5 % of all produced cells are dis-
posed after the cell testing and sorting process: The climate change impact would increase by
1.76 % with respect to the baseline scenario. However, this loss rate can be considered unrealis-
tically high as the baseline scenario assumes a loss rate of 0.3 %.

More realistic assumptions in the scenarios that are supposed to test the impact of algorithm
accuracy lead to much smaller changes in impact. In the rigorous scenario, the difference in
climate change impact between 0 % detection accuracy and 90 % detection accuracy is 0.28 %.
The efficiency scenarios show an even lower difference in the impact of 0.07 % in all impact cat-
egories between 0 % detection accuracy and 90 % detection accuracy. This shows the difficulties
of demonstrating the often stated benefits of the “smart factory” vision. Either the simple prob-
abilistic model developed in Chapter 9 is insufficient to capture the benefits or the benefits of
a “smart factory” are lower than expected. While an assumed 0.5 % increase in PV conversion
efficiency thanks to better process feedback could lead to reductions of roughly 2 % in all impact
categories (efficiency bonus scenario), it remains to be proved how a “smart factory” could actu-
ally achieve these improvements.

Reducing silver usage per cell by 50 % as assumed in the application of rotational screen print-
ing (RSP) in the rigorous scenario leads to a reduction of around 9 % in the resources: minerals,

and metals impact category. If silver usage is even reduced to 10 % (currently unrealistic), the
impact in this category would even decrease by 16 %. Reducing silver usage by 50 % also leads to
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Figure 10.1: Relative results for four chosen impact categories with respect to the baseline sce-
nario.

a reduction in impact in the toxicity categories. Compared to the baseline, the freshwater eco-
toxicity impact of 1 kWh solar energy is reduced by 1.17 %. The decrease of carcinogenic effects
is lower (reduced by 0.78 %).

Figure 10.2 visualizes the absolute impact (in kg CO2 -eq.) in (a) and difference relative impact
with respect to the baseline scenario in the climate change total impact category in (b). Figure
10.3 visualizes absolute (a) and relative impact (b) in the resources: minerals and metals impact
category which is especially impacted by silver usage reductions.
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(b) Relative change in impact w.r.t. baseline

Figure 10.2: LCA results for the impact category climate change total.
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(b) Relative change in impact w.r.t. baseline

Figure 10.3: LCA results for the impact category resources: minerals and metals.

10.2 Process Level

The direct change of factory space related to EL measurements is rather low. The EL system re-
sponsible for quality inspection requires around 20m2 factory space. At the current throughput
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of 5,000 wafers per hour, this amounts to factory space requirements of 62m2 perGWp per year.1

At the target throughput of 16,000 wafers per hour, one machine could handle cells equivalent
to slightly above 1 GWp per year, i.e., the factory space requirement reduces to 19m2 per GWp

per year.

However, if a whole cell production line is viewed, the picture changes. The estimate of 13,000
m2 factory space per GWp production capacity per year is starting point for a rough estimate
of the associated cost savings. COO of 1,500 Euro per m2 fab area is assumed at a depreciation
period of 10 years.2 This leads to facility-related COO of 1.95 million Euros perGWp production
capacity which potentially could be lowered to 0.975 million Euros when halving the required
factory space per cell. Additionally, utilities, i.e., resource consumption for electricity, cooling,
etc., potentially decrease at a similar scale depending on the process.

At a per-cell level, the impact change due to saved building materials from the factory construc-
tion is neglectable as only 5.50 · 10−11 units of the 1999 factory modeled in ecoinvent 3.6 are
required per cell. The major change in impact in the throughput increase scenarios arises from
reduced cleanroom usage due to factory space reductions. Doubling the production throughput
could lead to reductions of 0.88 % in climate change impact, mainly due to reduced ISO 7 clean-
room usage per cell which in turn reduces electricity consumption. Quadrupling the throughput
would lead to a climate change impact reduction of 1.32 %.

