

Master Thesis
Generating Teacher Feedback through

Parsons Problems

by

Lizzy Scholten

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on March 13, 2020 at 13.00

Student number: 4245008
Project duration: June 5, 2019 – March 13, 2020
Thesis committee: Prof. dr. A. van Deursen, TU Delft, supervisor

Dr. ir. W.P. Brinkman, TU Delft
Dr. ir. F.F.J. Hermans, Leiden University, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

As computer science lies at the heart of almost all technological progress, widespread com-
puter science education, and particularly programming education, is of great importance. In
order to reach a large group of students, secondary schools can play an important role. How-
ever, students have difficulty learning programming concepts. Programming is complicated and
the education largely takes place on computers, which allows for little interaction with teachers.
Consequently, teachers have difficulty gaining insights about the progress and misunderstand-
ings of students and thus have little opportunity to intervene, which threatens to undermine the
effectiveness of the learning process. Therefore, the purpose of this research is to improve on
existing programming education by developing a feedback method for computer science teach-
ers, which enables them to better understand and remedy programming misconceptions held by
their students. Following a Grounded Theory approach, interviews were conducted with com-
puter science teachers and programming education researchers in the Netherlands. Participants
were asked to describe the problems they encountered in teaching programming concepts and
to identify what in their views would help to improve their teaching. Furthermore, literature was
reviewed on existing tools which offer teacher feedback. The majority of these tools appeared
to provide little insight and/or require time-consuming analysis by the teacher in order to gain
some insights. Teachers indicated that they have little time for complicated data analyses, but
would highly value detailed feedback about their students’ programming misconceptions. Fur-
thermore, it was suggested that alternative testing methods, such as puzzles, might be useful.
Based on these findings, Parsons Problems were proposed and tested as a solution for detect-
ing programming misconceptions. The testing took place during two rounds, a small-scale trial
experiment and a broader experiment in which 64 secondary school students participated. ‘Prim-
itive assignment works in opposite direction’ was the number one misconception, held by 56%
of the participants, and was the most occurring misconception across students. The ‘invalid
else-statement’ misconception was the second most held misconception (53% of participating
students), followed by ‘primitive assignment works in both directions (swaps)’ (45%), ‘difficulties
in understanding the sequentiality of statements’ (39%), ‘the natural-language semantics of vari-
able names affects which value gets assigned to which variable’ (20%), ‘adjacent code executes
within loop’ (6%), and ‘using else is optional’ (5%). As 7 out of 8 misconceptions targeted in the
experiment were successfully detected, this experiment demonstrates that employing Parsons
Problems appears to be a viable method for misconception detection.

iii

Preface

There are several people I would like to thank for making my master thesis period insightful and
from whom I have learned many things along the way. Without their support, the result of this
thesis would not be the same.

First of all, I would like to thank my supervisor Felienne Hermans, from Leiden University, for
showing me a different aspect of computer science and providing me with many new insights. It
was great to be a part of the many interesting brainstorm sessions about ways to tackle program-
ming education difficulties. Felienne always made time to guide me through the thesis process.
I am very thankful for her guidance and support.

I would also like to thank Arie van Deursen, my TU Delft supervisor, and Willem-Paul Brinkman,
for being a part of my master thesis committee and taking the time to provide valuable feedback
on the progress of this thesis.

Finally, I thank my friends and family for supporting me and always motivating me to do more,
learn more and create the best possible result.

Lizzy Scholten
Delft, February 2020

v

Contents

Introduction 1

1 Literature Review 3
1.1 Teacher Feedback . 3

1.1.1 Plug-Ins . 3
1.1.2 Web-Based Applications . 5
1.1.3 Stand-Alone Tools . 6
1.1.4 Other Related Research . 7
1.1.5 Summary . 7

1.2 Parsons Problems . 9
1.2.1 Design Choices . 10
1.2.2 Current Application . 10

1.3 Programming Misconceptions . 12
1.3.1 Selection of Misconceptions . 12

Part I 15

2 Interviews 17
2.1 Methodology . 17
2.2 Interview Design . 17

2.2.1 Introduction . 18
2.2.2 Researcher . 18
2.2.3 Teacher . 18
2.2.4 Digitization/Automation. 19
2.2.5 Other . 19

3 Results Part I 21
3.1 Participants . 21
3.2 The Interviews . 21
3.3 Summary: working towards a solution. 25

Part II 27

4 Pilot Experiment 29
4.1 Question Design . 29
4.2 Questions . 29

4.2.1 Variables . 30
4.2.2 If/Else Statements . 31
4.2.3 While Loops . 32
4.2.4 For Loops . 32

4.3 Setup and Participants Pilot Experiment 33
4.4 First Test Results . 33

4.4.1 Participant 1 . 34
4.4.2 Participant 2 . 34
4.4.3 Participant 3 . 34
4.4.4 Participant 4 . 35

4.5 Conclusions Pilot Experiment . 35

5 Experiment 37
5.1 Question Design . 37

vii

viii Contents

5.2 Questions . 38
5.2.1 Variables . 38
5.2.2 If/Else Statements . 39
5.2.3 While Loops . 39
5.2.4 For Loops . 40

6 Results Part II 41
6.1 Setup and Participants . 41
6.2 Findings . 41

6.2.1 Targeted Misconceptions. 42
6.2.2 Targeted Misconceptions occurring in Non-Targeting Questions. . . 44
6.2.3 Other Misconceptions . 44
6.2.4 New Misconceptions . 44
6.2.5 Research Questions . 45

7 Discussion 51
7.1 Part I . 51
7.2 Part II . 51

8 Conclusion 53

9 Future Work 55
9.1 Design of Parsons Problems. 55
9.2 Design of Experiments . 55
9.3 Automation - Useful Functionalities . 55

A Experiment Questions and Answers 57
A.1 Variables . 57
A.2 If/Else Statements . 59
A.3 While Loops . 60
A.4 For Loops . 62

B Experiment Google Forms 65

C Experiment Collected Data 81

Bibliography 83

Introduction

In a world that has quickly become increasingly dependent on technology, the future workforce
needs to be adequately prepared to face the challenges that lie ahead. As computer science
(CS) lies at the heart of almost all technological progress, effective and widespread education
in this field is of the utmost importance [13] [34].

However, serious challenges can be discerned with regard to the scale and effectiveness of
existing CS education. Most notably in that respect are a worldwide shortage of CS teachers
[51] [58] [1], a relatively small number of secondary schools which offer CS classes [61] [51],
and the fact that many students appear to have trouble learning programming concepts, which
often manifests itself in the form of programming misconceptions. Misconceptions occur when
students do not correctly understand the concepts of programming languages, how computers
process the offered code, and therefore how code should be written in order to run properly
and produce the desired result. It is important to teach programming concepts correctly so that
students build correct models in their minds [27]. If a concept is remembered or construed
incorrectly, it is important to intervene [29] and guide a student’s train of thought back to the
correct path. A further complicating factor is that programming education largely takes place
on computers, which allows for very little interaction with a teacher. Consequently, it is very
difficult for teachers to monitor the struggles and progress of individual students, which often
undermines the effectiveness of the learning process.

As the role of the teacher is central in programming education, the main goal of this research is
to design a method for teacher feedback, which enables teachers improve the effectiveness of
programming education for their students. In this thesis, teacher feedback is defined as feed-
back which provides the teacher with insightful information about those things a student does
not correctly understand, so that the teacher can intervene and adjust the teaching method if
needed.

Main Contributions
Theory
The uniqueness of this research lies in the fact that it studies the combination of alternative
programming exercises for the detection of programming misconceptions with the purpose of
generating teacher feedback. In addition, this research uses a sample group of novice Python
learners between the ages of 12 and 14, for whom a novel use of coding puzzles has been de-
vised. With the previously mentioned misconceptions serving as reference, those puzzles have
been designed with the specific purpose of detecting a selection of misconceptions. Further-
more, it appears that this research has brought to light new misconceptions, which had not been
included in the extensive lists which resulted from previous research. Determining which mis-
conceptions occur most often, and what goes wrong in a student’s train of thought could be very
helpful for the development and improvement of existing teaching methods. In order to further
confirm or elaborate on the findings of this thesis, the exercises developed for the experiments
in this research can be used for follow-up research, with or without adaptations.

Practice
The results of this thesis are also highly relevant for educational practice, i.e. for teachers,
programming education researchers, educational institutions and their students. As the results
of Part I of this research demonstrate, teachers and programming education researchers ex-
pressed the need for teacher feedback, since it is important that programming concepts are
understood correctly so that students can build correct models in their minds. Should a concept
be remembered or construed incorrectly, teachers need to – and want to - be able to intervene

1

2 Contents

and guide a student’s train of thought back to the correct path. The fact that misconceptions have
successfully been detected with this method is an important step towards generating insightful
feedback for teachers. Moreover, many students partaking in the experiments stated that they
enjoyed solving the Parsons Problems style exercises, even though many mistakes were made.
This seems to indicate that teaching methods using Parsons Problems could not only generate
useful teacher feedback but could also constitute an engaging learning method for the students.
As such a teacher feedback tool would take over some difficult tasks of a teacher, it could also
make it much easier for those teachers who are less proficient to provide quality education and
perform at a uniform level.

Guidelines for Reading
This thesis is divided in two parts, which aim to provide answers to separate research ques-
tions.

Part I of this thesis is dedicated to analyzing the flaws in currently appliedmethods and processes
through interviews with CS teachers and programming education researchers. Furthermore an
inventory is made of their wishes, needs and suggestions with regard to the improvement of
computer science education. Building on the results of Part I, Part II of this thesis proposes an
alternative method for the detection of programming misconceptions with the purpose of gen-
erating insightful teacher feedback. The experiments conducted in order to prove the proposed
method will be described and the results of the experiment will be presented. Consequently, the
limitations of the findings in Part I and Part II will be discussed as well as the overall conclusion,
followed by recommendations for future work.

1
Literature Review

In the following sections, this literature review addresses several key ingredients for the design
of the teacher feedback method proposed in this thesis.

1.1. Teacher Feedback
As themain goal of this research is to design amethod for generating insightful teacher feedback,
this literature review aims to uncover which existing tools offer some kind of teacher feedback.
The feedback offered by those tools will be further investigated in order to find leads for the
development of an improved teacher feedback method.

The literature search effort produced a large number of researches on applications which pre-
dominantly provided student feedback. Therefore, a selection was made on the inclusion crite-
rion that the researched applications provided teacher feedback for traditional text-based pro-
gramming exercises. The choice for this type of tools was made on the assumption that free
text-based coding could potentially provide a lot of detailed and varied information about stu-
dents’ programming behavior. Apart from the tools selected on this inclusion criterion, a few
other tools were included in this review on the grounds that they collected data about students
which could potentially be used to generate insightful teacher feedback, even if some of these
tools did not provide any teacher feedback.

In order to create clarity about the type of tools to be discussed, they have been loosely catego-
rized as follows:

• Plug-Ins: tools that are add-ons to existing applications, for example to Netbeans

• Web-Based Applications: tools that are web-based and function separately from other
applications

• Stand-Alone Tools: tools that function separately from other applications, but that do
require a certain input or future connection to an application in order to provide useful
output

1.1.1. Plug-Ins
The following tools are plugins, which purposely collect data from coding environments in order
to create some type of feedback.

Test My Code (TMC) can be used through its Netbeans plug-in. The Test My Code web inter-
face gives students the option to register for a course, view the aggregated data that TMC has
collected and submit exercises outside of the IDE. The TMC web interface gives instructors the
opportunity to create courses, update exercises, view the students’ submissions and review the
students’ code, find code review requests from students and view some statistics about their
courses [59]. One of TMC’s goals is to integrate scaffolding in its exercises. That way, students

3

4 1. Literature Review

can build their code piece by piece and receive feedback along the way, so that they learn to
build their code correctly and validate the code each step along the way.

Retina is a tool which collects the student’s name, date and time, and for each error, Retina
collects the error type, file name, line number, and the associated error message [42]. Retina
provides both a so-called Instructor View and a Student View. Instructors can either browse
through individual student data or entire classes. Per student, they can select different assign-
ments and view the previously mentioned data that Retina collects. Per class, the instructor can
view how the class performed as a whole. In both scenarios, an overview is given of the most
common error(s).

Karam et al. have developed an extension to BlueJ. BlueJ is an opensource IDE for Java, which
was developed mainly for programming education, in particular object-oriented programming.
The extension developed by Karam et al. consists of the following components: real-time code
recorder, code repository, monitoring, typical error library, analysis, and feedback [36]. When
students work on a project, code snapshots are collected periodically and upon compilation.
They have compiled a list of sixteen compilation or run-time errors that novice programming
students typically make. In case a typical error is found in the student’s code, the line(s) in
which the error occurs will be highlighted in yellow and the student can view hint(s) on how to
solve the problem. Teachers receive a report on the common errors that were made by the
students, including a list per error showing which students encountered the error and how long
it took each one of them to find the solution. Students have the option to view snapshot of their
code, which include errors or solutions to those errors. This lets them view their programming
process and may help them learn how to solve or avoid making those errors in the future.

The goal of a Smart Lab is to provide teachers with insights about their students while they
perform their assignments [5]. So-called ’Smart Labs’ embody the strategy of equipping a lab
with tools that improve instruction and learning [15]. Through the Code Transferer, the students’
code is captured and sent to the central database. The Analyser/Visualiser makes it possible for
the teaching staff to monitor students while they are working on assignments or at a later time.
It provides an interface which tries to map students and their relative location in the classroom.
Per student it shows which exercise the student is working on, the number of completed actions,
the number of missing actions, the number of compilations and possible syntax errors. Further-
more, the system generates lists of Common Missing Actions and Common Syntax Errors and
informs the teacher which student(s) need(s) the most or least attention, or if a student has been
idle for more than two minutes. The teacher can also zoom in on a student. When zooming in,
an overview is shown of the most current snapshot (it is possible to navigate through the other
snapshots), the completed/missing actions, number of compilations and the history of compila-
tion errors. It is also possible to view other exercises that the student has already attempted,
other than the current exercise. Finally, it is also possible to view a final report/summary of a
student’s programming behavior.

CodeInsights is an IDE plugin tool that can autonomously capture real-time data about students
through snapshots of their code [23]. Each time students run their code, a snapshot is automati-
cally sent to CodeInsights, where it is then compiled and tested locally. The teacher’s dashboard
then shows some aggregated statistics about the students’ behavior. In order to further support
teachers who might not have time to continuously monitor the dashboard, a notification system
has been set up. It will send a notification to the teacher in situations that might lead to problems,
for example when students show a much higher than average amount of compilation errors or
many more lines of code than average. The system will also keep track of how students are
performing over time and how they perform relative to the rest of the group or class.

Marmoset is a system that supports automatic project snapshots, submission, and testing [56].
The system collects snapshots of the students’ code, runs the teacher’s tests and returns the
results to the student. Teachers/instructors can view information regarding students such as
whether students have passed test cases, the best submissions for each student and lists of
students who have not yet made any submissions. The students’ data gives instructors in-
sights into which test cases are tough, from which teachers could deduce which topics should
be dealt with more often in class. Using Marmoset means that the teacher has to do all the

1.1. Teacher Feedback 5

work for the project before releasing it to students, as the system does not appear to be flexible
for changes during the project timeline. The instructors that worked with Marmoset noticed that
some students indeed started working on their projects earlier than they might have done with-
out Marmoset, but that other stubborn students were not triggered by Marmoset to start their
work.

The Blackbox project collects student data from BlueJ users. Students can choose to opt in and
allow Blackbox to collect data concerning their programming behavior, such as source code,
edit sequences, testing and execution interactions, and compilation results [11]. The goal is
to provide researchers with an extensive collective database of student programming behavior
data and to stimulate them to perform research that might otherwise not be possible. Brown et
al.’s research shows that not all data collected by Blackbox has been useful. Also, in their survey,
they received feedback that (potential) researches were missing more contextual data. By 2018,
eighteen researches have been performed by ten different groups, using the Blackbox data.
In these researches, the most popular research topic was related to analyzing programming
errors.

The ClockIt BlueJ Data Logger and Visualizer consists of two separate extensions. One ex-
tension registers event listeners for compile, package and invocation events [43]. The second
extension visualizes the data that has been collected by the event listeners. Due to BlueJ being
able to only record the first error during a compilation, only one error per compilation can be
reported. The ClockIt web interface makes it possible for instructors to view data concerning
their students and entire classes, and students can also view their own data. This data includes
the types and amounts of compiler errors, number of lines of code and comments created over
time, and an indication of the amount of time students spend on programs per day.

Jadud performed a research with first year university students at Kent University, studying their
programming behavior while editing and compiling their programs. The students worked on
their assignments in BlueJ. Every time students compile their code, some data is stored, such
as a copy of the source code, the compiler output and other meta data [35]. Jadud developed
3 tools. First, a code browser which makes it possible for teachers to view the source code of
successive compilations of a student’s program. Secondly, a visualization of a student’s pro-
gramming behavior, which lists the types of errors that occurred in a session, including the time
was spent until the next compilation, the number of characters changed between compilations
(negative for deletes and positive for additions), and a visualization of where in the code an error
was located and where the student decided to continue programming in response to that error.
Thirdly, Jadud has used an algorithm to determine the Error Quotient (EQ) of a programming
session. This EQ rates each programming session to determine how much or how little students
struggle with syntax errors while programming [35]. An important insight for Jadud was that his
research showed him which errors students encountered most often. It appeared that students
spent most of their time on only a few different error types.

1.1.2. Web-Based Applications
The following web-based applications are online learning environments, which in some form
provide the opportunity for students to perform exercises and of which data is being collected
that could be translated into teacher feedback.

CodingBat is a website that offers a series of exercises in Java and Python [2]. It is possible
to create an account, so that all results will be saved. Also, users can share their results with
a teacher by sending it to the teacher’s CodingBat account. The teacher can then view how
many exercises each student has completed, and by zooming in, the teacher can view which
tests their code has passed. Another feature is the Progress Graph, which maps the (number
of) compiling attempts over time, as well as the level of correctness of the piece at that moment
in time.

CloudCoder, which is based on CodingBat, is an open-source web-based exercise system [44].
CloudCoder supports exercises in Java, Python, C/C++ and Ruby. When working on an exer-
cise, the application shows the exercise description, the code editor, test results and possible

6 1. Literature Review

compiler errors. From the command line, it is possible to create courses and register students in
a course. Consequently, a teacher can create exercises and add them to a course. Users can
freely import exercises from the CloudCoder repository or share exercises through the Cloud-
Coder repository. CloudCoder also collects a lot of data concerning the programming behavior
of students. All code edits, submissions and test outcomes are saved with the aim of providing
some extra insights for teachers and researchers about the exercises and the students.

The Hour of Code event takes place every year in the Computer Science Education Week,
but an Hour of Code can also be hosted by someone separate from the event. It consists of
many coding programs with a duration of one hour. It facilitates several programming projects
and consequently collects data about the students’ submissions of the projects. A research by
Basawapatna and Repenning has used the data collected in the Hour of Code projects to try
and determine at what point student retention levels drop significantly and what the reason for
this drop could be [9]. For this research, the Hour of Code project XML files for 2014 and 2015
were searched for the Lines of Code (LOC), in order to find out how far students usually made
it through an exercise. By tweaking the exercise experience after 2014, it was analyzed if the
performance of students in that exercise would improve between 2014 and 2015.

WebToTeach is a web-based tool that automatically checks students’ programming homework
[6]. It was developed at Brooklyn College and used locally. There are three user groups of
WebToTeach, i.e. guests, students and teachers. Guests can do the available exercises, but
their track record or previous submissions will not be saved. Students can see which exercises
they (still) have to do, can view their deadlines, and they can perform programming work within
the WebToTeach environment. It is possible for teachers to provide hints, and as soon as a
students are done with the exercise, they can submit their solution. They will receive immediate
feedback as to whether their submission is correct and has been accepted or whether it was
faulty and therefore not accepted. In case of acceptance, the student’s roster is immediately
updated and in case of failure, the student will be informed what was wrong and what should
be worked on. Teachers can create exercises/assignment, provide hints, create tests, maintain
roster information, view correct submission of students’ work, broadcast messages to students
and keep track of homework completion.

1.1.3. Stand-Alone Tools
The following applications are focused on providing student insights based on code snapshot
data. However, since they are not actually integrated in existing learning environments, they
require explicit data input by the user, in this case the teacher.

