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ON LOWER BOUNDS FOR THE BIAS-VARIANCE TRADE-OFF

BY ALEXIS DERUMIGNY1,a AND JOHANNES SCHMIDT-HIEBER2,b

1Department of Applied Mathematics, Delft University of Technology, aa.f.f.derumigny@tudelft.nl
2Department of Applied Mathematics, University of Twente, ba.j.schmidt-hieber@utwente.nl

It is a common phenomenon that for high-dimensional and nonparamet-
ric statistical models, rate-optimal estimators balance squared bias and vari-
ance. Although this balancing is widely observed, little is known whether
methods exist that could avoid the trade-off between bias and variance. We
propose a general strategy to obtain lower bounds on the variance of any es-
timator with bias smaller than a prespecified bound. This shows to which
extent the bias-variance trade-off is unavoidable and allows to quantify the
loss of performance for methods that do not obey it. The approach is based
on a number of abstract lower bounds for the variance involving the change
of expectation with respect to different probability measures as well as in-
formation measures such as the Kullback–Leibler or χ2-divergence. Some of
these inequalities rely on a new concept of information matrices. In a second
part of the article, the abstract lower bounds are applied to several statisti-
cal models including the Gaussian white noise model, a boundary estimation
problem, the Gaussian sequence model and the high-dimensional linear re-
gression model. For these specific statistical applications, different types of
bias-variance trade-offs occur that vary considerably in their strength. For
the trade-off between integrated squared bias and integrated variance in the
Gaussian white noise model, we propose to combine the general strategy for
lower bounds with a reduction technique. This allows us to reduce the original
problem to a lower bound on the bias-variance trade-off for estimators with
additional symmetry properties in a simpler statistical model. In the Gaussian
sequence model, different phase transitions of the bias-variance trade-off oc-
cur. Although there is a non-trivial interplay between bias and variance, the
rate of the squared bias and the variance do not have to be balanced in order
to achieve the minimax estimation rate.

1. Introduction. Can the bias-variance trade-off be avoided, for instance by using ma-
chine learning methods in the overparametrized regime? This is currently debated in machine
learning. While older work on neural networks mention that “the fundamental limitations
resulting from the bias-variance dilemma apply to all nonparametric inference methods, in-
cluding neural networks” ([18], page 45), the very recent work on overparametrization in
machine learning has cast some doubt on the necessity to balance squared bias and variance
[1, 26]. While for fixed and moderate growth, the number of parameters in the method (e.g.,
the number of network parameters in a neural network) can be associated to the bias and the
variance of the procedure, resulting in the well-known U-shaped curves for the statistical risk
(see, e.g., Figure 2.11 in [20]), such a link cannot be made in the overparametrized regime.
But this does not mean that the bias-variance trade-off disappears. In this work, we prove that
for standard estimation problems in nonparametric and high-dimensional statistics, there are
universal bias-variance trade-offs that cannot be circumvented by any method.

Besides the debate about overparametrization, there are many other good reasons why a
better understanding of the bias-variance trade-off is relevant for statistical practice. Even in
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nonadaptive settings, confidence sets in nonparametric statistics require control on the bias
of the centering estimator and often use a slight undersmoothing to make the bias negligible
compared to the variance. If rate-optimal estimators with negligible bias would exist, such
troubles could be overcome. In some instances, small bias is possible. An important example
is the rather subtle debiasing of the LASSO for a class of functionals in the high-dimensional
regression model [7, 38, 40]. This shows that the occurrence of the bias-variance trade-off is
a highly nontrivial phenomenon.

Finite-dimensional parametric models do typically not exhibit a bias-variance trade-off
and there may exist unbiased estimators with finite variance. On the contrary, our results
show that for high-dimensional and infinite-dimensional statistical models, unbiased estima-
tors with finite variance are in almost all of the considered settings impossible. The funda-
mental difference lies in the amount of information per parameter: for parametric models of
dimension p, the sample size n is by definition, of a larger order than p, and the statistician
has a budget of n/p observations per parameter; on the contrary, for nonparametric models,
we have p > n or even p = +∞ and there is simply not enough data to estimate each param-
eter well using a n/p-fraction of the observations. For example, in the Gaussian white noise
model, we observe the process (Yx)x satisfying dYx = f (x) dx +n−1/2 dWx for an unknown
function f . If the regression function f lies in a nonparametric class, it is impossible to trans-
form the data into the form f (x0)+“noise.” Instead, one has to rely here on the similarity of
the regression function in a small vicinity around x0, which leads to an unavoidable bias.

Only few theoretical articles exist on lower bounds for the interplay between bias and vari-
ance. The major contribution is due to Mark Low [24] proving that the bias-variance trade-off
is unavoidable for estimation of functionals in the Gaussian white noise model. The approach
relies on a complete characterization of the bias-variance trade-off phenomenon in a paramet-
ric Gaussian model via the Cramér–Rao lower bound; see also Section 3 for a more in-depth
discussion. Another related result is [29], also considering estimation of functionals but not
necessarily in the Gaussian white noise model. It is shown that for any functional κ , a lower
bound on the asymptotic deviation probability limu→0 lim infn→∞ P n

0 (cn |̂κ − κ(P0)| ≤ u)

implies an asymptotic lower bound on variance-like measures of the estimator κ̂n of κ(P0). In
this article, we do not consider such deviation probability and establish direct and nonasymp-
totic trade-offs between bias and variance. [23] introduces a notion of singular functional
estimation problems and proves that for such singular problems, no unbiased estimators with
finite variance exist. In the same spirit, [9] shows that the supremum of the variance of an
unbiased estimator is infinite if a singular point belongs to the closure of the parameter set.
Moreover, it is shown that the difference between biases is lower bounded if the worst-case
variance is upper bounded.

In this article, we propose a general strategy to derive lower bounds for the bias-variance
trade-off. The key ingredient are general inequalities bounding the change of expectation with
respect to different distributions by the variance and information measures such as the total
variation, Hellinger distance, Kullback–Leibler divergence and the χ2-divergence.

As examples, we consider nonparametric estimation in the Gaussian white noise model
as well as sparse recovery in the sequence model and the high-dimensional linear regression
model. By applying the lower bounds to different statistical models, it is surprising to see
different types of bias-variance trade-offs occurring. The weakest type are worst-case scenar-
ios stating that if the bias is small for all parameters, then there exists a potentially different
parameter in the parameter space with a large variance and vice versa. For the pointwise es-
timation in the Gaussian white noise model, the derived lower bounds imply also a stronger
version proving that small bias for all parameters will necessarily inflate the variance for all
parameters that are in a suitable sense separated away from the boundary of the parameter
space.
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We also study lower bounds for the trade-off between integrated squared bias and inte-
grated variance in the Gaussian white noise model. In this case, a direct application of the
multiple parameter lower bound is rather tricky and we propose instead a two-fold reduction
first. The first reduction shows that it is sufficient to prove a lower bound on the bias-variance
trade-off in a related sequence model. The second reduction states that it is enough to consider
estimators that are constrained by some additional symmetry property. After the reductions, a
few lines argument applying the information matrix lower bound is enough to derive a match-
ing lower bound for the trade-off between integrated squared bias and integrated variance.

For function estimation in the Gaussian white noise model, the variance blows up if the
estimator is constrained to have a bias decreasing faster than the minimax rate. In the sparse
sequence model and the high-dimensional regression model with sparsity � √

n, a different
phenomenon occurs. For estimators with bias bounded by constant × minimax rate, the de-
rived lower bounds show that a sufficiently small constant already enforces that the variance
must be larger than the minimax rate by a polynomial factor in the sample size. Interestingly,
for an estimator achieving the minimax estimation rate, the rate of the variance can be of a
smaller order than the rate of the squared bias and, therefore, variance and squared bias do
not need to be balanced.

Summarizing the results, for all of the considered models a nontrivial bias-variance trade-
off could be established. For some estimation problems, the bias-variance trade-off only holds
in a worst-case sense, and on subsets of the parameter space, rate-optimal methods with
negligible bias exist. It should also be emphasized that for this work only nonadaptive setups
are considered. Adaptation to either smoothness or sparsity induces additional bias. The bias-
variance trade-off problem can also be rephrased by asking for the optimal estimation rate if
only estimators with, for instance, small bias are allowed. In this sense, the work contributes
to the growing literature on optimal estimation rates under constraints on the estimators.
So far, major theoretical work has been done for polynomial time computable estimators
[2, 3], lower and upper bounds for estimation under privacy constraints [16, 17, 34] and
parallelizable estimators under communication constraints [36, 41].

The paper is organized as follows. In Section 2, we provide a number of new abstract lower
bounds, where we distinguish between inequalities bounding the change of expectation for
two distributions and inequalities involving an arbitrary number of expectations. The sub-
sequent sections of the article study lower and upper bounds for the bias-variance trade-off
based on these inequalities. The considered setups range from pointwise estimation in the
Gaussian white noise model (Section 3 and Section 5) and a boundary estimation problem
(Section 4) to high-dimensional models in Section 6. Section 7 discusses some aspects un-
derlying a formal definition of the bias-variance trade-off and the connection between the
approach in this work and minimax lower bounds. All proofs are deferred to the Supplemen-
tary Material.