As a social factor to consider on process level, higher throughput leads to a reduction of staff
required per cell reducing labor cost per GWp.

10.3 Large-Scale Level

The EU Market Outlook for Solar Power 2021-2025 [76] assumes that 700GWp in solar capacity
have to be added until 2030 to stay on track in achieving the 1.5 °C Paris agreement. The found
results from the process and algorithm level are projected into a large-scale scenario considering
the need for PV growth in Europe within the next 5-10 years.

Overview

Production in Europe could become more attractive at increased production throughput. As
shown in the process-level assessment, the factory area demand per cell reduces when the pro-
duction throughput is scaled up and the labor costs decrease. Especially in relatively densely
populated Europe with high regulatory barriers to opening new production facilities and high
wages this makes local production more attractive. On top of that the EU Market Outlook from
Solar Power Europe sees “a new window of opportunity for a domestic solar manufacturing sec-
tor” [76, p. 25] thanks to the current market growth phase.
1Dr. Johannes Greulich (Fraunhofer ISE). NextTec Equipment Data Input Sheet for Quality Inspection Processes. July
2nd, 2020.

2Dr.-Ing. Sebastian Nold, Lorenz Friedrich, Alma Spribille, Ingo Brucker (Fraunhofer ISE), SCost Model for NextTec
Project. March 10th, 2020.
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From a purely environmental perspective, it is not straightforward to judge if production in Eu-
rope leads to big benefits. Müller et al. [47] identified that glass-backsheet and glass-glass PV
modules including PERC cells produced in the EU are linked to around 40 % less greenhouse
gas (GHG) emissions than those produced in China, with the carbon intensity of electricity in
production being one of the main levers. The results from the LCA in this work show a reduction
in the impact of 2.68 % in climate change impact when the German electricity mix is used. The
main difference is that Müller et al. [47] regionalized a higher number of processes.

It is worth noting that using the German electricity mix in production in the used LCA model
increases freshwater eutrophication impact by 3.65 %. By investigating the process contributions
to freshwater eutrophication in the German and Chinese electricity mix, the cause can be found:
In China, the treatment of spoil from hard coal mining in a surface landfill is the biggest con-
tributor to freshwater eutrophication. In Germany, the treatment of spoil from lignite mining
in a surface landfill contributes most significantly to freshwater eutrophication. This indicates
that the relatively high share of lignite coal in the German energy mix is responsible for the high
eutrophication impact.

Projecting EU-Wide Silver Consumption and Understanding Its Impact

As a simplified example to emphasize the impact of the detection accuracy on the algorithm level,
the silver losses assumed in the rigorous scenario in Chapter 9 are used to project the possible
absolute silver losses at 0 % detection accuracy and 90 % detection accuracy. Silver is used because
silver use is seen as one of the most critical factors in scaling up PV production to Terawatt scale
[45]. Similar to the silver losses, rough estimates could be calculated for other emissions and
resource use associated with cell production. Equation 10.1 is used to estimate the silver losses
for considering the required production for the EU market until 2030.

Agloss =
Ptotal

Pcell
·Agcell ·%loss (10.1)

With:

Agloss : Total lost silver

Ptotal : Total peak power of produced cells

Pcell : Peak power of one solar cell

Agcell : Silver content of one solar cell

%loss : Solar cell yield loss rate

With no defect detection (assuming%loss = 1 %) the total silver losses until 2030 would amount
to 78.4 metric tonnes at a power of 7.5 W per cell and a total production of 700 GWp. With 90 %
detection accuracy, this reduces to 13.4 metric tonnes. In 2021, the global silver production was
around 30,000 tonnes [77]. Assuming constant same silver production until 2030, the silver loss
at %loss = 1 % would amount to 0.0327 % of global production until 2030. This is reduced to
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one-fifth in the scenario with 90 % detection accuracy.