CodeBrowser is a web-based application that facilitates code snapshot analysis [28] and is struc-
tured so that data can be fetched across REST-APIs. A user can choose to either browse
courses or students. When viewing student data, the user can see in which courses the student
participated and the exercises on which the student has been working. When selecting an ex-
ercise, a Snapshot View appears, showing a timeline, file browser, snapshot(s) and a tagging
option. The timeline shows when snapshots have been taken over time and how many changes
were applied compared to the previous snapshot. Users have the option to view two consecu-
tive snapshots and the relative differences. Also, users can place tags when going through the
snapshots.

SnapViz is a web service that visualizes code snapshot data from tab-delimited data files. This
way, multiple snapshot driven systems can use SnapViz as a common visualization system. Its
online requirement is that the tab-delimited data file contains the following column headings:
Primary attribute, Secondary attribute, Timestamp, Score (either % or 0/1), a Label or Tag [7].
In a graph, SnapViz visualizes when compilation events took place, at what time and on which
day, showing a dot at that spot in the graph. It uses hues of the color red and green to indicate
the correctness of the code.

Expresso is a pre-compiler tool that recognizes a certain pre-defined list of compiler errors and
returns these in an easily explained manner to the student [30]. Hristova et al. compiled a list
of 20 Java programming mistakes that occur often and are important to explain well. This list is

1.1. Teacher Feedback 7

based on a survey of Computer Science professors, teaching assistants and students, combined
with their own knowledge. Their goal for Expresso was to improve upon the existing compiler
error messages and to also provide hints as to how to tackle the solutions. Expresso would be
most useful in an introductory programming course.

1.1.4. Other Related Research
A number of other related researches have been studied with the purpose of gaining additional
insights, which might be useful for the development of insightful teacher feedback. The following
studies were included in this thesis, because they address topics such as which type of data
could be collected and through which methods these data could be collected, amongst others
in order to facilitate intervention.

Ihantola et al. have analyzed a wide range of applications which collect educational data. They
found that approximately 45 of the analyzed researches (48%) studied Java and only 8 (11%)
studied Python. Several levels of data granularity have been established: keystrokes, line-
level edits, file saves, compilations, executions, and submissions. Their results show that there
seems to be a trend towards collecting high-level data (e.g. submissions) versus low-level data
(e.g. keystrokes), which has only seemed to have gained some traction during more recent
years [33]. These differences in granularity can serve applications with different purposes, for
example automated grading systems, IDE instrumentation, version control systems, and key
logging. Some extra, and useful, functionalities that several tools included are visualizations or
summaries of data, and the option to export data.

Hundhausen et al. suggest and promote the use of IDEs, not only to support computer program-
ming, but to collect learning process data and enable intervention techniques [31]. The idea of
using IDEs for these purposes is based on the argument that students already spend a lot of time
doing actual programming in IDEs. Moreover, IDEs can quite easily be instrumented with data
collection facilities and can automatically collect data while students perform their programming
exercises. It can be useful to provide feedback or interventions dynamically while the student is
working in the IDE. Several IDEs are instrumented to capture programming process data such
as edits or compilation errors. Some ideas are offered on additional data that could possibly
be collected, for example through offering survey or quiz questions or the use of eye tracking
data. Hundhausen et al. discuss different types of data that can possibly be collected through
IDEs, but a substantial part of their research concerns the design principles that could be used
when creating programming process interventions. Their research emphasizes that up till now,
little research has been performed concerning IDE interventions. A few existing examples of
interventions are mentioned, such as dynamically tailored feedback, incentive mechanisms, en-
hancing syntax errors so that they are more understandable, dynamically generating hints based
on patterns, awarding badges to students who reach certain timemanagement or learning goals,
and scaffolding the learning materials by splitting up exercises into smaller steps. They propose
a cyclical process model for IDE based learning analytics, which consists of the phases 1) Col-
lect data, 2) Analyze data, 3) Design intervention, and 4) Deliver intervention. This model is then
used to explore the design space of IDE based learning analytics. Despite the advantages of
using IDEs for learning analytics and interventions, its disadvantage is that implementation skills
do not directly transfer between IDEs, as each plug-in architecture has its own standards and
libraries. A possible solution could be a standard API for IDE plug-in implementation.

1.1.5. Summary
The purpose of this literature review was to gather information about existing tools that provide
teacher feedback. Therefore, based on the information found in literature, we made a subjec-
tive attempt to categorize the selected tools on the criteria whether they appeared to provide
‘insightful teacher feedback’ and whether or not ‘time-consuming’ analysis appeared to be re-
quired. Feedback categorized as ‘insightful’ was deemed to provide information to teachers
which would enable them to intervene in the learning process by offering additional explanation
about a specific programming concept. ‘Time-consuming’ indicates whether or not a teacher
appears to need a lot of time to analyze the provided data in order to extract usable informa-
tion.

8 1. Literature Review

The following table shows which of the reviewed tools provided teacher feedback.

Teacher Feedback
Tool Type Teacher Feedback Insightful Time Consuming

Test My Code Plug-In Yes Unknown Yes
Retina Plug-In Yes Yes No

Karam et al. Plug-In Yes Yes No
Smart Labs Plug-In Yes Yes Yes
CodeInsights Plug-In Yes No Yes
Marmoset Plug-In Yes Unknown Yes
Blackbox Plug-In n.a. n.a. n.a.
ClockIt Plug-In Yes Yes Yes
Jahud Plug-In Yes Yes Yes

CodingBat Web-Based Yes No No
CloudCoder Web-Based Yes Yes Yes
Hour of Code Web-Based No n.a. n.a.
WebToTeach Web-Based No n.a. n.a.
CodeBrowser Stand-Alone Yes Unknown Yes

SnapViz Stand-Alone Yes No No
Expresso Stand-Alone No n.a. n.a.

Table 1.1: Existing tools reviewed on teacher feedback usefulness

Table 1.1 shows that the majority of tools selected and reviewed for this research do provide
some sort of teacher feedback. After taking Blackbox (only data collection), Hour of Code,
WebToTeach and Expresso (no teacher feedback) out of the equation, 50% of reviewed tools
appear to provide insightful teacher feedback. The remaining 50% of tools provide teacher
feedback which does not enable teachers to intervene in the learning process of students. How-
ever, with the exception of Retina and Karam et al., all tools which do provide potentially useful
feedback require that teachers spend a lot of time on data analysis before they can potentially
intervene. This raises questions about whether teachers will ultimately intervene, because they
need to dedicate considerable time to analysis and need to possess the skill to analyze the
provided data.

Some of these applications also provide students with feedback on their progress. However, this
same information is often not provided to their teachers. The student feedback mainly consists of
error messages during the coding process. When students have finished an assignment, some
tools also offer the option to review snapshots which have been made upon compilation of the
code. However, students need to take the initiative to analyze this data and have to draw their
own conclusions, which may be too complicated or time-consuming for many students.

The researched tools are often very specific and operate between narrow boundaries, offering
functionalities which serve only a distinct purpose. A lot of focus also appears to be on the topics
of syntax and compilation errors, how they can be saved, responded to or relayed to teachers.
However, it appears that the data collected is often not very suitable for the purpose of generating
insightful feedback. An exception may be the data related to most common errors, as here an
attempt has been made to make the gathered data and resulting feedback more specific and
therefore more useful for intervention.

For the purpose of this research, three of the reviewed tools appeared particularly interesting,
because they seem to provide insightful feedback to teachers or, in the case of Expresso, to
students. These three tools have been highlighted in Table 1.1. The aspect these tools have
in common is that they generate feedback, based on a pre-defined list of most common errors.
Through Instructor View, Retina facilitates that teachers can access an overview of most com-
mon errors per student or class. Furthermore, Karam et al. also provide a list of most common
errors. However, other information provided by these tools may once again require quite some
analysis by the teacher. Expresso, which does not generate teacher feedback, may offer some
inspiration for this research because it does generate student feedback including hints based
on a pre-compiled list of most common errors.

1.2. Parsons Problems 9

1.2. Parsons Problems
As the main purpose of this thesis is to improve on currently existing programming education by
developing a method which generates insightful teacher feedback, this section of the literature
review explores the possibilities of Parsons Problems as an alternative testing method for the
purpose of collecting data that can be used for such feedback.

Parsons Problems (PP) are code puzzles that consist of different puzzle pieces of one or several
lines of code. Students receive these puzzle pieces in a randomized order and need to assemble
them in the correct order to solve a question. An example of a Parsons Problem is illustrated in
Figure 1.1. The code puzzle pieces on the left need to be dragged to their correct position on
the right side of the screen in order to create the solution.

Figure 1.1: Parsons Problem example [3]

There appear to be advantages to using Parsons Problems for computer science education in
beginners’ courses [45]. These advantages include: 1) maximized engagement due to gam-
ification, 2) high level of planning, which encourages logical structure and modularization, 3)
through the use of distractors, students are intentionally tempted to make common mistakes, 4)
when students are asked to continue answering a question until the answer is correct, they will
be exposed to the correct answer code, and 5) when automated, Parsons Problems can give
immediate feedback on whether a choice for a puzzle piece is (in)correct [45].

In his Cognitive Load Theory, John Sweller makes a distinction between three types: intrinsic,
germane and extraneous cognitive load. Each type of cognitive load has a different source.
Intrinsic cognitive load is the load due to the complexity of a problem, extraneous cognitive load
is the load due to the added complexity of the instructional material, and germane cognitive
load is the load originating from the processing and creation of schemas in long-term memory
[57]. A schema is used to describe a pattern of information organization and interpretation. It is
important for instructional material to be set up in such a way that the extraneous load is as low
as possible and working memory is freed up, in order to allow the germane cognitive load to be
free enough for the correct construction of schemas. If the working memory is overloaded due to
the instructional material, this can obstruct the correct learning process. The amount of cognitive
load that a student experiences, is based on a student’s prior knowledge. If the intrinsic load is
too much, it could be interesting to split up problems into simpler problems. Parsons Problems
take traditional programming exercises to a higher level of abstraction, which translates into
a lower level of cognitive load for novices. Therefore, PP could be an attractive educational
method for programming novices.

A research by Ericson et al. has found that students prefer Parsons Problems to other low
cognitive load exercises such as Multiple Choice Questions, or high cognitive load exercises
such as writing code [18]. Harms found that 80% of the students in his research enjoyed PP
more than the tutorials [26], which would show a step by step textual instruction on how to
execute that step. Other research shows that students that practise with new programming
concepts through PP, perform 26% better on transfer tasks and take 23% less time completing
exercises than students who learn the concepts through coding from scratch [25].

10 1. Literature Review

1.2.1. Design Choices
When creating a Parsons Problem, there are several design options to choose from to extend
their functionality and their purpose. Each design choice or combination of design choices will
determine the complexity and difficulty level of the Parsons Problem. The different alternatives,
or additions to Parsons Problem design to be considered are:

• (Paired) Distractor: a distractor is a puzzle piece that is incorrect, in the sense that a
student should not use it when composing the solution. It is possible to design the question
so that every correct puzzle piece has a counterpart distractor [45], however, it is of course
also possible to use no distractors or as many distractors as one wishes to use. Besides
the number of distractors used, it is also a choice whether to randomly order all puzzle
pieces, or to randomly order the correct puzzle pieces while pairing themwith their incorrect
counterparts. Solving PP with distractors should help students to build an understanding
of the common mistakes that can occur [45] [24]. It has been found that solving PP with
paired distractors is a more efficient method for practising coding than writing code or
fixing code [19]. Although it is possible that distractors may increase the cognitive load for
students [27], they are very useful and necessary tools to illustrate a specific mistakes

• Two-Dimensional: Ihantola and Karavirta introduced the concept of Parsons Problems in
two dimensions. In which the vertical dimension represents the order of the puzzle pieces
and the horizontal dimension represents the indentation of these puzzle pieces [32]. Such
a concept is especially useful when creating PP for languages such as Python, in which
indentation plays an important role in indicating which lines of code execute within which
constructs

• Partially Completed Code Pieces: code puzzle pieces could be created with parts of
the solution left open, for the student to fill out. This concept implements scaffolding on a
very small scale [21]. This gives the opportunity to further test a student’s understanding
and logical thinking. It does, however, raise the complexity of the problem [29], raising the
cognitive load level

• Context: it can be useful to already place some puzzle pieces in the correct location,
around which the unsorted code puzzle pieces are to be placed by the student [22] in
order to create more focus on a specific topic

• Multiple Lines: it can be useful to combine several lines of code into one puzzle piece, in
order to, for example, avoid interchangeability when the same line appears more often in
a solution [40]

1.2.2. Current Application
Parsons Problems are already being used in programming education as an alternative assess-
ment tool instead of traditional coding exercises. Multiple researches have been done on the
different ways to design Parsons Problems, and the possible situations in which PP can be used.
Additionally, several tools have been created in which PP can be completed. These tools vary
with regard to general functionalities, feedback options and user interface. Parsons Problems’
creators Parsons and Haden used Hot Potatoes for the creation of their Parsons Problems. A
teacher only needs to fill in the question and the corresponding code pieces, to create a Par-
sons Problem. At run time, the puzzle pieces will be randomized. A student needs to drag those
randomized pieces from the right side to the left side and then place them in the right spot. Par-
sons and Haden received feedback from students, which indicated that they would prefer more
exercises per problem type and that they would like to be provided with more detailed feedback
on their errors [45].

One very well known web-based platform for PP is js-parsons [32]. Js-parsons is an open source
JavaScript widget, under MIT licence, which makes it possible to embed Parsons Problems in
HTML with drag-and-drop functionality. A few other advantages are that js-parsons offers two-
dimensionality, toggle-able parts in the code, and that js-parsons can collect log data on how
students construct their solutions and send it to a server. When checking an incorrect solution,
students receive highlighted feedback on the first line that is incorrect. The feedback addressed

1.2. Parsons Problems 11

both the location and the indentation of a puzzle piece. Js-parsons facilitates easy integration
of PP in the existing curriculum of learning environments such as Codio [14] or Ebooks such as
Runestone [4].

The creators of js-parsons built upon their own js-parsons platform with the creation of Mo-
bileParsons. Since PP consist of code puzzle pieces which only have to be moved to the right
location by the user, PP appear to be suitable for mobile devices. MobileParsons supports
automatically assessed PP on IOS and Android mobile devices [37].

PyKinetic, a Python tutor that supports PP, is another smartphone based application. These
PP focus on implementing scaffolding in the exercises through the use of partially completed
code pieces. PyKinetic also provides automatic indentation. Especially low performing students
seem to learn more from PP than high performing students, for whom a ceiling effect appears
to apply [21].

ViLLE is a tool that was originally created with the purpose of visualizing program code execu-
tion. More recent versions contain the functionality of developing Parsons Problems [49]. Its
functionalities allow for context puzzle pieces to be provided. Distractors, however, are not sup-
ported by ViLLE. In case a student’s solution is correct, the feedback will include a score and the
option to visualize the execution of the solution. In case the answer is wrong, an error message
will appear.

Amruth Kumar has created a tool named Epplets, which facilitates adaptive Parsons Problems
[40]. Lines of code are offered in the Problem Panel and a student has to drag each of them to
the Solution Panel or the Trash Panel. Once a solution is submitted by the student, feedback is
provided about which line is not put in the right position. The exercises a student receives depend
on the ability a student has shown in previous PP exercises. Each PP exercise is designed with a
certain learning objective in mind. If a student shows trouble with a particular learning objective,
the student will receive additional puzzles until the student demonstrates to have fulfilled the
learning objective. Barbara Ericson also proposes adaptive PP through the use of intra-problem
and inter-problem adaptation. Intra-problem adaptation entails that when a student is not able
to solve a problem, the problem itself will be simplified, and inter-problem adaptation means that
the next problem will be based on the student’s performance in relation to the previous problem.
Ericson et al. have shown that solving PP through intra- and inter-problem adaptation is more
efficient, but equally effective, as writing code [20].

Looking Glass is a programming environment for beginners with 3D animated exercises. which
offer the possibility to create programming completion problems similar to Parsons Problems
[27]. In order to help reduce extraneous cognitive load, Looking Glass offers scaffolding options
for the user interface. However, Looking Glass does not support two-dimensionality, which limits
the amount of topics that can be integrated in the PP exercises.

Vitel et al. have developed EvoParsons [60], which is a software implementation of PP, designed
to facilitate ready-made puzzles and automatically generated puzzles. Each puzzle is created
by taking a code program from the program library. Next, the puzzle will be split into code
fragments and one or more transformations from the transforms library will be applied to the code
fragments, in order to create ‘bugged’ or incorrect pieces of code (distractors). This transforms
library contains semantic and syntactical misconceptions, such as capitalized keywords (‘Main’
instead of ‘main’) and removed semicolons [8]. Students have the option to request a hint,
which means that one misplaced fragment will be highlighted. In EvoParsons, code fragments
are automatically indented, which makes the exercise easier to solve.

Helminen et al. developed a tool which traces the full trails of student interactions when solv-
ing Parsons Problems. This tool records all changes in user input, all changes to the solution,
and time stamps. The goal was to track students’ programming process, analyze their prob-
lems and provide specific feedback. With the analyzed data from this research, Helminen et
al. created graphs, which show patterns and anomalies concerning the student’s problem solv-
ing process [29]. For example, these graphs showed that students often preferred to start the
problem solving process by adding code pieces that defined control structures such as for loops

12 1. Literature Review

and if statements. Through these interactive graphs it is possible to observe the most common
incorrect code states that students created for each assignment.

In conclusion, previous research has focused on 1) proving that PP are a viable alternative for
traditional coding assignments, and 2) the development of environments in which PP can be
created, solved, and sometimes analyzed.

1.3. Programming Misconceptions
In light of the main goal of this thesis, namely to improve on programming education by devel-
oping a method for generating insightful teacher feedback, this section of the literature review
examines programming errors, i.e. programming misconceptions, of which the efficient detec-
tion would contribute to that purpose.

In order to develop effective programming education, it is very important to understand which
things students tend to struggle with. While novices learn how to program, they can - and will
- make mistakes. These mistakes are often related to so-called ‘misconceptions’. These mis-
conceptions can have varying causes. For example, it is possible that novices do not fully grasp
a certain programming concept. Sometimes their understanding of a concept is the opposite
of the reality, and sometimes their understanding is incomplete and only consists of half of the
entire concept. Some mistakes or misunderstandings are simply vague and cannot be clearly
defined, but nonetheless those are mistakes that novices make [55].

One of the researchers who has done a lot of research on the topic of programming miscon-
ceptions is Juha Sorva. Through exploratory research, Sorva has compiled a list of 162 pro-
gramming misconceptions [55]. The misconceptions in this list often occur for content which is
typically covered in introductory programming courses (at higher education level). Tobias Kohn
is another researcher who has performed in-depth research on programming misconceptions.
Kohn has composed three lists with a total of 25 Python programming misconceptions, which
he deemed most important. The first list contains mistakes based on programming misconcep-
tions about syntax and semantics. The second list contains only syntax errors, such as missing
brackets, while the third list consists of mistakes that do not violate the grammar, but which still
pose problems for novices [39].

1.3.1. Selection of Misconceptions
As a starting point for this part of the thesis, it was decided to take the aforementioned two
collections of programming misconceptions, and filter those lists on suitability for this research.
First of all, it needed to be possible to translate the chosen misconceptions into PP. Parsons
Problems would seem to be particularly suitable for exercises that are not too long or complex
and do not consist of an exceedingly large number of code lines. When designing PP for the
detection of misconceptions, it was therefore deemed important to limit the answer space in or-
der to make the resulting data useful for analysis. This led to the second criterion, i.e. that the
misconceptions should be applicable for novice learners, as the code complexity and concept
difficulty applicable to novices is probably low enough for these PP to deliver distinctive conclu-
sions. Python is the programming language of choice for this research, because it is often used
in practise and in secondary school education and has so far been under-researched [33].

