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Abstract

Causal relationships are at the heart of the scientific method. The causal revolution of the 21st century
has opened the doors for many new approaches to quantify such relationships. In this thesis, we study
the novel framework of proximal causal inference, which enables estimation of causal parameters even
in the presence of unmeasured confounders, overcoming the limitations imposed by the Conditional
Exchangeability assumption of the classic causal framework. In particular, we shall focus on determining
and estimating the Causal Exposure Response Function (CERF) under this new set of assumptions.
First, we introduce the problem and present a literature review of existing approaches to estimate bridge
functions; then, we show theoretical results for extensions of classic linear results and a novel quasi-
Bayesian method. This is then completed by showcasing performance on many simulated numerical
examples and two real-world problems: Sustainable Causal Investing, and the effect of exercise on sleep.
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Introduction

This thesis is aimed at graduate and undergraduate students in the field of mathematics and statistics. As
such, it is structured in a total of 7 chapters. In this first introductory chapter, the history and concept of
causality and the counterfactual framework are introduced. Furthermore, we highlight the pitfalls of the
classic causal framework and introduce the advantages and shortcomings of the proximal approach. Next,
preliminary concepts from functional analysis and mathematical statistics are introduced in preparation
for the coming chapters. First we report a review of the state of the art and recent developments of the
proximal inference literature. Afterwards, chapter 4 focuses on an extension to include higher order terms
in two stage least square regression, standard error estimation using the delta method. Then, in chapter 5
we develop a novel application of the quasi-Bayesian approach to the problem of proximal inference.
Afterwards we perform several numerical experiments to highlight and compare the new estimator. The
thesis is then completed with an application to two concrete problems, causal sustainable investing and
the effect of intense exercise on deep sleep. The work is completed with a conclusion and discussion on
the topic. Throughout the thesis, we present results and proofs from various sources, reformulating and
giving intuition behind them. Whenever the proofs are not informative or excessively technical, they will
be omitted.

Introduction

Although one of statistics’ initial interests was to determine causal relations between variables from
observations, it was quickly dismissed in favor of studying correlation over causality. Sir Francis Galton
is credited for introducing the concept of correlation to the field of statistics, which was later formalized
by Karl Pearson. Both statisticians emphasized the fact that correlation is not causality, yet they did
not provide a clear answer on how to define the latter. Due to its novel nature, correlation was then
seen as the solution to all problems, and the search for causality was abandoned. Unfortunately, the
opinion that correlation should be prioritized over causality quickly transformed into a dogma of the
field, and statisticians avoided the concept altogether. At a similar time, in the 1920s, Sir Ronald Fisher
was studying the effect of specific fertilizers on crop yield. Initially, he set up a basic experiment involving
Latin squares, dividing the field into a grid, and placing one fertilizer into each grid. The results of this
experiment were strongly biased, and Fisher recognized this. Due to the fact that the resulting outcome
might be influenced by different factors such as preexisting fertility of the soil, sun exposure, or some
other unaccounted for quantity, the experiments in each sub-square were not comparable. Repeating the
experiment and placing the same fertilizer in the same grid would reduce the uncertainty of the effect of
the fertilizer on the specific grid, but would it make the final result comparable with the ones in other
grids? No, the interaction between fertilizers and their respective grids would remain and still make the
final average results incomparable. In the end, Fisher carried out the experiment by repeatedly changing
fertilizer and grid distribution. By doing so, he removed any potential confounders in the ground as each
fertilizer was applied to a different plot of land, and also any personal bias in the fertilizer assigning
process. The concept of randomizing, randomly assigning which grid receives which fertilizers, is the
same method used today in modern experimental sciences: randomly decide which subject receives the
control and which the treatment. Fisher had invented the randomized controlled trial. Unfortunately, as
innovative as he was, Fisher would also propagate a new dogma, asserting that the randomized control
trial was the only valid approach to determine causal relations between variables.
One of the most important discussions and debates revolving around the subject of health of the past
century, is whether smoking is a significant cause of cancer or not. Although younger generations might
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nowadays take this as an indisputable fact, up until half a century ago this question had no statistical,
mathematical, or scientific tools to answer it. Many statisticians, whether because of personal belief
or ulterior motives, supported the claims made by the large tobacco companies. Even Fisher himself
defended the opinion that smoking and cancer were only spuriously correlated, stating even that the data
could suggest a paradoxical protective effect [52].
At the beginning of the 20th century, lung cancer was thought to be caused by environmental factors such
as influenza, HPV, or various forms of air pollution and other chemicals and byproducts of the industrial
revolution [45]. Although these exposures indeed contribute to a higher risk of cancerous cell development,
overlooking the role of smoke in the lungs’ health would be a significant oversight. Nonetheless, tobacco
lobbies used other potential sources as means to discredit those who claimed that cigarette smoke increased
the risk of cancer. As it is clear from this example, discerning the primary cause of an outcome can be
difficult; many variables might influence and affect a result. As proposed in [54], diseases are multi-
factorial and often have many causal sources. For these reasons, it is important to be able to objectively
quantify the effects a certain variable might have on an outcome. Unfortunately, consumers were not
made aware of the risks and dangers that smoking carries and were strongly deceived by the large tobacco
companies. In this regard, the world 20 years ago was much different than it is today; Hollywood movies
used cigarettes as product placement, teenagers were the primary target of advertisement, companies
would receive support from physicians and statisticians alike, one could smoke on planes, and the list
goes on. Nowadays, many countries in the world have placed bans on advertisements related to smoking,
cigarette and other tobacco products carry pictures and texts to discourage the use, and smoking is not
allowed in many public areas such as restaurants, airplanes, and hospitals. It was only in 1999 that the
World Health Organisation (WHO), published a treaty to push nations to ”protect present and future
generations from the devastating health, social, environmental and economic consequences of tobacco".
Unfortunately the tools to prove the negative effects of smoking on health were not yet available. It
should be of no surprise that the framework to answer questions regarding causality, even in non exper-
imental settings, was born out of epidemiologists’ and econometricians’ needs. These needs would only
be answered after the so called ‘Causal Revolution’ at the end of the century.
Causal inference is also a staple of modern econometric theory and it is often used to evaluate or even
predict the effect of a certain policy, whether it be social or monetary. Guido Imbens and Joshua
Angrist, two economists, were awarded the 2021 Sveriges Riksbank Prize in Economic Sciences[3], also
referred to as the Nobel Prize in Economics. Their recognition stems from their contributions to the field
of causality and its practical applications in real-world social advancements. In particular, their work
includes determining the causal relationships between employment rates and minimum wage, as well as
between education and income.
Returning to the smoking debate from a more econometric point of view, one might wonder the effective-
ness of policies put in place to reduce tobacco use. In 1988 California passed Proposition 99, also known
as the Tobacco Tax and Health Protection Act. This legislation aimed at reducing smoking rates by
implementing various tobacco control measures such as funding anti-smoking education and prevention
programs, and increasing taxes on tobacco products. In [2], the authors develop a causal method known
as Synthetic Controls to determine whether or not the proposition had an effect on the sale and thus
consumption of cigarettes. In particular, the Synthetic control method consists of constructing a least
square copy of the test variable from various control variables pre-treatment. From this, one can compare
reality to what would have happened had California not introduced Proposition 99. Assuming that the
underlying machinery is correct, it is clear from figure 1.1 that the introduction of Proposition 99 helped
to further reduce the already declining tobacco consumption in California. In this example, we used
causal inference in a posteriori analysis, but it can also be used in a predictive manner, to decide whether
or not to enact a certain policy in advance.

1.1 Counterfactuals, Experiments and Observations

There are many different taxonomies of data but the one of interest to the causal method is the obser-
vational/experimental categorization. The main objective of the scientific method is to understand and
explain our surrounding world by studying why phenomena occur. This is done by proposing a hypothesis
and then attempting to falsify it through experiments. Note that hypotheses are always of causal nature:
Gravity causes the apple to fall, smoking causes cancer,...
Scientific theories aim to deduce causal relationships between events. Experiments, if carried out correctly,
enable the collection of controlled data. The scientists perform experiments in a controlled environment
or use randomization to reduce the influence of unaccounted variables called confounders. Unfortunately,
experimental data can be extremely hard to obtain. The process of performing experiments is often an
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Figure 1.1: Synthetic control method to determine the effect of proposition 99 on smoking habits in
California. Enactment date of Proposition 99 1988 (dashed line). Data from [2].

expensive one and, in certain situations, might not be feasible or even ethical. Returning to the smoking
and cancer debate, tobacco companies and Fisher defended the opinion that smoking and cancer could
be correlated through some unmeasured confounder [12]. In Fisher’s eyes the only conclusive way to
determine the effect of the former on the latter would be to set up an experiment and randomly assign
a patient to either the smoking or control group. Coercing someone to consume a highly addictive and
possibly carcinogenic substance such as tobacco or depriving them of it without their consent, but rather
due to chance, would not be an ethical practice and thus the experiment becomes impossible. Similarly,
in [43], a cohort of smelter workers was studied to determine the effect of sustained exposure to arsenic on
mortality. A randomized control trial to test the true effect would be impractical as a random group of
people cannot be reassigned occupation, for possibly many years, to determine causal relationships in the
name of science. In situations such as these, one can only hope to collect observational data. People that
smoke continue smoking, and smelter workers continue with their jobs. Unfortunately, the uncontrolled
and non-experimental nature of the data generating process opens the door to the (possible) presence of
confounders, carrying intrinsic biases. This is the reason Fisher was so dubious and reluctant to accept
that smoke exposure had an effect on cancer, he believed that observational data was not valid.
The answer to causal questions lies behind questions What if...?. In [44], Rubin gives a clear and
quantitative definition of causality:

“the causal effect of one treatment, E, over another, C, for a particular unit and an interval of time
from t1 to t2 is the difference between what would have happened at time t2.”

In the latter half of the 20th century, philosophers David Lewis and Robert Stalnaker formalized the idea
behind the What if...? question into the theory of counterfactuals[20]. This theory revolved around the
concept of closest possible world, a ‘potential’ world most similar to ours except for one difference. For this
reason, counterfactual outcomes are also referred to as potential outcomes. Returning to the agricultural
experiments, from the closest world interpretation, the solution to the presence of confounders would be
to place the same fertilizer on the entire field and compare the results between distinct possible worlds.
Clearly this is infeasible, since one would need to have access to these other worlds to observe the results,
counterfactual outcomes are key in deducing causal relations. The notation we adopt for counterfactual
thinking is the following: Let Y be the outcome variable, then if treatment A = E occurs the observed
outcome is Y E ; otherwise, if the treatment assigned in C, the observed outcome would have been Y C .
Fisher was not the only one interested in agricultural experiments, in a similar period, Jerzy Neyman
also studied the problem. In his master’s thesis, Neyman recognized the fact that comparing yields
under different underlying soil conditions would pose a risk to the validity of the study [49]. Rather
than asking about parallel worlds, Neyman was interested in statistically adjusting the observed data
to somehow consider it as experimental. This theory starts to come to fruition in [44], where Rubin
proposes a framework that matches measured confounders between treatment groups to estimate potential
outcomes. Thus, if one were able to account for the confounding variables, then the observed data could
be considered controlled and finally yield causal conclusions. This framework is known as Neyman-Rubin
causal model; its assumptions and their violation will be the main topic of this thesis.
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Many causally related events, especially in the clinical setting, are not deductive in nature but rather
probabilistic. Not all smokers will eventually develop lung cancer and not all non-smokers will not develop
lung cancer. Thus one would assume that the language of probabilities would be an excellent tool to
measure causal relationships, but it is not so simple. From a probabilistic point of view, two events (A,B)
are said to be independent if the joint law factorizes into the marginals P (A,B) = P (A)P (B). When
this is not the case, the two events are said to be dependent. Conditional probabilities quantify the level
of association between the events by ‘normalizing’ the remaining probability of event A.

P (A|B) =
P (A ∩B)

P (B)

P(A)P(B) P (A ∩B)

Figure 1.2: Graphical representation of conditional probabilities.

In the case of independent events(A ⊥⊥ B), the joint probability factorizes into the two marginals and
simplifies with the denominator, thus P (A|B) = P (A). Similarly, the concept of independence can be
extended to random variables, which are said to be independent if the joint distribution factorizes for all
possible combinations of events. If two random variables X,Y are independent then the same rules as
before apply and thus P (Y,X) = P (Y )P (X). Notice that conditioning on a variable coincides with the
act of observing since it answers the question:

What is the probability of Y ∈ A, having observed X ∈ B?

Although useful, observation is not the main approach used by the scientific method to deduce causal
claims. Observation is only correlation. When performing experiments, scientists do not simply observe
events but rather perform or intervene on the possible variables.

Figure 1.3: Number of breweries(blue) and number of associate degrees in Mathematics and Statistics
(red) in the U.S. over the past 13 years. Data from [5],[14]
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To highlight that correlation is not the same as causal relationships, data regarding the number of
breweries and the number of associate degrees in mathematics was collected over the past 10 years
([5],[14]). The values are plotted in figure 1.3. There seems to exist an almost perfect correlation between
number of mathematics degrees and number of breweries. Even deploying ‘statistical tests’, one observes
an almost perfect correlation coefficient. Although mathematicians are known to often socialize in pubs,
it is very unlikely that the relationship between the two events is a causal one and no scientist would
conclude that either causes the other.
Unfortunately the language of probability is unable to capture the subtle difference between observation
and intervention. There is a need for a new tool to account for interventions and then capture causal
claims. From a probability point of view, given a treatment A and outcome Y, we say that A causes Y
if the potential outcome Y A is more likely than when it is not intervened on Y A. Thus a treatment has
a causal effect on outcome if it increases the likelihood of the outcome occurring. Using the notation of
both counterfactuals and probability, A causes outcome B ⇐⇒ P (Y A = B) > P (Y A = B). Reading
this in terms of possible worlds: A causes B if, the probability of observing B in the closest possible world
where A occurs, is higher than in the one where it does not.

Problems
Although the ‘Causal Revolution’ has drastically changed the way causal quantities are estimated, it is
not the end-all solution. The assumptions required by the counterfactual model are not always plausible
and their violations would invalidate any drawn conclusions. Many have defined the current period in
time as the ‘Era of Big Data’ due to the overwhelming abundance of it in every day life. It is hard
to find an electronic device that does not collect and utilize data. The use of this data is also very
vast. Doctors use patient information for personalized medicine, consumers are supported in the choice
of which products to buy by target advertisements, factories are able to perform predictive maintenance
on their equipment. The interest in data has been ever increasing, but in the words of Judea Pearl,
‘data are profoundly dumb’[42]. The example presented in figure 1.3 highlights this. Passively collected
data is only observational data and is nothing but a representation of the underlying mechanisms. If
one is unable to describe the process which generates such data, it is of no use. The belief that data
is the solution to every problem is very misleading. Data without structure is just a pile of numbers
on paper (or computers). With structure here, we mean underlying dependencies between the data
generating processes. Currently, the most common method of imposing such structures is through expert
elicitation methods, such as interviews, queries, or structured expert judgement. Unfortunately, human
intervention is not reasonable when the underlying process is not clear or the number of covariates
is large. There has also been a large interest in developing ‘automatic’ structure learning algorithms.
Algorithms such as the PC algorithm, the FCI or other variations blindly attempt to learn structural
relations from correlation and specific structures that arise from the requirement that an event cannot
cause itself. The philosophical debate is still open on the feasibility of learning structures directly from
data, or rather can only be captured by some innate human capacity. Obviously, the separation between
the two methods is not so harsh but rather there are in-betweens where expert opinion is either aided
or combined with algorithms. Nonetheless, the proposal of wrong structural assumptions may lead
to possibly wrong conclusions. A second problem, often used as reason to discredit the causal claims
formulated using the Neyman-Rubin causal model, is the validity of the Conditional Exchangeability
assumption (assumption 1.3). This assumption will be discussed in greater mathematical depth later on,
in essence it requires that all confounders between treatment and effect are captured. This assumption
enables us to adjust observational data and ensure ‘artificial randomization’ and use it as experimental
data.
Proximal causal inference, a new framework inspired by experimental biology, is the central topic of this
thesis. It aims to relax the conditional exchangeability assumption to enable the presence of certain
unmeasured confounding. As is always the case, there is no free lunch. The ability to include quantities
that are not observed when adjusting for potential outcomes comes as trade-off for a more stringent
structural assumptions. In particular, it requires the existence and correct classification of negative
controls or proxies, a particular type of confounders.
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1.2 Counterfactual Framework

As previously introduced, the Nyeman-Rubin Causal framework enables us to convert observational data
into experimental one. Although it is not the only one used to define causality, it is the most commonly
adopted one. For this reason and ease of exposition, we shall refer to such model and its assumptions as
the ’classic causal framework’. Before introducing the necessary assumptions of the model, consider the
following example which shows that the naive approach of considering observational data as experimental
can often lead to seriously wrong conclusions.

Example 1.1 (Naive Treatment Effect and Average Treatment Effect)

Consider an experiment with binary treatment A ∈ {0, 1} and binary outcome Y ∈ {0, 1}. Suppose that all
outcomes are available to us in table 1.1, both the observed (Highlighted in yellow) and true counterfactual
ones.

Potential Outcome Sum
Y 0 0 0 0 0 0 1 0 1 0 0 2
Y 1 1 1 1 0 0 1 0 1 0 1 6

Table 1.1: Data for toy example to highlight difference between observations(highlighted in yellow) and
counterfactuals.

If one were to only observe the highlighted values and calculate the NATE (Naive Average Treatment
Effect) instead of the ATE by simply taking the difference of the observed conditional outcome:

NATE = E [Y |A = 1]− E [Y |A = 0] =
1

5
− 2

5
= −1

5

If this were to be taken as the causal effect, the conclusion would be that the treatment has a negative
effect on the outcome.

The true effect of the treatment is given by the Average Treatment Effect:

ATE = E
[
Y 1 − Y 0

]
=

6

10
− 2

10
= +

2

5

In this case, the conclusion is that the treatment has a positive (average) effect on the outcome.

1.2.1 Causal Quantities of Interest

In the socio-economic sphere, causality is often invoked to analyse and answer questions regarding policies’
effectiveness, evaluating past impacts or future effects. The questions of interest are often along the lines
of:

"What if policy A had not been enforced?",
"What will happen if policy A is enforced?"

Similarly, in the medical setting, one is interested in the effectiveness of a drug. In this case the question
is:

"What if drug A is taken?"

In the rest of the work, without loss of generality, we will adopt the nomenclature from the clinical
medicine setting and the variable that is the direct object of the proposition What if... will be denoted
as the treatment.
Having already previously introduced it in Example example 1.1, the most commonly studied causal
quantity is the average treatment effect(ATE):

Definition 1.1 (Average Treatment Effect)
Given a binary treatment taking values in A = {0, 1}, the Average Treatment Effect is defined as:

ATE = E
[
Y 1 − Y 0

]
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Although denoted binary treatment, the random variable is often intended as a TAKEN (1) or NOT
TAKEN (0). The ATE represents the expected improvement when taking the treatment with baseline
reference no treatment(0). Similarly in the presence of a single treatment A with multiple treatment
values A = {1, 2, . . . } is conventionally used as a set of labels and there is no ordinal nature to it. In this
case the average effect of treatment k with respect to baseline 0 will be denoted as ATEk = E

[
Y k − Y 0

]
.

Alternatively, one may be interested in the causal effect of only the treatment E
[
Y k
]

without comparison
to baseline.

Definition 1.2 (Causal Exposure Response Function)
Given treatment A taking values in A and outcome Y , the Causal Exposure Response Function (CERF)
is defined as:

χ :A → R
a 7→ E [Y a]

It is of particular interest the case where the treatment takes continuous values in A ⊆ R. Estimation of
the CERF, under classic or proximal assumptions, will be of central relevance during this thesis. Although
the CERF is not a parameter in the classic sense (θ ∈ R) but rather a function, we will often refer to it
as a parameter of interest.

1.2.2 Classic Assumptions
The assumptions of the Neyman-Rubin causal model are the following:

Assumption 1.1 (Counterfactual Consistency)
Given the observed treatment A the counterfactual outcome Y A is the observed outcome, i.e.

Y = Y A

In case of binary treatment, this can also be written as Y = AY + (1−A)Y .

Assumption 1.2 (Positivity)
Given a treatment A taking values in A the probability of observing treatment A is bounded away from 0
and 1 in each strata of L. In other words:

0 < P (A = a|L) < 1 ∀a ∈ A

In the case of continuous treatment, A ⊆ R, the cumulative distribution function must be bounded away
from 0 and 1.

Assumption 1.3 (Conditional Exchangeability)
All possible confounders between treatment A and outcome Y are captured in the set of variables L. This
entails the following conditional independence:

Y a ⊥⊥ A|L ∀a

Assumption 1.1 ensures that the observed values are correctly defined. Interpreting it from Possible
World theory, the world closest to the one where treatment A = a is administered is the one we have
observed and thus the outcome is the observed one. Assumption 1.2 allows us to use covariates L to match
and thus transform observational data into counterfactual one. In the experimental setting, there would
be no problem to begin with as observed outcome would controlled by laboratory techniques or random
treatment assignment. Assumption 1.3 is the most important yet fragile pillar of the Neyman-Rubin
causal model. Given the values of L, the outcome and treatment are independent, acting as a ’virtual
randomisation’. The assumption is also known as no-unmeasured confounding since its presence could
invalidate the conditional independence.
Now that the necessary assumptions are clear, we can return to Example example 1.1 where the bias
found when wrongly estimating the ATE with the NATE is given by the following result.

Lemma (NATE bias)
In the case of binary treatment, under assumption 1.1 the following holds:

ATE = NATE +
(
E
[
Y 1 − Y 0|A = 1

]
− E

[
Y 1 − Y 0|A = 0

])
E [A] + (1.1)

+ E
[
Y 1|A = 0

]
− E

[
Y 1|A = 1

]
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Proof. Since the treatment is binary, E [A] = P (A = 1). Denote ∆ = Y 1 − Y 0

ATE = E [∆]

= E [∆|A = 1]P (A = 1) + E [∆|A = 0]P (A = 0) (Total Prob.)
= (E [∆|A = 1]− E [∆|A = 0])E [A = 1] + E [∆|A = 0]

= (E [∆|A = 1]− E [∆|A = 0])E [A = 1] + E
[
Y 1|A = 0

]
− E

[
Y 0|A = 0

]
= (E [∆|A = 1]− E [∆|A = 0])E [A = 1] + E

[
Y 1|A = 0

]
− E

[
Y 0|A = 0

]
± E

[
Y 1|A = 1

]
= (E [∆|A = 1]− E [∆|A = 0])E [A = 1] + E

[
Y 1|A = 1

]
− E

[
Y 0|A = 0

]︸ ︷︷ ︸
NATE

+E
[
Y 1|A = 0

]
− E

[
Y 1|A = 1

]

The second term
(
E
[
Y 1 − Y 0|A = 1

]
− E

[
Y 1 − Y 0|A = 0

])
E [A] in equation (1.1) is also known as dif-

ferential effect bias. Differential effect bias refers to the systematic difference between how the treatment
affects the treated and how it would affect the the control group. The third term E

[
Y 1|A = 0

]
−

E
[
Y 1|A = 1

]
is the selection bias. This occurs when the two groups are systematically different, even if

the entire cohort had been treated.

Adjustment

Under the classic causal assumptions, observational data can be considered experimental by adjusting
for confounders. Intuitively, if the underlying effect of other variables on treatment and outcome were
known, then this effect could be statistically accounted for. The key theorem in this identification is the
following:

Theorem 1.1 (g-formula)
Under assumption 1.1,assumption 1.3 the Causal Exposure Response Function (CERF) can be identified
as:

χ(a) = E [Y a] = EL [E [Y |A = a, L]]

Proof.

E [Y a] = EL [E [Y a|L]] (Tower Property)
= EL [E [Y a|L,A]] (Conditional Exchangeability)
= EL [E [Y |L,A = a]] (Counterfactual Consistency)

Theorem 1.1 is also sometimes referred to as backdoor adjustment.



9

1.3 Proximal Framework

Theorem 1.1 shows the importance for assumption 1.3, yet there is a lot of scepticism around its valid-
ity. From a practical and experimental point of view, it might seem impossible to capture all common
confounders without omitting some. Moreover, which variables should be collected? Once again, the
results depend on the capacity of experts to correctly specify which items to focus on. Note that failing
to include some confounder violates the randomisation within strata, returning to the starting steps and
possibly lead to large biases in the estimation of the causal quantities of interest.
In parallel, one may argue that due to instrument recording precision or difficulty in capturing the
variable, the true confounders are never measured but rather some (possibly) inaccurate representation
of them. For example, there is currently no universal test to diagnose dementia. Often the testing
procedure proceeds by steps, initially through cognitive tests, such as the Mini Mental State Examination
(MMSE) or the Alzheimer’s disease assessment scale-Cognitive (ADAS-Cog) and later through brain
imaging techniques. The cognitive tests consists of questionnaires, the MMSE for example consists in 11
questions. Although indicative, the cognitive tests on their own cannot fully capture the current state
of the disease but rather imperfect proxies that indicate the overall progression of the disease. Similarly,
scans of the brain are not conclusive to determine the presence nor the level of the disease in patients,
but can still be insightful for treatment.
The conditional exchangeability assumption is untestable as no statistical test can be carried out to
verify that all confounders have been captured. To relax this assumption and accept the presence of
unmeasured confounders, mathematicians and epidemiologists looked at other applied sciences for new
methods. In particular, taking inspiration from biology and the experimental step of the scientific method,
the proximal causal learning framework leverages what is known as the negative control method. This
approach consists in deploying the experiment in such a way to ensure that no result is obtained. Under
these specific conditions, if a result is detected then the presence of unmeasured confounders cannot be
ruled out. In particular, the existence of two negative controls is required: Negative Control Outcome,
and Negative Control Exposure.

Definition 1.3 (Negative Control Outcome)
A variable W is a Negative Control Outcome, or NCO, if it satisfies the following conditions:

• W is known not to be caused by the treatment A.

• The association between treatment A and Negative Control Outcome W is subject to the same
confounding mechanism as A and Y .

Often in the observational medical studies, patients are required to self-administer the treatment. The
effectiveness of the treatment depends on the consistency that a patient has in taking the treatment.
While this might be perfectly controlled in an experimental environment, if not accounted for, might
introduce bias into the observational study. As suggested by the Neyman-Rubin causal model, if one
were able to account for this quantity, statistical adjustments could help remove the bias. Quantifying
this parameter is no easy feat. One might argue that consistency in taking medication is related with
the level of health consciousness an individual has. Highly health conscious individuals are more likely
to stick to the medical regiment whereas non-health conscious individuals are more likely to forget.
There are many methods to quantify health consciousness of an individual such as self reported levels,
questionnaires, number of visits to the doctor and so on. Nonetheless, all of these methods are not truly
quantifying the health consciousness of an individual but are in reality proxies, imperfect representations
of the true unmeasured underlying factors.
All these variables can considered negative control outcome variables since it is an imperfect proxy for the
overall health-consciousness of the individual but does not have a direct effect on whether the treatment
is assigned or not.

Definition 1.4 (Negative Control Exposure)
A variable Z is a Negative Control Exposure, or NCE, if it satisfies the following conditions:

• Z is known not to be a direct cause of the outcome Y .

• The association between outcome Y and Negative Control Exposure Z is subject to the same con-
founding mechanism as the treatment A and outcome Y .

The negative control exposure variables are factors that only have a direct causal association with con-
founders and treatment. From a clinical perspective, negative control exposures are possible values or
parameters that aid a doctor in the choice to administer the treatment, but are not direct causes of
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outcome. A recurring example of a negative exposure in the literature [53][13] is CD4 cell count in as-
signment of HIV treatment. CD4 cells are a type of white blood cells essential to the immune system
in fighting off diseases. HIV attacks these cells and prevents them from duplicating, thus leading to a
lower count over time and a compromised immune system. This parameter is used by practitioners to
decide whether or not to administer treatment, higher CD4 count patients are less likely to receive it.
The value of a CD4 count test has no direct causal effect on the outcome but, acts as a representation
for the overall health of the immune system, which confounds both treatment and outcome. Thus, CD4
count is a valid negative control[53].

1.3.1 Proximal Assumptions
The proximal inference framework leverages the existence and correct classification of the Negative Con-
trol Outcome and Exposure variables to admit certain types of unmeasured confounding. Assumptions 1.1
and 1.2 remain from the classic setting but now assumption 1.3 is exchanged for the following:

Assumption 1.4 (Proximal Exchangeability)
There exist negative control exposure variables Z, negative control outcome variables W and measured
confounder X. Moreover the type of variable is correctly identified. This is equivalent to the following
independence assumptions:

Y ⊥⊥Z|A,X,U
W ⊥⊥(A,Z)|X,U

Note that in the literature this assumption is not often called Proximal Exchangeability, but rather
Negative Control Assumption or some other variation. Since it somewhat replaces the conditional ex-
changeability assumption we shall refer to it as such.

YA

U

WZ
X

Figure 1.4: General Proximal Structure.

Figure 1.4 is a graphical representation of the proximal assumptions since it guarantees the negative
controls independence requirements:

• Given A,X,U all paths between Y and Z are closed, thus Z is a valid NCE.

• Given X,U all paths between A,Z and W are closed, making W a valid NCO.

Although figure 1.4 gives a very intuitive interpretation of the structure needed for the problem, it is by
no means the only one.

Example
The following graphical models are examples of potential proximal structures.

Additional assumptions, which we shall refer to as technical assumptions, are often made to ensure
existence or regularity of the problem. A recurring assumption in the literature is the following.

Definition 1.5 (Completeness)
A set of distributions {L(U)} is said to be complete if for every integrable function g:

E [g(U)] = 0 ⇐⇒ g(U) = 0 a.s.

Similarly, given a set of conditional distributions {L(U |S = s) s ∈ S} is complete if for all measurable g
and ∀s ∈ S :

E [g(U)|S = s] = 0 ⇐⇒ g(U) = 0 a.s.
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Figure 1.5: Examples of valid other proximal structures.

Whenever a set of conditional distributions L(U |X) is complete we shall simply refer to U |X-completeness.
In the proximal setting we will often require U |Z,A,X or U |W,A,X completeness. This assumption is
often interpreted as a condition relating the range of U and the range of the proxies. In the sense that
the proxies can capture the variability of the unmeasured confounder. In the case of categorical variables
U,W,Z taking values on U ,W,Z respectively, the condition is equivalent to requiring min (|Z|, |W|) ≥ |U|.

Example 1.2 ([36]Independence ⇏ Completeness)
Independence is not enough for completeness. Suppose that U = (X1, X2, · · ·XN ) and Z = X1 with
Xi ∼ N (0, 1) i.i.d. Then g(U) =

∑N
i=2Xi is measurable and g(U) ̸= 0 a.s but

E [g(U)|Z] = E

[
N∑
i=2

Xi|Z

]

= E

[
N∑
i=2

Xi|X1

]

= E

[
N∑
i=2

Xi

]

=

N∑
i=2

E [Xi] = 0

In general, the conditional completeness assumption U |S is violated if the space of functions F orthogonal
to the density f(u|s) ∀s ∈ S is not the zero element. Suppose F ⊥ f(u|s), and there exists F ∋ g ̸= 0
then

∫
U g(u)dP (u|s) = 0 since the expectation can be seen as an inner product (and thus the notion of

orthogonality is induced).

1.3.2 Bridge Functions
Recalling theorem 1.1, if the variable U were measured, the CERF could be identified by simply iterated
conditioning as:

χ(a) = E [Y a] = EU,X [E [Y |A = a,X,U ]]

Unfortunately, the unmeasured nature of U makes it impossible to apply such a formula. Nonetheless,
the proximal exchangeability assumption 1.4 enables us to use specific conditional independencies to
overcome this problem. In particular, so-called bridge functions enable us to estimate causal quantities.

Definition 1.6 (Outcome Bridge function)
The function h : W × A × X → R is an Outcome Bridge Function if it solves the following Fredholm
integral equation of the first kind:

E [Y |Z,A,X] = E [h(W,A,X)|Z,A,X] (1.2)

The following theorem shows that, under an additional completeness assumption, the outcome bridge
function above enables the identification of the CERF.

Theorem 1.2 (Outcome g-Formula)
Assume that proximal exchangeability, counterfactual consistency and positivity hold. Moreover assume
U |Z,A,X-completeness (definition 1.5), then if there exists an outcome bridge function h, the CERF is
identified as:

χ(a) = E [Y a] = E [h(W,a,X)]
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Proof.

E [Y |Z,A = a,X] = EU [E [Y |Z,A = a,X,U ] |Z,A = a,X]

E [h(W,a,X)|Z,A = a,X] = EU [E [h(W,a,X)|Z,A = a,X,U ] |Z,A = a,X]

Subtracting the two terms and using the definition of outcome bridge function h:

E [Y |Z,A = a,X]− E [h(W,a,X)|Z,A = a,X] = 0

EU [E [Y − h(W,a,X)|Z,A = a,X,U ] |Z,A = a,X] = 0

EU [E [Y − h(W,a,X)|A = a,X,U ] |Z,A = a,X] = 0 (NCE)
⇐⇒

E [Y − h(W,a,X)|A = a,X,U ] = 0

The proof is complete by applying theorem 1.1

E [Y a] = EU,X [E [Y |A = a,X,U ]] (g-formula)
= EU,X [E [h(W,a,X)|A = a,X,]] (previous)
= E [h(W,a,X)]

Due to the similarity to theorem 1.1, this theorem is often referred to as the proximal g-formula. Alter-
natively, exchanging the roles of NCO and NCE suggests the existence of another bridge function that
enables identification, the Exposure Bridge function:

Definition 1.7 (Exposure Bridge Function)
The function q : Z × A × X → R is an Exposure Bridge Function if it solves the following Fredholm
integral equation of the first kind:

E [q(Z,A,X)|W,A,X] =
1

f(A|WX)
(1.3)

where f(A|WX) is the conditional density function of A given W,X.

Once again, the following result proves to be a proximal version of the g-formula and enables identification
of the CERF.

Theorem 1.3 (Exposure g-Formula)
Assume that proximal exchangeability, counterfactual consistency and positivity hold. Moreover assume
U |W,A,X-completeness (definition 1.5), then if there exists an exposure bridge function q, the CERF is
identified as:

χ(a) = E [Y a] = E [Y · 1A=a · q(Z, a,X)]

Proof.

E [q(Z,A,X)|W,A,X] = EU [E [q(Z,A,X)|W,A,X,U ] |W,A,X] (Tower)
= EU [E [q(Z,A,X)|A,X,U ] |W,A,X] (W ⊥⊥ (Z,A)|U,X)

E [q(Z, a,X)|W,A,X] =
1

f(A|W,X)
(Definition)

= EU
[

1

f(A|W,X,U)
|W,A,X

]
(Tower* property)

Subtracting the two, and by the assumed U |W,A,X-completeness, we have that:

EU
[

1

f(A|W,X,U)
− E [q(Z,A,X)|A,X,U ] |W,A,X

]
= 0
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⇐⇒
1

f(A|W,X,U)
= E [q(Z,A,X)|A,X,U ]

Applying theorem 1.1 to the CERF:

E [Y a] = EX,U [E [Y · 1A=a|X,U ]] · 1

f(A = a|X,U)

= EX,U [E [Y · 1A=a|X,U ]] · E [q(Z, a,X)|A = a,X,U ] (previous result)
= EX,U [E [Y · 1A=aq(Z, a,X)|X,U ]] (lemma A.11)
= E [Y · 1A=a · q(Z, a,X)]

The above theorems suggest that, if such bridge functions exist, their estimation is equivalent to the
estimation of the CERF. Thus, the presence of unmeasured confounders is circumnavigated by using a
specific data structure and the bridge functions as an intermediate step. Unfortunately, the proximal
method has its downsides. Even when the problem permits it, estimation of the causal quantities is much
more complicated than in the classic case, as will be explored in the next sections.

1.3.3 Classic vs. Proximal
Although it can be argued that both the conditional exchangeability and proximal exchangeability as-
sumptions are untestable and must rely on expert judgment for correct identification, the latter is often
considered less stringent. Obviously, the comparison is not so black and white since it depends on the
data that can be collected an the structure of the problem.

YA

U

WZ

Figure 1.6: Graphical model where proximal exchangeability is not valid [53]

For example, figure 1.6 shows an invalid graphical model and structure. In this case, proximal exchange-
ability does not hold since we do not have W ⊥⊥ (Z,A)|U . Notice that if W → U was not present, the
the arrow Z → U would not be a problem. The presence of W → U makes it such that U becomes a
collider and conditioning on it opens the path Z − U −W .
Additionally, classic causal methods relying on the conditional exchangeability assumption are more
developed and, as we will see later, often more relaxed on other technical assumptions. Nonetheless,
the ability to overcome the presence of unmeasured confounding without direct modeling can be seen as
strong advantage.
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Background Mathematics

2.1 Hilbert Spaces

Definition 2.1 (Hilbert Space)
Let ⟨·, ·⟩ : H ×H → R be an inner-product on the vector space H. H is a Hilbert Space if it is complete
with respect to the norm ∥·∥H induced by the above inner-product.

Hilbert spaces are vector spaces with an inner product, a generalization of euclidean vector spaces. With
the additional requirement for completeness with respect to the norm induced by the inner product, the
classic concepts of limits and convergence in terms of Cauchy sequences are well defined. In the rest of
this thesis we shall focus on separable Hilbert spaces, these contain a countable dense subset, meaning
we can always determine a countable orthonormal basis. If H is a finite dimensional vector space, then
separability comes automatically.

Example 2.1
Let H be a vector space over R2, the 2-dimensional euclidean vector space. Let a = (xa, ya), b = (xb, yb)
be two vectors in H. With the inner product ⟨a, b⟩ = xaxb + yayb, H is a Hilbert space.

The definition is general enough to include (possibly) infinite-dimensional objects such as functions. The
points or elements of such spaces are functions, and since Hilbert spaces are vector spaces, scaling and
countable sums are closed operations. Just as in elementary linear algebra, given a basis of the space, one
can identify any element with a set of weights of said basis; the same holds for functions in Hilbert spaces1.
Similarly to the finite-dimensional case, the notion of inner product as geometric projections remains,
along with all the related nomenclature. Two elements of a Hilbert space are said to be orthogonal if their
inner product is zero. Furthermore classic results such as the spectral theorem can be extended to linear
operators, maps between function spaces that generalize the concept of matrices. All these considerations
make Hilbert spaces of functions a natural working space.

Example 2.2

The space of Lebesgue-square integrable functions L2([0, 1], λ) = {f :
1∫
0

f(x)2dλ(x) < ∞} equipped with

the inner product ⟨f1, f2⟩ =
1∫
0

f1(x)f2(x)dλ(x) is a Hilbert Space.

Important Results from Functional Analysis

As will be discussed in section 2.3, the Fredholm integral equations used to characterize bridge functions
of proximal inference can be reformulated as operator problems. The following are important results from
functional analysis regarding Hilbert spaces, and linear operators between them that will be re-occurring
throughout this thesis. They are presented here along with some intuition.

Theorem 2.1 (Riesz Representation)
Let H be a Hilbert space with inner product ⟨·, ·⟩. For every bounded linear functional Γ ∈ H∗ there exists
a unique element α ∈ H, called Riesz representer of Γ such that:

Γf = ⟨f, α⟩H ∀f ∈ H
1Separable Hilbert spaces

14
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The Riesz representer theorem tells us that every linear continuous functional on H can be represented
by an element in H itself. Applying such functional to any element in H will be equivalent to projecting
onto the representer itself. Large emphasis will be placed on the evaluation functional, due to their close
relationship with reproducing kernel Hilbert spaces.
Just as function spaces can be seen as generalizations of Euclidean vector spaces Rn, linear operators can
be interpreted as generalizations of matrices, i.e. linear maps.

Definition 2.2 (Linear Operator)
Let K : H1 → H2 be a linear map between two Hilbert spaces H1,H2, i.e. K(λf) = λ · K(f) and
K(f + g) = K(f) +K(g) ∀f, g ∈ H1,∀λ ∈ R. Such map is referred to as a Linear Operator.

Definition 2.3 (Adjoint Operator)
Let K : H1 → H2 be a bounded linear operator between two Hilbert spaces, the adjoint of K is the operator
K∗ : H2 → H1 such that:

⟨Kf, g⟩H2
= ⟨f,K∗g⟩H2

∀f ∈ H1,∀g ∈ H2

One might now wonder if classic results for matrices also hold for these generalizations. This is often the
case in Hilbert spaces for a particular type of operators, known as compact operators.

Definition 2.4 ([56]Compact Operator)
Let K : H1 → H2 be a linear operator. K is said to be compact if it maps the unit ball of H1 into a
relatively compact subset of H2, a set with compact closure. In particular, for Hilbert spaces K is the
limit of a sequence of finite rank operators {Ki}, i.e., Im(Ki) is a finite dimensional subspace in H2.

Compact operators can thus be seen as the limit of matrices. A classic result of interest is the spectral
theorem, which guarantees that a n × n positive definite matrix A admits non-negative eigenvalues. A
similar theorem exists for linear compact operators.

Proposition 2.1 (Spectral theorem for Operators)
Let K : H1 → H2 be a compact linear operator and K∗ : H2 → H1 be its adjoint. By the spectral
theorem, the self-adjoint compact operator K∗K : H1 → H1 admits non-negative eigen-decomposition
{λ2i , φi} where {φi} is a orthonormal basis of H1. Similarly, KK∗ : H2 → H2 admits eigen-decomposition
{λ2i , ϕi} and {ϕi} is a orthonormal basis of H2. The values {λ2i } are the eigenvalues of the operator and
its adjoint.

By definition of compact operators, it follows that for infinite dimensional Hilbert spaces 0 is an accumu-
lation point of the eigenvalues. As such, we always choose to order them in a decreasing order such that
λi → 0. We can also define the operator equivalent of singular value decomposition, the singular system.

Proposition 2.2 (Singular System)
Let K : H1 → H2 be a compact linear operator. Then there exists {λi, φi, ϕi}, where the quantities are
defined as in proposition 2.1. The latter defined as the singular system of K and the values {λi} are
defined as its singular values.

In linear algebra, the singular values of a matrix inform us in which directions applying the matrix will
stretch vectors. This can also be seen as a loss or compression of information in the direction of smaller
singular values. A similar train of thought can be applied to linear operators, seeing them as ’infinite’
dimensional matrices; larger singular values will carry more information.
Matrices can be represented as an expansion of their singular value decomposition, and since compact
operators admit a singular system we might wonder if a similar result holds. An operator can be rep-
resented as a series expansion of the basis ϕi ⊗ φi due to the following result. This highlights that the
application of an operator is simply a (infinite) repeated projection onto its eigenfunctions and re-scaling.

Theorem 2.2 ([40] Series representation)
Let K : H1 → H2 be a compact linear operator and {λi, φi, ϕi} be its singular system. Then K admits
series representation:

K =
∑
i

λiϕi⊗φi

where ∀f ∈ H1, g ∈ H2 (g⊗f)z = ⟨f, z⟩ g. In other words, if f =
∑
fiφi:

Kf =
∑
i

λi(ϕi ⊗ φi)(f) =
∑
i

λi ⟨f, φi⟩ ϕi =
∑
i

λifiϕi
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A
λmax

λmin

Figure 2.1: Two dimensional vector space before and after applying a matrix A with singular values
λmin, λmax. Vectors along the direction of the eigenvector associated with the smallest eigen value are
compressed.