Notation. Whenever the domain D is clear from the context, we write ‖ · ‖p for the
Lp(D)-norm. Moreover, ‖ · ‖2 denotes also the Euclidean norm for vectors. We denote by
A� the transpose of a matrix A. For mathematical expressions involving several probabil-
ity measures, it is assumed that those are defined on the same measurable space. If P is
a probability measure, we write EP and VarP for the expectation and variance with re-
spect to P , respectively. For probability measures Pθ depending on a parameter θ , Eθ and
Varθ denote the corresponding expectation and variance. Throughout the article, we con-
sider estimators θ̂ for which the expectation Eθ [θ̂ ] exists and is finite for all parameters
θ in the parameter space. This guarantees that the bias is always well defined. If a ran-
dom variable X is not square integrable with respect to P , we assign the value +∞ to
VarP (X). For any finite number of measures P1, . . . ,PM , defined on the same measurable
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space, we can find a measure ν dominating all of them (e.g., ν := 1
M

∑M
j=1 Pj ). Hence-

forth, ν will always denote a dominating measure and pj stands for the ν-density of Pj .
The total variation is TV(P,Q) := 1

2

∫ |p(ω) − q(ω)|dν(ω). The squared Hellinger distance
is defined as H(P,Q)2 := 1

2

∫
(
√

p(ω) − √
q(ω))2 dν(ω) (in the literature sometimes also

defined without the factor 1/2). If P is dominated by Q, the Kullback–Leibler divergence is
defined as KL(P,Q) := ∫

log(p(ω)/q(ω))p(ω)dν(ω) and the χ2-divergence is defined as
χ2(P,Q) := ∫

(p(ω)/q(ω) − 1)2q(ω)dν(ω). If P is not dominated by Q, both Kullback–
Leibler and χ2-divergence are assigned the value +∞.

2. General lower bounds on the variance.

2.1. Lower bounds based on two distributions. Given an upper bound on the bias, the
goal is to find a lower bound on the variance. For parametric models, the natural candidate
is the Cramér–Rao lower bound. Given a statistical model with real parameter θ ∈ � ⊆ R,
and an estimator θ̂ with bias B(θ) := Eθ [θ̂] − θ , variance V (θ) := Varθ (θ̂ ) and Fisher in-
formation F(θ), the Cramér–Rao lower bound states that V (θ) ≥ (1+B ′(θ))2

F(θ)
, where B ′(θ)

denotes the derivative of the bias with respect to θ . The basic idea is that if the bias is
small, we cannot have B ′(θ) ≤ −1/2 everywhere, so there must be a parameter θ∗ such
that V (θ∗) ≥ 1/(4F(θ∗)). The constant −1/2 could be replaced of course by any other num-
ber in (−1,0). There are various extensions of the Cramér–Rao lower bound to multivariate
and semiparametric settings [29]. Although the Cramér–Rao lower bound seems to provide
a straightforward path to lower bounds on the bias-variance trade-off, the imposed regularity
conditions make this approach problematic for nonparametric and high-dimensional models.
For example, when the parameter space is the set of s-sparse vectors, this is not an open set
and it is unclear how to define the gradient of the bias function or the Fisher information.

Instead of trying to fix the shortcomings of the Cramér–Rao lower bound for complex
statistical models, we derive a number of inequalities that bound the change of expectation
with respect to two different distributions by the variance and one of the four standard di-
vergence measures: total variation, Hellinger distance, Kullback–Leibler divergence and the
χ2-divergence. As we will see later, these inequalities are much better suited for nonparamet-
ric problems as no notion of differentiability of the distribution with respect to the parameter
is required. Moreover, the Cramér–Rao lower bound reappears by taking a suitable limit.

LEMMA 2.1. Let P and Q be two probability distributions on the same measurable
space. Denote by EP and VarP the expectation and variance with respect to P and let EQ

and VarQ be the expectation and variance with respect to Q. Then, for any random variable
X,

(EP [X] − EQ[X])2

2

(
1

TV(P,Q)
− 1

)
≤ VarP (X) + VarQ(X),(1)

(EP [X] − EQ[X])2

4 − 2H 2(P,Q)

(
1

H(P,Q)
− H(P,Q)

)2
≤ VarP (X) + VarQ(X),(2)

(
EP [X] − EQ[X])2

(
1

KL(P,Q) + KL(Q,P )
− 1

4

)
≤ VarP (X) ∨ VarQ(X),(3)

(
EP [X] − EQ[X])2 ≤ χ2(Q,P )VarP (X)

∧ χ2(P,Q)VarQ(X).
(4)
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The inequality in (4) is known [27], Lemma 2, and can also be viewed as a consequence
of the Hammersley–Chapman–Robbins inequality [22], Example 5.2. [29], Lemma 5.3, de-
rives analogous formulas for (2) and (4) with the variance replaced by the second moment.
Inequality (2) is derived from [28], Theorem 1. To the best of our knowledge, the inequalities
in (1) and (3) have not been stated yet in the literature. A proof is provided in Section A of
the Supplementary Material [13].

If one of the information measures is zero, the left-hand side of the corresponding in-
equality should be assigned the value zero as well. The inequalities are based on different
decompositions for EP [X] − EQ[X] = ∫

X(ω)(dP (ω) − dQ(ω)). All of them involve an
application of the Cauchy–Schwarz inequality. For deterministic X, both sides of the inequal-
ities are zero, and hence we have equality. For (4), the choice X = dQ/dP yields equality
and in this case, both sides are (χ2(Q,P ))2. Another line of related inequalities bound the
change of expectations in terms of f -divergences, without involving the variance; see, for
instance, [10, 19].

To obtain lower bounds for the variance, our inequalities can be applied similarly as the
Cramér–Rao inequality. Indeed, small bias implies that Eθ [θ̂ ] is close to θ and Eθ ′ [θ̂ ] is
close to θ ′. If θ and θ ′ are sufficiently far from each other, we obtain a lower bound for
|Eθ [θ̂ ] − Eθ ′ [θ̂]| and a fortiori a lower bound for the variance. This argument suggests that
the lower bound becomes stronger by picking parameters θ and θ ′ that are as far as possible
away from each other. But then, also the information measures of the distributions Pθ and Pθ ′
are typically larger, making the lower bounds worse. This shows that an optimal application
of the inequalities should balance these two aspects.

Example A.1 of the Supplementary Material [13] illustrates these inequalities in the case
of the Gaussian distribution. For other distributions, one of these four divergence measures
might be easier to compute and the four inequalities can lead to substantially different lower
bounds. For instance, if the measures P and Q are not dominated by each other, the Kullback–
Leibler and χ2-divergence are both infinite but the Hellinger distance and total variation ver-
sion still produce nontrivial lower bounds. This justifies deriving for each divergence measure
a separate inequality. It is also in line with the formulation of the theory on minimax lower
bounds (see, for instance, Theorem 2.2 in [37]).

Except for the total variation version, all derived inequalities in Lemma 2.1 are general-
izations of the Cramér–Rao lower bound. The Cramér–Rao lower bound appears by taking P

and Q to be Pθ and Pθ+� and letting � tend to zero. A proof and a variation of Lemma 2.1
for a family of distributions (Pt )t∈[0,1] (Lemma A.2) can be found in Section A of the Sup-
plementary Material [13].

2.2. Information matrices and lower bound based on multiple distributions. For mini-
max lower bounds based on hypotheses tests, it has been observed that lower bounds based
on two hypotheses are only rate-optimal in specific settings such as for some functional es-
timation problems. If the local alternatives surrounding a parameter θ spread over many dif-
ferent directions, estimation of θ becomes much harder. To capture this in the minimax lower
bounds, we need instead to reduce the problem to a multiple testing problem involving po-
tentially a large number of tests.

A similar phenomenon occurs also for bias-variance trade-off lower bounds. Given M + 1
probability measures P0,P1, . . . ,PM , the χ2-version of Lemma 2.1 states that for any j =
1, . . . ,M , (EPj

[X] − EP0[X])2/χ2(Pj ,P0) ≤ VarP0(X). If P1, . . . ,PM describe different
directions around P0 in a suitable information theoretic sense, one would hope that in this
case a stronger inequality holds with the sum on the left-hand side, that is,

∑M
j=1(EPj

[X] −
EP0[X])2/χ2(Pj ,P0) ≤ VarP0(X). In a next step, two notions of information matrices are
introduced, measuring to which extent P1, . . . ,PM represent different directions around P0.
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If P0 dominates P1, . . . ,PM , the χ2-divergence matrix χ2(P0, . . . ,PM) is defined as the
M × M matrix with (j, k)th entry

χ2(P0, . . . ,PM)j,k :=
∫

dPj

dP0
dPk − 1.

The M × M Hellinger affinity matrix is defined entrywise by

ρ(P0|P1, . . . ,PM)j,k :=
∫ √

pjpk dν∫ √
pjp0 dν

∫ √
pkp0 dν

− 1, j, k = 1, . . . ,M.

Here and throughout the article, we implicitly assume that the distributions P0, . . . ,PM are
chosen such that the Hellinger affinities

∫ √
pjp0 dν are positive and the Hellinger affinity

matrix is well defined. This condition is considerably weaker than assuming that P0 dom-
inates the other measures (which is necessary for finiteness of the χ2-divergence matrix).
These two notions of information matrices are studied in more detail in [12].

For a matrix A, the Moore–Penrose inverse A+ always exists and satisfies the property
AA+A = A and A+AA+ = A+. We can now state the generalization of (4) to an arbitrary
number of distributions. The following theorem is proved in Section A of the Supplementary
Material [13].

THEOREM 2.2. For M ≥ 1, let P0,P1, . . . ,PM be probability measures defined on the
same probability space, and X be a random variable.

