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Abstract Because Antarctic surface melt is mostly driven by local processes, its simulation necessitates
high‐resolution regional climate models (RCMs). However, the current horizontal resolution of RCMs (≈25–
30 km) is inadequate for capturing small‐scale melt processes. To address this limitation, we present SUPREME
(SUPer‐REsolution‐based Melt Estimation over Antarctica), a deep learning method to downscale surface melt
to 5.5 km resolution using a physically‐informed super‐resolution model. The physical information integrated
into the model originates from observations tied to surface melt, specifically remote sensing‐derived albedo and
elevation. These remote sensing data, in addition to a Regional Atmospheric Climate Model (RACMO) run at
27 km resolution, account for the diverse drivers of surface melt across Antarctica, facilitating effective
generalization beyond the training region of the Antarctic Peninsula. A comparison of SUPREME with a
dynamically downscaled RACMO run at 5.5 km over the Antarctic Peninsula shows high accuracy, with
average yearly RMSE and bias of 5.5 mm w.e. yr− 1 and 4.5 mm w.e. yr− 1, respectively. Validation at five
automatic weather stations reveals SUPREME's marked improvement with substantially lower average RMSE
(81 mm w.e.) compared to RACMO 27 km (129 mm w.e.). Beyond the training region, SUPREME aligns more
closely with remote sensing products associated with surface melt than super‐resolution models lacking
physical constraints. While further validation of SUPREME is needed, our study highlights the potential of
super‐resolution techniques with physical constraints for high‐resolution surface melt monitoring in Antarctica,
providing insights into the impacts of localized melting on processes affecting ice shelf integrity such as
hydrofracturing.

Plain Language Summary To improve surface melt monitoring in Antarctica, high‐resolution
climate models are essential. Existing models, like the Regional Atmospheric Climate Model (RACMO), do not
have a fine enough spatial resolution to capture small‐scale melt processes. To overcome this, we introduce
SUPREME (SUPer‐REsolution‐based Melt Estimation over Antarctica), a method that refines surface melt data
to a higher resolution of 5.5 km using an advanced super‐resolution model. We enhance this model with physical
information derived from observations directly related to surface melt, specifically using albedo and elevation
data from remote sensing. By incorporating these observations, along with RACMO data at 27 km resolution,
we account for the various triggers of surface melt across Antarctica. SUPREME accurately predicts high‐
resolution surface melt beyond the training region of the Antarctic Peninsula, showing promising results
compared to existing melt observations. Further validation is needed, but this approach, combining super‐
resolution techniques and remote sensing data, holds potential for accurate surface melt monitoring in
Antarctica. This may advance our understanding of the impacts of localized features on processes affecting ice
shelf integrity such as meltwater‐induced hydrofracturing.

1. Introduction
Reductions in both thickness (Gudmundsson et al., 2019) and extent (Greene et al., 2022) of floating ice shelves
have contributed to an increasing mass loss of the Antarctic Ice Sheet (IMBIE, 2018; Shepherd et al., 2012). A
recent study by Davison et al. (2023) revealed that over 40% of Antarctic ice shelves have lost mass between 1997
and 2021. While around two‐thirds of this volume loss was attributed to basal melting (Davison et al., 2023),
surface melt is anticipated to play a more significant role in ice shelf shrinkage and weakening in the coming
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decades under continued atmospheric warming in all future climate scenarios (Gilbert & Kittel, 2021; Trusel
et al., 2015). The presence of surface meltwater reduces albedo (Lenaerts et al., 2017) and firn air content (Kuipers
Munneke et al., 2014), creating positive feedback loops that generate additional surface melt and consequently
increase meltwater ponding. This ponding poses a threat to ice shelf stability through surface meltwater‐induced
flexure and hydrofracturing (Banwell et al., 2019; Banwell & Macayeal, 2015; Scambos et al., 2009).

Nonetheless, accurately quantifying meltwater volumes on the Antarctic Ice Sheet is posing a significant chal-
lenge. Direct assessment of melt from ice core stratigraphy (e.g., Abram et al., 2013; Das & Alley, 2008) and in‐
situ surface energy balance (SEB) observations (e.g., Jakobs et al. 2020; Kuipers Munneke, Van den Broeke
et al., 2012) provide robust quantitative melt records, but these records are sparse. Remote sensing observations,
while capable of offering measurements continent‐wide, usually provide only binary data indicating whether
melting has occurred or not, without quantifying the meltwater volume (de Roda Husman et al., 2022, 2024).
Trusel et al. (2013) made a notable exception by employing the Quick Scatterometer (QuikSCAT) to measure
annual meltwater volumes. Unfortunately, QuikSCAT ceased operation in 2009. Recently, also Banwell
et al. (2023) made an effort to derive meltwater volumes from passive and active microwave sensors, but only by
applying a physics‐based snow model to the binary melt observations derived from remote sensing data, melt-
water volumes could be estimated. Hence, besides in‐situ observations and a few remote sensing methods, our
understanding of past, present, and future surface melt volumes relies heavily on regional climate models (RCMs)
such as the Regional Atmospheric Climate Model (RACMO) (van Wessem et al., 2018) and Modèle Atmos-
phérique Régional (MAR) (Agosta et al., 2019). Nevertheless, with a spatial resolution of typically 25–30 km,
RCMs face limitations in capturing the intricate interplay between melting and albedo, and have difficulty
representing small‐scale, high‐melt features like blue ice, rocks, and ponds (Arthur et al., 2022; Kingslake
et al., 2017; Lenaerts et al., 2017).

Hence, there is a necessity for downscaling techniques that reproduce the critical details of surface melt that are
currently lacking in RCMs. A frequently employed technique is statistical downscaling, a method that enhances
the resolution of RCM variables, typically by leveraging their linear correlation with elevation. Recently, sta-
tistical downscaling has been employed to generate high‐resolution surface mass balance (SMB) variables for
Antarctica (Gallée et al., 2011), including snowfall (Ghilain et al., 2022) and surface melt (Noël et al., 2023a).
Similarly, over Greenland, SMB components have been subject to statistical downscaling in studies by Hanna
et al. (2005), Hanna et al. (2008, 2011), Franco et al. (2012), Noël et al. (2016), and Tedesco et al. (2023).
However, in areas where the correlation of an SMB component with elevation is weak, statistical downscaling
may not provide additional benefits (van de Berg et al., 2020). Another commonly used method, dynamical
downscaling, entails running a model in a nested domain with higher spatial resolution and represents a prevalent
design approach for many RCMs (Box & Rinke, 2003; Fettweis et al., 2017; Noël et al., 2016). Dynamical
downscaling requires that physical parameterizations are adjusted in a finer grid (Hourdin et al., 2017; Schmidt
et al., 2017). It relies on physical formulations rather than empirical relationships and correlations, but it comes
with a significant computational cost (Fyke et al., 2018). Hence, both statistical and dynamical downscaling
methods have their limitations, prompting us to explore an alternative approach for downscaling surface melt
from an RCM: deep learning.