Therefore, the inclusion criteria for misconception selection were formulated as follows:

1. Seemingly applicable for translation into Parsons Problems

2. Applicable at novice level

3. Applicable for Python

In previous research by the author of this thesis, a selection of Sorva’s programming miscon-
ceptions list [55] has been made [50]. This list was already filtered on applicability at novice level
and applicability for Python. Therefore, this list only needed to be further filtered on suitability for
translation into Parsons Problems. Furthermore, a selection of misconceptions was made from
Kohn’s list of Python misconceptions related to syntax and semantics [39]. This selection was

1.3. Programming Misconceptions 13

narrowed down by applying the conditions that the misconceptions should be suitable for novice
learners and for translation into PP. This led to the following list of misconceptions considered
for this research:

1. Values are updated automatically according to logical context: novices expect that
values update automatically, depending on the context [48]

2. Difficulties understanding the lifetime of values: novices often do not comprehend the
temporal scope of value assignment [17]

3. Magical parallelism: several lines of a (simple non-concurrent) program can be si-
multaneously active or known: this misconception entails that it is often believed that
lines of code can run in parallel. For example, if a piece of code contains the if statement
‘if x > 4:’, and later on in the code x becomes larger than 4, it is believed that the previously
occurring if statement then executes as a reaction to the if statement now becoming true
[46]

4. A variable can hold multiple values at a time / ‘remembers’ old value: this misconcep-
tion is one that is widely discussed in literature, since novices often have the misconception
that a variable can hold multiple values, or remembers its old values when a new value is
assigned [17] [54] [47] [53] [16]

5. Variables always receive a particular default value upon creation: students often for-
get to initialize their variables, for example when keeping a running total [17]

6. Primitive assignment works in opposite direction: this is a misconception that often
stems from Mathematics. Novices think that variable value assignment works from left to
right, instead of from right to left [17] [41]. Parsons Problems appear to offer good oppor-
tunities to detect this misconception through the use of a distractor that contains the wrong
assignment direction. For example, when the correct solution contains the assignment “d
= e”, a distractor could be “e = d”. In this example, students have to make a very conscious
choice. If they choose the wrong answer, this is a strong indication that they truly do not
understand the concept of primitive assignment direction

7. Primitive assignment works both directions (swaps): novices often have the miscon-
ception that variable value assignment works in both directions, meaning the x = 3 and 3
= x would both be valid [39], or sometimes even that x = y entails that the values held by
variables x and y are switched [53]

8. The natural-language semantics of variable names affectswhich value gets assigned
to which variable: when using ‘meaningful’ variable names, some novices incorrectly be-
lieve that these variable names are also meaningful for the computer and that the computer
will handle their values accordingly. For example, that a variable named ‘even’ will auto-
matically hold the even number(s) [53]

9. Difficulties in understanding the sequentiality of statements: there are several often
occurringmisconceptions concerning this topic. For example, novices forget that every line
of code has an effect on the environment in which the next line will be executed. Another
misconception is that the computer will skip back and forth through the code in order to
execute the lines in the desired order [52]. Parsons Problems clearly seem to be suitable
to detect this, as this method relies on the cutting up of lines which need to be put in the
right order by the student

10. Code after if statement is not executed if the then clause is: novices seem to have
trouble understanding that when the condition in an if statement is true, the code within
the if loop is executed. Sometimes novices have the opposite incorrect understanding that
the content of an if statement is not executed when the if statement condition is true [17]

11. if statement gets executed as soon as its condition becomes true: this misconception
is closely related to the magical parallelism misconception (number 3 in this list). Novices
believe that if an if statement condition becomes true due to lines that execute later on in
the code, the computer will reevaluate the if statement as true and execute it [46]

14 1. Literature Review

12. Both then and else branches are executed: novices think that if and else statements will
both always be executed, no matter if the condition(s) are true or not [53]

13. The then branch is always executed: novices think that an if statement is always exe-
cuted, whether the if statement condition is true or not [53]

14. Using else is optional (the next statement is always the else branch): novices some-
times think that the code that comes immediately after an if statement is part of an else
statement, but that using the actual ‘else:’ statement is optional. This is incorrect, since
code that comes after an if statement is not in any way related to the functionality of the if
statement, and is executed in any case

15. Adjacent code executes within loop: novices believe that for example, a print statement
positioned after a loop would print something on every iteration of the loop. However, all it
does is print the final value of the thing it is supposed to print [53]

16. Difficulty in understanding automated changes to for loop control variables: it is
difficult for students to understand that a for loop variable changes on every iteration of the
for loop, and that as a consequence, if the variable is used within the loop, it will lead to
different results on each iteration of the loop [17]

17. while loops terminate as soon as condition changes to false: novices hold the mis-
conception that it is constantly monitored whether the while loop condition becomes true
throughout the iteration of the loop [46], meaning that they also incorrectly believe that if
the loop condition becomes untrue throughout the iteration, the while loop will terminate
[17]

18. for loop control variables do not have values inside the loop or their values can be
arbitrarily changed: it is believed that for loop control variables are only functional in the
for loop condition, and that they do not and cannot have any other function within the loop
[53]

19. Confusion between an array and its cell: novices often get confused about arrays, what
is the array as a whole and what is a single cell within that array [17]

20. Difficulties with dealing with 2D array subscripts and dimensions: this misconception
consists of two parts. Firstly, novices are easily confused whether an array subscript refers
to a certain cell or to the value stored within that cell. Secondly, when dealing with two
dimensional arrays, novices are often confused which subscript refers the columns and
which subscript refers to the rows [17]

21. Difficulties with arrays containing indices as data: when an array cell is referenced in
statements such as a[3] = a[3] + 5, confusion arises about whether the number 3 or the
value in a[3] is added to 5 [17]

22. Invalid else-statements: one misconception is that novices tend to use a condition in the
else statement, similar to how one would use a condition in the if statement. For example,
when code includes a statement such as ‘if (x > 4):’, many students think this should
be followed by a similar condition, namely ‘else (x < 4):’ instead of just ‘else:’. Another
misconception is that novices believe that the else statement is part of the if statement,
and should therefore be positioned inside the body of the if statement [39]

23. Incorrect structure: novices sometimes create incorrect structures, for example by plac-
ing entire programs within a loop [39]

Part I

The first step of this research is directed at gaining a better understanding of programming edu-
cation in secondary schools with a focus on the difficulties that teachers encounter. Furthermore,
an inventory will be made of the needs and wishes of teachers which have not been satisfied yet,
but which would in their view make a difference with regard to the effectiveness of programming
education.

Research Questions
Therefore, the research questions for the first phase of this research are:

1. Which difficulties do participants see with regard to the teaching process?

2. What avenues for improvement or further research do the participants see?

3. How could digitization or automation contribute to improving programming education?

Approach
In order to answer the Research Questions listed above, a number of interviews were conducted
with Dutch secondary school CS teachers and researchers in the field of programming educa-
tion.

15

2
Interviews

As the purpose of this research was to improve on existing programming education by devel-
oping a feedback method for computer science teachers, a series of interviews was conducted
with secondary school CS teachers and programming education researchers. The goal of these
interviews was to uncover the strengths and weaknesses in currently applied methods, form a
more focused idea about how the effectiveness of programming education could be improved,
and explore the possibilities of digitization and automation.

2.1. Methodology
For this research, a Grounded Theory approach was applied. That means that this research
is not based on a hypothesis which is consequently proven to be true or false, but rather that
the research focuses on an area of interest and that interesting thoughts or ideas are allowed
to surface during the course of this exploration. The idea behind Grounded Theory is to find
out what is out there, in order to create a theory or idea that is grounded in the data, instead of
being based upon an already existing research [38]. This approach seems to fit well with the
idea behind this thesis, namely to explore the current programming education landscape and to
see where improvement can be made or further research can be done.

2.2. Interview Design
The interview questions were designed with the clear goal of maintaining the right balance be-
tween guiding the conversation enough towards the right area of conversation, while not steering
the interviewee towards a certain answer or opinion. This was particularly important since the
goal of the chosen research method was to explore adjacent ideas and facts related to the area
of programming education in secondary schools. Also, it needs to be noted that, since the in-
terviews concerned a certain area of interest, but were not very specific, it is possible that the
interviews differ from each other with regard to conversational aspects and topics. Topics were
also allowed to be refined along the way, between interviews, in order to work towards satura-
tion.

The Research Questions were taken into careful consideration while designing the interview
questions. The goal was to not ask these specific questions right out, but to create some open
questions related to all the Research Questions. Some of the formulated questions were more
suited to researchers and others more suited to teachers, so both groups were asked the ques-
tions most applicable for their specific profession. The questions can be divided into several
subcategories, namely 1) Introduction, 2) Researcher, 3) Teacher, 4) Digitization/Automation,
and 5) Other.

17

18 2. Interviews

2.2.1. Introduction
This section contains a few basic questions which simply serve as an introduction to the con-
versation and simultaneously handle a few formalities.

• Do you mind if I record the interview?

• Could you please state your full name for me?

• Could you tell me about what it is that you do and how it relates to computer science
education?

2.2.2. Researcher
The Researcher section contains questions that are more related to performing research and
experiments and are therefore mainly suited to the programming education researchers who
were willing to take part in this research.

• Could you describe the field in which you perform research?

• As an example, can you tell me something about your previous researches?

• Can you describe the data collection process you typically go through? Or went through
in one of your researches?

• Can you give an example of the type of data you collect?

• How do you process that data?

• What type of analysis do you perform on that data? (E.g. visualizations, mutations, statis-
tical analyses)

• What format is most ideal for different types of data?

• According to you, which part or step of the research process could be improved?

• Where in the research process could digitization or automation play an important role or
contribute to improvement?

• According to you, in the field of computer science education, what could be interesting
directions for future research?

2.2.3. Teacher
The questions in this section are mainly applicable for computer science teachers, since those
questions are related to the educational process and the students.

• Have you ever given programming lessons?

• Could you please tell me something about those lessons.

• How would a typical lesson go?

• Which things do you notice that students typically understand well or pick up quickly?

• Why is that, do you think?

• Can you give an example of something that students struggle with? How did that go? Was
the matter resolved?

• Which questions do students often ask?

• How do you evaluate if a student understands a (programming) exercise? Based on what
information? How do you measure that?

• Can you give an example of how you test whether or not a student understands a concept?

• Can you give an example of a moment when you had to intervene while giving a lesson?
In which way?

2.2. Interview Design 19

• How could digitization or automation help improve the computer science education pro-
cess?

• Can you give an example of something you would like to understand better about students
with regard to programming?

• How could you, or I, do something about that?

• Are there examples of information, which is already available or known about students (or
their behavior), which could be useful, but with which nothing/little has been done yet?

2.2.4. Digitization/Automation
For this thesis, an interesting topic is to find out what the role of digitization/automation could
be in programming education. This is why some extra focus is given to this topic through the
following questions.

• What is it that an application would have to be able to do, in order to add value/be useful?

• Can you give an example of how such an application might have helped you in your past
researches/lessons?

2.2.5. Other
At the end of an interview there is some space to ask a few final open questions.

• Is there anything else you would like to tell me?

• Would you possibly be open to participating in a follow up interview in a later phase of this
research?

3
Results Part I

The interviews took place over a period of four months between July and November 2019. Each
interview took roughly one to two hours, depending on the flow of the conversation and on the
availability of the participant. New interviews were planned until saturation in information gather-
ing had taken place and a focused direction for the continuation of this research had been devel-
oped. The term ‘saturation’ means that enough data has been gathered to satisfy the research
questions and that no real new information came to light during subsequent interviews.

3.1. Participants
A total of seven participants were interviewed for this research: three CS teachers and four
programming education researchers. The programming education researchers (two female and
two male) are affiliated with Leiden University and Delft University of Technology. Two of them
are also programming teachers at secondary schools. The three participating CS teachers (one
female and two male) work at Dutch secondary schools. In Grounded Theory, there are several
recommendations when it comes to the number of participants that should be interviewed. This
number ranges from 5 to 30 [12], but the necessary number of participants is not strictly bound
to this range.

The aforementioned participants were recruited through different channels. Programming edu-
cation researchers were recruited through the Programming Education Research Lab at Leiden
University. The secondary school CS teachers were recruited through an advertisement that
was placed in the newsletter of the professional association I&I, which represents teachers and
employees related to computer science. The advertisement simply stated a general message
without any details about the research, in order to avoid guiding the conversation or thoughts
before conducting the interviews.

All participants signed an Informed Consent Form, which explicitly states that they agree taking
part in the interviews and that participants allow the interview to be recorded.

3.2. The Interviews
After each interview was conducted, the same analytical process was executed. Every interview
was recorded and therefore had to be transcribed afterwards. After transcribing, two analysis
steps were performed, namely identifying codes and open coding.

Identifying codes mainly entails generating descriptive words or phrases that correctly represent
an interesting segment of data. This was done for the entire transcribed interview. While creating
new codes, a constant process of comparison took place in order to determine whether codes
were similar to or different from each other. Once all these codes had been created, a more
general open coding step took place. This step entailed a deeper examination of the created
codes, labelling them, determining how they compared with or differed from each other and

21

22 3. Results Part I

finally grouping them into larger concepts or categories.

This process was repeated for every interview. In some instances, the exact setup of the next
interview was slightly altered, based on the results of the previously analyzed interview. New
information from new interviews was added to the total picture. Therefore, the development of
concepts and categories was part of an ongoing process.

Classification of the codes has thus led to the creation of a number of overarching concepts
which represent those codes. In order to create a clear overview of the analyzed data, a vi-
sual representation was made of all codes and their overarching concepts, as specified in the
following list:

1. Research topics (see Figure 3.1)

2. Difficulties encountered during the research process (see Figure 3.2)

3. Difficulties encountered during the teaching process (see Figure 3.3)

4. Practical recommendations (see Figure 3.4)

5. Possible functionalities for digital learning environments (see Figure 3.5)

6. Learning tools (see Figure 3.6)

7. Miscellaneous (see Figure 3.7)

In order to clarify how remarks during the interviews were translated into codes and then as-
signed to overarching concepts, this process will be briefly explained. For example, it was re-
marked that error messages are often confusing for students because they might refer to the
line of code which follows the mistake and not the line containing the mistake itself, which leads
to panic for the student. This remark was translated into the code ‘error messages were not
always clear’. This code was then categorized under the concept ‘problems encountered during
the teaching process’, which can be found in Figure 3.3. Codes such as ‘make assignments
directed at specific misconceptions’, ‘repetition’ and ‘make sure that faulty answers correspond
with misconceptions’ were created to represent remarks pertaining to those subjects and placed
in the diagram representing Practical Recommendations (see Figure 3.4), even though they
may not necessarily have been meant as recommendations. However, during the grouping of
codes into overarching concepts, these particular remarks were judged to possibly contribute
to solutions and therefore placed in the recommendations diagram. In this manner, all relevant
remarks and topics broached by the participants were coded and categorized (see Figures 3.1
to 3.7).

Figure 3.1: Research topics. The highlighted codes relate to the topics listed in the summary of this chapter

3.2. The Interviews 23

Figure 3.2: Difficulties encountered during the research process. The highlighted codes relate to the topics listed in the
summary of this chapter

Figure 3.3: Difficulties encountered during the teaching process. The highlighted codes relate to the topics listed in the
summary of this chapter

Figure 3.4: Practical recommendations. The highlighted codes relate to the topics listed in the summary of this chapter

24 3. Results Part I

Figure 3.5: Possible functionalities for digital learning environments. The highlighted codes relate to the topics listed in
the summary of this chapter

Figure 3.6: Learning tools. The highlighted codes relate to the topics listed in the summary of this chapter

Figure 3.7: Miscellaneous. The highlighted codes relate to the topics listed in the summary of this chapter

3.3. Summary: working towards a solution 25

Based on the interviews with the participants in this research, the research questions formulated
in the introduction of Part I can be answered as follows.

RQ 1: Which difficulties do participants see with regard to the teaching process?

Teachers appeared to encounter a lot of challenges, which varied from annoyance about the
difficulty of reading error messages, and the problem of cognitive differences between students,
to the challenge of detecting which concepts an individual student does not grasp. Students
appear to have difficulty understanding certain concepts and “most students want to skip the
first steps of [logical thinking]”. According to teachers, useful tools should, amongst others, offer
the functionalities of categorizing students based on their shown skill level and on whether or
not students “answered correctly and [...] spend for example different time ranges on a specific
question”. Furthermore, it was deemed useful to track the “number of trails” and to determine
whether repeated mistakes could indicate misconceptions.

Programming education researchers mentioned the role of misconceptions relatively often. Re-
searchers wanted to know “how one can train [to avoid misconceptions]” and “which misconcep-
tions students really have”. Furthermore, the difficulties concerning error messages, particularly
in Python, were mentioned. Researchers emphasized that it is difficult and extremely time-
consuming to analyze data from an abundance of freely coded exercises, and that “there should
be less measuring and more interpretation [of data]”.

RQ 2: What avenues for improvement or further research do the participants see?

Recommendations from the interviewees included “repetition”, “retrieval practise”, “let ‘faulty’ an-
swers correspond with misconceptions”, “investigate the samemisconception [...] but in different
questions” in order to find a pattern and to present the problems in different ways, e.g. through
tutorials, multiple choice questions or Parsons Problems. Parsons Problems were thought to be
of use because students can make mistakes in a limited number of ways only, so participants
thought it would be interesting to investigate whether those mistakes could be categorized in
relation to misconceptions.

RQ 3: How could digitization or automation contribute to improving programming edu-
cation?

Teachers do not have the time to analyze all freely coded submissions or code snapshots.
Teachers would benefit from a tool which could alert them to which mistakes are being made by
whom.

3.3. Summary: working towards a solution
Based on the input during the interviews, ten important topics were deduced. Codes related to
these topics have been highlighted in the above diagrams.

With regard to teacher feedback, it appeared that teachers would find it very helpful to have
more insight in the misconceptions of their students. As alternative testing methods, such as
puzzles or Parsons Problems, and the need for recognizing misconceptions, were mentioned
several times, the plan was conceived to explore the idea of using Parsons Problems for the
detection of misconceptions.

In order to determine whether a method using Parsons Problems could be effective for such a
purpose, the following section aims to determine whether a method involving Parsons Problems
could be useful in addressing the ten main topics distilled from the interviews. This will be
discussed below.

1. Students have difficulty learning programming
Parsons Problems take traditional programming exercises to a higher level of abstraction,
reducing the cognitive load for students. By breaking problems up into smaller pieces in
this way, working memory will be freed up, making it easier for novices to learn

2. Students have difficulty thinking in a structured way about how to approach a prob-
lem

26 3. Results Part I

Due to the high level of abstraction, Parsons Problems puzzles stimulate students to think
about the general structure and logic, instead of all the details, when placing the code
puzzle pieces in the correct order

3. Students might benefit from alternative testing methods
Parsons Problems constitute puzzles and would be suitable for gamified solutions

4. Students have a lot of difficulty reading and understanding error messages
Depending on the technique used for the digitization, Parsons Problems can give simple
feedback such as which lines are in the wrong position or wrongly indented. The shape
and content of this feedback is less complex than in traditional coding exercises

5. Repetition is of great importance in programming education
Although this recommendation wasmeant in the sense that students learn better when they
have to repeat complicated exercises and topics, repetition will be an important factor in
misconception detection as well. Misconceptions will have to be integrated multiple times
in different questions during a testing session. In this case, the repetition of the exercise
will provide increased certainty about the gravity of the misconception, as well as repeated
exposure of topics and exercises to the students

6. Teachers have difficulty determining what exactly their students have trouble with
If PP could successfully detect misconceptions that students hold, this would greatly help
teachers understand the difficulties that their students have

7. Teachers would benefit from a tool which could alert them to which mistakes are
being made by whom
If Parsons Problems successfully detect misconceptions, this would be valuable input for
a teacher feedback tool. In that case the analyzed results of the PP could provide insights
on which students make which mistakes

8. Students either do not notice when they do not understand an important concept,
or they wait too long before asking for assistance
If teachers would have access to an automated tool which successfully employs Parsons
Problems for misconception detection, the resulting feedback would bring the students
misconceptions to the attention of the teacher which would enable the teacher to intervene

9. Teachers do not have the time to analyze all freely coded submissions or code snap-
shots
An automated tool would generate immediate and focused feedback, which would not re-
quire time-consuming additional analysis by the teacher

10. Teachers have difficulty helping all students individually, in order to do that they
would need extra help
The described tool could inform the teacher about the number of students who hold a
certain misconception. Teachers would then be able to give additional instructions directed
at certain concepts for the whole class, or part of the class. Additionally, it would be possible
to integrate and provide digital tutorials or extra explanations to students who seem to hold
certain misconceptions, so that they can continue individually without necessarily needing
the teacher. As a consequence, individual help to students will most likely not be needed
as much as before

With regard to the above mentioned topics, it appears that the use of Parsons Problems could
indeed be very interesting to address the main topics covering the remarks brought forward by
the participants in the interviews. Therefore, it was decided to further explore the validity of using
Parsons Problems for misconception detection.

Part II

Since the purpose of this thesis was to improve on existing programming education through the
development of a feedback method for computer science teachers, the first part of the research
was focused on conducting interviews with secondary school CS teachers and programming ed-
ucation researchers to uncover the strengths and weaknesses of currently appliedmethods. The
results of Part I indicated that a method, which would provide specific and non-time-consuming
teacher feedback, particularly about common mistakes and misconceptions, would contribute
to improving the effectiveness of programming education. Analysis of the findings in Part I also
indicated that Parsons Problems could be an interesting alternative method to test for those
misconceptions. Therefore, the purpose of Part II of this research is to design a method for
misconception detection through Parsons Problems, which generates specific and ready-to-use
teacher feedback.