(i) Set � := (EP1[X] − EP0[X], . . . ,EPM
[X] − EP0[X])�. If Pj � P0 for all j =

1, . . . ,M , then ��χ2(P0, . . . ,PM)+� ≤ VarP0(X), where χ2(P0, . . . ,PM)+ denotes the
Moore–Penrose inverse of the χ2-divergence matrix.

(ii) Let A
 := ρ(P
|P1, . . . ,P
−1,P
+1, . . . ,PM). Then, for M ≥ 2,

2M

M∑
j=1

(
Ej [X] − 1

M

M∑

=1

E
[X]
)2

=
M∑

j,k=1

(
Ej [X] − Ek[X])2 ≤ 4 max


=1,...,M
λ1(A
)

M∑
k=1

VarPk
(X),

where λ1(A
) denotes the largest eigenvalue (spectral norm) of the positive semidefinite
Hellinger affinity matrix A
.

Instead of using a finite number of probability measures, it is in principle possible to ex-
tend Theorem 2.2 to families of probability measures. The divergence matrices become then
operators and the sums have to be replaced by integral operators.

If the χ2-divergence matrix is diagonal with positive entries on the diagonal, we obtain
that

∑M
j=1(EPj

[X] − EP0[X])2/χ2(Pj ,P0) ≤ VarP0(X). It should be observed that because
of the sum, this inequality produces better lower bounds than (4).

Theorem 2.2(i) contains the multivariate Cramér–Rao lower bound as a special case; see
Section A.3 of the Supplementary Material [13]. The connection to the Cramér–Rao inequal-
ity suggests that for a given statistical problem with a p-dimensional parameter space, one
should apply Theorem 2.2 with M = p. It turns out that for the high-dimensional models
discussed in Section 6 below, the number of distributions M will be chosen as

( p−1
s−1

)
with

p the number of parameters and s the sparsity. Depending on the sparsity, this can be much
larger than p.

We are aware of two existing inequalities that are related to Theorem 2.2(i). [39,
Section 3], in our notation, states that

∑M
j=1 VarPj

(X) ≥ (
∑M

j=1 EPj
[X] − EP0[X])2/
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j=1 χ2(Pj ,P0) and [30], pageg 330, states that for any p ≥ 1 and any distributions P ,

Q on R
p , χ2(P,Q) ≥ (EP [X]−EQ[X])� CovQ(X)−1(EP [X]−EQ[X]), where CovQ(X)

denotes the covariance matrix of X under Q. The concept of Fisher �-information also gener-
alizes the Fisher information using information measures; see [8, 31]. It is worth mentioning
that this notion is not comparable with our approach and only applies to Markov processes.

To apply Theorem 2.2(i), we now introduce several variations. A vector v = (v1, . . . , vM)

lies in the kernel of the χ2-divergence matrix if and only if
∑M

j=1 vj (Pj − P0) = 0 (see
Section 3 of [12]). This shows that such a v and the vector � must be orthogonal. Thus, � is
orthogonal to the kernel of χ2(P0, . . . ,PM) and

M∑
j=1

(
EPj

[X] − EP0[X])2 ≤ λ1
(
χ2(P0, . . . ,PM)

)
VarP0(X),(5)

where λ1(χ
2(P0, . . . ,PM)) denotes the largest eigenvalue (spectral norm) of the χ2-

divergence matrix. Given a symmetric matrix A = (aij )i,j=1,...,M , the maximum row sum
norm is defined as ‖A‖1,∞ := maxi=1,...,M

∑M
j=1 |aij |. For any eigenvalue λ of A with

corresponding eigenvector v = (v1, . . . , vM)� and any i ∈ {1, . . . ,M}, we have that λvi =∑M
j=1 aij vj and, therefore, |λ|maxi=1,...,M |vi | ≤ maxi=1,...,M

∑M
j=1 |aij |‖v‖∞. Therefore,

‖A‖1,∞ is an upper bound for the spectral norm and

M∑
j=1

(
EPj

[X] − EP0[X])2 ≤ ∥∥χ2(P0, . . . ,PM)
∥∥

1,∞ VarP0(X).(6)

Whatever variation of Theorem 2.2 is applied to derive lower bounds on the bias-variance
trade-off, the key problem is the computation of the information matrix for given probability
measures Pθj

, j = 0, . . . ,M in the underlying statistical model (Pθ : θ ∈ �). Suppose there
exists a more tractable statistical model (Qθ : θ ∈ �) with the same parameter space such that
the data in the original model can be obtained by a transformation of the data generated from
(Qθ : θ ∈ �). Theorem 4.1 in the companion paper [12] states a data processing inequality
for χ2-divergence matrices. In the setting considered above, this data processing inequality
can be written as a matrix inequality

χ2(Pθ0, . . . ,PθM
) ≤ χ2(Qθ0, . . . ,QθM

),(7)

where ≤ is understood with respect to the partial order on the set of positive semidefi-
nite matrices. We therefore can apply the upper bounds (5) and (6) with χ2(Pθ0, . . . ,PθM

)

replaced by χ2(Qθ0, . . . ,QθM
). In Theorem 2.2(i), χ2(Pθ0, . . . ,PθM

)+ can be replaced by
χ2(Qθ0, . . . ,QθM

)+ if the matrix χ2(Pθ0, . . . ,PθM
) is invertible. A specific application for

the combination of general lower bounds and the data processing inequality is given in Sec-
tion 6.

For various distributions, closed-form expression for the information matrices are derived
in [12]. In particular, if Pj = N (θj , σ

2Id) with θj ∈ R
d and σ > 0, then

χ2(P0,P1, . . . ,PM)j,k = exp
(〈θj − θ0, θk − θ0〉

σ 2

)
− 1.(8)

3. The bias-variance trade-off for pointwise estimation in the Gaussian white noise
model. In the Gaussian white noise model, we observe a random function Y = (Yx)x∈[0,1],
with

(9) dYx = f (x) dx + n−1/2 dWx,
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where W is an unobserved standard Brownian motion. The aim is to recover the regression
function f : [0,1] → R from the data Y . In this section, the bias-variance trade-off for esti-
mation of f (x0) with fixed x0 ∈ [0,1] is studied. In Section 5, we will also derive a lower
bound for the trade-off between integrated squared bias and integrated variance.

Denote by ‖ · ‖2 the L2([0,1])-norm. For f ∈ L2([0,1]), the likelihood ratio in the Gaus-
sian white noise model is given by Girsanov’s formula dPf /dP0(Y ) = exp(n

∫ 1
0 f (t) dYt −

n
2‖f ‖2

2). In particular, for Y ∼ Pf and for any function g ∈ L2([0,1]), we have that

dPf

dPg

(Y ) = exp
(
n

∫ (
f (x) − g(x)

)
dYx − n

2
‖f ‖2

2 + n

2
‖g‖2

2

)

= exp
(√

n

∫ (
f (x) − g(x)

)
dWx + n

2
‖f − g‖2

2

)
= exp

(√
n‖f − g‖2ξ + n

2
‖f − g‖2

2

)
,

with W a standard Brownian motion and ξ ∼ N (0,1). From this representation, we can easily
deduce that 1 − H 2(Pf ,Pg) = Ef [(dPf /dPg)

−1/2] = exp(−n
8‖f − g‖2

2), KL(Pf ,Pg) =
Ef [log(dPf /dPg)] = n

2‖f −g‖2
2 and χ2(Pf ,Pg) = Ef [dPf /dPg]−1 = exp(n‖f −g‖2

2)−
1.

Let R > 0, β > 0 and denote by �β� the largest integer that is strictly smaller than β .
On a domain D ⊆ R, we define the β-Hölder norm by ‖f ‖C β(D) = ∑


≤�β� ‖f (
)‖L∞(D) +
supx,y∈D,x �=y |f (�β�)(x) − f (�β�)(y)|/|x − y|β−�β�, with L∞(D) the supremum norm on D

and f (
) denoting the 
th (strong) derivative of f for 
 ≤ �β�. For D = [0,1], let C β(R) :=
{f : [0,1] → R : ‖f ‖C β([0,1]) ≤ R} be the ball of β-Hölder smooth functions f : [0,1] → R

with radius R. We also write C β(R) := {K :R→R : ‖K‖C β(R) < ∞}.
To explore the bias-variance trade-off for pointwise estimation in more detail, consider for

a moment the kernel smoothing estimator, defined by f̂ (x0) = (2h)−1 ∫ x0+h
x0−h dYt . Assume

that x0 is not at the boundary such that 0 ≤ x0 − h and x0 + h ≤ 1. Bias and variance for this
estimator are

Biasf

(
f̂ (x0)

) = 1

2h

∫ x0+h

x0−h

(
f (u) − f (x0)

)
du,

Varf
(
f̂ (x0)

) = 1

2nh
.

While the variance is independent of f , the bias vanishes for large subclasses of f such
as, for instance, any function f satisfying f (x0 − v) = −f (x0 + v) for all 0 ≤ v ≤ h. The
largest possible bias over this parameter class is of the order hβ and it is attained for functions
that lie on the boundary of C β(R). Because of this asymmetry between bias and variance, the
strongest lower bound on the bias-variance trade-off that we can hope for is that any estimator
f̂ (x0) satisfies an inequality of the form

sup
f ∈C β(R)

∣∣Biasf

(
f̂ (x0)

)∣∣1/β inf
f ∈C β(R)

Varf
(
f̂ (x0)

)
� 1

n
.(10)

Since for fixed x0, f �→ f (x0) is a linear functional, pointwise reconstruction is a specific
linear functional estimation problem. This means in particular that the theory in [24] for
arbitrary linear functionals in the Gaussian white noise model applies. We now summarize
the implications of this work on the bias-variance trade-off and state the new lower bounds
based on the change of expectation inequalities derived in the previous section afterwards.