In this study, we introduce SUPREME (SUPer‐REsolution‐based Melt Estimation over Antarctica), a method to
refine RACMO from a 27 km horizontal resolution to a more detailed 5.5 km resolution, employing a physically‐
informed deep learning super‐resolution technique. Super‐resolution techniques have been successfully used to
refine image details (Dong et al., 2016; Goodfellow et al., 2014; Shi et al., 2016). Their potential for geophysical
application has been demonstrated in Antarctic studies, including the downscaling of global climate models (van
der Meer et al., 2023), bedrock topography (Leong & Horgan, 2020), and sea ice motion (Petrou et al., 2018).
Super‐resolution methods distinguish themselves by their adeptness at preserving intricate details without being
constrained by potentially limiting linear statistical assumptions or high computational costs for predictions.
Despite such advantages, super‐resolution models may not generalize well beyond their training region (Jiang
et al., 2022). This could be particularly problematic for its application to surface melt, given the notable variations
in melt triggers and patterns observed across Antarctica (de Roda Husman et al., 2022; Hu et al., 2022). To
enhance spatial transferability, alongside RACMO 27 km, we include observations that are physically associated
with surface melt–specifically, albedo and elevation from remote sensing data–into our super‐resolution model.
Albedo is linked to surface reflectivity, while elevation accounts for altitude‐related temperature variations—both
critical factors in determining the extent and intensity of surface melt (Giesen & Oerlemans, 2012). The
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incorporation of remote sensing data into the super‐resolution model involves transitioning from a single‐image
super‐resolution model, which depends solely on the low‐resolution counterpart of the desired high‐resolution
output (Yang et al., 2014), to a multi‐image super‐resolution model that integrates multiple input features
(Kawulok et al., 2019).

2. Data
2.1. RACMO 27 km and 5.5 km

We employ surface melt volume data from two RACMO data sets, both belonging to version 2.3p2, with hor-
izontal resolutions of approximately 27 km (van Wessem et al., 2018) and 5.5 km (van Wessem et al., 2016). The
RACMO 27 km data set serves as one of the input features for the super‐resolution model, while the RACMO
5.5 km data set, covering the Antarctic Peninsula exclusively, serves as the reference data (or “ground truth”) for
training the super‐resolution model.

RACMO 27 km combines the atmospheric dynamics from the High‐Resolution Limited Area Model (HIRLAM)
(Undén et al., 2002) with the physical parameterizations of the European Center for Medium‐Range Weather
Forecasts (ECMWF) global model (ECMWF, 2009). It is coupled bidirectionally with a multi‐layer snow model
that accounts for processes like melting, percolation, and refreezing in the snow (Ettema et al., 2010). Addi-
tionally, the model incorporates a snow albedo scheme based on the evolution of snow grain size (Kuipers
Munneke et al., 2011) and a drifting snow scheme that simulates the redistribution and sublimation of suspended
snow particles (Lenaerts et al., 2012). For more detailed technical information about RACMO 27 km, we direct
the reader to van Wessem, Reijmer, Lenaerts, et al. (2014), van Wessem, Reijmer, Morlighem, et al. (2014). In
2018, RACMO 5.5 km was introduced as a designated run at 5.5 km over the Antarctic Peninsula. For this high‐
resolution run, RACMO was forced by ERA‐Interim, using an updated surface topography for the Antarctic
Peninsula (van Wessem et al., 2016).

Both RACMO 27 and 5.5 km data are available for the period spanning from 1979 to the present day. In our
study, we focus on daily surface melt outputs between 2001 and 2019, measured in millimeters water equivalent
(mm w.e.). While RACMO 27 km provides coverage across the entire Antarctic region (see Figure 1a), RACMO
5.5 km is limited to the Antarctic Peninsula (Figure 1b). In addition to differences in spatial coverage and
horizontal resolutions, RACMO 5.5 km simulates lower surface melt values compared to RACMO 27 km. For the
Antarctic Peninsula over the period from 1979 to 2014, the annual surface melt volume showed a notable

Figure 1. Surface melt volume comparison for the 2017–2018 melt season: (a) RACMO 27 km, (b) RACMO 5.5 km (vanWessem et al., 2016), and (c) SUPREME (this
study). Upper panels display Antarctic‐wide scale, while lower panels provide close‐ups of the Antarctic Peninsula. Since RACMO 5.5 km data are solely available for
the Antarctic Peninsula, the white region indicates no data.
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disparity, with RACMO 5.5 km recording 34 Gt yr− 1 compared to RACMO 27 km's 57 Gt yr− 1 (Kuipers
Munneke, Picard, et al., 2012; van Wessem et al., 2016). Also throughout our study period from 2001 to 2019,
RACMO 5.5 km reports melt values that are lower compared to RACMO 27 km (see Figure A1), which is likely
attributed to a cloud cover underestimation (van Wessem et al., 2016). As our SUPREME model is calibrated on
the RACMO 5.5 km reference data set, this underestimation compared to RACMO 27 km is anticipated to persist.
In follow‐up studies, there is potential for retraining our developed super‐resolution architecture using high‐
resolution surface melt reference data other than RACMO 5.5 km, such as from upcoming versions of
RACMO or other RCMs like MAR.

2.2. Physical Constraints

2.2.1. Albedo

In addition to RACMO 27 km, albedo and elevation are additional variables input into the super‐resolution model.
We use daily white‐sky albedo, obtained from the MCD43A3 product on a spatial resolution of 500 m, based on
data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Schaaf et al., 2002). This MCD43A3
product matches those in previous Antarctic studies (e.g., Lenaerts et al. 2017; Tollenaar et al., 2022). The data set
is stored in Google Earth Engine (GEE; Gorelick et al., 2017) and consists of daily observations, which are
generated as 16‐day running means. To align with the resolution of the RACMO 5.5 km product, we employ
bicubic interpolation to reproject the data to the Antarctic Polar Stereographic projection, and average the data to
upsample it to a 5.5 km resolution. If albedo values are unavailable due to cloud cover, we substitute the pixel with
the monthly median albedo value of that specific pixel.

However, since cloud cover can reach up to 90% on the Antarctic ice shelves (Lachlan‐Cope, 2010), the use of the
daily albedo input feature is limited. Therefore, the albedo Q5 input feature acts as an additional data source,
highlighting the most extreme melt patterns on an annual basis. We compute the 5th percentile (Q5) albedo for
each pixel during every melt season, defined as spanning from July 1 to June 30 of the following year.

2.2.2. Elevation

The final input feature for the super‐resolution model is a static elevation map sourced from the TanDEM‐X
PolarDEM. This map provides gap‐free elevation data for 2013–2014 over Antarctica at a spatial resolution of
90 m (Wessel et al., 2021). Similar to the MODIS albedo data, we employ bicubic interpolation to reproject the
data set onto the Antarctic Polar Stereographic projection, and apply averaging to upsample the data to a
resolution of 5.5 km. We neglect elevation changes and assume constant topography since the elevation changes
over the studied time period are relatively small and are not expected to significantly impact atmospheric
dynamics.