In order for such a method to generate clear and specific feedback, the data to be collected
needs to fit certain requirements. First of all, the choice was made to limit the variety of possible
mistakes made by students by focusing on a set of pre-defined misconceptions. As mentioned in
the above and in line with suggestions in previous research about the use of survey or quiz ques-
tions in order to collect additional data [31], this research will test the use of Parsons Problems for
detecting specific misconceptions. Moreover, it has been suggested that Parsons Problems can
be used as an effective learning tool, particularly for novices. Parsons Problems offer specific
design options, as discussed in the Parsons Problems chapter, which enhance their suitability
for this particular purpose. As it is important to identify misconceptions in the early stages of pro-
gramming education [29], it was decided to focus on misconceptions which are likely to occur
for first or second year secondary school students, particularly for novices. As mentioned be-
fore, Python is the programming language of choice for this research, because it is often used in
practise and in secondary school education and has so far been under-researched [33].

Research Questions
As Parsons Problems have so far not been researched or used in the context of misconception
detection and feedback generation, the research questions for Part II of this thesis are:

1. Are Parsons Problems suitable for the detection of programming misconceptions?

2. What kind of insightful teacher feedback can be generated from the data collected through
this method?

Approach
Building on the information gathered during this research, a set of Parsons Problems was de-
signed for the purpose of detecting a select number of specific misconceptions. These exercises
were tested during a pilot experiment followed by a more extensive experiment, of which the
findings will be discussed in the results section of Part II.

27

4
Pilot Experiment

Before designing and executing an extensive experiment using Parsons Problems coding puz-
zles, a pilot experiment was run. The main goal of this pilot experiment was to get a rough idea
whether Parsons Problems would indeed work for the purpose of identifying programming mis-
conceptions. Moreover, it was important to learn which questions, setup and functions would
work well for such an experiment, or which aspects could be improved upon before executing
the more extensive experiment round.

In this chapter, the development of the first set of Parsons Problems for the pilot experiment will
be described, followed by an analysis of lessons learned, which were integrated in the design
of the more extensive follow-up experiment.

4.1. Question Design
It was decided to make the questions for the pilot experiment two-dimensional, since indentation
is very important for Python. Furthermore, the choice was made to include a few distractors and
to provide a bit of context. The questions in the pilot experiment served as a try-out in order to
find out what does and what does not work.

Furthermore, the literature review already showed that particularly those existing methods which
made use of previously compiled lists of most common errors (Retina, Karam et al. and Ex-
presso) appeared to generate insightful feedback which did not require extensive further anal-
ysis. Therefore, it was decided to design the Parsons Problems in such a way that they would
be able to detect errors related to misconceptions from the pre-defined list of most occurring
misconceptions (see Literature Review, section Programming Misconceptions).

After selecting a number of misconceptions and after reviewing the potential Parsons Problems
design options, ten Parsons Problemswere created. In the following section, these ten questions
and their solutions will be presented, including the misconception(s) they are targeting. Some
questions contain distractors, which in those cases will be shown below the question. Some
questions contain pieces of code which have already been placed in the right position, in order
to provide context. These pieces of code will be highlighted in italics. For each of the questions
an explanation will be given as to which misconception(s) might be detected if a student answers
the question incorrectly.

4.2. Questions
The questions can be divided into four categories based on the main programming concepts
selected for this research: Variables, If/Else Statements, While Loops and For Loops. In the fol-
lowing section, each of these categories and corresponding questions will be discussed.

29

30 4. Pilot Experiment

4.2.1. Variables
All three PP which are related to variables attempt to uncover whether the students understand
variables, assignment (directions) and whether they understand which, and how many, values
are stored in which variables.

Question 1

Put the pieces of code in the right order, so that the variable b has the value 5.
! Beware ! Not all the pieces of code have to be used.

a = 5
b = 10
c = a
b = c

Distractors:

• c = b

Misconceptions targeted:

• Primitive assignment works in opposite direction

• Primitive assignment works both directions (swaps)

Question 2

Put the pieces of code in the right order, so that variable b has the value 23 and so that the
number 25 is printed.

a = 23
b = a
a = 25

print(a)

Distractors: None.

Misconceptions targeted:

• Difficulties in understanding the sequentiality of statements

• A variable can hold multiple values at a time / ‘remembers’ old value

Question 3

Put the pieces of code in the right order, so that the value of the variable x and the value of the
variable y are switched. So the variable x should have value 5 and variable y should have value
3.
! Beware ! Not all the pieces of code have to be used.

x = 3
y = 5
temp = 0

temp = x
x = y
y = temp

Distractors:

• y = x

4.2. Questions 31

Misconceptions targeted:

• Primitive assignment works in opposite direction

• Primitive assignment works both directions (swaps)

4.2.2. If/Else Statements
The following questions are mainly constructed to test whether students understand the general
concept of if/else statements.

Question 1

Put the pieces of code in the right order so that it is printed whether x is a positive or a negative
number.
! Beware ! Not all the pieces of code have to be used.

if x >= 0:
print(‘x is a positive number’)

else:
print(‘x is not a positive number’)

Distractors:

• if:

• else x < 0:

Misconceptions targeted:

• Invalid else-statement

• Using else is optional

Question 2

Put the pieces of code in the right order so that the number 10 is printed if variable a is smaller
than 5, otherwise the number 20 should be printed.

if a < 5:
a = 10

else:
a = 20

print(a)

Distractors: None.

Misconceptions targeted:

• General understanding of if/else statement

Question 3

Put the pieces of code in the right order so that the size of the variables a and b are compared.
a = 180
b = 35
if b > a:

print(‘b is larger than a’)

else:
print(‘b is not larger than a’)

32 4. Pilot Experiment

Distractors: None.

Misconceptions targeted:

• General understanding of if/else statement

4.2.3. While Loops
Through these two while loop PP, the goal is to find out whether students properly understand
the concept of a while loop and the sequentiality of statements. In both questions, if lines 3 and
4 are reversed, it might indicate the sequentiality of statements misconception.

Question 1

Put the pieces of code in the right order so that the following number sequence is printed: 1 2 3
4 5 6 7 8 9 10

i = 0
while i < 10:

i = i + 1
print(i)

Distractors: None.

Misconceptions targeted:

• Difficulties in understanding the sequentiality of statements

Question 2

Put the pieces of code in the right order so that the following number sequence is printed: 4 6
8

i = 4
while i < 9:

print(i)

i = i + 2

Distractors: None.

Misconceptions targeted:

• Difficulties in understanding the sequentiality of statements

4.2.4. For Loops
The PP in this section aim to find out whether students understand how to construct two different
loops within each other, which code is part of the body of a loop, which code executes outside
a loop, and whether the students understands the sequentiality of statements.

Question 1

Put the pieces of code in the right order, so that variable p increases with 1 if p is smaller than 3
and otherwise it should be printed that p is not smaller than 3. Also, every value of p should be
printed.

for p in range(7):

if p < 3:
p = p + 1

else:

4.3. Setup and Participants Pilot Experiment 33

print(‘p is not smaller than 3’)

print(p)

Distractors: None.

Misconceptions targeted:

• Adjacent code executes within loop

Question 2

Put the pieces of code in the right order so that the following number sequence is printed: 0 1 3
6

x = 0
for z in range(4):

x = x + z
print(x)

Distractors: None.

Misconceptions targeted:

• Difficulties in understanding the sequentiality of statements

• Difficulty in understanding automated changes to for loop control variables

4.3. Setup and Participants Pilot Experiment
The pilot experiment took place during a coding workshop evening at Metis, a secondary school
in Amsterdam. Students from all ages in secondary school could sign up for this night. The
pilot experiment was not a workshop in itself, but several students from different workshops
volunteered to participate. The experiment was performed with one student at a time.

The exercises had been printed on a piece of paper. The puzzle pieces of code had also been
printed and cut into pieces. First, the concept of Parsons Problems was explained to the student.
The student had to put all the puzzle pieces in the right order. The student would show the
result after completing the exercise, after which the answer produced by the student would be
noted.

A total of five students started with the experiment. One of them stopped after trying one exer-
cise. In the end four students fully participated in a session. They were second and third year
secondary school students, aged 13 and 14.

4.4. First Test Results
The Parsons Problems were divided into four categories, as described in the Questions section.
The four students who participated received a question category based on their prior knowledge
of Python programming. After finishing one category, students could choose to either continue
and complete another question category or to stop participating in the experiment. This approach
was chosen since the experiment was on a voluntary basis and it was a ‘side experiment’ in the
context of the workshop evening.

Due to this approach, not all four categories received the same number of answers. Three
students answered the Variables questions, three answered the While Loops questions, one
answered the For Loops questions and one answered the If/Else Statements questions. The
level of the four participating students varied slightly since the group was composed of both sec-
ond and third year students from different difficulty levels of secondary school. Therefore, some
questions might have been too easy for some of these students. However, some interesting re-
sults were gained from this pilot experiment, which indicated that the use of Parsons Problems
might hold promise for the detection of programming misconceptions.

34 4. Pilot Experiment

Several misconceptions surfaced in answers to questions that targeted those misconceptions.
Some of the mistakes made by these four students indicated misconceptions which were not an-
ticipated to surface if a student would answer a question incorrectly. Some faulty answers were
the result of misconceptions which had not been expected based on the literature researched for
this thesis. Furthermore, students made other mistakes, which were not expected to be found.
Each of the students and the mistakes they made will be discussed hereafter.

4.4.1. Participant 1
Participant 1 only completed the questions concerning Variables. The answers for questions 2
and 3 showed similar mistakes. In question 2, the lines ‘a = 23’ and ‘b = a’ were not correctly
indented, while the order of the lines was correct. In question 3 the lines ‘temp = x’ and ‘y =
temp’ were incorrectly indented, while also the order of ‘x = y’ and ‘temp = x’ proved to be
incorrect. These mistakes together seem to imply that this student does not fully understand the
implication of variable value assignment and the concept of assigning the value of one variable
to another variable.

4.4.2. Participant 2
Participant 2 answered all questions related to Variables correctly. However, when answering
the While Loop related questions, a mistake occurred in question 2. The lines ‘i = i + 2’ and
‘print(i)’ were put in the wrong order. This indicates that this student might hold a misconception
concerning the sequentiality of code. Perhaps the student does not understand that each line
of code has an effect on the environment in which the following line of code will be executed.
Maybe this student thought that all lines would be executed at the same time or that the computer
would know what to do in terms of which line needs to be executed when, in order to have a
certain result. This was the purpose of the exercises with while loops. The two questions are
very similar, except for the fact that the line changing the value of i and the print line should be
in a different order.

4.4.3. Participant 3
Participant 3 answered all questions related to Variables and While Loops correctly. However,
this student did make some interesting mistakes when answering question 2 of the For Loop
questions. Firstly, the lines ‘print(x)’ and ‘x = x + z’ were put in the wrong order. This implies
that the student might not have understood sequentiality as well as it seemed during the other
questions concerning variables andwhile loops. It might also have to do with amisunderstanding
concerning the concept of the control variable z and its mechanisms. Secondly, the line ‘x
= x + z’ was positioned upside down, namely ‘z + x = x’. This mistake was only possible
because this exercise was performed with pieces of paper instead of on a computer. However,
it may actually highlight a misunderstanding of the variable assignment direction. Apparently
this student believed that assignment from left to right is possible. An explanation as to why this
mistake was made here and not with the other questions containing a similar piece of code, may
be that the actual letters used to represent variables (x and z) look the same when put upside
down. If for example the line ‘i = i + 2’ would be put upside down, one would more quickly
determine that this cannot be right because the letters and numbers do not make sense upside
down. This is an interesting discovery, which may be useful when designing future questions,
since it appears that using this mechanism shows a student’s actual level of understanding
concerning assignment direction.

Figure 4.1: Answer to question 2 about For Loops by Participant 3

4.5. Conclusions Pilot Experiment 35

4.4.4. Participant 4
Participant 4 only made one mistake when answering the questions concerning If/Else State-
ments. This question included some distractors focused on the syntax of the if and else con-
ditions. The ‘else x < 0:’ line was used instead of ‘else:’, which could indicate that this student
does not fully understand the syntax concerning if statements. Namely, that an else statement
does not contain a condition, only in the case of an elif statement, there would be a condition.
Since this type of distractor was only used in this question and not in the other two If/Else State-
ment questions, it is difficult to determine whether this was a one-off or whether the student
really holds this misconception. Based on the answers to the While Loop questions, it can be
concluded that this student did not fully grasp how a variable functions in a while loop. In both
questions the variable i is declared within the while loop, which is incorrect. For example, for
question 1, the lines ‘i = 0’ and ‘while i < 10:’ were switched. The same mistake was made
with the answer to question 2. The fact that this very specific mistake is repeated in both an-
swers, shows that it is very likely that this student does not understand that the variable used in
a while loop expression, which is altered within the loop, should be initialized before the while
loop. Also, for question 2, the lines ‘i = i + 2’ and ‘print(i)’ were switched, which may be a sign
of the sequentiality misconception.

4.5. Conclusions Pilot Experiment
Several things became clear as a result of this pilot experiment, both in relation to the execution
of the experiment itself and with regard to the direction in which this research needed to be
continued.

Concerning the Parsons Problems used in the pilot experiment the following became clear.
Some questions turned out to be more useful than others and some question descriptions could
be formulated more precisely. For example, the first two questions seemed too easy and would
therefore not generate interesting results. The development of Parsons Problems related to
variables could thus use some more focus. Question 1 of the For Loop Parsons Problems could
have been formulated more explicitly with regard to the printing of every value of p. This ques-
tion was answered correctly, but upon further consideration it seemed that this part might be
interpreted differently than intended and could lead to an alternative, though technically correct,
answer. A better way to put it then would seem to be: the value of p should be printed within
every loop, no matter what the scenario turns out to be. However, in that case, the ‘print(p)’
could also be ‘correctly’ positioned before the if statement. Therefore it would be better to re-
consider the setup or description of this specific question altogether. The while loops seemed
to show some possibly useful insights regarding misconceptions. Especially the repetitiveness
and similarity between the questions helps to determine whether a misconception is simply a
one-off, or whether the misconception occurs more often and should be addressed. The mis-
take made by one of the participants regarding the syntax of an else statement also asks for
more repetition and similarity between questions. In order to determine whether a mistake is
accidental, or occasional, or whether it is a consistent misconception, more repetition should
be applied and more questions should be created per category or across categories that show
similar insights.

In general, it is not always easy to translate misconceptions into Parsons Problems which will
detect these misconceptions. Therefore, it was decided to include more distractors for certain
questions.

Although this pilot experiment did not include many questions per category and the participants
were not asked all of the questions, the results do already show some promise. As discussed
in the results section above, the pilot experiment did uncover several recurring mistakes, which
most likely indicates misconceptions. Some mistakes seem to indicate that a student holds a
certain misconception, but, in order for the analysis to be more precise, more questions and
answers per individual student would be necessary. However, this pilot experiment has shown,
that if a students holds these misconceptions, they do come to light if students are tested with
questions translated into Parsons Problems. This means that so far, these preliminary test re-
sults show promise regarding the use of Parsons Problems in the detection of programming

36 4. Pilot Experiment

misconceptions.

The next part of this research consists of constructing more and better Parsons Problems which
will be used in the more extensive follow-up experiment.

5
Experiment

The results of the pilot experiment indicated that PP could indeed be useful for misconception
detection in novices. In this chapter, a much more extensive experiment will be described,
consisting of more PP per student. Moreover, many more participants were recruited and tested
than in the pilot experiment.

5.1. Question Design
Concerning the question design, several lessons were learned from the pilot experiment.

• (Non-paired) distractors: distractors are very useful for embodying misconceptions and
are therefore very useful for the purpose of this research. However, in order to minimize
the answer space and preserve the clarity of the results, it was decided not to use paired
distractors for all code pieces of the solutions. Questions will not contain distractors if it is
thought that distractors will not add enough value in the detection of targeted misconcep-
tions

• Two-dimensional: since indentation is of great significance in Python, it is very important
to use two-dimensionality in these PP to gain an as complete as possible insight into a
student’s understanding of constructs and concepts

• Context: context is another method for limiting the answer space and emphasizing specific
misconceptions. This concept is therefore used on a few occasions

• Multiple lines: this concept is especially useful for limiting the answer space and empha-
sizing misconceptions regarding variable value assignment. This method is only used on
one occasion

Partially completed code pieces were not included for several reasons. Although partially com-
pleted code pieces provide an opportunity for free and differing input per student, doing this
would unnecessarily complicate additional analyses, but more importantly, using this method
requires a different kind of thinking and analysis level from students. However, as this experi-
ment was designed for students at novice level, it was decided to not unnecessarily complicate
the questions in order for students to be able to focus on the more important basics.

One of the important things learned from the pilot experiment is that enough questions need
to be created that target the same misconceptions. In case students holds a misconception,
they will have the opportunity to make the same or a similar mistake more often, which will
give more certainty about whether a mistake is a misconception or just a random mistake or a
one-off.

In order to be able to draw conclusions based on the experiment to be performed, the following
selection of misconceptions [55] [39] was made:

37

38 5. Experiment

1. Primitive assignment works in opposite direction

2. Primitive assignment works both directions (swaps)

3. Invalid else-statement

4. Using else is optional

5. The natural-language semantics of variable names affects which value gets assigned to
which variable

6. Difficulties in understanding the sequentiality of statements

7. Adjacent code executes within loop

8. For loop control variables do not have values inside the loop or their values can be arbi-
trarily changed

5.2. Questions
This experiment consists of fifteen Parsons Problems, which have been divided over the same
four categories as the questions which were designed for the pilot experiment: Variables, If/Else
Statements, While Loops and For Loops. Table 5.1 shows which PP questions target which
misconceptions from the above mentioned list of eight targeted misconceptions.

Question Category Targeted Misconception
1 Variables 1, 2
2 Variables 1, 2
3 Variables 1, 2
4 Variables 1, 2
5 If/Else Statements 3, 4
6 If/Else Statements 3, 4
7 If/Else Statements 3, 4, 5
8 While Loops 6
9 While Loops 6
10 While Loops 6
11 While Loops 3, 7
12 While Loops 3, 7
13 For Loops 6, 8
14 For Loops 3, 7
15 For Loops No specific misconception targeted

Table 5.1: Targeted misconceptions per experiment question. Misconception numbers correlate with targeted
misconception list

All fifteen PP can be found in Appendix A. The four different categories and a few question
examples will be explained in more detail in the following sections.

5.2.1. Variables
The questions related to variables have been designed to detect whether students have mis-
conceptions concerning the direction in which values should be assigned to variables. These
four questions can be found in Section A.1 in Appendix A. The second and third question were
inspired by a questionnaire developed by Bornat and Dehnadi [10], which focused on miscon-
ceptions concerning variables in the context of multiple choice questions.

An example of one of the PP belonging to this category is Question 3 below. This question was
designed by using two lines of context (indicated in italics), namely ‘j = 5’ and ‘k = 10’, which are
already placed in the correct position. Furthermore, this Parsons Problem consists of four puzzle
pieces, two of which are distractors. The goal of this question is to detect whether a student
shows signs of a misconception concerning the direction in which values should be assignment

5.2. Questions 39

to variables. The actual format of this question, as it was presented in the experiment, can be
found in Figure 5.1.

Question 3

Put the pieces of code in the right order, so that variable k has the value 5.
! Beware ! Not all the pieces of code have to be used.

j = 5
k = 10

m = j

k = m

Distractors:

• j = m

• m = k

Misconceptions targeted:

• Primitive assignment works in opposite direction

• Primitive assignment works both directions (swaps)

Figure 5.1: Question 3 in official experiment

5.2.2. If/Else Statements
The Parsons Problems related to if/else statement mainly focus on whether students will create
valid else statements. These questions can be found in Section A.2 in Appendix A.

5.2.3. While Loops
The Parsons Problems related to while loops aim to detect whether students have difficulties
understanding the sequentiality of statements and/or whether students understand that code

40 5. Experiment

located adjacent to a loop or if statement does not execute within the body of that loop or if
statement. These five questions can be found in Section A.3 in Appendix A.

An example of one of thewhile loop questions is illustrated below. This question does not contain
any distractors or context, it simply makes use of two-dimensionality. The question shown below,
targets the sequentiality of statements misconception. The way in which students answer this
question should indicate whether they correctly understand that within the body of the while loop,
first ‘i = i + 1’ should be executed, before the value of i is printed, in order to obtain the correct
number sequence. The actual format of this question, as it was presented in the experiment,
can be found in Figure 5.2.