Silver is a limited resource on planet earth and is considered a “precious metal” in the 2020 EU
critical raw materials report [78]. Market analyses state that the production has decreased by 12
% since 2016 [79]. Therefore, basing the future renewable energy supply on this critical resource
poses supply chain risks that should be avoided.

Next to possible economic consequences of relying on silver in the PV supply chain, especially
silver mining is associated with various negative environmental and social impacts. The LCA
results for the scenarios considering reduced silver usage give an indication of which impact cat-
egories are most affected by silver. The impact in the eutrophication-related categories reduces
stronger than the climate change impact. Therefore, an independent investigation is carried out
to understand which parts of the silver supply chain contribute most to these impact categories.
Additionally, the impact category freshwater and terrestrial acidification is considered.

From Figure 10.4 it can be seen that the treatment of sulfidic tailings from silver mine opera-
tions is the main contributor to freshwater eutrophication. The ILCD 2.0 2018 impact categories
only consider phosphorus, phosphoric acid, and phosphates as contributors to freshwater eu-
trophication. 1 kg of silver on the market leads to 1.47 P-eq. in freshwater eutrophication due to
the release of phosphates from the tailings impoundment to long-term groundwater. Based on
the global silver market modeled in ecoinvent 3.6 [74] the major eutrophication impact of silver
from the global market occurs in Mexico (57 %), Australia (15 %), and the United States (11 %).
Amongst others, freshwater eutrophication has negative impacts on aquatic life, and adverse ef-
fects on humans and domestic animals [80]. If long-term groundwater storage is affected by the
discharges from tailing impoundment the freshwater supply of future human generations may
be at risk in the areas surrounding the mines.
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Figure 10.4: Sankey diagram of freshwater eutrophication impact for the functional unit of 1 kg
of silver from the global market.

Figure 10.5 shows that blasting in mining operations contributes heavily to freshwater and ter-
restrial acidification (2.18 mol H+-eq.). Acidification is associated with a loss in plant species
richness due to a degradation in plant performance in acidic environments [81]. The main con-
tributors to acidification are nitrogen and sulfur deposition [82]. In the ecoinvent blasting pro-
cess, the detonation of 1 kg Tovex explosive releases 59 g of ammonia, a compound of nitrogen
and hydrogen, as well as 331 g of nitrogen oxides into the air. The Sankey diagram for the ter-
restial eutrophication impact (not shown in this report) looks similar. This means blasting not
only contributes to acidification but also to terrestrial eutrophication due to the ammonia and
nitrogen oxide release.
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Figure 10.5: Sankey diagram of freshwater and terrestial acidification impact for the functional
unit of 1 kg of silver from the global market.

Silver mining often takes place in remote areas. Land use change due to mine construction makes
the land unavailable to both humans and previously present ecosystems. An important human
health risk related to silver mining is the discharge of mercury [83]. Especially individual en-
trepreneurs (artisanal miners) carrying out small-scale mining use mercury amalgamation to
recover silver from ore [84]. Artisanal miners are exposed to mercury and related health risks.
However, mercury amalgamation processes can have even more far-reaching impacts. One ex-
ample of negative health and social impacts is mercury discharge into water in remote areas of
the Americas. Many communities rely on fish in their diet and may not be aware of both the
presence of mercury in the ecosystem and the associated health risks [85]. This excludes hu-
mans and other species from safe food and water supply.

Overall, reducing silver usage and especially the associated mining is key in reducing the envi-
ronmental impact of solar cell manufacturing. It is important to emphasize that this overview is
by far not extensive, e.g., blasting releases many more harmful compounds that have an impact
on human health such as aluminum. Sverdrup et al. [86] highlight the importance of consistent
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recycling to increase the sustainability of the silver market supply and to avoid irreversible envi-
ronmental damage. Increasing PV recycling rates as well as reducing the silver amount per solar
cell can contribute to these goals.