Example 2.3
Just like in the two dimensional example of figure 2.1, theorem 2.2 highlights that the operator gives more
importance to the higher valued eigenvalues λ2i . If function f is defined as fi = 1 i = 1, 2 and fi = 0
otherwise, and λ1 > λ2, the previous representation highlights how operator K stretches the function more
in the direction ϕ1 than ϕ2. The same idea could be applied for all trailing singular values if fi ̸= 0.

In the case of integral operators, proposition 2.1 is often referred to as Mercer’s theorem. Additionally,
this result enables to express the kernel of its integral operator as a series of eigenfuctions and eigenvalues.

Theorem 2.3 ([39] Mercer’s theorem)
Let X be a compact space with strictly positive Borel measure µ. Let k be a symmetric, continuous,
positive definite function, i.e. ∀f ∈ L2(X,µ):∫

k(u, v)f(u)f(v)dudv ≥ 0

Then the integral operator defined as:

T : L2(X,µ)→ L2(X,µ) (2.1)

f 7→
∫
X

k(·, x)f(x)dµ(x) (2.2)

admits eigen decomposition {λ2i , φi} and its kernel can be written as:

k(x1, x2) =
∑

λ2iφi(x1)φi(x2)

Example 2.4 ([62])
Let k(x, y) = (1 + xy)2 be the polynomial kernel over [−1, 1]× [−1, 1]. For any function f : [−1, 1]→ R:∫ 1

−1

k(x, y)f(y)dy =

∫ 1

−1

(1 + 2xy + x2y2)f(y)dxy =

∫ 1

−1

f(y)dy + 2x

∫ 1

−1

yf(y)dy + x2
∫ 1

−1

y2f(y)dy

Thus, the eigenfunctions of k must be polynomials of at most order 2, i.e. f(x) = α0 + α1x+ α2x
2.

The previous results rely on using compact integral operators. The following is a sufficient condition on
the kernel to guarantee compactness of the associated operator.

Theorem 2.4 (Compactness of integral operators)
Let T : L2(X,µ)→ L2(X, ν) be an integral operator with kernel k such that Tf(x) =

∫
k(x, y)f(y)dµ(y).

A sufficient condition for T to be compact is:∫ ∫
|k(x, y)|2dµdν < +∞

Moreover, by Proposition 7.8 of [40] T is compact ⇐⇒ the adjoint operator T ∗ is compact.
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Since the majority of the results will revolve around the conditional expectation operator, it will always
implicitly be considered compact. Using theorem 2.4, we prove mild conditions under which the operator
is compact.

Proposition 2.3 (Compactness of Conditional Expectation)
Consider the conditional expectation operator:

E : L2(X,PX)→ L2(Y, PY )

f 7→ E [f(X)|Y = ·]

E is compact if the kernel is square integrable. If (X,Y ) admits a density fXY relative to a product
measure µ⊗ ν, the kernel defined as

k(x, y) =
fXY (x, y)

fX(x)fY (y)

characterizes the conditional expectation operator. If∫ ∫
fX|Y (x|y)fY |X(y|x)dµ(x)dν(y) < +∞

then the operator E is compact.

Proof. By definition of conditional expectation and Bayes’ theorem:

Eg(y) = E [g(X)|Y = y] =

∫
X
g(x)fX|Y (x|y)dµ(x) =

∫
X
g(x)

fXY (x, y)

fY (y)
dµ(x) =

∫
X
g(x)k(x, y) fX(x)dµ(x)︸ ︷︷ ︸

dPX(x)

Using Bayes theorem notice that:∫ ∫
|k(x, y)|2dPX(x)dPY (y) =

∫ ∫
|k(x, y)|2fX(x)dµ(x)fY (y)dν(y)

=

∫ ∫ (
fXY (x, y)

fX(x)fY (y)

)2

fX(x)dxfY (y)dν(y)

=

∫ ∫ (
fX|Y (x|y) · fY |X(y|x)

fX(x)fY (y)

)
fX(x)dµ(x)fY (y)dν(y)

=

∫ ∫
fX|Y (x|y) · fY |X(y|x)dµ(x)dν(y)

Then, theorem 2.4 implies that E is compact.

Finally, the following result enables us to talk about solutions to the operator problems that will be
discussed in section 2.3. This result involves the singular systems of the operator. In particular, it
requires that the source condition can be reached by the operator K and that the solution is well defined
in L2(X,µ).

Theorem 2.5 (Picard’s Theorem [11])
Let K : L2(X,µ) → L2(Y, ν) be a compact linear operator and let {λi, φi, ϕi} be the associated singular
system. The problem:

Kh = f0

admits solution ⇐⇒ f0 ∈ ker(K∗)⊥2 and
∑
i

1
λ2
i
⟨f0, ϕi⟩2 <∞. In such case, a solution is given by:

h =
∑
i

1

λi
φi⟨f0, ϕi⟩

Proof. Without loss of generality suppose that h =
∑
hiφi. The problem of determining h is equivalent

to determining the weights hi = ⟨h, φi⟩. By theorem 2.2:

Kh =
∑

λihiϕi =
∑
⟨f0, ϕi⟩ϕi

⇐⇒ λihi = ⟨f0, ϕi⟩

⇐⇒

{
hi =

⟨f0,ϕi⟩
λi

λi ̸= 0

⟨f0, ϕi⟩ = 0 λi = 0
(2.3)

2From linear algebra we remember that ker(A)⊥ = Range(AT ). This is similar in infinite dimensional spaces except
that we have to take the closure to ensure that the limit points are also included.
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f0 ∈ ker(K∗)⊥ ⇐⇒ ⟨f0, w⟩ = 0 ∀w ∈ ker(K∗). A function w belongs to ker(K∗) ⇐⇒ K∗w =∑
λi ⟨w, ϕi⟩φi = 0 ⇐⇒ λi ⟨w, ϕi⟩ = 0 ∀i. By generality of w, when λi = 0 necessarily ⟨f0, ϕi⟩ = 0.

Reproducing Kernel Hilbert Spaces

In applied mathematics, particular interest is placed on so called reproducing kernel Hilbert spaces. These
spaces are interesting because they enable the use of Riesz representation (theorem 2.1) on the evaluation
functionals. This property enables to transform optimization problems on RKHS to the kernel matrix and
its empirical counterpart. Moreover, the functions found in RKHS automatically have certain regularity
properties that might be desired when solving empirical risk minimization problems. In this section we
will discuss reproducing kernel Hilbert spaces and their properties.

Definition 2.5 (Reproducing Kernel Hilbert Space)
Let k be a symmetric, positive definite function on X × X . Define:

H0 =

{
f : f =

∑
i

fik(xi, ·) fi ∈ R, xi ∈ X

}
⟨f, g⟩H =

∑
i,j

figjk(xi, xj)

Then H = H0 where the completion is taken with respect to the norm induced by the above inner product.
H is a Reproducing Kernel Hilbert Space.

For a fixed kernel k, identifying a function in H is equivalent to determining the set of weights αi. This
is exactly the same as determining an element in a vector space by the coefficients of a given basis.

Proposition 2.4 (Bounded Evaluation Functional)
Let H be a reproducing kernel Hilbert space, then the evaluation functionals Γx : H → R are bounded, i.e.
∀x ∈ X |Γxf | = |f(x)| ≤ Cx ∥f∥H where ∥Γx∥ = ∥k(x, ·)∥H.

Proof. k(x, ·) is also a function in H and as such it can be written as k(x, ·) =
∑
aik(xi, ·). Without loss

of generality consider x = x1, then k(x, ·) is uniquely identified by a = (a1, a2, a3, · · · ) = (1, 0, 0, · · · ).
Thus:

⟨f, k(x, ·)⟩ =
∑
j

∑
i

fiajk(xi, xj) =
∑
i

fik(xi, x1) = f(x1)

For linear operators, continuity and boundedness coincide.

|Γxf | = |f(x)| = | ⟨f, k(x, ·)⟩ | ≤ ∥k(x, ·)∥H ∥f∥H

Boundedness of evaluation functionals is sometimes used to directly define RKHSs[39]. This condition
ensures that the Riesz representer theorem (theorem 2.1) can be applied to guarantee the existence of
the representer. Interestingly, the value of any function in the RKHS at point x is given by the ’infinite
dimensional’ projection of f onto the representer. Since Hilbert spaces are vector spaces, this consists in
applying the operator to each element of the orthonormal basis {φi} of H or, equivalently3, projecting
each element of the basis onto the Riesz representer:

Γxf = Γx

(∑
i=1

fiφi

)
=
∑
i=1

fi (Γxφi) =
∑
i=1

fiφi(x)

Γxf = ⟨f, α(x)⟩H = ⟨
∑
i=1

fiφi, α(x)⟩H =
∑
i=1

fi⟨φi, α(x)⟩H =
∑
i=1

fiφi(x)

In the first case, we use the continuity(boundedness) of Γx, whereas in the second case the continuity of
the inner product. Due to definition 2.5 and proposition 2.4, one might notice that the defining kernel
coincides with the representer α(x) of the evaluation kernel. This is often referred to as the reproducing
trick of RKHS.

3The operator is continuous and thus limn→∞ A (
∑n ϕi) = A (limn→∞

∑n ϕi)
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Definition 2.6 (Representing Kernel and Feature Maps)
A bivariate function k : X × X → R is called representing kernel if ∀x ∈ X , the function k(x, ·) ∈ H is
the Riesz representer of the evaluation functional Γx. The map φ : X → H such that φ(x) = k(x, ·) is
known as canonical feature map.

This raises the question if the same RKHSH can be generated by different kernels. The following theorem
highlights that the correspondence between H and its reproducing kernel is one-to-one.

Theorem 2.6 ([39])
For every symmetric positive definite function k on X × X there exists a unique RKHS H with k as its
reproducing kernel. Conversely, the reproducing kernel of a RKHS is unique and positive definite

Furthermore, since a linear operator’s boundedness is equivalent to its continuity, functions living in
a RKHS can be seen as being sufficiently regular. This regularity is determined by the norm of the
evaluation operator in the following sense:

Lemma 2.1
Let f1, f2 be real-valued functions with support X in the Reproducing Kernel Hilbert Space H, then:

|f1(x)− f2(x)| ≤ ∥k(x, ·)∥ ∥f − g∥H
Proof. Let Γx be the evaluation functional on the RKHS. By definition Γx is linear and since f1, f2 live
in the RKHS Γx is bounded. Thus:

|f1(x)− f2(x)| = |Γxf1 − Γxf2| = |Γx(f1 − f2)| ≤ ∥Γx∥ ∥f1 − f2∥H

Lemma 2.1 shows that functions that are close in RKHS are also pointwise close. This property is ex-
tremely useful in function approximation since it ensures that minimizing RKHS distances also minimizes
pointwise discrepancies, in other words f1 that well approximates f2 in RKHS will also be close when
evaluated at x. If my function belongs to H, I can approximate it as a linear combination of simpler func-
tions. A possible idea is that of approximating H with a combination of k(xi, ·) might achieve sufficient
accuracy in H and, in light of the lemma 2.1 on R. Intuitively, increasing the number of basis elements
will increase the precision in generating the space Hn that approximates the ’true’ underlying space H.
Unfortunately, considering a fixed kernel also fixes the space taken into consideration and might preclude
the presence of certain functions, more will be discussed later on.
The fact that RKHS are particular types of Hilbert spaces raises the question whether or not that all
Hilbert spaces are RKHS. Unfortunately this is not the case. The following example shows that the set
of square integrable functions on [0, 1] is not a RKHS.

Example 2.5 ([62] Not all Hilbert spaces are Reproducing)
Although as shown in example 2.2, L2([0, 1], λ) is a Hilbert space, it is not a reproducing kernel Hilbert

space. Consider the sequence fn(x) = xn. Since
∫ 1

0
f2n(x)dx =

∫ 1

0
x2ndx = x2n+1

2n+1

∣∣∣1
0
= 1

2n+1 fn ∈ L2 ∀n ∈
N and ∥fn∥2 → 0. However we do not have pointwise convergence since ∀n ∈ N fn(1) = 1. This
contradicts lemma 2.1 and thus L2([0, 1], λ) is not a reproducing kernel Hilbert space.

Integral Definition

Associated with each kernel is its integral operator. The RKHS H can be characterized by the spectral
decomposition of such integral operator. The regularity of the functions in H can be expressed in terms
of such decomposition.

Definition 2.7 (Kernel Operator)
Let (X,µ) be a metric space, then for every positive definite kernel k, we define the kernel operator of k
as:

T : L2(X,µ)→ L2(X,µ)

f 7→
∫
f(x)k(x, ·)dµ(x)

Moreover, the adjoint of a kernel operator is the integral operator in the other variable, i.e.:

T ∗ : L2(X,µ)→ L2(X,µ)

g 7→
∫
g(y)k(·, y)dµ(y)
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Since the kernel operator ofH is defined by a symmetric positive definite function, T is self-adjoint. Under
additional mild restrictions on k, T is compact and satisfies the requirements for theorem 2.3and proposition 2.1,
and admits eigendecomposition {λ2i , φi}. There exists4 an operator S such that S2 = T . Defining
T 1/2 = S the square root of the operator T , it will admit series expansion with its singular values rather
than the eigenvalues. It can be shown[48] that T 1/2 is an isometry between L2(X,µ) to H. This enables
us to write:

⟨f, g⟩H =
〈
T−1/2f, T−1/2g

〉
L2

∥f∥2H = ⟨f, f⟩H =
〈
T−1/2f, T−1/2f

〉
L2

=
∥∥∥T−1/2f

∥∥∥2
2

(2.4)

Since T−1/2 is an isometry, the set of functions {λiφi} form an orthonormal basis of our RKHS H.
By theorem 2.3, this space will be the same as the RKHS associated with the kernel k and it can be
characterized in terms of the spectral decomposition of T as:

H = {f =
∑

fiφi : ∥f∥2H =
∑ f2i

λ2i
< +∞} (2.5)

Note that the kernel operator is defined over L2(X,µ) and thus both the choice of kernel k and the
underlying measure µ play a role in its eigendecomposition, and thus in the corresponding RKHS H. The
formulation in terms of the eigenvalues of T highlights the implicit regularization effect of working in said
RKHS. Larger eigenvalues, permit larger or rougher functions to be included in H. If the eigenvalues
were exactly equal to one, i.e. λi = 1 then the space would coincide with L2 directly. This is not possible
since the infinite dimensional identity operator is not compact.

Power Spaces
Various square matrix operations such as the square root are defined in terms of the spectral decompo-
sition by simply applying the operation to the eigenvalues. Similarly, powers of the kernel operator T
can also be defined. The reproducing kernel Hilbert spaces associated to the powers T will then contain
functions that have finite norm with respect to the adjusted eigenvalues.

Definition 2.8 ([50]Power Spaces)
Let {λ2i } be the eigenvalues of the kernel operator T that characterizes H. The Power Space

Hα ∀α ∈ (0, 1]

associated with Tα is the subspace of L2:

Hα = {f ∈ H :
∑ f2i

λ2αi
< +∞}

Functions contained in the power spaces depend on the value α. Intuitively, small values of α translate
eigenvalues of Tα will decay more quickly. This means that power spaces will include rougher or larger
functions than H. Similarly, large values(close to 1) will not greatly affect the eigenvalues and thus
contain similar regularity functions. As α→ 0 the eigenvalues of Tα tend to 1 and thus the power space
tends to L2.

L2HαH

α
↓ 0

Figure 2.2: Graphical representation of Power spaces inclusions.

4Proposition 10.58 of [40]
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Measures
From a measure theoretic perspective, the evaluation functional coincides with expectation with respect
to a point mass measure. Let δx0

be the Dirac measure at x = x0, then the evaluation of a function at
point x = x0 can be interpreted as applying the operator ιx0

f =
∫
X f(t)dδx0

(t) = f(x0). Thus, if the
function f lives in the RKHS, the operator of ιx0

: H → R such that ιx0
(·) =

∫
X ·dδx0

(t) coincides with
the evaluation operator Γx0 , and thus the Riesz representer is identical for both:

f(x0) =

∫
X
f(t)dδx0(t) =

∫
X
⟨f, k(t, ·)⟩dδx0(t) = ⟨f,

∫
X
k(t, ·)dδx0(t)⟩ = ⟨f, k(x0, ·)⟩H

More generally, a measure on X is simply a weighted average of certain subsets of X where the weights
are assigned by the ’measure’ of the set. If the support X is finite with elements {x1, x2, . . . , xn}, then

µ =

n∑
i=1

αiδxi
αi ≥ 0

defines a measure. Now, if f : X → R is a measurable function, what about the map
∫
f(x)dµ(x)? By

linearity of integration:∫
X
f(t)dµ =

∫
X

∑
αif(t)dδxi

(t) =
∑

αi

∫
X
f(t)dδxi

(t) =
∑

αif(xi) (2.6)

A probability measure is just a particular type of measure such that
∑n
i=1 wi = 1. In such case, equa-

tion (2.6) coincides with the common notion of expected value. This idea can be extended to more
complicated objects, in which case for a random variable X taking values on X , we will require that the
kernel on X to be measurable.

Definition 2.9 (Mean Embedding)
Let X be a random variable taking values on X with distribution PX , and H be a RKHS with measurable
reproducing kernel k. The mean embedding of PX in H is the map

µ :L (X)→ H

P 7→
∫
X
k(x, ·)dP (x)

A kernel k is said to be characteristic if the above map is injective.

In light of the following theorem, by a slight abuse of notation given a distribution P we also refer to the
element of RKHS µP = µ[P ] as the mean embedding of P .

Lemma 2.2
Let H be a RKHS with reproducing kernel k. Let X be a random variable taking values in X , with
X ∼ PX . If E

[√
k(X,X)

]
<∞, then µPX

∈ H and

E [f(X)] = ⟨f, µPX
⟩

Proof. The expectation functional EPX
[f(X)] is linear by definition. If EPX

[√
k(X,X)

]
<∞, it is also

a bounded functional for all functions f in RKHS H since:

|E [f(X)] | ≤ E [|f(X)|] = E [|⟨f, k(X, ·)⟩|]

≤ E
[
|
√
⟨f, f⟩

√
⟨k(X, ·), k(X, ·)⟩|

]
= E

[
|
√
⟨f, f⟩

√
k(X,X)|

]
= E

[
| ∥f∥H

√
k(X,X)|

]
Where the first inequality follows from Jensen’s and the second is Cauchy Schwarz. Since this operator
is linear and bounded, it satisfies the requirements of the Riesz representation theorem and thus admits
representer. This Riesz representer α must satisfy:

⟨α, f⟩ = E [f(X)]

⟨µPX
, f⟩ = ⟨

∫
X
k(x, ·)dPX(x), f⟩ =

∫
X
⟨k(x, ·), f⟩dPX(x) =

∫
X
f(x)dPX(x) = E [f(X)]

Thus µPX
= α ∈ H and is the Riesz representer of E [·]

In other words, for sufficiently regular distributions, the Riesz representer of the expectation functional
with respect to PX is uniquely identified by the mean embedding. This means that given any function
living in a RKHS, calculating the expectation of a function is equivalent to projecting it onto the mean
embedding.
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Conditional Mean Embedding
Since bridge functions of proximal inference definition 1.6 are characterized by equations involving con-
ditional expectation, the marginal mean embedding might not be the correct object of interest. What
is needed is a similar mathematical tool for the conditional expectation. Note that whereas marginal
expectation is a functional, it takes in an element of H and returns a number, conditional expectation is
an operator, a map between two function spaces L2(X,µ) and L2(Y, ν) . The function that is returned
is the least squares projection onto the space of square integrable functions in Y . To find the conditional
mean embedding, we must first introduce some mathematical machinery that enables us to work with
the covariance operators, these topics will also resurface in section 3.4.

H G R

H

G

R

E [·|Y = ·]

EX [·]

Figure 2.3: Representation of expectation acting between spaces.

Definition 2.10 (Covariance Operator)
Let (X,Y) be random variables taking values in X ,Y respectively. Moreover let H and G, be two RKHS
on X ,Y respectively. The Cross Covariance Operator is the unique bounded operator CY X : H → G such
that:

cov(f(X), g(Y )) = ⟨g, CY Xf⟩G
The Covariance Operator5 is defined when Y = X as the unique bounded operator CXX :

cov(f1(X), f2(X)) = ⟨f1, CXXf2⟩H = ⟨CXXf1, f2⟩H

The covariance operator is similar to the kernel operator definition 2.7, whose eigenfunctions span the
RKHS H, since cov(f1(X), f2(X)) =

∫
f1(x)f2(x)dPX(x). The two should not be confused since T is an

operator from L2(X,PX) whereas CXX is only well defined over H. Nonetheless the two operators share
eigenvalues and are equal on the the restriction of T to the reproducing kernel Hilbert Space H.

Theorem 2.7 ([39])
If the function E [g(Y )|X = ·] ∈ H for g ∈ G then:

CXXE [g(Y )|X = ·] = CXY g

The condition that E [g(Y )|X = ·] ∈ H is commonly referred to as the well-specified assumption and, as
will be discussed in section 2.3, it is a strong requirement. Nonetheless, the conditional mean embedding
is defined as:

Definition 2.11 (Conditional Mean Embedding)
Let CXX : H → H and CY X : H → G be the covariance and cross-covariance operators defined in
definition 2.10, the Conditional Mean Embedding is the operator

UY |X :H → G
f 7→ CY XC

−1
XXf

By slight abuse of notation, we also denote µY |x = CY XC
−1
XXk(x, ·) ∈ G as conditional mean embedding.

Theorem 2.7 is implicitly used to define the conditional mean embedding of definition 2.11. This definition
implicitly carries the well-specified assumption. The conditional mean embedding UY |X is an operator
between spaces H,G. It can also be seen as an element of the tensor product space H⊗G. By properties
of reproducing of the reproducing kernel Hilbert spaces, this is isomorphic to the space of bivariate
functions X × Y 7→ R. Fixing either X = x or Y = y makes it such that the Uy|X ∈ H or UY |X ∈ G.
Definition 2.11 enables us to use the conditional mean embedding like the marginal mean embedding.
The following corollary shows these properties.

5These are the non-centered covariance operators. This specification is necessary because some authors define the
covariance operators as E [[(kX(X, ·)− µX)⊗ (kY (Y, ·)− µY )]]
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Corollary 2.1 ([39])
If the requirements of theorem 2.7 are satisfied, then the conditional mean embedding of definition 2.11
respects the following properties:

E [g(Y )|X = x] = ⟨g, µY |x⟩G

Proof. If E [g(Y )|X = ·] ∈ H then we can use the reproducing property of H.

E [g(Y )|X = x] = ⟨E [g(Y )|X = ·] , k(x, ·)⟩ = ⟨C−1
XXCXY g, k(x, ·)⟩ = ⟨g, CY XC

−1
XXk(x, ·)⟩

In this corollary we have shown that the conditional mean embedding behaves just like the marginal
mean embedding. The application of the conditional expectation operator to any element coincides with
the projection of the element onto the conditional mean embedding.

Problems

The mean embedding of definition 2.9 is the Riesz representer of the expectation functional, the only
requirement for it to be well defined is that the kernel is PX measurable. On the contrary, the conditional
mean embedding is not directly justified by Riesz theorem but rather theorem 2.7. For it to be defined we
need well-specification which requires that given any function g ∈ G its conditional expectation belongs
to H as a function of x. Theorem 2.6 enables us to identify the RKHS given a positive definite kernel,
thus for a fixed kernel the associated RKHS only contains functions that can be written as the limit of the
linear span of said kernel. Even simple functions such as constants might not belong to certain RKHS.

Example 2.6 (Corollary 4.44 of [50])
Suppose that H and G are RKHS generated by Gaussian Kernels k(x, y) = e−(x−y)2 . Moreover assume
that X and Y are independent. Then, fixing g ∈ G, E [g(Y )|X = ·] = E [g(Y )] is a constant function in
x. The only constant function in the RKHS generated from the Gaussian Kernel is the null function.

Additionally, the conditional mean embedding does not always act as expected. Consider two independent
random variables X,Y , one would expect the conditional mean embedding µY |x to coincide with the
marginal mean embedding µY . Unfortunately this is not the case since:

X ⊥⊥ Y =⇒ cov(f(X), g(Y )) = 0 ∀f ∈ H ∀g ∈ G
⇐⇒ ⟨g, CY Xf⟩G = 0 ∀f ∈ H ∀g ∈ G
⇐⇒ CY X = 0

Estimation

Although useful, the embedding quantities are not readily available without parametric assumptions on
the distributions, and need to be estimated from data. As such we are interested in determining the rate
of convergence of the empirical embedding to the true ones. The empirical kernel mean embedding is
obtained by taking sample averages of the feature maps. The latter are still functions, which means that
the estimator. will still be a function.

Proposition 2.5 ([57])
Let k : X × X → R be a positive definite kernel bounded by κ and H its associated RKHS. Let µX be
marginal mean embedding and µ̂X = 1

n

∑n
i=1 φ(xi) its empirical estimate. Then for δ > 0 with probability

1− δ we have:

∥µX − µ̂X∥H ≤
√

4κ2 ln(2/δ)

n

This means that we can estimate the conditional mean embedding at a rate of n−
1
2 . This makes sense as

it is nothing but a sample average in an infinite dimensional space. As the number of samples increase
to ∞, we expect the sample law to converge to the true law at such rate, and regular enough maps of
it should as well. The conditional mean embedding can be estimated using so called sampling operators
which associate a function of H with a random vector of samples and viceversa through the adjoint
operator.
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Definition 2.12 (Sampling operator)
Let H be a RKHS space of functions from X → R generated from the kernel associate with the feature
map φ. Consider x ⊆ X a discrete subset of X with cardinality n. The sampling operator associated with
x is defined as:

Sx :H → Rn

g 7→ [g(x1), . . . , g(xn)]

The adjoint of the sampling operator is defined as:

S∗
x :Rn → H

v →
n∑
i=1

viφ(xi)

The sample equivalent of CXX will then be constructed as ĈXX = 1
nS

∗
xSx and of CY X as ĈY X = 1

nS
∗
ySx.
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2.2 A primer on Rademacher Complexity

Since L2 might be too large, a common approach in statistics is to restrict the search to a specific function
class F ⊂ L2. Intuitively the difficulty in empirical estimation of a function f depends on the complexity
of the function class F in which it lies [62]. There are many different ways to measure the complexity of
a function class, but we shall focus on Rademacher complexity. This quantity is useful bounding uniform
laws in the non-asymptotic setting, enabling us to bound excess risks involved in empirical minimization
procedures and help us obtain finite sample estimation error rates for RKHS hypothesis spaces.

Empirical Risk

To determine parameters of interest, we will have to optimize some sort of loss function. Since we are
never able to observe the full distribution but rather a finite number of samples, such minimization
must occur on a data dependent loss. The procedure will remain valid only if the error between the
true parameter and its empirically determined counterpart is always small, no matter what sample we
observe. We begin by defining risks, and their empirical counterparts. The notation used is that of [62],
and although we refer to it as a parameter θ ∈ Θ can be a (possibly) infinite dimensional object such as
a function and function space.

Definition 2.13
Let Lθ be some loss function and {Xi} observed i.i.d. samples. For a parameter θ of interest, define:

R̂n(θ, θ0) =
1

n

n∑
Lθ(Xi) (Empirical Risk)

R(θ, θ0) = Eθ0 [Lθ(X)] (Population Risk)

E(θ̂, θ0) = R(θ̂, θ0)− inf
θ
R(θ, θ0) (Excess Risk)

An empirical estimation procedure aims to determine θ̂ that minimizes the empirical risk R̂n. Both this
risk and its minimizer are random since they are data dependent, on a different sample one would obtain
different results. We are then interested in determining the excess risk committed using θ̂ as a plug-in
estimator; of course if θ̂ well approximates the true θ0 then such value will be small. Suppose that the
infimum of R can be attained by some parameter θinf , then the excess risk can be decomposed into three
terms:

E(θ̂, θ0) = R(θ̂, θ0)− R̂n(θ̂, θ0)︸ ︷︷ ︸
T1

+ R̂n(θ̂, θ0)− R̂n(θinf , θ0)︸ ︷︷ ︸
T2

+ R̂n(θinf , θ0)−R(θinf , θ0)︸ ︷︷ ︸
T3

(2.7)

θ

R̂n(θ̂, θ0)

R(θ̂, θ0)
T1

R(θ, θ0)
R̂n(θ, θ0)

θ0θ̂

Figure 2.4: Representation of terms in the excess risk. The R̂n empirical risk is a noisy, data dependent
function. Resampling Xi would result in a different R̂n.

Note that T2 is always non-negative since θ̂ minimizes the empirical risk. The terms we are interested in
controlling are T1, T3 which are similar:

T1 = E
[
Lθ̂(X)

]
− 1

n

∑
Lθ̂(Xi) (2.8)

Remember that since θ̂ is a data dependent quantity, T1 is also random. To bound this, we need a uniform
law of large numbers over all possible losses parameterized by θ, i.e. the set {x 7→ Lθ(x) θ ∈ Θ}. This
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can be done by using Rademacher complexities. Rather than searching for a uniform bound over the
entire class, i.e. supF we consider the complexity by focusing on small neighborhoods of the observed
data, this is called localization. The reason why localization is important is that the chosen hypothesis
class F might still be too large and algorithms will concentrate only on subsets with small errors.

Definition 2.14 ([62]Localized Rademacher Complexity)
For a given δ > 0 and a function class F , the local Rademacher complexity of F is defined as:

Rn(δ,F) = Eϵ,X

[
sup

f∈F :∥f∥2≤δ
| 1
n

n∑
i=1

ϵif(Xi)|

]
where {Xi} are i.i.d. samples from the underlying distribution and {ϵi} are i.i.d. Rademacher variables,
i.e. ϵi ∈ {−1, 1} i.i.d. with probability 1

2 independent of Xi.
Similarly, the localized empirical Rademacher complexity is defined as the data dependent quantity:

R̂n(δ) = Eϵ

[
sup

f∈F :∥f∥2≤δ
| 1
n

n∑
i=1

ϵif(xi)|

]
The Rademacher complexity of a function class F is the average maximum correlation between functions
in F and a random noise vector. Essentially, if the Rademacher complexity is high the function class
contains functions that can interpolate any random noise. At first, this might seem to be a positive quality
of a function class since any set of points can be interpolated. Clearly, this means that the function class
F will overfit to any observed data. Such class is thus too large. On the other hand, if the complexity
of F is not large enough functions therein will not adapt well to the data. The localized Rademacher
complexity further restricts to the function class with small L2 norm. The sweet spot between the
Rademacher complexity and class size trade off is given by the critical radius.

Definition 2.15 ([62]Critical Radius)
The critical radius of a uniformly bounded function class FB = {∥f∥∞ ≤ B} is defined as:

δn = argmin
δ

{
Rn(δ,F) ≤

δ2

B

}
The empirical critical radius δ̂n is the solution to the above definition by replacing the localized Rademacher
complexity with its empirical counterpart.

Theorem 2.8 ([62])

Given FB let δn be the critical radius of FB. Then with probability 1− c1e−c2
nt2

B2 we have that ∀t ≥ δn:

| ∥f∥2n − ∥f∥
2
2 | ≤

1

2
∥f∥22 +

t2

2
∀f ∈ FB

where ∥f∥n = 1
n

∑n
i=1 f(xi)

2. Additionally if nδ2n ≥ 2
c2

log
(
4 log

(
1
δn

))
then:

| ∥f∥n − ∥f∥2 | ≤ c0δn
Similar result holds with empirical counterparts of the above.

This result enables us to uniformly bound quantities such as equation (2.8) over the function class in terms
of critical radii. Another advantage of using Reproducing Kernel Hilbert Spaces as working classes is
that the localized Rademacher complexities can be determined by the eigendecay of the integral operator
that characterize them.

Proposition 2.6 ([62])
Let H1 be the unit ball of an RKHS associated with kernel k and let the operator T have eigenvalues {λ2i }.
Then the localized Rademacher complexity is upper bounded by:

Rn(δ) ≤
√

2

n

√√√√ ∞∑
i=1

min{λ2i , δ2}

Equivalently for the empirical equivalent, let
{
λ̂2i

}
be the eigenvalues of the normalized kernel matrix

K(xi, xj) =
k(xi,xj)

n . Then the localized empirical Rademacher complexity is upper bounded by:

R̂n(δ) ≤
√

2

n

√√√√ n∑
i=1

min{λ̂2i , δ2}
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2.3 Conditional Moment Restriction and Ill-Posedness

The Fredholm integrals of equations (1.2) and (1.3) that define the bridge functions can also be inter-
preted as constraints on function spaces. Since we are considering integrals with respect to probability
measures, these coincide with conditional expectation and as such, they are often termed as conditional
moment restrictions. The rest of the thesis primarily focuses on outcome bridge functions as they are the
most studied in the literature, but the same approaches can be taken for the exposure bridge function
q(Z,A,X). Particular attention to the latter will resurface when discussing doubly robust approaches in
section 3.2.

Finding the bridge function is an ill-posed problem
Denote the conditional expectation operator of the law W |Z,A,X:

E : L2(W,A,X)→ L2(Z,A,X)

h 7→ E [h(W,A,X)|Z,A,X = ·]

The operator E is linear by linearity of expectation and, under the mild conditions of proposition 2.3, it
is also compact. This ensures that the singular system of E is well defined. Moreover the adjoint operator
of E is the conditional expectation operator in the conditioning variable defined as E∗ : L2(Z,A,X) →
L2(W,A,X).

Proposition 2.7 ([64])
The adjoint operator E∗ of E is such that:

E∗ : L2(Z,A,X)→ L2(W,A,X)

g 7→ E [g(Z,A,X)|W,A,X = ·]

Moreover, if E is a compact linear operator then E∗ is also compact.

Proof. Denote Vh = (W,A,X) and Vq = (Z,A,X)

E [(Eh)(Vh) · (E∗g)(Vh)] = E [h(Vh) · (E∗g)(Vh)] = ⟨h,E∗g⟩2
= ⟨Eh, g⟩2 = E [(Eh)(Vh) · g(Vq)] = E [(Eh)(Vh) · E [g(Vq)|Vh]]

Compactness of the adjoint is a necessary and sufficient condition for the compactness of E (theorem 2.4).

Using this notation, the Fredholm integral equations that characterize the bridge functions can be rewrit-
ten as the following operator problems:

Determine h,q respectively such that:
Eh = g0 (2.9)
E∗q = f0

where g0 = E [Y |Z,A,X] , f0 = 1
f(a|W,X) . Adopting the language of PDEs, we shall refer to f0, g0 as the

source terms or source conditions of the problem. If both the singular system of E, and the source terms
g0 =

∑
αiϕi were known, under additional assumptions6, one would be able to apply Picard’s theorem

(theorem 2.5) to obtain a solution. This will be discussed slightly more in depth in the Existence section
later. In practice the source conditions g0, f0 cannot be observed, but rather noisy observations ĝn, f̂n
can be estimated from the data. This inconvenience complicates the problem as it now becomes:

Determine h,q respectively such that:
Eh = ĝn

E∗q = f̂n

The problem becomes much more difficult if the operator has to also be estimated from the data. In
the mathematics literature, in particular inverse problems, the concept of ill-posed problem arises. The
definition first appeared in Hadamard’s work regarding partial differential equations but the idea is general
enough that it is used in various other fields.

6g0 ∈ L2(Z) and fast enough decay of the coefficients αi with respect to the singular values λi.
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Definition 2.16 (Ill-Posed problem [35])
A problem is well-posed if it satisfies the following semi-formal criteria for the problem data:

• Existence of a solution.

• Uniqueness of the solution.

• Continuous dependence of the solution on the data.

A problem that is not well-posed is termed ill-posed.

The conditions of the above definition are natural requirements. Existence of a solution is necessary for the
problem to be well posed, otherwise one would search for a solution in vain. In the proximal setting, the
existence of bridge functions is either directly assumed or guaranteed by requiring additional conditions on
the behavior of the conditional expectation operator E and source conditions. Some consider the existence
requirement to be a weak one since a solution might exists for a slightly relaxed problem through the use
of regularization on the source term. Similarly, the uniqueness requirement of definition 2.16, is also weak,
since the problem can always be reformulated into the search for a ’minimal’ or ’regularized’ solution. The
issues posed by non-uniquess are mostly related to the empirical estimation from data procedure. Multiple
bridge functions are not problematic for identification of the CERF. Nonetheless, many authors directly
require uniqueness of a bridge function to avoid working with possible bias introduced by regularization
terms.

Example 2.7 (Multiple Solutions)

Let
(
X
Y

)
∼ N

((
0
0

)
,

(
1 1

2
1
2 1

))
. Suppose that the source condition is g0 = y. It can be shown that

X|Y = y ∼ N
(
1
2y,

3
4

)
. Then the operator problem of determining f such that Ef = g0 admits infinite

solutions. Any function f(x, y) = ax + by is a solution if a
2 + b = 1. The solution becomes unique if we

−3 −2 −1 1 2 3

−1

1

2

3

a

b

Figure 2.5: Set of valid coefficients of ax+ by for a solution to the above operator problem. Coefficients
of the minimum solution are circled.

restrict ourselves to the class of function F = {f : f(x, y) = ax+ by} and search for the solution with the
smallest a2 + b2. Then the regularized solution is given by f(x, y) = 0.4x+ 0.8y

We have seen that the previous requirements are weak requirements since they can be remedied by
algebraic methods[35]. The most critical requirement for a problem to be well-posed is the third point,
continuous dependency on the problem data. This is closely related to the idea of stability in partial
differential equations, slight changes in initial conditions should not greatly affect my solution. This
depends on the invertibiility of the operator E. In general, the problem of determining solutions to
Fredholm integral equations does not satisfy this requirement and thus such problems are often ill-posed
[25, 65].

Existence of Bridge functions
As previously mentioned, many works in the proximal inference literature directly assume the existence
of a function that solve the conditional moment restriction[36, 18]. Alternatively, additional conditions
on the conditional expectation operator or on the laws of the random variables can automatically imply
the existence of bridge functions. The most common requirements [13, 53, 36] are the ones necessary for
compactness of the conditional expectation operator. In particular [37, 13] make use of Picard’s theorem
(theorem 2.5), to ensure that the solution to the problem exists. The requirements are the following:
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•
∫
W
∫
Z dP (w|z, a, x)dP (z|w, a, x) < +∞

•
∑
i

1
ν2
i
⟨g0, ϕi⟩2 < +∞

The first requirement is a sufficient condition for the compactness of the operator E (as given by propo-
sition 2.3) and guarantees the existence of a singular system {νi, φi, ϕi}. The second point ensures that
the source function respects the requirements of Picard’s theorem. The conditions of theorem 2.5 are
now satisfied and we are guaranteed the existence of a solution of the form:∑

i

1

νi
⟨g0, ϕi⟩φi

The solution belongs to the space of interest L2(W,A,X) since condition three guarantees that its norm
is finite. Similar requirements can be made for the exposure bridge function by exchanging g0 with f0.

Non-Uniqueness and Weak Identification

All that is required from the proximal g-formula to estimate the causal parameters is the completeness
assumption and a function that satisfies the conditional moment restriction. Albeit the discussion on
existence of a solution to the Fredholm integral problem through Picard’s theorem, there has not been
a requirement for the uniqueness of bridge functions. In truth, the Fredholm integral equations might
admit multiple solutions and then the conditional moment restrictions would identify a subset H0 of L2

or some function class of interest H. The number of points(functions) in such subset, which we will refer
to as set of bridge functions, might not be one.

Definition 2.17 (Weak Identification)
A parameter of interest θ is said to be weakly identified if it is set identified.

Nonetheless, non-uniqueness of the solutions does not pose a problem to the identification of the causal
parameters of interest. This is because the proximal g-formula weakly identifies the CERF. This is shown
in the following result:

Proposition 2.8 ([6]Weak Identification of the CERF)
Suppose that the conditions necessary for the proximal g-formula (theorem 1.2) hold. The CERF and
ATE are weakly identified for any function in the set of outcomes H0. A similar result holds for the
outcome bridge function q, requiring analogous assumptions.

Proof. We will only consider the problem for the outcome bridge function, the result for the exposure
bridge function is exactly the same. Without loss of generality suppose that there exist two different
functions h1, h2 ∈ H0 such that h1 ̸= h2 satisfy the conditional moment restriction equation (2.9).
Then E [h1(W,A,X)|Z,A,X] = E [Y |Z,A,X] = E [h2(W,A,X)|Z,A,X] and by the proximal g-formula
theorem 1.2 we have that χ(a) = E [h1(W,a,X)] = E [h2(W,a,X)]

Proposition 2.8 shows that both CERF and ATE are weakly identified for any solution to equation (2.9).
Any point in H0,Q0 recovers the causal quantity of interest, avoiding any theoretical problem in causal
identification generated by non-uniqueness of the bridge functions. However, problems arise during
estimation procedures. Most estimation procedures aim to minimize some risk functional involving the
conditional moment restrictions. When minimizing risks, convexity ensures that the procedure to reach
the minima behaves well. In the case of distinct solutions to the conditional moment restrictions, the
risk will not be convex and one might encounter difficulties in converging to the true solution such as
oscillating between valid solutions. This issue is resolved in one of two ways: requiring uniqueness as an
assumption by other uniqueness requirements [53, 13], or including additional restrictions on the function
sets. Proposition 2.8 clearly highlights that bridge functions are equivalent Z|W,A,X or W |Z,A,X
almost surely. This suggests that imposing completeness of Z|W,A,X or W |Z,A,X ensures that the
set of bridge functions only consists of a single point h0 or q0. Some might argue that the first set
of assumptions is highly technical, as it is additional completeness requirements that are not testable.
The latter solution often involves the search for a ’minimal’ or regularized solution through the use of
Tikhonov regularization. In the statistical learning literature, this approach prevents over fitting and
aligns with Occam’s razor principle, which suggests choosing the simpler solution when having to choose
between two valid solutions. This principle also applies to bridge function estimation, even though bridge
functions have no direct interpretation and serve only as a means to an end and the concept of ’simplicity’
often becomes that of ’smallest norm’.
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Continuous dependence on the data

The main difficulty in solving an ill-posed problem is that the conditional expectation operator compresses
the information of the higher order terms, yet we are expected to have higher precision of the source in
those directions. The following example shows that for imprecise source conditions, the solutions can
vary greatly.

Example 2.8
Consider a compact operator K with singular system {λi, φi, ϕi} and suppose we are interested in deter-
mining the solution to Kh = f0. Applying theorem 2.5 we obtain a solution h1 such that h1i = ⟨f0,φi⟩

λi
.

Supposed now that the source is infinitesimally perturbed by δ in the ith direction, i.e. f1 = f0 + δφi.
The problem to be solved is now Kh = f1. Always invoking theorem 2.5, the solution h2 has coefficients
h2i =

⟨f1,φi⟩
λi

. In other words, h2 is identical to h1 except in the ith direction.
Since the source condition was only slightly perturbed one would expect h2 to remain close to h1, but:

∥h1 − h2∥22 =
∑
i=1

(h1i − h2i)2 =
δ2

λ2i

Compact operators have decreasing eigenvalues in i and thus for an arbitrarily small perturbation δ, the
distance from the original solution is blown up by λ2i .

