
How to train your dragon: on the application of the Metropolis-Hastings 
algorithm for program synthesis

BO HOFSTEDE
Supervisor(s): SEBASTIJAN DUMAN ČI Ć, LEONARD VOLARI Ć HORVAT 

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
This paper addresses the problem of Inductive
Synthesis by analysing the Metropolis-Hastings
stochastic search algorithm. The goal of Inductive
Synthesis is to generate programs whose intended
behaviour is established through the use of input
and output examples. The Metropolis-Hastings al-
gorithm searches the set of all possible programs
and finds possible solutions. Our experiments show
that while optimization can be done under certain
conditions, it does not improve the algorithm’s suc-
cess rate in synthesizing programs on complex do-
mains compared to more randomized but domain-
specific approaches.

1 Introduction
Program Synthesis is a field in Computer Science where the
goal is to create algorithms that generate other programs to
solve a variety of problems. The types of programs they
create are based on a variety of semantic and syntactic in-
put requirements. This paper focuses on Inductive Synthe-
sis (IS), where example input-output sequences are used to
define those requirements. The problem is that there are an
infinite amount of programs that can be created and the al-
gorithm needs to be able to establish which programs would
be suitable solutions. The input-output sequences allow the
algorithm to decide whether a program matches the solution
requirements. The difficulty, and the focus of this paper, is
to efficiently search the set of all possible programs to find
a suitable one for the problem. To be specific, this paper
focuses on a single stochastic search method: Metropolis-
Hastings (MH). Research suggests that the combination of IS
and stochastic search methods can help generate larger more
complex programs [12].

This paper builds on the recently released paper by van
Wieringen [12], by using the same code base as a starting
point. Van Wieringen’s work and subsequently this paper fo-
cus on finding an algorithm once the user’s intent has been
established through the use of input-output examples. Van
Wieringen focused on developing a version of the MH al-
gorithm and comparing it to other stochastic search algo-
rithms on three different domains with their own Domain
Specific Language (DSL). The Metropolis-Hastings Algo-
rithm stochastically explores the search space of all pos-
sible programs. At each step, it either improves the pro-
gram or takes a non-improving step with a certain acceptance
probability. Its focus was to compare the performance of
a Metropolis-Hastings-based algorithm to a variety of other
search techniques.

While Van Wieringen’s work applied the MH algorithm to
the domain of program synthesis, it was limited in the de-
gree to which tried to optimize and analyse the algorithm
because it focused on the comparison with other algorithms.
The problem that this paper address is that there is a lack of
clear, systematic analysis of the effects of the different com-
ponents of the MH search algorithm, on the domain of IS.
This provides insight into the limitations as well as the po-
tential of the MH algorithm in the context of IS. As such,

this paper explores the effects that the program mutations and
acceptance probability function have on the ability to create
working programs on various complex domains.

2 Background and Related Work
2.1 Program Synthesis
Program Synthesis is the field of research focused on the cre-
ation of algorithms that can generate programs to solve prob-
lems autonomously. They only require a minimal amount of
semantic and/or syntactic constraints provided by a user that
defines the task. This means that a user does not need signifi-
cant technical knowledge of the problem. For example, a user
without knowledge of how sorting algorithms work could still
define an ordering of elements. If they were to pass that or-
dering to a Program Synthesis algorithm, it should be able to
create a suitable sorting algorithm.

Gottschlich et al. defined Three Pillars of Machine Pro-
gramming: Intention, Invention and Adaptation [3]. Inten-
tion describes the area of research dedicated to understanding
the best way to convey a user’s goals to an algorithm. In the
previous example of sorting this would describe the method
by which the user can describe the ordering of the algorithm.
The invention covers the process of finding a suitable pro-
gram to solve the problem once the objective is clear. How
would the algorithm come up with a working and efficient
program such as QuickSort? Finally, Adaptation concerns it-
self with the maintenance and evolution of the programs that
were found to deal with changes in hardware or discovery of
edge cases. If more elements are added to the ordering, then
the algorithm should be able to adapt to these changes.

While this paper specifically focuses on the Invention part
of the process, the Intention part of the algorithm is a pre-
requisite of the search for possible programs. In this paper,
Intention will be defined by examples of inputs and their de-
sired outputs (IO). The algorithms that use this method are
referred to as Inductive Synthesis algorithms. To be specific
these IO examples allow the algorithm to define a cost func-
tion that describes the degree of error between the output of
the generated program and the requested output. For the sort-
ing problem specifically, the minimal number of inversions
to get to a sorted list would be a suitable cost function. The
cost function that is used must be specific to the domain of
the problem.