[24] shows that the bias-variance trade-off for estimation of functionals in the Gaussian
white noise model can be reduced to the bias-variance trade-off for estimation of a bounded
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mean in a normal location family. If f �→ Lf denotes a linear functional, L̂f stands for an
estimator of Lf , � is the parameter space and w(ε) := sup{|L(f − g)| : ‖f − g‖L2[0,1] ≤
ε, f, g ∈ �} is the so-called modulus of continuity, Theorem 2 in [24] rewritten in our notation
states that, if � is closed and convex and limε↓0 w(ε) = 0, then

inf
L̂f :supf ∈� Varf (L̂f )≤V

sup
f ∈�

Biasf (L̂f )2 = 1

4
sup
ε>0

(
w(ε) − √

nV ε
)2
+, and,

inf
L̂f :supf ∈� |Biasf (L̂f )|≤B

sup
f ∈�

Varf (L̂f ) = 1

n
sup
ε>0

ε−2(
w(ε) − 2B

)2
+,

with (x)+ := max(x,0). Moreover, an affine estimator L̂f can be found attaining these
bounds. For pointwise estimation on Hölder balls, Lf = f (x0) and � = C β(R). To find
a lower bound for the modulus of continuity in this case, choose K ∈ C β(R), f = 0 and
g = hβK((x − x0)/h). By Lemma B.1 of the Supplementary Material [13], g ∈ C β(R)

whenever R ≥ ‖K‖C β(R) and by substitution, ‖f − g‖2 = ‖g‖2 ≤ hβ+1/2‖K‖2 ≤ ε for
h = (ε/‖K‖2)

1/(β+1/2). This proves w(ε) ≥ (ε/‖K‖2)
β/(β+1/2)K(0). In Section B.1 of the

Supplementary Material [13], we show that this further implies

inf
f̂ (x0)

sup
f ∈C β(R)

∣∣Biasf

(
f̂ (x0)

)∣∣1/β sup
f ∈C β(R)

Varf
(
f̂ (x0)

) ≥ γLow(R,β)

n
,(11)

where

γLow(R,β) := sup
K∈C β(R):R≥‖K‖Cβ (R)

(2β)2

21/β(2β + 1)2+1/β

K(0)2+1/β

‖K‖2
2

.

The result is comparable to (10) with a supremum instead of an infimum in front of the
variance.

We now derive the lower bounds on the bias-variance trade-off for the pointwise estimation
problem, that are based on the general framework developed in the previous section. Define

γ (R,β) := sup
K∈C β(R):K(0)=1

(
‖K‖−1

2

(
1 − ‖K‖C β(R)

R

)
+

)2
.

For fixed β > 0, this quantity is positive if and only if R > 1. Indeed, if R ≤ 1, for any
function K satisfying K(0) = 1, we have R ≤ 1 ≤ ‖K‖∞ ≤ ‖K‖C β(R) and, therefore,
‖K‖C β(R)/R ≥ 1, implying γ (R,β) = 0. On the contrary, when R > 1, we can take for ex-
ample K(x) = exp(−x2/A) with A large enough such that 1 ≤ ‖K‖C β(R) < R. This shows
that γ (R,β) > 0 in this case.

If C is a positive constant and a ∈ [0,R), define moreover

γ (R,β,C,a) := sup
K∈C β(R):K(0)=1

(
‖K‖−1

2

(
1 − ‖K‖C β(R)

R − a

)
+

)2

× exp
(
−C(R − a)2 ‖K‖2

2

‖K‖2
C β(R)

)
.

Arguing as above, for fixed β > 0, this quantity is positive if and only if a + 1 < R. We can
now state the main result of this section.

THEOREM 3.1. Given β,R,C > 0 and x0 ∈ [0,1], let γ (R,β) and γ (R,β,C,a) be the
constants defined above. Assign to (+∞) · 0 the value +∞.
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(i) If T = {f̂ : supf ∈C β(R) |Biasf (f̂ (x0))| < 1}, then

inf
f̂ ∈T

sup
f ∈C β(R)

∣∣Biasf

(
f̂ (x0)

)∣∣1/β sup
f ∈C β(R)

Varf
(
f̂ (x0)

) ≥ γ (R,β)

n
.(12)

(ii) Let S(C) := {f̂ : supf ∈C β(R) |Biasf (f̂ (x0))| < (C/n)β/(2β+1)} ∩ T , then

inf
f̂ ∈S(C)

sup
f ∈C β(R)

∣∣Biasf

(
f̂ (x0)

)∣∣1/β inf
f ∈C β(R)

Varf (f̂ (x0))

γ (R,β,C,‖f ‖C β )
≥ 1

n
.(13)

Both statements can be easily derived from the abstract lower bounds in Section 2. A full
proof is given in Section B of the Supplementary Material [13] where statement (i) is de-
rived from Lemma A.2 and statement (ii) is derived from Lemma 2.1. The first statement
quantifies a worst-case bias-variance trade-off that must hold for any estimator. The case
that supf ∈C β(R) |Biasf (f̂ (x0))| exceeds one is not covered. As it leads to inconsistent mean
squared error it is of little interest and, therefore, omitted. The second statement restricts at-
tention to estimators with minimax rate-optimal bias. Because of the infimum, we obtain a
lower bound on the variance for any function f . Note that this statement is much stronger than
(11) or (12) as it holds for the best-case variance instead of the worst-case variance. Com-
pared with (10), the lower bound depends on the C β -norm of f through γ (R,β,C,‖f ‖C β ).
This quantity becomes large if f is close to the boundary of the Hölder ball. A consequence
of (ii) is the uniform bound

inf
f̂ ∈S(C)

sup
f ∈C β(R)

∣∣Biasf

(
f̂ (x0)

)∣∣1/β inf
f ∈C β(a)

Varf
(
f̂ (x0)

) ≥ infb≤a γ (R,β,C,b)

n
,(14)

providing a nontrivial lower bound if a < R −1; see Section B.3 of the Supplementary Mate-
rial [13] for a proof. The established lower bound requires that the radius of the Hölder ball R

is sufficiently large. Such a condition is necessary. To see this, suppose R ≤ 1 and consider the
estimator f̂ (x0) = 0. Notice that for any f ∈ C β(R), |Biasf (f̂ (x0))| = |f (x0)| ≤ ‖f ‖∞ ≤ 1
and Varf (f̂ (x0)) = 0. The left-hand side of the inequality (12) is hence zero and even such a
worst-case bias-variance trade-off does not hold.

Thanks to the bias-variance decomposition of the mean squared error, for every estimator
f̂ (x0) ∈ T ,

sup
f ∈C β(R)

MSEf

(
f̂ (x0)

) ≥
(

γ (R,β)

n supf ∈C β(R) Varf (f̂ (x0))

)2β

∧ γ (R,β)

n supf ∈C β(R) |Biasf (f̂ (x0))|1/β
,

showing that, in a worst case sense, small bias or small variance increases the mean squared
error.

COROLLARY 3.2 (Classical unconstrained minimax rates). Under the same conditions
as Theorem 3.1, we have

inf
f̂

sup
f ∈C β(R)

MSEf

(
f̂ (x0)

) ≥
(

γ (R,β)

n

)2β/(2β+1)

∧ 1,

where the infimum is over all measurable estimators. Moreover, the minimax estimation rate
n−2β/(2β+1) can only be achieved for estimators balancing the rate of the worst-case squared
bias and the rate of the worst-case variance.
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For nonparametric problems, an estimator can be superefficient for many parameters si-
multaneously; see [5]. Based on that, one might wonder whether it is possible to take for
instance a kernel smoothing estimator and shrink small values to zero such that the variance
for the regression function f = 0 is of a smaller order but the order of the variance and bias
for all other parameters remains the same. Statement (ii) of Theorem 3.1 shows that such
constructions are impossible if the Hölder radius R is large enough. This question can be
viewed as a bias-variance formulation of the constrained risk problem. In the constrained
risk problem, we wonder whether an estimator achieving a faster rate for a fixed parameter
will have necessarily a suboptimal rate for some other parameter in the parameter space. For
pointwise estimation in nonparametric regression, this was studied in Section B of [4].

The proof of Theorem 3.1 depends on the Gaussian white noise model only through
the Kullback–Leibler divergence and χ2-divergence. This indicates that an analogous re-
sult can be proved for other nonparametric models with a similar likelihood geometry.
As an example consider the Gaussian nonparametric regression model with fixed and uni-
form design on [0,1], that is, we observe (Y1, . . . , Yn) with Yi = f (i/n) + εi , i = 1, . . . , n

and εi
i.i.d.∼ N (0,1). Again, f is the (unknown) regression function and we write Pf for

the distribution of the observations with regression function f . By evaluating the Gaus-
sian likelihood, we obtain the well-known explicit expressions KL(Pf ,Pg) = n

2‖f − g‖2
n

and χ2(Pf ,Pg) = exp(n‖f − g‖2
n) − 1 where ‖h‖2

n := 1
n

∑n
i=1 h(i/n)2 is the empirical

L2([0,1])-norm. Compared to the Kullback–Leibler divergence and χ2-divergence in the
Gaussian white noise model, the only difference is that the L2([0,1])-norm is replaced here
by the empirical L2([0,1])-norm. These norms are very close for functions that are not too
spiky. Thus, by following exactly the same steps as in the proof of Theorem 3.1, a similar
lower bound can be obtained for the pointwise loss in the nonparametric regression model.