It is clear from example 2.8, that the problem is caused by the trailing eigenvalues of the operator, smaller
λi lead to a larger mistake of the solution. For this reason, the degree or level of ill-posedness can be
expressed with respect to the rates at which the eigenvalues of the conditional expectation operator E
decay.

Definition 2.18 (Degree of ill-posedness)
Let K : H1 → H2 be a compact linear operator, and {νi, φi, ϕi} its singular system. The problem of
determining h such that Kh = f0 is said to be mildly ill-posed if the decay of the singular values of K is
polynomial, i.e. νi ≍ i−p for some p > 0. If the decay is faster, the problem is said to be severely ill-posed.

2 4 6 8 10

0.1

0.2

0.3

i−p

e−i·log(i)

i

λi

Figure 2.6: Mildly(dark) and severely(dashed) ill-posed eigen decay.

Figure 2.1 shows the compression rate of the operator E. For the mildly ill-posed problem, higher values
of p means higher compression of information in those directions and thus difficulty in recovering stable
solutions.

Example 2.9 (RKHS)
Let K : H1 → H2 be a compact linear operator with singular system {νi, φi, ϕi}. Suppose that the problem
is mildly ill-posed νi ≍ i−p p > 0. Then, by theorem 2.5 the solution of the problem Kh = f0 for f0 ∈ H2

is given by:

h =
∑
i

1

νi
φi⟨f0, ϕi⟩
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Moreover if H2 is a RKHS characterized by the same eigen decomposition of K, in other words the
associated kernel T is diagonalized by {ϕi} and the eigenvalues match. f0 ∈ H2 can now be written as
f0 =

∑
i αiϕi. Then, the norm of the found solution is ∥h∥2H2

=
∑
i
α2

i

ν2
i
. This function will belong to

H2 ⇐⇒
∑
i
α2

i

ν2
i
< ∞. A possible condition is to require α2

i i
2p to go to zero faster than i−1, such that

the sum converges. In this case, the coefficients αi must decay faster than i−
1
2−p. If the coefficients of f0

are also polynomial, say αi ≍ i−η, then we must require η ≥ 1
2 + p.
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Figure 2.7: Necessary decay for polynomial convergence.

A solution often adopted in the literature to overcome issues such as those that arise from equation (2.15)
is to define a measure of the ill-posedness of the operator E and only focus on specific function classes
H ⊂ L2(W ) where such measure is contained.

Definition 2.19 ([10, 18]Ill-posedness measure)
Let E be the conditional expectation operator and let H be an hypothesis class. Then the ill-posedness measure
of E with respect to H is given by:

τ(H) = sup
h∈H

∥h− h0∥2
∥E(h− h0)∥2

The local measure of Ill-Posedness is defined as:

τH(δ) = sup
H

{
∥h− h0∥2 : E

[
(E(h− h0))2)

]
≤ δ2

}
Note that since projections always decrease L2 distances, τ always takes values between 1 and +∞, and
will take on +∞ due to the ill posedness of the problem. This measure relates the distance pre and post
application of the operator E. One would hope that functions that are far, and thus distinguishable in
L2(W,A,X) are also far or distinguishable in the arrival space Im(E). In such case, the value of τ will
be small. The more the operator E shrinks or compresses the information from L2(W ), the higher the
value τ will take on. Since the operator E is defined using the kernel in proposition 2.3, the ill-posedness
measure can also be understood as the informativeness of the conditioning variables. Highly informative
variables will have a low ill-posedness measure since the smoothing effect will be lower, whereas poorly
informative variables will lead to high values of τ . The reason why we are interested in bounding the
ill-posedness measure of an hypothesis class H is that the L2 error between any function h ∈ H and the
true bridge function h0 would then be bounded as:

∥h− h0∥2 ≤ τ ∥E(h− h0)∥2 (2.10)

Notice that if a completeness assumption such as W |Z,A,X is made, then the measure of ill posedness
is automatically finite (definition 2.19). In general, other restrictions on the distribution of the proxies
can translate bounds on mean square violation to bounds on the stronger norm ∥h− h0∥2[15].

Example 2.10
Consider the conditional expectation operator E : L2(X ) → L2(Y) and suppose that the X = Y . Then,
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the eigenvalues of E are 1, the smoothing effect is null and the ill-posedness measure is7:

τ = sup
h∈L2

∥h− h0∥2
∥E(h− h0)∥2

= sup
h∈L2

∥h− h0∥2
∥h− h0∥2

= 1

Example 2.11
Let τδ(HJ) be the local measure of ill posedness of definition 2.19 and suppose that operator E has spectral
decomposition E =

∑
νiϕi⊗φi. Consider the J dimensional sieve HJ = span{φi1 . . . φiJ}. Then for the

hypothesis class HJ has
τ2HJ

(δ)

δ2
= max

{
1

ν2i1
, . . . ,

1

ν2iJ

}
Any function in HJ can be expressed as h =

∑J
k=1 hkφik. Then the applying E to any function in HJ

we obtain Eh =
∑J
k=1 νikhkϕik. The norm is then ∥Eh∥22 = ν2ikh

2
k. The supremum is obtained when

h2k = δ2

ν2
ik

is largest, in other words for the smallest singular value νik . Setting all other hk terms to 0.

We have that for this choice ∥h∥22 = δ2

ν2
ik

and the required ratio is 1
mink ν2

ik

= maxk
1
ν2
ik

. Thus, as the size
of the sieve grows, so does the measure of ill-posedness.

In [15], the authors relate the critical radius of the function class taken into consideration with the errors
committed using the sample analogue of ∥E(h− h0)∥2. The following result enables us to bound the
ill-posedness measure for RKHS hypothesis classes in terms of the critical radius:

Lemma 2.3 ([15] Ill-posedness measure bound for RKHS)
Let HB = {f ∈ H : ∥f∥H ≤ B} be a bounded subspace of a reproducing kernel Hilbert space H associated
to a kernel operator T with eigendecomposition {λ2i , φi}. Let E be the conditional expectation operator
previously defined and {νi, φi, ϕi} be its singular system. Let

V mij = E [Eφi · Eφj ] i, j ∈ {1, . . . ,m} (2.11)

Suppose that the minimum eigenvalue of V m is bounded away from zero, i.e. min {EIG(V m)} = µm ≥ τm
and ∃c > 0 such that ∀i ≤ m < k:

|E [Eφi · Eφk] | ≤ cτm (2.12)

Then it holds that:

τ2HB
(δ) ≤ min

m∈N+

{
4δ2

τ2m
+ (4c2 + 1)Bµ2

m+1

}
(2.13)

When working in RKHS H, one has to hope that the kernel operator T and the conditional expectation
operator E have similar eigenfunctions. Equation (2.11) quantifies the level of smoothing that the
conditional expectation has over the eigenfunctions of T . If E were such as in example 2.10, i.e. its
eigenvalues are one, then the eigenfucntions would all remain the same and V m would coincide with the
identity matrix. Requiring that the smallest eigenvalue of Vm is bounded away from 0 ensures that the
eigenbasis remains independent, in other words no information is lost. Similarly, equation (2.12) ensures
that the smoothing of the conditional expectation maintains orthogonality of the first m eigenfunctions
of T . In chapter 5 we will assume that the eigenbasis of E also diagonalizes the operator T associated to
H, thus satisfying such requirements.

Example 2.12 ([15])
Suppose that the hypothesis class H is a Reproducing Kernel Hilbert Space with polynomial eigen-decay,
i.e. Tk has eigenvalues λ2i ≍ i−p for some p > 0 and the problem is mildly ill-posed(definition 2.18), i.e.
the operator E has eignevalues with polynomial decay ν2i ≍ i−q for some q > 0. Equation (2.13) can be
rewritten, up to multiplicative constants, as 4δ2ip + (4k2 + 1)Bi−q. The optimal i will satisfy first order
conditions, i.e.:

4δ2pip−1 − (4k2 + 1)Bqi−q−1 = 0

4δ2

(4k2 + 1)B
=
qi−q−1

pip−1
≍ λ2i ν−2

i (2.14)

This shows that, at the optimal value i, the eigenvalues approximately solve equation (2.14). Thus i ≍
δ

2
p+q .

7The identity matrix is not a compact operator.
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Regularization

Determining a solution to the operator problem with K : L2(X) → L2(Y ) might be ill-posed but what
about the well-posedness relative to new spaces H ⊂ L2(X),G ⊂ L2(Y )?[9]. If the either the source or
the true solution is assumed to be in a regular enough subspace, the problem might be well posed. In
particular, all that is needed is for the true bridge function h0 to belong to some power space of the range of
the operator (K∗K). Using the notation of power spaces and definition 2.8 Range(K∗Kβ) β > 0. It can
also be possible to dampen the trailing eigenvalues of the conditional expectation operator [9]. This can be
done in various ways, but we shall focus primarily on Tikhonov regularization. The solution we are looking
for must satisfy K∗Kh = E∗f0. The Tikhonov regularized solution searches for (K∗K + RI)h = E∗f0.
Applying theorem 2.5 and proposition A.6, the solution is now given by:

hR =
∑
i=1

νi
ν2i +R

⟨f0, ϕi⟩φi

Notice that this type of regularization introduces bias on each estimated term.

Proposition 2.9
The bias on each term of the solution of a Tikhonov regularized problem is given by:

bi(R) =
R

ν2i +R

Proof. Assume that h0 is the true solution to the operator problem given by theorem 2.5, i.e. h0 =∑
i=1 νi ⟨f0, ϕi⟩φi and let hR be the solution to the regularized problem. Then:

∥h0 − hR∥22 =
∑
i=1

⟨f0, ϕi⟩2
(

1

νi
− νi
ν2i +R

)2

=
∑
i=1

⟨f0, ϕi⟩2

ν2i
bi(R)

2 =
∑
i=1

⟨h0, φi⟩2 bi(R)2

Thus bi(R) = νi

(
1
νi
− νi

ν2
i +R

)
= R

ν2
i +R

This proposition shows that for the directions associated with larger singular values the regularization
have a smaller bias, which is expected since more information is known about them. Returning to
example 2.8, the direction would now only be blown up by νi

ν2
i +R

, which is not arbitrarily large for a fixed
value of R. This in turn enables the errors to be controlled by the regularization (see corollary A.2).
In practice, the regularization coefficient will be sent to zero as more and more data and information
comes in so that the population risk can be sent to zero. Although a more regular function, i.e. h0 ∈ Hβ
for large β might make the problem easier to solve since less information will be place on the trailing
coefficient, using Tikhonov regularization the benefits do not increase indefinitely with the growing of β.

Example 2.13 ([9]Saturation of Tikhonov regularization)
Suppose that h0 ∈ Hβ. Let us consider the slack between the true solution and the regularized one:

∥h0 − hR∥22 =
∑
i=1

b2i (R)⟨h0, ϕi⟩
2
=
∑
i=1

b2i (R)ν
2β
i

⟨f0, ϕi⟩2

ν2βi
≤ sup

i

{
b2i (R)ν

2β
i

}
· ∥h0∥2β = CR ∥h0∥2β

Since we assume h0 ∈ Hβ, it must have finite ∥·∥β and thus convergence of the regularized solution will
depend solely on the rate of CR to zero in R. Notice that:

∂

∂νi
b2i (R)ν

2β
i =

2R2ν2β−1
i

(
(β − 2) ν2i + βR

)
(ν2i +R)

3

For β < 2 the sup is reached for ν2i = Rβ
2−β and thus we have that CR ≍ Rβ. Whereas if β ≥ 2

CR = R supi ν
2(β−2)
i = k ·R2 for some finite k > 0. This suggests that when estimating the function h0,

the maximum regularity we can take advantage of is 2. For regularities below 2, the rate Rβ kicks in and
R2 otherwise.

Approximate bridge functions enable approximate estimation
Since empirical estimation procedures never achieve the truth with a finite number of samples but rather
hope to approach the truth in some limit, one might wonder if ’approximate’ bridge functions can still
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enable us to recover ’approximate’ CERF estimates. First of all, one needs to define the concept of approx-
imate bridge functions; since they are characterized by conditional moment restrictions, an approximate
bridge function could either be a L2 function that well approximates the true bridge function h0 or one
that almost satisfies the conditional moment restriction. Let us consider first a result by minimizing the
violation of the worst case moment restriction

Lemma 2.4
Let h0 ∈ H0 be an outcome bridge function, thus satisfying the conditional moment restriction equa-
tion (1.2). Moreover let ĥ be a function that has a small worst case violation of the conditional moment
restriction equation (2.9)8:∥∥∥Eĥ− g0∥∥∥2

∞
= sup
Z,A,X

E
[
Y − ĥ(W,A,X)|Z,A,X

]2
≤ ϵ2

Then using ĥ in the proximal g-formula theorem 1.2 instead of the true bridge function h0, the following
will hold:

|χ(a)− χ̂(a)|2 ≤ ϵ2

Proof.

|χ(a)− χ̂(a)|2 = |E [h0(W,a,X)]− E
[
ĥ(W,a,X)

]
|2 = |E

[
h0(W,a,X)− ĥ(W,a,X)

]
|2

= |E
[
E
[
h0(W,a,X)− ĥ(W,a,X)|Z, a,X

]]
|2 ≤ E

[
E
[
h0(W,a,X)− ĥ(W,a,X)|Z, a,X

]2]
= E

[
E
[
h0(W,a,X)− Y + Y − ĥ(W,a,X)|Z, a,X

]2]
= E

[
E
[
Y − ĥ(W,a,X)|Z, a,X

]2]
≤ sup
Z,A,X

E
[
E
[
Y − ĥ(W,A,X)|Z,A,X

]2]
≤ E

[
sup
Z,A,X

E
[
Y − ĥ(W,A,X)|Z,A,X

]2]
≤ ϵ2

The idea of controlling the worst case scenario is known as maximum moment restriction, and will later
be exploited by various methods to transform conditional moments into regular moment equations to
estimate the bridge function. Does using a function L2(W,A,X) close to the true bridge function enable
us to recover the CERF? Under an additional assumption, we will show such result in theorem 5.2.
Alternatively, one might wonder if functions that only perform small average violations of conditional
moment restriction still enable approximate recovery of the CERF.

∥Eh− g0∥22 = E
[
E [h(W,A,X)− Y |Z,A,X]

2
]

(2.15)

Clearly true bridge functions have null average deviations from the CMR, and thus this quantity equal
to zero. Unfortunately this is not immediatly the case since:

∥h− h0∥22 = E
[
(h(W,A,X)− h0(W,A,X))2

]
= E

[
E
[
(h(W,A,X)− h0(W,A,X))

2 |Z,A,X
]]
≥ E

[
E [(h(W,A,X)− h0(W,A,X)|Z,A,X]

2
]

= E
[
E [h(W,A,X)− Y |Z,A,X]

2
]
= ∥Eh− g0∥22

Nonetheless, this quantity is observable and could be used as a minimization criteria to identify the
bridge function. With additional assumptions controlling the ill-posedness measure(definition 2.19), we
can relate the weaker metric to the stronger.

8sup(f2) = (sup f)2
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Adjusting for the unobserved

In the literature, methods are often developed to identify the ATE in the case of binary treatment,
whilst CERF estimation methods are of secondary interest. The aim of this section is to introduce
existing methods and approaches used in the literature under the proximal exchangeability assumptions
to estimate the CERF. Moreover, the focal point of proximal inference is the proximal g-formula which
suggests that identifying bridge functions in turn identifies the causal quantities of interest. Thus, most
methods redirect focus on the problem to identifying the bridge functions instead of the causal quantities
themselves.

Notation

Whenever the problem need not involve the individual variables or notation becomes cluttered, we will
interchangeably adopt the following notation:

Vh = (W,A,X) Vq = (Z,A,X)

This will also translate to the samples, i.e. Vhi
= (wi, ai, xi) and Vqi = (zi, ai, xi). This is similar to what

is done in other works[26, 18].

3.1 Foregoing the bridge function

The first idea one has to quantify the effect of a variable on another is to perform a simple linear regression.
As already discussed in section 1.3, including all the variables in the regression problem as measured
confounders will render the obtained results biased. As such, different regression approaches that leverage
the assumed structural independencies have been developed. The following two stage linear regression
approaches forgo the estimation of the bridge function altogether but rather leverage the independence
structure given by assumption 1.4 to identify the causal exposure. Moreover since the proximal g-formula
(theorem 1.2) is not invoked, no completeness assumption is necessary. Note that choosing to work with
a parametric model might avoid the ill-posedness of the problem by a form of implicit regularization.
By enforcing some parametric constraint, we are automatically imposing regularity conditions about the
solution and its trailing coefficients. We will study the classic proximal two stage least squares approach,
which relies on linearity assumptions, and a Bayesian extension that only requires a weaker assumption
to capture potentially non linear response functions.

3.1.1 Proximal Two Stage Least Squares

The method of Proximal Two Stage Least Squares (P2SLS) was first introduced in [46] and later [53]. It is
eerily similar to the methods often used in econometrics, in particular the parametric instrumental variable
literature. The regression problem is divided in two steps, the first aims to determine the coefficients
of the dependencies between the proxy variables and treatment. This first regression will inherently be
biased due to the presence of the unmeasured confounder. Afterwards, using the fitted values in the
second stage regression, we are able to account for the bias from the unmeasured confounder. For sake
of presentation the measured confounder X is omitted but results remain valid even in its presence.
The Proximal Two Stage Least Squares makes stringent assumptions in the structural form of the data,
requiring linearity in their underlying relationships:

35
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Assumption 3.1 (Linearity)
The data satisfies the following linear relationships:

E [Y |W,A,U ] = β0Y + βAYA+ βWYW + βUY U

E [W |A,Z,U ] = β0W + βUWU

E [U |Z,A] is linear in Z,A.
βUW ̸= 0

Rather than requiring a completeness assumption, which relates the variability of the unmeasured con-
founding and proxy, the last point of assumption 3.1 ensures that the former has an effect on the latter.
Under these linear models, the ATE per unit of A is constant across all possible treatments and coincides
with the slope of ∂

∂aχ(a) = E
[
Y a+1 − Y a

]
= βAY ∀a as shown in the following result.

Proposition 3.1
Under assumptions 1.4 and 3.1 then:

χ(a) = β̃0 + βAY a

where β̃0 = β0Y + E [βWYW + βUY U ]

Proof. By applying the standard g-formula:

χ(a) = E [Y a] = E [E [Y |W,A = a, U ]]

= E [β0Y + βAY a+ βWYW + βUY U ]

= β0Y + βAY a+ E [βWYW + βUY U ]

Determining the CERF will require identifying an additional constant β̃0 derived from integrating the
above mentioned quantity. This constant is the intercept of the CERF and represents the baseline E

[
Y 0
]

effect under no treatment.
The linearity assumption makes the model particularly simple, since it is assumed that as the treatment A
increases or decreases, the effect on outcome stays constant. Nonetheless it can be an effective estimation
method in situations where the data is concentrated around a linear response and outliers are trimmed
out. On the other hand, assuming linearity enables us to easily scale the approach to problems with a
large number of samples due to an asymptotic computational complexity of O

(
C2N

)
which is quadratic

in the number of features C, and only linear in the number of samples N. This scalability capacity will not
always be the norm for all other methods. Why do these simple regressions return unbiased coefficients
even in the presence of unmeasured confounding?

Fitted Values

As previously introduced, the use of fitted first stage regression into the second enables us to obtain
unbiased regression coefficients. Why would this be? By taking conditional expectation on both sides of
the assumed structure and law of iterated expectation, it follows that

E [Y |Z,A] = β0Y + βAYA+ βWY E [W |ZA] + βUY E [U |ZA]
E [W |ZA] = β0W + βUWE [U |ZA]

and thus, substituting the second equation into the first:

E [Y |ZA] = β0Y + βAYA+ βWY E [W |ZA] + βUY
βUW

(E [W |ZA]− β0W ) (3.1)

Equation (3.1) and the assumed linear relation between U and Z,A suggests that regressing Y on A and
Ŵ , an unbiased estimator of E [W |Z,A], will lead to an unbiased estimator of βAY . Notice that we are
only really interested in the coefficient βAY . The immediate choice of Ŵ is the fitted values found after
the ordinary least square regression W |Z,A is carried out. The recovered slope coefficient β̂AY is then
an unbiased estimator of the ATE per unit and thus the slope of the CERF ∂

∂aχ(a).
The additional quantity of β̃0 is necessary to account for β0Y + βWY E [W ] + βUY E [U ] and obtain com-
plete identification of the CERF χ(a). Directly substituting the estimated intercept coefficient from
equation (3.1) will result in large biases due to the presence of extra terms βUY

βUW
β0W . Notice that by

iterated expectation we have that:

β0Y + βWY E [W ] + βUY E [U ] = E [Y ]− βAY E [A]

Thus a valid unbiased parametric estimator for the CERF under assumption 3.1 is given by the following.
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Definition 3.1 (P2SLS Estimator)
Let β̂AY be the coefficient estimated with the P2SLS procedure then the P2SLS estimator for the CERF
is given by:

χ̂(a) = E [Y ] + β̂AY (a− E [A]) (3.2)

Correction method

The previous result can also be obtained by another route which was first proposed in [46]. Here,
rather than using the fitted coefficients in the second stage regression, the correction happens after the
entire estimation procedure. In this case both regressions are performed on the set of observed variables
Z,A,(X). The biased coefficients are here denoted by θ, γ rather than the true β:

Y ∼ θ0Y + θAYA+ θZY Z

W ∼ γ0W + γAWA+ γZWZ

Clearly the coefficients found by performing such regression do not coincide with the true structural ones
because the above regressions do not respect assumption 3.1, translating to θAY ̸= βAY . Nonetheless,
under the above assumptions the following must hold:

θ0Y + θAYA+ θZY Z = β0Y + βAYA+

(
βUY
βUW

+ βWY

)
· (γ0W + γAWA+ γZWZ)−

βUY
βUW

β0W

From the above display we are able identify the amount of bias for each term in the hope that it can be
adjusted for:

θZY =

(
βUY
βUW

+ βWY

)
γZW (3.3)

θAY = βAY +

(
βUY
βUW

+ βWY

)
· γAW (3.4)

Although the ATE or slope coefficient in equation (3.4) is biased, the ratio between the estimated coeffi-
cients found in equation (3.3) enables us to estimate the ratio between the unobserved effect coefficients of
U and correct for the bias. Thus, a valid unbiased estimator for ∂

∂aχ(a) is given by β̂AY = θAY − θZY

γZW
γAW .

The intercept estimation remains the same as before. A similar reasoning can be applied to include mea-
sured confounders X.

3.1.2 Bayesian Proximal 2SLS

An extension of the regular P2SLS method was recently proposed in [23]. Rather than requiring a global
linearity restriction, only a form of local linearity is required. This enables us to work with possibly non
linear CERFs. The authors of the paper adopt a specific proximal structure, whose DAG is given in
figure 3.1 where the NCO and NCE do not affect the treatment and outcome respectively. As such, the
method is more similar to an instrumental variable method with two instruments. Nonetheless, the two
causal paths could be added without any problems like in the previous section. For presentation purposes
the measured confounder is omitted but the results can easily be adjusted.
The main assumption is the following:

Assumption 3.2
The data is generated from a mixture of Gaussians. The effect of A and U on the outcome is linear within
each mixture component, in particular:

Y |A,Z,U, S = k ∼ N
(
β0k + βAkA+ βUkU, σ

2
yk

)
W |A,Z,U ∼ N

(
β0W + βUWU, σ

2
w

)
where the probability for each cluster are given by:

P (S = k) = ωk (A) = Φ (αk (A))
∏
r<k

(1− Φ (αr (A))) (3.5)

αk (A) ∼ N (µα,k (A) , 1) (3.6)

Moreover assume that the effect of U on W is non-zero, i.e. βUW ̸= 0.
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Assumption 3.2 can be interpreted as requiring local linearity, on each cluster S, rather than global
linearity. Taking an infinite number of clusters, we can hope to approximate a smooth function well
enough. Additionally, due to the presence of mixtures, the assumption 1.4 must hold for each cluster k
and thus Y |A,Z,U, S = k ∼ Y |A,U, S = k and W |A,Z,U ∼ W |U . Moreover, due to equation (3.5) and
the proof, there is an additional implicit1 assumption, the conditional independence: S ⊥⊥ (Z,W,U) |A.
Equation (3.5) highlights that the weights for each cluster are determined through a stick breaking
process.
The graphical representation of the model satisfying assumption 3.2 is the following:

YA

Z W

S

U

Figure 3.1: Graphical model with additional latent variable node

The proximal assumption is satisfied by the structure of the graph, and the new cluster variable S satisfies
the additional independence assumption S ⊥⊥ (Z,W,U) |A since:

• U → A→ S conditioning on a non-collider closes the path.

• U → Y ← S Not conditioning on a collider closes the path.

• All other paths starting from W,Z are through variations of the previous.

Now the structural equations are identical to the ones the linear proximal two stage least squares on each
cluster S = k. Similarly to before, taking conditional expectations on both sides, the first stage is given
by:

E [W |A,Z, S = k] = E [W |A,Z] (S ⊥⊥W |A)
= EU [E [W |A,Z,U ] |A,Z]
= β0W + βUWE [U |A,Z] (3.7)

Whereas the second is found as:

E [Y |A,Z, S = k] = EU [E [Y |A,Z,U, S = k] |A,Z, S = k]

= EU [E [Y |A,Z,U, S = k] |A,Z] (S ⊥⊥ U |A)
= β0k + βAkA+ βUkE [U |A,Z] (3.8)

Substituting equation (3.7) into equation (3.8) we finally obtain:

E [Y |A,Z, S = k] = β0k + βAkA+
βUk
βUW

(E [W |A,Z, S = k]− β0W ) (3.9)

Notice that this is the same result as in the regular P2SLS case within each cluster k.

Proposition 3.2
Let assumption 3.2 hold. Moreover, let {γ} be the coefficients of the first stage regression and {θk} the
coefficients of the second stage in cluster k. Then:

χ(a) =
∑

ωk (a)

[(
θAk −

θZk
γZW

γAW

)
· a+

(
θ0,k + θZ,kE [Z] + θZ,k

γAW
γZW

E [A]

)]
(3.10)

1This assumption does not appear in the original paper but is needed for the validity of the results.
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Proof.

χ(a) = E [Y a]

= EU [E [Y |A = a, U ]] (Backdoor)
= EU [ES [E [Y |A = a, U, S] |A = a, U ]] (Tower property)
= EU [ES [E [Y |A = a, U, S] |A = a]] (S ⊥⊥ U |A)

= EU
[∑

P (S = k|A = a)E [Y |A = a, U, S = k]
]

=
∑

P (S = k|A = a)EU [E [Y |A = a, U, S = k]] (S ⊥⊥ U |A)

=
∑

ωk (a)EU [E [Y |A = a, U, S = k]] (Mixture of normals)

=
∑

ωk (a)EU [E [Y |Z,A = a, U, S = k]] (Y ⊥⊥ Z|A,U)

=
∑

ωk (a)EU [β0k + βAka+ βUkU ] (assumption 3.2)

=
∑

ωk (a)

[(
θAk −

θZk
γZW

γAW

)
· a+ (β0k + βUkEU [U ])

]
=
∑

ωk (a)

[(
θAk −

θZk
γZW

γAW

)
· a+

(
θ0,k + θZ,kE [Z] + θZ,k

γAW
γZW

E [A]

)]

The Bayesian regression to estimate the coefficients of interest θ, γ is carried out with a MCMC procedure,
in particular Gibbs sampling. These are methods that are applied when a closed form of the complete joint
distribution is not available. Gibbs sampling consists in repeatedly sampling one parameter conditional
on all the others from simple distributions. If implemented correctly, in the limit the sampled chain is a
representative sample of the posterior distribution in which case various estimators such as the posterior
mean can be constructed as the average of the observed parameters in the chain. The particular choice
for the prior distributions are Normal distributions for the regression coefficients θ, γ and Inverse Gamma
distributions for the variances σ2

yk, σ
2
w of assumption 3.2. The original α of equation (3.6) were then

modeled as a linear function of the treatment αk = η0,k + ην,ka, where η ∼ N
(
µη, σ

2
η

)
.

Discussion

Overall, the linearity requirements of assumption 3.1 are extremely tight. Indeed the Bayesian approach
increases flexibility but requires proper specification of the prior distributions. In the original draft of
the paper, the construction of α above-mentioned sampled ην,k for each quantile ν, essentially losing the
ability for points to pass between different clusters. The outcome was quick convergence to a piece-wise
linear estimate of the CERF withing each quantile. More of this will be discussed in section 4.3. It is
also important to note that the last requirement of assumption 3.1 ensures that both equation (3.1) and
equation (3.3) are well defined. Nonetheless, if W is a weak instrument, or weak proxy in our case, i.e.
βUW is very small, then the ratio might be ill-conditioned. An additional discussion analysing the relation
in terms of the true coefficients with all Gaussian random variables can be found in appendix A.1.1.
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3.2 Semiparametric Proximal Inference

Semiparametric statistics is the collection of methods at the intersection of non-parametric and para-
metric statistics. This is because the former involve unknown infinite dimensional parameters(functions),
whereas the latter only deal with finite dimensional ones (subsets of Rd). Semiparametrics deals with
both, but places most interest on the finite dimensional parameter, whereas the infinite dimensional one
is considered a nuisance component. As the name suggests these are parameters (functions) that are not
of direct interest but are necessary to identify lower dimensional parameters of interest. The authors of
[13] develop a theory for semiparametric estimation of the ATE in proximal inference. This work was the
first work that proposed the exposure bridge function as up until then only the outcome bridge function
was considered. The authors determine the influence function for the ATE in and prove that it possesses
the doubly robust property. Additionally they show that the found influence function is the efficient
influence function, enabling the use of classical results such as the Cramér-Rao bound to claim that an
estimator built using it is the most efficient asymptotically linear estimator. This section aims to first
introduce basic concepts from semiparametric statistics and then the results from the aforementioned
paper.

3.2.1 Background in semiparametrics
A model P is a collection of probability distributions. Parametric models essentially restrict the search of
the density P to a family of distributions PΘ = {Pθ : θ ∈ Θ} indexed by a parameter θ that lives in Θ ⊆
Rd. Parametric estimators will then be functionals from PΘ to R. As one can imagine, this is restrictive
since Pθ is only a slice of the set of all possible distributions P. On the other hand, finite dimensional
parameters are much more simple to deal with and there exist many useful results from parametric
theory such as Fisher information and the Cramér Rao lower bound. Differently, nonparametrics makes
no restrictions about the underlying distributions and as such the model P might be very large. The lack
of assumptions and restrictions make it hard to have general results like in the parametric setting.
The idea of semiparametric information theory is to consider sub-models of the large P on which it is
possible to apply results from parametric statistics. In particular we are primarily interested in defining
something similar to the Fisher information for an infinite dimensional model P rather than Pθ. In the
spirit of differential geometry, this is done by considering subparametric models Pt, models parameterized
by a finite dimensional parameter, and taking the infimum over all possible models. Since we are interested
in defining Fisher information, for a submodel to be considered it must contain the true distributions P0

and be quadratic mean differentiable at t = 0[59], i.e. there exists a measurable function g such that:

∫ (
dP

1
2
t − dP

1
2
0

t
− 1

2
gdP

1
2

)2

→ 0 (3.11)

Similarly to the parametric setting, the function g is the score function of Pt. The collection of all score
functions varying over all parametric sub-models gains a particular name, the tangent set.

Definition 3.2 (Tangent Set)
The Tangent Set T of P at P0 is the collection of score functions g of all possible parametric sub-models
satisfying equation (3.11). Moreover define T as the closure of the linear span of the score functions in
T .

Now, for each submodel we can define the Fisher information in the usual manner as E
[
g2
]
. For the entire

model P, the information will not be larger than worst case scenario. Such scenario is not necessarily
connected to a specific submodel but could be reached as a linear combination of score function of various
sub-models, which is why we are interested in T rather than T . The information for P is then defined
as the worst case scenario by taking the infimum.

Example 3.1 (Parametric Model)
Let σ2 ∈ R+ be fixed and let Pθ =

{
N
(
θ, σ2

)
θ ∈ R

}
be our parametric model. We are interested in

determining the Fisher information of Pθ. The score function is:

gθ(x) :=
∂ log dPθ(x)

∂θ
=
∂ log fθ(x)

∂θ
=

1

fθ(x)
· ∂fθ(x)

∂θ
(3.12)

Notice that:

∂

∂θ
gθ =

∂

∂θ

(
1

fθ

∂

∂θ
fθ

)
=

1

fθ

(
∂

∂θ
fθ

)2

− 1

f2θ

(
∂2

∂θ2
fθ

)
=

1

fθ

(
∂

∂θ
fθ

)2

− g2θ
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Since the Fisher information of Pθ is the expected value of the score squared:

I(θ) = E
[
g2θ(x)

]
= E

[
1

fθ

(
∂

∂θ
fθ

)2
]

︸ ︷︷ ︸
=0

−E
[
∂

∂θ
gθ

]

Since our parametric model is a collection of Gaussians indexed by the mean, we obtain:

gθ(x) =
∂

∂θ
log

[
1√
2πσ

e−
(x−θ)2

2σ2

]
=

∂

∂θ

(
−1

2
log (2πσ)− (x− θ)2

2σ2

)
=
x− θ
σ2

∂

∂θ
gθ(x) = −

1

σ2

Combining the preceding, it quickly follows that the Fisher information of Pθ is given by:

I(θ) =
1

σ2

This result gives some intuition towards the concept of information in models. For small values of σ, the
observed data will concentrate around the mean and the information will be large; each sample is very
informative about the underlying model and thus very sensitive to observations. On the contrary, large
values of σ are associated with large dispersion of the data, leading to small Fisher information and thus
more resistant to ’unlikely’ observations. This suggests that having high information enables me to have
less uncertainty when observing data.

Pt

g

P0

P

Figure 3.2: Graphical representation of a parametric sub-model and score.

In practice we never observe the true underlying distribution P0 but only samples from it. Empirical
procedures use observed data to produce an estimate, the empirical distribution P̂n. If the procedure is
consistent, P̂n will asymptotically approximate the true underlying distribution P0. Since an estimator
is a map from P to R it is reasonable to wonder about the rate of change of ψ(P ) while varying P. Since
we are working with large spaces of infinite dimensional objects, these are called Fréchet derivatives but
the intuition is the same as for regular derivatives. Even in the infinite dimensional case, it is immediate
that this rate of change with respect to P is closely tied to the concept of Fisher information just as in
example 3.1.

Definition 3.3 ([59]Differentiable Functional)
A functional ψ : P → R is said to be differentiable at P relative to a given tangent set T if there exists a
continuous linear map ψ̇ : L2(P )→ R such that ∀g ∈ T :

∂

∂t
ψt

∣∣∣∣
t=0

:= lim
t→0

ψ(Pt)− ψ(P )
t

= ψ̇g

ψ̇ is the Influence Function of ψ.

Thus, if ψ is differentiable its derivative ψ̇ is a continuous and thus bounded, linear functional. By
theorem 2.1 there exists a representer φ ∈ L2 such that ψ̇g = ⟨φ, g⟩ ∀f ∈ L2. Notice that definition 3.3
is only specified for functions in T and as such, the behavior of ψ̇ is arbitrary for functions outside
the tangent space. Thus the representer is not necessarily unique in L2. Any of these representers are
influence functions of ψ. Nonetheless, since T is closed by construction, with the same inner product as
L2, it is itself a Hilbert space and thus admits a unique representer within T . This particular influence
function has particular properties and as such it gains its own definition.
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Definition 3.4 (Efficient Influence Function)
Let ψ be a functional of interest and ψ̇ its derivative, then there ∃! φEIF ∈ T , called Efficient Influence Function
such that

ψ̇g = ⟨φEIF , g⟩ ∀g ∈ T

By construction and properties of Hilbert spaces, this representer is the projection of any other influence
function onto T . Since the Fisher information of P is now introduced, it is now possible to show that
the optimal asymptotic variance of an estimator depends on its efficient influence function.

Lemma 3.1 ([59]Asymptotic Variance)
Suppose ψ : P → R is differentiable at P relative to T and let φEIF be its efficient influence function
then the optimal asymptotic variance is given by E

[
ψ2
EIF

]
.

Proof. This follows from the Cramér-Rao minimum variance unbiased estimator lower bound. It states

that the variance of any unbiased estimator must be greater or equal to than
(
∂ψt

∂t

)2
· 1
E[g2] . As we

have defined the information on P as the infg∈T E
[
g2
]
, the Cramér-Rao lower bound is equal to2

supg∈T
⟨φEIF ,g⟩

⟨g,g⟩ ≤ ⟨φEIF , φEIF ⟩ where the inequality is due to Cauchy-Schwarz. Since φEIF ∈ T , it
is linearly dependent from g and thus the inequality is tight.

3.2.2 Semiparametric Proximal Inference

Having introduced the concepts from semiparametric theory, it is clear why the influence function is
important and even more so, determining the efficient influence function. Lemma 3.1 shows that if we
are interested in determining the most efficient regular asymptotically linear estimator, in other words
the lowest variance unbiased estimator of ψ, we can do so by identifying the efficient influence function.
The theorem from [13] proves that the determined influence function is efficient. We restrict ourselves
to showing that it is an influence function and an additional discussion about its efficiency is left to
appendix A.

Theorem 3.1 ([13] Semiparametric Proximal Inference)
Consider a binary treatment A taking values in A = {0, 1}. Suppose that proximal exchangeability (as-
sumption 1.4) holds. Moreover assume that there exist unique bridge functions h0, q0. Then:

IF (ψ) = (−1)1−Aq0(Z,A,X) [Y − h0(W,A,X)] + h0(W, 1, X)− h0(W, 0, X)− ψ (3.13)

is an influence function. Moreover, if the conditional expectation operator and its adjoint are surejective,
then IF is also efficient and its local efficiency bound is E

[
EIF 2(ψ)

]
3.

Proof. Introducing the notation ∆Ah = h(W, 1, X)− h(W, 0, X), apply the proximal g-formula to deter-
mine ATE = E [∆Ah]. Let D = (Y,A,W,X,Z). Using the definition of definition 3.3, we are interested
in determining a function φ such that ∂

∂tψt
∣∣
t=0

= E [φ · S(D; t)]|t=0. Applying the chain rule:

∂

∂t
ψt

∣∣∣∣
t=0

=
∂

∂t
Et [∆Aht]

∣∣∣∣
t=0

= E [∆Ah · S(W,X)]︸ ︷︷ ︸
T1

+E
[
∂

∂t
∆Aht

∣∣∣∣
t=0

]
︸ ︷︷ ︸

T2

For T1, notice that:

• E [∆Ah · S(Z, Y,A|W,X)] = S(Z, Y,A|W,X)E [∆Ah] = S(Z, Y,A|W,X) · ψ

• E [(∆Ah− ψ)S(W,X)] = E [∆Ah · S(W,X)]− ψ · E [S(W,X)]︸ ︷︷ ︸
=0

= E [∆Ah · S(W,X)]

The above and properties of scores implies that T1 can be rewritten as:

T1 = E [(∆Aht − ψ) · (S(Z, Y,A|W,X) + S(W,X))] = E [(∆Aht − ψ) · S(D)]

2 1
inf A

= sup
(

1
A

)
3[13, 26]
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Similarly for T2 notice that using the chain rule, the conditional moment restriction for the outcome
function implies:

∂

∂t
Et [Y − ht(W,A,X)|Z,A,X]

∣∣∣∣
t=0

= 0

E

(Y − ht(W,A,X))︸ ︷︷ ︸
=ϵ

·S(W,Y |Z,A,X)|Z,A,X

 = E
[
∂

∂t
ht(W,A,X)

∣∣∣∣
t=0

|Z,A,X
]

T2 = E
[

(−1)1−A

f(A|W,X)

∂

∂t
ht(W,A,X)

∣∣∣∣
t=0

]
= E

[
(−1)1−Aq(Z,A,X) · ∂

∂t
ht(W,A,X)

∣∣∣∣
t=0

]
= E

[
(−1)1−Aq(Z,A,X) · E

[
∂

∂t
ht(W,A,X)

∣∣∣∣
t=0

|Z,A,X
]]

= E
[
(−1)1−Aq(Z,A,X) · ϵ · S(W,Y |Z,A,X)

]
= E

[
(−1)1−Aq(Z,A,X) · ϵ · S(W,Y |Z,A,X)

]
+ E

[
(−1)1−Aq(Z,A,X) · t · S(Z,A,X)

]︸ ︷︷ ︸
=0

= E
[
(−1)1−Aq(Z,A,X) · ϵ · S(D)

]
Recombining the two terms:

∂

∂t
ψt

∣∣∣∣
t=0

= E
[(
(−1)1−Aq(Z,A,X) · (Y − h(W,A,X)) + ∆Ah− ψ

)
S(D)

]
(3.14)

This shows that the following is an influence function for ψ:

IF (ψ) = (−1)1−Aq(Z,A,X) · (Y − h(W,A,X)) + ∆Ah− ψ

The uniqueness of the bridge functions required by theorem 3.1 can be guaranteed by additional com-
pleteness assumptions like W |Z,A,X completeness as discussed in section 2.3. The influence function of
equation (3.13) can be reformulated highlighting the dependence on the true bridge functions h, q as:

IF (ψ;D, h, q) = −1A=a · q(Z,A,X)h(W,A,X) + 1A=a · Y q(Z,A,X) + h(W,a,X)− ψ (3.15)

This particular formulation will come useful in the upcoming sections.

Robustness

Robustness is a property often desired in estimators, as it implies reduced sensitivity to slight changes
in the data. Therefore, robustness is closely related to the rate of change of the estimator with respect
to changes in P and thus the influence function. A robust estimator is such that for slight variations in
P ∈ P, ψ(P ) also does not vary much.

Example 3.2 (Mean Estimation and Huber Estimators)
Suppose we are interested in estimating the mean µ0 of some distribution of X with heavy tails. The first
reasonable estimator is the sample average µ̂. In particular, if xi are i.i.d. samples, µ̂ solves:

1

n

n∑
i=1

(xi − µ) = 0

Unfortunately this estimator is not very robust to outliers, which will often occur when sampling from a
distribution with heavy tails. A possible solution is to consider so called Huber estimators. Rather than
estimating, the sample average of the data, consider µ̂ solving the following:

1

n

n∑
i=1

(xi − µ)1|xi−µ|≤k − k1(xi−µ≤−k) + k1(xi−µ≥k) = 0

In this case, the moment equation is constructed such that the outliers do not have much weight in the
estimating equation as they will be capped off at k.
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In our situation, we have two nuisances: the exposure and outcome bridge functions. The fact that we
are leveraging both bridges in the construction of the influence function of equation (3.15) raises the
question whether or not there is some robustness to misspecification of at most one of the two.