The Invention stage is conducted by considering an exten-
sive search tree of all possible programs where the goal is
to locate the optimal one for the given problem. It is the
goal of the search algorithm to find that program within a
reasonable amount of time. As the search tree is incredi-
bly large a few measures can be taken to prune it. Simi-
lar to the cost function, the language used to write the pro-
grams generally is a simplified language specific to the do-
main, i.e a Domain Specific Language (DSL). A DSL is gen-
erally split into three types of tokens: Transition that change
the program state, Boolean that return a bool based on the
state, and Control tokens that affect the actions of a program,
e.g. by adding a loop. These define the operations which
can be carried out, the The DSL can also be used to put re-
strictions on the algorithm’s ability to create recursion in the



Algorithm 1 BubbleSort in a DSL

1: [
2: LoopWhile(NotSorted,
3: [
4: LoopWhile(GreaterThanRightNeighbour,
5: [
6: SwapNeighbours,
7: MoveRight
8: ]
9: ),

10: IfThen(AtEnd,
11: [
12: LoopWhile(NotAtStart,
13: MoveLeft)
14: ]
15: )
16: )
17: ]
18: ]

programs it writes, this cuts down significantly on the size
of the search tree. The sorting example could have a DSL
composed only of: MoveLeft, MoveRight, SwapNeighbours,
NotSorted, GreaterThanRightNeighbour, AtEnd, NotAtStart,
LoopWhile, and IfThen operations as well as a with which it
would theoretically be able to create a BubbleSort program
(see Algorithm 1).

Program Synthesis has been used to successfully recre-
ate several noteworthy and fairly complex algorithms such as
Karatsuba’s Integer Multiplication algorithm, and Strassen’s
Matrix-Multiplication [11]. It has its applications in a variety
of fields, e.g the reverse engineering of code [6], bit-string
manipulation and providing programmers with feedback [10].
Microsoft Excel’s FlashFill add-on was the first example of a
commercially available Program Synthesis tool [4]. It allows
people, without any particular background in the field of data
wrangling, to systematically manipulate data by providing the
add-on with example manipulations. Program Synthesis is
still a field that has considerable room for research and po-
tential commercial applications, hence this paper.

2.2 Metropolis-Hastings
The Metropolis-Hastings method is a Markov Chain Monte
Carlo method where the goal is to approximate a distribution,
π, which can be evaluated but not sampled from directly. As
a Markov Chain based method, this algorithm is applied to
time-series, i.e. sequential data, where the (i+ 1)th iteration
is only dependent on the iteration before it: i. At the start
of the algorithm the Markov-Chain, K, is empty. The Monte
Carlo part means that at each iteration a random sample is
drawn from a proposal distribution, J . It is then evaluated
using π. If it is an improvement the algorithm accepts the
sample and adds it to the Markov Chain. If it is not, then the
algorithm might still accept the sample but only with a certain
acceptance probability A(x, y).

A(x, y) =
π(y) ∗ J(y, x)
π(x) ∗ J(x, y)

(1)

where x is the current Markov Chain, and y is the Markov
Chain which includes the new sample. This means that the
Markov Chain can be defined as:

K(x, y) = J(x, y) ∗min(1, A(x, y)) (2)
This acceptance probability allows the algorithm to escape

local optima. It is defined in such a way that after a certain
number of iterations, referred to as the burn-in period, the
Markov-Chain will converge to the stationary distribution π.
This is done by upholding the condition of detailed balance.

Figure 1: Example iteration of a MH Program Synthesis algorithm.
An add token mutation is selected from the proposal distribution that
randomly selects a MoveRight token from the list of transition to-
kens.

As an example take the simple problem of a character in an
empty grid world trying to move to the bottom of the grid as
quickly as possible. The algorithm starts off with an empty
program denoted as an empty list: K0 = []. During the first
iteration of the algorithm, an add token mutation is randomly
drawn based on a set of default probabilities from the pro-
posal distribution J(x, y). The add token then randomly se-
lects the transition token MoveDown. This reduces the cost,
as the character gets closer to the bottom of the grid. There-
fore the program is updated to K1 = [MoveDown]. This
process is then repeated for K2. Again, an add token mu-
tation is drawn from J(x, y), which this time results in a
MoveRight transition token. This transition token does not
reduce the cost and hence the acceptance function, A(x, y)
is used to determine the probability that it is still accepted.
If it is then K2 = [MoveDown,MoveRight], otherwise it
simply stays the same and the algorithm moves to the next
iteration. Figure 4 shows this second iteration.

In 1953, Metropolis et al. published their new Monte Carlo
method in the Journal of Chemical Physics [8]. The Metropo-
lis method was created so that computers could more effi-
ciently describe the properties of ”substances consisting of
interacting individual molecules”. It relies on symmetric pro-
posal distributions to determine whether a sampled variable
is accepted, i.e. J(x, y) = J(y, x). This general method was
particularly useful for sampling from high dimensional dis-
tributions. In 1970, Hastings extended the method to permit
the sampling of non-symmetric distributions, given that the
forward and backward transition probabilities were known
[5]. This method was thereafter known as the Metropolis-
Hastings method.