Question 8

Put the pieces of code in the right order so that the following number sequence is printed: 1 2 3
4 5 6 7 8 9 10

i = 0
while i < 10:

i = i + 1
print(i)

Distractors: None.

Misconceptions targeted:

• Difficulties in understanding the sequentiality of statements

Figure 5.2: Question 8 in official experiment

5.2.4. For Loops
The Parsons Problems related to for loops simply aim to test whether students understand the
concept of for loops. The three questions dedicated to this concept can be found in Section A.4
in Appendix A.

6
Results Part II

The extensive experiment, which followed the pilot experiment, took place in January 2020 in
Rotterdam during several days.

6.1. Setup and Participants
An initial total of 65 students from the first and second year classes of a secondary school in
Rotterdam partook in this experiment. One student did not submit answers, so a final number
of 64 students was counted as participants in the experiment, the majority ranging from 12
to 14 years old. The students were from varying educational levels, namely Havo and VWO.
The experiment was conducted in classrooms where each individual student completed the test
behind a computer. The students were allotted one hour to complete the experiment.

First, the concept of PP was explained in short, as well as the setup of the questions. The
fifteen PP consisted of a brief question description and the puzzle pieces. Moreover, a partial
impression of the answer sheet consisting of three lines which represented indentation options
was shown (labeled a, b and c) as well as the fixed puzzle pieces (if applicable). The entire
experiment, as presented to the students, can be found in Appendix B.

Due to time limitations, the experiment was not created in a web-based puzzle-like environment,
but as a Google Forms document. Google Forms was deemed a good alternative, as the main
focus of this experiment was to create the correct type of question in order to find out whether
PP could be useful for misconception detection.

6.2. Findings
The raw data collected during this experiment can be found in Appendix C. All answers were
checked on correctness. Table 6.1 below shows howmany students answered the fifteen individ-
ual PP wrongly or correctly. In case an answer was correct, no further analysis was conducted.
For all the incorrect answers, the corresponding code was composed and analysed in order to
establish whether or not the mistake was the result of a misconception.

Parsons Problems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Wrong (% of students) 76.6 56.3 81.3 82.8 79.7 82.8 93.8 85.9 92.2 82.8 98.4 95.3 93.8 96.9 82.8
Wrong (# of students) 49 36 52 53 51 53 60 55 59 53 63 61 60 62 53
Correct (% of students) 23.4 43.8 18.8 17.2 20.3 17.2 6.3 14.1 7.8 17.2 1.6 4.7 6.3 3.1 17.2
Correct (# of students) 15 28 12 11 13 11 4 9 5 11 1 3 4 2 11

Table 6.1: Number and percentage of students that answered the Parsons Problems in the experiment correctly and
wrongly

After the analysis, one misconception, i.e. ‘for loop control variables do not have values inside
the loop or their values can be arbitrarily changed’, was discarded. No useful results were

41

42 6. Results Part II

generated from the answers to the related question (question 13), which may be an indication
that this particular misconception is not suitable for detection through Parsons Problems.

Although each question in the experiment had been tailored for the detection of a specific mis-
conception, data analysis indicated that other misconceptions occurred in the answers as well.
Therefore, all misconceptions found during the experiment have been divided in four categories
of misconceptions:

• Targeted Misconceptions: misconceptions that were specifically targeted by the ques-
tions in the experiment

• Targeted Misconceptions occurring in Non-Targeted Questions: misconceptions that
were part of the set of targeted misconceptions, but that occurred in questions in which
they were not targeted

• Other Misconceptions: misconceptions which were not specifically targeted by the ques-
tions in which they were encountered, but which have been listed in previous research (see
chapter Misconceptions)

• New Misconceptions: mistakes that were made repeatedly and which could be defined
as misconceptions, but have so far not been found in literature

As the ultimate goal of this experiment is to generate insightful teacher feedback, the focus of
this analysis is on:

• Providing insight for the teacher about which students do not understand which program-
ming concepts

• Uncovering which mistakes occur most often across students

6.2.1. Targeted Misconceptions
As mentioned before, each of the Parsons Problems was designed with the purpose of targeting
a specific misconception. Therefore, the analysis started by establishing whether the miscon-
ceptions occurred for questions in which they were actually targeted. The first analysis was
made per student. For each student, each wrong answer was evaluated, in order to establish
whether or not the mistake did indeed occur as a result of the targeted misconception. Mistakes
which were not the result of the targeted misconception have been left out of this analysis, but
will be discussed in the following analysis sections. Table 6.5 shows how many times each stu-
dent showed a misconception when answering a question in which that particular misconception
was targeted. Such a mistake was indicated with an ‘x’ for each time the same misconception
occurred in a different question. Therefore, if four x-es are displayed for a particular student
regarding a certain misconception, this means that this student showed to hold the same mis-
conception in four different questions. In Table 6.7, further information is provided concerning
the specific questions in which the detected misconceptions occurred, indicated by the numbers
assigned to those questions (see Appendix A).

As an example, Table 6.5 indicates that participant 46 showed the misconception ‘primitive as-
signment works in opposite direction’ in four different questions. Table 6.7 further elaborates on
this by showing that the four occurrences of this misconception arose in all four of the Variable
questions. Figures 6.1 and 6.2 illustrate the answers given by participant 46 to these four Vari-
able questions. The fact that this participant repeated the same mistake four times in four ques-
tions, is a strong indication that the student does indeed hold the targeted misconception.

In Table 6.2, the misconceptions targeted in the experiment are ranked based on the number of
students that appear to hold a certain misconceptions (in descending order from most to least
students). Some misconceptions have been tested through several questions and therefore
allow repeated occurrence of a faulty answer linked to that misconception, but for this analysis,
students were deemed to hold a certain misconception if that misconception occurred at least
once. As this table exemplifies, most students appeared to encounter difficulties with primitive
assignment direction and else-statements, followed by the sequentiality of statements.

6.2. Findings 43

Figure 6.1: On the left: Question 1 correct answer and Question 1 participant wrong answer. On the right: Question 2
correct answer and Question 2 participant wrong answer

Figure 6.2: On the left: Question 3 correct answer and Question 3 participant wrong answer. On the right: Question 4
correct answer and Question 4 participant wrong answer

Rank Misconception Students (#) Students (%)
1 Primitive assignment works in opposite direction 36 56%
2 Invalid else-statement 34 53%
3 Primitive assignment works in both directions (swaps) 29 45%

4 Difficulties in understanding the sequentiality of state-
ments 25 39%

5 The natural-language semantics of variable names af-
fects which value gets assigned to which variable 13 20%

6 Adjacent code executes within loop 4 6%
7 Using else is optional 3 5%

Table 6.2: Number of students and percentage of participant base that hold a misconception

However, some misconceptions were formally targeted in more questions than others. For ex-
ample, ‘primitive assignment works in opposite direction’ was tested in four questions, while ‘the
natural-language semantics of variable names affect which value gets assigned to which vari-
able’ was targeted in only one question. The reason for this is that certain questions did target
a specific misconception, but turned out to address another misconception as well. For exam-
ple the loop questions sometimes also incorporated an if statement. Therefore, the weighted
average of misconceptions versus the number of times the misconception could have occurred
across questions was calculated, resulting in a slightly different ranking, as can be seen in Ta-
ble 6.3. Primitive assignment direction remains in first place, indicating that this is the most
often occurring misconception when measured per student and when measured in absolute
and weighted occurrence. Second and third, however, are the natural-language semantics of
variable names and the sequentiality of statements.

Rank Misconception Students (#) Occurrences (#) Questions (#) Relative Occurrences (#)

1 Primitive assignment works in opposite
direction 36 56 4 14

2
The natural-language semantics of vari-
able names affects which value gets as-
signed to which variable

13 13 1 13

3 Difficulties in understanding the sequen-
tiality of statements 25 48 4 12

4 Invalid else-statement 34 67 6 11

5 Primitive assignment works in both direc-
tions (swaps) 29 36 4 9

6 Adjacent code executes within loop 4 6 3 2
7 Using else is optional 3 3 3 1

Table 6.3: Absolute and weighted number of misconceptions detected

The analysis for Table 6.2 and Table 6.3 provide valuable information for a teacher as these
tables show which individual student or which percentage of a class does not grasp an important

44 6. Results Part II

concept. This could be a clear indication that intervention is needed, i.e. that a particular concept
should be explained in more detail to an individual student or for the class as a whole.

6.2.2. TargetedMisconceptions occurring inNon-TargetingQuestions
Two targeted misconceptions also occurred in answers to other questions than the ones that
actually targeted those misconceptions, as shown in Table 6.6. Table 6.8 further elaborates on
this by showing in which non-targeting questions these targetedmisconceptions occurred.

Sequentiality of statements, which had been included in the set of misconceptions targeted in
the experiment, also occurred for questions which did not specifically target this misconception.
However, this can be explained by the fact that code is all about sequentiality.

‘Adjacent code executes within loop’ also occurs a number of times for questions that did not
target this misconception, which can be explained by the fact that several questions contained
loops.

The number additional students who showed the sequentiality of statements misconception and
the adjacent code misconception (occurring in answers to questions which did not target those
misconceptions) were added to the original numbers displayed in Table 6.2. The results of the
new total numbers are listed in Table 6.4.

Rank Misconception Students (#) Students (%)

1 Difficulties in understanding the sequentiality of
statements 41 64%

2 Primitive assignment works in opposite direction 36 56%
3 Invalid else-statement 34 53%

4 Primitive assignment works in both directions
(swaps) 29 45%

5 The natural-language semantics of variable names
affects which value gets assigned to which variable 13 20%

6 Adjacent code executes within loop 5 8%
7 Using else is optional 3 5%

Table 6.4: Total number of students and percentage of participant base that hold a misconception targeted in this
research

Most notably, sequentiality of code moves to first place, meaning that this appears to be the
concept misunderstood by the largest number of students in the sample group. As sequentiality
of code is one of the basic concepts of programming, it seems that it would be very important
for teachers to know that their students encounter great difficulty with this concept.

6.2.3. Other Misconceptions
Apart from the misconceptions targeted in the questions designed for the experiment, two other
knownmisconceptions (see Literature Review, section ProgrammingMisconceptions) have been
detected. ‘A variable can hold multiple values at a time/‘remembers’ old value’ and ‘difficulties
understanding the lifetime of values’ emerge multiple times. As these two misconceptions ad-
dress related concepts, and because mistakes could potentially be attributed to either of those
concepts, it was decided to combine these two concepts for the purpose of this analysis. Table
6.6 exemplifies that these misconceptions occurred twelve times across 8 students (13% of total
participants), and Table 6.8 shows for which questions the misconceptions occurred.

6.2.4. New Misconceptions
Further analysis of the data also brought to light several mistakes which were made repeat-
edly across multiple students. A selection was made of the two misconceptions that showed a
significant number of occurrences.

As Table 6.6 shows, the following mistakes occurred exceptionally often, and therefore could
potentially be labeled as new misconceptions:

6.2. Findings 45

• Indentation of variable (re-)assignment: students often seem to misunderstand how
variable value (re-)assignment works. In this research, students seemed to believe that
different values assigned to the same variable can exist in parallel, as long these value
assignments are occurring at different indentation levels. This misconception occurred 68
times for 28 students (44% of total participants)

• Indentation of loop condition or no indentation of loop content: Students often mis-
takenly applied indentation to an if statement or a for/while loop condition, or they mistak-
enly did not apply indentation to the content of such statements/loops. This misconception
occurred 74 times for 19 students (30% of total participants)

The original misconceptions list compiled by Tobias Kohn does refer to a mistake concerning
indentation, described by him as ‘invalid indentation’. However, Kohn labeled this type of mistake
as a ‘minor syntax error’, which according to him could occur by accident when editing code.
For example, when students remove a loop condition but leave the content indented [39].

However, the large number of occurrences found by the present research strongly indicate that
these types of mistakes do constitute misconceptions, as defined by Sorva [55]. As the problem
solving process of Parsons Problems poses strong limitations with regard to the free editing
situation described by Kohn, it seems most likely that these mistakes were not made by accident
but that they result from a deeper misunderstanding of the aforementioned concepts.

6.2.5. Research Questions
Based on the above analyses, the research questions formulated in the introduction of Part II
can be answered as follows.

RQ1: Are ParsonsProblems suitable for the detection of programmingmisconceptions?

As the Parsons Problems used in the experiment of this research appear to have detected the
targeted misconception, as well as non-targeted misconception, other misconceptions and new
misconceptions, the answer to RQ 1 is yes.

RQ 2: What kind of insightful teacher feedback can be generated from the data collected
through this method?

Several kinds of useful teacher feedback have been generated based on the data generated in
the experiment:

• How many students (and which percentage of total participants) answered each question
wrongly or correctly?

• How many students hold a certain misconception?

• Which percentage (and absolute number) of the student base holds which misconception?

• Which individual student holds which misconception

• To what extent does a student appear to have difficulty with a programming concept (how
often does the student repeat a certain mistake)?

• In which question(s) did a certain misconception occur for individual students?

• Ranking of misconceptions on the number of students that showed the misconception

• Ranking of misconceptions on the weighted number of occurrences

46 6. Results Part II

Pr
im
itiv

e
as
sig

nm
en
tw

or
ks

in
op
po
sit
e
di
re
ct
io
n

Pr
im
itiv

e
as
sig

nm
en
tw

or
ks

bo
th
di
re
ct
io
ns

(s
wa

ps
)

In
va
lid

el
se
-s
ta
te
m
en
t

Us
in
g

el
se

is
op
tio
na
l

Th
e

na
tu
ra
l-l
an
gu
ag
e

se
-

m
an
tic
s
of

va
ria
bl
e
na
m
es

af
fe
ct
s
wh

ich
va
lu
e
ge
ts
as
-

sig
ne
d
to
wh

ich
va
ria
bl
e

Di
ffi
cu
ltie

s
in
un
de
rs
ta
nd
in
g

th
e

se
qu
en
tia
lity

of
st
at
e-

m
en
ts

Ad
ja
ce
nt

co
de

ex
ec
ut
es

wi
th
in
lo
op

Participant Targeted Misconceptions

1 xx x x xx
2 x x
3
4 x x
5
6 x
7 xx x x
8 x
9 xxx x xxxx
10 x x xx x
11 x x xx
12 x
13 x
14 xx x x
15 xx x x x
16
17 x
18 xx
19 x x
20 x x
21 x
22 x x
23 x x
24 x
25 xx x
27 x xxx
28 x
29 x x
30
31
32
33 x
34
35 xxx xx
36 x xxx xx
37 x x x xx
38 x xx
39 x xx
40 xx xx xxxx x xxxx
41 xx xx xxxx x xxxx
42
43 x
44 x
45 x
46 xxxx x
47 xx xxx x
48 x
49 xxx x x
50 xx x xxx x
51 xx x xx
52 x x xxxx
53 x xxx xx x
54 xx x xx x xxx
55 x x x x xx
56 x xx x x
57 xx
58 xx x x x
59 xxx xxx x x
60 x x x
61 xx x xx
62 x xxx xx xx xx
63 xx xx xxxx
64 x x xx x x
65 x

Table 6.5: Targeted misconceptions detected per student

6.2. Findings 47

Pr
im
iti
ve

as
si
gn
m
en
tw

or
ks

in
op
po
si
te
di
re
ct
io
n

Pr
im
iti
ve

as
si
gn
m
en
tw

or
ks

bo
th
di
re
ct
io
ns

(s
w
ap
s)

In
va
lid

el
se
-s
ta
te
m
en
t

U
si
ng

el
se

is
op
tio
na
l

Th
e

na
tu
ra
l-l
an
gu
ag
e

se
-

m
an
tic
s
of

va
ria
bl
e
na
m
es

af
fe
ct
s
w
hi
ch

va
lu
e
ge
ts
as
-

si
gn
ed

to
w
hi
ch

va
ria
bl
e

D
iff
ic
ul
tie
s
in
un
de
rs
ta
nd
in
g

th
e

se
qu
en
tia
lit
y
of

st
at
e-

m
en
ts

Ad
ja
ce
nt

co
de

ex
ec
ut
es

w
ith
in
lo
op

A
va
ria
bl
e
ca
n
ho
ld
m
ul
tip
le

va
lu
es

at
a
tim

e
/
‘re
m
em

-
be
rs
’
ol
d
va
lu
e
&

D
iff
ic
ul
-

tie
s
un
de
rs
ta
nd
in
g
th
e
lif
e-

tim
e
of
va
lu
es

In
de
nt
at
io
n

of
va
ria
bl
e

va
lu
e
(re

)a
ss
ig
nm

en
t

In
de
nt
at
io
n
of

lo
op

co
nd
i-

tio
n
or
no

in
de
nt
at
io
n
of
lo
op

co
nt
en
t

Participant Targeted Misconceptions Other New

1 x xxx xxxx
2
3
4 x x
5 x
6 x x
7 xx xxx xx
8 x xx
9 xxx x xxxxxxxx
10 x
11 x x
12 x
13 x
14 x
15 x x
16
17 x x
18 x x xx
19 x
20 xx x
21 xx x
22 x xx
23 x xx
24 x xx x
25 x x xxx
27
28
29
30
31
32
33
34
35 xxx xx
36 xx xx
37 xx
38 xxx
39 xxxx
40 xx xxxxx xxxx
41 xx xxxxx xxxx
42
43
44
45 x x
46
47
48
49
50
51 x xx
52 xxxxx xxxxxxx
53 xxxx xxxxxx
54 x xxxxxx xxxxxxx
55 xxxx
56 xx xxxxxxxxxx
57 xx
58 xx xx
59 xxxx
60 x
61
62
63 x xxx x xxx
64 xx xxx
65 x x

Table 6.6: Other misconceptions detected per student

48 6. Results Part II

Pr
im
iti
ve

as
si
gn
m
en
tw

or
ks

in
op
po
si
te
di
re
ct
io
n

Pr
im
iti
ve

as
si
gn
m
en
tw

or
ks

bo
th
di
re
ct
io
ns

(s
w
ap
s)

In
va
lid

el
se
-s
ta
te
m
en
t

U
si
ng

el
se

is
op
tio
na
l

Th
e

na
tu
ra
l-l
an
gu
ag
e

se
-

m
an
tic
s
of

va
ria
bl
e
na
m
es

af
fe
ct
s
w
hi
ch

va
lu
e
ge
ts
as
-

si
gn
ed

to
w
hi
ch

va
ria
bl
e

D
iff
ic
ul
tie
s
in
un
de
rs
ta
nd
in
g

th
e

se
qu
en
tia
lit
y
of

st
at
e-

m
en
ts

Ad
ja
ce
nt

co
de

ex
ec
ut
es

w
ith
in
lo
op

Participant Targeted Misconceptions

1 2 4 3 5 9 13
2 2 3
3
4 3 4
5
6 2
7 6 11 7 8
8 3
9 5 6 12 7 8 9 10 13
10 4 3 6 14 7
11 4 3 6 11
12 3
13 3
14 2 4 3 6
15 2 4 3 6 7
16
17 2
18 2 4
19 2 3
20 2 3
21 3
22 3 5
23 3 5
24 3
25 2 3 6
27 11 8 9 10
28 11
29 11 13
30
31
32
33 3
34
35 1 3 4 6 7
36 4 5 6 7 9 10
37 2 1 5 8 9
38 6 9 10
39 4 6 7
40 2 4 1 3 5 6 11 14 7 8 9 10 13
41 2 4 1 3 5 6 11 14 7 8 9 10 13
42
43 3
44 3
45 1
46 1 2 3 4 13
47 1 2 6 7 11 9
48 13
49 11 12 14 13 12
50 2 3 1 5 6 12 7
51 2 4 1 9 10
52 4 1 6 11 12 14
53 3 1 2 4 6 14 7
54 2 4 1 5 6 7 8 9 10
55 2 1 14 9 12 14
56 3 5 14 5 7
57 2 3
58 2 4 5 7 8
59 2 3 4 5 6 7 7 9
60 7 9 11
61 11 14 7 8 13
62 2 1 3 4 11 12 9 13 11 12
63 2 3 6 12 8 9 10 13
64 4 1 5 6 7 9
65 9

Table 6.7: Targeted misconceptions detected per student. The numbers refer to the questions in which the
misconceptions appeared, see Appendix A

6.2. Findings 49

Pr
im
iti
ve

as
si
gn
m
en
tw

or
ks

in
op
po
si
te
di
re
ct
io
n

Pr
im
iti
ve

as
si
gn
m
en
tw

or
ks

bo
th
di
re
ct
io
ns

(s
w
ap
s)

In
va
lid

el
se
-s
ta
te
m
en
t

U
si
ng

el
se

is
op
tio
na
l

Th
e

na
tu
ra
l-l
an
gu
ag
e

se
-

m
an
tic
s
of

va
ria
bl
e
na
m
es

af
fe
ct
s
w
hi
ch

va
lu
e
ge
ts
as
-

si
gn
ed

to
w
hi
ch

va
ria
bl
e

D
iff
ic
ul
tie
s
in
un
de
rs
ta
nd
in
g

th
e

se
qu
en
tia
lit
y
of

st
at
e-

m
en
ts

Ad
ja
ce
nt

co
de

ex
ec
ut
es

w
ith
in
lo
op

A
va
ria
bl
e
ca
n
ho
ld
m
ul
tip
le

va
lu
es

at
a
tim

e
/
‘re
m
em

-
be
rs
’
ol
d
va
lu
e
&

D
iff
ic
ul
-

tie
s
un
de
rs
ta
nd
in
g
th
e
lif
e-

tim
e
of
va
lu
es

In
de
nt
at
io
n

of
va
ria
bl
e

va
lu
e
(re

)a
ss
ig
nm

en
t

In
de
nt
at
io
n
of

lo
op

co
nd
i-

tio
n
or
no

in
de
nt
at
io
n
of
lo
op

co
nt
en
t

Participant Targeted Misconceptions Other New

1 11 4 8 13 6 10 11 15
2
3
4 4 4
5 3
6 4 4
7 3 4 4 7 8 9 10
8 4 3 4
9 3 12 14 4 5 6 7 8 10 11

13 14
10 4
11 4 13
12 6
13 6
14 6
15 7 8
16
17 3 3
18 3 4 3 4
19 3
20 3 4 4
21 3 4 4
22 4 3 4
23 4 3 4
24 4 3 4 5
25 4 4 5 6 7
27
28
29
30
31
32
33
34
35 1 3 4 8 9
36 1 4 6 7
37 3 4
38 8 9 10
39 6 7 9 10
40 6 11 1 3 4 11 12 6 7 8 10
41 6 11 1 3 4 11 12 6 7 8 10
42
43
44
45 3 4
46
47
48
49
50
51 3 8 9
52 1 2 3 4 7 5 6 8 9 10 13

15
53 1 2 4 7 8 9 10 13 14

15
54 3 1 2 3 4 8 9 5 6 7 8 9 10 11
55 1 2 3 4
56 1 4 5 6 8 9 10 11

12 13 14 15
57 2 3
58 1 3 6 8
59 8 9 10 13
60 13
61
62
63 3 6 13 15 4 10 13 15
64 3 15 1 3 7
65 11 8

Table 6.8: Other misconceptions detected per student. The numbers refer to the questions in which the
misconceptions appeared, see Appendix A

7
Discussion

7.1. Part I
With regard to the number of interviews conducted for this research, saturation was the criterion,
so no further interviews were scheduled when no useful new information could be gathered. This
does not exclude the fact that it is possible that more or other input could have been gathered,
should more interviews have been held.