Factory Space Consumption

The production of 700 GWp in PV capacity for the EU market will require a significant increase
in existing production capacity. It is unrealistic that the required 700 GWp are produced in
Europe until 2030 as the current cell production capacity in the EU is only around 0.8 GWp

per year as of today [76]. Assuming 100 GWp yearly cell production capacity required to meet
the EU’s demands until 2030, this would amount to 1.3 km2 in cell production facilities m2 and
facility-related COO of 1.95 billion Euros based on the assumptions stated above. However, as
mentioned in the process-level investigations, the reduced facilities required per cell have almost
no measurable environmental impact per produced cell or per kWh of solar energy in a Gigawatt
scale production.
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11 | Sustainability Discussion

The framework defined in this research leaves a lot of freedom to the applying individual. This
is intended because this way, it can be applied in various ways: On the one hand, it is simplified
enough to challenge current technical researchers to think about the impact of their work and
possible sustainability implications without too much time investment required. On the other
hand, it gives the opportunity to base profound design choices on it if the integration level is
applied and a link to existing or new LCA studies is established.

The scaled approach helps to find contradictions: A sophisticated algorithm could help make a
process faster or more efficient while being responsible for new, previously non-existing losses in
energy or material. If only evaluated separately, those consequences could be undermined in the
development process or be noticed too late. This also holds the other way around. For example,
Verlinden [45] sees “no challenges” related to the technology in scaling up production but the
technical part of this project clearly points out challenges that are still to be solved. They can
potentially be overcome, but it is a good example of how high-level research ignores profound
technological challenges.

Deploying spatially resolved quality inspection alone is not associated with any significant in-
crease in environmental impact. In the used LCA model only the process consumables in quality
inspection, i.e., electricity and pressured air are considered but also the non-considered addi-
tional equipment requirements are low. The hardware required to run a CV algorithm is usually
already present in current production lines. Additionally, the burden of any potential additional
hardware is shared with more cells at high throughput. Already one consumer-grade graph-
ics card (GPU) for an entire production line is sufficient to execute the algorithm developed in
this project. This is a significant difference from large-scale AI algorithm deployment, e.g., on
social media platforms where the impact of inefficient algorithms scales up via millions of end-
consumer devices or leads to massive computational effort in data centers.

The uncertainty of the LCA model and the assumptions can be regarded as high. Therefore, no
absolute conclusion about the potential emissions savings should be drawn from this analysis.
However, the results create value by adding different perspectives. The scenarios also come with
limitations. The rigorous scenario in Chapter 9 is based on a prospective screen printing pro-
cess. The calculations from Fraunhofer ISE are based on HJT cells. The LCA model is modeling
PERC cells with the state of the art of 2018 but the current silver content of TOPCon cells. The
algorithms in the technical part of the projects are optimized on TOPCon cells but can easily be
adapted to other cell technologies. While this limits the accuracy of the results it does not change
the order of magnitude of the results.

How high the environmental benefits of moving production facilities to Europe would be is dif-
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ficult to answer. Most surprisingly changing from the Chinese to the German electricity mix
in the cell production chain only leads to a reduction of 2.68 % of climate change impact per 1
kWh PV electricity production. Müller et al. [47] sees a far more significant reduction in emis-
sions when changing the electricity mix in production. A main difference between the approach
of both LCAs is that Müller et al. [47] uses 1 kWp module manufacturing as functional unit as
compared to 1 kWh electricity production. Additionally, [47] regionalize more processes and
consider transport emissions as opposed to the model by [67] that is used in this project.

The impact of throughput increase is currently not extensively modeled in the LCA used in
this project. Only in the quality inspection and sorting process, a throughput increase has been
modeled, i.e., more cells share the burden of the electricity consumption of the EL measurement
device. The advantages of throughput increase such as factory space reduction are shown outside
of the LCA with some simplified calculations. While the calculations of factory space reductions
are rough estimates, they reveal space and facility COO savings potential.