As mentioned, this paper’s algorithms are extended ver-
sions of the one presented by Van Wieringen [12]. His ap-



Default
Mutation Weights Description
add token end 10 Adds a random trans token
(add token) to the end of the program
remove token random 20 Removes a random trans
(remove token) token from the program
add loop end 10 Adds a loop with a single
(add loop) bool token as a condition

and single trans token
to the end of the program

add if statement end 10 Adds an if-else statement
(add if statement) with a single bool token

and two trans tokens
to the end of the program

start over 2 Return an empty program

Table 1: Mutations and weights used by van Wieringen [12]. To-
kens parts of the DSL, where trans tokens can specify an action and
bool tokens can specify a condition. Note: the original names have
been enclosed in parentheses, while new names have been given in
order to be more descriptive and avoid confusion with other muta-
tions that are added in this paper, see Table 2.

proach to creating a program synthesis algorithm was to view
the search tree of all possible programs as a Markov-chain, K,
which starts off as an empty program, P0. For simplicity, we
assume the same notation as used by Van Wieringen. At each
iteration of the stochastic algorithm, the algorithm makes a
random but weighted selection from the proposal distribution,
i.e. the set of possible mutations which can be applied to the
last program on the Markov Chain. See Table 1 for details on
the mutations used by Van Wieringen. Note that the probabil-
ity of selecting a mutation can change over time based on a
cost function specific to the problem domain. The mutation is
then applied to the program, P ′, to create a new program, P .
This is repeated till the best program is found. This, the set of
possible mutations and their weights are the first independent
variable that is analysed in this paper.

Once created, a new program is evaluated using a domain-
specific cost function π(P ), which runs P on a list of input
examples and compares its outputs with the corresponding
output examples. If it is an improvement then the algorithm
goes to the next iteration, otherwise, it accepts with an accep-
tance probability, A(P, P ′). Van Wieringen used the method
outlined by Metropolis

A(x, y) =
π(y)

π(x)
(3)

Other variations, including the main MH method, rely on
other factors to change this acceptance function. E.g.
MH uses multiplies the right-hand side by the ratio of
the forward-transition, J(y, x) to the backwards-transition,
J(x, y). Where J(y, x) is the probability of obtaining y start-
ing from x. Assuming that there is a significant discrepancy
between J(y, x) and J(x, y) then this term would become
necessary for the Markov Chain to eventually reach a station-
ary, optimal distribution/program. The choice of acceptance
probability function is the second independent variable that is
analysed in this paper.

Mutation Description
add token random Adds a trans token at a random

position in the program
remove token end Removes a trans token from the

end of the program
add loop random Adds a loop with a single

bool token as a condition
and single trans token at
random position in the program

add if statement random Adds an if-else statement with
a single bool token two
trans tokens at a random position
in the program

Table 2: New mutations that will be tested

2.3 Application: Metropolis-Hastings & Program
Synthesis

Schkufza et al. applied the MH algorithm to the domain of
loop-free program synthesis specifically with the goal of op-
timizing binaries in terms of execution time [9]. The binaries
produced by their algorithm were generally at least as good as
those of state-of-the-art compilers as well as human experts.
This highlights the importance of taking the performance of
the synthesised programs into consideration when comparing
a MH-based Program Synthesis algorithm.

Van Wieringen describes his process of applying the
Metropolis method to the problem of Program Synthesis with
a focus on its ability to generalise and its success ratio on
three different domains [12]. In particular, he compares his
results with other types of stochastic search algorithms devel-
oped by his peers and supervisor, Dumančić whose own pa-
per served as a basis for Van Wieringen’s work. Cropper and
Dumančić’s paper focused on creating larger programs [1].
Their algorithm Brute, a best-first search algorithm, managed
to synthesise programs that were ”20 times larger than (pre-
vious) state-of-the-art systems”. The work of Van Wieringen
and subsequently this paper is follow-up research on the work
of Cropper and Dumančić. We maintain the three domains
first outlined in their paper, for details see Section ??, and the
use of an example-based loss-function.

3 Methodology
Note: to evaluate each variable, this paper will refer to their
effects on the algorithm’s ability to solve problems in com-
plex domains. Additionally, the execution time and program
length of the generated programs are taken into consideration.
As such when there is a reference to the search algorithm’s
performance, what the best variation is, etc. it will refer to
these criteria. See Section 4 for details on the specific met-
rics.

3.1 Mutations
As mentioned, the first component of the MH algorithm that
can be altered is the selection of mutations. Notable in
van Wieringen’s work was the absence of a rationale for his
choice of mutations, especially with regards to where in the



program the mutation would take place. Hence, we will ex-
amine the effect of applying the mutations at the end of the
program or in a random position. To accommodate for this,
new mutation functions are used, see Table 2. This also has an
impact on the possibilities for acceptance functions. Phrased
as a question: is it better to apply mutations at random loca-
tions in the program or at the end?

The second part of the mutations that can be altered is
the default weights they are given. Van Wieringen’s work
alluded to the selection of weights, but no systematic pro-
cess was discussed to analyse the effects of these weights.
No clear rationale was given other than that his selection lead
to approximately the same forward- and backwards-transition
functions so that he could use the simpler Metropolis method.
Hence the questions: 1) Does the configuration of default mu-
tation weights have a significant impact on the performance
of the algorithm? 2) What is the best performance that can be
achieved by the selection of the default mutation weights?