7.2. Part II
As no previous research guidelines were available with regard tomisconception detection through
Parsons Problems, suitable research and analysis methods had to be devised from scratch.
Mistakes were marked as misconceptions if they matched the expected misconception or if they
indicated a non-expected misconception. They were not marked as misconceptions if the mis-
takes appeared random.

Moreover, students were categorized as holding a certain misconception if the misconception
occurred at least once. This choice was made because only a limited number of questions could
be included in this experimental research. However, it needs to be noted that if a student made
a mistake only once, the chance that the students holds a misconception is smaller than if the
student repeated the samemistake in four exercises addressing the samemisconception.

Some students did answer only a limited number of questions or gave answers that were non-
sensical. Many of the mistakes made by those students were not considered misconceptions
as their wrong answers were too random to be classified as such. In this research, mistakes
were only marked as misconceptions if they truly showed the characteristics of misconceptions.
Therefore, it is important to note that some rows (see Table 6.5 and 6.6), which show few ‘x’
imply that few mistakes or misconceptions were found for the students. However, even if some
students have few ‘x’ to their name, it could be that they did not answer the question at all or
that their answer made no sense at all. Consequently, the actual number of students who gave
wrong answers and thus did not understand a concept was higher than the number displayed
in Table 6.2 and Table 6.4. Along the same lines, it needs to be noted, that also the number of
total mistakes in those questions was higher in actual fact than the numbers displayed in Table
6.3.

Students who made many mistakes may have had trouble applying their knowledge in a new
testing method and environment using Parsons Problems. This may have required a level of
skill which they may not have mastered yet.

The analysis of answers by relatively accomplished students is thought to have produced more
reliable results, because the answers given by those students were generally close to the correct
answer, which made it easier to identify misconceptions and minimized the chance of accidental
or random mistakes.

51

8
Conclusion

This research has shown that teachers and programming education researchers believe that
insightful teacher feedback would contribute to improving programming education. They have
to teach a difficult subject to many students, and it is almost impossible for them to find out which
student needs assistance on which topic. They regret that feedback is usually only provided to
the students. It would be very useful for them to receive feedback which does not require time
consuming analysis. Such information about individual students or a class as a whole would
make it easier for them to provide effective education. If they can intervene in time, teachers
feel they could avoid loss of motivation in their students.

Furthermore, this research has found evidence that purposely designed Parsons Problems can
detect programming misconceptions. Seven out of eight targeted misconceptions have suc-
cessfully been detected concerning a considerable number of students. Moreover, other non-
targeted misconceptions as well as new misconceptions have been detected. Several analyses
have been carried out which appear to provide insightful teacher feedback about individual stu-
dents and about a group of students as a whole. Based on the data collected in the experiment,
teachers can be provided with valuable feedback about which individual student(s) and which
percentage of a class holds a certain misconception, which misconception occurs most often,
how students perform on particular questions, and other information which might help teachers
to better adjust their lessons and testing to the level of understanding of their students. These
findings show a lot of promise for the development of insightful teacher feedback based on mis-
conception detection through Parsons Problems.

53

9
Future Work

Results from this research show promise for the future development of automated feedback
tools based on misconception detection through Parsons Problems. As this research was a
first attempt to design a method for generating insightful teacher feedback, further research is
needed, focusing on three development aspects to be discussed in this chapter.

9.1. Design of Parsons Problems
In order to simplify the data analysis, it would be useful to limit the answer space for wrong
answers through the use of ‘context’ and ‘multiple lines’ in the Parsons Problems’ design. The
questions designed for this research contained two to nine puzzle pieces that could be chosen
(and were not yet fixed in the right location), which generated a wide variety of other non-targeted
misconceptions and mistakes in the students’ answers. However, for the purpose of detecting
misconceptions, a smaller number of choices would have several advantages: 1) the Parsons
Problems design is easier, 2) due to a more limited answer space, results would more likely only
include the targetedmisconception, and 3) wouldmake themethodmore suitable for automation.
Furthermore, in order to avoid other random mistakes, it is important to ensure that the Parsons
Problems are well attuned to the exact knowledge level of the students.

9.2. Design of Experiments
Follow-up experiments might benefit from posing (many) more questions about a targeted mis-
conception. It might also contribute to clarity and conclusiveness of the data if the focus during
a future test or experiment should be on less misconceptions at a time. It would be useful to
follow-up on the results with instruction directly targeted at the misconceptions found, and con-
sequently carry out a repeat experiment which tests to what extent the misconceptions have
been eliminated after intervention.

9.3. Automation - Useful Functionalities
Misconception detection through Parsons Problems appears to be very suitable for automation,
particularly if the above recommendations are integrated. A very interesting next step for re-
search would be to create a digital environment in which Parsons Problems can be created by
teachers and solved by students, and which outputs analyzed data in the form of insightful and
non time-consuming teacher feedback.

In order to further improve the effectiveness of programming education, future research could
aim to further extend such an environment with functionalities such as:

• Automatic student feedback: based on the detected misconceptions in completed ques-
tions, students could be presented with relevant follow-up instructions/tutorials that target
those detected misconceptions. This could be a very useful method, since it is very im-

55

56 9. Future Work

portant to intervene and provide corrective feedback when students show signs of miscon-
ceptions [27]

• Adaptive PP: it would be interesting to integrate adaptive aspects to the PP, as introduced
by Ericson [20], in order to improve the student’s capabilities where it is most needed and
to keep students motivated

• Extract patterns: instead of only analyzing the final solution submitted by a student, it
is also possible to track all movements made by a student with the purpose of extracting
insightful patterns [29]

• Gamification: Parsons Problems offer the added advantage that they can be presented in
a gamified setting, which has been proven to work well for young students and/or novice
learners. It could be interesting to develop functionalities that make the digital Parsons
Problems solving experience feel similar to how one would approach solving an actual
puzzle

A
Experiment Questions and Answers

A.1. Variables
The questions related to variables have been designed to detect if students havemisconceptions
concerning the direction in which value should be assigned to variables. The second and third
question were inspired by a questionnaire developed by Bornat and Dehnadi [10], which focused
on misconceptions concerning variables in the context of multiple choice questions.

Question 1

Put the pieces of code in the right order, so that the value of the variable x and the value of the
variable y are switched.
! Beware ! Not all the pieces of code have to be used.

x = 3
y = 5
temp = 0

temp = x
x = y
y = temp

Distractors:

• x = temp

• temp = y

Misconceptions targeted:

• Primitive assignment works in opposite direction

• Primitive assignment works both directions (swaps)

Question 2

Put the pieces of code in the right order, so that all variables have the value 7.
! Beware ! Not all the pieces of code have to be used.

j = 5
k = 3
m = 7

j = m
k = j

57

58 A. Experiment Questions and Answers

Distractors:

• m = j
j = k

Misconceptions targeted:

• Primitive assignment works in opposite direction

• Primitive assignment works both directions (swaps)

Question 3

Put the pieces of code in the right order, so that variable k has the value 5.
! Beware ! Not all the pieces of code have to be used.

j = 5
k = 10

m = j

k = m

Distractors:

• j = m

• m = k

Misconceptions targeted:

• Primitive assignment works in opposite direction

• Primitive assignment works both directions (swaps)

Question 4

Put the pieces of code in the right order so that:

1. The number 25 is printed

2. Variable b has the value 23

! Beware ! Not all the pieces of code have to be used.

j = 23

k = j

j = 25

print(j)

Distractors:

• j = k

Misconceptions targeted:

• Primitive assignment works in opposite direction

• Primitive assignment works both directions (swaps)

A.2. If/Else Statements 59

A.2. If/Else Statements
The if/else statement related PP mainly focus on whether students will create valid else state-
ments.

Question 5

Put the pieces of code in the right order so that the number 10 is printed if variable j is smaller
than 5, otherwise the number 20 should be printed.
! Beware ! Not all the pieces of code have to be used.

j = 3

if j < 5:

j = 10

else:
j = 20

Distractors:

• else j >= 5:

• if j <= 5:

Misconceptions targeted:

• Invalid else-statement

• Using else is optional

Question 6

Put the pieces of code in the right order so that it is printed that x is a positive number if x is
larger than 0, and otherwise it should be printed that it is not a positive number.
! Beware ! Not all the pieces of code have to be used.

if x >= 0:
print(‘x is a positive number’)

else:
print(‘x is not a positive number’)

Distractors:

• else x < 0:

Misconceptions targeted:

• Invalid else-statement

• Using else is optional

Question 7

Put the pieces of code in the right order so that the variable largestNumber always holds the
largest value and smallestNumber always holds the smallest value.
! Beware ! Not all the pieces of code have to be used.

largestNumber = 0
smallestNumber = 0

60 A. Experiment Questions and Answers

j = 1

k = 20

if j >= k:

largestNumber = j

smallestNumber = k
else:

largestNumber = k

smallestNumber = j

Distractors:

• else j < k:

Misconceptions targeted:

• Invalid else-statement

• Using else is optional

• The natural-language semantics of variable names affects which value gets assigned to
which variable

A.3. While Loops
These PP typically revolve around detecting whether students have difficulties understanding
the sequentiality of statements, as well as detecting whether students understand that code
located adjacent to a loop or if statement does not execute within the body of that loop or if
statement.

Question 8

Put the pieces of code in the right order so that the following number sequence is printed: 1 2 3
4 5 6 7 8 9 10

i = 0
while i < 10:

i = i + 1
print(i)

Distractors: None.

Misconceptions targeted:

• Difficulties in understanding the sequentiality of statements

Question 9

Put the pieces of code in the right order so that the following number sequence is printed: 4 6
8

k = 4
while k < 9:

print(k)

k = k + 2

Distractors: None.

A.3. While Loops 61

Misconceptions targeted:

• Difficulties in understanding the sequentiality of statements

Question 10

Put the pieces of code in the right order so that an uneven number is printed.

j = 2

while j < 3:

j = j + 1

print(j)

Distractors: None.

Misconceptions targeted:

• Difficulties in understanding the sequentiality of statements

Question 11

Put the pieces of code in the right order so that:

1. The even numbers are printed, and

2. After that, variable m always increases with 1

! Beware ! Not all the pieces of code have to be used.

m = 1
while m < 8:

if (m%2) == 0:

print(m)

m = m + 1

Distractors:

• else:

• else (m%2) != 0:

Misconceptions targeted:

• Adjacent code executes within loop

• Invalid else-statement

Question 12

Put the pieces of code in the right order so that as long as p is not 0, the following happens:

1. Only if p is positive, the value of q should increase

2. With every iteration, a new input should be requested and q should be printed

! Beware ! Not all the pieces of code have to be used.

q = 0
p = int(input(‘Vul een getal in:’))

while p != 0:

if p > 0:

62 A. Experiment Questions and Answers

q = q + 1

p = int(input(‘Vul een getal in:’))

print(q)

Distractors:

• else:

• else p < 0:

Misconceptions targeted:

• Adjacent code executes within loop

• Invalid else-statement

A.4. For Loops
These PP simply try to test whether students understand the concept of for loops.

Question 13

Put the pieces of code in the right order so that the following number sequence is printed: 0 1 3
6

x = 0
for z in range(4):

x = x + z
print(x)

Distractors: None.

Misconceptions targeted:

• Difficulties in understanding the sequentiality of statements

• For loop control variables do not have values inside the loop or their values can be arbi-
trarily changed

Question 14

Put the pieces of code in the right order so that:

1. Variable n is printed if n is an even number

2. Every iteration the value of x increases

! Beware ! Not all the pieces of code have to be used.

x = 5
for n in range(7):

if (n%2) == 0:

print(n)

x = x + 1

Distractors:

• else:

• else (n%2) != 0:

A.4. For Loops 63

Misconceptions targeted:

• Adjacent code executes within loop

• Invalid else-statement

Question 15

Put the pieces of code in the right order so that a square is drawn.
! Beware ! Not all the pieces of code have to be used.

for i in range(4):

pen.forward(100)

pen.left(90)

Distractors:

• for i in range(3):

Misconceptions targeted: No specific misconception was targeted in this question. The main
purpose was to check whether students understood the concept of a for loop and its control
variable in a relatively simple question.

B
Experiment Google Forms

This appendix includes the entire Parsons Problems experiment as it was presented to the par-
ticipants through Google Forms.

65

20/01/2020, 18:50Parsons Problems - Google Forms

Page 1 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

Section 1 of 16

After section 1

Section 2 of 16

Parsons Problems
Parsons Problems zijn puzzels die bestaan uit stukjes code die door elkaar staan.

Bij elke puzzel moet je uitvinden op welke volgorde de code stukjes moeten staan, zodat de code doet wat de
vraag zegt.

Je krijgt bij elke vraag steeds:
1. Wat de code straks moet kunnen doen
2. De puzzel stukjes die je mag gebruiken (deze stukjes hebben een nummer ervoor staan)
3. Een afbeelding met drie strepen, waaronder a, b en c staat. Als je code schrijft moet je soms een regel code
"indenteren", bijvoorbeeld in een loop. Daarom moet je ook aangeven op welke "lijn" je elk stukje code wilt
hebben.

VOORBEELD:
Als je als antwoord wilt zeggen dat de code stukjes 2, 4 en 5 gebruikt moeten worden op volgorde 4, 2 en 5, dan
antwoord je die onder elkaar op deze manier:

4
2
5

Maar om aan te geven op welk lijntje ze moeten staan, zet je achter elk nummer een letter (a, b of c),
bijvoorbeeld:

4 a
2 a
5 b

Als je iets niet snapt hoe het werkt of wat de bedoeling is, steek dan je hand op, dan wordt je geholpen.

*

Short-answer text

Continue to next section

Vul hier graag het nummer in dat op jouw uitgedeelde papier staat:

All changes saved in
DriveParsons Problems Send

Questions Responses 65

20/01/2020, 18:50Parsons Problems - Google Forms

Page 2 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 2

Section 3 of 16

Vraag 1 - Variabelen
Zet de stukjes code op de goede volgorde zodat de waarden van x en y gewisseld worden.
! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. x = y
2. temp = x
3. y = temp
4. temp = y
5. x = temp

*

Long-answer text

Continue to next section

Vraag 2 - Variabelen
Zet de code stukjes in de goede volgorde zodat alle variabele de waarde 7 hebben.
! Let op ! Je hoeft niet alle stukjes te gebruiken.

Deze dik gedrukte code staat al op de goede plaats.

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 3 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 3

Section 4 of 16

*

Long-answer text

Continue to next section

! Let op! Deze puzzelstukjes bestaan dus uit 2 regels code.

Deze dik gedrukte code staat al op de goede plaats.

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 4 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 4

Section 5 of 16

Vraag 3 - Variabelen
Zet de code stukjes in de goede volgorde zodat variabele k de waarde 5 heeft.
! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. k = m
2. m = j
3. m = k
4. j = m

*

Long-answer text

Continue to next section

Deze dik gedrukte code staat al op de goede plaats.

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 5 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 5

Section 6 of 16

Vraag 4 - Variabelen
Zet de code stukjes in de goede volgorde zodat:
1. Het getal 25 geprint wordt, en
2. Variabele k de waarde 23 heeft

! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. j = 25
2. j = 23
3. j = k
4. k = j

*

Long-answer text

Continue to next section

Deze dik gedrukte code staat al op de goede plaats.

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 6 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 6

Section 7 of 16

Vraag 5 - If Statements
Zet de code stukjes in de goede volgorde zodat j de waarde 10 krijgt als variabele j kleiner dan 5 is, anders krijgt j
de waarde 20.
! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. if j < 5:
2. else j >= 5:
3. j = 10
4. j = 3
5. if j <= 5:
6. else:
7. j = 20

Image title

*

Long-answer text

Continue to next section

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 7 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 7

Section 8 of 16

Vraag 6 - If Statements
Zet de code stukjes op de goede volgorde zodat er geprint wordt dat het een positief getal is als x groter is dan
0, en anders dat er geprint wordt dat het niet een positief getal is.
! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. else x < 0:
2. print(‘Dit is een positief getal’)
3. print(‘Dit is niet een positief getal’)
4. if x >= 0:
5. else:

Image title

*

Long-answer text

Continue to next section

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 8 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 8

Section 9 of 16

Vraag 7 - If Statements
Zet de code stukjes op de goede volgorde zodat de variabele grootsteGetal altijd het grootste getal bevat en
zodat kleinsteGetal altijd het kleinste getal bevat.
! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. if j >= k:
2. grootsteGetal = j
3. k = 20
4. grootsteGetal = k
5. else j < k:
6. kleinsteGetal = k
7. j = 1
8. kleinsteGetal = j
9. else:

*

Long-answer text

Continue to next section

Deze dik gedrukte code staat al op de goede plaats.

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 9 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 9

Section 10 of 16

Vraag 8 - While Loops
Zet de code stukjes op de goede volgorde zodat de volgende getallen reeks geprint wordt: 1 2 3 4 5 6 7 8 9 10

1. print(i)
2. i = 0
3. i = i + 1
4. while i < 10:

Image title

*

Long-answer text

Continue to next section

Vraag 9 - While Loops
Zet de code stukjes op de goede volgorde zodat de volgende getallen reeks geprint wordt: 4 6 8

1. print(k)
2. while k < 9:
3. k = 4
4. k = k + 2

Zet hier de nummers van de stukjes code op de goede volgorde. Vergeet niet achter elk stukje
te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 10 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 10

Section 11 of 16

Image title

Long-answer text

Continue to next section

Vraag 10 - While Loops
Zet de code stukjes op de goede volgorde zodat een oneven getal geprint wordt.