The LCA model could be improved by adding a more accurate measure of the energy consump-
tion per factory space to consider the advantages arising from saving factory space when increas-
ing production throughput in greater detail. Especially the need for higher clean room classes
than ISO 7 in the production facilities should be considered. Furthermore, it is recommended
to increase the level of detail by considering the impact of factory equipment production. For
the quality inspection process, this may include the required information and communications
technology such as graphics cards for CV algorithms and camera equipment.

Several studies indicate that increasing recycling rates and considering the end-of-life (EoL)
phase will be of key importance and will become major challenges in the PV sector [45], [87]–
[89]. In current research projects, this is still not directly interlinked: Technical research usually
develops the technology faster than the technologies required for EoL treatment. The techno-
economical assessments carried out for the project within Fraunhofer ISE are as well still mostly
ignoring the EoL aspect. Especially research should show increased openness to presenting new
business models and exploring recycling technology even if the monetary benefits are not im-
mediately evident at this point in time.

It is argued that by contributing to a significant throughput increase a responsibility arises to
consider EoL scenarios for the produced cells as well. The rigorous scenario in Chapter 9 shows
that even if the material usage per cell is reduced significantly, there can still be higher absolute
material losses in the production line in case the throughput is increased. When using per cell

metrics or the functional unit of producing 1 kWh electricity this is easily overlooked. Especially
for scarce resources, also absolute material losses should be considered. In the considered sce-
narios a higher algorithm accuracy is linked to lower absolute material losses.

As a future vision for ML research at Fraunhofer ISE, it should be explored how the knowledge
gained from this high-end technological research can also be used for innovations with a more
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significant direct impact on establishing more circular supply chains in the PV sector. Research
on increasing production throughput should go hand in hand with research on increasing recy-
cling throughput. For example, especially the lamination of the cells inhibits the disassembly of
modules to recover materials from the cells [87]. There are start-ups and research teams working
on a more modular module design that enhances maintainability and recyclability, e.g., Biosphere
Solar [90] founded by students of TU Delft and Leiden University. These concepts demonstrate
that sustainability improvements in the PV sector do not always require the most sophisticated
technology.

Without the right technology to dissemble these modular solar panels at their end of use on a
large scale, a more modular panel design does not help much at a large scale. Robots may be
used to disassemble modules and separate the cells from them. Robust CV could play a key role
to make this suitable for a variety of different modules. In fact, knowledge gained in high-speed
semantic segmentation could potentially be applied to recycling robots.

With this discussion, the author seeks to inspire ML researchers at Fraunhofer ISE to keep their
strong technical research focus while thinking about future research pathways that could have
an even higher and more direct sustainability impact than current research. Within the field of
PV research, Fraunhofer ISE is already an established institution that has proven its impact in
many cases. Currently, the machine learning team of ISE is mostly focusing on quality inspection
and characterization but is already involved in other projects such as the optimization of agri-
voltaics. Founding an institute-wide competence teammoving further forward with the research
of applying ML techniques within the scope of achieving the SDGs could reveal huge potential.

Under the condition that EoL aspects are considered more in future technical research that con-
cerns the upscaling of production, efforts directed towards increasing production throughput are
favorable from a sustainability perspective. It can be assumed that c-Si PV is the fastest pathway
towards the Terrawatt scale. The ITRPV (2021 results) [4] expects the mass production of Si-
based tandem cells and modules to start around 2026. Even then the production of existing cell
concepts will remain important. The results of this project point out that production in Europe
might become more attractive thanks to reduced CAPEX, less staff required, and less required
factory space per GWp production capacity.
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12 | Conclusion

12.1 Technical

The main technical research question of this project isHowwell can electroluminescence images of

TOPCon solar cells taken in motion at high production throughput be analyzed by deploying CNNs?