4. The bias-variance trade-off for support boundary recovery. Compared to ap-
proaches using the Cramér–Rao lower bound, the abstract lower bounds based on information
measures have the advantage to be applicable also for irregular models. This is illustrated in
this section by deriving lower bounds on the bias-variance trade-off for a support boundary
estimation problem.

Consider the model, where we observe a Poisson point process (PPP) N = ∑
i δ(Xi,Yi) with

intensity λf (x, y) = n1(f (x) ≤ y) in the plane (x, y) ∈ [0,1] ×R. Differently speaking, the
Poisson point process has intensity n on the epigraph of the function f and zero intensity on
the subgraph of f . The unknown function f appears therefore as a boundary if the data are
plotted; see Figure 1. Throughout the following, n plays the role of the sample size and we
refer to (Xi, Yi) as the support points of the PPP. Estimation of f is also known as support

FIG. 1. Generated data (blue) and support boundary (black) for PPP model



ON LOWER BOUNDS FOR THE BIAS-VARIANCE TRADE-OFF 1521

boundary recovery problem. Similarly, as the Gaussian white noise model is a continuous
analogue of the nonparametric regression model with Gaussian errors, the support boundary
problem arises as a continuous analogue of the nonparametric regression model with one-
sided errors; see [25].

For a parametric estimation problem, we can typically achieve the estimation rate n−1 in
this model. For squared loss, this becomes n−2. The n−1 rate is to be contrasted with the
classical n−1/2 rate in regular parametric models. Also, for nonparametric problems, faster
rates can be achieved. If β denotes the Hölder smoothness of the support boundary f , the
optimal MSE for estimation of f (x0) is n−2β/(β+1), which can be considerably faster than
the typical nonparametric rate n−2β/(2β+1), [32]. The following theorem is proved in Section
C of the Supplementary Material [13] applying the χ2-divergence version of Lemma 2.1.

THEOREM 4.1. Let 0 < β < 1, C > 0 and R > κ := 2 inf{‖K‖C β(R) : K ∈ L2(R),

K(0) = 1,K ≥ 0}.
For any estimator f̂ with supf ∈C β(R) MSEf (f̂ (x0)) < (C/n)2β/(β+1), there exist positive

constants c := c(β,C,R) and c′ := c′(β,C,R) such that

sup
f ∈C β(R)

Biasf

(
f̂ (x0)

)2 ≥ cn
− 2β

β+1 , and(15)

Varf
(
f̂ (x0)

) ≥ c′n− 2β
β+1 , for all f ∈ C β(

(R − κ)/2
)
.(16)

The result shows that any estimator achieving the optimal n−2β/(β+1) MSE rate must also
have worst-case squared bias of the same order. Moreover, no superefficiency is possible
for functions that are not too close to the boundary of the Hölder ball. Indeed the variance
and, therefore, also the mean squared error, is always lower-bounded by � n−2β/(β+1). The
smoothness constraint β ≤ 1 is fairly common in the literature on support boundary estima-
tion; see [33].

5. The trade-off between integrated bias and integrated variance in the Gaussian
white noise model. All lower bounds so far are based on change of expectation inequalities.
In this section, we combine this with a different proving strategy for bias-variance lower
bounds based on two types of reduction. First, one can in some cases relate the bias-variance
trade-off in the original model to the bias-variance trade-off in a simpler model. We refer to
this as model reduction. The second type of reduction constraints the class of estimators by
showing that it is sufficient to consider estimators satisfying additional symmetry properties.

To which extent such reductions are possible is highly dependent on the structure of the
underlying problem. In this section, we illustrate the approach deriving a lower bound on the
trade-off between the integrated squared bias (IBias2) and the integrated variance (IVar) in
the Gaussian white noise model (9). Recall that the mean integrated squared error (MISE)
can be decomposed as

MISEf (f̂ ) := Ef

[‖f̂ − f ‖2
L2[0,1]

]
=

∫ 1

0
Bias2

f

(
f̂ (x)

)
dx +

∫ 1

0
Varf

(
f̂ (x)

)
dx(17)

=: IBias2
f (f̂ ) + IVarf (f̂ ).

To establish a trade-off between integrated bias and integrated variance, turns out to be a
hard problem. In particular, we cannot simply integrate the pointwise lower bounds. Below
we explain the major reduction steps to prove a lower bound. To avoid unnecessary techni-
calities involving the Fourier transform, we only consider integer smoothness β = 1,2, . . .
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and denote by Sβ(R) the ball of radius R in the L2-Sobolev space with index β on
[0,1], that is, all L2-functions satisfying ‖f ‖Sβ([0,1]) ≤ R, where for a general domain D,
‖f ‖2

Sβ(D)
:= ‖f ‖2

L2(D)
+ ‖f (β)‖2

L2(D)
. Define

�β := inf
{‖K‖Sβ : ‖K‖L2(R) = 1, suppK ⊂ [−1/2,1/2]}.(18)

THEOREM 5.1. Consider the Gaussian white noise model (9) with parameter space
Sβ(R) and β a positive integer. If R > 2�β and 0 · (+∞) is assigned the value +∞, then

inf
f̂ ∈T

sup
f ∈Sβ(R)

∣∣IBiasf (f̂ )
∣∣1/β sup

f ∈Sβ(R)

IVarf (f̂ ) ≥ 1

8n
,(19)

with T := {f̂ : supf ∈Sβ(R) IBias2
f (f̂ ) < 2−β}.

As in the pointwise case, estimators with larger bias are of little interest as they will lead
to procedures that are inconsistent with respect to the MISE. Thanks to the bias-variance
decomposition of the MISE (18), for every estimator f̂ ∈ T the following lower bound on the
MISE holds:

sup
f ∈Sβ(R)

MISEf (f̂ ) ≥
(

1

8n supf ∈Sβ(R) IVarf (f̂ )

)2β

∨ 1

8n supf ∈Sβ(R) | IBiasf (f̂ )|1/β
.

Small worst-case bias or variance will therefore automatically enforce a large MISE. This
provides a lower bound for the widely observed U -shaped bias-variance trade-off and shows
in particular that n−2β/(2β+1) is a lower bound for the minimax estimation rate with respect
to the MISE.

COROLLARY 5.2 (Classical unconstrained minimax rates). Under the same conditions
as Theorem 5.1, we have

inf
f̂

sup
f ∈Sβ(R)

MISEf (f̂ ) ≥
(

1

8n

)2β/(2β+1)

∧ 1,

where the infimum is over all measurable estimators. Moreover, the minimax rate n−2β/(2β+1)

can only be achieved for estimators balancing the rates of the worst-case integrated squared
bias and the worst-case integrated variance.

If applied to functions, recall that ‖ · ‖p denotes the Lp([0,1])-norm. Let p ≥ 2. Since
‖ · ‖2 ≤ ‖ · ‖p , another direct consequence of the previous theorem is

sup
f ∈Sβ(R)

∥∥Ef [f̂ ] − f
∥∥1/β
p sup

f ∈Sβ(R)

Ef

[∥∥f̂ − Ef [f̂ ]∥∥p

]2 ≥ 1

8n
,

for any estimator with supf ∈Sβ(R) ‖Ef [f̂ ] − f ‖p < 2−β .
We now sketch the main reduction steps in the proof of Theorem 5.1. The first step is a

model reduction to a Gaussian sequence model

Xi = θi + 1√
n
εi, i = 1, . . . ,m(20)
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with independent noise εi ∼ N (0,1). For any estimator θ̂ of the parameter vector θ =
(θ1, . . . , θm)�, we have the bias-variance type decomposition

Eθ

[‖θ̂ − θ‖2
2
] = ∥∥Eθ [θ̂ ] − θ

∥∥2
2 +

m∑
i=1

Varθ (θ̂i)

recalling that ‖ · ‖2 denotes the Euclidean norm if applied to vectors.

PROPOSITION 5.3. Let m be a positive integer and let �β be defined as in (18). Then,
for any estimator f̂ of the regression function f in the Gaussian white noise model (9) with
parameter space Sβ(R), there exists a nonrandomized estimator θ̂ in the Gaussian sequence
model with parameter space �

β
m(R) := {θ : ‖θ‖2 ≤ R/(�βmβ)}, such that

sup
θ∈�

β
m(R)

∥∥Eθ [θ̂] − θ
∥∥2

2 ≤ sup
f ∈Sβ(R)

IBias2
f (f̂ ), and

sup
θ∈�

β
m(R)

m∑
i=1

Varθ (θ̂i) ≤ sup
f ∈Sβ(R)

IVarf (f̂ ).

A proof is given in Section D of the Supplementary Material [13]. The rough idea is to
restrict the parameter space Sβ(R) to a suitable ball in an m-dimensional subspace. Denoting
the m parameters in this subspace by θ1, . . . , θm, every estimator f̂ for the regression function
induces an estimator for θ1, . . . , θm by projection on this subspace. It has then to be checked
that the projected estimator can be identified with an estimator θ̂ in the sequence model and
that the projection does not increase squared bias and variance.