3.2 Acceptance Function, A(x, y)
The first part of the acceptance function that can be adjusted
is the cost function π. A problem that arises with IS is that
a cost function inherently will inherently have a range from
0 to positive infinity as it describes an absolute error. This
means that it has to be normalised to the range of [0, 1]. Van
Wieringen proposed the following normalization method:

π(x) = e−α∗Cost(x) (4)
which ensures that the cost is normalised and that the

higher the cost the lower the value for π. Recall that if a sam-
ple has a higher cost then, rather than immediately accepting,
the acceptance function will be used. In that situation, one
would expect a lower numerator than the denominator for the
ratio to be between 0 and 1. In the equation, α is the discount
factor. This raises two questions: 1) Does the discount factor
alpha have a significant impact on the performance of the al-
gorithm? 2) What is the optimal value of the discount factor
α?

The second part of the acceptance function that can be var-
ied is the function itself. In his paper, Van Wieringen used the
simpler Metropolis method rather than the more general MH
method. As he discussed, the MH methods acceptance func-
tion requires the definition of explicit inverses. He noted two
problems with this approach. First, he mentions that some
mutations’ inverses may be difficult to define. Second, there
may be multiple paths that lead to the same result. The here
proposed hypothesis is that both of these issues can be largely
addressed by changing the type of mutations made. To be
specific, they can be resolved by fixing the location in the
program of where the mutation. Hence, we use the full MH
method by only applying mutations to the end of the program,
for details on the mutations see 3.1.

Van Wieringen’s solution to this was to assume that
J(x, y) ≈ J(y, x), though no statement was made as to how
that resulted in the provided default weights for his mutations.
This same logic can be applied to inverses, it can be hypoth-
esised that within a certain margin of error the algorithm will
still be able to get to the stationary distribution. This also re-
solves the ”start over” problem, where it is difficult to define

an inverse for the ”start over” operation. As a ”start over”
never yields an improvement in the program, it serves as a
mechanism to encourage exploration, and an assumption can
be made that with equal forward- and backward transition
probabilities it would fit within the hypothetical margin of
error. As such the final question arises: is there a benefit to
using the full Metropolis-Hastings acceptance function over
the one of the simpler Metropolis method?

4 Experimental Setup
4.1 Domain 1: Robot

Figure 2: Example problem on the robot domain. Task: move the
robot to the ball, pick it up and drop it at the flag.

The first domain, Robot, is the task of creating programs
for a robot on a 2-dimensional grid world to find a ball and
bring it to a goal flag. Note that there are no obstacles
in the world. The DSL consists of the following actions:
MoveRight, MoveDown, MoveLeft, MoveUp, Drop, Grab,
and condition checks: AtTop, AtBottom, AtLeft, AtRight, No-
tAtTop, NotAtBottom, NotAtLeft, NotAtRight. The number of
steps taken by the robot is used as a cost function to evaluate
the programs. This domain contains 550 input-output exam-
ples to test the algorithm’s performance.

4.2 Domain 2: Pixel

Figure 3: Example problem on the pixel domain. Task: fill in the
outline, by moving the brush/cursor and drawing in necessary pixels.
Left is the initial state, right is the goal state.

The second domain, Pixel, consists of a black/white pixel-
grid (i.e. an image), where a cursor needs to manipulate



the image by moving the cursor to the right cells and draw-
ing them in. Note that the domain is limited in that there
is no mention of other colours nor that the algorithm is ex-
pected to erase previously drawn pixels. The DSL consists
of the following actions:MoveRight, MoveDown, MoveLeft,
MoveUp, Draw, and conditions checks: AtTop, AtBottom,
AtLeft, AtRight, NotAtTop, NotAtBottom, NotAtLeft, NotA-
tRight. As the pixels are either black or white, Hamming
Distance is used as a cost function to evaluate the programs.
This domain contains 500 input-output examples to test the
algorithm’s performance.

4.3 Domain 3: String

Figure 4: Example problem on the string domain. Task: capitalize
the first letter of each word and remove any non-alphabetical char-
acters. Top is the initial state, bottom is the goal state.

The third domain, String, is the problem of sting manip-
ulation and is arguably the most realistic, but also complex
domain. The goal is to manipulate a string by moving a
pointer to the necessary characters and altering them. For
example: capitalize the first letter, remove the first word
etc. Due to its complexity, a sub-problem of the domain
is taken where the algorithm is only involved in capital-
ization and removal of letters but does not need to con-
sider adding them. The DSL consists of the following ac-
tions:MoveRight, MoveLeft, MakeUppercase, MakeLower-
case, Drop, and conditions checks: AtEnd, NotAtEnd, At-
Start, NotAtStart, IsLetter, IsNotLetter, IsUppercase, IsNo-
tUppercase, IsLowercase, IsNotLowercase, IsNumber, IsNot-
Number, IsSpace, IsNotSpace. As the operations are made
on a string, the Levenshtein distance is used as a cost func-
tion to evaluate the programs. This domain contains 19,295
input-output examples to test the algorithm’s performance.