1. while j < 3:
2. j = 2
3. print(j)
4. j = j + 1

Image title

Zet hier de nummers van de stukjes code op de goede volgorde. Vergeet niet achter elk stukje te
ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 11 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 11

Section 12 of 16

*

Long-answer text

Continue to next section

Vraag 11 - While Loops
Zet de code stukjes op de goede volgorde zodat:
1. De even getallen geprint worden, en
2. Variabele m daarna altijd toeneemt met 1
! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. while m < 8:
2. else (m%2) != 0:
3. if (m%2) == 0:
4. m = m + 1
5. m = 1
6. else:
7. print(m)

Image title

*

Long-answer text

Zet hier de nummers van de stukjes code op de goede volgorde. Vergeet niet achter elk stukje
te ze!en op welk lijntje het hoo" te staan (a, b of c).

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 12 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 12

Section 13 of 16

After section 13

Section 14 of 16

Continue to next section

Vraag 12 - While Loops
Zet de code stukjes op de goede volgorde zodat zolang p geen 0 is het volgende gebeurt:
1. Alleen als p positief is, dat de waarde van q toeneemt
2. Verder dat er bij elke iteratie een nieuwe input wordt gevraagd en dat q geprint wordt
! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. if p > 0:
2. else:
3. q = q + 1
4. while p != 0:
5. p = int(input(‘Vul een getal in:’)
6. print(q)
7. else p < 0:

*

Long-answer text

Continue to next section

Deze dik gedrukte code staat al op de goede plaats.

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 13 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 14

Section 15 of 16

Vraag 13 - For Loops
Zet de code stukjes in de goede volgorde zodat de volgende reeks geprint wordt: 0 1 3 6

1. for z in range(4):
2. x = 0
3. print(x)
4. x = x + z

Image title

*

Long-answer text

Continue to next section

Zet hier de nummers van de stukjes code op de goede volgorde. Vergeet niet achter elk stukje
te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 14 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

After section 15

Section 16 of 16

Vraag 14 - For Loops
Zet de code stukjes op de goede volgorde zodat:
1. Variabele n geprint wordt als n een even getal is, en
2. Dat tijdens elke iteratie de waarde van x toeneemt
! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. if (n%2) == 0:
2. x = 5
3. for n in range(7):
4. else (n%2) != 0:
5. print(n)
6. else:
7. x = x + 1

Image title

*

Long-answer text

Continue to next section

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

20/01/2020, 18:50Parsons Problems - Google Forms

Page 15 of 15https://docs.google.com/forms/d/1hsPHyMVsnpmQzN1b3nPpt4IuqiENIpUQc9308TKEXX0/edit

Vraag 15 - For Loops
Zet de code stukjes op de goede volgorde zodat een vierkant getekend wordt.
! Let op ! Je hoeft niet alle stukjes te gebruiken.

1. pen.left(90)
2. for i in range(4):
3. for i in range(3):
4. pen.forward(100)

Image title

*

Long-answer text

Zet hier de nummers van de stukjes code die je wilt gebruiken op de goede volgorde. Vergeet
niet achter elk stukje te ze!en op welk lijntje het hoo" te staan (a, b of c).

C
Experiment Collected Data

In this appendix, all the collected raw data from the Parsons Problems experiment is presented
for all 64 participants.

81

Tim
estam

p
ID

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
1/13/2020 9:08:49

8
2a, 1a, 3a

1a
4a, 3b

1a 4b 2b
1a

4b
6c

3a
2b

1a
1c

5a
4b

7c
4a

1/13/2020 9:10:00
7

2a 1a 3a
1a 2b 3a

1a 2a
1a 4b 2b

1z
1a 4a 3b 4b

4a 3a 8b 7b
 1a 2b 3b 4a

2a 4a
1a 2a

2a 3b 4a 3c
1a 2a

4a
1c

2a
1/13/2020 9:10:54

24
2A 1A 3A

1a
4A 3B

1A 4B 2B
3a 1b 1c

x
x

x
x

x
x

x
x

x
x

1/13/2020 9:11:56
25

2a 1a 3a
1b

4a 3a
1a 4b 2b

3a 1b 1c
4a 5b 3b

2a 4a 7b 1c
x

x
x

x
x

x
x

x
1/13/2020 9:16:16

10
2a 1a 3a

1a
4a 1a

1a 2a 3a
3a

1a
4a

2b
2b

4b 1a
6a 7b

1a 4c
1b 4c

7b 4a
4a

1/13/2020 9:18:32
23

2a 1a 3a
4a 3b 2a

4a 3b
1a 4b 2b

2b 3a
x

x
x

x
x

x
2b 1a 3c

1a 2b
2a 1b

4c 1b
1/13/2020 9:20:20

9
2a 1a 3a

1a
1a 2a

1a 2a 4a
1a 3a 2a 7a

4a 2a 1a 3a
1a 3a 4a 9a 7a 8a

1a 4a 2a 3a
1a 3a 4a 2a

3a 4a 1a 2a
x

6a 1a 5a 7a 5a 2a 3a 4a3a 1a 2a 4a
4a 6a 3a 2a 1a 4a 5a 7a2a 4b 1b

1/13/2020 9:20:21
11

2a 1a 3a
1a

4a 1a
1a 2a 3a

3a
2a 1a 3a

2a
3a 1a

3a 1a
1a

3a 2a 1b
2a 1a 3b

2a 1b 3c
2a 1a 3b

2a 1b 3c

1/13/2020 9:24:47
2

2A 1A 3A
m

 = j j = k
m

= j j= m
 m

= k
k = j k= j

x

if x >= 0:
print('dit is niet een positief getal')
else: print('dit is een positief
getal')

x
x

x
x

x
x

x
x

for i in range(4):
 pen.left(90)
 pen.forw

ard(100)

1/13/2020 9:24:55
1

2a 1a 3a
m

=j j=k
1a 4 a 3 a

1a 3b 2c
2a 3 a 4a 5b 6c 7c

3a 4c 5a 2 a
20

a2 b3 c1
b1 c3 a2

a4 b1 c3
a2 a3 a4 b1 b7 b6 c1

x
a4 b2 b3 c1

x
a4 b3 c1 c2

1/13/2020 9:25:27
22

2A 1A 3A
4A 3B 2a

4a 3b
1a 4b 2b

2a 1b
x

x
x

x
x

x
x

x
x

x
1/13/2020 9:25:53

14
2=A 1=A 3=A

 2a
2a 3a

j=23 j=k
x

1a 3a 5b 4c 2c
x

x
x

x
x

x
x

x
x

1/13/2020 9:25:53
20

2a 1a 3a
2

1a 2a 4a
1a 4b 2b

 x
x

x
x

x
x

x
x

x
x

x
1/13/2020 9:25:58

13
2a 1a 3a

1a
4a 1a

1a 4a
3a

2a 3a 4a 5a
7a

4a
3a

x
x

x
x

x
x

1/13/2020 9:26:00
21

2a 1a 3a
4a 3b 2a

1a 2a 4a
1a 4b 2b

x
x

x
x

x
x

x
x

x
x

x
1/13/2020 9:26:01

6
2a 1a 3a

2a
2a

1a 2b 4b
x

x
x

x
x

x
x

x
x

x
x

1/13/2020 9:26:02
12

2a 1a 3a
1a

4a 1a
1a 4a

3a
2a 3a 4a 5a

7a
4a

3a
x

x
x

x
x

x
1/13/2020 9:26:04

15
2a 1a 3a

2a
2a 3a

j=23 j=k
1a 4b

1a 3a 5b 4c 2c
8A 7A 9B 1B 4C

 3C
1A 3B

x
x

x
x

x
x

x
1/13/2020 9:26:06

4
2a 1a 3a

1a
4a 3a

1a 3b 4c
x

x
x

x
x

x
x

x
x

x
x

1/13/2020 9:26:08
19

2a 1a 3a
2

1a 2a 4a
x

x
x

x
x

x
x

x
x

x
x

x
1/13/2020 9:26:10

3
2.a 1.a 3.a

X
x

x
x

x
x

x
x

x
x

x
x

x
x

1/13/2020 9:26:11
18

2a , 1a , 3a
2

1a , 2a, 3,c
1a, 2b 3c

x
x

x
x

x
x

x
x

x
x

x

1/13/2020 9:26:12
16

2a 1a 3a
m

5 m
3 j7

j5 m
10

j
8a
7a9b

x
x

x
x

x
x

x
x

x
x

1/13/2020 9:26:26
17

2a 1a 3a
2

1a 2a 3c
x

x
x

x
x

x
x

x
xx

x
x

x
1/13/2020 9:26:43

5
2 a 1 a 3 a

1a
1c

4a
x

x
x

x
x

x
x

x
x

x
x

1/13/2020 10:21:38
41

5a 3a 1b
2a

1a 4b 3c
1a 3a 2b

5a 6b 3a
1c 4b 3a

1a 2a 4b
1a 3a 4c

1a 4a
3a 1b 4a 2b

7a 4b 3a 2b
6a 5a 3b

1a 3b 2b 4a
1a 4b 6a 7b

2a 4b 1b
1/13/2020 10:21:38

40
5a, 3a, 1b

2a
1a, 4b, 3c

1a, 3a, 2b
5a, 6b, 3a

1c, 4b, 3a
1a, 2a, 4b

1a, 3a, 4c
1a,4a

3a 1b 4a 2b
7a 4b 3a 2b

6a 5a 3b
1a 3b 4a

1a 4b 7a 6b
2a 4b 1b

1/13/2020 10:25:48
42

tem
p = X x = y y = tem

p
j = m

 k = j
k = j

j = 23 k = j j = 25
x

x
x

x
x

x
x

x
x

x
x

1/13/2020 10:26:44
38

2a 1a 3a
1a

2a 1a
2a 4a 1a

1a 3b 6a 7b
4a 2b 1a 3b

x
2a 4a 3a 1a

2a 3a 4a 1a
2a 4a 1a 3a

x
x

x
x

x
1/13/2020 10:26:46

28
a

a
a

a
a

a
a

a
a

a
5a 1a 3b 7c 6b 4c

x
x

x
x

1/13/2020 10:26:46
36

2a 1a 3b
1a

2a 1a
2a 3a 1b

5a 4a 6b 7b
4a 3a 5b 2b

3a 7a 1b 4b 9c 8b
2a 4a 3b 1b

3a 2a 4b 1b
2a 4a 1a 3b

x
x

x
x

x
1/13/2020 10:26:55

27
2a 1a 3a

1a
2a 1a

2a 4a 1a
1a 3b 6a 7b

4a 2b 5a 3b
1a 2b 9a 8b

2a 3a 4a 1b
3a 4a 2a 1b

2a 4a 1a 3b
5a 2a 7b 6a 4b

x
x

x
x

1/13/2020 10:26:56
39

2a, 1a, 3a
1a

x
1a,3a

x
4a, 2a, 5a, 1a, 3a

1a, 2a, 5a, 4a
x

3a, 2a, 1a
2a, 1a, 3a

x
x

x
x

x
1/13/2020 10:27:00

37
5a 4a 3a

2a
1a 2a

1a 4a 2a
3a 4b 1a 2b

4a 2b 5a 3b
4a 6b 9a

1a 2a 3a 4a
3a 1a 4a 2 a

x
x

x
x

x
x

1/13/2020 10:27:05
43

tem
p = x x = y y = tem

p
1

4a 1a
print j 4

x
x

x
x

x
x

x
x

x
x

x
1/13/2020 10:27:11

29
2a 1a 3a

1a
2a 1a

2a 4a 1a
1a 3b 6a 7b

4a 2b 5a 3b
1a 2b 9a 8b

2a 4a 3b 1b
3a 2a 1b 4b

2a 1a 4b 3b
5a 1a 3b 7c 6b 4c

x
2a 1a 3b 4b

x
x

1/13/2020 10:27:17
45

1a 3a 5a
1a

1a 2a
1a 2a 4a

1a 6a 7b
x

x
x

x
x

x
x

x
x

x
1/13/2020 10:27:19

44
2a 1a 3a

1a
4a 1a

2a 4a 1a
x

x
x

x
x

x
x

x
x

x
x

1/13/2020 10:27:20
34

2a 1a 3a
5a

a5 b10
x

x
x

x
x

x
x

x
x

x
x

x
1/13/2020 10:27:31

32
2a 1a 3a

1a
m

 = j k = m

x
x

x
x

x
x

x
x

x
x

x
x

1/13/2020 10:27:35
35

3a 1a 2b
1a

4a 3b
2a 3b 1a

1a 3b 6a 7b
4a 2c 1b 3c

1a 2b 5a 4b
2a 3a 4b 1c

3a 1b 4a 1b 2b 1c
x

x
x

x
x

x
1/13/2020 10:27:56

31
2a 1a 3a

1
m

 = j k = m
x

x
x

x
x

x
x

x
x

x
x

x
1/13/2020 10:28:47

30
tem

p = x x = y y = tem
p

x
x

x
x

x
x

x
x

x
x

x
x

x
x

1/13/2020 10:29:02
33

2a 1a 3a
x

4a 3a 1a
x

x
x

x
x

x
x

x
x

x
x

x
1/15/2020 9:18:30

49
2a 1a 3a

1a
2a 1a

2a 4a 1a
4a 1a 3b 6a 7b

4a 2b 5a 3b
3a 7a 1a 2b 6b 9a 4b 8b

2a 4a 3b 1b
3a 2a 1b 4b

2a 1a 4b 3a
5a 3a 7b 2a 4b

4a 5b 6b 1a 3b 2a
2a 1a 3b 4b

2a 3a 7b 1b 5c 6b
2a 4b 1b

1/15/2020 9:19:59
48

2a 1a 3a
1a

2a 1a
2a 4a 1a

4a 1a 3b 6a 7b
4a 2b 5a 3b

3a 7a 1a 2b 6b 9a 4b 8b
2a 4a 3b 1b

2a 3b 1b 4b
2a 1a 4b 3b

5a 1a 3b 7c 6b 4c
4a 1b 3c 2b 6b 5b

2a 1a 3b 4b
2a 3a 1b 5c 6b 7b

2a 4b 3b 1c
1/15/2020 9:20:47

62
1a, 3a

2a
2a 3a

1A 3A 4A
4a 1a 3b 6a 7b

4a 2b 5a 3b
x

2a 4a 3b 1b
3a 2a 4b 1b

2a 1a 4b 3b
5a 1a 4b 3a 2b 1a

3a 4b 1b 2b 3a
2a 4a 1a 2b

x
2a 1b 4b

1/15/2020 9:20:59
63

x
2a

3a,4a
2a, 4a, 1b

1a 2 3 4a 5 6a 7b
4a, 2b 5b 2b

x
1b 2a 3a 4a

1b 2a 3a 4a
 1a 2b 3a 4b

x
1a 2b 3a 4b 5c 6a 7a

1a 2a 3b 4a
x

2a 4a 1a
1/15/2020 9:22:16

55
2b 4b 1c

1b
2b 1b

1a 2b 4b
4a 1a 3b 6a 7b

4a 2b 5a 3b
3a 1a 2b 9a 8b

2a 4a 3b 1b
3a 2a 4b 1b

2a 1a 4b 3b
5a 1a 4b 7b 6a 7b

1a 3b 6b 2a 4b 6b
2a 1a 4b 3b

2a 1a 3b 7b 5b 6a 5b
2a 4b 1b

1/15/2020 9:26:57
58

2=a 3=a 1=b
2=a

2=a 1=b
2 3 1 print(j)

1=a 3=b 6=c 7=c
4=a 2=a 4=a 3=a

4=a 8=a 3=a 7=a
3=a 2=a 4=a 1=a

x
x

x
x

x
x

x
1/15/2020 9:27:56

57
2b 1b 5c

1A 2A 1B 2C
1A 2A 2B

2A 2B
123456A

13A B13 C
3

2A 2B 5C

A1234
a1234

a1234
b1234567

 a 1357 b1234
a123435678

a1234
b134 c34

1/15/2020 9:29:23
51

1a
2a

1a 2a
 2a 3a 1a

1a 3b 6a 7b
4a 3b 5a 3b

7a 3a 1a 2b 6b 9a 8b 4b
4a 2b 3b 1a

3a 2a 4b 1a
1a 3b 4b 3a

4a 5a
1a 3b 6b 5a

2a
1a 5b 7b

2a 4b 1b 4b 1b 4b 1b 4b

1/15/2020 9:30:38
59

x
a = 2

a = 4 a = 3
a = 2 a = 3 a = 1 a = 1 b = 3 a = 2 b= 7

a = 4
b = 2
a = 1
b = 3

a = 7
a = 3
a = 4
a = 8
a = 1
b = 3
a = 5
b = 7

a = 2 a = 4 b = 3 a = 1 3 = a 2 = a 4 = b 1 = a 2 = a 1 = a 4 = b 3 = ax
x

2 = a 1 = a 4 = b 3 = ax
x

1/15/2020 9:30:55
61

2a 1a 5a
1a

2a 1a
2a 4a 1a

4a 1a 3b 6a 7b
4a 2b 5a 3b

3a 7a 4a 8a
2a 4a 1b 3b

3a 2a 1b 4b
2a 1a 4b 3b

5a 1a 3b 7c 2b 4c
4a 1b 3c 6b 5b

2a 1a 3b 4b
2a 3a 1b 5c 6b 7c

2a 4b 1b
1/15/2020 9:31:07

60
2a 1a 3a

1a
2a 1a

2a 4a 1a
4a 1a 3b 6a 7b

4a 2b 5a 3b
3a 7a 4a 8a 1a 3b 7b 4a 8a

2a 4a 3b 1b
3a 2a 4b 1b

2a 1a 4b 3b
5a 1a 4b 3b 7b

4a 1b 3c
2a 1b 4b 3b

2a 3a 1b 5c 7b
4a 1a 4a 1a 4a 1a 4a

1/15/2020 9:31:28
65

x
1a

2a 1a
x

4a 1a 3b 6a 7b
4a 2b 5a 3b

3a 7a 1a 2b 9a 4b
4a 3b 1a

2a 3a 4a 1a
x

5a 4a 3a 7b
4a 1b 3c 6c

x
x

2a 4b 1b
1/15/2020 9:34:36

46
3a 1a 2a

2a
4a 3a

2a 3a 1a
1a 3b 6a 7b

4a 2b 5a 3b
3a 7a 1a 2b 6b 9a 8b 4b

4a 2b 3b 1b
3a 2a 1b 4b

2a 1a 4b 3b
5a 1a 3b 7c 4b

4a 1b 3c 6b 5b
2a 1a 3b 4b

x
x

1/15/2020 9:35:35
53

2a 3a 1b
 2b 1b

4a 3a
1a 3b 4b 2b

1a 3b 5a 7b
4a 2b 1a 3b

7a3a8b4b1a2b9a6b
2a 4b 3a 1a

3a 4a 2b 1a
2a 1b 3a

5a 3b 6a 4b 7c
1a 2a 3b 5b

2a 4a 1b 3c
1a 5a 6b 4b 7c

1a 4a 2b 3b
1/15/2020 9:35:43

52
2a,3a,1b

1b
2b,1b

1a,3b,2b
1a,3a,5b,7b

4a,2a,1b,3b
7a,3a,8b,4b,1a,2b,9a,6b

2a,4b,3a,1a
3a,4a,2b,1a

2a,3a,1b,4b
3a,1a,4b,5b,6c,7c

1a,2a,,3b,5b
2a,4a,1b,3b

1a,5a,6b,4b,7c
2a,4a,1b

1/15/2020 9:35:47
50

1a
2a

4a 3a
2a 4a 1a

1a 3b 2b 7c
4a 2b 1b 3c

3a 7a 4a 8a
2a 4a 3b 1b

3a 2a 1b 4b
2a 1a 4b 3b

5a 4a ???
1a 5b 3b 7a

2a 1a 4b 3b
2a 3a 7b 1b 5c

2a 4b 1b
1/15/2020 9:36:31

47
3a, 1a, 2a

2a
2a, 1a

2a, 4a, 1a
4a, 5a, 3b, 6a, 7b

4a, 2b, 1a, 3b
3a, 7a, 1a, 2b, 6b, 5a, 4b, 8b

2a, 4a, 3b, 1b
3a, 2a, 4b 1b

2a, 1a, 4b, 3b
5a, 1a, 3b, 7c, 2b, 4b

4a, 1b, 3c 6b 5b
2a, 1a, 4b, 3b

x
2a, 4b, 1b

1/15/2020 9:38:46
64

x=tem
p b y = tem

p b
1a

1 b 2 b
1a 2a 3a

1a 2b
4a 2b 1a 3b

3a 4b 7a 8b
4a 3b 1b

3a 2a 4b 1b
2a 1a 4b 3b

x
x

3a 1a 4b 3b
x

2a 4b 3a 1b
1/15/2020 9:41:37

54
3=b 2=b 1=c

b=2
1=b 2=b

2=a 3=b 1=c
1=a 3=a 6=b 5=b 7=b

4=a 3=a 5=b 4=b 3=c
4=a 3=a 9=b 8=b 7=b

4=a 3=a 2=b 1=b
2=a 4=a 3=b 1=b

1=a 4=a 3=b 4=b
1=a 4=a 3=b 4=b 7=c

4=a 3=b 6=c
2=a 1=a 4=b 3=b

3=a 2=b 7=b 5=c
4=a 1=b 1=b

1/15/2020 9:44:24
56

2 b 1 b 3 b
1 a

2 a 3 a
1 a 2 b 4 b

4 a 1 a 3 a 7 a
4 a 2 a 5 a 3 a

4 a 3 a 8 a 7 a
2 a 3 a 4 a 1 a

3 a 4 a 2 a 1 a
2 a 4 a 1 a 3 a

1 a 5 a 4 a 7 b
4 a 1 a 3 a

1 a 4 a 2 a 3 b
1 a 4 a 2 a 7 a

2 a 1 a

Variabelen
If Statem

ents
W

hile Loops
For Statem

ents

Bibliography

[1] Monitor impuls leraren tekortvakken. https://www.cpb.nl/sites/default/files/
omnidownload/CPB-Notitie-16jan2019-Monitor-impuls-leraren-tekortvakken.pdf. Ac-
cessed: 2020-01-18.