Corollary 3.1 ([18] Double Robustness)
For all choices of nuisance functions h, q:

E [IF (ψ;D, h0, q0)] = E [IF (ψ;D, h0, q)] = E [IF (ψ;D, h, q0)] = 0

Proof. Suppose that h = h0, with a slight abuse of notation foregoing the dependency on the variables,
notice that:

IF (ψ;D, h0, q0)− IF (ψ;D, h0, q) = −1A=aq0h0 + 1A=aY q0 + h0 − ψ + 1A=aqh0 − 1A=aY q − h0 + ψ

= 1A=ah0 (q − q0)− 1A=aY (q − q0)
= 1A=a (q − q0) (h0 − Y )

By linearity of expectation and tower property:

E [IF (ψ;D, h0, q0)]− E [IF (ψ;D, h0, q)] = E [1A=a (q − q0) (h0 − Y )]

= E

1A=a (q − q0)E [h0 − Y |Z,A,X]︸ ︷︷ ︸
=0

 = 0

Similarly, assume that q = q0 then for the exposure bridge function notice that:

IF (ψ;D, h0, q0)− IF (ψ;D, h, q0) = −1A=aq0h0 + 1A=aY q0 + h0 − ψ + 1A=aq0h− 1A=aY q0 − h+ ψ

= 1A=aq0(h− h0)− (h− h0)
= (1A=aq0 − 1) (h− h0)

Once again by linearity of expectation and tower property:

E [IF (ψ;D, h0, q0)]− E [IF (ψ;D, h0, q)] = E [(1A=aq0 − 1) (h− h0)]

= E

E [1A=aq0 − 1|W,A,X]︸ ︷︷ ︸
=0

(h− h0)

 = 0

If both nuisances are correctly specified, then it is immediate that E [IF (ψ;D, h0, q0)] = 0 completing the
proof.

To rephrase corollary 3.1, the influence function constructed with only one bridge correctly sepcified is
first order bias resistant to one misspecification while only losing efficiency.

3.2.3 An estimator built upon the influence function
The double robustness property of the influence function and the efficiency results from semiparametrics
suggest that an estimator with the same form as equation (3.15) would inherit such properties. The
construction of the estimator is similar to that of M-estimators. Suppose we have n data points, Dn =
{(yi, ai, wi, zi, xi}. To avoid bias generated from overfitting, split the data into L subsets D1, . . .DL. For
each k ∈ {1, . . . L} the bridge functions ĝ, ĥ are estimated using the data from Dn \ Dk. Afterwards ψ̂k
is determined as

ψ̂k =
1

|Dk|
∑
i∈Dk

(−1)1−ai q̂(zi, ai, xi)
[
yi − ĥ(wi, ai, xi)

]
+ ĥ(wi, 1, xi)− ĥ(wi, 0, xi)

Ultimately, the estimator for the average treatment effect is the average of the previously found ψ̂ks.

ψ̂ =
1

L

L∑
k=1

ψ̂k (3.16)

In [18], the authors show the asymptotic behaviour of such estimator on conditions regarding the ill
posedness measure of the conditional expectation operator E and the convergence rates of the projected
distances.
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Theorem 3.2 ([18])
Suppose that the true bridge functions h0, q0 are bounded. Moreover assume that q̂, ĥ are consistent
estimators for the bridge functions q, h, i.e.

∥∥∥h− ĥ∥∥∥
2
= oP (1), ∥q − q̂∥2 = oP (1). Additionally suppose

that
∥∥∥E(h− ĥ)

∥∥∥
2
= O(rh(n)) and ∥E∗ (q − q̂)∥2 = O(rq(n)) such that:

min {rh · τQ(rq(n)), rq · τH(rh(n))} = o(n−
1
2 )

where E,E∗ are the conditional expectation operators defined in section 2.3 and τH(δ) is the local ill-
posedness measure of definition 2.19. Then the estimator of equation (3.16) is asymptotically linear
and: √

n
(
ψ̂ − ψ)

)
⇝ N (0, var(IF (V ;ψ, h0, q0))

The proof of the theorem is omitted but it consists of splitting the errors into the three terms of equa-
tion (2.7): empirical, population, and excess risk and show that under such assumption they all vanish.
This theorem shows that the estimator built leveraging corollary 3.1, only possesses second order bias.
This in turn implies the Neyman orthogonality property of the estimator, a property recently popularized
in the field of machine learning. On top of this, it is important that the rate of convergence of one bridge
function and the measure of ill posedness of the class for the other combine to attain a rate of

√
n; only

the product bias between the two slacks needs to go to zero at such rate for the estimator to obtain
parametric rate. This means that in practice, slow estimation rates of one of the bridge functions can be
overcome by faster rates for the other.
The advantages brought from using both bridge functions do not come as free lunches. First of all, there
is now the problem of estimating two bridge functions and the theorem does not tell us how, but merely
requires it. Moreover, for each one to correctly identify the ATE the respective completeness assumptions
of the proximal g-formula (theorems 1.2 and 1.3) need to be satisfied. As shown in example 1.2, this is
not a trivial requirement. Furthermore, the derived influence function and the associated methods are
restricted to binary treatments. A recent extension to continuous setting and CERF estimation relying
on kernel smoothing techniques is presented in section 3.2.4 . Nonetheless, this entails many additional
technical assumptions. Additionally, the authors of [13] require the conditional expectation operator and
its adjoint to be surjective for the influence function to be efficient, the authors of [26] require bijectivity.
These are slightly peculiar requirements and a lengthier discussion on this is included in appendix A.2 .

3.2.4 The influence function as estimating equations

In [18], the influence function of equation (3.15) is used to construct estimating equations for the bridge
functions. Consider perturbing the influence function of equation (3.15) to obtain:

prt(h0, q0; ḣ, q̇) = IF (ψ;V, h0 + ḣ, q0 + q̇)− IF (ψ;V, h0, q0)

Corollary 3.1 ensures that varying the influence function along the axis of figure 3.3, the expected per-
turbation must remain null. This highlights the fact that the expected perturbation in each direction can
be used as estimating equations for the bridge functions:

E [prt(h0, q; 0, q̇)] = 0 ∀q, q̇ ∈ Q E
[
prt(h, q0; ḣ, 0)

]
= 0 ∀h, ḣ ∈ H

The perturbations in ecah direction result in:

Q

H

(q0, h0)

(q̇, ḣ)

Figure 3.3: Along the axis the expected perturbation is zero.
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prt(h0, q; 0, q̇) = 1A=aq̇(Vq)(h0(Vh)− Y )

prt(h, q0; ḣ, 0) = ḣ(Vh) (−1A=aq0(Vq) + 1)

Assumption 3.3 (Well-Posedness)
The true bridge functions q0, h0 belong to the hypothesis classes Q,H respectively.

Under assumption 3.3 then the bridge function will necessarily be the minimizers of the worst case ex-
pected perturbation, in other words, under norm constraints on ḣ, q̇, they solve the following optimization
problem [18]:

q0 = argmin
q

max
ḣ

E
[
prt(h, q; ḣ, 0)

]
h0 = argmin

h
max
q̇

E [prt(h, q; 0, q̇)]
(3.17)

Moreover, noticing that the bridge functions are variationally independent due to assumption 1.4, equa-
tion (3.17) can be optimized individually. Alternatively, adversarial methods could be implemented to
directly optimize in one step:

(ĥ, q̂) = argmin
H,Q

[
max
ḣ∈H

E
[
prt(h, q; ḣ, 0)

]
+max

q̇∈Q
E [prt(h, q; 0, q̇)]

]
(3.18)

Optimizing equation (3.18) in one step has the additional difficulties of simultaneous optimization and
reaching a stable equilibrium. In [33] the authors study this from a game theoretic perspective. We focus
on the individual formulation of proposition 3.3. The following result shows the estimating equations for
problem:

Proposition 3.3 ([18])
Under norm constraints on ḣ, q̇, the solution to the optimization problem in equation (3.17) is given by:

q̂ = argmin
Q

max
ḣ

E
[
ḣ(Vh) · (1A=aq(Vq)− 1)

]
ĥ = argmin

H
max
q̇

E [1A=aq̇(Vq) (h(Vh)− Y )]
(3.19)

Assumption 3.3 ensures that the solutions to the above problem coincide with the true bridge functions.
Note that the norm constraint is necessary, otherwise the outer minimization could not be well posed.
The other possibility is to impose penalization on norms of said functions as:

q̂ = argmin
Q

max
ḣ

E
[
ḣ(Vh) · (1A=aq(Vq)− 1)− ḣ2(Vh)

]
ĥ = argmin

H
max
q̇

E
[
1A=aq̇(Vq) (h(Vh)− Y )− q̇2(Vq)

] (3.20)

The authors of [18] simply state that these terms are added for stability. These terms are necessary unless
norm constraints on the function classes are imposed. Note that these are not the same as regularizers
but rather stabilizers as coined in [26]. In estimation, we send the regularization parameter to zero so
that our solution is less and less biased(at least for Tikhonov regularization). Stabilizers do not carry
bias but can be seen as a different characterization of conditional moment equations[26]. We formalize
this in the following result:

Proposition 3.4 (Supremum and Norm Penalization)
Let G be a Hilbert space, then:

∥f∥2

4λ
= sup

g∈G

[
⟨f, g⟩ − λ ∥g∥2

]
Proof. Any element of G can be decomposed into g = af + g⊥ with

〈
f, g⊥

〉
= 0. Then the above display

gives:
sup

a∈R,g∈G

[
a ∥f∥2 − a2λ ∥f∥2 − λ

∥∥g⊥∥∥2]
Differentiating in a it is easy to see that this is maximized at a = 1

2λ and g⊥ = 0. This gives(
1
2λ −

λ
(2λ)2

)
∥f∥2 = ∥f∥2

4λ
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The expectation is an inner product on L2 and thus we can apply proposition 3.4 to a general f ∈ L2 as:
1

4λ
E [E [Y − h(Vh)|Vq]]2 = 0 ⇐⇒

sup
g∈L2

E [g(Vq) · (Y − h(Vh))]− λ ∥g∥2 = 0

We will find something similar in our own Quasi Bayesian approach in chapter 5. In this work, the
authors set λ = 1 whereas we will require λ = 1

2 . For the value of λ = 1
2 , a similar result can be found by

using a square loss and invoking so called Fenchel duality (appendix A.3.1). The solution to the stabilized
optimization is the same as the one without, but with noom constraints.

Corollary 3.2 ([18])
Under assumption 3.3, the solutions of equation (3.20) satisfy equation (3.19).

Proof. The proof is given for the first estimating equation, the second follows similarly.

E
[
ḣ(Vh) · (1A=aq(Vq)− 1)− ḣ(Vh)2

]
= E

[
−ḣ(Vh)2 + ḣ(Vh) (1A=aq(Vq)− 1)± 1

4
(1A=aq(Vq)− 1)

2

]
= E

[
−
(
ḣ(Vh)−

1

2
(1A=aq(Vq)− 1)

)2

+
1

4
(1A=aq(Vq)− 1)

2

]
The optimization problem can be rewritten as:

q̂ = argmin
Q

−min
ḣ

E

[(
ḣ(Vh)−

1

2
(1A=aq(Vq)− 1)

2

)2

− 1

4
(1A=aq(Vq)− 1)

2

]
Conditional expectation is the function (in the conditioning variable) that minimizes the MSE. For this
reason, the above is optimized at

ḣ(Vh) =
1

2
E [1A=aq(Vq)− 1|Vh]

Note that this is true only if the above function is within our hypothesis space H. The authors do
not require this directly but rather impose a the hypothesis classes H,Q to be dense in L2(Vh), L2(Vq).
Replacing this in the previous display:

q̂ = argmin
Q

−

(
E

[(
1

2
E [1A=aq(Vq)− 1|Vh]−

1

2
(1A=aq(Vq)− 1)

2

)2

− 1

4
(1A=aq(Vq)− 1)

2

])

= argmin
Q

−

(
E

[(
1

2
E [1A=aq(Vq)− 1|Vh]−

1

2
(1A=aq(Vq)− 1)

2

)2

− 1

4
(1A=aq(Vq)− 1)

2

])

= argmin
Q

−1

4

(
E
[
E [1A=aq(Vq)− 1|Vh]2 − 2 (1A=aq(Vq)− 1)E [1A=aq(Vq)− 1|Vh]

])
= argmin

Q
−1

4

(
E
[
E [1A=aq(Vq)− 1|Vh]2 − 2 (1A=aq(Vq)− 1)E [1A=aq(Vq)− 1|Vh]

])
= argmin

Q

1

4

(
E
[
E [1A=aq(Vq)− 1|Vh]2

])
where in the second to last step we used tower property as: E [f(X)E [f(X)|Y ]] = E [E [f(X)|Y ]E [f(X)|Y ]] =

E
[
E [f(X)|Y ]

2
]
. Since this minimization is non-negative, the solution will be obtained when equality to

zero(if possible). Invoking assumption 3.3, then equality is possible and it occurs at q0 by construction
of the exposure bridge function.

Focusing on RKHSs hypothesis classes for optimization of equation (3.20) , it is possible to control the
local ill-posedness measure in terms of Rademacher complexity and critical radii by invoking lemma 2.3.
An additional advantage of using such hypothesis classes is that the empirical solutions admit a closed
form expression, and can be made to accommodate for additional Tikhonov regularization. In such case
the empirical optimization becomes:

ĥ = argmin
H

sup
Q

1

n

n∑
i=1

qi(hi − yi)− h2i − λhQ ∥q∥
2
Q + λhH ∥h∥

2
H

q̂ = argmin
Q

sup
H

1

n

n∑
i=1

hi (1ai=aqi − 1)− q2i − λ
q
H ∥h∥H + λqQ ∥h∥H

(3.21)
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where hi = h(Vhi
) and qi = q(Vqi). The solution to the above optimization has a closed form solution

given by the following result.

Proposition 3.5 ([18])
Let kh, kq be kernel associated to RKHSs H,Q respectively. The solution to equation (3.21) is given by:

ĥ =

n∑
i

αikh(Dhi , ·)

where Dhi = (wi, ai, xi) i ∈ 1, . . . , n and

α =
(
Kh,nIAΓIAKh,n + n2λhHKh,n

)†
Kh,nIAΓIAY ∈ Rn

Kh,n =
[
kh
(
Dhi ,Dhj

)]
ij
∀i, j ∈ {0, . . . , n} ∈ Rn×n

Γ =
1

4
Kq,n

(
1

n
Kq,n + λhQI

)
∈ Rn

IA = [1ai=a · δij ]ij ∀i, j ∈ {0, . . . , n} ∈ Rn×n

IAY = [Yi · 1ai=a · δij ]ij ∀i, j ∈ {0, . . . , n} ∈ Rn×n

I = [δij ]ij ∀i, j ∈ {0, . . . , n} ∈ Rn×n

The same result holds for q̂ by inverting the roles of kh and kq.

Proposition 3.5 shows that to estimate the bridge functions, one simply needs calculate the inverse of
two matrices. Implementation wise, this much simpler than other iterated procedures. Computationally,
matrix inversion quickly becomes intractable since the computational complexity is O(n3)[8]. In general,
this makes kernel methods non scalable. Nonetheless it is possible to implement other approximation
techniques such as Nystrom approximations to lighten the computational cost.
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3.3 Proximal Kernel Doubly Robust Estimator

The semiparametric proximal approach introduced in section 3.2 has several advantages amongst which
the double robustness of the influence function to misspecification of at most one bridge function h0, q0.
If one is interested in estimating the ATE between two treatments, then the estimator in equation (3.16)
is an appropriate estimator. Moreover, if the influence function is efficient, then the estimator is the best
asymptotically linear unbiased estimator possible. Unfortunately, due to the indicator function present
in the optimizations of equation (3.15), such estimator is only really valid for binary treatment. If one
were in the presence of categorical treatment, i.e. the cardinality of A is finite, one could implement the
same approach and compare each treatment to some baseline treatment 0 to obtain χ(a).

ATE0,0

ATE0,1

ATE0,2
ATE0,3

ATE0,4

ATE0,5

ATE0,6

0 1 2 3 4 5 6

−0.2

0

0.2

0.4

0.6

Figure 3.4: Categorical treatment with baseline treatment 0. Ordering is for presentation purposes only.
Connecting the dots is only natural if the set of treatments A is an ordered set.

Clearly, this approach becomes computationally inefficient as the cardinality of A grows. Taking this
to the limit, the approach is obviously infeasible to determine the continuous treatment effect and the
CERF. The authors of [67] study a method to extend the framework to enable double robust estimation
in the continuous setting.

3.3.1 An extension of the semiparametric estimator to the continuous

As previously introduced, the main issue with the semiparametric proposed by [13, 18] is the presence of
the indicator or Dirac delta function in equation (3.15). The indicator places a mass of one in an area of
infinitesimal size. If one expects some regularity of the bridge functions function, it is possible to borrow
a some clever tricks from nonparametric statistics and to spread this mass onto a larger area.

Example 3.3 (Non-parametric density estimation)
A naive approach to estimate the density function of a random variable X is to consider the outline of
the histogram of the sampled data. The histograms are nothing but a collection of indicator functions over
an interval. In this case the Dirac delta coincides with an indicator function of a bin with zero width.
Considering bins of equal width h, a plausible estimator for the density f(x) becomes:

−8 −6 −4 −2 0 2 4 6 8 −8 −6 −4 −2 0 2 4 6 8

Figure 3.5: Estimating the denisty as the outline of the histogram. On the left data sampled from a
N (0, 4). On the right a more exotic bimodal distribution.
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f̂σ(x) =
1

2nσ

n∑
i=1

1(x−σ,x+σ)(Xi)

This estimator is a particular case of a more general class of estimators known as Kernel Density Estimators(KDE):

f̂σ(x) =
1

nσ

n∑
i=1

K

(
x−Xi

σ

)
=

1

n

n∑
i=1

Kσ (x−Xi)

In particular the estimator of figure 3.5 adopts the kernel K(x − Xi) = 1
21x−σ,x+σ(Xi), which entails

that the samples of X are uniformly distributed within each bin. By changing the kernel function, a
different distribution is expected over each interval and it is possible to achieve different results. The

most commonly adopted kernel is the so called Gaussian kernel, i.e. Kσ (x−Xi) = e−
(x−Xi)

2

2σ2 . The

−4 −2 0 2 4

Figure 3.6: Example of KDE with Gaussian kernel. Note that here the plot of each kernel is normalized
such that the total area equals one.

Gaussian kernel entails a normal distribution centered at the sampled point with variance σ2. As is
highlighted in figure 3.6, the bandwidth parameter σ controls the level of ’influence’ that close points have.
Large values of σ translate into far away points sharing lots of information whereas small values of σ
means distant points remain independent.

A similar approach to KDE is used in the PKDR method. The indicator function in the influence function
of equation (3.15) is replaced by a suitable kernel function Kσ:

χσ(a) = E [Kσ (A− a) q0(Z, a,X) · Y ] (3.22)

By a suitable kernel we intend one that behaves somewhat similar to the Dirac delta, it has total mass
equal to one and it is an even function. Such conditions are presented in the following assumption:

Assumption 3.4 (Kernel conditions)
The kernel function K satisfies the following requirements:∫

K(t)dt = 1

∫
tK(t)dt = 0 κ2(K) =

∫
t2K(t)dt < +∞

Example 3.4 (Epanechnikov Kernel)
The Epanechnikov kernel defined as:

K(t) =
3

4

(
1− t2

)
|t| ≤ 1

satisfies the requirements of assumption 3.4.

•
∫
K(t)dt =

∫ 1

1
3
4 (1− t

2)dt = 3
4

(
t− t3

3

)
|1−1 = 3

4

(
1− 1

3 + 1− 1
3

)
= 1

• K(t) is even w.r.t. 0 and t is odd =⇒ t ·K(t) is odd.

•
∫
K(t)dt =

∫ 1

1
3
4 (t

2 − t4)dt = 3
4

(
t3

3 −
t5

5

)
|1−1 = 9

20
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In this case, rather than computing one to one comparisons for discrete variables, information is auto-
matically shared by the smoothing of the kernel K. If the bandwidth parameter of the kernel were zero,
then one would expect the estimator built upon equation (3.22) to perfectly match the one achieved by
the proximal g-formula.

Proposition 3.6 ([67])
Suppose that χ(a) = E [1A=aq0(Z, a,X)Y ] is continuous and bounded in a. Moreover, suppose that the
kernel Kσ satisfies assumption 3.4 then:

χ(a) = lim
σ→0

χσ(a)

where χσ(a) is defined in equation (3.22).

The above result is directly taken from [67]. It is not evident what is meant by "E [1A=aq0(Z, a,X)Y ]
is continuous in a". If the treatment indeed takes values in A ⊂ R, then the above quantity is always
equal to zero. This is because the set A = a ∈ R has measure 0. If the A contains atoms then the
treatment cannot be continuous. To somewhat make sense of the above, a possibility is to consider
E [Y q(Z, a,X)f(a|X)|A = a] and require continuity of the conditional density in a; but it is ultimately
not clear if this is what is implied or true. In any case, we give the proof as if such object was well defined
(and not simply 0).

Proof. Since χ is bounded, we can invoke the dominated convergence theorem to switch order of the limit
and integral. Using variable substitution u = s−a

h , the definition of Kσ(t) =
K(t/σ)
σ and assumption 3.4

we have that ∀a:

lim
σ→0

∫
Kσ(s− a)χ(s)ds =

∫
lim
σ→0

K
(
s−a
σ

)
σ

χ(s)ds =

∫
lim
σ→0

K(u)χ(σu+ a)du =

∫
K(u)χ(a)du = χ(a)

A direct consequence of proposition 3.6 is that an estimator with the form:

χσ(a) = E [Kσ (A− a) (Y − h0(W,a,X)) · q0(Z, a,X) + h0(W,a,X)] (3.23)

gains the advantages previously discussed as the bandwidth parameter tends to zero. This suggests its
empirical equivalent:

Definition 3.5 (PKDR Estimator)
Let Dt be a test set of size nt, the PKDR Estimator for the CERF is defined as:

χ̂σ(a) =
1

ntσ

∑
i∈Dt

K

(
ai − a
σ

)(
yi − ĥ(wi, a, xi)

)
· q̂(zi, a, xi) + ĥ(wi, a, xi) (3.24)

Kernel smoothing does carry some downsides. Even though it can be shown that the KDE of example 3.3
has bias going to zero as the bandwidth σ decreases, this comes at the cost of second order bias or
variance which increases. This is the well known bias-variance tradeoff. The same happens for the
PKDR estimator. The following theorem determines the conditions necessary and the optimal rates for
the aforementioned tradeoff.

Theorem 3.3 ([67])
Suppose that ĥ, q̂ well approximate the true bridge functions h0, q0, i.e.

∥∥∥ĥ− h0∥∥∥
2
= o(1), ∥q̂ − q0∥2 =

o(1). Moreover suppose that
∥∥∥ĥ− h0∥∥∥

2
∥q̂ − q0∥2 = O

(
(nσ)−

1
2

)
• nσ5 < +∞, nσ →∞

• h0, f(z, a|w, x), f(w, a|z, x) ∈ C2
a(A)

• sup{|h0|, |q0|, |ĥ|, |q̂|} < +∞

Then the PKDR estimator of equation (3.24) has:

Bias (χ̂(a)) =
σ2

2
κ2(K)B + o

(
(nσ)−

1
2

)
B = E

[
q0 ·

(
∂

∂a
h0(W,a,X) · ∂

∂a
f(W,a|Z,X) +

∂2

∂a2
h0(W,a,X)

)]
V ar (χ̂(a)) =

Ω2(K)

nσ
κ2(K) (V + o(1)) V = E

[
1A=aq

2
0(Z, a,X) · (Y − h0(W,a,X))

]
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From the requirements of the above theorem, it is immediate that the optimal bias-variance trade-off is
achieved by a bandwidth σ = o(n−

1
5 ). This leads to an optimal rate for ∥χ− χ̂∥2 = O(n−

2
5 ). Whereas

continuity assumptions on the conditional densities of treatments might be reasonable for a given problem,
the same requirement becomes highly technical in the case of the outcome bridge function. As discussed
in section 1.3, the bridge functions do not have a clear interpretation and as such assumptions of their
regularities must always be made with care.



53

3.4 Kernel Methods

In this next section we focus on estimation of the outcome bridge functions in the case it lies within some
RKHS. The main advantage of these methods is that the solution to the optimization problem comes
in closed form. The authors of [36] develop two kernel methods for the continuous estimation of the
CERF. The first, KPV, is a two stage method that learns the conditional expectation operator with its
conditional mean embedding. The second method considers the maximum violation of the conditional
moment restriction over the test function class G. In this section we will often use the feature maps of
the kernels associated with the reproducing kernel Hilbert spaces. Then notation we adopt is the same
of definition 2.6, φX(xi) = kX(xi, ·). It is important to remember that even though φX(xi) might seem
like the evaluation of a function, and thus a number, it is not. A feature map φX evaluated φX(xi) is an
element of HX . In particular it is the function associated to fixing the an input (the kernel is symmetric)
to xi and letting the remaining one roam free. By the reproducing trick, this is inline with the Machine
learning notion of feature maps: ⟨φX(xi), φX(xj)⟩HX

= kX(xi, xj). Moreover, since the bridge function
takes in three arguments, we will work with reproducing kernel Hilbert spaces associated to kernels that
take two inputs, each of dimension 3. We will choose to use the tensor kernel as the spaces HX×Y and
HX ⊗ HY are isometrically isomorphic [36]. This is because we work in separable Hilbert spaces4 and
the reproducing trick:

⟨f ⊗ g, φX(xi)⊗ φY (yi)⟩HX⊗HY
= ⟨f ⊗ g, kX(xi, ·)⊗ kY (yi, ·)⟩HX⊗HY

= ⟨f, kX(xi, ·)⟩HX
⟨g, kY (yi, ·)⟩HY

= f(xi)g(yi)

To lighten notation, the feature map will always remain φ and which RKHS it is associated to will be
immediate by its argument: φ(xi) = kX(xi, ·) ∈ HX , φ(ai) = kA(ai, ·) ∈ HA, · · · and so on. For these
reasons, we will use the notation φ(ai, xi) and φ(ai)⊗ φ(xi) interchangeably.

3.4.1 Kernel Proxy Variable

In the Proxy Two Stage Least Squares approach, the first stage regression attempts to learn the conditional
distribution W |Z,A,X under the assumption that the true model is relegated to a linear distribution.
The learnt conditional distribution is used to solve for the CERF, the parameter βA, in the second stage.
Clearly, the linear assumption is often excessively stringent. The Kernel Proxy Variable approach is
a two stage non-parametric approach that weakens the linearity assumption by projecting the features
into reproducing kernel Hilbert spaces and perform the two regressions there. The main assumptions of
the method ensure that the problem we are solving is well posed with respect to the hypothesis classes
considered, similar by introducing regularizes and source assumptions as discussed in section 2.3.

First Stage

The first stage aims to learn the conditional dependency between the outcome proxy and the treatment,
its proxy and the measured confounder. In particular, this is done by searching for the conditional mean
embedding of the conditional expectation operator E. Remember that the conditional mean embedding
µW |Z,A,X is an operator between HW and HZAX (definition 2.11). By the isometry between Hilbert
spaces and the space of operators, µW |Z,A,X can also be seen as an element of HW,Z,A,X . As such, we
can evaluate it the conditioning argument:〈

µW |Z,A,X , φ(zi, ai, xi)
〉
HZAX

= µW |zi,ai,xi
∈ HW

. This is better explained in section 2.1. We would then have that:

E [h(W,ai, xi)|zi, ai, xi] =
〈
h, µW |zi,ai,xi

)
〉
HW

(3.25)

If one were to determine such µW |Z,A,X , then by corollary 2.1 it would be possible to determine the
conditional expectation of any function h by simply projecting onto µW |Z,A,X , enabling us to minimize
some risk involving the characterizing conditional moment restriction without having to work with the
conditional expectation operator directly. This first stage is assumed to be well-posed by requiring that
the conditional mean embedding lies within some power space of the chosen reproducing kernel Hilbert
space G ⊂ L2(Z,A,X), similar to the discussion previously held on regularizers.

4If the reproducing kernel kX is continuous and its domain X is Polish then HX is separable [34].
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Assumption 3.5
The conditional mean embedding is well defined within some power space of the covariance operator: there
∃c1 ∈ (0, 1] : Eφ(W ) ∈ Hc1ZAX , where E is the conditional expectation operator.

This assumption guarantees the well posedness of the first stage regression and assumes the regularity of
µW |z,a,x as c1. The rates of convergence are then going to depend on this parameter. In practice, given
a set of samples we solve the ridge regression problem on a first partition of the dataset D1 of size n1:

µ̂W |Z,A,X = argmin
µW |Z,A,X∈HWZAX

1

n1

∑
i∈D1

∥∥φ(wi)− µW |zi,ai,xi

∥∥2
HW

+ λ1
∥∥µW |Z,A,X

∥∥2
HWZAX

(3.26)

Although it might not seem like it, we are trying to learn a matrix of weights. By the properties of RKHS
and seeing the operator by its spectral decomposition, we can rewrite the inner part of above as:

1

n1

∑
i∈D1

∥∥∥k(wi, ·)− 〈µW |Z,A,X , k((zi, ai, xi), ·)
〉
HZ,A,X

∥∥∥2
HW

=
1

n1

∑
i∈D1

∥∥∥∥∥∥k(wi, ·)−
∞∑
j=1

αi,jk(wj , ·) · ⟨k((zi, ai, xi), ·), k((zj , aj , xj), ·)⟩HZ,A,X

∥∥∥∥∥∥
2

HW

=
1

n1

∑
i∈D1

∥∥∥∥∥∥k(wi, ·)−
∞∑
j=1

αi,jk(wj , ·) · k((zi, ai, xi), (zj , aj , xj))

∥∥∥∥∥∥
2

HW

In practice, the inner infinite sum is replaced by the sum over D1. This is because we will search in
the span of the n1 terms k(wi, ·) wi ∈ D1. Thus, for fixed kernel, µW |Z,A,X will be an n1 × n1 matrix
consisting of the above αij . The formulation of the reproducing kernel Hilbert space enables us to have
a closed form solution to equation (3.26) in terms of the kernel matrices containing the basis functions
evaluated at the sampled data.
The extra regularization term adds additional bias to the solution as previously discussed, and must
decay to zero as the data increases. Under the optimal choice of such decay, the estimated conditional
mean embedding is consistent and has a rate given by the following result:

Proposition 3.7 ([36]Stage 1 Consistency)
Let

λ1 ≍
(
ln(2/δ)
√
n1c1

) 2
c1+2

Then, for any z, a, x ∈ Z ×A×X and any δ ∈ (0, 1), the following holds with probability 1− δ:

|µ̂W |z,a,x − µW |z,a,x|H ≤ κ3rC(δ, n1, c1) ≍ (c1 + 2) ·
(
ln(2/δ)
√
n1c1

) c1
c1+2

The proof for this result can be found in the appendix of [36]. It is technical and does not provide any
additional insight, so we choose to omit it.

Stage 2

The second stage regression now attempts to estimate the outcome bridge function by minimizing a risk
functional. In this case, the authors decide to minimize:

R(f) = E
[
(Y − E [f(W,A,X)|Z,A,X])

2
]

(3.27)

If the conditional expectation operator were perfectly known, then it could be used directly to calculate
the second term in the risk. In practice we will plug in the estimate for the conditional mean embedding
µW |Z,A,X obtained in the first stage. However, the following result shows that, in search for the bridge
function, this is a valid risk in the sense that the true bridge function minimizes it.

Proposition 3.8 ([36])
The functional of equation (3.27) is minimized by the true outcome bridge function h0.
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Proof.

R(f) = E
[
(Y − E [f(W,A,X)|Z,A,X])

2
]

≥ E
[
(Y − E [Y |Z,A,X])

2
]

= E
[
(Y − E [h0(W,A,X)|Z,A,X])

2
]

The inequality follows from the fact that the conditional expectation is the function that minimizes the
MSE, i.e. E [Y |Z,A,X] = argmin

g∈L2(Z,A,X)

E
[
(Y − g(Z,A,X))

2
]
. Then, by definition of outcome bridge func-

tion E [h0(W,A,X)|Z,A,X] = E [Y |Z,A,X] we obtain the last equality. Moreover, since the expectation
of a non-negative function (x2) remains non-negative, any function that is not the true bridge function
will obtain a non-zero positive risk.

Applying the law of iterated expectation and Jensen’s inequality, it is clear that this risk is an upper-
bound for the mean violation of the CMR[36] :

EY,Z,A,X
[
(Y − E [f |Z])2

]
= EZ,A,X

[
EY |Z,A,X

[
(Y − E [f |Z])2

]]
≥ EZ,A,X

[
(E [Y |Z,A,X]− E [f |Z,A,X])2

]
The method is restricted to consider the risk over a RKHS class HW,A,X . Moreover, the authors assume
W |Z,A,X completeness over HW,A,X . This makes it such that the distance to the true bridge function
h0 in HW,A,X can be by minimizing the aforementioned risk. Similarly to the first stage, we must impose
some well posedness restrictions, in particular that the solution is contained within some power space of
the range of operator

Assumption 3.6
The minimizer of equation (3.27) belongs to Hc2WAX for some c2 ∈ (0, 1]. Assume the problem to be mildly
ill posed with ν2i ≍ i−b.

To estimate the outcome bridge function, the second stage substitutes the true conditional expectation
operator by the previously learnt conditional mean embedding µ̂W |z,a,x. To avoid bias from over fitting,
the second stage is estimated on a new partition of the dataset D2.

R̂(h) =
∑
i∈D2

(
yi −

〈
h, φ(ai, xi)⊗ µ̂W |zi,ai,xi

〉)2
+ λ2 ∥h∥2HW,A,X

(3.28)

As previously mentioned, one of the main advantages of working in a RKHS is the computational sim-
plicity in achieving a closed form solution. The regularized problem admits the following solution.

Theorem 3.4 ([36])
For any λ2 > 0, there exists a unique solution to the empirical risk minimization problem in equa-
tion (3.28) and it is given by V̂ = (T̂2 + λ2)

−1ĝ with:

T̂2 =
1

n2

n2∑
i=1

[
µW |zi,ai,xi

⊗ φ(ai, xi)
]
⊗
[
µW |zi,ai,xi

⊗ φ(ai, xi)
]

ĝ =
1

n2

n2∑
i=1

[
µW |zi,ai,xi

⊗ φ(ai, xi)
]
yi

The convergence rate of final estimated bridge function is terms of optimal regularization coefficients and
the dimensions of the two partitions used D1,D2.

Theorem 3.5 ([36]Stage 2 Convergence)

Under the previous assumptions, fix ζ > 0 and choose λ1 = n
1

c1+2

1 and n1 = n
ζ(c1+2)

(c1)

2 , then:

1. If ζ ≤ b(c2+2)
b(c2+2 ) choose λ2 = n

− ζ
c2+2

2 . Then:

R̂(ĥ)− R̂(h0) = Op

(
n
− ζ(c2+1)

c2+2

2

)

2. If ζ ≥ b(c2+2)
b(c2+2 ) choose λ2 = n

− b
b(c2+1)+1

2 . Then:

R̂(ĥWAX)− R̂(h0) = Op

(
n
− b(c2+1)

b(c2+1)+1

2

)
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The KPV estimator is then built by projecting the solution of stage 2 onto an estimator for the marginal
mean embedding µWX .

Definition 3.6 (KPV Estimator)
Let Dt be a test set of unobserved samples of size nt. Let ĥ be the estimate of the outcome bridge function
from the KPV two stage approach. The KPV Estimator for the CERF is defined as:

χ̂(a) =
〈
ĥ, µ̂W,X ⊗ φ(a)

〉
HWX

where µ̂WX is an estimator for the marginal mean embedding µ̂WX = 1
nt

∑
i∈Dt φ(wi)⊗ φ(xi)

The authors of [36], then determine the estimation error at test time on Dt. Just as before, the rate
depends on the previous regularities.

Corollary 3.3 ([36]Causal Consistency)
Consider a sample at test time Dt. Let λ1, n1 be as in theorem 3.5 and µ̂XW as in definition 3.6. Then
∀a ∈ A, under the assumptions of theorem 3.5 the KPV estimator is such that:

1. If ζ ≤ b(c2+2)
b(c2+1)+1 then:

|χ̂(a)− χ(a)| ≤ Op
(
n
− 1

2
t + n

− ζ(c2)
c2+2

2

)

2. If ζ ≥ b(c2+2)
b(c2+1)+1 then:

|χ̂(a)− χ(a)| ≤ Op
(
n
− 1

2
t + n

− bc2
b(c2+1)+1

2

)

3.4.2 Proximal Maximum Moment Restriction

As already discussed in section 2.3 the bridge functions are characterized by conditional moment restric-
tions. The Proxy Maximum Moment Restriction(PMMR) exploits this restriction by focusing on RKHSs
to estimate the best bridge function in a one step procedure.
By tower property of expectation and conditional moment restriction of the bridge function, we have that
for all measurable g ∈ L2(Vq):

E [(Y − h0) · g(Vq)] = E

E [Y − h0|Vq]︸ ︷︷ ︸
=0

·g(Vq)

 = 0

If the conditional moment restriction is imposed uniformly over all functions in a certain class G ⊂ L2,
i.e.

∀g ∈ G E [(Y − h(Vh)) g(Vq)] = 0

we refer to it as a maximum moment restriction over G. As shown above, the true bridge function is
such that it respects a maximum moment restriction uniformly over all of L2. Thus, the PMMR method
leverages this by constructing the risk as:

R(h) = sup
g∈G

E [(Y − h(Vh)) g(Vq)]2 (3.29)

Let k : Vq × Vq → R be a reproducing kernel associated to G to be a reproducing kernel Hilbert space,
then the risk can nicely be reformulated in terms of the inner products on G:

Lemma 3.2
Assume that E

[
(Y − h(Vh))2 · k(Vq, Vq))

]
< +∞ and let V ′ be an independent copy of the random variable

V . Then, the risk of equation (3.29) can be reformulated as:

R(h) = E
[
(Y − h(Vh))(Y ′ − h(V ′

h))k(Vq, V
′
q )
]

(3.30)

Proof.
Notice that by requiring E

[
(Y − h(Vh))2 · k(Vq, Vq))

]
< +∞, we have that E

[
(Y − h(Vh))2 · k(Vq, ·))

]
∈
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G. By the reproducing trick on G we have that g(Vq) = ⟨g, k(Vq, ·)⟩ and thus:

R(h) = sup
g∈G

E [(Y − h(Vh)) ⟨g, k(Vq, ·)⟩]2

= sup
g∈G

E [⟨g, (Y − h(Vh)) · k(Vq, ·)⟩]2

= sup
g∈G

(⟨g,E [(Y − h(Vh)) · k(Vq, ·)]⟩)2

= ∥E [(Y − h(Vh)) · k(Vq, ·)]∥2G
where the last equality follows from the fact that the inner product is a projection and, since its element
is withing G by assumption, its supremum must be the projection against itself. Then, by reproducing
property once more:

R(h) = ⟨E [(Y − h(Vh)) · k(Vq, ·)],E [(Y − h(Vh)) · k(Vq, ·)]⟩
= E

[〈
(Y − h(Vh)) · k(Vq, ·), (Y ′ − h(V ′

h)) · k(V ′
q , ·)

〉]
= E

[
(Y − h(Vh)) (Y ′ − h(V ′

h)) k(Vq, V
′
q )
]

The expectation of equation (3.30) can be approximated with the sample average as a V-statistic:

R̂(h) =
1

n2

∑
i,j∈Dn

(yi − h(Vhi))
(
yj − h(Vhj )

)
k(Vqi , Vqj ) (3.31)

Notice that this estimator is actually a biased estimator for R since when i = j the samples used are not
independent. Additionally, unlike in the KPV counterpart, working in a single stage we do not need to
split the data into non-overlapping subsets. The PMMR estimate for the outcome bridge function can
then be determined as a solution to the Tikhonov regularized ridge regression:

ĥλ = argmin
H

R̂V (h) + λ ∥h∥2H (3.32)

Let T : H → G be the operator such that Th = E [h(Vh)kG(Vq, ·)]. The regularized risk and its empirical
counterpart are given by:

Rλ(h) = ∥g − Th∥2G + λ ∥h∥2H R̂λ(h) =
∥∥∥ĝ − T̂ h∥∥∥2

G
+ λ ∥h∥2H

The minimizers of these risks can be found by expanding as:

Rλ(h) = ⟨g − Th, g − Th⟩G + λ ⟨h, h⟩H (∆)

= ⟨g, g⟩G − 2 ⟨g, Th⟩G + ⟨Th, Th⟩G + λ ⟨h, h⟩H
= ∥g∥2G − 2 ⟨T ∗g, h⟩H + ⟨T ∗Th, h⟩H + λ ⟨h, h⟩H
= ∥g∥2G + ⟨h, (T ∗T + λI)h− 2T ∗g⟩H

Differentiating5 in h and setting equal to zero, we find that the minima is obtained at:

∂

∂h
Rλ(h) = (T ∗T + λI)h− 2T ∗g + (T ∗T + λI)h = 0

⇐⇒ hλ = (T ∗T + λI)−1T ∗g = ΓλT
∗g

Assumption 3.7 (PMMR Assumption)
Assume that the true bridge function is h0 ∈ Range(T ∗T β) for β > 0. Moreover, the kernel associated
with G is bounded and integrally strictly positive definite(

∫∫
f(Vq)k(Vq, V

′
q )f(V

′
q )dVq, dV

′
q = 0 ⇐⇒ f =

0).

Note that this assumption removes the ill-posedness of the problem by imposing smoothness requirements
onto the outcome bridge function h0. The problem of determining h such that T ∗Th = h0 is now
automatically well posed because it admits solution by assumption. The smaller the β the more irregular
h0 and also the solution. Similarly to the discussion on power spaces (section 2.1), for β → 0 the
smoothness requirements diminish as more and more functions are included in T ∗T β , limiting to L2.
Although β > 0, when solving a regularized problem with Tikhonov regularization, the benefit of having
regularities larger than 2 is lost due to the saturation of the regularization (example 2.13).

5Frechet derivative
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Theorem 3.6 ([36]Convergence rate)
Let ĥλ be the solution to equation (3.32). If λ = n−

1
2max(

2
β+2 ,

1
2 ) then,∥∥∥ĥλ − h∥∥∥

H
= Op

(
n−min(

β
2β+4 ,

1
4 )
)

We give a concise proof of the result. This to show how the risk must be split into its empirical and
population counterpart. Moreover, it is interesting to observe how the Tikhonov regularization saturation
affects the rate of convergence.