4.4 Metrics
The main metric that will be used to evaluate the performance
of the variations of the algorithm is the success rate that the
algorithm has in synthesizing the 550, 500 and 19,295 tests
for the Robot, Pixel and String domains respectively. Addi-
tionally, the execution time and program length of each test
will be recorded to provide additional insight into the char-
acteristics of the algorithm and how the parameters affect the
search. Note that execution time represents the time it takes
for the algorithm to generate the programs, during which it
also runs the program on the example IO, it, therefore, en-
compasses both the run-time of the algorithm as well as of
the created programs.

5 Results and Discussion
5.1 Acceptance Function: Discount Factor (α)

Table 3: Shows the Kendall correlation coefficients for al-
pha compared to the various metrics across all three do-
mains. Other parameters: {’type’: ’metropolis’, ’add token end’:
10, ’add token random’: 0, ’remove token end’: 0, ’re-
move token random’: 20, ’add loop end’: 10, ’add loop random’:
0, ’add if statement end’: 10, ’add if statement random’: 0,
’start over’: 2}

The first question to be addressed is whether the discount
factor α has a significant impact on the performance of the
algorithm. To answer this question, we can examine whether
there is a correlation between the value alpha and any of the
three metrics if all other variables remain fixed. To be specific
we obtain the Kendall correlation coefficient because it means
that we do not need to assume that the data is distributed nor-
mally, especially because we do not need to assume that the
trend is linear.

The data shows that alpha can be selected to strike a bal-
ance between execution time and program length, but that it
does have a significant effect on the algorithm’s ability to
solve problems. There was a significant but approximately
opposite correlation coefficient found with the execution time
as well as program length, see Figure 3. There was, however,
no observable correlation with the percentage of cases solved.
As such, it is therefore difficult to answer the second question
and point out an optimal value for alpha.

Figure 5: Shows the number of test cases solved, and the exe-
cution time as well as the program length of the programs gen-
erated for different values of alpha for each of the three do-
mains. Other parameters: {’type’: ’metropolis’, ’add token end’:
10, ’add token random’: 0, ’remove token end’: 0, ’re-
move token random’: 20, ’add loop end’: 10, ’add loop random’:
0, ’add if statement end’: 10, ’add if statement random’: 0,
’start over’: 2}

Further examination of the exact data points shows how-
ever that this correlation is not unanimous amongst the differ-
ent domains, see Figure. First, alpha values below 1 showed
opposite trends for the pixel and string domains with a signif-
icant amount of impact on the number of problems solved
especially for the pixel domain which drops to 0 as alpha
decreases. Second, alpha values below 1 also irregular be-
haviour with a jump to significantly longer execution times



on the pixel domain. This is also true for an alpha of 0.25 for
the robot domain. Third, the trends in program length are also
opposite for the robot domain compared to the others. As a
whole, the behaviour of the algorithm is more erratic and un-
predictable below alpha values of 1. The conclusion is that it
is difficult to balance an alpha for multiple different domains.

Overall, a higher discount factor should reduce the prob-
ability of accepting a mutation which negatively affects the
evaluation of the program. Although none of the data is suf-
ficient together they suggest that a higher alpha could mean
that the programs get stuck in local optima more frequently
due to their reluctance to accept mutations which reduce the
score.

5.2 Mutation Weights

Figure 6: Shows the absolute Kendall correlation between the var-
ious mutations and the three metrics for each domain for random-
ized locality (Top) and fixed locality (Bottom). Other parameters:
{’type’: ’metropolis’, ’alpha’: 1}

The configuration of weights has a significant impact on
the performance of the algorithm, but it is very domain de-
pendent on how it affects the score. This was true for both
the mutations with randomized as well as those with a fixed
locality.

Two sets of experiments were done: one for randomized
locality on the mutations and conversely one with each mu-
tation being applied to the end of the program. Five different
values were tested for each mutation weight with all others
kept at a constant value as control variables to systematically
test the effect of each mutation. The weights used by Van
Wieringen were scaled by a factor of 3 to make it easier to test
smaller weights relative to the control variables. Note that the
remove token mutation is also being assigned a weight of 30
so that it would be equal to the other mutations in the con-
trol set. For the control variables, the start over mutation was
kept at a quarter of the weight of the other mutations, the
same as in the experiments run by Van Wieringen. This was
done because other research suggests that lower probabilities
for restarts are better for performance since higher probabil-
ities result in an algorithm more akin to random-walk rather
than an applied method [7]. Finally, while the weights scale
linearly the probability that a mutation is selected is depen-

dent on the weights of all possible mutations. As such the
relative probability of each mutation was taken into account
rather than their weight when comparing the variables.