Proposition 5.3 reduces the original problem to deriving lower bounds on the bias-
variance trade-off in the sequence model (20) with parameter space �

β
m(R). Observe that

X = (X1, . . . ,Xm) is an unbiased estimator for θ . The existence of unbiased estimators sug-
gests that the reduction to the Gaussian sequence model is unsuitable for deriving lower
bounds as it destroys the original bias-variance trade-off. This is, however, not true as the
bias will be induced through the choice of m. Indeed, to prove Theorem 5.1, m is chosen
such that m−β is proportional to the worst-case bias and it is shown that the worst-case vari-
ance in the sequence model is lower-bounded by m/n. Rewriting m in terms of the bias yields
finally a lower bound of form (19).

To obtain bias-variance lower bounds in the sequence model (20) is, however, still a
very difficult problem as superefficient estimators exist with simultaneously small bias
and variance for some parameters. An example is the James–Stein estimator θ̂JS := (1 −
(m − 2)/(n‖X‖2

2))X with X = (X1, . . . ,Xm)� for m > 2. While its risk Eθ [‖θ̂ − θ‖2
2] =

‖Eθ [θ̂ ] − θ‖2
2 + ∑m

i=1 Varθ (θ̂i) is upper bounded by m/n for all θ ∈ R
m, the risk for the zero

vector θ = (0, . . . ,0)� is bounded by the potentially much smaller value 2/n (see Proposi-
tion 2.8 in [21]). Thus, for the zero parameter vector both ‖Eθ [θ̂ ] − θ‖2

2 and
∑m

i=1 Varθ (θ̂i)

are simultaneously small. Furthermore, for any parameter vector θ∗ there exists an estima-
tor θ̂ with small bias and variance at θ∗. For instance, the shifted James–Stein estimator
θ̂JS,θ∗ := (1 − (m− 2)/(n‖X − θ∗‖2

2))(X − θ∗)+ θ∗ has this property. This suggests that fix-
ing a number of parameters in the neighborhood of some θ∗ and applying an abstract lower
bound that applies to all estimators θ̂ will always lead to a suboptimal rate in this lower
bound.

Instead, we will first show that it is sufficient to study a smaller class of estimators with ad-
ditional symmetry properties. Denote by Om the class of m×m orthogonal matrices. For any
D ∈ Om, Dθ ∈ �

β
m(R) and DX ∼ N (Dθ, Im/n). Therefore, the model is rotation-invariant

[22], Chapter 3. Following Stein [35], we say that a function f : Rm → R
m is spherically
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symmetric if for any x ∈ R
m and any D ∈ Om, f (x) = D−1f (Dx). An estimator θ̂ = θ̂ (X)

is called spherically symmetric if X �→ θ̂ (X) is spherically symmetric. In particular, the
James–Stein estimator θ̂JS is spherically symmetric but, unless θ∗ = 0, the shifted James–
Stein estimator θ̂JS,θ∗ is not. The discussion above suggests that if we can reduce the class
of estimators to spherically symmetric estimators, all parameters with both small bias and
variance must be close to the origin. We can then apply one of the abstract lower bounds to
probability measures Pθ0, . . . ,PθM

with θ0, . . . , θM suitably chosen parameter vectors in the
neighborhood of some θ∗ that is far enough away from the origin.

This proof strategy works. In a first step, we show the reduction to spherically symmetric
estimators.

PROPOSITION 5.4. Consider the sequence model (20) with parameter space �
β
m(R).

For any estimator θ̂ , there exists a spherically symmetric estimator θ̃ such that

sup
θ∈�

β
m(R)

∥∥Eθ [θ̃ ] − θ
∥∥2

2 ≤ sup
θ∈�

β
m(R)

∥∥Eθ [θ̂ ] − θ
∥∥2

2, and,

sup
θ∈�

β
m(R)

m∑
i=1

Varθ (θ̃i) ≤ sup
θ∈�

β
m(R)

m∑
i=1

Varθ (θ̂i).

The main idea of the proof is to define θ̃ as a spherically symmetrized version of θ̂ .
To establish lower bounds, it is therefore sufficient to consider spherically symmetric

estimators. It has been mentioned in [35] that any spherically symmetric function h is of
the form h(x) = r(‖x‖2)x, for some real-valued function r . In Lemma D.1 in the Supple-
mentary Material, we provide a more detailed proof of this fact. Using this property, we
can then also show that if θ̃ (X) is a spherically symmetric estimator, the expectation map
θ �→ Eθ [θ̃ (X)] is a spherically symmetric function. To see this, rewrite θ̃ (X) = s(‖X‖2)X

and define φ(u) := (2π/n)−m/2 exp(−nu2/2). Substituting y = D−1x and noticing that the
determinant of the Jacobian matrix of this transformation is one since D is orthogonal, we
obtain

EDθ

[
θ̃ (X)

] =
∫

s
(‖x‖2

)
xφ

(‖x − Dθ‖2
)
dx

=
∫

s
(∥∥D−1x

∥∥
2

)
xφ

(∥∥D−1x − θ
∥∥

2

)
dx

=
∫

s
(‖y‖2

)
Dyφ

(‖y − θ‖2
)
dy = DEθ

[
θ̃ (X)

]
.

(21)

Together with Lemma D.1 of the Supplementary Material [13], this implies that there exists
a function t such that for any θ , Eθ [θ̃ (X)] = t (‖θ‖2)θ , and hence∥∥Eθ

[
θ̃ (X)

] − θ
∥∥2

2 = ∥∥t(‖θ‖2
)
θ − θ

∥∥2
2 = ‖θ‖2

2
(
t
(‖θ‖2

) − 1
)2

.(22)

Based on these reductions, we can now prove Theorem 5.1 by applying the change of expecta-
tion inequality in Theorem 2.2(i). The details can be found in Section D of the Supplementary
Material [13].

6. The bias-variance trade-off for high-dimensional models with sparsity constraints.
In the Gaussian sequence model, we observe n independent random variables Xi ∼ N (θi,1).
The space of s-sparse signals �(s) is the collection of all vectors (θ1, . . . , θn) with at most
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s nonzero components. For any estimator θ̂ , the bias-variance decomposition of the mean
squared error of θ̂ is

Eθ

[‖θ̂ − θ‖2
2
] = ∥∥Eθ [θ̂] − θ

∥∥2
2 +

n∑
i=1

Varθ (θ̂i),(23)

where the first term on the right-hand side plays the role of the squared bias. For this model,
it is known that the exact minimax risk is 2s log(n/s) up to smaller-order terms and that the
risk is attained by a soft-thresholding estimator [15]. This estimator exploits the sparsity by
shrinking small values to zero. Shrinkage obviously causes some bias but at the same time
reduces the variance for sparse signals. We now show that there is indeed a non-trivial bias-
variance trade-off both for estimation of the full vector θ and for estimation of the quadratic
functional θ �→ ‖θ‖2

2. The two main results of this section are stated next.

THEOREM 6.1. Consider the Gaussian sequence model with sparsity s � √
n. Any esti-

mator θ̂ that attains the minimax estimation rate s log(n) with respect to the worst case risk
supθ∈�(s) Eθ [‖θ̂ − θ‖2

2] also satisfies for all sufficiently large n,

sup
θ∈�(s)

∥∥Eθ [θ̂ ] − θ
∥∥2

2 � s log(n), and sup
θ∈�(s)

n∑
i=1

Varθ (θ̂i) ≥ s

2
.

Moreover, if s ≤ n1/2−δ for some 0 < δ < 1/2, then there exists an estimator attaining the
minimax estimation rate with supθ∈�(s)

∑n
i=1 Varθ (θ̂i)� s.

The result shows that for a minimax rate optimal estimator, squared bias and variance do
not necessarily need to be of the same order and the rate of the variance can be slower by at
most a log(n)-factor.

One might wonder whether the proposed lower bound technique can be extended for spar-
sity s � √

n. While this question remains open, we now prove that for estimation of the
quadratic functional a phase transition occurs if the sparsity is of the order

√
n. For sparsity

s � √
n, the bias-variance trade-off is nontrivial, but for sparsity s � √

n, we can find an
unbiased estimator achieving the minimax estimation rate.

For estimation of the quadratic functional, consider the parameter space

�2
n(s) := �(s) ∩

{
θ :

n∑
i=1

θ2
i ≤ 2s log

(
1 +

√
n

s

)}
.(24)

Those are all s-sparse vectors with squared Euclidean norm bounded by 2s log(1 + √
n/s).

We have chosen this specific threshold as it leads to the most unusual behavior of the bias-
variance trade-off. For this parameter space, the minimax estimation rate for the functional
θ �→ ‖θ‖2

2 with respect to the MSE is

s2 log2
(

1 +
√

n

s

)
� s2 log2

(
n

s2

)
∨ n(25)

as stated in [11], Corollary 1. See also Section E of the Supplementary Material [13] for more
details about (25).

THEOREM 6.2. Consider estimation of the functional θ �→ ‖θ‖2
2 in the Gaussian se-

quence model with sparsity s and parameter space �2
n(s).
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(i) If s � √
n, then the minimax estimation rate is s2 log2(n/s2) and any estimator ‖̂θ‖2

2
attaining the minimax optimal estimation rate must satisfy

sup
θ∈�2

n(s)

(
Eθ

[‖̂θ‖2
2

] − ‖θ‖2
2
)2 � s2 log2

(
n

s2

)

for all sufficiently large n. Moreover, if s ≤ n1/2−δ for some 0 < δ < 1/2, then there exists a
minimax rate optimal estimator ‖̂θ‖2

2 with supθ∈�2
n(s) Varθ (‖̂θ‖2

2)� s log(n/s2).
(ii) If s �√

n, then there exists a minimax rate optimal estimator that is unbiased.