2.3. Validation Data

2.3.1. Automatic Weather Stations

SUPREME is assessed against five automatic weather stations (AWS): AWS14, AWS15, AWS17, AWS18, and
Neumayer (refer to Figure A2 for their locations). The five selected AWS have multiyear data records without any
gaps and have experienced surface melt during our study period. AWS14 and AWS15 are located at the center of
the Larsen C Ice Shelf, AWS17 on the remnant of the Larsen B Ice Shelf, AWS18 at the grounding line of the
Larsen C Ice Shelf, and Neumayer at the Ekström Ice Shelf. Meteorological observations from the five AWS are
forced into a SEB model, enabling the calculation of surface melt. The SEBmodel and configuration are the same
as used by Jakobs et al. (2020). In addition, the measured longwave radiation is corrected for window heating as
described in Smeets et al. (2018), and measured shortwave radiation is corrected for the zero offset as described in
Foken (2021).

2.3.2. RACMO 2 km

The SUPREME melt product is compared with another downscaled RACMO product besides RACMO 5.5 km,
referred to as RACMO 2 km, as developed by Noël et al. (2023a). RACMO 2 km was obtained through a
statistical‐downscaling approach applied to RACMO 27 km, resulting in a spatial resolution of 2 km. RACMO
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2 km data are available on a daily resolution, but in this study, we only use annual melt values (from July 1 to June
30 for the years spanning from 2001 to 2019).

2.3.3. QuikSCAT

We compare SUPREME's annual melt volumes with QuikSCAT data for eight melt seasons, spanning from
2001–2002 to 2008–2009. QuikSCAT observations for Antarctica are available from 1999 to 2009 at a 4.45 km
resolution (Trusel et al., 2013). The product relies on the annual sum of backscatter intensity reduction, calibrated
with AWS observations.

2.3.4. Passive Microwave Remote Sensing

We also compare SUPREME to data from PMW sensors, also known as radiometers. PMWs provide binary melt
data (i.e., melt or no‐melt) that allow for the calculation of cumulative melt days within a melt season. We use
cumulative melt days using a data set from Picard and Fily (2006), which contains daily observations that
distinguish between melt and no‐melt on a 25 by 25 km2 spatial resolution. This binary melt product was
generated by applying a melt detection algorithm (Picard & Fily, 2006; Torinesi et al., 2003) to data from the
scanning Multichannel Microwave Radiometer (SMMR) and three Special Sensor Microwave Imager (SSM/I)
instruments (Picard & Fily, 2006).

2.3.5. Optical Remote Sensing

Finally, we compare SUPREME with a melt‐slush product derived from optical remote sensing (Dell et al., 2022,
2024a). This product is particularly effective in detecting melt presence in regions with low firn air content, where
the meltwater is clearly visible in optical imagery, in contrast to microwave sensors. Dell et al. (2022, 2024a )
developed a product for surface melt and slush based on the visible and near‐infrared (NIR) bands of Landsat 8
observations covering the Antarctic ice shelves. The slush and melt data set (Dell et al., 2024a) offers monthly
data spanning from 2013 to 2021, resulting in six overlapping melt seasons with SUPREME (from 2013–2014 to
2018–2019). To streamline the comparison, we aggregate the monthly data to create a single optical remote
sensing product for each melt season, indicating the number of months with either melt or slush per pixel. The
melt and slush data set, with a 30 m spatial resolution, is too detailed for a straightforward visual comparison with
SUPREME's 5.5 km resolution. To address this, we apply maximum interpolation to downscale the optical remote
sensing product to a 5.5 km resolution. This process involves assigning the value representing the highest number
of months within each 5.5 km pixel area.

3. Methods
3.1. Preprocessing

The super‐resolution model is trained on the Antarctic Peninsula, which is divided into 13 training patches as
shown in Supplementary Figure A3. These patches, created for memory efficiency, are sized at 297 km by
297 km, which is the lowest common multiple of 5.5 km (for RACMO 5.5 km, albedo, and elevation) and 27 km
(for RACMO 27 km): that is, 5.5 km multiplied by 54, and 27 km by 11 both equal 297 km. We gather input
features including daily RACMO 27 km, daily albedo, annual Q5 albedo, and a static elevation map for each of
the training patches, along with the daily RACMO 5.5 km reference data. To ensure that edge information re-
ceives equal consideration as central data, we apply padding. For RACMO 5.5 km, this entails adding 10 pixels
(equivalent to a 55 km border), while for RACMO 27 km, two pixels are added (equivalent to a 54 km border).
After the training phase, the patches are clipped to maintain their central dimensions of 297 km by 297 km. After
the padding, the preprocessed data are split into three sets: training (2001–2006), validation (2007–2010), and
testing (2011–2019). The validation set is used during training to tune hyperparameters, while the testing set is
reserved for evaluating the final performance of the trained model on unseen data. The split was primarily driven
by the availability of AWS records, predominantly spanning from 2011 onwards. The distribution of the training,
validation, and testing data sets are statistically similar, as confirmed by an Anderson‐Darling test. This statis-
tical assessment is designed to determine similarity in distribution (Scholz & Stephens, 1987). The Anderson‐
Darling test revealed that the data sets surpass a p‐value of 0.05, indicating consistent distributions among the
data sets.
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3.2. SUPREME Model Architecture

3.2.1. SRResNet Architecture

Our customized neural network architecture (Figure 2) builds upon the SRResNet, a neural network architecture
specifically designed for image super‐resolution tasks (Ledig et al., 2017). In the first step of the SRResNet, the
RACMO 27 data undergoes encoding through a single convolution operation. Specifically, a 3× 3 filter is applied
to the RACMO 27 km data to compute weighted sums, resulting in dimensionality reduction. The outcome of this
encoding step produces feature maps that emphasize the large‐scale spatial melt patterns, effectively translating
the data from spatial melt values into abstract features.

The next step of the SRResNet involves the implementation of 16 residual blocks applied to the encoded RACMO
27 km (He et al., 2016). These blocks are constructed to allow the combination of the output layer of one layer
with that of another layer situated deeper within the block. This design facilitates learning by enabling the model
to concentrate on recognizing specific residual details, which pertain to the differences between the current
prediction and the desired output (i.e., RACMO 5.5 km). Within the 16 residual blocks, three operations are
carried out. First, a convolutional layer with 3 × 3 kernels and 64 feature maps extracts spatial patterns from the
input. Subsequently, batch normalization is applied to stabilize and accelerate training. Finally, an element‐wise
summation operation combined the output of a layer with the input of a deeper layer through a skip connection,
allowing data to bypass multiple layers and address the vanishing gradients problem. This phenomenon occurs
when gradients become extremely small during training, hindering the ability of deep neural networks to
effectively learn from data (He et al., 2016).

After the encoding steps and residual block processing, we merge the RACMO 27 km data with the encoded
albedo and elevation data (Section 3.2.2). Subsequently, the data undergoes decoding, a process that transforms
compressed or abstract features back into a more understandable format, effectively upsampling the data. Once
again, we follow a strategy similar to SRResNet, employing six deconvolution layers with 3 × 3 kernels, com-
plemented by Parametric Rectified Linear Unit (PReLU) as the activation function. The decoded data are
combined with the spotlighted data from SUPREME (Section 3.2.2). Following this, we implement the final step
in the standard SRResNet architecture: the multilayer perceptron, which involves connecting every neuron in one
layer to every neuron in the next layer through a single convolution operation with a 1 × 1 kernel. Although this
step forms the final stage in the conventional SRResNet, as well as in many other neural networks, we introduce
an additional step involving a physical activation function, as detailed in Section 3.2.2.