Figure 7: Shows metrics for different probabilities of the
remove token random mutation. Other parameters: {’type’:
’metropolis’, ’add token random’: 30, ’add loop random’: 30,
’add if statement random’: 30, ’start over’: 6}

Similar to how alpha’s impact on the performance of the
algorithm was tested, Kendall correlation coefficients were
obtained to see if there were any, including non-linear, cor-
relations between the weights and the metrics. While the co-
efficients show that there is a significant correlation, there is
no unanimous agreement in terms of correlation between the
domains that are in the same direction with a significant de-
gree for the mutations with randomized locality, see Figure 6.
One possible explanation is that since the algorithm has less
control over where to apply a mutation, the algorithm has to
try to over-fit to the average distribution of the domain rather
than being able to recognize a more logical distribution that
is generally applicable.

The one possible exception is that there was some agree-
ment that a remove token random mutation should be slightly
higher than the other parameters, although this correlation
was only moderately present for the robot and string domains
and negligible for pixel. This is better illustrated in Figure
7. It is also notable that for the remove token random muta-
tion, there are also negative correlations across all three do-
mains for the generated programs execution time and pro-
gram length. This supports the notion that slightly higher
probabilities of removing tokens improve performance. This
improvement could be because it enables the algorithm to
make more corrections since it cannot control exactly which
transition tokens will be selected. This could also explain the
shorter program lengths as the algorithm is less likely to gen-
erate identity transitions in the program.

Figure 8: Shows metrics for different probabilities of the re-
move token end mutation. Other parameters: {’type’: ’metropolis’,
’add token end’: 30, ’add loop end’: 30, ’add if statement end’:
30, ’start over’: 6}



The experiments run with mutations solely applied to the
end of the program show more correlated behaviour. That
said they are also more difficult to judge given the relatively
low strength of the correlation values and that the robot do-
main had a 100% success rate. With the exception of the
add token end mutation, all other mutations showed a slight
to moderate degree of correlation in the same direction for
the pixel and string domains, see Figure 6. Again the re-
move token end mutation stands out, because it is the only
mutation where the correlation is significant and in the same
direction for almost domains for execution time and program
length. The exception is that on average the robot domain’s
execution time increases rather than decreases, but the corre-
lation is almost insignificant. Furthermore, because the robot
domain had a 100% success rate removing more tokens on
a simple domain with very low execution times and short
programs could cause the algorithm to have to add slightly
more tokens overall causing the delay, without experiencing
the benefits from corrections. Apart from that, the same hy-
pothesis proposed for the randomized locality equivalent ap-
plies here. That said, the performance graphs show the actual
difference in performance is small, see Figure 8. The maxi-
mum difference in solving percentage of 1.4% and 0.8% for
the pixel and string domains respectively. This is especially
noticeable compared to the randomized locality version with
monotonic increases of 13.1%, to 17.1% for the robot and
string domains, recall that the pixel domain was the excep-
tion to the trend there. This could be because the algorithm
already has less randomness in where it can alter the program,
which would make errors relatively easier to fix.

Another noteworthy point is that the add loop end muta-
tion had opposite correlations on the pixel and string domains,
which is the only exception in the end locality experiments.
This could be explained by the different lists of available
Boolean tokens and the types of example problems. Where
the pixel domain only has checks related to the location of
the cursor the String domain also had checks on the state,
e.g. IsUppercase. These could be significantly more useful in
solving certain problems. For example, if the goal was to cap-
italize the first lower case letter then the algorithm could ben-
efit significantly from using a loop to create a segment such
as: [LoopWhile(IsUppercase, MoveRight), MakeUpperCase]
which would require only two tokens in the program. The
question is also whether state checks would be a significant
benefit to the pixel domain, also since the types of tasks on
the pixel domain are presumably less state-dependent given
that each cell can only have one of two values as opposed to
any character. This highlights the importance of the selection
of tokens in the DSL.

5.3 Mutation Locality
The collected data does not provide sufficient evidence to
suggest that locality has a significant impact on the algo-
rithm’s ability to successfully synthesize programs. Given
that there is no guarantee that optimal hyper-parameters were
found for each category, the best results, mean and median
were examined in each category to try and highlight the po-
tential strengths and weaknesses of each approach, see 9.

Although randomized locality for mutations had better suc-

Figure 9: Shows the mean success rate, execution time and program
length for all of the tests which varied the locality on the three do-
mains. Due to similar findings, the median and best results have
been included in Appendix 7 instead. Other parameters: {’type’:
’metropolis’, ’alpha’: 1}

cess rates on the more complex pixel and string domains, un-
like the algorithm which applied mutations to the end of the
program, it did not have a 100% success rate on the simpler
robot domain, within the allotted 60-second time limit. As
mentioned in Subsection 5.2, one idea is that the randomized
locality mutation overfits the average distribution of the do-
main, this could also explain why the results are similar and
why randomized locality might work better on the more com-
plex domains.

Apart from the success rate, on average the randomized lo-
cality experiments had shorter execution times when success-
ful but their programs were significantly longer. This sug-
gests that it was more likely to create an identity segment in
the program where the sum of the tokens would be an empty
program. For example, [MoveRight, MoveLeft] on the robot
domain. This could be because the algorithm has more diffi-
culties in trying to associate such a transition with a specific
mutation.