For sparsity of the order o(
√

n), every minimax rate optimal estimator will have neces-
sarily a worst case squared bias that is of the same order as the minimax rate. But worst
case squared bias and variance do not have to be of the same order if s → ∞. Indeed,
the second part of (i) shows existence of a minimax rate optimal estimator with variance
s log(n/s2) � s2 log2(n/s2) = minimax estimation rate.

Surprisingly, there is a phase transition if s is of the order
√

n. If s � √
n, suddenly unbi-

ased estimation is possible, which means that now the variance is dominating the risk.
That typically either squared bias or variance dominates seems to be symptomatic for

estimation of functionals. For instance, for estimation of the squared functional f �→ ∫
f 2

in the Gaussian white noise model, we conjecture that if the Hölder smoothness of f is
below 1/4, the squared bias will dominate, whereas for smoothness indices above 1/4, the
convergence rate is driven in first order by the variance.

Below we analyze the two main results above in more detail. Since the bias-variance lower
bounds are very different from the ones in the previous chapters, we discuss the lower bounds
on the variance and the lower bounds on the bias in separate subsections. All proofs of this
section are deferred to Section E of the Supplementary Material [13].

Lower bounds on the variance. Using the lower bound technique based on multiple prob-
ability distributions, we can derive a lower bound for the variance at zero of any estimator
that satisfies a bound on the bias.

THEOREM 6.3. Consider the Gaussian sequence model with sparsity 0 < s ≤ √
n/2.

Given an estimator θ̂ and a real number γ such that 4γ + 1/ log(n/s2) ≤ 0.99 and

sup
θ∈�(s)

∥∥Eθ [θ̂] − θ
∥∥2

2 ≤ γ s log
(

n

s2

)
,

then, for all sufficiently large n,
n∑

i=1

Var0(θ̂i) ≥ (1 − (1/2)0.01)

25e log(n/s2)
n

(
s2

n

)4γ

,

where Var0 denotes the variance for parameter vector θ = (0, . . . ,0)�.

Compared to pointwise estimation, the result shows a different type of bias-variance trade-
off. Decreasing the constant γ in the upper bound for the bias, increases the rate in the lower
bound for the variance. For instance, in the regime s ≤ n1/2−δ , with 0 < δ < 1/2, we can
find for any ρ > 0 a sufficiently small constant γ , such that the lower bound is of the form
constant ×n1−ρ . As a consequence of the bias-variance decomposition (23), the maximum
quadratic risk of such an estimator in this regime is also lower bounded by � n1−ρ . Reducing
the constant of the bias will therefore necessarily lead to estimators with highly suboptimal
estimation risk.
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The proof of Theorem 6.3 applies the χ2-divergence lower bound (6) by comparing the
data distribution induced by the zero vector to the

( n
s

)
many distributions corresponding to

s-sparse vectors with nonzero entries
√

4γ log(n/s2) + 1. By (8), the size of the (j, k)th entry

of the χ2-divergence matrix is completely described by the number of components on which
the corresponding s-sparse vectors are both nonzero. The whole problem reduces then to a
combinatorial counting argument. The key observation is that if we fix an s-sparse vector, say
θ∗, there are of the order n/s2 more s-sparse vectors that have exactly r − 1 nonzero compo-
nents in common with θ∗ than s-sparse vectors that that have exactly r nonzero components
in common with θ∗. This means that as long as s � √

n, most of the s-sparse vectors are
(nearly) orthogonal to θ∗.

The lower bound in Theorem 6.3 can be extended to several related problems by invoking
the data processing inequality (7). As an example, suppose that we observe only X2

1, . . . ,X
2
n

with (X1, . . . ,Xn) the data from the Gaussian sequence model. As parameter space, consider
the class �+(s) of s-sparse vectors with nonnegative entries. This choice is natural as the
parameter θ is not identifiable in this model over the full space of s-sparse vectors �(s).
Since the proof of Theorem 6.3 only uses parameters in �+(s), the same lower bound as in
Theorem 6.3 holds also in this modified setting. The next result shows an analogous version
of Theorem 6.3 for estimation of the functional θ �→ ‖θ‖2

2.

THEOREM 6.4. Consider the Gaussian sequence model with parameter space �2
n(s)

defined in (24) and sparsity 0 < s ≤ √
n/2. Given an estimator ‖̂θ‖2

2 of ‖θ‖2
2 and a real

number γ such that 2γ + 1/ log(n/s2) ≤ 0.99 and

sup
θ∈�2

n(s)

∣∣Biasθ

(‖̂θ‖2
2

)∣∣ ≤ γ s log
(

n

s2

)
,

then, for all sufficiently large n,

Var0
(‖̂θ‖2

2

) ≥ 1 − (1/2)0.01

e
n

(
s2

n

)2γ

,

where Var0 denotes the variance for parameter vector θ = (0, . . . ,0)�.

Notice that the upper bound in the previous result is for the bias, not the squared bias.

A lower bound for the bias. What can be said about the bias for small variance? The next
result shows that if the variance is strictly smaller than s/2, then the worst case bias is infinite.

THEOREM 6.5. Consider the Gaussian sequence model with sparsity 1 ≤ s ≤ n and
assume that θ̂ = (θ̂1, . . . , θ̂n) is an estimator such that Eθ [θ̂i] exists and is finite for all i =
1, . . . , n and all θ ∈ �(s).

If supθ∈�(s)

∑n
i=1 Varθ (θ̂i) < s/2, then supθ∈�(s) ‖Eθ [θ̂ ] − θ‖2 = ∞.

Nearly matching upper bounds. To show that the rates in the derived lower bounds are
nearly sharp, we now establish corresponding upper bounds. For an estimator thresholding
small observations, the variance under P0 is determined by both the probability that an obser-
vation falls outside the truncation level and the value it is then assigned to. One can further
reduce the variance at zero if large observations are shrunk as much as possible to zero. The
bound on the bias dictates the largest possible truncation level. To obtain matching upper
bounds, this motivates then to study the soft-thresholding estimator

θ̂i = sign(Xi)
(|Xi | −

√
γ log

(
n/s2

))
+, i = 1, . . . , n.(26)
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If θi = 0, then Eθ [θ̂i] = 0. For θi �= 0, one can use |θ̂i −Xi | ≤
√

γ log(n/s2) and Eθ [Xi] = θi

to verify that the squared bias ‖Eθ [θ̂] − θ‖2
2 is bounded by γ s log(n/s2), uniformly over the

space of s-sparse vectors �(s). As an estimator for the functional ‖θ‖2
2, we study

‖̂θ‖2
2 =

n∑
i=1

((
X2

i − γ log
(
n/s2))

+ − Eξ∼N (0,1)

[(
ξ2 − γ log

(
n/s2))

+
])

.(27)

LEMMA 6.6. For the soft-thresholding estimator θ̂ = (θ̂1, . . . , θ̂n)
� defined in (26), we

have
n∑

i=1

Var0(θ̂i) ≤
√

2√
πγ 3 log3(n/s2)

n

(
s2

n

) γ
2
, and,(28)

for any θ ∈ �(s),

n∑
i=1

Varθ (θ̂i) ≤ 4s +
√

2√
πγ 3 log3(n/s2)

n

(
s2

n

) γ
2
.(29)

Moreover, for any n, s, γ , for which γ log(n/s2) ≥ 2, we have for the estimator ‖̂θ‖2
2 defined

in (27),

sup
θ∈�(s)

∣∣Biasθ

(‖̂θ‖2
2

)∣∣ ≤ γ s log
(

n

s2

)
,(30)

Var0
(‖̂θ‖2

2

) ≤ 8√
γ log(n/s2)

n

(
s2

n

) γ
2
, and,(31)

Varθ
(‖̂θ‖2

2

) ≤ ‖θ‖2
2 + 3s + 8√

γ log(n/s2)
n

(
s2

n

) γ
2
.(32)

The constraint γ log(n/s2) ≥ 2 holds for all sufficiently large n, whenever γ is fixed and
s � √

n.
Compared with Theorem 6.3, the corresponding upper bound (28) has the same structure.

Key difference is that the exponent is 4γ in the lower bound and γ /2 in the upper bound. As
discussed already, this discrepancy seems to be due to the lower bound. If instead of a tight
control of the variance at zero, one is interested in a global bound on the variance over the
whole parameter space, one could gain a factor 4 in the exponent by relying on the Hellinger
version using Theorem 2.2(ii) instead of (i). A second difference is that there is an additional

factor 1/
√

log(n/s2) in the upper bound. This extra factor tends to zero, which seems to be a

contradiction. Notice, however, that this is compensated by the different exponents (s2/n)γ/2

and (s2/n)4γ . It is also not hard to see that for the hard thresholding estimator with truncation

level
√

γ log(n/s2), the variance
∑n

i=1 Var0(θ̂i) is of order n(s2/n)γ/2.
The upper bound in (31) corresponds to the lower bound in Theorem 6.4. The differences

between upper and lower bound are similarly as the ones between the upper bound (28) and
Theorem 6.3 discussed in the previous paragraph.

If s ≤ n1/2−δ for some 0 < δ < 1/2, then by choosing γ large enough, one can show that
(29) implies supθ∈�(s)

∑n
i=1 Varθ (θ̂i)� s. This yields then the last statement of Theorem 6.1.

Similarly, one can use (32) to construct an estimator satisfying the variance bound in Theo-
rem 6.2(i).