This work focused on identifying key challenges in moving EL images. To do so, this project
proposes the first known C-DCR-based Smart Labeling for TOPCon cells and the first known
investigation of the impact of moving solar cells on detection accuracy. The results show it is
possible to detect defects in moving EL images where human observers cannot detect much. Ad-
ditionally, the experiments indicate that the refined concept of Smart Labeling can be applied to
TOPCon solar cells. There is no known reference work that has focused on this combined chal-
lenge. Therefore, there are no references available to quantitatively compare the quality of the
results. Compared to other publications on non-moving images mentioned in the related work
(Chapter 3), the achieved quantitive detection accuracy is lower. It needs to be considered that
results from related work are evaluated on non-reproducible human labels. On similar labels, it
can be assumed that the chosen architecture in this project would lead to similar results as other
publications. Because the results cannot easily be compared in numbers, this project contains a
comprehensive qualitative analysis section.

The experiments show that a reduction in detection accuracy has to be expected on moving EL
measurements. On still images, an F1 score of 0.715 forRS defects and 0.857 for j0 defects in the
best scenario is achieved. In the best scenario on real moving images, this reduces to 0.567 for
RS defects and 0.738 for j0 defects at TL = 4 ms. This degradation in performance is not solely
due to the motion blur. A low signal-to-noise ratio in the EL images due to low brightness re-
sulting from short illumination times and high camera gain proved to be another main challenge.

A major challenge is aligning moving images with the corresponding labels to train the network.
It has been attempted to avoid this by training networks with artificial motion blur. However,
the network trained on artificial motion blur does not perform sufficiently on the real data. Esti-
mating only the characteristics of linear motion blur occurring in moving measurements is not
sufficient. More emphasis should be given to other contributors to the noise in the moving EL
images.

Clear advice is given that images with motion blur should not be cropped too tightly as the bor-
der regions contain important image information that the CNN can make use of.

Another main challenge identified is the quality of C-DCR reference measurements. It is rec-
ommended to fine-tune the measurement technique to TOPCon to provide more homogeneous
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output images for Smart Labeling. In the long-term, it could be desirable to predict physical
characteristics or different degrees of defect severity by extending the binary classification. Ad-
ditionally, the prediction could be expanded to more classes than onlyRS and j0, e.g., cracks and
other relevant defects.

There are only a fewC-DCR devices available across theworld that could be used to acquire refer-
ence measurements for Smart Labeling. Companies or research institutes owning the equipment
could potentially offer Smart Labeling as a service: Cell manufacturers send their cells to the
“labeler” and receive the cells and labels back.

The future development of the moving EL measurements is still uncertain. For the EL measure-
ment technique itself and for the image processing there is only little to no additional hardware
required making it cost attractive. Next to improving the detection accuracy of the neural net-
works used for image analysis, there are still challenges to be solved regarding the process inte-
gration such as fast and reliable on-the-fly contacting.

Overall, the technical part of the project has delivered successful initial results and helped to gain
important insights for further improvement of the concept of moving measurements.

12.2 Sustainability

The sustainability assessment in this project seeks to answer the research question What is the

prospective sustainability impact of novel quality inspection algorithms in high throughput PV pro-

duction?

The sustainability impact of the sole innovation in quality inspection alone is rather low but
becomes significant if the innovation is viewed in a greater context. The results show that an
increased average cell conversion efficiency of 0.5 % thanks to enhanced process feedback could
lead to reductions of around 2 % per 1 kWh electricity from a 7 kWp slanted roof PV installation
in Europe in all impact categories. In one assumed scenario, early defect detection thanks to spa-
tially resolved defect detection help reduce the yield loss after screen printing processes from 1 %
to 0.18 %. This would lead to savings of 0.03 % of the yearly global silver production assuming a
cell production of 100 GWp per year. This could especially reduce acidification, eutrophication,
mercury release, and other harmful consequences of silver mining.

Another important sustainability lever is the reduction of cleanroom usage when scaling up pro-
duction throughput. Doubling throughput could lead to a decrease of 0.88 % in climate change
emissions per kWh solar energy thanks to better cleanroom area utilization.