Proof. ∥∥∥ĥλ − h0∥∥∥ ≤ ∥∥∥ĥλ − hλ∥∥∥︸ ︷︷ ︸
A

+ ∥hλ − h0∥︸ ︷︷ ︸
B

Let us focus on A. By ∆ we have that:

ĥλ − hλ = Γ̂λT̂
∗ĝ − ΓλT

∗g

= Γ̂λT̂
∗
(
ĝ − T̂ h0

)
+ Γ̂λT̂

∗T̂ h0 − ΓλT
∗Th0

= Γ̂λT̂
∗
(
ĝ − T̂ h0

)
+ Γ̂λ

(
T̂ ∗T̂ − T ∗T

)
h0 −

(
Γλ − Γ̂λ

)
T ∗Th0

= Γ̂λT̂
∗
(
ĝ − T̂ h0

)
+ Γ̂λ

(
T̂ ∗T̂ − T ∗T

)
h0 + Γ̂λ

(
T̂ ∗T̂ − T ∗T

)
ΓλT

∗Th0︸ ︷︷ ︸
=hλ

= Γ̂λT̂
∗
(
ĝ − T̂ h0

)
+ Γ̂λ

(
T̂ ∗T̂ − T ∗T

)
(h0 − hλ)

Thus it follows that:

A ≤
∥∥∥Γ̂λ∥∥∥(∥∥∥T̂ ∗ĝ − T̂ ∗T̂ h0

∥∥∥+ ∥∥∥T̂ ∗T̂ − T ∗T
∥∥∥ ∥h0 − hλ∥)

And then: ∥∥∥ĥλ − h0∥∥∥ ≤ ∥∥∥Γ̂λ∥∥∥∥∥∥T̂ ∗ĝ − T̂ ∗T̂ h0

∥∥∥+ (∥∥∥Γ̂λ∥∥∥∥∥∥T̂ ∗T̂ − T ∗T
∥∥∥+ 1

)
∥h0 − hλ∥

Under proposition 3.11 of [9] and applying Bennett’s inequality [36], we have:∥∥∥Γ̂λ∥∥∥ = O
(
λ−1

)∥∥∥T̂ ∗ĝ − T̂ ∗T̂ h0

∥∥∥ = O(n−
1
2 )∥∥∥T̂ ∗T̂ − T ∗T

∥∥∥ = O(n−
1
2 )

∥hλ − h0∥ = O(λ
1
2 min(β,2))

For this to converge we must have that ∥hλ−h0∥
λn

1
2
→ 0. Thus we -must impose that λn

1
2 ≥ λ

1
2 min(β,2).

This is satisfied by choosing the regularization parameter λ ≥ n−max( 1
β+2 ,

1
4 ). The optimal regularization

parameter is found when it is equal to the RHS of the above inequality, which then gives an optimal rate
(in λ) of:

n−
1
2+max( 1

β+2 ,
1
4 ) = nmax(− β

2β+4 ,−
1
4 ) = n−min( β

2β+4 ,
1
4 )

The best case scenario is the rate of n−
1
4 for the bridge function to converge, although the norm is

stronger than the L2 norm. Once the PMMR estimate for the outcome bridge function is found, it can
be used to build the PMMR estimator for the CERF.

Definition 3.7 (PMMR Estimator)
Let Dt be a test set of unobserved samples of size nt. Let ĥ be the estimated solution from the previous
procedure. The PMMR Estimator for the CERF is defined as:

χ̂(a) =
1

nt

∑
Dt

ĥ(wi, a, xi) =
〈
ĥ, µ̂WX ⊗ φ(a)

〉
HWX

where µ̂WX is an estimator for the marginal mean embedding µ̂WX = 1
nt

∑
i∈Dt φ(wi)⊗ φ(xi)
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Since we are projecting against an estimated marginal mean embedding, there is a result similar to the
KPV for the PMMR estimator.

Corollary 3.4 ([36])
Consider a sample at test time Dt of size nt. Let ĥ be the estimator of definition 3.7. Then ∀a ∈ A,
under the assumptions of theorem 3.6 and assumption 3.9 the PMMR estimator is such that:

|χ̂(a)− χ(a)| ≤ Op
(
n
− 1

2
t + n−min( β

2β+4 ,
1
4 )
)

Proof.

|χ̂(a)− χ(a)| = |
〈
ĥ, µ̂WX ⊗ φ(a)

〉
− ⟨h0, µWX ⊗ φ(a)⟩ |

= |
〈
ĥ, µ̂WX ⊗ φ(a)

〉
− ⟨h0, µWX ⊗ φ(a)⟩ ±

〈
ĥ, µWX ⊗ φ(a)

〉
|

= |
〈
ĥ, µ̂WX ⊗ φ(a)

〉
− ⟨h0, µWX ⊗ φ(a)⟩ ±

〈
ĥ, µWX ⊗ φ(a)

〉
|

= |
〈
ĥ, µ̂WX − µWX ⊗ φ(a)

〉
−
〈
h0 − ĥ, µWX ⊗ φ(a)

〉
|

≤
∥∥∥ĥ∥∥∥

H
∥φ(a)∥H ∥µ̂WX − µWX∥H︸ ︷︷ ︸

A

+
∥∥∥ĥ− h0∥∥∥

H
∥φ(a)∥H ∥µWX∥H︸ ︷︷ ︸

B

A converges because ĥ ∈ H by construction, and the empirical mean embedding converges to the true
mean embedding (proposition 2.5). The latter controls the rate of convergence with O(n

− 1
2

t ).
B converges because assumption 3.7 guarantees that ∥µWX∥H < +∞ (lemma 2.2).

The rate of convergence is once more dominated by the the rate of convergence of the method to the
bridge function. Notice that, just like KPV, this point-wise norm follows from convergence in H and is
stronger than a L2 norm convergence result.

3.5 Flexible Approaches

The authors of [69, 30] develop methods similar to the ones presented in section 3.4 but use flexible
parametric models to solve the minimization problems. The overall trend in applied mathematics is that
flexible parametric models is a synonym of Neural Networks, in fact the previously mentioned papers are
developed to use Neural Networks.

3.5.1 Neural Networks

In the past twenty years, Neural Networks have been at the center of attention for their flexibility, and
possibly their interesting name. Neural networks are essentially a linear combination of many simple
partially linear or non linear functions. For a fixed architecture, the weights of these linear combinations
are the parameters of the model. A Neural Network with N layers and input x of dimension can be
written as:

σN (ωN · σN−1 (. . . (σ2 (ωi · x+ b1) + b2) . . . ) + bN−1)

The functions σi are also known as activation functions and are responsible for adding the non-linearity
to the system. ωi and bi are respectively the weights and bias used in the linear combination of the
nonlinear terms.
The most commonly used activation functions are the ReLU σ(xi) = max(xi, 0), a broken linear function
and the soft-max σ(x)i =

exi∑
i=1 e

xi
, a smooth exponential function. The idea behind this machinery is

to repeatedly perform a linear combination of the previous layer, and subsequently apply the non-linear
activation functions until the outcome is reached. Then, using a loss function that compares the predicted
outcome to the true outcome of a test set, adjust the weights and biases to minimize the loss through
back propagation. The hope is that after enough training has occurred, the optimal weights have been
determined to capture the non-linearity of the underlying function.
A common issue with neural networks is achieving a local minima of the loss function. To overcome this,
the most commonly used solution is to introduce regularization to penalize larger solutions, solutions
with large weights.



60

Inputs

Figure 3.7: Graphical representation of Neural network with 3 inputs, 2 hidden layers and 1 output.

If neural networks are so flexible, why can one not be implemented to estimate the bridge function? The
problem with this is that the loss is constructed on the observable data. In practice, neural networks usu-
ally minimize the mean squared error which is not the correct loss due to the presence of the unmeasured
confounder U. The next methods adopt them to solve the problem of bridge functions.

3.5.2 Deep Feature Proxy Variable
The Deep Feature Proxy Variable approach presented in [69] is the flexible analogue of the KPV[36]
method introduced earlier. The latter assumes the RKHS to be an infinite dimensional space associated
with a fixed kernel. The canonical feature maps are then derived from the eigenvalues of the Kernel
integral operator. Any function therein, in particular the conditional mean embedding, is uniquely
identified by the weights of the infinite linear combination of aforementioned basis. The downside of this
approach is that the having a fixed kernel also fixes the eigenfunctions and consequently the working
Hilbert space H. Alternatively, one could decide to learn adaptive basis functions from the data. To do
this, we must consider a finite number of basis functions that can be parameterized by some flexible models
to learn the optimal configurations in a data-dependent manner. In such a way, the space generated from
the linear combination of the latter can in some way be seen as optimal within the class of parametric
models.
For ease of exposition we omit the measured confounders X. We are interested in simultaneously learning
the feature maps φNA1

, φNZ
, φNA2

, φNW
and the optimal weights ωh, ωµ. Each feature map is parameterized

as a Neural Net, and thus we are interested in learning the optimal weight and biases of the individual
network, which we denote

NA1
, NA2

, NZ , NW

Similarly to the previously discussed methods, the data is split into two non overlapping subsets D1,D2

of dimensions n1, n2 respectively to ensure that no over-fitting biases are induced. Moreover, a W |Z,A
assumption ensures that the ill-posedness measure is finite and the risk ensures minimization in H.

Stage 1

The regularized empirical risk of equation (3.26) now becomes the loss for the neural net:

L̂1(ωµ, NA1
, NZ) =

1

n1

∑
i∈D1

∥∥φNW
(wi)− ωµ

[
φNA1

(ai)⊗ φNZ
(zi)
]∥∥2 + λ1 ∥ωµ∥2 (3.33)

This loss can be formulated in a more adversarial manner as:

min
G
L̂1(g) = min

G

1

n1

∑
i∈D1

∥φNW
(wi)− g(ai, zi)∥2 + λ1 ∥ωµ∥2

where the adversarial is specified to be the set of all functions that can be constructed from the outer
product of the two Neural Net features G = {g : ω

(
φNA1

(a)⊗ φNZ
(z)
)
}. Similarly, let HNW

be the
space associated to the feature map φNW

. Both of these spaces are the spaces that can be reached as
linear combinations of the Neural Network generated feature maps. The conditional mean embedding,
even though it only acts as one since it is not associated to a fixed space, is estimated to be µ̂W |z,a =

ω̂µ
(
φ̂NA1

(a)⊗ φ̂NZ
(z)
)

where ω̂µ are the optimum weights(matrix as discussed in KPV) and φ̂NA1
, φ̂NZ

are
the trained neural nets.

Assumption 3.8 (DFPV Assumptions)
The outcome variables is assumed to be bounded, i.e. |Y | ≤ M . The adversarial function class G is
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assumed to contain only bounded functions in both a, z, i.e. ∥g(a, z)∥∞ ≤ 1 ∀g ∈ G. The feature map
φNW

is also assumed to be bounded and ∀a ∈ A∀v : ∥v∥ ≤ 1 ωµ
[
φNA1

⊗ v
]
≤ 1

Lemma 3.3 ([69] Stage 1 Consistency)
Let µ̂W |Z,A be the solution to the stage one minimization procedure. Under assumption 3.8 and given D1

of size n1 then ∀f ∈ HNW
⊗HNA1

, δ > 0, with at least probability 1− 2δ we have:

∥∥〈f, µ̂W |Z,A
〉
− E [f(W,A)|Z,A]

∥∥2
L2(A,Z)

≤M

√√√√√
κ1 + 4R̂(H1) + 24

√
log 2/δ

2n1


where H1 =

{
W ×A×Z 7→ ∥φNW

(w)− g(a, z)∥2 ∀g ∈ G ∀φNW
∈ HNW

}
, R̂ is the empirical Rademacher

complexity of H1 on D1, and κ1 = max
φNW

min
G

E
[
∥φNW

(W )− g(Z,A)∥2
]
.

It is not very clear what the space of functions H1 is, this makes it even more difficult to decide if the
Radamacher complexities indeed vanish. Moreover, notice that it is not possible to optimize the feature
map φNW

since there is no observable loss that can inform us of its performance.

Stage 2

The second stage stage loss is identical to the one of the KPV method from equation (3.28) with the
fixed feature maps replaced by the neural network parameterized feature maps.

L̂2(ωh, NA2 , NW ) =
1

n2

∑
i∈D2

(
yi − ωh

(
φNA2

(ai)⊗ µ̂W |zi,ai
))2

+ λ2 ∥ωh∥2 (3.34)

Plugging in the optimizers of the above loss, the estimated bridge function is then constructed as:

ĥ(a,w) = ω̂h
(
φ̂NA1

(a)⊗ φ̂NW
(w)
)

(3.35)

Using this in combination with the minimizer determined in the first stage, the entire method is shown
to be consistent if the Rademacher complexities vanish.

Lemma 3.4 ([69] Bridge function consistency)
Let D1,D2 be training sets of size n1, n2 respectively. Let µ̂W |ZA be the solution first stage on D1 and ĥ
be the DFPV bridge estimate of equation (3.35) constructed using the weights of stage 2 on D2. Let κ1
be as in lemma 3.3 and κ2 = min

H
∥E [h(W,A)|Z,A]− E [h0(W,A)|Z,A]∥L2(Z,A). Under assumption 3.8

for any δ > 0, with at least probability 1− 2δ we have:

∥⟨µ̂W |ZA,ĥ⟩−E[h0(W,A)|Z,A]∥
L2(A,Z)

≤κ2+

√
M

(
κ1+4R̂(H1)+24

√
log 2/δ
2n1

)
+

√(
4R̂(H2)+24M2

√
log 2/δ
2n2

)

where H1 is as in lemma 3.3, H2 =
{
Y ×A×Z 7→ (y − ω(φNA2

(a)⊗ g(a, z)))2 ∀g ∈ G, ∀ω
}

and R̂ is
the empirical Rademacher complexity of the respective hypothesis classes.

The dependency of the two losses on the weights ωh, ωµ makes it difficult to use these losses to train the
hyper parameters of the neural networks with gradient descent techniques. Remember from section 3.4.1
that the minimization problem above has a closed form solution if the feature were known. At each itera-
tion, the optimal weights are determined for given feature maps. As such, the losses can be reformulated
only in terms of the network parameters NA1 , NA2 , NZ , NW enabling us to train the networks.

Assumption 3.9 ([69])
Let fW (w), fW |A|(w|a) be the density distributions of PW and PW |A. Assume that:

ηa =

∥∥∥∥ fW (W )

fW |A(W |a)

∥∥∥∥2
P (W |A=a)

< +∞

Under this additional assumption, if the Rademacher complexities of the function classes vanish, it can
be shown that the DFPV estimator is consistent.
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Definition 3.8 (DFPV Estimator)
Let Dt be a test set of unobserved samples of size nt. Let ĥ be the bridge function found through the
previous two stage estimation procedure. The DFPV Estimator is defined as:

χ̂(a) =
1

nt

∑
i∈Dt

ĥ(wi, a)

Theorem 3.7 ([69] Causal Consistency)
Let χ̂ be the DFPV estimator, and η = supa∈Aηa from assumption 3.9, then with probability at least
1− 7δ:

∥χ̂− χ∥L2(A) ≤

√
2 log 2/δ

nt
+ ητB1

where B1 is the bound from lemma 3.4 and τ is the measure of ill-posedness.

3.5.3 Neural Maximum Moment Restriction

NMMR is a one stage approach that can be seen as the neural network equivalent of the PMMR. Rather
than determining h within a RKHS, the function is parameterized as a neural network and the risk in
equation (3.27) is used as a loss to train it. Additionally, the authors consider an unbiased estimator of
equation (3.27) in the U-statistic:

R̂U (h) =
1

n(n− 1)

n∑
i ̸=j

(yi − h(Vhi
)(yj − h(Vhj

)k(Vhi
, Vhj

) (3.36)

The difference with the V-statistic previously used is that the when i = j the terms are not considered
thus removing the bias. Moreover, this is the minimum variance unbiased estimator of the risk [30]. As
we shall also notice in our numerical experiments in chapter 6, the performance of the U-statistic is worse
than when employing the V-statistic.
The empirical loss function now introduces Λ : H×Θh → [0,Mλ], a regularizer that penalizes the network
size, the size of the weights and biases:

L̂ = (Y − h(Vh))TK(Y − h(Vh)) + Λ(h, θh) (3.37)

Kij = k(Vhi
, Vhj

) is the kernel matrix and the diagonal is included or excluded depending on whether the
U or V statistic risk is used. Similarly to the DFPV method, the authors forego any source or regularity
assumptions and directly assume that the procedure is sufficient to recover the bridge function. Moreover
it is left in vague term depending on the Rademacher complexities.

Theorem 3.8 ([30]NMMR consistency)
Let h̃k be the minimizer of the regularized population risk Rk(h) and ĥk,U,λ,n be the minimizer of the
empirical regularized risk R̂k,U,λ,n(h) for h ∈ H. Let k kernel associated with G ⊂ L2(Z,A,X) bounded
by Mk, and let h0 be the true bridge function. Also let,

d2k (h, h
′) = E [(h (Vh)− h′ (Vh)) (h (V ′

h)− h′ (V ′
h))

× k
(
(Vq) ,

(
V ′
q

))]
Then, d2k (h0, h) = Rk(h) and, with probability at least 1− δ,

d2k

(
h0, ĥk,U,λ,n

)
≤ d2k

(
h0, h̃k

)
+ λMλ + 8M (Rn−1 (F) +Rn (F))

+ 16M2Mk

(
2

n
log

2

δ

) 1
2

+ 10 (2 log 2)
1
2 M2Mkn

− 1
2

Further, if k is Integral Strictly Positive Definite, then dk is a metric on L2
AXZ and,

if the right hand side of the inequality goes to zero as n goes to infinity

dk

(
E [h0|A,X,Z]− E

[
ĥk,λ,n

∣∣∣A,X,Z]) P−→ 0 so E
[
ĥk,λ,n

∣∣∣A,X,Z] P−→ E [h0|A,X,Z] in dk.

F ′ =
{
f

∣∣ ∃h ∈ H,∃Vq ∈ Z ×A×X , ∀Vq ∈ Z ×A×X : f
(
w′, V ′

q

)
= h

(
V ′
h

)
k
((
V ′
q

)
, (Vq)

)}
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The proof is long and not particularly insightful and is therefore omitted completely. The result mainly
follows from concentration inequalities and symmetrization. An almost identical result can be shown
when using the regularized V-statistic risk.
This bound has a lot of terms to consider. Foregoing the regularization term λ and the Rademacher
complexities, the controlling term is

√
n. Thus, the best rate achievable by the method is O(n−

1
4 ).

Moreover, the theorem is stated with the vague requirement of ’if the RHS of the inequality goes to zero’.
Since the first term d2k

(
h0, h̃k

)
must also vanish, the authors suggest increasing the network’s complexity

with the number(in practice increasing the number of layers and nodes). This has to be done slowly enough
that the Rademacher complexities do not increase. Moreover, the authors do not state any convergence
results for the Rademacher complexities, a discussion will follow at the end of the chapter, but state that
they expect these terms to vanish with sample size. A similar discussion is held for the regularization
coefficient which is expected to decay to send the bias term to zero without compromising the convergence
of the complexities. This discussion is purely qualitative as there are no proven results.
After training, the NMMR estimator is constructed on a held out dataset as the sample average of the
outcome of the network.

Definition 3.9 (NMMR Estmimator)
Let Dt be a test set of unobserved samples of size nt. Let ĥ be the neural network trained on Dn. The
NMMR Estimator is constructed as:

χ̂(a) =
1

nt

∑
Dt

ĥ(wi, a, xi)

Although the authors of the paper do not prove consistency of the estimator so constructed, it can be
shown in a similar manner as the DFPV estimator.

Note

While both neural network based methods prove theoretical guarantees for convergence of the bridge
functions, and in practice represent the state of the art, the assumption that the Rademacher complexities
of the relative function classes vanish is in no way justified. Although there exist certain results on the
complexities of fixed networks vanishing at a rate

√
n, they are for simple architectures and losses.

Moreover, the authors want various terms to go to zero whilst increasing network complexity[30] which
complicates the problem even further. The main difficulty in determining rates for these Rademacher
complexities is also the structure of the function classes considered, especially in the outer product of
feature maps of two separate neural nets φNA1

(a)⊗φNZ
(z). The authors of both papers recognize this gap

in the literature [68, 31].
Moreover, the methods and the associated algorithms do not guarantee that the optimization procedures
recover the correct parameters. Rather, both methods assume that it is indeed sufficient to do so. On the
other hand neural networks are more salable than matrix inversion since the training occurs in smaller
batches of the entire dataset. Overall, the theoretical guarantees are not as strong as the other methods
previously introduced. Nonetheless, this does not discredit their effectiveness in the practical setting.
Both PMMR and KPV quickly become computationally impractical due to the need to invert large
matrices. Differently, their neural network approaches are much more scalable due to the batch learning
aspect of Neural Nets.

A discussion on two stage methods

In [38] the authors of discuss the general problems with two stage regressions. It is no wonder that in
econometrics, the two stage regression is often referred to as the forbidden regression when assumption 3.1
does not hold[66, 38]. The first critique raised is the incompatibility with a general principle by Vapnik[61]:

When solving a problem of interest, do not solve a more general problem as an intermediate step.

With the two stage approach, we attempt to learn the more general dependency of W |Z,A to then
solve for the true dependency of Y |Z,A. The second problem is that while both stage regression are
asymptotically valid, the second stage requires unbiased estimators of the conditional expectation. By
determining the coefficients or parameters of the first regression, thus effectively stopping it at a finite
number of data points, the estimator might present some residual bias. This is particularly true in
problems where the amount of data is relatively small. On the other hand, two stage methods have
the advantage that they can use finite amount of data more efficiently. This is because the identifying
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the conditional expectation, or the coefficients in the first stage of P2SLS, only requires (W,Z,A,X).
Similarly, the second stage only requires (Y,Z,A,X). Thus, the partitions D1,D2 do not have to contain
all observation for the two stage methods to be successfully applied. If one has an incomplete dataset
with missing data, assuming the data is missing at random, such approach enables use of all available
data. It is important to note that the data must be missing at random, otherwise the violation of i.i.d.
occurs and the learnt conditional distribution is not valid for the second stage.
When observing the numerical results (chapter 6), the one stage approaches seem to fare much better
than their two stage counterparts.
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Linear Extensions

In this chapter, we introduce some new approaches to estimate the CERF. The first approach introduces
higher order polynomial terms in the two stage regression of section 3.1.1. This enables correct estimation
of causal parameters of structural models with higher order treatment and higher order confounding as
long as all the variables, except the outcome, are Gaussian. The second approach, ProxySplines, is purely
practical. It is born from the need to estimate the the range of the best treatment value rather than the
exact CERF.

4.1 Errors of P2SLS

We are interested in determining standard errors of the P2SLS method. When applying the P2SLS
method, the common consensus is to use bootstrap to estimate the standard errors [53]. We give a
possibly new characterization of the standard errors of the simple P2SLS regression by combining the
coefficient adjustment, sample splitting and the Delta Method.

Theorem 4.1 (Delta Method)
If there exists B̂n a sequence of random variable such that:

√
n
(
B̂n −B0

)
D−→ N (0,Σ)

then, for any continuously differentiable function f we have that:

√
n
(
f(B̂n)− f(B0)

)
D−→ N (0,∇f(B0)

TΣ∇f(B0))

Under assumption 3.1, the OLS solutions of the coefficients of linear regression are sample means, and by
the central limit theorem the asymptotic distribution of the regression parameters is a centered Gaussian.
Remember now that the true treatment coefficient βA of assumption 3.1 can be found with the correction
method as:

βA = θAY −
γAW
γZW

θZY (4.1)

Setting B0 equal to the true structural coefficients of the parametric model in assumption 3.1, and B̂
to the estimated regression coefficients, we can apply the delta method to derive standard errors for the
CERF coefficients. The main issue is that since we are performing two separate regressions, no complete
covariance matrix is available to us. Nonetheless, under the assumption of i.i.d. samples and using sample
splitting to perform each OLS regression we are able to guarantee that the coefficients are independent.

Like this the complete covariance matrix can be built as the block diagonal matrix Σ =

[
Σ1 0
0 Σ2

]
with

Σ1,Σ2 being the covariance of the first and second stage regressions.

Theorem 4.2 (Standard Errors for P2SLS)
Under assumption 3.1 the P2SLS estimator for the ATE is such that:

√
n
(
β̂A − βA

)
D−→ N (0, σ̃)

where σ̃ = ∇
(
θAY − γAW

γZW
θZY

)T
Σ∇

(
θAY − γAW

γZW
θZY

)
and Σ is the complete covariance matrix previ-

ously defined.
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Proof. We are interested in applying theorem 4.1 to the function f(B0) = θAY − γAW

γZW
θZY . As already dis-

cussed, the OLS regressions converge do their true parameters by the CLT. Taking the partial derivatives
of f we obtain:

∂

∂θAY
f(B0) = 1

∂

∂θZY
f(B0) = −

γAW
γZW

∂

∂γAW
f(B0) = −

θZY
γZW

∂

∂γZW
f(B0) = −

θZY γAW
γ2ZW

∇f(B0) =
[
1,−γAW

γZW
, θZY

γZW
,− θZY γAW

γ2
ZW

]
As previously discussed, using sample splitting we obtain that the

coefficients of the two regressions are independent and the covariance matrix is the block matrix:

Σ =


σθA ρθ 0 0
ρθ σθZ 0 0
0 0 σγA ργ
0 0 ργ σγZ


Following the computation in lemma A.1

σ2 = σ2
θA − 2

γAW
γZW

ρθ + (
γAW
γZW

)2σ2
θZ + (

θZY
γZW

)2σγA − 2
θ2ZY γAW
γ3ZW

ργ + (
θZY γAW
γ2ZW

)2σγZ (4.2)

This result suggests that we can estimate the standard errors of the P2SLS estimator by replacing
the covariance matrix with the sample covariance matrix and sample coefficients. As guaranteed by
assumption 3.1, the coefficient γZW and its estimate must be bounded away from zero. As soon as this
coefficient nears zero, the estimates will deteriorate and the variance even more so due to the higher order
term in the denominator.

4.2 Higher Order Proximal 2SLS

The proximal two stage least squares approach discussed in section 3.1.1 might be too simple to capture
the true CERF in real-world applications since rarely responses of natural processes are linear. For
example, in the agricultural setting, fertilizers tend to increase crop yield but can also deteriorate soil
quality by influencing various quantities such as ph-level and and soil microbiome [70, 24]. Thus, after
a certain threshold the fertilizer starts to have a negative effect on crop yield. This might suggest
an upside parabolic CERF for quantity of fertilizer(treatment) and crop yield(outcome). To account
for such situations, we introduce Higher Order Proximal 2SLS. This method introduces higher order
estimation terms in the regression equations to account for possible non-linearities both in treatment and
confounding. Note that this can be seen as a kernel regression with polynomial type kernel. Although
some works implement ’quadratic feature’ P2SLS in their numerical experiments section, it is unclear if
this is what they do.

Higher Order Treatment with Linear Confounding

Rather than requiring assumption 3.1, which constrains the models to be completely linear, suppose that
the effect of treatment on outcome is of higher order up to K, while both the first stage and U |ZA remain
linear:

Y = β0Y +

K∑
1

βAYi
Ai + βUYi

U + ϵY

W = β0W + βUWU + ϵW ϵ· ∼ N (0, σ2) independent of Y,A,W,Z,U
U = ν0U + νAUA+ νZUZ + ϵU

Then, the first stage coefficients can easily be estimated with ordinary least squares just as in the regular
P2SLS by fitting the following first stage regression on the observed A,Z:

W ∼ β0W + βUW (ν0U + νAUA+ νZUZ + ϵU )

E [W |Z,A] = γ0W + γAWA+ γZWZ
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Using the correction framework introduced in section 3.1.1, this shows exactly what underlying parameters
each δ coefficient is estimating

γ0W = β0W + βUW ν0U γAW = βUW νAU γZW = βUW νZU (4.3)

Just as before, we fit an OLS regression containing the higher order terms for A in the second stage:

Y = β0Y +

K∑
1

βAYi
Ai + βUY (ν0U + νAUA+ νZUZ + ϵU ) + ϵY

E [Y |ZA] = θ0 +

K∑
1

θAi
Ai + θZY Z

Since the unmeasured confounder appears only at the first order, it only has a first order bias of the
treatment on the outcome, in particular the coefficients identify:

θ0 = β0Y + βUY ν0U θAY1
= βAY1

+ βUY νAU θZY = βUY νZU θAi
= βAYi

∀i ∈ {2, . . .K}
(4.4)

Similarly to the first order linear case, the coefficient βUY can be recovered by adjusting the coefficients
of equation (4.4). Then taking the ratio like before we can recover the true parameter of interest βAY1

=
θAY1

− θZY

γZW
γAW . From equation (4.4) it can be noticed that of all recovered coefficients for A, the first

order is the only one biased by U. Thus, we wonder what would happen if the measured confounding in
U is of higher order.

Higher Order Treatment and Confounding
Now we want to include higher order terms for both treatment and unmeasured confounder U. Suppose
that the effect of treatment on outcome is of order up to K, whereas of the unmeasured confounder U is
also up to order K. The assumption that U |ZA is linear remains the same:

Y = β0Y +

K∑
1

βAYiA
i +

K∑
βUYiU

i + ϵY

W = β0W + βUWU + ϵW ϵ· ∼ N (0, σ2) independent of Y,A,W,Z,U
U = ν0U + νAUA+ νZUZ + ϵU

The CERF is given to us by the adjustment formula and remains a polynomial of order K:

E [Y a] = E [E [Y |A = a, U ]]

= E

[
β0Y +

K∑
1

βAYi
ai +

K∑
βUYi

U i

]

= β0Y +

K∑
1

βAYi
ai +

K∑
βUYi

E
[
U i
]

= ˜β0Y +

K∑
1

βAYia
i

The first stage regression W |Z,A does not change and returns coefficients that have identifications given
in equation (4.3). To now include all the unmeasured confounding in the second stage, the higher order
terms and their cross products the since binomial expansion of each Uk = (ν0U + νAUA + νZUZ + ϵ)k

can be written as:

Uk =

k∑
j

(
k

j

)
(ν0U + ϵ)

k−j
(νAUA+ νZUZ)

j

Noticing that this is a ’symmetric’ problem for the terms νiAUA
i and νiZUZ

i so they will have the same
coefficients

(
k
i

)
(ν0U + ϵ)

k−i. This means that taking the ratio between them will cancel out the terms and

result in being equal to the usual adjustment ratio found in the first stage regression:
(
νAU

νZU

)i
=
(
γAW

γZW

)i
.

Thus the bias term of each coefficient can be adjusted by using this ratio.
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Example 4.1
For second order expansion:

U2 =ν2AUA
2 + 2νAUAν0U + 2νAUAϵU + 2νAUAνZUZ + ν20U + 2ν0U ϵU + ν2ZUZ

2 + 2νZUν0UZ + 2νZUZϵU + ϵ2U

which, in conditional expectation would become:

E
[
U2|ZA

]
= ν2AUA

2 + 2νAUAν0U + 2νAUAE [ϵU ] + 2νAUAνZUZ

+ ν20U + 2ν0UE [ϵU ] + ν2ZUZ
2 + 2νZUν0UZ + 2νZUZE [ϵU ] + E

[
ϵ2U
]

= ν2AUA
2 + 2νAUAν0U + 2νAUAνZUZ + ν20U + ν2ZUZ

2 + 2νZUν0UZ + σ2

Thus, if the effect of the unmeasured confounder is of order up to two, one would fit the following
regression:

E [Y |ZA] = θ0 + θAY1
A+ θAY2

A2 + θZY1
Z + θZY2

Z2 + θA1Z1
AZ

The coefficients will have the following bias:

θ0 = β0Y + βUY1ν0U + βUY2

(
ν20U + σ2

)
θAY1 = βAY1 + βUY1γA + 2βUY2γAν0U = βAY1 + νAU (βUY1 + 2βUY2ν0U ) (4.5)

θAY2
= βAY2

+ βUY2

(
γ2A
)

(4.6)
θZY1

= βUY1
γZ + 2βUY2

γZν0U = νZU (βUY1
+ 2βUY2

ν0U ) (4.7)

θZY2
= βUY2

(
γ2Z
)

(4.8)

The first stage regression remains the same and thus, the coefficients remain the same as in the classic
P2SLS. This implies that the ratio γAW

γZW
= νAU

νZU
. For the first order bias, we notice from equation (4.7)

that θZY1

νZU
= (βUY1

+ 2βUY2
ν0U ). Replacing this into equation (4.5)

θAY1 = βAY1 +
νAU
νZU

θZ1 = βAY1 +
γAW
γZW

θZ1

To remove the second order bias we do the same thing:

θAY2 = βAY2 +
θZY2

γ2Z
γ2A = βAY2 +

(
γAW
γZW

)2

θZY2

Notice, the fact that the variance from ϵU deos not bother us and will be included in the estimate of the
intercept, which is not of primary interest to us.

Example 4.2
For third order expansion:

U3 =ν3AUA
3 + 3ν2AUA

2ν0U + 3ν2AUA
2ϵU + 3ν2AUA

2νZUZ + 3νAUAν
2
0U

+ 6νAUAν0U ϵU + 3νAUAϵ
2
U + 3νAUAν

2
ZUZ

2 + 6νAUAνZUν0UZ

+ 6νAUAνZUZϵU + ν30U + 3ν20U ϵU + 3ν0U ϵ
2
U + ν3ZUZ

3

+ 3ν2ZUν0UZ
2 + 3ν2ZUZ

2ϵU + 3νZUν
2
0UZ + 6νZUν0UZϵU + 3νZUZϵ

2
U + ϵ3U

Denote the third moment of the error as E
[
ϵ3U
]
= κ In expectation:

E
[
U3|Z,A

]
= ν3AUA

3 + 3ν2AUA
2ν0U ++3νAUAν

2
0U + 3νAUAσ

2+

+ 6νAUAνZUν0UZ + 3νAUAν
2
ZUZ

2 + 3ν2AUA
2νZUZ

+ ν3ZUZ
3 + 3ν2ZUν0UZ

2 + 3νZUν
2
0UZ + 3νZUZσ

2

+ ν30U + 3ν0Uσ
2 + κ

In this case one would fit the second stage regression:

E [Y |ZA] = θ0+θAY1
A+θAY2

A2+θAY3
A3+θZY1

Z+θZY2
Z2+θZY3

Z3++θA1Z1
AZ++θA2Z1

A2Z++θA1Z2
AZ2
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The bias generated from the higher order terms will be the previously found plus the new terms:

θ0 = β0Y + βUY1ν0U + βUY2

(
ν20U + σ2

)
+ βUY3

(
ν30U + 3ν0Uσ

2 + κ
)

θAY1
= βAY1

+ βUY1
γA + βUY2

γAν0U + βUY3
(3γAν

2
0U

+ 3νAUσ
2) = βAY1 + νAU

(
βUY1 + 2βUY2ν0U + 3βUY3(ν

2
0U + σ2)

)
(4.9)

θZY1
= βUY1

γZ + βUY2
γZν0U + βUY3

(3γZν
2
0U + 3νZUσ

2)

= νZU
(
βUY1

+ 2βUY2
ν0U + 3βUY3

(ν20U + σ2)
)

(4.10)

θAY2 = βAY2 + βUY2γ
2
A + 3βUY3ν

2
AUν0U = βAY2

+ ν2AU (βUY2
+ 3βUY3

ν0U ) (4.11)

θZY2
= βUY2

γ2Z + 3βUY3
ν2ZUν0U = ν2ZU (βUY2

+ 3βUY3
ν0U )

θAY3 = βAY3 + βUY3γ
3
A (4.12)

θZY3
= βUY3

γ3Z

Taking the same approach as before the ratio helps us correct the unmeasured confounder and unbias the
estimates:

βAY1 = θAY1 − θAY1

νAU
νZU

βAY2
= θAY2

− θZY2

(
νAU
νZU

)2

= βAY2
− θZY2

(
γAW
γZW

)2

βAY3
= θAY3

− θZY3

(
νAU
νZU

)3

= θAY3
− θZY3

(
γAW
γZW

)3

Once again, the fact that the second or third moment of the error do not disappear does not influence
estimation of other parameters.

Note that if the order A is assumed to be greater than that of the unmeasured confounder, by the same
reasoning in the previous section, the higher order terms will not be biased. On the other hand if the
order of A is assumed to be lower than the unmeasured confounder lower order terms will be affected by
the cross product terms of (ν0U + νAUA + νZUZ)

i, nonetheless these terms can still be adjusted for by
fitting the correct regression and using the symmetry of the problem in νAU , νZU .

First Stage Higher Order, Second Stage Linear

Now we change things around, we are interested in the case where U |ZA is still linear but the relationship
between W and U is not.

Y = β0Y + βAYA+ βUY U + ϵY

W = β0W + βUWU
2 + ϵW

U = ν0U + νAUA+ νZUZ + ϵU

Observing the dependency of W on A and Z, now one needs to fit the correct first stage regression and
include A2, Z2 and the cross-product terms AZ. We fit the following regression based on the observables:

W = β0W + βUW (ν0U + νAUA+ νZUZ + ϵU )
2
+ ϵW

= β0W + βUW (ν20U + 2ν0U ϵU +A2ν2AU + 2ν0UAνAU + 2AνZUνAUZ

+ 2AνAU ϵU + ν2ZUZ
2 + 2ν0UνZUZ + 2νZUZϵU + ϵ2U ) + ϵW

In expectation the additive errors out and obtain:

E [W |ZA] = β0W + βUW (ν20U +A2ν2AU + 2ν0UAνAU + 2AνZUνAUZ + ν2ZUZ
2 + 2ν0UνZUZ + σ2) + ϵW

This suggests fitting the following regression:

E [W |ZA] = γ0W + δA1
A+ δA2

A2 + δZ1
Z + δZ2

Z2 + δA1Z1AZ (4.13)
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In this case these fitted δs are estimating:

γ0W = β0W + βUW (ν20U + σ2)

δA1 = 2βUW ν0UνAU (4.14)
δZ1 = 2βUW ν0UνZU (4.15)

δA1Z1 = 2βUW νAUνZU

δA2
= βUW ν

2
AU

δZ2
= βUW ν

2
ZU

Once again, the bias on Y by fitting a regression on the observables:

E [Y |ZA] = θ0 + θAA+ θZZ

is given by:

θA = βAY + βUY νAU = βAY +
νAU
νZU

θZY (4.16)

θZ = βUY νZU (4.17)

The ratio νAU

νZU
can be recovered from the ratio of equation (4.14) equation (4.15).

4.3 ProxySplines

In real world applications, the entire CERF is rarely of interest but rather only a range within which the
maxima(minima) of the function falls in. While re-implementing the original paper of Bayesian 2SLS,
the Markov chain quickly converged to locally linear polynomials on each quantiles of A1. This sparked
the idea for an approach that is common in various sub-fields of mathematics, from Finite Element
Methods methods in PDEs to computer graphics; splitting a non linear objects into smaller locally
linear approximations. This approach consists in splitting the samples into smaller different subsets, and
locally fitting an unbiased two stage least square linear regression. The hope is that the true CERF is
smooth enough that in the limit, as the interval length goes to zero, the function is linear. Note that
some smoothness condition is imposed on the CERF itself, which possesses real-world interpretability, as
opposed to the bridge function, which does not have any interpretation.
In general, estimation of a linear function f(x) is much easier than non-linear due to the linearity of the
expectation E [f(X)|Z] = f (E [X|Z]). As such, one could fit Higher order regressions on local parts of
A. The problem is that whereas in the BP2SLS, the subsets are automatically decided by the Bayesian
hierarchical method, ProxySplines needs manual specification of the nodes. In such case, one would have
to correctly identify these intervals a priori. Then, if the linear or higher order model holds on each
specified subset we would be able to obtain a consistent estimate for the CERF.

A word of caution

Although polynomials are dense in L2 and thus can theoretically approximate any continuous function,
they are not the ideal choice. Polynomials are extremely prone to overfitting and outliers can heavily skew
them. This is slightly remedied if one considers local polynomial as in ProxySplines. The Proxysplines
assumption that the selected subsets indeed satisfy the linearity condition is very unrealistic. Nonetheless,
in practical application such as the agriculture and fertilizer example, it could be reasonable that the
expert has some idea of the ranges where we can expect a certain behaviour of the CERF.

1This was because the original posterior distributions were defined per quantile, thus automatically assigning the same
mean leading to a quick convergence to the quantiles.
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Non-Parametric Bayesian Proximal Inference

This chapter aims to introduce the notions of the Bayesian paradigm, in particular the non-parametric
aspect of working with large models. The background information is mostly derived from [19], in particular
Chapter 11. By no means does this chapter constitute an in depth analysis of the topic, but rather an
attempt at summarizing and giving intuition behind the key elements of the field. We then proceed
to introduce the Proxy Quasi-Bayes method, which leverages new results from the dual instrumental
variable literature to develop a quasi Bayesian approach to estimate the outcome bridge function and the
CERF.

5.1 Bayesian Non Parametrics

In statistics, there are two main philosophical approaches: frequentist and Bayesian. The frequentist
approach focuses on the frequency or proportion of data, relying on the long-run behavior of estimates.
Frequentists believe in the existence of a true underlying parameter and expect their estimators to
converge to it at a certain rate. The other side of the coin is the Bayesian paradigm. Rather than focusing
solely on a parameter pointwise, Bayesians are interested in the distribution of possible parameter values
given the observed data. The initial guess or prior enables the incorporation of pre-existing knowledge
about the parameter space rather than remaining agnostic about it. As more data becomes available, the
initial belief is gradually updated to reflect the new information. Both of these advantages are achieved
by leveraging Bayes’ theorem to update beliefs, resulting in what is known as the posterior distribution:

P (Θ|Dn)︸ ︷︷ ︸
Posterior

∝ P (Dn|Θ)︸ ︷︷ ︸
Likelihood

P (Θ)︸ ︷︷ ︸
Prior

The posterior represents the degree of belief the Bayesian has over a parameter set and can be used for
inference. One would hope, that as the amount of data increases, the effect of the prior to diminish and
the posterior tends to concentrate around the true parameter, similar to what happens in the frequentist
case. This is known as posterior consistency. In recent years, the Bayesian paradigm has become more
widespread due to increased computational power. This has enabled the implementation of demanding
approaches such as Markov Chain Monte Carlo (MCMC) methods, which allow for the approximations
of complex posterior distributions that were previously intractable.

5.1.1 Gaussian Process Priors
The Bayesian approach of incorporating prior belief onto the parameter space is also applicable to infinite
dimensional spaces such as function spaces, in such case we talk about Bayesian Non-parametrics. The
most common approach is with the use of Gaussian Processes. These objects can be interpreted as the
equivalent of the normal distribution over a large parameter space, a space of functions.

Definition 5.1 ([19] Gaussian Process)
A Gaussian Process is a stochastic process G = {Gt : t ∈ T} indexed by an arbitrary set T such that:

[Gt1 , . . . Gtk ] ∼ N (µ,Σ) ∀t1, . . . , tk ∈ T ∀k ∈ N

For a given t, the marginals [Gt1 , . . . Gtk ] are normally distributed. A multivariate normal distribution is
identified by two parameters, the mean and the covariance matrix. By varying t ∈ T we obtain the mean
and covariance function:

µ(t) = E [Gt] k(s, t) = cov(Gs, Gt)
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For convenience and without loss of generality the mean function is set to 0, this enables us to rewrite the
covariance as k(s, t) = E [GsGt]

1. The sample paths of the process, Gt(ω) for ω in the sample space Ω,
are then functions t 7→ Gt ∈ R. The sampled function depend on the sampled ω and as such are random
functions. The process can thus be interpreted as a map between the sample space and some function
space, i.e. Gt(·) : Ω → F [19]. This suggests that a Gaussian Processes can be used as distributions
over functions. Since the only choice of parameter is the covariance kernel, this is how prior knowledge
is embedded into the prior distribution. In particular, as discussed in section 2.1, the kernel identifies a
set of function thus, choosing the kernel somewhat chooses the space that one works on.