5.4 Acceptance Function: Metropolis-vs-Hastings

Figure 10: Shows the mean success rate, execution time and pro-
gram length for all of the tests which varied the acceptance func-
tion on the three domains. The methods are described in Subsec-
tion 5.4. Other parameters: {’alpha’: 1, ’add token end’: 30, ’re-
move token end’: 50, ’add loop end’: 10, ’add if statement end’:
10, ’start over’: 10}

In addition to the original Metropolis method, two versions
of the Metropolis-Hastings acceptance function were created.
The forward and backward transition probability is calculated
using the probability of the given mutation and the one which
would undo it. For example, the remove token could be un-
done by applying the respective mutation that placed the last
token in the program, hence end-locality was used for these



tests. The difference between the two methods is start over
mutation. The first made a symmetry assumption and would
return an equal forward and backward transition probability.
The idea was that this would not disrupt the condition of de-
tailed balance since the Metropolis method could also be ap-
plied successfully. The second calculated the backward prob-
ability by taking into account the probability of each token in
the latest program.

The collected data supports Van Wieringen’s original hy-
pothesis that inverses would result in an underestimate of
J(x, y). While the full Metropolis-Hastings versions of the
algorithm managed to keep up on the simpler robot domain,
they showed significantly worse results in the other domains
to the point that the 2nd version had a 0% success rate on the
pixel domain, see Figure 10. Although the 1st method won in
a few instances of specific domain-metric combinations, the
version of the Metropolis-based algorithm was worse com-
pared to when it was run with different weight configurations.
The weights of each mutation were purposefully shifted so
that the forward and backward probabilities would be dif-
ferent. Random values were selected that seemed feasible
based on the results for the analysis of the mutation weights.
As such, it has to be stated that hyper-parameter tuning or
more broadly parameter selection has not been thoroughly
explored within the given time. That said, based on our
experiments, there seems to be no benefit to using the full
Metropolis-Hastings acceptance function over the one of the
simpler Metropolis method based on the current parameters
without accurately being able to define explicit inverses.

6 Conclusions and Future Work
Systematic evaluation of the components of the Metropolis-
Hastings stochastic search algorithm suggests that with cer-
tain conditions tuning can be done to improve the perfor-
mance but that this fails to significantly improve the perfor-
mance compared to more randomized approaches focused on
more specific domains.

The first component to be altered was the mutation applied
to the program during each iteration. . The mutation weights
and therefore probabilities, showed that they could have a sig-
nificant impact on the algorithm’s success rate for synthesis-
ing programs. In all experiments where the location of a mu-
tation was randomized, the results varied significantly in the
degree and direction of the correlation depending on the do-
main it was tested on. Contrasting, the experiments where
the locality of a mutation was fixed at the end of the program
did show noticeable trends across domains. That said, the im-
pact they had on the algorithm’s success rate was significantly
less than that of the randomized alternative. Furthermore, the
randomized and fixed locality variations had similar perfor-
mance overall. Together this suggests that the algorithm with
randomized mutations overfits the domain and manages to
even outperform the fixed locality version on the more com-
plex domains. It also has to be stated that the DSL played an
observable role in how domains responded to the algorithm,
although this does not change the previous conclusion.

The second component was the acceptance function which
is used to determine whether a non-improving mutation

would be applied. None of the variations of the acceptance
function was found to significantly improve the success rate
of the algorithm. The discount factor used to calculate the
normalized cost of a program for the acceptance function
could be used to balance the programs found in terms of al-
gorithm execution time and program length, but showed no
impact on the success rate. Furthermore, alternative accep-
tance functions based on the full Metropolis-Hastings method
showed increasingly poor success rates on more complex do-
mains. This supported Van Wieringen’s original hypothesis
that it would be difficult to define explicit inverse probabil-
ities for each of the mutation types, due to the problem of
underestimating. Unless a method is found to accurately de-
fine explicit inverses there seems to be no benefit to adjusting
this part of the acceptance function.

Overall, independent of adjustments, the Metropolis-
Hastings algorithm does not appear to be the most suitable for
generating programs on the relatively complex domains with
the current set of mutations. Van Wieringen’s prior research
showed that other stochastic techniques showed better per-
formances [12]. That said While improvements can be made,
these do not seem to significantly improve the algorithm’s
performance sufficiently to outperform more domain-specific
search methods.