Figure 2. Overview of super‐resolution model architecture. The model incorporates the SRResNet architecture along with
three additional physical constraints. The processed data were color‐coded: orange for daily RACMO 27 km, blue for daily
albedo, yellow for annual 5th percentile albedo, and green for elevation.
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3.2.2. Physical Constraints

The SRResNet is enriched using three physical constraints, each performing distinct tasks: the “encoder” adds
daily albedo, annual Q5 albedo, and elevation data for feature extraction and dimensionality reduction, the
“spotlighter” uses 3D‐convolutions to analyze albedo and elevation patterns in latitude, longitude, and time, and
the “physical activation” scales melt values based on elevation, leveraging the knowledge that lower elevations
are associated with higher melt values (see Figure 2).

For the first physical constraint, the “encoder,” we apply a similar procedure to the encoding of RACMO 27 km
data, as outlined in the SRResNet architecture, applying a convolution operation and PReLU activation function
to extract meaningful patterns from the albedo and elevation data. Subsequently, we downscale the data to match
the spatial resolution of the encoded RACMO 27 km data. This is accomplished through 2 × 2 average pooling,
wherein the input data are divided into 2 × 2 regions, and the average of the values within each region is
calculated. These encoded albedo and elevation data are combined with the encoded RACMO 27 km to undergo a
decoding step explained in the SRResNet architecture section.

The “spotlighter” constrains the super‐resolution model by the same data used in the “encoder,” which undergoes
a 3D convolution for analysis across longitude, latitude, and time. The 3D convolution functions as a specialized
filter, emphasizing important aspects of the data in both spatial and temporal domains. The resulting output is
subsequently merged with the decoded RACMO 27 km, albedo, and elevation data. This step aids in capturing
meaningful spatiotemporal features which are passed to the multilayer perceptron.

Recognizing the negative correlation between elevation and surface melt (Trusel et al., 2012), and the positive
feedback between albedo and surface melt (Jakobs et al., 2019), we apply two correction functions that adjust
pixels based on elevation and albedo, referred to as “physical activation.” The physical activation function for
elevation increases surface melt values for pixels with low elevation, and reduces surface melt values for pixels at
higher elevations. In the re‐scaling process, each high‐resolution surface melt pixel generated as the final output
of the SRResNet architecture is multiplied by a custom sigmoid‐like function. These sigmoid functions are
created by analyzing the albedo Q5 and elevation data for annual surface melt values from RACMO 5.5 km,
RACMO 27 km, and QuikSCAT. Based on this comparison, the sigmoid functions are plotted using visual in-
spection and serve as initial guides (see Supplementary Figure A6). During training, the weights of the model are
updated based on learned weighting functions. The custom sigmoid‐like functions have the following shape:

Out(lon,lat) = In(lon,lat) ×
A

1 + B × eX(lon,lat)− C
(1)

in which In(lon, lat) is the final output of the SRResNet architecture, and the parameters A is set to 1.36, B is set to
0.005, and C is set to 1.0.

After adjusting the elevation values, we apply the albedo physical activation function, once more using a custom
sigmoid‐like function (Equation 1). In this context, the parameter In(lon, lat) denotes the output of the elevation
physical activation function, while X(lon, lat) represents annual albedo Q5 data, varying both spatially and on a
yearly basis. The values assigned to the albedo Q5 physical‐activation functions are as follows: A is set to 1.0, B is
set to 0.05, and C is set to 37.0.

3.3. Training

During training, the RMSprop optimizer (Reddy et al., 2018) is employed, starting with a learning rate of 10− 3.
An exponential learning rate decay is implemented to dynamically adjust the learning rate in later training epochs.
The models are trained with a batch size of 16 over a span of 30 epochs. Early stopping is implemented to mitigate
potential model overfitting, whereby it monitors training mean squared error (MSE) loss. If the MSE loss did not
improve by at least the specified minimum threshold of 5 × 10− 4 (mm w.e. yr− 1)2 for five consecutive epochs, the
training process concludes prematurely. We experimented with alternative hyperparameters, such as learning
rate, loss function, and optimizer, using the validation data set, but found that the presented parameters produced
the best results.

To evaluate the importance of physical constraints, we train different models: one incorporating all three physical
constraints (referred to as SUPREME), another without any physical constraint (referred to as SRResNet), and
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additional models with exclusive use of each individual physical constraint—SUPREMEonly encoder,
SUPREMEonly spotlighter, and SUPREMEonly physical activation. Additionally, we train two models to evaluate the
importance of the remote sensing input features on the downscaled surface melt product, which we denote as
SUPREMEno albedo and SUPREMEno elevation. In SUPREMEno albedo, we omit the albedo input features, retaining
only RACMO 27 km and elevation as inputs. In SUPREMEno elevation, we exclude elevation, keeping only
RACMO 27 km and albedo. In SRResNet, we exclude all remote sensing features, using only RACMO 27 km as
an input feature.

3.4. Post‐Processing

Using the trained models from Section 3.3, we produce the SUPREME results and the results for which one or
more input features or physical constraints were excluded. The output from the super‐resolution models includes
patches with padding, which are subsequently clipped to form patches with dimensions of 54 × 54 pixels. Despite
the applied padding on patch edges, some patches exhibit pronounced transitions, resulting in a “checkerboard”
effect. To address this, we reposition all patches 27 km left and right relative to their original positions and
recalculate the results. Subsequently, we average the outcomes from the three runs to obtain the final SUPREME
results. Finally, we sum all the individual days to create aggregated products per melt season, measured in mm w.
e. per year. Due to memory constraints, we evaluate only the melt products per melt season rather than at a higher
temporal resolution.

3.5. Evaluation

Evaluating SUPREME poses a considerable challenge. There is no observational data set providing Antarctic‐
wide surface melt data at such a high spatial resolution for the past two decades. Consequently, we have to
rely on various available products to assess the performance of SUPREME. We compare SUPREME with in‐situ
data (AWS), another downscaled RACMO product (RACMO 2 km), and various remote sensing products
(QuikSCAT, PMW remote sensing, and a melt‐slush product from optical remote sensing), as was described in
Section 2.3.

Moreover, we also conduct a comparative analysis of SUPREME against RACMO 5.5 km, focusing exclusively
on the Antarctic Peninsula, where RACMO 5.5 km data are available. We compare SUPREME and RACMO
5.5 km for the testing period from 2010 to 2019 and employ four key metrics: coefficient of determination (R2),
Root Mean Square Error (RMSE), bias, and Pearson Correlation Coefficient (PCC). Firstly, R2 is a statistical
measure indicating the proportion of the variance in the reference data that can be explained by the prediction data
in a regression model. Secondly, the RMSE gives us an understanding of the average size of the differences
between predicted and observed values, effectively quantifying the overall performance of the model by taking
into account both the bias and variance of the errors. A lower RMSE signifies a better fit of the model to the data.
Thirdly, bias refers to the systematic deviation of the super‐resolution model predictions from the observed
values. The bias provides insight into any consistent overestimation or underestimation tendencies present in the
model's predictions compared to the reference data. Finally, the PCC evaluates the linear relationship between
predicted and observed values, with a scale ranging from − 1 to 1. A PCC of 1 indicates a perfect positive linear
relationship, signifying that the model accurately captures the temporal variability of the data. These four metrics
collectively offer a comprehensive evaluation of our model's performance. While R2 measures how well a
regression model fits the observed data, RMSE provides the overall accuracy, bias evaluates the systematic errors
or deviations in predictions compared to the true value, and PCC assesses the linear relationship.