Series Expansion

In line with the presentation of section 2.1 where we highlighted the series expansion of functions in
function spaces, we will primarily focus on Gaussian Process series priors. Any Gaussian random element
in a separable H can be represented as its Karhunen-Loève expansion [19]. Let {λi, φi} be the singular
system of the integral operator associated with kernel k, then:

G =

+∞∑
i=1

Ziλiφi Zi ∼ N (0, 1) (5.1)

This representation further highlights how Gaussian processes can be interpreted as priors on functions.
This representation moves the randomness from G to the individual basis coefficients Zi while λiφi are
non-random. In other words, sampling G(ω) consists in sampling an infinite sequence of coefficients Zi.
Heuristically, the object represented by G in equation (5.1) is a random Gaussian object in a function
space since linear combinations of Gaussians remain Gaussian. Notice that while Zi ∼ N (0, 1) the
presence of the eigenvalues of k, rescale the variance of the coefficients to N

(
0, λ2i

)
. Thus the noise in

sampling these coefficients decreases with λi, which means that the trailing eigenfunctions will bring a
smaller contribution. Connecting this with the remarks made on proposition 2.2 highlights that in H,
the coefficients G is distributed on a infinite dimensional ellipsoid with axis of diminishing length λi.

Reproducing Kernel Hilbert Space of a Gaussian Process

Since the covariance kernel k is the function that determines the covariance of the Gaussian process, one
might wonder about the properties of the Reproducing Kernel Hilbert Space associated with such k and
tus with the Gaussian Process.

Definition 5.2 ([19] RKHS of Gaussian Process)
Let G = {Gt : t ∈ T} be a mean zero Gaussian Process. The Reproducing Kernel Hilbert Space of G is
the set of functions:

H =
{
f : T → R : fH(t) = E [GtH] H ∈ lin(G)

}
where lin(G) is the first order chaos of G, the closure in L2 of the set of linear combinations

∑
αiGti αi ∈

R. The inner product on H is:
⟨fH1

, fH2
⟩H = E [H1H2]

This construction is clearly closely tied with the covariance of the GP as the defined inner product is just
like the covariance. Indeed we notice that given a a function in the first order chaos H =

∑
αiGsi , the

associated function in H is given by:

fH(t) = E [HGt] = E

[∑
i

αiGsiGt

]
=
∑
i

αiE [GsiGt] =
∑
i

αik(si, t)

This is same form of a generic RKHS definition 2.5 and since the Gaussian process is identified by its
covariance kernel, the GP’s RKHS is the one generated by the eigen-functions of the covariance kernel
k(more precisely the singular system of the associated kernel operator). One might automatically assume
that samples from it will belong to H with probability one. Counterintuitively, this is not the case[51,
27]2.

1cov(A,B) = E [AB]− E [A]E [B]
2This is known as Driscoll’s theorem.
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Example 5.1 ([21]Brownian Motion)
Suppose that G is Brownian motion on the interval [0, T ]. The covariance kernel of G is k(s, t) = s ∧ t.
The RKHS of G is:

H = {f : f(0) = 0

∫ T

0

(
df(t)

dt

)2

< +∞}

It can be shown that the sample paths of Brownian Motion are nowhere differentiable with probability one,
thus its sample paths do not belong to H with probability one.

Example 5.2 (Heuristic Explanation[27])
Let f ∼ GP (0, k) be a sample from a Gaussian process and H its reproducing kernel Hilbert space. Define
fn =

∑n
i=1 Ziλiφi. Then f = limn→∞ fn. The expected H norm squared of fn is given by:

E
[
∥fn∥2H

]
= E

∥∥∥∥∥
n∑
i=1

Ziλiφi

∥∥∥∥∥
2

H

 =

n∑
i=1

E
[
Z2
i

]
λ2i ∥φi∥

2
H =

n∑
i=1

E
[
Z2
i

]
=

n∑
i=1

1

Taking the limit this sum diverges and it the expected norm is infinite, thus not belonging to the RKHS.
This is only for intuitive purposes since the convergence of the KL expansion f = limn→∞ fn is in the
mean square sense.

In general, the samples from a Gaussian Process are rougher than the functions that lie within its
reproducing kernel Hilbert space. Nonetheless, it is possible to show that there exists some power space
of H such that the paths are there contained with probability one[51]. Many arguments in the Bayesian
nonparametrics literature proceed by decomposing samples of GP in two parts, the main part which
belongs inside H and an error term that remains in the power space.
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Figure 5.1: Sample from Gaussian Process with
Matern Kernel.

0 2 4 6 8 10
−1

0

1

2

Figure 5.2: Decomposition in two terms: smooth in
H(full) and rough in Hα(dotted).

5.2 Quasi-Bayesian Methods

Returning to estimation of causal quantities under the proximal framework, the only Bayesian method
developed so far is the one described in section 3.1.2. As discussed it forgoes the bridge functions
altogether. It would be interesting to possibly consider a Bayesian non parametric approach to estimate
the bridge function. Moreover, since CERF is weakly identified by the set of bridge functions, with a
Bayesian approach we could find a set with high probability rather than a point solution. In the limit,
one would hope that all elements of said set approximately satisfy the conditional moment restriction
and thus enable us to find estimates for the CERF using some posterior estimator. This could overcome
the issues of non-uniqueness.
The problem with directly implementing Gaussian process regression in the proximal causal learning
setting is that it solves a regular regression problem:

Determine f such that:

E [Y |X] = E [f(X)|X] = f(X) (5.2)
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In such case, with additional assumptions on the distribution of Y |X, it is possible to obtain and estimate
the likelihood from the observed data. If one appropriately chooses the likelihood, the posterior might
admit a closed form. Even if this is not the case, it is possible to apply MCMC approaches that enable
estimation of the posteriror through sampling schemes.
Clearly the approach of equation (5.2) is not compatible with the proximal inference problem due to
the presence of the unmeasured confounder, meaning that the estimated ĥ will not coincide with the
true bridge h0. Recent developments in the non-parametric literature have placed emphasis on so called
Quasi-Bayesian methods. These methods can be used in situations where the likelihood itself is not
readily available but rather other types of restrictions characterise the problem. The Quasi-Bayes ap-
proach substitutes the true likelihood with a function Q (Dn, h), known as the quasi-likelihood. This
function needs to behave like a likelihood, take values such that around neighbourhoods of the ’true’
parameter(function) Q has high values and lower further away from the truth. In practice, due to its
resemblance to the Gaussian density, the most commonly chosen quasi-likelihood is constructed as an
exponential with some data dependent loss function ℓn(h):

Q (Dn, h) = exp
(
−n
λ
ℓn(h)

)
(5.3)

This loss function needs to be appropriately chosen for the problem at hand as long as ℓn(h) ↓ 0 in
appropriate neighbourhoods of the truth and ℓn(h) ↑ as we move further away. Bayes’ theorem can then
be used to construct:

Πn (dh|Dn)
Π(dh)

∝ Q (Dn, h) (5.4)

where the ∝ is up to a normalization constant such that Πn(dh|Dn) integrates to one to be a distribution.
Although equation (5.4) resembles Bayes theorem, the quasi-posterior Πn is not a posterior in the classic
sense since it does not involve the true likelihood but rather a quasi-posterior.

Example 5.3 (Gaussian Process Regression)
Suppose that f ∼ GP and consider the quasi likelihood of equation (5.3) with the loss ln(f) = λ

n

∑n
i (f(xi)−

yi)
2. Then the quasi-likelihood coincides with the likelihood. Moreover if Y ∼ N

(
f(X), σ2

)
then the

quasi-likelihood is the ’regular’ likelihood and the quasi-Bayes and Bayes methods are the same.

5.2.1 Proximal Quasi Bayesian

The authors of [63] developed a quasi Bayesian approach to estimate the structural function f0 in the
non-parametric instrumental variable setting. Instrumental variables are also models characterized by
conditional moment restrictions. In particular, they respect the following graphical model:

YA

U

S

Figure 5.3: Graphical model for instrumental variables.

The conditional moment restriction that characterizes this model is given by E [Y |S] = E [f0(A)|S].
Intuitively, the effect that S has on A enables us to adjust for the effect of U. This conditional moment
restriction is extremely similar to the one present in proximal inference case where we replace S with
(Vq) and (Vh) as arguments of the outcome bridge function h0 rather than the structural function f0.
The procedure is one stage and thus the chosen loss for the quasi likelihood involves the mean violation
of the conditional moment restriction. As already discussed in section 2.3, minimization of this loss does
not guarantee the minimization of ∥h− h0∥ due to the ill-posedness nature of the problem. Nonetheless,
as seen in other works, the ill posedness can be controlled on certain function classes. The population
loss is the following:

L(h) = max
g∈G

E
[
(h(Vh)− Y ) · g(Vq)−

1

2
g2(Vq)

]
(5.5)

The authors of [63] justify this choice due to Fenchel duality(see proposition A.1). We prefer to justify it
in terms of the stabilizers also discussed in section 3.2. These stabilizers do not add bias to our estimate
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equation but are a reformulation of the conditional expectation as shown in proposition 3.4:

E
[
E [(Y − h(Vh))|Vq]2

]
= sup
g∈L2

2E [g(Vq)E [(Y − h(Vh))|Vq]]− E
[
g(Vq)

2
]

= sup
g∈L2

2E [E [g(Vq)(Y − h(Vh))|Vq]]− E
[
g(Vq)

2
]

= sup
g∈L2

2E [g(Vq)(Y − h(Vh))]− E
[
g(Vq)

2
]

Although obtained by different means, the final objective is the same as in the Quasi Bayes dual IV setting
but with the additional presence of the treatment variable on both sides of conditioning. Similarly to
all other methods studied, regularization terms are added to avoid issues discussed in section 2.3. The
objective can thus be reformulated as an adversarial problem:

min
h∈H

max
g∈G

2E
[
(h(Vh)− Y ) · g(Vq)−

g2(Vq)

2

]
− ν ∥g∥2G (5.6)

Notice that in the end, this loss function of equation (5.9) is similar to the one used in equation (3.20).

Empirical loss

The empirical equivalent of equation (5.6) is a specific case of a general loss function d2n

(
Ênh− b̂

)
. In

our case we choose d2n(g) = ∥g∥
2
n+ν ∥g∥

2
G = 1

n

∑n
i=1 g(Vqi)

2+ν ∥g∥2G and Ên(h), b̂ are solutions to a ridge
regression problem.

Proposition 5.1
Let Ênh, b̂ be the solutions to regularized ridge regression problems:

Ênh = argmin
G

1

n

∑
(h(Vhi)− g(Vqi))2 + ν ∥g∥2G

b̂ = argmin
G

1

n

∑
(yi − g(Vqi))2 + ν ∥g∥2G

Moreover let d2n(f) =
1
n

∑n
f(xi)

2 + ν ∥f∥2Hx
. Then we have that:

1

2
d2n(Ênh− b̂) = max

G

1

n

[
n∑
(h(Vhi

)− yi)g(Vqi)−
g(Vqi)

2

2

]
− ν

2
∥g∥2G

Proof. Let SVh
and SVq

be the sampling operators of Vh, Vq respectively (definition 2.12). We start off
with determining the solutions to the ridge regression problems:

Ênh = argmin
G

1

n

∑
(h(Vhi

)− g(Vqi))2 + ν ∥g∥2G

= argmin
G

1

n
⟨SVh

h− SVq
g, SVh

h− SVq
g⟩+ ν ⟨g, g⟩G

= argmin
G

1

n

[〈
S∗
Vh
SVh

h, h
〉
H +

〈
S∗
Vq
SVq

g, g
〉
G − 2

〈
S∗
Vq
SVh

h, g
〉
G

]
+ ν ⟨g, g⟩G

Deriving in g we obtain the minimizer as the solution to:

1

n
S∗
Vq
SVq

g + νg =
1

n
S∗
Vq
SVh

h(
S∗
Vq
SVq

+ nνI
)
g = S∗

Vq
SVh

h

Similarly for b̂:

b̂ = argmin
G

1

n

∑
(yi − g(Vqi))2 + ν ∥g∥2G

= argmin
G

1

n
⟨Y − SVq

g, Y − SVq
g⟩+ ν ⟨g, g⟩G

= argmin
G

1

n

[
⟨Y, Y ⟩2 +

〈
S∗
Vq
SVq

g, g
〉
G − 2

〈
S∗
Vq
Y , g

〉
G

]
+ ν ⟨g, g⟩G
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1

n
S∗
Vq
SVq

g + νg =
1

n
S∗
Vq
Y(

S∗
Vq
SVq

+ nνI
)
g = S∗

Vq
Y

Thus Ênh− b̂ must satisfy: (
S∗
Vq
SVq

+ nνI
)
Ênh− b̂ =

(
S∗
Vq
SVh

h− S∗
Vq
Y
)

Let us now focus on the general expression of d2n(f):

d2n(f) =
1

n

n∑
f(xi)

2 + ν ∥f∥2Hx

=
1

n
⟨Sxf, Sxf⟩+ ν ⟨f, f⟩Hx

=
1

n
⟨S∗
xSxf, f⟩Hx

+ ν ⟨f, f⟩Hx

=
1

n
⟨(S∗

xSx + nνI) f, f⟩Hx

If we plug in Ênh− b̂ we obtain:

d2n(Ênh− b̂) =
1

n

〈(
S∗
Vq
SVq

+ nνI
) (
S∗
Vq
SVq

+ nνI
)−1 (

S∗
Vq
SVh

h− S∗
Vq
Y
)
,
(
S∗
Vq
SVq

+ nνI
)−1 (

S∗
Vq
SVh

h− S∗
Vq
Y
)〉

G

=
1

n

〈(
S∗
Vq
SVh

h− S∗
Vq
Y
)
,
(
S∗
Vq
SVq

+ nνI
)−1 (

S∗
Vq
SVh

h− S∗
Vq
Y
)〉

G
(5.7)

I now want to show that: maxG
1
n

[∑n
(h(Vhi

)− yi)g(Vqi)−
g(Vqi

)2

2

]
− ν

2 ∥g∥
2
G is equivalent to 1

2d
2
n(Ênh−

b̂):

1

n

[
n∑
(h(Vhi)− yi)g(Vqi)−

g(Vqi)
2

2

]
− ν

2
∥g∥2G =

1

n
⟨SVh

h− Y , SVq
g⟩2 −

1

2n
⟨SVq

g, SVq
g⟩2 −

ν

2
⟨g, g⟩G

=
1

n

〈
S∗
Vq
SVh

h− S∗
Vq
Y , g

〉
G −

1

2n

〈
S∗
Vq
SVq

g, g
〉
G −

ν

2
⟨g, g⟩G

=
1

n

〈
S∗
Vq
SVh

h− S∗
Vq
Y − 1

2
S∗
Vq
SVq

g − nν

2
g, g

〉
G

=
1

n

〈
S∗
Vq
SVh

h− S∗
Vq
Y − 1

2

(
S∗
Vq
SVq

+ nνI
)
g, g

〉
G

This quantity is maximized by choosing g as:

g =
(
S∗
Vq
SVq

+ nνI
)−1 (

S∗
Vq
SVh

h− S∗
Vq
Y
)

Substituting this in the previous we obtain:

1

2n

〈
S∗
Vq
SVh

h− S∗
Vq
Y ,
(
S∗
Vq
SVq

+ nνI
)−1 (

S∗
Vq
SVh

h− S∗
Vq
Y
)〉

G

which is exactly half of Equation 5.7.

Choosing ln(h) = 1
2d

2
n(Ênh− b̂) and plugging this choice of loss into the quasi-likelihood of equation (5.3)

we obtain:
Πn (dh|Dn)

Π(dh)
∝ exp

(
− n

2λ
d2n(Ên(h)− b̂)

)
(5.8)

The restriction on the function class G is to contain E [h(Vh)− h′(Vh)|Vq] ∀h, h′ ∈ H and assump-
tion A.7. In particular, we focus on G being a RKHS due to both the computational aspect and the nice
properties involving the ill posedness to guarantee the latter assumption. The empirical equivalent of the
loss in equation (5.6) is found by simply replacing the expectation with the sample mean:

min
H
L̂(h) = min

h∈H
max
g∈G

1

n

n∑
i=1

(
(h(Vhi

)− yi)g(Vqi)−
g(Vqi)

2

2

)
− ν

2
∥g∥2G (5.9)
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5.2.2 Results
A Bayesian procedure, or Quasi-Bayesian in this case, is only really of interest if in the limit it identifies
the correct set of parameters. This is equivalent to the concept of consistency of a frequentist estimator;
if the entire distribution is observed, the estimator converges to an area around the true one.

Definition 5.3 ([19]Posterior Consistency)
The posterior distribution Πn(·|Dn) is said to be weakly consistent at θ0 ∈ Θ if

∀ϵ > 0 Πn({θ, d(θ, θ0) > ϵ|Dn} → 0

in Pθ0 probability as n→∞, where d(·, ·) is a distance.

H
n ↑ ∞

h0

Figure 5.4: Graphical representation of desired behaviour of posterior distribution as number of observa-
tion increases.

Figure 5.4 shows what we would like to achieve with the Quasi Bayesian procedure, the posterior shrinking
around the true bridge function h0. If the posterior is consistent, then it concentrates its mass in smaller
and smaller areas of the true parameter as more data is observed. Consistency can also be interpreted as
the posterior distribution converging weakly to a Dirac delta at the true parameter in probability [19].
The following result shows that, under the assumptions discussed in appendix A.3.2 the quasi-posterior
built using equation (A.2) places its mass around the true bridge function.

Theorem 5.1 ([63]Quasi-Bayes Posterior Consistency)
Let p ≥ 0, b > 1 be constants as in appendix A.3.2. Under the assumptions in appendix A.3.2, fix
λ = 1, ν = Cδ2n ≍ n−

b+2p
b+2p+1 , C > 0. Then there exists a constant M > 0 such that for ϵ2n = n−

b
b+2p+1 we

have:

Πn({h : ∥h− h0∥22 > Mϵ2n}|Dn)
PDn−−−→ 0 (5.10)

Πn({h : ∥E(h− h0)∥22 > Mδ2n}|Dn)
PDn−−−→ 0

where E is the conditional expectation operator, Eh = E [h(Vh)|Vq], b dictates the regularity of h0 and p
the level of ill-posedness of E.

Inference

Theorem 5.1 shows that the quasi-posterior concentrates around the true structural function or in our
case the bridge functions h0. This enables weak identification of the CERF. We are now interested in
performing inference on the CERF using the posterior distribution Πn(dh|Dn)
A commonly adopted estimator in Bayesian statistics is the Maximum A Posteriori (MAP) estimator,
θ̂MAP = argmaxθ Πn(θ|Dn).

Example 5.4 (MLE and MAP)
Using Bayes’ theorem we have that:

P (Θ|Dn) ∝ P (Dn|Θ)P (Θ)

The MAP is the θ that maximizes the posterior distribution P (·|Dn) whereas the MLE maximizes P (Dn|·).
This shows that when the prior is uniform over Θ, the MAP and MLE coincide. In general, the MAP can
be interpreted as a maximum likelihood reweighed by initial belief. If, as the amount of data increases,
the prior effect washes out then the two coincide.
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A MAP-like estimator could be built using the quasi-posterior. If the parameter of interest lives in a subset
of Rd then this will coincide with the mode, or peak, of the posterior density. In the infinite dimensional
case it becomes slightly more complicated, the MAP coincides withe the center of the smallest ball that
contains half of the posterior mass. Clearly, the MAP does not have much computational appeal. A
second and possibly more computational friendly point estimator is the posterior mean.

Definition 5.4 (Posterior mean)
Let Πn(·|Dn) be the posterior mean, the Posterior Mean is defined as:

ĥn =

∫
hΠn(dh|Dn)

The appeal of the posterior mean as an estimator is its computational simplicity. In practice, if one has
conjugate prior, a closed form solution can be derived. If one carries out an MCMC procedure, it can
be simply calculated as the average of the chain. Similar ideas can be adapted for the quasi-bayesian
approach. Unfortunately simple does not always coincide with practical. Countrerintuitively, just because
the posterior distribution concentrates around the optimal parameter, it does not automatically guarantee
that the posterior mean also adopts the same property.

Note

Although the authors of [63] state that they are able to obtain consistency of the posterior mean over
the entire parameter set, it is not clear how. The main problem is that the set of functions where the ill-
posedness of the problem is finite, and thus the error sets of theorem 5.1 are equivalent up to multiplicative
constants, has a small measure but unfortunately not necessarily small enough. Even though from a prior
point of view that set is negligible (corollary A.1), the L2 norm of the GP samples might be infinitely
larger and blow up said convergence.
Nonetheless a possible solution is to construct the Θm posterior mean, i.e. ĥΘm

= E [1Θm
· h|Dn] with

Θm = {h = hρ+he : ∥hρ∥2H ≤ cn
1

b+2p+1 , ∥he∥22 ≤ cn
− b

b+2p+1 , ∥he∥∞ ≤ c}. This is a set of functions that,
as n increases more and more RKHS mass and smaller L2 mass. This enables us to use the results from
the proof of theorem 5.1 to ensure that this estimator is arbitrarily L2 close to the true h0. The downside
is that this estimator does not have a closed form solution like the regular quasi-posterior mean and it is
not clear how it could be calculated.

Proposition 5.2 (Consistency of the Θm Posterior Mean)
With high probability, there exists a constant M̃ > 0 such that the posterior mean ĥΘm of Πn(·|Dn)
satisfies: ∥∥∥ĥΘm − h0

∥∥∥2
2
≤ M̃ϵ2n

Proof. We are interested in the convergence to zero of the probability of errĥΘm
=

{
Dn :

∥∥∥ĥΘm
− h0

∥∥∥2
2
> M̃ϵ2n

}
.

By the law of total probabilities.

P
(
errĥΘm

)
= P

(
errĥΘm

∩ En(Dn)
)
+ P

(
errĥΘm

∩ En(Dn)
)

≤ P
(
errĥΘm

∩ En(Dn)
)
+ P

(
En(Dn)

)
= P

(
errĥΘm

∩ En(Dn) ∩A
)
+ P

(
errĥΘm

∩ En(Dn) ∩A
)
+ P

(
En(Dn)

)
≤ P

(
errĥΘm

∩ En(Dn) ∩A
)
+ P

(
A
)
+ P

(
En(Dn)

)
≤ P

(
errĥΘm

∩ En(Dn) ∩A
)
+ oP (1) + oP (1)

By the proof of theorem 5.1 in appendix A.3.2, the last two terms go to zero. We are only concerned
on the deviations of the posterior mean on the set En(Dn) ∩ A. On this set we can now focus on the



79

deviation from the truth and use the results and bounds from the proof:∥∥∥h0 − ĥ∥∥∥2
2
= ∥h0 − E [h|Dn]∥22

≤ E
[
∥h0 − h∥22 |D

n
]2

=

∫
∥h0 − h∥22dΠn(h|D

n)

=

∫
∥h0−h∥2

2≥Mϵ2n

∥h0 − h∥22dΠn(h|D
n) +Mϵ2n

∫
∥h0−h∥2

2<Mϵ2n

dΠn(h|Dn)

≤
∫
∥h0−h∥2

2≥Mϵ2n

∥h0 − h∥22dΠn(h|D
n) +Mϵ2n

The first term is the one that can cause problems because of the possibly large norm of h. We overcome
this by decomposing the errors with a shelling argument as follows:∫

∥h0−h∥2
2≥Mϵ2n

∥h0 − h∥22dΠn(h|D
n) =

∞∑
i=1

∫
Miϵ2n<∥h0−h∥2

2≤M(i+1)ϵ2n

∥h0 − h∥22dΠn(h|D
n)

≤
∞∑
i=1

M(i+ 1)ϵ2n

∫
Miϵ2n<∥h0−h∥2

2≤M(i+1)ϵ2n

dΠn(h|Dn)

≤
∞∑
i=1

M(i+ 1)ϵ2n

∫
∥h0−h∥2

2≥Miϵ2n

dΠn(h|Dn)

≤ ϵ2n
∞∑
i=1

M(i+ 1)e−M
2i2nδ2n ≲ ϵ2n

e−nδ
2
n

nδ2n

Where the last two inequalities follows from the last step in the proof of theorem 5.1 and the fact that a
sum can be upper bounded by the integral. In our case we have:

+∞∑
t=2

te−t
2nδ2n ≤

∫ ∞

1

te−t
2nδ2ndt = −e

−t2nδ2n

2nδ2n

∣∣∣∣∣
+∞

1

=
e−nδ

2
n

2nδ2n

This shows that on the given subset errĥΘm
∩ En(Dn) ∩ A, the error is smaller than

∥∥∥ĥΘm
− h0

∥∥∥2
2
≤

2Mϵ2n ≤ M̃ϵ2n. Applying the Continuous Mapping Theorem3 to the sum of oP converging terms we
obtain convergence of the whole sum completing the proof.

Now that we have shown that the posterior mean comes arbitrarily close to the true bridge function with
high probability, all that is left to show is that the sample estimator built with it is consistent and nears
the true CERF. To do this, we require the following assumption:

Assumption 5.1
Let fW , fA, fX be the marginal distribution of W,A,X and fW,A,X be its joint density. Assume that
w ∈ W,∀a ∈ A, x ∈ X :

fW (w) · fA(a) · fX(x) ≲ fW,A,X(w, a, x)

Notice that this assumption is similar to the one presented in section 3.5.2. It is a restriction on the
distributions of the variables which intuitively requires that observing one of the two does not rule out
the chance of observing the other. We now formulate our CERF estimator constructed on the quasi-
posterior Θm mean. To avoid the complications from using the same samples used in determining ĥ, we
use sample-splitting.

Definition 5.5 (PQB Estimator)
Let Dt be a test set of unobserved samples of size nt. Let ĥΘm be the posterior mean of the Quasi Bayesian
procedure. The Proxy Quasi Bayesian (PQB) estimator is defined as:

χ̂(a) =
1

n

n∑
i=1

ĥΘm
(wi, a, xi) (5.11)

3If (Xn, Yn) → 0 in probability then for all continuous functions f we have that f(Xn, Yn) → f(X,Y ) in probability.
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We now need to show that this choice of estimator is indeed a good choice as it will asymptotically
approximate the true CERF.

Theorem 5.2 (CERF Estimator Consistency)
Let χ̂ be the PQB estimator constructed in definition 5.5. Let b, p be the regularities of the true bridge
function defined in assumption A.3. Then:

∥χ− χ̂∥L2(A) = O(nt
− 1

2 + n−
b

2(b+2p+1) )

Proof.

∥χ− χ̂∥2 = ∥EW,X [h0(W, ·, X)]− χ̂∥2
=
∥∥∥EW,X [h0(W, ·, X)− ĥΘm(W, ·, X) + ĥΘm(W, ·, X)

]
− χ̂

∥∥∥
2

=
∥∥∥EW,X [h0(W, ·, X)− ĥΘm

(W, ·, X)
]∥∥∥

2︸ ︷︷ ︸
A

+
∥∥∥EW,X [ĥΘm(W, ·, X)

]
− χ̂

∥∥∥
2︸ ︷︷ ︸

B

We first focus on term A:∥∥∥EW,X [h0(W, ·, X)− ĥΘm
(W, ·, X)

]∥∥∥2
2
≤
∫ ∫ (

h0(w, a, x)− ĥΘm
(w, a, x)

)2
f(w)f(a)dadw

≲
∫ ∫ (

h0(w, a, x)− ĥΘm(w, a, x)
)2
f(a,w)dadw

=
∥∥∥h0 − ĥΘm

∥∥∥2
2
≲ ϵ2n ≍ n

− b
b+2p+1

This is by theorem 5.1. Now for the second term B, using the fact that Dt is unobserved (sample splitting):∥∥∥∥∥EW,X [ĥΘm(W, ·, X)
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≲
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∫
ĥΘm(w, a, x)2f(w, a, x)dwdadx

=
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nt

∥∥∥ĥΘm
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L2(Vh)

≲
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nt

Notice that we assume that h0 ∈ H ⊂ L2(Vh) which means that ∥h0∥L2(Vh)
< +∞. By theorem 5.1

we have that with high probability
∥∥∥h0 − ĥΘm

∥∥∥2
2
≤ Mϵ2n < +∞. Applying the triangle inequality∥∥∥ĥΘm

∥∥∥
2
=
∥∥∥ĥΘm

− h0 + h0

∥∥∥
2
≤
∥∥∥ĥΘm

− h0
∥∥∥
2
+ ∥h0∥2 < +∞. Taking the square roots and recombining

the two terms we obtain the desired result.

The main rate of convergence of this estimator is the one adopted from the convergence of the posterior
mean to the bridge function ϵ2n = n−

b
b+2p+1 . Per assumption A.5, the parameter p decides the eigen-decay

of the conditional expectation operator, in other words the level of ill-posedness. If p = 0 then there
would be no ill-posedness and the best rate one could strive for is parametric O(n−

1
2 ) for b→∞. Clearly

this is only possible for a kernel with very quickly decaying eigenvalues, and thus very smooth true bridge
function h0. Moreover, the problem is ill-posed and thus p ̸= 0. Nonetheless, depending on the p, b of the
problem it might surpass other rates mentioned so far.
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5.2.3 Closed Form Estimator

As suggested by proposition 5.1, the operator Ên can be constructed using the empirical covariance
matrices as Ên = Ĉ−1

Vq,Vq
ĈVq,Vh

. To include regularization and match the above definition, we consider

the regularized version of the covariance operator ĈVq,Vq,ν =
(
ĈVq,Vq

+ nν · I
)
. The regularization term

improves the conditioning of the estimated matrix. In terms of the sampling operators and their adjoints
ĈVq,Vh

= 1
nS

∗
Vq
SVh

(definition 2.12). The source condition is estimated in a similar way as E [Y |Vq] ≈ b̂ =
1
nS

∗
Vq
Y .

Lemma 5.1 ([63])
The loss function of equation (5.9) can be rewritten as:

L̂(h) =
∥∥∥∥Ĉ− 1

2
Vq,Vq,ν

(
ĈVq,Vh

h−
S∗
Vq
Y

n

)∥∥∥∥2
G

(5.12)

(5.13)

and it admits closed form minimizer:

h̃ = Ĉ−1
Vq,Vh

S∗
Vq

n
Y

Moreover, if a regularization term λ ∥h∥2H is added to the the above loss, the solution becomes:

h̃ =
(
ĈVh,Vq

Ĉ−1
Vq,Vq,νĈVq,Vh

+ λI
)−1 S∗
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n
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(
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Y

Proof. From the proof of proposition 5.1 we have that:

1
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(L.1)

Where the last step is by the fact that the covariance is self adjoint and the first statement is shown. We
now search for the optimum in h which is reached when such norm is zero:

h̃ = Ĉ−1
Vq,Vh

S∗
Vq

n
Y

If one were to include an extra penalization term on the norm of h as λ ∥h∥2H = λ ⟨h, h⟩H, then equa-
tion (L.1) would become: ∥∥∥∥Ĉ−1/2

Vq,Vq,ν

(
ĈVq,Vh

h−
S∗
Vq

n
Y

)∥∥∥∥2
G
+ λ ∥h∥2H (L.2)

By deriving in h we obtain:

2

[
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Ĉ−1
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]
= 0 (L.3)

Subsequently, equation (L.3) is optimized by choosing:
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(
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Ĉ−1
Vq,Vq,νĈVq,Vh
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Y =
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The loss can finally be rewritten as:∥∥∥∥Ĉ−1/2
Vq,Vq,ν
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Remember now that a multivariate normal distribution X ∼ N (µ,Σ) has as density proportional to:

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
Notice that this is similar to the construction of the quasi-likelihood as exp

(
− n

2λd
2
n(Ênh− b̂

)
) with the

exponential function is then similar to a normalN
(
h(Vh), λL

−1
)
. This enables us to to make approximate

inference on the posterior by considering a fictitious data generating process:

h ∼ Π = GP (0, kVh
) Y |h,Dn ∼ Pfic ∼ N

(
h(Vh), λL

−1
)

Using the fact that GP priors are conjugate to Pfic we can find a closed form solution for the posterior
mean. Let Vht

= (Vht) be test points, then the posterior follows

Πn(h(Vht)|Dn) = Pfic (h(Vht)|Y ) = Pfic (m,S)

m = KVht,Vh
(λI + LKVh,Vh

)
−1
LY

S = KVht,Vht
−KVht,Vh

L (λI + LKVh,Vh
)
−1
KVh,Vht

L = KVq,Vq
(nνI +KVq,Vq

)
−1

We then use m as an estimator for the posterior mean and use it to construct the CERF estimator as in
equation (5.11). Note that the fact that the quasi-likelihood has a form similar to a Gaussian does not
mean that the data is distributed as such. Moreover, this is not the going to give us the ĥΘm mean but
the quasi Bayesian posterior mean over the entire parameter space. Nonetheless, we use it in practice as
it produces goodd numerical results(chapter 6).
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Numerical Experiments

In this chapter we apply the proximal inference method to detect and quantify various causal relationships.
First we showcase, on simple synthetic examples, the need for the causal framework and even more so
one that accounts for unmeasured confounders. Later, we apply the methods studied in this thesis to two
types of data.

6.1 The need to adjust for the unobserved

Here we introduce some examples with simulated data to showcase that regular regression does not
return the desired parameters which justifies the need for a causal framework capable of adjusting for
confounders. Afterwards, to go a step further, we apply the studied methods framework that accounts
for unobserved confounders. Consider the following data generating process, where the data is generated
sequentially and all errors are sampled independently ϵi ∼ N (0, 1):

U = 1 + ϵU

W =
1

2
· U + ϵW

Z = −1 · U + ϵZ

A = 10 + 0.8 · Z − U + ϵA

Y = 3 + 2 ·A+ 4 ·W + 4 · U + ϵY

(6.1)
YA

U
WZ

ϵYϵA

ϵU

ϵWϵZ

Figure 6.1: Graphical structure for additive linear
model.

The average treatment effect, and thus the slope of the CERF, is given by the coefficient of the A term
in equation (6.1). This becomes clear by applying proposition 3.1 to the given true model:

χ(a) = E [Y a] = E [E [Y |A = a,W,U ]]

= 3 + 2 · a+ 4 · E [W ] + 4 · E [U ]

= 9︸︷︷︸
β0

+ 2︸︷︷︸
βA

·a

We sample 10,000 data points from the model of equation (6.1) to obtain the following marginal distri-
butions: Notice that by simply ’looking ’ at figure 6.2, no clear trend is distinguishable. By assuming that

β̂0 ± 1.96 · SE(β̂0) β̂A ± 1.96 · SE(β̂A)

Y |A 27.14± 0.41 −0.211± 0.047
Y |A,W,Z 16.49± 0.37 0.777± 0.039

Table 6.1: Estimated coefficients for naive and classic causal regression.

only A affects Y and applying a naive regression one obtains the red slope. As presented in table 6.1,
the estimated slope not only is far from the true value but also presents the opposite sign. One would

83
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Figure 6.2: Samples from model the above linear confounded model and estimated regressions. Vertical
axis is the outcome (Y), and horizontal axis is the treatment (A). The regresssion functions: Naive
regression Y |A (red), classic causal regression Y |W,Z,A(orange), and the truth(green).

then conclude that higher doses of the treatment A would lead to a worse outcome. Since we are able to
observe the proxy variables, the next step is to assume that (Z,W ) are measured confounders. In this
case the results are slightly more promising since the correct sign is well identified. Nonetheless, the slope
is severely underestimated as the true βA does not fall within the 95% confidence interval. This simple
example highlights the need for a framework that adjusts for both observed and unobserved confounders.

6.2 Simulated Data

Here we present numerical results on synthetic generated data. In the first case, the data is determined
as linear combination of Gaussians with potential nonlinearities arising in the structural equation of Y .
For a discussion on how the parameters interact when sequentially generated, see appendix A.1.1. In the
second case, we explore data generated from more exotic non-linear processes.

6.2.1 Gaussian Models

Linear

Similarly to the previous example of figure 6.6, consider the following data generating process:

U = 1 + ϵU

W = 1− 4 · U + ϵW

Z = −1 + 2 · U + ϵZ

A = 6 + 2 · Z − U + ϵA

Y =
2 + 2 ·A+ 5 ·W − 2 · U + ϵY

10

(6.2)

The graphical model remains the same as the one in figure 6.1. We sample two sets of data: one of
size 1,000 and one of size 10,000. Simply observing figure 6.3, the trend seems to be negative and thus
one would estimate that the treatment has a negative effect on the outcome. Fitting a naive regression,
i.e. Y |A results in a similar conclusion. Considering the proximal structure associated with the data
generating process, we fit P2SLS and the PQB method. Both methods well approximate the true CERF.
The P2SLS(orange) has an easier time as it is constrained to a linear parametric model but PQB also
performs well in both situations. Both methods improve with the increase of number of samples.

Parabolic

It is often much more realistic to model natural phenomena as parabolic, or some other polynomial rather
than simply linear. To test the performance of the models in such scenarios, data is generated as a linear
combination of Gaussians, except for the outcome structural equation which becomes quadratic in U A
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Figure 6.3: Linear example with fitted P2SLS and PQB estimators. 10,000 data points on the left and
1,000 on the right

and X. The graphical model becomes fully proximal as it now also contains measured confounders and is
pictured in figure 6.1. In this case, we set all additive noise ϵ· ∼ N (0, 0.2).

U = 1 + ϵU

X =
1

2
· U + ϵX

W = −X + 2 · U + ϵW

Z = 2 ·X − 2.5 · U + ϵZ

A = 6− 3 ·X + 2 · Z + U + ϵA

Y =
12 + 4 ·A−A2 − 6 ·X2 − 4 · U − 3 · U2

10
+ ϵY

YA

U
W

X

Z

ϵYϵA

ϵU

ϵWϵZ

ϵX

Figure 6.4: Graphical structure with additive
errors and measured confounder.

The presence of the measured confounder, and that of higher confounding terms in the structural equa-
tion of Y makes the model much more complicated than that of the first linear example. Notice that by
the g-formula, the True CERF is given by:

E [Y a] = E [E [Y |A = a,W,U ]] =
12 + 4 · a− a2 − 6 ·

(
1
4 + 5

4σ
2
)
− 4− 3 ·

(
1 + σ2

)
10

=
2.6 + 4 · a− a2

10

We satisfy the assumptions needed for the Higher Order P2SLS and, in this situation, both the order of
confounding and of treatment effect is quadratic. For this reason we fit a higher order proximal 2SLS with
order 2 treatment and order 2 confounding. Additionally, we fit the proximal quasi bayesian method. The
results are similar to the linear example. The naive regression Y |A,A2 misses the truth by quite a large
margin. In both samples the HigherOrder estimator is the better one due to the innate regularization of
the parametric model. Nonetheless, the PQB estimator manages to match the shape and curvature of
the true CERF in data dense neighborhoods while faltering at the edges. Notice that the P2SLS method
is not as precise as it was in the linear case. This is because fitting a polynomial is more difficult, as it
is much more sensitive to outliers. Nonetheless, as the sample size increase, both methods approach the
truth.
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Figure 6.5: Scatter plot of sampled data points, naive regression with quadratic terms(red), higher order
P2SLS(orange), PQB(teal) and the true CERF(green). On the left 10,000 data points and on the right
1,000.

6.2.2 Non-Linear Simulation: Demand Experiment
The Demand experiment was first introduced in the DFPV paper[69] and has since become a staple
benchmark for proximal causal experiments. The fictitious problem is that of determining the causal
relationship between airplane ticket sales(Y) and ticket price (A), where these are confounded by a
potential demand (U). The negative control exposure are two fuel prices (Z1, Z2), one would expect
that as the price of fuel costs increase, so must the ticket price. The latter are modeled using periodic
functions to simulate a seasonal trend. The negative control outcome is instead chosen to be the number
of website views the airplane company receives(W). Although nowadays companies adjust prices based
on this, which would generate a direct path from W to A that violates assumption 1.4, in a fair market
this would be a valid assumption. The underlying data generating process is the following:

U ∼ Unif(0, 10)
W = 45 + 7 · g(U) + ϵW

Z1 = sin(2πU/10) + ϵZ1

Z2 = cos(2πU/10) + ϵZ2

A = 35 + (Z1 + 3) · g(U) + Z2 + ϵA

Y = A ·min(e
W−A

10 , 5)− 5 · g(U) + ϵY

(6.3) # of SalesPrice

Demand
ViewsFuel Price

Figure 6.6: Graphical representation for the data
generating process of the Demand problem.

where ϵ· ∼ N (0, 1) and g(u) = −4 + 2 ·
(

(u−5)4

600 + e−4·(u−5)2 + u
10

)
. Notice that while there are additive

errors, they are not propagated through the network in a linear manner as each structural function is
highly non-linear. The data so generated gives rise to a peculiar joint distribution.
The true causal exposure response function is found using the backdoor adjustment formula, but due to
the complex non-linearities determining the closed form of χ is extremely complicated. Rather, a Monte
Carlo approach is carried out on a large simulated dataset such that:

χ(a) = E [E [Y |W,a, U ]] ≈ 1

n

n∑
i=1

a ·min(e
wi−a

10 , 5)− 5 · g(ui)

The only discernible trend between price and number of sales from examining the scatter plots in
figures 6.7 and 6.8 is a negative slope as the price increases, which is to be expected. In practice one
would be interested in determining the price that causes the most sales, the peak of the CERF in figure 6.8.
Although much of the data is concentrated around the mean of A (≈ 27.3), the authors of [69, 30] only
focus on the interval [10, 30]. There is no clear reason why since the estimated median lies around 28.5,
and thus almost half the data will be lying outside the considered interval. More results on the extended
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Figure 6.7: Pairwise joint distribution between 10,000 variables sampled from the Demand data generating
process.

Figure 6.8: True CERF χ of the Demand problem and scatter plot of sampled data.

interval are included in the Appendix. The ProxySplines method is not considered since interest is placed
only on the first half of the distribution. The evaluation metric for the problem is the causal mean square
error (c-MSE).