The soft-thresholding estimator (26) does not produce an s-sparse model. Indeed, from the
tail decay of the Gaussian distribution, one expects that the sparsity of the reconstruction for
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θ = (0, . . . ,0) is n(s2/n)γ/2, which can be considerably bigger than s for small values of γ .
Because testing for signal is very hard in the sparse sequence model, it is unclear whether one
can reduce the variance further by projecting it to an s-sparse set without inflating the bias.

Extension to high-dimensional regression. The lower bound can also be extended to a
useful lower bound on the interplay between bias and variance in sparse high-dimensional
regression. Suppose we observe Y = Xβ + ε where Y is a vector of size n, X is an n × p

design matrix, ε ∼ N (0, In) and β is a vector of size p to be estimated. Again denote by
�(s) the class of s-sparse vectors. We impose the common assumption that the diagonal
coefficients of the Gram matrix X�X are standardized such that (X�X)i,i = n for all i =
1, . . . , p (see, for instance, also Section 6 in [6]). Define the mutual coherence condition
number by mc(X) := max1≤i �=j≤n(X

�X)i,j /(X
�X)i,i . This notion goes back to [14]. Below,

we work under the restriction mc(X) ≤ 1/(s2 log(p/s2)). This is stronger than the mutual
coherence bound of the form constant/s normally encountered in high-dimensional statistics.
As this is not the main point of the paper, we did not attempt to derive the theorem under the
sharpest possible condition and also only provide the generalization of Theorem 6.3.

THEOREM 6.7. Consider the sparse high-dimensional regression model with Gaus-
sian noise. Let 0 < s ≤ √

p/2, and mc(X) ≤ 1/(s2 log(p/s2)). Given an estimator β̂

and a real number γ such that 4γ + 1/ log(p/s2) ≤ 0.99 and supβ∈�(s) ‖Eβ[β̂] − β‖2 ≤
(γ s/n) log(p/s2), then, for all sufficiently large p,

p∑
i=1

Var0(β̂i) ≥ (1 − (1/2)0.01)

25e2 log(p/s2)

p

n

(
s2

p

)4γ

,

where Var0 denotes the variance for parameter vector β = (0, . . . ,0)�.

7. Discussion.

7.1. General definition of a bias-variance trade-off. The proper definition of the bias-
variance trade-off depends on some subtleties underlying the choice of the space of values
that can be attained by an estimator, subsequently denoted by A. To illustrate this, suppose we
observe X ∼ N (θ,1) with parameter space � = {−1,1}. For any estimator θ̂ with A = �,
E1[θ̂ ] < 1 or E−1[θ̂ ] > −1. Thus, no unbiased estimator with A = � exists. If the estimator
is, however, allowed to take values on the real line, then θ̂ = X is an unbiased estimator
for θ . We believe that the correct way to derive lower bounds on the bias-variance trade-off
is to allow the action space A to be large. Whenever � is a class of functions on [0,1],
the derived lower bounds are over all estimators with A the real-valued functions on [0,1];
for high-dimensional problems with � ⊆ R

p , the lower bounds are over all estimators with
A = R

p . In particular, if the true parameter vector is assumed to be sparse, we do not require
the estimator to be sparse.

Given a statistical model (Pθ )θ∈�, consider a symmetric (and nonnegative) loss function

(θ, θ ′) = 
(θ ′, θ). The risk of an estimator θ̂ is then Eθ [
(θ̂ , θ)]. If Eθ [θ̂ ] exists, we call

(θ,Eθ [θ̂]) the deterministic error and Eθ [
(θ̂ ,Eθ [θ̂ ])] the stochastic error. If for all esti-
mators θ̂ and all parameters θ , Eθ [
(θ̂ , θ)] = 
(θ,Eθ [θ̂ ]) + Eθ [
(θ̂ ,Eθ [θ̂ ])], then we say
that a (generalized) bias-variance decomposition holds and refer to the deterministic error

(θ,Eθ [θ̂]) as the squared bias part and to the stochastic error Eθ [
(θ̂ ,Eθ [θ̂])] as the vari-
ance part. Note that the squared bias is defined directly without introducing first a notion of
bias.
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A bias-variance decomposition exists if 
(θ, θ ′) = ‖θ − θ ′‖2 with ‖ · ‖ a Hilbert space
norm. In particular, for 
(θ, θ ′) = (θ − θ ′)2, we have the classical bias-variance decompo-
sition of the MSE. On a vector space �, the loss function 
(θ, θ ′) = ‖θ − θ ′‖2

2 leads to the
decomposition (23). In this case, the squared bias part is ‖Eθ [θ̂] − θ‖2

2 and the variance
part is

∑n
i=1 Varθ (θ̂i). For � consisting of L2-functions, the decomposition of the MISE in

integrated squared bias and integrated variance in (18) is another example.
With this definition of squared bias and variance, we can now define a bias-variance trade-

off informally as either a restriction of the squared bias part that follows from imposing
a constraint on the variance part or a restriction on the variance part that is implied by a
constraint on the squared bias part. To introduce a formal definition, denote the squared bias
part by Bθ(θ̂)2 and the variance part by Vθ(θ̂). The functions θ �→ Bθ(θ̂) and θ �→ Vθ(θ̂)

belong to the space [0,+∞]�. Let T ⊂ �X be a class of estimators and let ψ be a function
ψ : [0,+∞]� × [0,+∞]� → [0,+∞] increasing in both of its arguments in the sense that
for b1(·)2 ≤ b2(·)2 and v1(·) ≤ v2(·), ψ(b2

1, v1) ≤ ψ(b2
2, v2). We say that ψ is a bias-variance

trade-off for the class of estimators T if infθ̂∈T ψ(θ �→ Bθ(θ̂)2, θ �→ Vθ(θ̂)) ≥ 1. All bias-
variance trade-offs derived in this paper can be put into this form. For instance, for the two
bias-variance trade-offs for pointwise estimation in Theorem 3.1, we can choose using the
notation introduced in Section 3,

ψ
(
b2, v

) := n

γ (R,β)
sup

f ∈C β(R)

∣∣b(f )
∣∣1/β sup

f ∈C β(R)

v(f ), and,

ψ
(
b2, v

) := n sup
f ∈C β(R)

∣∣b(f )
∣∣1/β inf

f ∈C β(R)

v(f )

γ (R,β,C,‖f ‖C β )
.

7.2. Comparison of the abstract lower bounds for the bias-variance trade-off and the hy-
pothesis testing approach for minimax lower bounds. While nontrivial minimax rates exist
for parametric and nonparametric problems alike, the bias-variance trade-off phenomenon
occurs mainly in high-dimensional and infinite-dimensional models. Despite these differ-
ences, the here proposed strategy for lower bounds on the bias-variance trade-off and the
well-developed testing approach for lower bounds on the minimax estimation rate share some
similarities. A clear similarity is that for both approaches, the problem is reduced in a first
step by selecting a discrete subset of the parameter space. To achieve rate-optimal minimax
lower bounds, it is well known that for a large class of functionals, reduction to two param-
eters is sufficient. On the contrary, optimal lower bounds for global loss functions, such as
Lp-loss in nonparametric regression, require to pick a number of parameter values that in-
creases with the sample size. We argued in this work that a similar distinction occurs also for
bias-variance trade-off lower bounds. As in the case of the minimax estimation risk, we can
relate the two-parameter lower bounds to a bound with respect to any of the commonly used
information measures including the Kullback–Leibler divergence.

More pronounced differences occur in the formulation of both lower bound techniques for
lower bounds involving more than two parameter values. While for minimax lower bounds
the parameters correspond to several hypotheses that form a local packing of the parameter
space, for bias-variance trade-off lower bounds the contribution of the selected parameters is
determined by how orthogonal the corresponding distributions are. Here, the orthogonality
of distributions is measured by the χ2-divergence matrix or the Hellinger affinity matrices;
see Table 1 in [12] for examples.

As shown in Section 3 of [12], v�χ2(P0|P1, . . . ,PM)v = χ2(
∑M

j=1 vjPj ,P0), where∑M
j=1 vjPj is the mixture (signed) measure of P1, . . . ,PM . This suggests to interpret the

case of multiple measures P0, . . . ,PM as a two-point testing problem, where we measure



ON LOWER BOUNDS FOR THE BIAS-VARIANCE TRADE-OFF 1531

TABLE 1
Proof techniques for different examples

Framework Theorem Proof technique

Pointwise estimation in 3.1 Univariate change of expectation
the Gaussian white noise model

Pointwise estimation of the 4.1 Univariate change of expectation
boundary of a Poisson point process

Function estimation in the Gaussian 5.1 2 reductions +
white noise model with L2-loss multivariate change of expectation

Estimation of θ in the Gaussian 6.3 and 6.5 Multivariate change of expectation
sequence model under sparsity ( + 1 reduction for Theorem 6.5)

Estimation of ‖θ‖2
2 in the Gaussian 6.4 Multivariate change of expectation

sequence model under sparsity

Sparse high-dimensional regression 6.7 Multivariate change of expectation
with Gaussian noise

the information distance between P0 and a linear combination
∑M

j=1 vjPj . Viewed from this
perspective, the proposed approach shares some similarities with the minimax lower bounds
based on two fuzzy hypothesis and Fano’s lemma. For a description of these approaches, see
Section 2.7 in [37].

7.3. Bias-variance trade-off lower bounds and their proof techniques. Table 1 states the
applied proof technique for each of the lower bounds proved in this article. Here, “univariate
change of expectation” refers to the use of Lemma 2.1 or Lemma A.2 of the Supplementary
Material [13]; “multivariate change of expectation” refers to applying Theorem 2.2 or the
variations stated in equations (5) and (6).
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