4. Results
In the results section, we begin by analyzing the performance of SUPREME on the testing data set. At the end of
Section 4.1, we demonstrate that the testing metrics closely align with the training metrics, indicating that the
model generalizes effectively. Subsequently, in the remaining results (Sections 4.2–4.5), we incorporate the
training region and period for further analysis, while consistently indicating instances where data were included in
the training of the super‐resolution model.
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4.1. Performance on Testing Data Set

SUPREME demonstrates strong performance during the testing melt seasons from 2010 to 2019 when compared
to the reference data from RACMO 5.5 km, as illustrated by the performance metrics displayed in Figure 3.
Notably, SUPREME exhibits slightly higher melt values in specific regions, including the northern part of the
Larsen C Ice Shelf, the collapsed A‐68 iceberg in 2017 (Braakmann‐Folgmann et al., 2022), George VI, and
Wilkins ice shelves (see Figures 3a and 3b) For the locations of iceberg A‐68, Wilkins, and George VI ice shelves
see Figure 1. These areas align with locations exhibiting higher RMSE (Figure 3d) and bias (Figure 3e) values.
RMSE and bias values vary noticeably among different melt regimes (i.e., 10–100, 100–200, 200–300, 300–400,
and over 400 mm w.e. yr− 1). The highest RMSE and bias are found for the high melt regime (exceeding 400 mm
w.e. yr− 1), with median values of 103 and 325 mm w.e. yr− 1, respectively. This indicates that SUPREME's
performance could be improved, particularly for high melt rates. The lowest R2 values (Figure 3f) are observed for
both low and high melt regimes, specifically at the center of the Larsen C Ice Shelf, and the center and south of
George VI Ice Shelves, with values around − 1, indicating that SUPREME does not adequately capture the
variability in surface melt observed in RACMO 5.5 km.

The PCC (Figure 3g) is less dependent on the melt regimes and has a median value of 0.86, indicating a high level
of correlation between the annual melt values predicted by RACMO 5.5 km and SUPREME for most of the
Antarctic Peninsula. At the grounding zone of the Larsen C Ice Shelf and the George VI Ice Shelf, the PCC
surpasses 0.90, underlining a particularly strong correlation in these regions.

To assess the performance of SUPREME and RACMO 5.5 km during the training (2001–2002 to 2006–2007) and
non‐training (2007–2008 to 2018–2019) periods, we conducted a paired t‐test. We compared the yearly mean
RMSE values between RACMO 5.5 km and SUPREME for the six melt seasons of the training period against two
segments of the non‐training period: the first segment (2007–2008 to 2012–2013) and the second segment (2013–

Figure 3. Comparison of RACMO 5.5 km and SUPREME over the Antarctic Peninsula for the testing period (2010–2019), with median melt values for RACMO 5.5 km
in panel (a), median melt values for SUPREME in panel (b), and a scatter plot with annual RACMO 5.5 km and SUPREMEmelt values and regression line in panel (c).
The performance metrics with the root mean square error (RMSE), bias, coefficient of determination (R2), and Pearson correlation coefficient (PCC) are shown in panels
(d–g), respectively, where the upper panels show spatial maps and the bottom panels show the distribution of the data in kernel density estimate (KDE) plots, displaying
the data per melt regime based on the median RACMO 5.5 kmmelt values. Pixels with surface melt rates below 10 mmw.e. yr− 1 and pixels elevated more than 1,700 m
above sea level are excluded from the analyses, as their inclusion could artificially enhance the performance metrics.
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2014 to 2018–2019). The results indicate no significant difference in RMSE between RACMO 5.5 km and
SUPREME for both the training and non‐training periods. Table A1 presents the yearly average performance
metrics of surface melt for the Antarctic Peninsula and Larsen C during the training (2001–2002 to 2006–2007)
and non‐training (2007–2008 to 2018–2019) periods.

4.2. Comparison of SUPREME and RACMO 27 km

4.2.1. Temporal Analysis

Figure 4 shows consistent year‐to‐year area‐integrated variability among RACMO 27 km and SUPREME (with a
PCC >0.95 for all study regions), despite notable quantitative differences in the modeled values. Between 2001–
2002 and 2018–2019, the RACMO 27 km model projects an annual surface melt over the entire Antarctic Ice
Sheet of 98.5 and a standard deviation of the inter‐annual variability of ±22.0 Gt, whereas the SUPREME model
reports lower numbers at 79.5 ± 14.9 Gt yr− 1 (Figure 4a). For the Antarctic Peninsula (Figure 4b) and Larsen C
(Figure 4c), RACMO 27 km yields higher annual melt values (37.3 ± 10.7 Gt and 13.6 ± 4.6 Gt, respectively)
than SUPREME (34.6 ± 9.1 Gt and 12.4 ± 4.1 Gt, respectively). When comparing RACMO 27 km and SU-
PREME in the remainder of the ice sheet, we observe similar annual surface melt values for most ice shelves.
However, a notable exception is Shackleton (Figure 4f), where RACMO 27 km reports approximately 2 Gt more
surface melt (6.0 ± 2.2 Gt) compared to SUPREME (4.3 ± 1.4 Gt).

4.2.2. Spatial Analysis

To get a better understanding of when and where RACMO 27 km tends to result in higher surface melt values than
SUPREME, we can examine the spatial patterns of Larsen C, Roi Baudouin, Amery, Shackleton, and Abbot ice
shelves (Figure 5). These five ice shelves are selected for closer examination due to their relatively high surface
melt rates.

The lower surface melt values in SUPREME compared to RACMO 27 km presented in Figure 4 are not uniform;
rather, surface melt exhibits localized patterns of both lower and higher melt values. Lower surface melt values
for SUPREME are observed over the Larsen C Ice Shelf, especially during the melt season of 2011–2012, as
well as across all melt seasons over the Shackleton Ice Shelf. One exception is the northern part of the
Shackleton Ice Shelf, where SUPREME shows a peak in surface melt with an average annual value of
approximately 600 mm w.e., while RACMO 27 km has an average of around 160 mm w.e. annually. These high
melt values for SUPREME can likely be attributed to the extremely low albedo values in the vicinity of this area
(see Figure A5), connected to a persistent polynya adjacent to the Shackleton Ice Shelf (Nihashi &
Ohshima, 2015).With median albedo values of this open water of around 0.1, SUPREME most likely mis-
identifies this phenomenon as intense surface melt. For specific areas within the grounding zone, SUPREME
consistently demonstrates higher melt values than RACMO 27 km. This is especially evident during the high
melt season of 2012–2013 for the center part of the grounding zone of Roi Baudouin, the eastern part of Amery,
and the northern part of Abbot ice shelves.