Definition (Causal Mean Square Error)
The causal mean square erroris defined as:

c-MSE = ∥χ− χ̂∥22 = E
[
(χ(A)− χ̂(A))2

]
Given a test dataset Dt of size nt, the sample equivalent is:

c-MSEt =
1

nt

∑
i∈Dt

(χ(ai)− χ̂(ai))2

In practice the authors of [69, 30] only evaluate their function on 10 points within the range [10,30]. Apart
from being a conceptual mistake to assume that the ’clipped’ distribution is the same as the unclipped
one, 10 points is by no means a valid test set. Maybe this was done to simulate a real-life scenario,
although it might as well have been because some methods are not as performant away from the mean as
will be seen in the upcoming simulations. For fairness of comparison we compute both the c-MSE10 error,
the one used in the previous papers, and the c-MSE1k, the empirical c-MSE on 1,000 points randomly
sampled from the unclipped distribution. The interquantile range of the errors is also considered as a
measure of performance for the models in appendix A.4.
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Hyper Parameter Choice

The choice of hyper parameter for all existing methods is taken from the original papers. This is assumed
to be optimal hyper parameter selection. Additional choices such as kernel, and network architectures
for the deep learning methods are directly taken from the papers. [69, 30] both run grid search for the
selection of the optimum architecture and network parameters. The NMRR network architecture is a fully
connected network with ReLU activation, 4 layers deep for the U-statistic, 3 layers for the V-statistic, and
80 neurons per layer. The inputs of the network are the sample (Y −Vhi), (Y −Vhj ) and the evaluation of
k(Vqi , Vqj ) where k is the Gaussian kernel. The optimizer is Adam[28] with weight decay regularization
fixed to 3e-6, learning rate 3e-3 and the network is trained for 3,000 epochs even though convergence is
often reached much earlier.
The DFPV method assigns a neural network to each variable. All networks share a similar structure
with only two layers with 32 and 16 nodes respectively. Since there are two negative controls, the
specific network presents two inputs while all others have 1 input. The output is 8 dimensional. Linear
combinations are then used to perform the linear regressions. The regularization parameters for each
regression are both set to 0.01. The learning rate is not specified and automatically decided by the Adam
optimizer[28]. The weight decay is instead set to 0.1 for all networks.
Moreover, it is important to notice that methods that require a held-out dataset to evaluate the CERF,
do so by splitting the data in half. This means that if the number of samples considered is 10,000 the
P2SLS method will use all data points to estimate the CERF whereas the KPV method will use 5,000 to
fit the model and 5,000 to evaluate χ̂. When working with kernels involving multiple variables, we will
specify the kernels for each individual variable and combine them as the product of the marginal kernels:

k ((x1, y1), (x2, y2)) = k(x1, x2) · k(y1, y2)

This is possible because the Hilbert space HX×Y is isometrically isomorphic to HX ⊗HY [36].
For the Quasi-Bayesian method, the kernels used are the Gaussian Kernels with the parameters selected
using the method suggested in [63] which is taken from the KPV method[36]. This resulted in regulariza-
tion parameters ν = 0.001 and λ = 0.004. For the Higher Order Proximal 2SLS, we decide to fit a linear
in A . Although the structural function g in equation (6.3) contains an exponential term in U , which
could be interpreted as ’infinite order ’ when seeing it in terms of Taylor expansions; we decide to stop
at 4th since it is also present in g and e−x

2

quickly vanishes.

Results

The experiments were carried out over three sample sizes to evaluate the model performances in different
situations. The tested sample sizes were 10,000 5,000 and 1,000. The graphs below show the mean of
the model and the 5%− 95% covered in the 20 runs over different seeds. From the figures 6.9 to 6.11, it
is possible to notice that all models perform similarly where the data is highly concentrated (around the
median of 28). Moving away from that area we notice that all models start to deteriorate, as expected.
The best result is given by our model PQB, which not only comes closer to the truth in data-dense areas
but also further from the median.
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Figure 6.9: Individual comparison of the different methods trained on 10,000 data points from the
Demand problem over 20 simulated runs.

Figure 6.10: Individual comparison of the different methods trained on 5,000 data points from the
Demand problem over 20 simulated runs.

Figure 6.11: Individual comparison of the different methods trained on 1,000 data points from the
Demand problem over 20 simulated runs.
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The method also manages to capture the curvature of the true χ in places where the data is also less
concentrated, whereas the second best performing method NMMR does not. The performance of PQB
over other models is confirmed by both CMSE metrics and the sampled error quantiles reported in
table 6.2 (and for c-MSE10 in table A.1). The PQB method has the lowest mean of the CMSE errors
and also the lowest variance. The graphs also highlight how the method has the tightest quantile bounds
around the 20-30 range and only deteriorates in the tail. Another error metric is included in appendix A.4.

Model
c-MSE1k

(trainn = 10, 000)
c-MSE1k

(trainn = 5, 000)
c-MSE1k

(trainn = 1, 000)

P2SLS 24.93± 2.89 24.88± 3.49 25.06± 6.51
HigherOrder 17.46± 2.37 17.48± 4.23 17.69± 5.15
PKDR 16.58± 15.83 16.96± 16.69 5.96± 9.30
DFPV 21.95± 10.61 19.91± 15.10 25.96± 18.17
NMMR-U 5.46± 4.32 8.17± 7.86 19.29± 28.12
NMMR-V 4.05± 3.48 5.29± 4.36 10.11± 10.73
KPV 34.83± 6.55 37.99± 10.93 41.31± 25.12
PMMR 39.12± 96.09 26.20± 12.07 38.45± 11.02
PQB 0.75± 1.13 1.10± 1.27 4.36± 6.68

Table 6.2: Model performance using Causal Mean Error on 1,000 test points.

Decreasing the number of samples used to train shows that performance deteriorates substantially on the
outliers of the distribution. The odd result of PKDR is that it performed better . This is likely due to
the automatic hyperparameter selection occurring at each run. The authors do not specify the procedure
and might suffer from outliers. Similarly, PMMR has odd results in the large training setting, likely due
to numerical problems while inverting a large matrix. Nonetheless the PQB method recovers the shape
of the curve, as can be observed in figures 6.9 to 6.11.
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6.3 Case Study - Sustainable Causal Investing

In recent years, two key investment strategies have gained significant traction: Sustainable Investing
and Causal Investing. Sustainable or green investing has seen a notable increase in popularity as both
individual investors and institutions recognize the importance of addressing global challenges such as
climate change, resource depletion, and social inequality. Many investment funds have started integrating
ESG (Environmental, Social, and Governance) criteria into their investment strategies. ESGs are used
to evaluate the sustainability and societal impact of investments in companies or assets. Unfortunately,
there are no universally adopted standards on how these ratings are produced and evaluated, leading to
inconsistencies between different rating providers. Nonetheless, green assets are seen as more profitable in
the short term when compared to regular investments [32]. This has led many companies to ’greenwash’
their image to appear more environmentally friendly.
Similarly, following the causal revolution, a lot of interest has circled around quantifying causal relation-
ship between financial variables rather than mere correlations. In traditional financial analysis, correlation
is often used to predict asset performance. Causal investing seeks to quantify the true causal relationships
in the market to achieve better performance. By identifying these causal links, investors can make more
informed choices and targeted investments.
Similar to the previously discussed Demand experiment, modeling financial markets involves many unob-
served confounders such as demand and sentiments. This makes it unreasonable to apply the conditional
exchangeability assumption of classic causal inference. Instead, we might collect proxies to adjust for
these unobserved factors. For this reason, the proximal inference framework is a perfect fit. The research
question of interest combines causal and sustainable investing to answer the following question:

Does investing in fossil fuel companies have a causal effect on the return?

To answer this question, we will consider data from investment funds between 31-01-2024 and 31-05-2024.
The data, obtained from [17], contains detailed information on how the capital of these funds is allocated
along with various sustainability scores. We choose the treatment to be the percentage of fund assets
invested in fossil fuel holdings (A) at the beginning of the study and the outcome is percentual increase
in market asset value(Y) at the end of the study. The underlying market conditions and sentiments are
considered the unmeasured confounder(U). The negative treatment variable (Z) is chosen to be the rating
assigned to the ticker at the beginning of the study (American grading system A-F). The idea behind
this is that it represents the sentiment or propensity of the asset manager to invest in fossil fuel holdings.
The outcome proxy (W) is chosen to be the average return for the funds in the same category. In practice
these assumptions might be too simplistic as the period of the study is long and the funds alter their
capital consistency over said period. Moreover, market dynamics are complicated and unlikely to be well
modeled by just a few variables. Nonetheless, it is interesting to apply the proximal method to such a
problem.

Increase in Value
% if green
Holdings

Market Conditions

Average
Returns of

Funds
Fund Rating

Figure 6.12: Graphical model for the Sustainable Causal Investing example.

The Data

We have a total of 3546 samples. The distribution of the funds within the categories and fossil fuel rating
is the following:
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Category Count

U.S. Equity Fund 1655
International Equity Fund 831
Allocation Fund 763
Sector Equity Fund 297

Table 6.3: Number of funds by category.

Category Count

A 324
B 281
C 722
D 1246
F 973

Table 6.4: Number of funds by category.
Having seen that the PQB method works well in the low number of samples case for the Demand
experiment, we decide to split the data in three parts: 1000 samples to decide the hyper parameters of
the model, 1273 for training and the remaining 1273 for the prediction. Applying the same procedure as
before we obtain regularization parameters of λ = 0.1 ν = 20.3. We also fit a simple P2SLS and a Higher
order P2SLS with order 2 treatment and linear confounding.

Results

In this case we do not have an estimate of the true CERF as the data is real observational data. The
estimated CERF by the three considered methods is reported in figure 6.13. The simpler P2SLS, and

Figure 6.13: Various method on the considered ESG dataset.

Higher Order model indeed recognize a trend but might be too simple. With respect to these results,
it seems that investing more into fossil fuels is not as profitable as staying green. The second order
treatment recognizes some curvature in the later part of the CERF. The PQB method also captures an
initial downward tren but then captures a large peak at the center and trails off at the sides. This seems
to suggest that the CERF achieves its maxima around the half way point, and thus the optimal choice is
to allocate half of funds to fossil fuel.
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6.4 Case Study - Effect of Exercise on Sleep

In 1997, the authors of [47] performed a 10 week randomized control trial on a group of elderly participants
to determine the effect of exercise on subjective sleep quality and depression. Results highlighted that
physical exercise had a significant positive effect on the latter. A more recent study of 2020 [58] also
shows similar results on a middle age demographic. Unfortunately, as the authors of [16] point out, stress
and anxiety can act as confounders between treatment and outcome. The first two studies only measure
subjective sleep quality assessed with a questionnaire. Various studies [1, 7] have found that longer Slow
Wave Sleep(SWS), commonly known as deep sleep, is highly correlated with better subjective sleep.
Moreover, the scientific literature seems to agree that exercise leads to increased amounts of deep sleep
[71]. The best way to measure this quantity is through a polysomnography, a sleep test. Unfortunately
these laboratory experiments involve complicated measuring tools and could introduce anxiety, which
would in turn generate biased results. Nowadays, wearable technology enables users to measure and
evaluate both sleep quality and physical activity. This generates an abundance of observational data
that overcomes the previously mentioned laboratory induced confounding, which could be used to study
the causal effect of physical exercise on sleep. Additionally, users can easily log their psychological well
being through various apps. As discussed in section 1.3, questionnaires about psychological states are
not direct measures, but rather proxies, for the underlying conditions.

Similarly to other studies [16, 22, 47, 58] we aim to answer the following research question:

What is the causal effect of exercise on deep sleep?

The main difference from the existing studies is that this is a study based on purely observational data, we
quantify the effect of exercise on deep sleep and not a subjective measure of it, and the data is collected
without affecting daily routines.

Data and Structure

The Simula PMData sports dataset[55], is an open real-life dataset which has collected daily health data
from 16 participants over the period of 5 months. The participants collected data in two ways: Fitbit
Versa 2 smartwatch wristband to measure heart rate, sleep and exercise, and questionnaires to evaluate
the lifestyle choices. This dataset is a perfect example of observational data; there is no experimental
set-up to guarantee any randomization or guarantee the capture of all confounders.

The treatment variable (A) is set to the intense exercise time and outcome (Y) the minutes of deep
sleep. The unmeasured confounder (U) directly affecting both is Stress. This may be either physiological
or psychological stress. Both types of stress have an effect on both sleep time and whether or not one
exercises. For negative control exposure (Z) we consider the answers associated with the physical stress
questionnaire: soreness and fatigue. Notice that this variable is the perception of physical stress and does
not quantify the true stress. As such, it will influence the amount of exercise performed but should not
have an effect on total amount of time spent sleeping. Moreover, since the questionnaire is answered at
the beginning of the day, it is guaranteed that the exercise time (A) does not have an effect on fatigue(Z)
since a effect cannot occur before a cause. For negative control outcome (W), we consider the average
amount of deep sleep in the previous week. We expect this variable to be a proxy for overall psychological
stress and also account for personal basis of deep sleep. The only effect (W) could have on (A) is with a
backdoor path through (U).

Additionally, to characterize the baseline fitness level of the individual, we decide to include a measured
confounding (X). This variable will consist of the average weekly exercise. In practice we expect this to
affect (A), as higher fitness individuals are more likely to train; but also (Z) (W) and (Y).
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Figure 6.14: Graphical representation for the sleep
case study. Figure 6.15: Joint density of observed variables for

the sleep experiment.

After combining the various data repositories, we obtain a total of 1478 samples. The (Z) variables
have discrete support as they are answers to a 5 point likert scale. Even though the the smartwatch only
measures the remaining variables with a precision of 1 minute, we assume that the support of (W),(X),(A)
and (Y) is R+. The joint distribution of the observable variables can be found in figure 6.15.

Results

To answer our question of interest, we fit two models: Higher Order P2SLS and Proxy Quasi Bayesian.
Seen the success of PQB on small datasets, we decide to train the hyper parameters of the model on a
dataset of size 478 and use the remaining 1,000 points to fit the model. The optimum parameters found are
λ = 1.2 and ν = 0.67. For the Higher Order P2SLS we decide to fit a model with (Ai, Xj , Uk) (i, j, k) =
(2, 2, 2). This is because we would expect the effect to be somewhat parabolic, an increase until a certain
point and then detrimental.

Figure 6.16: Estimated CERF for the sleep experiment.

Figure 6.16 contains the results of the two estimated CERFs. The PQB estimator highlights that intense
physical exercise has a total positive effect on SWS time, but this effect deteriorates after a certain
amount and plateaus as the exercise session becomes longer. This can be explained by the fact that too
much exercise tires out the the subject too much, in other words excessive exercise hinders sleep quality
[4]. The results form the HigherOrder model also show a positive effect that then seems to plateau, but
keeps increasing without stopping. The result may be less reliable as it does not have regularization to
penalize and might overfit to areas where data is more scarce. Nonetheless, both results confirm the
existing knowledge on the effect of physical exercise on deep sleep[16, 71].

A small note on the assumptions

The case study should not be taken as definitive medical evidence, but rather showcase a potential
application of the proximal inference framework. The decisions made here were simply based on common
sense and personal experience and do not have expert medical justification. As observed by [29], the
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relationship between sleep and exercise seems to be bidirectional. Indeed higher amounts of exercise
lead to improved sleep and higher amounts of SWS, but the converse seems to also have an effect. Low
quality sleep leads to lower physical activity levels. The chosen structure for this experiment does not
consider this. Moreover, it completely ignores the fact that the data also has a temporal component to
it. There are methods in the proximal inference framework that would allow for estimation of causal
quantities in such a setting; for more details [53, 41]. Additionally, we assume that the data is i.i.d
sampled even though this is not exactly the case due to the fact that we are using the measurements of
the same individuals over different days. This is somewhat corrected by the fact that W and X are the
individual average results. Interestingly, we started off wanting to measure sleep quality and ended up
using amount of SWS as outcome. Note that this quantity is not sleep quality in it of itself, but rather
one possible cause. Further investigations could explore a different structure where SWS time is a cause
of sleep quality. Another key refinement would be to measure both exercise time but also intensity. In
the current experiment, the intensity is measured by the heart rate at which it is performed but some
exercises may be more exhausting than others.
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Conclusion

The causal revolution along with the greater availability of data have opened many doors for causal
quantities to be determined. In chapter 1, we introduced the history of causality in statistics and the
scientific disciplines. The g-formula enables us to transform observational data into experimental and
make inference on the causal quantities. The most questionable assumption of the classic framework is
the conditional exchangeability assumption, which ensures that treatment is assigned at random given
the covariates. This is where the topic of proximal causal inference comes in, which allows more flexi-
bility compared to the classical framework by requiring proximal exchangeability. The specific structure
of negative control then enables causal identification even in the presence of unmeasured confounders.
Nonetheless, we must be critical as no approach is an all end all solution, but rather a delicate balance
of assumptions and objectives. The proximal framework trades off the additional complexity of bridge
functions for the capacity to adjust for the unobserved. The extra requirements of completeness and
structure are not always guaranteed to hold, and depend on the availability of the data. Even so, as
discussed in chapter 2, the characterization of the bridge functions as solutions to ill-posed problems
makes it troublesome to correctly estimate them. The non-invertibility of the conditional expectation
operator makes it non-trivial to determine the solution. Additionally, the operator needs to be estimated
from the data.
In chapter 3 we studied the state of the art, and found that it is often difficult to balance theoretical
complexity with practical needs. If one prefers the latter, one should consider linear parametric models,
which can become more flexible and better adapt to real world situations with the Higher Order methods
introduced in chapter 4. Otherwise, if the proximal structure of the variables is the only knowledge
available about the problem, then a different non-parametric approach studied might be more suitable.
One could also choose to use the more novel neural network based approach but, as of currently, would
lose the stronger theoretical guarantees associated with KPV,PMMR,PKDR. The first two require well
posedness in terms of powers of RKHS spaces and uniqueness assumptions and result in point wise error
bounds for the CERF estimator. The PKDR approach leverages both the outcome and exposure bridge
function to construct an estimator. Under additional assumptions on the critical radii of the function
class considered and the rate of convergence of the bridge estimates, the ATE estimator converges at rate√
n. As seen in section 3.3, the ATE estimator can be smeared over continuous data using kernels as

in kernel density estimation. In such case, at the optimal trade-off between bias and variance, the best
obtainable rate is n−

2
5 .

In chapter 5 we introduced the proxy quasi-Bayes method, which presents strong theoretical guarantees
under minimal assumptions and good empirical performance as later observed. The rate of convergence
of the estimator depends on the ill-posedness measure of the problem. Additionally, if it were reasonable
to make smoothness assumptions on the bridge function, the PQB method can match them by choice of
an appropriate kernel (often Matérn to match order of continuity). In chapter 6, the newly formulated
approaches were tested on synthetic data, generated to match the assumptions and on real world cases.
In the latter case, the findings are in line with the existing literature on the topic.

7.1 Future work

In the middle of writing of this thesis, computer scientists became extremely excited about a new network
architecture that would, in their opinion, revolutionize the world, Kolmogorov Arnold Networks. The
authors attempted to provide a theoretical framework to justify the new architecture but, unfortunately,
was not well theoretically sound, and interest in the topic quickly died down. Nonetheless, an attempt
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was made to deploy the architecture for NMMR and DFPV procedures. Unfortunately the results were
not successful and were outperformed by the existing architectures. However, it is worth noticing that
the architecture in the numerical experiments was chosen through cross validation. For a fully connected
network with the same width at each layer, the variables at play are network depth, network width,
learning rate and weight-decay. This means if each grid of testing parameters is n, we would have to
check a total of n4 iterations. This is already computationally impractical. If additionally we want to
test for a non-fully connected architecture, or uneven width within the layers, the problem becomes much
worse.
The proximal framework is heavily reliant on the specific structure of the negative controls. One might
argue that its ability to adjust the unobserved is similar to that of instrumental variables, the difference
being the structure. Thus, other more exotic structures might enable identification in the presence of
unmeasured confounders under different assumptions. Moreover, the majority of the work has been done
for binary treatment and Average Treatment Effect rather than the CERF studied in this thesis. The
door is open for many new causal approaches.
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Appendix

A.1 Linear-Extras

Lemma A.1 (Delta Method Calculations)
Let

Σ =


σ2
θA

ρθ 0 0
ρθ σ2

θZ
0 0

0 0 σγA ργ
0 0 ργ σγZ


and ∇f(B0) =

[
1,−γAW

γZW
, θZY

γZW
,− θZY γAW

γ2
ZW

]
. Then

∇f(B0)Σ∇f(B0)
T = σ2

θA −
γAW
γZW

ρθ −
γAW
γZW

ρθ + (
γAW
γZW

)2σ2
θZ

+ (
θZY
γZW

)2σγA −
θ2ZY γAW
γ3ZW

ργ −
θ2ZY γAW
γ3ZW

ργ + (
θZY γAW
γ2ZW

)2σγZ

Proof.

∇f(B0)Σ =
[
σ2
θA
− γAW

γZW
ρθ, ρθ − γAW

γZW
σ2
θZ
, θZY

γZW
σγA −

θZY γAW

γ2
ZW

ργ ,
θZY

γZW
ργ − θZY γAW

γ2
ZW

σγZ

]

∇f(B0)Σ∇f(B0)
T = (σ2

θA −
γAW
γZW

ρθ) · 1 + (ρθ −
γAW
γZW

σ2
θZ ) · (−

γAW
γZW

)

+ (
θZY
γZW

σγA −
θZY γAW
γ2ZW

ργ) ·
θZY
γZW

+ (
θZY
γZW

ργ −
θZY γAW
γ2ZW

σγZ ) · (−
θZY γAW
γ2ZW

)

Simplifying:

∇f(B0)Σ∇f(B0)
T = σ2

θA − 2
γAW
γZW

ρθ + (
γAW
γZW

)2σ2
θZ + (

θZY
γZW

)2σγA − 2
θ2ZY γAW
γ3ZW

ργ + (
θZY γAW
γ2ZW

)2σγZ

A.1.1 Gaussian Models

Suppose I sequentially generate the data as:

U = β0 + ϵU

W = φ0 + φU · U + ϵW

Z = γ0 + γU · U + ϵZ

A = α0 + αU · U + αZ · Z + ϵA
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Where ϵi ∼ N (0, σ2) i.i.d. and independent from the other variables, This implies that E [XϵY ] = σ2δX=Y

This way we have the following expectations:

E [U ] = β0

E [W ] = φ0 + φUβ0

E [Z] = γ0 + γUβ0

E [A] = α0 + αUβ0 + αZ(γ0 + γUβ0)

E
[
U2
]
= β2

0 + σ2

E [UW ] = E [U · (φ0 + φU · U + ϵW )] = φ0β0 + φU (β
2
0 + σ2)

E [UZ] = E [U · (γ0 + γU · U + ϵZ)] = γ0β0 + γU (β
2
0 + σ2)

E [UA] = E [U · (α0 + αU · U + αZ · Z + ϵA] = α0β0 + αU (β
2
0 + σ2) + αZ

(
γ0β0 + γU (β

2
0 + σ2)

)
E [ZW ] = E [(γ0 + γU · U + ϵZ)(φ0 + φU · U + ϵW )] = γ0φ0 + β0(γ0φU + γUφ0) + γUφU (β

2
0 + 1)

E
[
W 2
]
= E [W · (φ0 + φU · U + ϵW )])] = φ0(φ0 + φUβ0) + φU (φ0β0 + φU (β

2
0 + σ2)) + σ2

E
[
Z2
]
= E [Z · (γ0 + γU · U + ϵZ)])] = γ0(γ0 + γUβ0) + γU (γ0β0 + γU (β

2
0 + σ2)) + σ2

E [AZ] = E [Z · (α0 + αU · U + αZ · Z + ϵA)])]

= α0(γ0 + γUβ0) + αU (γ0β0 + γU (β
2
0 + σ2)) + αZ(γ0(γ0 + γUβ0) + γU (γ0β0 + γU (β

2
0 + σ2)) + σ2)

E
[
A2
]
= E [A · (α0 + αU · U + αZ · Z + ϵA)]

= α0(α0 + αUβ0 + αZ(γ0 + γUβ0)) + αU · (α0β0 + αU (β
2
0 + σ2) + αZ

(
γ0β0 + γU (β

2
0 + σ2)

)
)

+ αZ · (α0(γ0 + γUβ0) + αU (γ0β0 + γU (β
2
0 + σ2)) + αZ(γ0(γ0 + γUβ0) + γU (γ0β0 + γU (β

2
0 + σ2)) + σ2)) + σ2

cov(X,Y ) = E [XY ]− E [X]E [Y ]

cov(aX + b, Y ) = acov(X,Y )

cov(U,U) = β2
0 + σ2 − β2

0 = σ2

cov(U,W ) = φUcov(U,U) = φUσ
2

cov(U,Z) = γUcov(U,U) = γUσ
2

cov(U,A) = αUcov(U,U) + αZcov(U,Z) = σ2(αU + αZγU )

cov(Z,Z) = γ2Ucov(U,U) + cov(ϵZ , ϵZ) = σ2(γ2U + 1)

cov(W,W ) = φ2
Ucov(U,U) + cov(ϵW , ϵW ) = σ2(φ2

U + 1)

cov(Z,W ) = φUγUσ
2

cov(A,Z) = αZcov(Z,Z) + αUcov(Z,U) = αZσ
2(γ2U + 1) + αUγUσ

2

cov(A,W ) = αZcov(Z,W ) + αUcov(U,W ) = αZφUγUσ
2 + αUφUσ

2

cov(A,A) = αZcov(A,Z) + αUcov(A,U) + σ2 = σ2
(
α2
Z(γ

2
U + 1) + α2

U + 2αUαZγU + 1
)

Σ =

ΣUU ΣUZ ΣUA
ΣZU ΣZZ ΣZA
ΣAU ΣAZ ΣAA

 = σ2

 1 γU (αU + αZγU )
γU (γ2U + 1) αZ(γ

2
U + 1) + αUγU

(αU + αZγU ) αZ(γ
2
U + 1) + αUγU α2

Z(γ
2
U + 1) + α2

U + 2αUαZγU + 1


Letting S = (Z,A) conditional distribution of U |ZA is then:

U |ZA ∼ N (µ̃, Σ̃)

µ̃ = µU − ΣSUΣ
−1
SS(S − µS)

Σ̃ = ΣUU
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Letting Sc = S − µS we have that:

µ̃ = µU +
Zc (ΣAAΣUZ − ΣUAΣAZ) +Ac (ΣZZΣUA − ΣUZΣZA)

Σ2
ZA − ΣAAΣZZ

(A.1)

The coefficients for E [U |Z,A] = η0 + ηZZ + ηAA are then found as:

ηZ =
(ΣAAΣUZ − ΣUAΣAZ)

Σ2
ZA − ΣAAΣZZ

=
γU − αU · αZ
α2
U + γ2U + 1

ηA =
(ΣZZΣUA − ΣUZΣAZ)

Σ2
ZA − ΣAAΣZZ

=
αU

α2
U + γ2U + 1

The ratio we wish to estimate is thus:

θAY
θZY

=
ηA
ηZ

=
αU

γU − αU · αZ

This is ill conditioned if γU − αUαZ is close to zero.

A.2 Efficiency of the influence function in Semiparametric Prox-
imal Causal Inference

Theorem 3.1 shows that the found function is an influence function for the model characterized by the
existence of an outcome bridge function. The authors of [13] then state that, under the additional
assumption that both E,E∗ are surjective, the influence function of equation (3.13) is efficient. This is
done by showing that such function is within the tangent space.

Proof. From the proof of Theorem 3.1 we have that the tangent set is:

T = {S(Y,W,Z,A,X) = S(Z,A,X) + S(Y,W |Z,A,X) :

S(Z,A,X) ∈ L2(Z,A,X) : E [S(Z,A,X)] = 0

S(Y,W |Z,A,X) ∈ L2(Z,A,X)⊥ : E [S(Y,W |Z,A,X)] = 0

E [(Y − h0(W,A,X))S(Y,W |Z,A,X)|Z,A,X] ∈ Range(E)}

Now notice that:

IF = (−1)1−Aq(Z,A,X) · (Y − h(W,A,X)) + ∆Ah− ψ
= (−1)1−Aq(Z,A,X) · (Y − h(W,A,X)) + ∆Ah− ψ ± E [∆Ah− ψ|Z,A,X]

= E [∆Ah− ψ] |Z,A,X + (−1)1−Aq(Z,A,X) · (Y − h(W,A,X)) + ∆Ah− ψ − E [∆Ah− ψ|Z,A,X]

By the proof of Theorem 3.1, the first term is in T . For the remaining term:

E
[
(−1)1−Aq(Z,A,X) ·

(
Y − h(W,A,X)2

)
|Z,A,X

]
= 0

E [∆Ah− ψ − E [∆Ah− ψ|Z,A,X] |Z,A,X] = E [∆Ah− ψ|Z,A,X]− E [∆Ah− ψ|Z,A,X] = 0

Moreover, by the assumption on the surjectivity of E we have that both are within the closure of Range(E)
and thus the IF is in T .

Surjectivity is an odd requirement as the image of the operator would have to coincide with all of L2.
Moreover, conditional expectation operators are often compact and thus their range cannot coincide with
all of L2[60]. Even more so, the bijectivity of the conditional expectation operator required in [26] is an
even stranger requirement since, if this was the case, invertibility of E would not be a problem and the
problem would not be ill posed.
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A.3 Quasi-Bayesian Proximal Inference

A.3.1 Fenchel Duality
The authors of the paper justify the loss function using so called Fenchel Duality. This was the main
approach also used in the original dual instrumental variable paper[38]. For sake of completion it is also
reported here.

Definition A.1 (Proper Function)
A function h is said to be proper if the domain of h is not the empty set and it is always greater than
−∞.

Definition A.2 (Semicontinuity)
A function is said to be upper semicontinuous at x0 if ∀ϵ > 0 there exists δ > 0 such that:

∀x ∈ B(x0, δ) f(x)− f(x0) < ϵ

. Similarly, a function is said to be lower semicontinuous at x0 if: ∀ϵ > 0 there exists δ > 0 such that:

∀x ∈ B(x0, δ) f(x)− f(x0) > ϵ

.

From these definitions, it clearly follows that a continuous function is both upper and lower semicontin-
uous.

Figure A.1: Example of upper semicontinuous function.

Theorem A.1 ([38] Interchangeability)
Let W be a random variable on Ω. For all W ∈ Ω let h(·,W ) : R → (−∞,+∞) be proper and upper
semicontinuous and concave. Then:

EW
[
max
u∈R

f(u,W )

]
= max
u∈U(Ω)

E [f(u(W ),W )]

where U(Ω) : {u : Ω→ R}.

Definition A.3 (Convex Conjugate)
For any function h : Rn → R the convex conjugate to h is defined by:

h∗(s) = sup
x
{⟨s, x⟩ − h(x)}

where ⟨·, ·⟩ is the classic inner product on Rn.

Definition A.4 ([38]Fenchel Duality1)
Let l : R × R → R+ be a proper, convex, and lower semi-continuous loss function for any value in its
first argument and l∗y = l∗(y, ·) a convex conjugate of ly = l(y, ·) which is also proper, convex, and lower
semi-continuous w.r.t. the second argument. Then, ly(v) = maxu{uv − l∗y(u)}.

Proposition A.1 (Conjugate of the squared loss)
Let lv(t) = 1

2 (v − t)
2 v, t ∈ R be the squared loss function. The convex conjugate of lv is given by:

l∗v(s) = sv +
1

2
s2

1The following resource provides interactive graphs to gain an intuition: https://remilepriol.github.io/dualityviz/

https://remilepriol.github.io/dualityviz/
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Proof. First observe that lv(t) is proper since it its domain is R, its convex and continuous and thus
lower-semicontoniuous. By definition of convex conjugate

l∗v(s) = sup
t∈R
{st− lv(t)}

= sup
t∈R

{
st− 1

2
(v − t)2

}
l∗v is proper,concave and upper-semi continuous in s by the same reasoning as for lv. Taking the derivative
we can determine its zeros:

d

dt

[
st− 1

2
(v − t)2

]
= s+ (v − t)

Setting this equal to zero, the critical point is given by t = s+ v. Since the function is concave in t this
is necessarily a maximum. Plugging this back into the definition of l∗v we obtain:

l∗v(s) = s(s+ v)− 1

2
(v − (s+ v))

2
= s(s+ v)− 1

2
s2 = sv +

1

2
s2

Proposition A.2
If the function class G contains all functions E [h(W,A)− h′(W,A)|Z,A] ∀h, h′ ∈ H then the loss in
equation (5.5) is equivalent to:

L(h) = max
u∈G

EZ,A
[
(h(W,A)− Y ) · u(Z,A)− 1

2
u2(Z,A)

]
(A.2)

Proof. Consider the squared loss function l = 1
2 (E [Y |Z,A]− E [h(W,A)|Z,A])2. Then using the results

from appendix A.3.1, in particular Interchangeability and Fenchel Duality:

L(h) = EZ,A [l (E [Y |Z,A] ,E [h(W,A)|Z,A])]

= EZ,A
[
max
u∈R

E [h(W,A)|Z,A] · u− l∗E[Y |Z,A] (u)

]
= max
g∈G(Z,A)

EZ,A
[
E [h(W,A)|Z,A] · g(Z,A)− l∗E[Y |Z,A] (g(Z,A))

]
= max
g∈G(Z,A)

EZ,A
[
h(W,A) · g(Z,A)− l∗E[Y |Z,A] (g(Z,A))

]
By proposition A.1 we have that l∗v(s) = sv+ 1

2s
2. Substituting this in the previous completes the proof:

L(h) = max
g∈G(Z,A)

EZ,A [h(W,A) · g(Z,A)]− EZ,A
[
E [Y |Z,A] g(Z,A) + 1

2
g2(Z,A)

]
= max
g∈G(Z,A)

EZ,A
[
(h(W,A)− Y ) · g(Z,A)− 1

2
g2(Z,A)

]

Notice that the assumption on the function class G is similar to the one of Corollary 3.2 in the semi-
parametric setting.

A.3.2 Non-parametric Bayesian results
Here are the assumptions and technical results used in [63] to achieve the posterior consistency result
in the Instrumental Variable setting. They are presented with the notation adapted to the proximal
inference problem.

Assumption A.1
Y − h0(Vh) is bounded, i.e. ∃B : ∥Y − h0∥∞ ≤ B.

Assumption A.2 ensures that the associated kernel operator admits a Mercer decomposition theorem 2.3.
Intuitively, the third point of this assumption requires every point in X to have some probability of
happening.
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Assumption A.2 1. W,A,X ,Z are Polish2.

2. kVh
is measurable continuous, bounded and L2 universal

3. PVh
has full support.

Assumption A.3 enforces the eigenvalues of H to have a polynomial decay, where b determines the
regularity of the functions in it. As discussed in definition 2.8, lower b translates to rougher or less regular
functions. On the contrary if b is large, then the functions in H are smoother. Note that assumption A.3
excludes the Gaussian kernel since it has exponentially, and thus much faster decaying eigenvalues.
Nonetheless, we implement it in practice due to its computational simplicity and can heuristically consider
it as a Matérn with very very large b. If some other regularities were known about h0 then the choice of
b becomes immediate.

Assumption A.3 1. The eigenvalues of the kernel operator defining H are such that λ2i ≍ i−(b+1) for
some b > 1.

Since the samples of a gaussian process do not belong to its reproducing kernel hilbert space, assump-
tion A.4 ensures that the true bridge function h0 is in some power space of the RKHS or at least that
there is an element in H arbitrarily close to h0. This enables us to have a rougher or more irregular true
bridge function than in the RKHS of the GP.

Assumption A.4
Define H = H

b
b+1 . Then we require that:

1. h0 ∈ H OR ∃h∗i ∈ H such that ∥h∗i ∥H ≲ i
1

b+1 and ∥h0 − h∗i ∥
2
∞ ≲ 1

The problem is assumed to be mildly ill posed, i.e. the eigenvalues of the conditional expectation operator
are polynomially decaying. The parapmeter p decides the level of ill-posedness. Higher values of p
translate to more compression of information and thus a higher level of ill-posedness.

Assumption A.5 (Mildly-ill posed)
The conditional expectation operator E has singular values νi ≍ i−p where p ≥ 0.

Definition A.5 (L2 Projection)
Let {φi} be the previously defined ONB of L2(Vh, PVh

). Then the L2 projection on the first j elements of
{φi} is defined as:

ProjJh =

J∑
i=1

⟨h, φi⟩2 φi

The following assumptions ensures that the eigenfunctions of the kernel operator K and E∗E are aligned
up to scaling constants. Although the authors use assumption A.6, we can also use a stronger condition
in that {φi} diagonalizes E∗E. This implies their assumption A.6 as is shown in proposition A.3.

Assumption A.6 ([63]Link Conditions)
For all h ∈ L2(Vh, PVh

) we assume that ∀J :

∥Eh∥22 ≳ J
−2p ∥ProjJh∥22 (Reverse Link)

∥Eh∥22 ≲
∞∑
i=1

i−2p ⟨h, φi⟩22 (Link)

Proposition A.3
If {φi} diagonalizes E∗E where E is the conditional expectation operator, then assumption A.6 is satisfied.

Proof. Let {φi} be the ONB of the kernel operator T associated with the RKHS H. By assumption this
basis diagonalizes E∗E. This means that both E and its adjoint E∗ can be written as series expansion:

Eh =

∞∑
i=1

νi ⟨h, φi⟩2 ϕi

2Separable completely metrizable topological space. In other words, nicely behaving spaces.
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It is immediate by assumption A.5 that:

∥Eh∥22 =

∞∑
i=1

ν2i ⟨h, φi⟩
2
2 ≍

∞∑
i=1

i−2p ⟨h, φi⟩22 =

J∑
i=1

i−2p ⟨ProjJh, φi⟩22 +
∞∑

i=J+1

i−2p ⟨Proj>Jh, φi⟩22

The Link assumption is satisfied since A ≍ B ≡ ∃c > 0 : A = cB =⇒ A ≤ cB ≡ A ≲ B. Similarly for
the Reverse link assumption:

∥Eh∥22 ≥
J∑
i=1

i−2p ⟨ProjJh, φi⟩22 ≥ J
−2p

J∑
i=1

⟨ProjJh, φi⟩22

since i−2p is a decreasing sequence in i.

The following assumption defines the critical radius of the adversarial function class G. This enables us
to use various concentration inequalities.

Assumption A.7 (Complexities)
Denote by G1 the unit norm ball of G. Let δn be the critical radius of the local Rademacher complexity of
G1. Then

1. Functions in I are uniformly bounded and δ2n ≲ n
− b+2p

b+2p+1

2. The restriction of E to H has image in G, i.e. E(H) ⊂ G and is bounded ∥Eh∥G ≤ ∥h∥H
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This lemma shows that the powerspace of a RKHS is the RKHS associated to the kernel operator with
kernel equal to the power placed on its eigenvalues. This is very intuitive since K =

∫
kdµ can be seen

as a very large matrix, any power Kα is equivalent to applying it to the ’diagonal matrix’ consisting of
its eigenvalues λi.

Lemma A.2 ([63]Lemma 10)
Let H satisfy assumptions assumptions A.2 and A.3. Then ∀α ∈ [ beb+1 ,∞) ⊃ [ b

b+1 ,∞) the power space:

Hα =

{ ∞∑
i=1

ajφj :
∑
i=1

λ−2α
i a2i <∞

}

• is a reproducing kernel Hilbert space with kernel given by

kα(x1, x2) =

∞∑
i=1

λ2αi φj(x1)φj(x2)

• kα is a bounded kernel

This lemma is used to find upperbounds for the norms ∥·∥H , ∥·∥∞ in terms of the L2 and H norm. As
b→∞ H→ H and the ∥·∥H norm will mostly be similar to ∥·∥H.

Lemma A.3 ([63]Lemma 11)
Let H satisfy assumptions assumptions A.2 and A.3, and let H = H

b
b+1 . Then ∀f ∈ H we have the

following:

∥h∥2H ≲ (∥h∥2H)
b

b+1 (∥h∥22)
1

b+1

∥h∥2∞ ≲ (∥h∥2H)
b

b+1 (∥h∥22)
1

b+1

This result tells me two things: the first is that the probability that a sample from a GP W is small in
H

b′
b+1 decays exponentially. The second states that W can be decomposed (with high probability) into

two terms, a principal one hρ in H and an errror term he in H
b′

b+1 .
If b′ → b then my τ will decrease very slowly and remain close to one much longer.

Lemma A.4 ([63]Lemma 12)
Let W ∼ Π be a Gaussian Process with covariance kernel kVh

. Then ∀b′ ∈ [0, b) m > 0 ∃c1, c2, c3 > 0 and

τ ′
2
m = m− b−b′

b+1 such that:

Π({∥W∥2
H

b′
b+1
≤ τ ′2m}) ≥ exp (−c1m

1
b+1 )

Π(Θ′
m) ≥ 1− exp (−c3m

1
b+1 )

where Θ′
m = {W = hρ + he : ∥hρ∥2H ≤ c2m

1
b+1 , ∥he∥2

H
b′

b+1
≤ τ ′2m}
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The following lemma shows that a projection in L2 is also a projection in a power space Hα but with the
basis rescaled by the singular values of the space.

Lemma A.5 ([63]Lemma 15: Projection Equivalences)
Let H satisfy assumptions A.2 and A.3 and H = Hα with α ∈ [0, 1] such that b̃ = (b + 1)α and let
λ̃i

2
:= λ2αi ≍ i−b̃ = i−α(b+1). Then ∀f ∈ H we have:

1. ProjJh =
∑j
i=1

〈
h, λ̃iφi

〉
H
λ̃iφi

2. ProjJ is the orthogonal projection onto span of the first J {λ̃iφi}

3. ∥Proj>Jh∥2 ≲ ∥h∥H J− b̃
2

Proof. {φi} are the eigenfunctions of L2 and λ2i are the eigenvalues of the kernel operator associated with
H. {φi} forms an O.N.B. of L2 and thus h can be rewritten as h =

∑
i=1 hiφi =

∑
i=1 ⟨h, φi⟩2 φi, then:

∥h∥22 =
∑
i=1

⟨h, φi⟩22 = h2i

∥h∥Hα =
∑
i=1

1

λ2αi
⟨h, φi⟩22 =

∑
i=1

h2i
λ2αi

= ⟨h, h⟩Hα =
∑
i=1

h2i ⟨φi, φi⟩Hα

Thus, ∥φi∥2Hα = 1
λ2α
i

and then {λαi φi} is ONB of Hα. Thus we can rewrite the inner product of L2 as:

⟨h, φ⟩2 φi =

〈∑
i=1

hiφi, φi

〉
2

φi =
∑
i=1

hi ⟨φi, φi⟩2 φi =
∑
i=1

hiλ
2α
i ⟨φi, φi⟩Hα φi

=
∑
i=1

hi ⟨φi, λαi φi⟩Hα λ
α
i φi =

〈∑
i=1

hiφi, λ
α
i φi

〉
Hα

λαi φi = ⟨h, λαi φi⟩Hα λ
α
i φi

This means that ProjJh =
∑J
i=1 ⟨h, φi⟩2 φi =

∑J
i=1 ⟨h, λαi φi⟩Hα λαi φi. For the last item, notice that:

∥Proj>Jh∥22 =

∥∥∥∥∥ ∑
i=J+1

⟨h, λαi φi⟩Hα λ
α
i φi

∥∥∥∥∥
2

2

=
∑
i=J+1

⟨h, λαi φi⟩
2
Hα λ

2α
i ∥φi∥

2
2

≤ λ2αJ
∑
i=J+1

⟨h, λαi φi⟩
2
Hα = λ2αJ ∥Proj>Jh∥

2
Hα ≤ λ2αJ ∥h∥

2
Hα ≍ J−b̃ ∥h∥2Hα

Where the inequality follows from λ2αi being a decreasing positive sequence and as such is always less
than or equal to its first term, and ∥φi∥2 = 1.
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This result is similar to that of lemma A.4. The W can be decomposed in two parts: a primary term hρ
and an ’error’ term he. Here the error is shown to have both small L2 norm and H b′

b+1
norm. Moreover,

under the assumptions previously introduced the ’error’ term is bounded (supnorm is bounded). Since
my sample is not in H with probability one, as m grows, the more functions will be contain in H, and
the smaller the error term.