No immediate reasons were found that would advise against deploying AI-based high through-
put quality inspection. The environmental impact of the algorithm due to energy consumption is
neglectable on a per-cell level. This is because the algorithm is only deployed locally in the pro-
duction line. Therefore, its impact does not scale up with increasing throughput. Still, especially
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researchers seeking to limit their impact are advised to reconsider unnecessary (thoughtless)
training of algorithms in the research and development phase.

In the short and mid-term, scaling up c-Si PV production is required to meet global market de-
mand. Other more disruptive technologies are not expected to gain sufficient momentum within
the next couple of years. Therefore, also seemingly marginal improvements to c-Si PV manufac-
turing processes are still highly welcome.

However, projects aiming at the further scale-up of production should automatically integrate an
end-of-life (EoL) perspective to mitigate possible negative impacts made possible by technologi-
cal advancements. Currently, this is often carried out in different research projects. The technical
research in this project is still funded and carried out under the assumption of linear business
models and does not include any circularity considerations. To cope with some of the biggest
challenges arising from PV mass production it is recommended to Fraunhofer ISE to explore
other possible applications of machine learning to contribute to the sustainable development of
the entire PV supply chain even more significantly. The brief analysis of silver impact provides
one example of why recycling is key in mitigating the negative consequences of mining. A vi-
sion developed in this thesis is to support research in circular module design and automatized
disassembly assisted by CV building up on the knowledge gained from this and other research
projects.
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Appendix A - Code and Models

The archive file Appendix A - Code and Models - DetectionInMotion.zip contains the program code
created in this thesis project. The code of the ISE-internal “Phillephalle” package used for the
organization of solar cell samples is not included. Furthermore, the ISE-internal alignment pack-
age used to rectify and crop measurement images is not included.

The project folder in the archive consists of two main parts looking from the root folder:
The NN_experiment_files folder contains trained models of all scenarios and related plots. In the
submitted version, this folder does not contain all created files due to size restrictions (all files
of the project require 308 GB of storage). However, for each experiment, one model file of the
best-performing scenario for each illumination is submitted.

The detectioninmotion folder consists of the following subfolders:

• alignment (scripts for the rectangular alignment of measurement images)

• dashboard (scripts of an application used in the final defense, not part of this report)

• database_creation (scripts to create a solar cell database based on measurements at Fraun-
hofer ISE)

• smart_labeling (scripts to calculate smart labels for RS and j0 defects

• neural_networks (main scripts for the neural network experiments, including training, test,
and validation)

• blurring (contains a script to investigate artificial motion blur and to create clean plots of
samples with motion blur applied)

• tables_plotting (scripts for plotting publishing-grade plots of various types)

A more detailed overview of the contained scripts and their purpose is given in the README.md

file in the archive.
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Appendix B - LCA Unit Processes
and Absolute Results

The LCA used in this work is based on an existing model from Blanco [67]. To reproduce the re-
sults, please contact the model author mentioned in the bibliography. The background processes
from ecoinvent 3.6 remain unchanged. The foreground processes changed in the model are:

• 2.4 Ag nanoink printing TOPCon (varied silver amount)

• 5.13 Cell testing and sorting (varied throughput and yield loss)

• 5.8 PVD rear metal (varied silver amount)

• 6.5 Electricity production, slanted-roof installation (varied PV conversion efficiency)

• 6.1 Cell (added cleanroom energy consumption and factory construction, varied through-
put)

The archive file Appendix B - LCA Details - DetectionInMotion.zip contains the LCA-related files.
The detailed process changes and associated calculations are documented in the file Appendix B -

LCA Unit Processes.xlsx which is part of the submission. The analysis in the report mostly focuses
on the relative impact changes with respect to the baseline scenario. The absolute results in all
ILCD 2.0 2018 midpoint impact categories are available in the file Appendix B - LCA Absolute

Results.xlsx.
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