4.2.3. Data Spread Analysis

Figure 6 quantifies the surface melt values of RACMO 27 km and SUPREME, distinguishing between values on
the floating ice shelf and in the grounding zone (see Figure A4 for precise locations). The surface melt range in
RACMO 27 km and SUPREME is assessed using the 5th (Q5) and 95th (Q95) percentiles. Notably, there is a
consistently wider range of surface melt in SUPREME compared to RACMO 27 km, observed in both the ice
shelf and grounding zone. In contrast, the mean and median values for both ice shelves and grounding zones are
generally higher in RACMO 27 km compared to SUPREME (except for the Amery Ice Shelf), reaffirming the
lower melt volumes in SUPREME in comparison to RACMO 27 km.

Examining the floating ice shelves, the most substantial discrepancy between RACMO 27 km and SUPREME is
observed on the Shackleton Ice Shelf. RACMO 27 km shows a Q5‐Q95 range of 73–234 mm w.e. yr− 1, while
SUPREME exhibits a wider range spanning from 2 to 659 mm w.e. yr− 1 (Figure 6d). The elevated melt values
(Q95) in SUPREME for the Shackleton Ice Shelf are also visually evident in Figure 5, particularly in the northern
sector of the shelf. Also, on the grounding zone, SUPREME consistently displays a larger Q5‐Q95 range
compared to RACMO 27 km. The most pronounced differences are seen in the cases of Amery (Figure 6c) and

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004212

DE RODA HUSMAN ET AL. 10 of 29

 19422466, 2024, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004212 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Abbot (Figure 6e). RACMO 27 km shows a Q95 value of 195 mmw.e. yr− 1 for Amery, while SUPREME yields a
higher value of 385 mm w.e. yr− 1. The contrast is even more pronounced for Abbot, with RACMO 27 km at
165 mm w.e. yr− 1 and SUPREME at 711 mm w.e. yr− 1.

Figure 4. Temporal evolution of surface melt for the melt seasons from 2001 to 2019, represented by RACMO 27 km (in orange), SUPREME (in green), and RACMO
5.5 km (in purple), with dashed lines representing the 2001–2019 mean. RACMO 5.5 km data are exclusively available for the Antarctic Peninsula (b) and Larsen C (c).
For the Antarctic‐wide time series (a), and specific locations including Roi Baudouin (d), Amery (e), Shackleton (f), and Abbot (g), only RACMO 27 km and
SUPREME data are depicted. Caution is advised when interpreting the data sets marked with an asterisk (a–c), as a part of these data were used in training SUPREME.
The extent of the selected regions can be found in Figure A4. Relevant statistics used to compare RACMO 27 km and SUPREME, including root mean square error
(RMSE), bias, coefficient of determination (R2), and Pearson correlation coefficient (PCC), are listed.
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4.3. Comparison of SUPREME and AWS

Figure 7 presents a comparison between RACMO 5.5 km, RACMO 27 km, and SUPREME with five AWS.
Notably, SUPREME exhibits a lower RMSE than RACMO 27 km for all five AWS, and a lower absolute bias for
AWS14, AWS15, and AWS18. The largest difference between SUPREME and RACMO 27 km is observed for
AWS18 (Figure 7d). For this AWS, SUPREME yields an RMSE of 87 mm w.e. yr− 1 and a bias of 23 mm w.e.
yr− 1, compared to the 244 mmw.e. yr− 1 RMSE and − 216mmw.e. yr− 1 bias for RACMO 27 km. Due to its coarse
resolution, RACMO 27 km fails to resolve the surface melt in areas with highly variable topography, such as
around AWS18. This AWS is situated near the grounding line of the Larsen C ice shelf, east of the Antarctic
Peninsula mountain range, and is prone to föhn events that contribute to surface melt (Kuipers Munneke
et al., 2018; Wiesenekker et al., 2018).

4.4. Comparison of SUPREME and Other Surface Melt Products

Given that RACMO 5.5 km data are limited to the Antarctic Peninsula, a comprehensive Antarctic‐wide
assessment between SUPREME and RACMO 5.5 km data set is not feasible. Here, we proceeded to compare
SUPREME with other melt products, that is, RACMO 2 km, QuikSCAT, PMW remote sensing, and an optical

Figure 5. Surface melt for (a) the average of melt seasons of 2001–2019, (b) low melt season 2011–2012, and high melt season 2012–2013 for RACMO 27 km,
SUPREME, and the difference between RACMO 27 km and SUPREME. Caution is advised when interpreting the data sets marked with an asterisk (i.e., Larsen C,
panel (a), as a part of these data were used in training SUPREME.
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remote sensing product that provides information on both melt and slush. Both RACMO 2 km and QuikSCAT
offer quantitative data on surface melt in mm w.e., whereas PMW and optical remote sensing techniques provide
binary outputs without specific quantification of melt volume.

Each of the validation data sets has distinct underlying methodologies (as was explained in Section 2.3), resulting
in large disparities in local surface melt patterns, as illustrated in Figure 8. In addition, Figure 9 illustrates the
comparison between SUPREME and the validation products using both a scatter plot and several performance
metrics. In the period from 2001 to 2009 (Figures 8a and 9a), the Larsen C Ice Shelf should be considered with
caution, as this data set was used during training of SUPREME. For the Roi Baudouin Ice Shelf, both QuikSCAT
and PMW data reveal higher surface melt levels in the eastern region (150 mm w.e. yr− 1 and 35 melt days yr− 1,
respectively) compared to the western area (75 mm w.e. yr− 1 and 20 melt days yr− 1, respectively). This gradient,
however, is not as clearly discernible in the RACMO 27 km, RACMO 2 km, or SUPREME data sets. Also, the R2

values are low when comparing SUPREME to QuikSCAT (− 2.18), and slightly higher but still very low for
RACMO 27 km (− 1.77) and RACMO 2 km (− 0.98), as illustrated in Figure 9a. For the Amery Ice Shelf, both
SUPREME and RACMO 2 km display some high surface melt values (250 mm w.e. yr− 1), particularly on the
southern part of the ice shelf. Likewise, QuikSCAT and PMW also show increased melt in the southern region
(150 mm w.e. yr− 1 and 40 melt days yr− 1, respectively), but the precise locations with the highest melt differ.
QuikSCAT shows the highest melt values toward the southeast, whereas PMW tends toward the center‐south,