Corollary A.1 ([63])
Let W ∼ Π be a Gaussian Process with covariance kernel kVh

. Then we have that:

1. ∀b′ ∈ [0, b) ∃cb′ , c′b′ > 0 ∀m ∈ N τ2m = m− b
b+1 :

Π(Θm,b′) ≥ 1− exp (−c′b′mτ2m)

Θm,b′ = {h = hρ + he : ∥hρ∥2H ≤ cb′mτ
2
m, ∥he∥

2
2 ≤ cb′τ

2
m, ∥he∥H b′

b+1
≤ cb′m− b−b′

b+1 }

2. Under Assumption assumption A.3 (in particular 3.2) =⇒ ∃c, c′ > 0 ∀m ∈ N:

Π(Θm) ≥ 1− exp (−c′mτ2m)

Θm = {h = hρ + he : ∥hρ∥2H ≤ cmτ
2
m, ∥he∥

2
2 ≤ cτ

2
m, ∥he∥∞ ≤ c}

Proof. We just need to prove that Θm,b′ ,Θm is the same as the set described in lemma A.4. We first
define two intermediate quantities:

h̃ρ = hρ + ProjJhe h̃e = Proj>Jhe

Projections always decrease norms and thus if he ∈ Θ′
m =⇒ ∥he∥2

H
b′

b+1
≤ τ ′2m

τ ′2m ≥ ∥he∥H b′
b+1
≥ max

{∥∥∥h̃e∥∥∥
H

b′
b+1

, ∥Proj>Jhe∥
H

b′
b+1

}
By lemma A.5 we have that: ∥∥∥h̃e∥∥∥2

2
≤ ∥he∥2

H
b′

b+1
J−b

Using the triangle inequality:∥∥∥h̃ρ∥∥∥2
H
≤
(
∥hρ∥2H + ∥ProjJhe∥2H

)
∥ProjJhe∥2H =

J∑
i=1

⟨h, φi⟩22
λ2i

≍
J∑
i=1

⟨h, φi⟩22 i
(b+1)

=

J∑
i=1

⟨h, φi⟩22 i
(b±b′+1) ≤ Jb−b

′+1
J∑
i=1

⟨h, φi⟩22 i
b′ ≍ Jb−b

′+1
J∑
i=1

⟨h, φi⟩22 λi
2b′

= Jb−b
′+1

J∑
i=1

〈
h, λb

′

i φi

〉2
2
= C ∥Proj>Jh∥

H
b′

b+1

where we are able to pull put Jb−b
′+1 because i(b±b

′+1) is a increasing sequence. Such value can be
upperbounded by C ≥ Jb−b′+1.
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This result is key. If a function can be decomposed in primary term and error term with a certain
precision, by assumption A.6 the error will also have bounded 2 norm post application of conditional
expectation E. In other words, controlling the error in H enables me to control the error in Im(E), i.e.
having a finite measure of ill-posedness.

Lemma A.6 ([63]Lemma 16)
Let m be the first integer larger than n

b+1
b+2p+1 then for any function h = h̃ρ + h̃e such that:∥∥∥h̃ρ∥∥∥2

H
≲ mτ2m

∥∥∥h̃e∥∥∥2
2
≲ τ2m

∥∥∥h̃e∥∥∥
∞
≲ 1

we have the decomposition h = hρ + he such that:

∥hρ∥2H ≲ mτ
2
m ∥he∥22 ≲ τ

2
m ∥Ehe∥22 ≲ δ

2
n ∥he∥∞ ≲ 1

Proof. h̃e ∈ L2 and for any finite J , the projection ProjJ h̃e is well defined and is in H. Let m′ be the
first integer bigger than m

1
b+1 , then:

∥∥∥Projm′ h̃e

∥∥∥2
H

=

m′∑
i=1

1

λ2i

〈
h̃e, φi

〉2
2
≤ 1

λ2m′

m′∑
i=1

〈
h̃e, φi

〉2
2
≤ 1

λ2m′

∥∥∥h̃e∥∥∥2
2
≍ m′b+1

∥∥∥h̃e∥∥∥2
2
≲ m′b+1

τ2m ≍ mτ2m

Where we used the fact that 1
λi

is an increasing positive sequence in i, assumption A.5 and b > 1.
Defining:

hρ := h̃ρ + Projm′ h̃e he := Proj>m′ h̃e

using the triangle inequality we have the needed norm:

∥hρ∥2H =
∥∥∥h̃ρ + Projm′ h̃e

∥∥∥2
H
≤ 2

∥∥∥h̃ρ∥∥∥2
H
+ 2

∥∥∥Projm′ h̃e

∥∥∥2
H
≲ mτ2m

Similarly for he, we use the fact that projections always decrease L2 norm, assumption A.6 and lemma A.3:

∥he∥22 ≤
∥∥∥h̃e∥∥∥2

2
≲ τ2m

∥Ehe∥22 ≲ m
′−2p ∥he∥22 ≲ n

− 2p
b+2p+1 · n−

b
b+2p+1 = n−

b+2p
b+2p+1 ≍ δ2n

∥he∥∞ =
∥∥∥h̃e − Projm′ h̃e

∥∥∥
∞
≤
∥∥∥h̃e∥∥∥

∞
+
∥∥∥Projm′ h̃e

∥∥∥
∞
≲ 1 +

∥∥∥Projm′ h̃e

∥∥∥ b
b+1

H

∥∥∥Projm′ h̃e

∥∥∥ 1
b+1

2︸ ︷︷ ︸
≍m

1
2

b
(b+1)2 ·m− 1

2
b

(b+1)2︸ ︷︷ ︸
=1

≲ 1
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This is a concentration inequality relating the probability of the sample average deviating from the true
mean.

Lemma A.7 ([63]Lemma 17)
Let L be a random variable bounded by BL and with finite variance var(L) < σ2

L. Let Li ∼ PL be iid
samples and η > 0 then:

P

(
| 1
n

∑
i=1

Li − E [L] | ≥ (
√
2η +

2η

3
)
σ2
L

Bl

)
≤ exp (−nσ

2
L

B2
L

η)

In particular they will use this inequality to define an event where the the empirical expectation is greater
than the true with high probability. Define:

Ψn(f, g) =
1

n

n∑
i=1

g(Vqi) (h(Vhi)− yi) Ψ(f, g) = E [g(Vq) (h(Vh)− Y )]

L := (h(Vh)− Y ) g(Vq)− g2(Vq) Li = (h(Vhi
)− yi)g(Vq)− g2(Vq)

Notice that:

|L| = |(h(Vh)− Y − g(Vq)) g(Vq)| = |(h(Vh)± h0(X)− Y − g(Vq)) g(Vq)| ≤ (∥h− h0∥∞ + ∥h0 − Y ∥∞︸ ︷︷ ︸
≤B

+ ∥g∥∞) ∥g∥∞

≤ (∥h− h0∥∞ +B + ∥g∥∞) ∥g∥∞ ≤ (∥h− h0∥∞ +B + ∥g∥∞)2

V ar(L) ≤ E
[
L2
]
≤ (∥h− h0∥∞ +B + ∥g∥∞)2 ∥g∥22

Ψn − ∥g∥2n =
1

n

n∑
i=1

g(Vqi) (h(Vhi)− yi)− g(Vqi)2 =
1

n

n∑
i=1

Li

Ψ− ∥g∥22 = E [g(Vq) (h(Vh)− Y )]− E
[
g2(Vq)

]
= E [L]

Moreover, since P (|A| > ξ) ≥ P (A ≥ ξ) lemma A.7 can be applied to obtain:

Ψn − ∥g∥2n −Ψ+ ∥g∥22 ≥ (
√
2η +

2η

3
)
σ2
L

Bl
= (
√
2η +

2η

3
)
(∥h− h0∥∞ +B + ∥g∥∞)2 ∥g∥22

(∥h− h0∥∞ +B + ∥g∥∞)2
= (
√
2η +

2η

3
) ∥g∥22

Ψn − ∥g∥2n ≥ Ψ− ∥g∥22 ·
(
1− (

√
2η +

2η

3
)

)

Small Note

They choose η such that the coefficient of ∥g∥22 is equal to 3
2 . The η that satisfies this would be negative and

thus not a viable solution. Moreover due to a small computational mistake in the proof of theorem A.2,
the coefficient of ∥g∥22 should be equal to 3

4 . This would solve the proof in theorem A.2 and enables
solving for a valid η = 12

100 . Nonetheless, this does not change the RHS used by the authors3 but only
the LHS. The event, probability and its respective bound that we will use are:

P

(
Ψn − ∥g∥2n ≥ Ψ− 3

4
∥g∥22

)
≤ exp

(
−

n ∥g∥22
16(∥h− h0∥∞ +B + ∥g∥∞)2

)
(A.3)

3exp− 1
16

x ≥ exp− 12
100

x
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This is the most important result. It finds a bound for the prior probability of deviating from the primary
component of the function. As n ↑ ∞ then δn ↓ 0 and Π ↓ 0. As more samples are observed, the higher
the probability. Note that δn ↓ 0 much more slowly than Π. It is unclear how they use assumption A.6
to ’revert the inequalities’.

Lemma A.8 ([63]Lemma 18)
Let W ∼ Π be a Gaussian Process, hρ ∈ H an arbitrary function. Then

log Π({∥E(W − hρ)∥22 ≤ n
− b+2p

b+2p+1︸ ︷︷ ︸
δ2n

}) ≲ −n
1

b+2p+1 ≍ −nδ2n

Moreover if ∥hρ∥2H ≲ n
1

b+2p+1

=⇒ log Π({∥E(W − hρ)∥22 ≤ n
− b+2p

b+2p+1︸ ︷︷ ︸
≍δ2n

, ∥W − hρ∥22 ≤ n
− b

b+2p+1︸ ︷︷ ︸
≍τ2

n

}) ≳ −n
1

b+2p+1 ≍ −nδ2n

Proof. We can rewrite W =
∑
i=1 λiϵiφi where {λi, φ} is the eigen decomposition of the kernel operator

associated with H.

∥EProjJ(W − hρ)∥22 ≲
J∑
i=1

i−2p ⟨W − hi, φi⟩22 =

J∑
i=1

i−2p(λiϵi − ⟨hρ, φi⟩2)
2

∥EProj>J(W − hρ)∥22 ≲ (J + 1)−2p ∥Proj>J(W − hρ)∥22
By the triangle inequality:∥E(W − hρ)∥2 ≤ ∥EProjJ(W − hρ)∥2 + ∥EProj>J(W − hρ)∥2 and thus as
the number of ’sieves’ grows ∥EProj>J(W − hρ)∥ → 0 and

∥E(W − hρ)∥22 ≲ lim
J→∞

∥EProjJ(W − hρ)∥22 ≤
J=∞∑
i=1

i−2p(λiϵi − ⟨hρ, φi⟩2)
2 (A.4)

=

J=∞∑
i=1

(λiϵii
−p −

〈
h̃ρ, φi

〉
2
)2 = C

∥∥∥W̃ − h̃ρ∥∥∥2
2

(A.5)

where h̃ρ =
∑
i=1 i

−phiφi if hρ =
∑
i=1 hiφi. This can be seen as a more regular version of hρ which

lives in an appropriate power space H̃. Similarly, W̃ =
∑
i=1 λiϵii

−pφi is a Gaussian Process on the same
power space. equation (A.4) shows that {∥E(W − hρ)∥2 ≤ ϵ} ⊃ {||CW̃ − h̃ρ||2 ≤ ϵ}.The authors then
state: "By assumption A.6(RL) we can reverse the inequalities above with a different constant C ′ such
that the inclusion also goes the other way":

{||C ′W̃ − h̃ρ||2 ≤ ϵ} ⊃ {∥E(W − hρ)∥2 ≤ ϵ} ⊃ {||CW̃ − h̃ρ||2 ≤ ϵ} (A.6)

Then using Decentered Small Ball Lemma [19]:

Π(
{∥∥∥W̃ − h̃ρ∥∥∥

2
≤ δn

}
) ≤ e−

1
2∥h̃j∥2H̃︸ ︷︷ ︸
≤1

Π
({∥∥∥W̃∥∥∥

2
≤ δn

})
≤ Π

({∥∥∥W̃∥∥∥
2
≤ δn

})
≤ e−C

′nδ2n

Where the last inequality is due to corollary A.1. The decentered small ball lemma holds up to constants
in both directions and thus:

e−C2nδ
2
n ≤ Π(

{∥∥∥W̃ − h̃ρ∥∥∥
2

)
≤ e−C

′
2nδ

2
n

Using the set inclusions of equation (A.6) and decentered small ball theorem we have proven the first
statement:

Π({∥E(W − hρ)∥22 ≤ n
− b+2p

b+2p+1 }) ≤ Π({
∥∥∥W̃ − h̃ρ)∥∥∥2

2
≤ n−

b+2p
b+2p+1 }) ≤ e−C·n− b+2p

b+2p+1 ·n

=⇒ log(Π({∥E(W − hρ)∥22 ≤ n
− b+2p

b+2p+1 })) ≲ −n
1

b+2p+1

The second statement requires us to determine the prior probability of: {∥E(W − hρ)∥22 ≤ n
− b+2p

b+2p+1︸ ︷︷ ︸
δ2n

, ∥W − hρ∥22 ≤

n−
b

b+2p+1︸ ︷︷ ︸
ϵ2n

}. This will be done by determining the probability of Θdh ∩ Θdz which will imply the desired

event.
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1. Θdz =
{∥∥∥Projm′(W̃ − h̃ρ)

∥∥∥
2
≤ δn

2C ,
∥∥∥Proj>m′(W̃ − h̃ρ)

∥∥∥
2
≤ δn

2C

}
2. Θdh =

{
∥Proj>m′(W − hρ)∥2 ≤ τm

}
Due to equation (A.6), Θdz implies the first inequality of the set and the second is immediate from Θdh.
For this reason, we aim to bound the probability of each.

log Π (Θdz) : = logΠ (Θdzl ∩Θdzh)

= logΠ

({∥∥∥Projm′(W̃ − h̃ρ)
∥∥∥
2
≤ δn

2C
,
∥∥∥Proj>m′(W̃ − h̃ρ)

∥∥∥
2
≤ δn

2C

})
4 ≥ log Π

({∥∥∥(W̃ − h̃ρ)∥∥∥
2
≤ δn

2C

})
≳ −nδ2n

Moreover, by equation (A.6) on Θdz:

max
{
∥E (Projm′ (W − hρ))∥22 , ∥E (W − hρ)∥22

}
≤ δ2n

Using (RL) assumption A.6:

δ2n ≥ ∥E (W − hρ)∥22 ≳ m
′−2p ∥Projm′ (W − hρ)∥22

=⇒ ∥Projm′ (W − hρ)∥22 ≲ m
′2pδ2n ≍ τ2m

Once more, projections decrease distances thus {∥ProjJh∥ ≤ κ} ⊃ {∥f∥ ≤ κ}. Combining this with the
decentered small ball lemma:

log Π (Θdh) = logΠ
({
∥Proj>m′(W − hρ)∥2 ≤ τm

})
≥ log Π

({
∥W − hρ∥2 ≤ τm

})
≳ −n

1
b+2p+1 ≍ −nδ2n

Notice that on the event Θdh:∥∥∥Proj>m′(W̃ − h̃ρ)
∥∥∥2
2
=

∞∑
i=m′+1

i−2p
(
ϵiλi − ⟨hρ, φi⟩2

)2
≤ m′−2p

∞∑
i=m′+1

(
ϵiλi − ⟨hρ, φi⟩2

)2
= m′−2p ∥Proj>m′(W − hρ)∥22︸ ︷︷ ︸

≤τ2
m

≲ n−
2p

b+2p+1−
b

b+2p+1 ≍ δ2n
This shows that after rescaling Θdh ⊂ Θdzh =⇒ Θdh ∩Θdzh = Θdh

Θdzh Θdh

Θdz

Θdzl

Figure A.2: The various sets visualized. Θdh ⊂ Θdzh up to scaling constant. The barred area corresponds
to Θdh ∩Θdz.

We are interested in Θdh ∩Θdz = Θdh ∩Θdzh ∩Θdzl = Θdh ∩Θdzl. Moreover, Θdh only involves the first
m′ elements whereas the Θdzl the trailing ones, and thus have independent probabilities and factorize.

log Π (Θdh ∩Θdz) = logΠ (Θdzl)︸ ︷︷ ︸
≳−nδ2n

+ logΠ (Θdh)︸ ︷︷ ︸
≳−nδ2n

≳ −nδ2n
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Lemma A.9 ([63]Lemma 19)
Let δ2n = n−

b+2p
b+2p+1 , ϵ2n = n−

b
b+2p+1 . There exists constants c1, . . . , c4 > 0 such that:

Π(Θd0) ≥ exp (−c4nδ2n)
Θd0 = {h : ∥E(h− h0)∥2 ≤ c1δn ∥h− h0∥2 ≤ c2ϵn ∥h− h0∥∞ ≤ c3}

Proof. By assumption A.4, we can rewrite the true bridge function as the sum of two elements: h0 =
h̃ρ + h̃e with: ∥∥∥h̃ρ∥∥∥2

H
≲ mτ2m

∥∥∥h̃e∥∥∥2
2
≲ τ2m

∥∥∥h̃e∥∥∥
∞
≤ 1

By lemma A.6 there is a decomposition h0 = hρ + he with

∥hρ∥2H ≲ mτ
2
m ∥he∥22 ≲ τ

2
m ∥Ehe∥22 ≲ δ

2
n ∥he∥∞ ≲ 1

Applying part two of lemma A.8 to hρ:

∥h− h0∥2 ≲ ϵn ∥E(h− h0)∥2 ≲ δn

have the required probability.
Define CΘm = {h : hC ∈ Θm :} Π

(
CΘm

)
≤ exp

(
C ′′nδ2n

)
, we can choose C so that Θd0 has the required

probability. By corollary A.1, for any h ∈ Θd0 ⊆ CΘm we can write h = h̃ρ + h̃e such that:∥∥∥h̃ρ∥∥∥2
H
≲ n

1
b+2p+1

∥∥∥h̃e∥∥∥2
2
≲ n−

b
b+2p+1

∥∥∥h̃e∥∥∥2
∞
≲ 1

Always by assumption A.4 h0 also admits such decomposition, thus the difference also admits such
decomposition, i.e. h− h0 = h′ρ + h′e. By the reverse triangle inequality5:∥∥h′ρ∥∥2 ≤ ∥∥h′ρ − h′e∥∥2︸ ︷︷ ︸

≲ϵn

+ ∥h′e∥2︸ ︷︷ ︸
≲ϵn

≲ ϵn

Moreover, applying lemma A.3:

∥h− h0∥2∞ ≲
∥∥h′ρ∥∥2∞ + ∥h′e∥

2
∞ ≲

∥∥h′ρ∥∥ 2b
b+1

H

∥∥h′ρ∥∥ 2
b+1

2
+ ∥h′e∥

2
∞ ≲ n

1
b+2p+1 ·

b
b+1 · n−

b
b+2p+1 ·

1
b+1 + 1 ≤ 2

5If |A| ≥ |B| =⇒ |A−B| ≥ |A| − |B|.
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Here we define the Dn event on which the ∥E(h− h0)∥22 is controlled. This enables us to have a lower
bound bound for the loss. This in turn lets us control the normalizing term of the posterior (marginal
over the entire parameter set).

Proposition A.4 ([63]Proposition 20)
Let λ = 1 then for all ν ≥ 2cδ2n there exist c1, . . . c3 > 0 and a Dn measurable event En(Dn with probability
tending to 1 in which:

Π({h ∈ Θd0 : ln(f) ≤ c1 ∥E(h− h0)∥22 + c2δ
2
n}) ≥

1

2
Π(Θd0) (A.7)

Proof. Suppose that there exists constants C1, C2 > 0, and a sequence ηn → 0 such that for any fixed
h ∈ Θd0 the event I(h,Dn) =

{
h ∈ Θd0 : ln(f) ≤ C1 ∥E(h− h0)∥22 + C2δ

2
}

:

E [I(h,Dn)] ≥ 1− ηn

The claim is that if such conditions indeed hold, equation (A.7) holds with Dn probability greater than
1− 4ηn. The proof is by contradiction: Suppose that equation (A.7) holds with Dn probability less that
1− 4ηn. Define Πd(dh) =

Π(dh∩Θd0)
Π(Θd0)

, then:

E [Πd(I(h,Dn))] =
∫∫

Πd(dh)dP
n =

∫∫
dPnΠd(dh) ≥

∫
(1− ηn)Πd(dh) = 1− ηn

Similarly, by law of total probabilities we can write:

E [Πd(I(h,Dn)))] = E [Πd(I(h,Dn)) · 134] + P (Πd(I(h,Dn)) · 134)

1 ≤ E [134] +
1

2
E [134]

= 1− 4ηn +
1

2
· 4ηn = 1− 2ηn

Where the last holds because if equation (A.7) does not hold it must be less than half. This contradicts
the assumption. We must now show that such constants and a sequence ηn exist.
Let δ̂n be the empirical critical radius of 3G1. Then, P (δ̂n ≤ cδn) → 1 and there exists c′ > 0 such that
with probability greater than 1− c′e−c′nδ2n = 1− ηn → 1 for a fixed h ∈ Θd0 and all g ∈ G by theorem 2.8
we have:

∥g∥2n ≥
1

2
∥g∥22 − Cδ

2
n(1 + ∥g∥

2
G)

Ψn(f, g) ≤ Ψ(f, g) + 10LCδn(∥g∥2 + δn(1 + ∥g∥G))

The Dn event where this holds is defined as En(Dn). On this event, if ν > 2Cδ2n, the loss is upperbounded
by:

ln(f) ≤ 2 ∥E(h− h0)∥22 + C ′2
n δ

2
n

where C ′2
n ≲ B

2.
This proves that there exists an event En(Dn) with probability 1 − c′e−c′nδ2n on which equation (A.7)
holds.

51P (A ∩B) ≤ P (A)



118

The authors show that on a subset Θm of the parameter space, the errors ∥E(h− h0)∥2 and ∥h− h0∥2 are
equivalent. Since the loss estimates the first term, this shows that minimizing ln also ensures minimization
∥h− h0∥2.

Lemma A.10 ([63]Lemma 21)
There exist constants M0, C > 0 such that ∀n ∈ N, m = n−

b+1
b+2p+1 , f ∈ Θm:

∥h− h0∥2 ≥M0ϵn only if ∥E(h− h0)∥2 ≥
∥h− h0∥2
Cϵn

δn

∥E(h− h0)∥2 ≥M0δn only if ∥h− h0∥2 ≥
∥E(h− h0)∥2

Cδn
ϵn

Proof. We can apply lemma A.6 to ∆h = h − h0 since h ∈ Θm by assumption of the lemma, and h0
satisfies assumption A.4. Thus there exists ∆̃h ∈ H such that:∥∥∥∆̃h∥∥∥

H
≲ nδ2n

∥∥∥E(∆h− ∆̃h)
∥∥∥2
2
≲ δ2n

∥∥∥∆h− ∆̃h
∥∥∥2
2
≲ ϵ2n

∥∥∥∆h− ∆̃h
∥∥∥2
∞
≲ 1

Let J be the first integer larger than n
1

b+2p+1 , and using the following notation:

g = E∆h g̃ = E∆̃h gJ = EProjJ∆̃h

I can choose M0 ≥
√
C + 1

2 by the triangle inequality,∥∥∥∆̃h∥∥∥
2
≥ ∥∆h∥2 −

∥∥∥∆h− ∆̃h
∥∥∥
2
≥ ∥∆h∥2 −

√
Cϵ ≥ 1

2
∥∆h∥2∥∥∥ProjJ∆̃h∥∥∥2

2
=
∥∥∥∆̃h∥∥∥2

2
−
∥∥∥Proj>J∆̃h∥∥∥2

2
≥ 1

4
− ∥∆h∥22 −

∥∥∥∆̃h∥∥∥2
H
J−(b+1) ≥ 1

5
∥∆h∥22

where the penultimate inequality follows from lemma A.5. Now using assumption A.6

∥E∆h∥22 ≥
1

2

∥∥∥E∆̃h
∥∥∥2
2
−
∥∥∥E (∆h− ∆̃h

)∥∥∥2
2

≥ C ′
1J

−2p
∥∥∥ProjJ∆̃h∥∥∥2

2
−
∥∥∥E (∆h− ∆̃h

)∥∥∥2
2

≥ 1

5
C ′

1J
−2p ∥∆h∥22 −

∥∥∥E (∆h− ∆̃h
)∥∥∥2

2

=
δ2n
ϵ2n
∥∆h∥22 − δ

2
n ≳

δ2n
ϵ2n
∥∆h∥22

This proves the first statement. To now prove the second: For any h ∈ Θm, using assumption A.6 and
lemma A.5:

∥g − gj∥22 ≤ 2 ∥g − g̃∥22 + ∥g̃ − gJ∥
2
2 ≲ δ

2
n +

∥∥∥EProj>J∆̃h∥∥∥2
2

≲ δ2n + J−2p
∥∥∥Proj>J∆̃h∥∥∥2

2
≤ δ2n + J−2p · J−(b+1)

∥∥∥∆̃h∥∥∥2
H

≲ δ2n + n−
2p−1

b+2p+1−
b+1

b+2p+1 ≍ δ2n

By the assumption ∥g∥2 ≥M0δn, I can choose M0 ≥∥∥∥∆̃h∥∥∥
2
≳ Jp ∥gJ∥2 ≥ J

p (∥g∥2 − ∥g − gJ∥2) ≥
∥g∥2
2δn

ϵn (A.8)∥∥∥∆̃h∥∥∥
2
≥
∥∥∥∆̃h∥∥∥

2
−
∥∥∥∆h− ∆̃h

∥∥∥
2
≳

(
∥g∥2
2δn

−
√
C

)
ϵn ≥

∥g∥2
3δn

(A.9)

5|A−B|2 ≤ 2A2 + 2B2
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This is shown by proving a stronger result: convergence of in L1. By Markov’s inequality this automati-
cally implies convergence in probability.

Theorem A.2 ([63])
Fix λ = 1, ν = Cδ2n ≍ n

− b+2p
b+2p+1 , C > 0. Then there exists a constant M > 0 such that for ϵ2n = n−

b
b+2p+1

we have:

Π({h : ∥h− h0∥22 ≥Mϵ2n}|Dn)
PDn

−−−→ 0 (A.10)

Π({h : ∥E(h− h0)∥22 ≥Mδ2n}|Dn)
PDn

−−−→ 0

Proof. Define the set of functions where the violation from the true bridge function is greater than Mϵ2n
as:

errfn =
{
h : ∥h− h0∥22 ≥Mϵ2n

}
As shown in the proof of proposition A.4 there exists an event En(Dn) on which, with probability → 1:

Π({h : ln(f) ≤ c1 ∥E(h− h0)∥22 + c2δ
2
n}) ≥

1

2
Π(Θd0) ≥

1

2
e−c3nδ

2
n

Using the law of total probabilities we can further decompose equation (A.10) as:

EDn [Π(errh,n|Dn)] = EDn

[
1En(Dn) ·Π(errh,n|Dn)

]
+ EDn

[
1
En(Dn)

·Π(errh,n|Dn)
]

≤ EDn

[
1En(Dn) ·Π(errh,n|Dn))

]
+ EDn

[
1
En(Dn)

)
]

= EDn

[
1En(Dn) ·Π(errh,n|Dn))

]
+ oPDn (1)

Since the quasi bayesian loss Q (Dn, h) = e−nln(f) might not integrate to one, we can rewrite Π(errh,n|Dn)
as:

Πn(errh,n|Dn) =

∫
errh,n

Q (Dn, h)Π(dh)∫
Θ
Q (Dn, h)Π(dh)

By proposition A.4 we already have a lower bound on the denominator: e−Cdennδ
2
n with Cden ≲ B2 and

thus we only need to focus on the numerator:

EDn

[
1En(Dn) ·

∫
errh,n

e−nln(f)Π(dh)

]
=

∫
En(Dn)

[∫
errh,n

Q (Dn, h)Π(dh)

]
dPDn

We need to find a bound that depends on M such that C(M) ≥ Cden. Using the fact that Q (Dn, h) ≤ 1,
the law of total probabilities and Fubini:∫
En(Dn)

[∫
errh,n

Q (Dn, h)Π(dh)

]
dPDn =

∫
En(Dn)

[∫
errh,n∩Θm

Q (Dn, h)Π(dh) +

∫
errh,n∩Θm

Q (Dn, h)Π(dh)

]
dPDn

≤
∫
En(Dn)

[∫
errh,n∩Θm

Q (Dn, h)Π(dh) +

∫
errh,n∩Θm

Π(dh)

]
dPDn

≤
∫
En(Dn)

[∫
errh,n∩Θm

Q (Dn, h)Π(dh) +

∫
Θm

Π(dh)

]
dPDn

≤
∫
En(Dn)

[∫
errh,n∩Θm

Q (Dn, h)Π(dh)

]
dPDn +Π(Θm)

≤
∫
errh,n∩Θm

[∫
En(Dn)

Q (Dn, h) dPDn

]
Π(dh) + Π(Θm)

The second term goes to zero at a rate of e−Cnδ
2
n . Using the law of total probabilities once more, the

first term will be divided over an event A(h,Dn) and its complement such that:

• On A(h,Dn) the loss can be lower bounded.
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• A(h,Dn) has small probability.

∫
errh,n∩Θm

[∫
En(Dn)

Q (Dn, h) dPDn

]
Π(dh) ≤

∫
errh,n∩Θm

∫
En(Dn)∩A(h,Dn)

Q (Dn, h) dPDn︸ ︷︷ ︸
T1

Π(dh)+

(A.11)

+

∫
errh,n∩Θm

∫
En(Dn)∩A(h,Dn)

dPDn︸ ︷︷ ︸
T2

Π(dh)

The goal is to use the concentration inequality of equation (A.3).

ln(f) = sup
g∈G

Ψn2(h, g)− ∥g∥2n − ν ∥g∥
2
G

and:
g = E(h− h0) g̃ = E(∆̃h) gJ = E(ProjJ∆̃h)

For h ∈ Θm we define A(h,Dn) =
{
Ψn(f, gJ)− ∥gJ∥2n ≥ Ψ(f, gJ)− 3

4 ∥gJ∥
2
2

}
. On A:

ln(f) = sup
g∈G

2Ψn(f, g)− ∥g∥2n − ν ∥g∥
2
G

≥ 2Ψn(f, gJ)− ∥gJ∥2n − ν ∥gJ∥
2
G (gJ ∈ G)

≥ 2Ψ(f, gJ)−
3

2
∥gJ∥22 − ν ∥gJ∥

2
G (We are in A)

= 2E [(h(Vh)− Y )gJ(Z)]−
3

2
∥gJ∥22 − ν ∥gJ∥

2
G (Definition)

6 ≥ 2 ∥g∥22 − 2 ∥g∥2 ∥g − gJ∥2 −
3

2
∥gJ∥22 − ν ∥gJ∥

2
G (A.12)

≥ 2 ∥g∥22 − 2 ∥g∥2 ∥g − gJ∥2 −
3

2
(∥g∥22 + ∥g − gJ∥

2
2 + 2 ∥g∥2 ∥g − gJ∥2)− ν ∥gJ∥

2
G

≥ C1 ∥g∥22 − C2 ∥g − gJ∥22 − ν ∥gJ∥
2
G (A.13)

Now we define U =
∥h−h0∥2

ϵn
so that on errh,n U ≥

√
M . For sufficiently large M, i.e. M > 1 then U > 1:

Uδn = ∥h− h0∥2
δn
ϵn
≲ ∥g∥2 ≤ ∥h− h0∥2 = Uϵn ≤ U (A.14)

This is because the sets
{
h : ∥h− h0∥22 ≥Mϵ2n

}
and

{
h : ∥E(h− h0)∥22 ≥Mδ2n

}
are equivalent up to

constants and both δn, ϵn are decreasing.∥∥∥∆̃h∥∥∥
2
=
∥∥∥∆̃h± h± h0∥∥∥

2
≤
∥∥∥h− h0 − ∆̃h

∥∥∥
2︸ ︷︷ ︸

≤Cϵn ∀h∈Θm

+ ∥h− h0∥2︸ ︷︷ ︸
=Uϵn

≤ 2Uϵn (A.15)

To apply equation (A.3), we need to find the bounds for ∥h− h0∥∞ , ∥gJ∥∞. To bound the first we apply
the triangle inequality and remember that in Θm the error is bounded by one. Then apply lemma A.2

∥h− h0∥2∞ ≤ 2
∥∥∥∆̃h∥∥∥

∞
+ 2

∥∥∥h− h0 − ∆̃h
∥∥∥2
∞

≲
∥∥∥∆̃h∥∥∥

∞
+ 1 (In Θm)

≲

(∥∥∥∆̃h∥∥∥2
H

) b
b+1

·
(∥∥∥∆̃h∥∥∥2

2

) 1
b+1

+ 1 (lemma A.3)

≲ n
1

b+2p+1 ·
b

b+1 · U
2

b+1n−
b

b+2p+1 ·
1

b+1 + 1 ≤ 2U
2

b+1
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To bound the conditional expectation of ∆̃h in G we make use of assumption A.7, which ensures that the
image of H under E is bounded and lemma A.2

∥gJ∥2G =
∥∥∥EProjJ∆̃h∥∥∥2

G
≲
∥∥∥ProjJ∆̃h∥∥∥2

H
(assumption A.7)

≲
∥∥∥ProjJ∆̃h∥∥∥ 2b

b+1

H
·
∥∥∥ProjJ∆̃h∥∥∥ 2

b+1

2

≤
∥∥∥ProjJ∆̃h∥∥∥ 2b

b+1

H
·
∥∥∥∆̃h∥∥∥ 2

b+1

2

≲
∥∥∥ProjJ∆̃h∥∥∥ 2b

b+1

H
· (Uϵn)

2
b+1

≲ n
1

b+2p+1 ·
b

b+1 · U
2

b+1n−
b

b+2p+1 ·
1

b+1 ≤ 2U
2

b+1 = U
2

b+1

Bounding T1

The previous lower bound for the loss (equation (A.13)) can be written in terms of U as:

ln(h) ≥ C1U
2δ2n − C2δ

2
n − C3U

2
b+1 ≥ C ′U2δ2n ≥ C ′M2δ2n

This enables me to upperbound T1 as:

T1 =

∫
En(Dn)∩A(h,Dn)

Q (Dn, h) dPDn ≤
∫
A(h,Dn)

Q (Dn, h) dPDn ≤ exp
(
−C ′M2nδ2n

)
Bounding T2

Notice that T2 ≤ P (A). Replacing all of the above bounds in equation (A.3):

− log P (A) ≤
n ∥gJ∥22

16 (∥h− h0∥∞ +B + ∥gJ∥∞)
2 ≳

U2

(U
1

b+1 +B)2
nδ2n

Using the fact that P (A∩En(Dn)) ≤ P (A) and the Continuous Mapping theorem, the proof is complete.



122

A.4 Numerical-Experiments

In the simulated Demand experiment, around 40% of the data is larger than the 30 cut off chosen by the
authors and around 99% of it is contained in the [10,40] interval.7 For this reason it is very odd that

Figure A.3: Marginal distribution of the Price variable in the Demand simulated experiment.

the previous papers only consider the [10,30] interval. The CMSE of table A.1, are indeed calculated
on data sampled from the entire distribution but figures 6.9 to 6.11 only show the predictions on the
[10,30] interval. To highlight the behavior of the models on the support of the Price variable, we include
Figure A.4. Here it is possible to observe that the performance of KPV,PMMR,DFPV deviates from the
truth on the latter half of the graph. The other methods are instead able to correctly approximate the
true CERF.

Figure A.4: Model predictions on the entire support of the price variable of the Demand experiment.
Trained on 10,000 data points.

In Figure A.5 it is possible to observe the behavior of the individual runs of each model in the different
sample regimes.

7Simulated 1,000,000 data points.
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Figure A.5: Individual model predictions for each
seed. Trained on 10,000 data points.

Figure A.6: Individual model predictions for each
seed. Trained on 1,000 data points.

When evaluating a model, the average error the model makes is a possible measure of error. The mean and
standard deviations are only two statistics. By the central limit theorem, these characterize the limiting
distribution of the average error. In reality, the model is only fitted once and thus the distribution of
the error is much more important than its expected error.8. In reality, a model is better performing
than another if it has a ’tighter’ distribution of the error. A better measure for this is the error quantile
range. We note that the sample size of 20 is still small for this metric to be definitive but still highlights
the model’s ability to consistently perform well. The interquantile ranges [0.25, 0.5, 0.75] are reported in
Table A.2. The PQB also outperforms other methods in this metric.

Figure A.7: Boxplot of the c-MSE1k for the Demand experiment with(lower is better).

8Thank you Matthias for the discussion on this.
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Model
c-MSE10

(trainn = 10, 000)
c-MSE10

(trainn = 5, 000)
c-MSE10

(trainn = 1, 000)

P2SLS 24.89± 14.00 24.68± 13.35 24.56± 16.73
HigherOrder 17.38± 13.53 17.22± 13.37 16.57± 13.18
PKDR 13.36± 26.51 17.91± 39.06 4.99± 12.63
DFPV 22.99± 23.65 71.42± 439.45 26.55± 40.81
NMMR-U 4.88± 5.11 7.55± 8.56 17.83± 26.62
NMMR-V 3.28± 5.57 5.13± 7.05 9.35± 10.85
KPV 34.45± 31.92 37.80± 32.45 41.62± 46.69
PMMR 36.02± 77.47 26.19± 23.80 37.46± 27.60
PQB 0.59± 0.90 0.99± 1.35 3.61± 6.00

Table A.1: Model performance using Causal Mean Error on 10 test points.

Model
QR

(trainn = 10, 000)
QR

(trainn = 5, 000)
QR

(trainn = 1, 000)

P2SLS [23.79, 24.65, 26.22] [23.75, 24.74, 26.21] [22.51, 24.02, 26.29]
HigherOrder [16.96, 17.36, 18.20] [16.18, 17.74, 18.94] [16.30, 16.78, 19.37]
PKDR [13.07, 16.90, 20.03] [11.40, 17.46, 22.24] [2.78, 4.01, 9.06]
DFPV [18.92, 21.39, 24.92] [17.75, 22.18, 22.96] [19.63, 26.01, 33.01]
NMMR-U [4.00, 4.97, 7.25] [5.63, 7.18, 9.82] [10.13, 14.40, 23.20]
NMMR-V [2.95, 3.25, 5.35] [3.68, 4.43, 6.81] [5.14, 10.34, 12.87]
KPV [32.40, 34.92, 37.40] [35.79, 38.99, 41.89] [30.91, 42.86, 48.01]
PMMR [20.96, 23.18, 28.87] [22.56, 25.86, 28.18] [35.64, 39.42, 42.04]
QB [0.33,0.60,0.91] [0.62,1.08,1.52] [1.75,2.96,6.46]

Table A.2: Model performance using the quantile range for the c-MSE1k of the various models in the
Demand Experiment.
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A.5 Various Results

Lemma A.11
Let X,Y,Z be random variables taking values on X ,Y,Z respectively. If X ⊥⊥ Y |Z, then:

E [Y ·X · 1Z=z] = E [Y · 1Z=z] · E [X|Z = z]

Proof.

dP (x, y, z) = dP (x, y|z)dP (z)
= dP (x|z)dP (y|z)dP (z) (X ⊥⊥ Y |Z)
= dP (x|z)dP (y|z)dP (z)

E [Y · 1Z=z] =

∫
Y×{Z=z}

ydP (y, z) =

∫
Y×{Z=z}

ydP (y|z)dP (z)

E [X|Z = z] =

∫
X
xdP (x|z)

E [Y · 1Z=z] · E [X|Z = z] =

∫
Y×{Z=z}

ydP (y|z)dP (z) ·
∫
X
xdP (x|z)

=

∫
X×Y×{Z=z}

xydP (x, y, z)

=

∫
X×Y×Z

xy1Z=zdP (x, y, z) = E [Y ×X × 1Z=z]

Proposition A.5
Under the assumptions of subsection 3.4.2 we have that:

∥∥∥T̂ ∗T̂ − T ∗T
∥∥∥ = O(n−

1
2 ) and

∥∥∥T̂ ∗ĝ − T̂ ∗T̂ h0

∥∥∥ =

O(n−
1
2 )

This proof is adapted from [36].

Proof. Applying the triangle inequality multiple times:∥∥∥T̂ ∗T̂ − T ∗T
∥∥∥ =

∥∥∥T̂ ∗T̂ ± T̂ ∗T − T ∗T
∥∥∥ ≤ ∥∥∥T̂ ∗T̂ − T̂ ∗T

∥∥∥+ ∥∥∥T̂ ∗T − T ∗T
∥∥∥

=
∥∥∥T̂ ∗(T̂ − T )

∥∥∥+ ∥∥∥(T̂ ∗ − T ∗)T
∥∥∥

≤
∥∥∥(T̂ ∗ − T ∗)(T̂ − T )

∥∥∥+ ∥∥∥T ∗(T̂ − T )
∥∥∥+ ∥∥∥(T̂ ∗ − T ∗)T

∥∥∥
≤
∥∥∥(T̂ − T )∥∥∥2 + 2 ∥T∥

∥∥∥(T̂ − T )∥∥∥ = O

(
1

n
+
∥T∥√
n

)
where the last equality follows from Proposition 2.5. By Assumption 3.7 we have that ∥T∥ <∞ and thus
the over-all rate of convergence is

√
n. Similarly the second result can be decomposed in three terms:∥∥∥T̂ ∗ĝ − T̂ ∗T̂ h0

∥∥∥ ≤ ∥∥∥T̂ ∗ĝ − T̂ ∗g
∥∥∥+ ∥∥∥T̂ ∗g − T̂ ∗ g

∥∥∥+ ∥∥∥T̂ ∗Th0 − T̂ ∗T̂ h0

∥∥∥
≤
∥∥∥T̂ ∗

∥∥∥ ∥ĝ − g∥+ ∥∥∥T̂ ∗ − T̂
∥∥∥ ∥g∥+ ∥∥∥T̂ ∗T − T̂ ∗T̂

∥∥∥ ∥h0∥
By similar reasoning as above and invoking Assumption 3.7 all above terms converge at rate

√
n.

Proposition A.6
Let K be a compact self-adjoint operator and {λ2i , φi} be its eigen-decomposition. Then:

∥K∥ = sup
i
{λ2i }
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Proof. By definition of ∥K∥ = sup
{

∥Kv∥
∥v∥ v ∈ H

}
, Kv =

∑
λ2i ⟨v, φi⟩φi and its norm is

∑
λ2i ⟨v, φi⟩.

The sup is reached by choosing v such that it is parallel to the eigenfunction associated with the largest
eigenfunction and orthogonal to all others. This completes the proof.

Corollary A.2
Let K be a compact self-adjoint operator and {λ2i , φi} its eigen decomposition. For R > 0, if (K +RI)
is invertible, we have: ∥∥∥(K +RI)−1

∥∥∥ ≤ 1

R

Proof. The spectrum of K + RI is {λ2i + R}. Thus if (K +RI) is invertible, its spectrum is given by
{ 1
λ2
i+R
}. Then: ∥∥∥(K +RI)−1

∥∥∥ = sup
i

1

λ2i +R
≤ 1

R
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