Despite the underwhelming results with regards to the
Metropolis algorithm’s ability to efficiently search the space
of programs, there are still several suggestions that can be
made regarding future research. Primarily, there is still a lot
of research that can be done on the mutations used by the
search algorithm. Currently, there is no true recursion that
can be created by the algorithm since the loop mutations cre-
ate a loop dependent on a single condition token which re-
peats a single transition token, rather than enabling the al-
gorithm to create a full program. This means that even cer-
tain relatively simple algorithms like bubble sort cannot be
synthesized with these mutations. Similarly, the If mutations
always only take a single condition and result in an if-then-
else. This means that the generated programs cannot have
an equivalent to switch conditions. This could be another
direction for research that is also not limited solely to the
Metropolis-Hastings method. Subsequently, more research
can also be done on the effects of the selection of DSL to-
kens. Apart from the generation procedure, attempts could
be made to combine the Metropolis-Hastings algorithm with
other search techniques, to see if it can overcome some of its
rigidity in search technique or to add elements to train it on
a specific domain. Additionally, a more detailed analysis of
the specific programs generated by the Metropolis-Hastings
algorithms can be done to analyse its behaviour and to come
up with strategies to overcome the weaknesses of the algo-
rithm which could help with understanding how to combine
different techniques.

7 Responsible Research
To be transparent about the origin of the code, it must be
stated that this paper adapted the code base used by van
Wieringen [12]. That code base was already a continuation
of the code produced by Cropper and Dumančic [1]. Their



work laid the foundation for the code-base used in this paper
As such, credit has to be given to these previous authors for
their contribution to making this paper possible.

To ensure that the results are reproducible, there are several
technical aspects of the experiments with regard to hardware
and randomization that need to be mentioned. All of the ex-
periments were conducted with a Mersenne-Twister pseudo-
random number generator with a seed of 5099404. Each
experiment was run on the DelftBlue supercomputer, hosted
by Delft High-Performance Computing Centre (DHPC), in a
Python 3.9 environment [2]. The individual runs were done
in parallel using pools, separate experiments for each domain
and run configuration were split into SLURM script tasks
which were carried out with 32 CPUs each with 4G of mem-
ory. The data was then processed using Jupyter Notebooks.
In the spirit of open data, all of the relevant information has
been made available online. The algorithm, instructions on
how to run the code and the notebooks are available online
on GitHub, but for any questions feel free to email the author
directly, the email is listed at the top of the paper.

A Appendix I: Results Locality

Figure 11: Shows the median success rate, execution time and pro-
gram length for all of the tests which varied the locality on the three
domains. Other parameters: {’type’: ’metropolis’, ’alpha’: 1}

Figure 12: Shows the mean success rate, execution time and pro-
gram length for all of the tests which varied the locality on the three
domains. Other parameters: {’type’: ’metropolis’, ’alpha’: 1}

References
[1] Andrew Cropper and Sebastijan Dumanči´ Dumanči´c.

Learning large logic programs by going beyond entail-
ment. 2020.

[2] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 1). https://www.
tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

[3] Justin Gottschlich, Armando Solar-Lezama, Nesime
Tatbul, Michael Carbin, Martin Rinard, Regina Barzi-
lay, Saman Amarasinghe, Joshua B Tenenbaum, and
Tim Mattson. The three pillars of machine pro-
gramming publisher association for computing machin-
ery (acm) terms of use creative commons attribution-
noncommercial-share alike the three pillars of machine
programming. 2018.

[4] Sumit Gulwani. Automating string processing in
spreadsheets using input-output examples. pages 317–
330. Association for Computing Machinery, 2011.

[5] W K Hastings. Monte carlo sampling methods us-
ing markov chains and their applications. Biometrika,
57:97, 1970.

[6] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish
Tiwari. Oracle-guided component-based program syn-
thesis. pages 215–224. Association for Computing Ma-
chinery, 2010.

[7] Jason R Koenig, Oded Padon, and Alex Aiken. Adaptive
restarts for stochastic synthesis, 2021.

[8] Nicholas Metropolis, Arianna W Rosenbluth, Mar-
shall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing
machines. The Journal of Chemical Physics, 21:2384,
1953.

[9] Eric Schkufza, Rahul Sharma, and Alex Aiken.
Stochastic superoptimization. pages 305–316. Associa-
tion for Computing Machinery, 2013.

[10] Rishabh Singh, Sumit Gulwani, and Armando Solar-
Lezama. Automated feedback generation for introduc-
tory programming assignments. pages 15–26. Associa-
tion for Computing Machinery, 2013.

[11] Armando Solar-Lezama. A. lecture 1: Introduction and
definitions., 2018. [Online; accessed 22-Apr-2022].

[12] Victor van Wieringen, S (mentor) with contribu-
tions from Dumančić, and C B Poulsen. Comparative
analysis of the metropolis-hastings algorithm as applied
to the domain of program synthesis, 1 2022.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

	Introduction
	Background and Related Work
	Program Synthesis
	Metropolis-Hastings
	Application: Metropolis-Hastings & Program Synthesis

	Methodology
	Mutations
	Acceptance Function, A(x, y)

	Experimental Setup
	Domain 1: Robot
	Domain 2: Pixel
	Domain 3: String
	Metrics

	Results and Discussion
	Acceptance Function: Discount Factor ()
	Mutation Weights
	Mutation Locality
	Acceptance Function: Metropolis-vs-Hastings

	Conclusions and Future Work
	Responsible Research
	Appendix I: Results Locality