Figure 6. The range of surface melt values for the ice shelves and grounding zones, showing the mean (crosses), median (vertical lines), 5th (Q5), and 95th (Q95)
percentile values, for the melt seasons spanning from 2001 to 2019. The data are presented for both RACMO 27 km (in orange) and SUPREME (in green) at the ice shelf
and grounding zone of (a) Larsen C, (b) Roi Baudouin, (c) Amery, (d) Shackleton, and (e) Abbot. Caution is advised when interpreting the data sets marked with an
asterisk (i.e., Larsen C in panel (a)), as a part of these data were used in training SUPREME.
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gradients that are not present in SUPREME. It is worth noting that RACMO 27 km and QuikSCAT and RACMO
27 km report surface melt below 200 mm w.e. yr− 1 for Amery, while SUPREME and RACMO 2 km register
values exceeding 500 mm w.e. yr− 1. The smoother representation of surface melt by RACMO 27 km and
QuikSCAT, attenuating peak values, is likely a result of their coarser spatial resolutions (i.e., 27 km for RACMO
27 km, and 25 km as a native spatial resolution for QuikSCAT). Likewise, the Shackleton Ice Shelf displays
elevated melt values in SUPREME and RACMO 2 km, exceeding 400 mm w.e. at the southern grounding line.
Moreover, in the northern region, SUPREME shows melting rates exceeding 500 mm w.e. yr− 1. The high surface
melt values at the southern grounding line of the Shackleton Ice Shelf are also observed in other validation
products, exceeding 250 mmw.e. yr− 1 in QuikSCAT, and 40 melt days yr− 1 in PMW. For the Abbot Ice Shelf, the
most substantial melt values are concentrated in the southern region bordering the Amundsen Sea. Here, SU-
PREME depicts surface melt values exceeding 400 mm w.e. yr− 1, whereas RACMO 27 km, RACMO 2 km, and
QuikSCAT melt values remain under 200 mm w.e. yr− 1.

Figure 7. Surface melt per melt season by RACMO 27 km (in orange), SUPREME (in green), RACMO 5.5 km (in purple), and automatic weather stations (AWS) (in
black). Data are collected from five automatic weather stations: AWS14 (a), AWS15 (b), AWS17 (c), AWS18 (d), and Neumayer (e). The Root Mean Squared Error
(RMSE), bias, and coefficient of determination (R2) are represented by the color of the respective model in comparison to AWS measurements. Figure A2 displays the
locations of the AWS.
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Moving to the second comparison period (2013–2019) in Figures 8b and 9b, we compare SUPREME to RACMO
27 km, RACMO 2 km, a melt and slush product derived from optical imagery, and PMW. As noted in Section 2.3,
since optical imagery detects meltwater solely when slushy or ponded water is present, they do not represent wet
snow that may later refreeze within the firn layer. Therefore, SUPREME is expected to show similar melt patterns
to the optical melt and slush product only in locations characterized by a low firn air content, where meltwater
accumulates at the surface. Figure 8b shows that the melt and slush product predominantly reveals high values
around the grounding line, indeed often corresponding to locations with supraglacial melt lake presence (e.g.,
Stokes et al., 2019). Some of these locations align with high melt values detected in SUPREME, such as the
central part of the grounding line of the Roi Baudouin Ice Shelf and the southern part of the grounding line of the
Amery Ice Shelf, where surface melt values range between 250 and 500 mm w.e. yr− 1. For the Roi Baudouin Ice
Shelf, the RMSE values are relatively low compared to the other ice shelves, standing at 33 mm w.e. yr− 1 for
RACMO 27 km and 38 mm w.e. yr− 1 for RACMO 2 km, as illustrated in Figure 9b. However, there are also
instances where there is not a clear overlap between surface melt in the melt and slush product and SUPREME, as
observed over the western part of the Amery Ice Shelf. Here, in the optical remote sensing product, melt or slush is
detected on average for at least three months per year, while RACMO 27 km, SUPREME, RACMO 2 km, and the
PMW product show low melt values around 50–100 mm w.e. yr− 1 or 5 melt days yr− 1. Similar to the 2001–2009
period, there are also variations in melt patterns between PMW and SUPREME for 2013–2019, with PMW
displaying a smoother surface melt pattern with fewer high‐resolution details compared to SUPREME. For both

Figure 8. Spatial comparison of SUPREME to validation data sets across two distinct periods: (a) 2001–2009 and (b) 2013–2019, encompassing Larsen C, Roi
Baudouin, Shackleton ice shelves, and Mary Byrd Land. For the 2001–2009 period, SUPREME is compared to RACMO 27 km, RACMO 2 km, QuikSCAT, and
passive microwave (PMW) remote sensing (note that the latter employs a different unit than the other methods). In the 2013–2019 period, SUPREME is compared to
RACMO 27 km, RACMO 2 km, a surface melt and slush product from optical remote sensing, and PMW remote sensing (both optical and PMWmeasurements employ
different units than the other methods). Caution is advised when interpreting the data set marked with an asterisk (i.e., SUPREME, Larsen C, 2001–2009), as a part of
these data were used during the training of SUPREME.
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Figure 9. Comparison of SUPREME to validation data sets across two distinct periods: (a) 2001–2009 and (b) 2013–2019, encompassing Larsen C, Roi Baudouin,
Shackleton ice shelves, and Mary Byrd Land, complementing Figure 8. The scatter plots compare SUPREME with validation products (i.e., RACMO 27 km, RACMO
2 km, QuikSCAT, passive microwave (PMW) remote sensing, and surface melt and slush product), with each line representing the least‐square fit. The Root Mean
Squared Error (RMSE), bias, and coefficient of determination (R2) are represented by the color of the respective validation data in comparison to SUPREME, for PMW
and the melt and slush product only the R2 is included. Caution is advised when interpreting the data sets marked with an asterisk (i.e., Larsen C, panel (a)), as a part of
these data were used in training SUPREME. Figure A4 shows the spatial extents analyzed.
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the Shackleton and Abbot ice shelves, we observe relatively large RMSE values, ranging from 51 to 114 mm
w.e. yr− 1.

4.5. Importance of Physical Constraints

In Sections 4.2, 4.3, and 4.4, we exclusively presented SUPREME, which uses the SRResNet model architecture
along with three physical constraints to incorporate remote sensing data. To assess the importance of these in-
dividual physical constraints, Figure 10a presents models trained exclusively with each physical constraint
(SUPREMEonly encoder, SUPREMEonly spotlighter, SUPREMEonly physical activation). Additionally, models with all
physical constraints but only one of the remote sensing input features are depicted (SUPREMEno albedo,
SUPREMEno elevation). Figure 10b showcases SUPREME with all three physical constraints alongside SRResNet
without any physical constraints. Additionally, Figure A7 shows the mean, median, and spread of the data sets
presented in Figure 10, and Table A2 shows the performance metrics of the different super‐resolution models
compared to RACMO 27 km.