[2] https://codingbat.com/about.html. Accessed: 2020-01-18.

[3] js-parsons - a javascript library for parsons problems. https://js-parsons.github.io. Ac-
cessed: 2020-02-22.

[4] Parsons problems. https://runestone.academy/runestone/static/authorguide/directives/
parsons.html. Accessed: 2020-02-01.

[5] A. Alammary, A. Carbone, and J. Sheard. Implementation of a smart lab for teachers of
novice programmers. ACE ’12 Proceedings of the Fourteenth Australasian Computing
Education Conference, pages 121–130, 2012.

[6] D.M. Arnow and O. Barshay. Webtoteach: An interactive focused programming exercise
system. FIE’99 Frontiers in Education. 29th Annual Frontiers in Education Conference.
Designing the Future of Science and Engineering Education, 1999. URL https://doi.org/
10.1109/FIE.1999.839303.

[7] E. Balzuweit and J. Spacco. Snapviz: Visualizing programming assignment snapshots.
Proceedings of the 18th ACM conference on Innovation and Technology in Computer Sci-
ence Education, pages 350–350, 2013. URL https://doi.org/10.1145/2462476.2465615.

[8] G. Bari, A. Gaspar, P. Wiegand, D. Vitel, K. Cheng Tan, and S.J. Kozakoff. On the potential
of evolved parsons puzzles to contribute to concept inventories in computer programming.
Proceedings of ASEE’S 126th Annual Conference, 2019.

[9] A. Basawapatna and A. Repenning. Employing retention of flow to improve online tutori-
als. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, page 63–68, 2017. URL https://doi.org/10.1145/3017680.3017799.

[10] R. Bornat and S. Dehnadi. Generating, administering and marking dehnadi-style tests.
2016.

[11] N.C.C. Brown, A. Altadmri, S. Sentance, and M. Kölling. Blackbox, five years on: An
evaluation of a large-scale programming data collection project. Proceedings of the 2018
ACM Conference on International Computing Education Research, ICER ’18, pages 196–
204, 2018. URL https://doi.org/10.1145/3230977.3230991.

[12] J. W. Creswell. Qualitative inquiry and research design: Choosing among five traditions.
Sage Publications, Thousand Oaks, California, 1998.

[13] D. Crow. Why every child should learn to code. https://www.theguardian.com/technology/
2014/feb/07/year-of-code-dan-crow-songkick. Accessed: 2020-01-18.

[14] E. Deitrick. Codio introduces a new type of assessment: Parson’s problems. https://www.
codio.com/blog/parsons-problems. Accessed: 2020-02-01.

[15] C. Di, Z. Gang, and X. Juhong. An introduction to the technology of blending-reality smart
classroom. 2008 International Symposium on Knowledge Acquisition and Modeling, pages
516–519, 2008. URL https://doi.org/10.1109/KAM.2008.172.

83

https://www.cpb.nl/sites/default/files/omnidownload/CPB-Notitie-16jan2019-Monitor-impuls-leraren-tekortvakken.pdf
https://www.cpb.nl/sites/default/files/omnidownload/CPB-Notitie-16jan2019-Monitor-impuls-leraren-tekortvakken.pdf
https://codingbat.com/about.html
https://js-parsons.github.io
https://runestone.academy/runestone/static/authorguide/directives/parsons.html
https://runestone.academy/runestone/static/authorguide/directives/parsons.html
https://doi.org/10.1109/FIE.1999.839303
https://doi.org/10.1109/FIE.1999.839303
https://doi.org/10.1145/2462476.2465615
https://doi.org/10.1145/3017680.3017799
https://doi.org/10.1145/3230977.3230991
https://www.theguardian.com/technology/2014/feb/07/year-of-code-dan-crow-songkick
https://www.theguardian.com/technology/2014/feb/07/year-of-code-dan-crow-songkick
https://www.codio.com/blog/parsons-problems
https://www.codio.com/blog/parsons-problems
https://doi.org/10.1109/KAM.2008.172

84 Bibliography

[16] D. Doukakis, M. Grigoriadou, and G. Tsaganou. Understanding the programming variable
concept with animated interactive analogies. Proceedings of the 8th Hellenic European
Research on Computer Mathematics and its Applications Conference, HERCMA ’07, 2007.

[17] B. Du Boulay. Some difficulties of learning to program. Journal of Educational Computing
Research, pages 57–73, 1986. URL https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9.

[18] B.J. Ericson, M.J. Guzdial, and B.B. Morrison. Analysis of interactive features designed to
enhance learning in an ebook. Proceedings of the 11th annual International Conference
on International Computing Education Research, pages 169–178, 2015. URL https://doi.
org/10.1145/2787622.2787731.

[19] B.J. Ericson, L.E. Margulieux, and J. Rick. Solving parsons problems versus fixing and
writing code. Proceedings of the 17th Koli Calling International Conference on Computing
Education Research, page 20–29, 2017. URL https://doi.org/10.1145/3141880.3141895.

[20] B.J. Ericson, J.D. Foley, and J. Rick. Evaluating the efficiency and effectiveness of adaptive
parsons problems. Proceedings of the 2018 ACM Conference on International Computing
Education Research, page 60–68, 2018. URL https://doi.org/10.1145/3230977.3231000.

[21] G.V.F. Fabic, A. Mitrovic, and K. Neshatian. Evaluation of parsons problems with menu-
based self-explanation prompts in a mobile python tutor. International Journal of Ar-
tificial Intelligence in Education, page 507–535, 2019. URL https://doi.org/10.1007/
s40593-019-00184-0.

[22] S. Garner. An exploration of how a technology-facilitated part-complete solution method
supports the learning of computer programming. Journal of Issues in Informing Science
and Information Technology, 2007. URL https://doi.org/10.28945/966.

[23] N. Gil Fonseca, L.F.K. Macedo, and A. José Mendes. Supporting differentiated instruction
in programming courses through permanent progress monitoring. Proceedings of the 49th
ACM Technical Symposium on Computer Science Education, pages 209–214, 2018. URL
https://doi.org/10.1145/3159450.3159578.

[24] J.M. Griffin. Learning by taking apart: Deconstructing code by reading, tracing, and debug-
ging. Proceedings of the 17th Annual Conference on Information Technology Education,
page 148–153, 2016. URL https://doi.org/10.1145/2978192.2978231.

[25] K.J. Harms, N. Rowlett, and C. Kelleher. Enabling independent learning of program-
ming concepts through programming completion puzzles. 2015 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC), pages 271–279, 2015. URL
https://doi.org/10.1109/VLHCC.2015.7357226.

[26] K.J. Harms, E. Balzuweit, J. Chen, and C. Kelleher. Learning programming from tuto-
rials and code puzzles: Children’s perceptions of value. 2016 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC), pages 59–67, 2016. URL
https:/doi.org/10.1109/VLHCC.2016.7739665.

[27] K.J. Harms, J. Chen, and C.L. Kelleher. Distractors in parsons problems decrease learning
efficiency for young novice programmers. Proceedings of the 2016 ACM Conference on
International Computing Education Research, page 241–250, 2016. URL https://doi.org/
10.1145/2960310.2960314.

[28] K. Heinonen, K. Hirvikoski, M. Luukkainen, and A. Vihavainen. Using codebrowser to
seek differences between novice programmers. Proceedings of the 45th ACM Tech-
nical Symposium on Computer Science Education, pages 229–234, 2014. URL https:
//doi.org/10.1145/2538862.2538981.

[29] J. Helminen, P. Ihantola, V. Karavirta, and L. Malmi. How do students solve parsons pro-
gramming problems? - an analysis of interaction traces. Proceedings of the Ninth Annual
International Conference on Computing Education Research, page 119–126, 2012. URL
https://doi.org/10.1145/2361276.2361300.

https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1007/s40593-019-00184-0
https://doi.org/10.1007/s40593-019-00184-0
https://doi.org/10.28945/966
https://doi.org/10.1145/3159450.3159578
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1109/VLHCC.2015.7357226
https:/doi.org/10.1109/VLHCC.2016.7739665
https://doi.org/10.1145/2960310.2960314
https://doi.org/10.1145/2960310.2960314
https://doi.org/10.1145/2538862.2538981
https://doi.org/10.1145/2538862.2538981
https://doi.org/10.1145/2361276.2361300

Bibliography 85

[30] M. Hristova, A. Misra, M. Rutter, and R. Mercuri. Identifying and correcting java pro-
gramming errors for introductory computer science students. Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science Education, pages 153–156, 2003.
URL https://doi.org/10.1145/611892.611956.

[31] C.D. Hundhausen, D.M. Olivares, and A.S. Carter. Ide-based learning analytics for comput-
ing education: A process model, critical review, and research agenda. ACM Transactions
on Computing Education 17, TOCE 17, pages 1–26, 2017.

[32] P. Ihantola and V. Karavirta. Two-dimensional parson’s puzzles: The concept, tools, and
first observations. Journal of Information Technology Education: Innovations in Practice,
pages 1–14, 2011. URL https://doi.org/10.28945/1394.

[33] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler, J. Börstler, S.H. Edwards, E. Isohanni, A. Ko-
rhonen, A. Petersen, K. Rivers, M.A. Rubio, J. Sheard, B. Skupas, J. Spacco, C. Szabo,
and D. Toll. Educational data mining and learning analytics in programming: Literature
review and case studies. Proceedings of the 2015 ITiCSE on Working Group Reports,
ITICSE-WGR ’15, pages 41–63, 2015. URL https://doi.org/10.1145/2858796.2858798.

[34] H. Isenstein. Why i taught myself to code – and why you
should too. https://www.theguardian.com/education/2017/feb/09/
why-i-taught-myself-to-code-and-why-you-should-too. Accessed: 2020-01-18.

[35] M.C. Jadud. Methods and tools for exploring novice compilation behaviour. Proceedings of
the Second International Workshop on Computing Education Research, ICER ’06, pages
73–84, 2006. URL https://doi.org/10.1145/1151588.1151600.

[36] M. Karam, M. Awa, A. Carbone, and J. Dargham. Assisting students with typical program-
ming errors during a coding session. Seventh International Conference on Information
Technology, pages 42–47, 2010.

[37] V. Karavirta, J. Helminen, and P. Ihantola. A mobile learning application for parsons prob-
lems with automatic feedback. Proceedings of the 12th Koli Calling International Confer-
ence on Computing Education Research, page 11–18, 2012. URL https://doi.org/10.1145/
2401796.2401798.

[38] M. Kenny and R. Fourie. Tracing the history of grounded theory methodology: From for-
mation to fragmentation. The Qualitative Report, 19(52):1–9, 2014.

[39] T. Kohn. Teaching python programming to novices: Addressing misconceptions and creat-
ing a development environment. 2017. URL https://doi.org/10.3929/ethz-a-010871088.

[40] A.N. Kumar. Epplets: A tool for solving parsons puzzles. Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, page 527–532, 2018. URL https:
//doi.org/10.1145/3159450.3159576.

[41] L. Ma. Investigating and improving novice programmers’ mental models of programming
concepts. 2007.

[42] C. Murphy, G.E. Kaiser, K. Loveland, and S. Hasan. Retina: Helping students and in-
structors based on observed programming activities. Proceedings of the 40th ACM Tech-
nical Symposium on Computer Science Education, pages 178–182, 2009. URL https:
//doi.org/10.1145/1539024.1508929.

[43] C. Norris, F. Barry, J.B. Fenwick Jr, K. Reid, and J. Rountree. Clockit: Collecting quantitative
data on how beginning software developers really work. Proceedings of the 13th annual
conference on Innovation and Technology in Computer Science Education, pages 37–41,
2008. URL https://doi.org/10.1145/1384271.1384284.

https://doi.org/10.1145/611892.611956
https://doi.org/10.28945/1394
https://doi.org/10.1145/2858796.2858798
https://www.theguardian.com/education/2017/feb/09/why-i-taught-myself-to-code-and-why-you-should-too
https://www.theguardian.com/education/2017/feb/09/why-i-taught-myself-to-code-and-why-you-should-too
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/2401796.2401798
https://doi.org/10.1145/2401796.2401798
https://doi.org/10.3929/ethz-a-010871088
https://doi.org/10.1145/3159450.3159576
https://doi.org/10.1145/3159450.3159576
https://doi.org/10.1145/1539024.1508929
https://doi.org/10.1145/1539024.1508929
https://doi.org/10.1145/1384271.1384284

86 Bibliography

[44] A. Papancea, J. Spacco, and D. Hovemeyer. An open platform for managing short pro-
gramming exercises. Proceedings of the 9th annual international ACM conference on In-
ternational computing education research, pages 47–52, 2013. URL https://doi.org/10.
1145/2493394.2493401.

[45] D. Parsons and P. Haden. Parson’s programming puzzles: A fun and effective learning
tool for first programming courses. Proceedings of the 8th Australasian Conference on
Computing Education, page 157–163, 2006.

[46] R.D. Pea. Language-independent conceptual ‘bugs’ in novice programming. Journal
of Educational Computing Research, pages 25–36, 1986. URL https://doi.org/10.2190/
689T-1R2A-X4W4-29J2.

[47] R.T. Putnam, D. Sleeman, J.A. Baxter, and L.K. Kuspa. A summary of misconceptions
of high school basic programmers. Journal of Educational Computing Research, pages
459–472, 1986. URL https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU.

[48] N. Ragonis andM. Ben-Ari. A long-term investigation of the comprehension of oop concepts
by novices. Computer Science Education, pages 203–221, 2005. URL https://doi.org/10.
1080/08993400500224310.

[49] T. Rajala, M.J. Laakso, E. Kaila, and T. Salakoski. Ville – a language-independent pro-
gram visualization tool. Proceedings of the Seventh Baltic Sea Conference on Computing
Education Research, page 151–159, 2007.

[50] L. Scholten. Programming misconceptions in novice python learners; challenges and pro-
posed solutions. 2019.

[51] E. Shein. The cs teacher shortage. https://cacm.acm.org/magazines/2019/10/
239667-the-cs-teacher-shortage/fulltext. Accessed: 2020-01-18.

[52] Simon. Assignment and sequence: Why some students can’t recognize a simple swap.
Proceedings of the 11th Koli Calling International Conference on Computing Education Re-
search, Koli Calling ’11, page 10–15, 2011. URL https://doi.org/10.1145/2094131.2094134.

[53] D. Sleeman, R.T. Putnam, J. Baxter, and L. Kuspa. Pascal and high school students: A
study of errors. Journal of Educational Computing Research, pages 5–23, 1986. URL
https://doi.org/10.2190/2XPP-LTYH-98NQ-BU77.

[54] E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan. What do novices know about program-
ming? Directions in Human-Computer Interaction, 1982.

[55] J. Sorva. Visual program simulation in introductory programming education. 2012.

[56] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J.K. Hollingsworth, and N. Padua-Perez.
Experiences with marmoset: Designing and using an advanced submission and testing
system for programming courses. Proceedings of the 11th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, ITiCSE 2006, pages 13–17,
2006. URL https://doi.org/10.1145/1140124.1140131.

[57] J. Sweller. Cognitive load during problem solving: Effects on learning. Cognitive Science,
page 257–285, 1988. URL https://doi.org/10.1207/s15516709cog1202_4.

[58] P. Van Der Beek. 1,4 miljoen voor aanpak lerarentekort informat-
ica. https://www.computable.nl/artikel/nieuws/onderwijs/5720597/250449/
14-miljoen-voor-aanpak-lerarentekort-informatica.html. Accessed: 2020-01-18.

[59] A. Vihavainen, T. Vikberg, M. Luukkainen, and M. Pärtel. Scaffolding students’ learning
using test my code. Proceedings of the 18th ACM conference on Innovation and Technol-
ogy in Computer Science Education, pages 117–122, 2013. URL https://doi.org/10.1145/
2462476.2462501.

https://doi.org/10.1145/2493394.2493401
https://doi.org/10.1145/2493394.2493401
https://doi.org/10.2190/689T-1R2A-X4W4-29J2
https://doi.org/10.2190/689T-1R2A-X4W4-29J2
https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU
https://doi.org/10.1080/08993400500224310
https://doi.org/10.1080/08993400500224310
https://cacm.acm.org/magazines/2019/10/239667-the-cs-teacher-shortage/fulltext
https://cacm.acm.org/magazines/2019/10/239667-the-cs-teacher-shortage/fulltext
https://doi.org/10.1145/2094131.2094134
https://doi.org/10.2190/2XPP-LTYH-98NQ-BU77
https://doi.org/10.1145/1140124.1140131
https://doi.org/10.1207/s15516709cog1202_4
https://www.computable.nl/artikel/nieuws/onderwijs/5720597/250449/14-miljoen-voor-aanpak-lerarentekort-informatica.html
https://www.computable.nl/artikel/nieuws/onderwijs/5720597/250449/14-miljoen-voor-aanpak-lerarentekort-informatica.html
https://doi.org/10.1145/2462476.2462501
https://doi.org/10.1145/2462476.2462501

Bibliography 87

[60] D. Vitel, B.A.T.M. Golam, and A. Gaspar. Lessons learned from available parsons puzzles
software. Proceedings of ASEE’S 126th Annual Conference, 2019.

[61] I. Zeemeijer. Leraren slaan alarm: scholen stoppen met infor-
matica in de bovenbouw. https://fd.nl/economie-politiek/1287621/
leraren-slaan-alarm-scholen-stoppen-met-informatica-in-de-bovenbouw. Accessed:
2020-01-18.

https://fd.nl/economie-politiek/1287621/leraren-slaan-alarm-scholen-stoppen-met-informatica-in-de-bovenbouw
https://fd.nl/economie-politiek/1287621/leraren-slaan-alarm-scholen-stoppen-met-informatica-in-de-bovenbouw

	Introduction
	Literature Review
	Teacher Feedback
	Plug-Ins
	Web-Based Applications
	Stand-Alone Tools
	Other Related Research
	Summary

	Parsons Problems
	Design Choices
	Current Application

	Programming Misconceptions
	Selection of Misconceptions

	Part I
	Interviews
	Methodology
	Interview Design
	Introduction
	Researcher
	Teacher
	Digitization/Automation
	Other

	Results Part I
	Participants
	The Interviews
	Summary: working towards a solution

	Part II
	Pilot Experiment
	Question Design
	Questions
	Variables
	If/Else Statements
	While Loops
	For Loops

	Setup and Participants Pilot Experiment
	First Test Results
	Participant 1
	Participant 2
	Participant 3
	Participant 4

	Conclusions Pilot Experiment

	Experiment
	Question Design
	Questions
	Variables
	If/Else Statements
	While Loops
	For Loops

	Results Part II
	Setup and Participants
	Findings
	Targeted Misconceptions
	Targeted Misconceptions occurring in Non-Targeting Questions
	Other Misconceptions
	New Misconceptions
	Research Questions

	Discussion
	Part I
	Part II

	Conclusion
	Future Work
	Design of Parsons Problems
	Design of Experiments
	Automation - Useful Functionalities

	Experiment Questions and Answers
	Variables
	If/Else Statements
	While Loops
	For Loops

	Experiment Google Forms
	Experiment Collected Data
	Bibliography