The physical constraints responsible for integrating encoded albedo and elevation data into the model archi-
tecture (SUPREMEonly encoder), incorporating spotlighted albedo and elevation data (SUPREMEonly spotlighter),
and applying the physical activation function (SUPREMEonly physical activation) demonstrate a similar melt pattern
as SUPREME and RACMO 27 km over the Larsen C Ice Shelf, exhibiting a south‐north melt trend ranging from
roughly 100–400 mm w.e. yr− 1. However, beyond the Antarctic Peninsula, SUPREMEonly encoder,
SUPREMEonly spotlighter, and SUPREMEonly physical activation compare less favorably to SUPREME and RACMO
27 km. The median annual melt values over the Roi Baudouin, Amery, Shackleton, and Abbot ice shelves are
higher for SUPREME (averaging 61 mm w.e. yr− 1) and RACMO 27 km (averaging 88 mm w.e. yr− 1),
compared to SUPREMEonly encoder (averaging 37 mm w.e. yr− 1), SUPREMEonly spotlighter (averaging

Figure 10. Evaluating the performance of surface melt for the average of melt seasons of 2001–2019 across different model architectures. (a) SUPREMEwith individual
physical constraints (only encoder, only spotlighter, only physical activation), and SUPREME with the exclusion of albedo and elevation input features from the model
architectures, respectively. (b) Comparative data featuring RACMO 27 km, SUPREME with all physical constraints and input features, and SRResNet without any
physical constraint and with both albedo and elevation excluded from the model architecture. Caution is advised when interpreting the data sets marked with an asterisk
(i.e., Larsen C in panels (a and b)), as a part of these data were used in training SUPREME.
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50 mm w.e. yr− 1), and SUPREMEonly physical activation (averaging 44 mm w.e. yr
− 1) (see Figure A7). In com-

parison to RACMO 27 km on an Antarctic‐wide scale, SUPREME exhibits an RMSE of 32 mm w.e. yr− 1, while
SUPREMEonly encoder shows a slightly higher value at 33 mm w.e. yr

− 1. However, SUPREMEonly spotlighter and
SUPREMEonly physical activation exhibit notably higher RMSE values of 55 mm w.e. yr

− 1 and 53 mm w.e. yr− 1

respectively (see Table A2).

Similar observations apply to models that lack either albedo (SUPREMEno albedo) or elevation
(SUPREMEno elevation), as they do not generalize well beyond the Antarctic Peninsula. These models also tend to
underestimate surface melt compared to SUPREME and RACMO 27 km, as shown by their median annual melt
values over the Roi Baudouin, Amery, Shackleton, and Abbot ice shelves for SUPREMEno albedo (averaging
49 mm w.e. yr− 1) and SUPREMEno elevation (averaging 23 mm w.e. yr

− 1) (see Figure A7). When compared to
RACMO 27 km across Antarctica, SUPREME shows an RMSE of 32 mm w.e. yr− 1, akin to SUPREMEno albedo.
However, SUPREMEno elevation displays a notably higher RMSE of 60 mm w.e. yr

− 1 (see Table A2).

Besides the finding that models lacking physical constraints or input features display less melt on the ice
shelves compared to RACMO 27 km and SUPREME, there are also discrepancies in spatial patterns. The
SUPREME model, incorporating all input features, shows heightened melt values in the grounding zones,
aligning with observations from the validation data sets (Figure 8). However, models without albedo data (i.e.,
SUPREMEno albedo and SRResNET) indicate surface melt extending up to 50 km inland. This pattern persists
with SUPREMEonly encoder and SUPREMEonly spotlighter. This is most clearly visible in the case of the
Shackleton Ice Shelf, where values range between 50 and 150 mm w.e. yr− 1, whereas RACMO 27 km,
SUPREME, and the validation data sets in Figure 8 demonstrate values close to zero mm w.e. yr− 1.
Therefore, incorporating both albedo and elevation data is crucial for accurately representing melt patterns
outside the training region.

5. Discussion
Our study illustrated that the newly developed super‐resolution model, incorporating physical constraints derived
from albedo and elevation observations, outperforms models lacking such constraints. Notably, the single‐image
super‐resolution model, SRResNet, which was trained solely on RACMO 27 km, and the models lacking at least
one physical constraint, exhibited poor performance outside of the Antarctic Peninsula. The melt patterns
observed in these models differed notably from those seen in RACMO 27 km, RACMO 2 km, or QuikSCAT, with
most showing less surface melt (Figure A7). On the other hand, in some cases, models lacking albedo (i.e.,
SUPREMEno albedo) or albedo and elevation (i.e., SRResNet) led to increased melting further inland, which was
not present in other melt products. This poor performance underscored the need to integrate both albedo and
elevation data in an efficient manner into the super‐resolution model in order to produce an accurate downscaled
surface melt product. The incorporation of additional input features, such as climate variables like wind speed and
direction, could potentially enhance the super‐resolution product even further.

Integrating remote sensing data through deep learning into the downscaling of RCMs presents considerable
promise for multiple research purposes. Our approach could serve as a proof‐of‐concept and be extended to other
studies. Firstly, besides RACMO 27 km, our developed super‐resolution algorithm could be extended to other
RCMs like MAR (Agosta et al., 2019). Secondly, the potential application of super‐resolution techniques extends
across diverse data sets, including observations, model simulations, and emulated data (Vandal et al., 2017).
Lastly, the super‐resolution architecture is not limited to surface melt; it can enhance various other RCM vari-
ables. A critical advancement for Antarctica could involve applying such a super‐resolution technique not only to
surface melt but also to basal melt (e.g., Burgard et al., 2023), bed topography (e.g., Cai et al., 2023), or sea ice
motion (e.g., Petrou et al., 2018). In this study, albedo and elevation are identified as relevant remote sensing data
for downscaling surface melt, given their correlation with surface melt. However, downscaling other variables
from RCMs may require the incorporation of completely different remote sensing data, depending on the physical
processes that influence those variables. For example, in the case of downscaling surface temperature, Li
et al. (2019) demonstrated the value of including elevation, reflectance from optical remote sensing, vegetation
indices, and elevation in the downscaling process.

When assessing the downscaled surface melt product developed with the SUPREME architecture, we observe
favorable comparisons against RACMO 5.5 km, AWS, and various remote sensing products associated with
surface melt. Over the Antarctic Peninsula, SUPREME performed well, exhibiting a bias of − 22 mm w.e. yr− 1
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for melt pixels when compared to RACMO 5.5 km. Additionally, in comparison to AWS, SUPREME
exhibited an average RMSE of 81 mm w.e. yr− 1, outperforming RACMO 27 km, which had an average
RMSE of 129 mm w.e. yr− 1. However, evaluating SUPREME's performance beyond the Antarctic Peninsula
presented challenges. We conducted comparisons with RACMO 2 km, QuikSCAT, PMW remote sensing, and
an optical remote sensing‐derived melt and slush product. The substantial discrepancies between these data
sets made direct assessments challenging. Although some melt patterns, such as elevated surface melt along
the grounding zones of the studied ice shelves, were consistent with most of the other products, others, like the
heightened melt values north of the Shackleton Ice Shelf, were distinctive to SUPREME and appeared to be
an artifact due to low albedo values from the nearby ocean. Conducting follow‐up studies to further compare
SUPREME against validation data, such as with RACMO data downscaled using different techniques (e.g., a
more detailed comparison with the statistically‐downscaled RACMO product by Noël et al., 2023a), other
RCMs like MAR (Agosta et al., 2019), or quantitative meltwater products from PMW (currently available for
Greenland from Zheng et al., 2022), may provide additional insights into meltwater volumes on Antarctica.
Additionally, while this study focused on annual surface melt volumes due to memory constraints, future
research is planned to study the intra‐annual surface melt dynamics of SUPREME and compare them across
various validation data sets.

Opting for deep learning over traditional statistical or dynamical downscaling methods to enhance the resolution
of RCMs, SUPREME uses the capabilities of deep learning to capture complex patterns and non‐linear de-
pendencies in the data. While statistical and dynamical downscaling methods have played instrumental roles in
climate research (e.g., Ahmed et al., 2013; Noël et al., 2016, 2023a; Themeaal et al., 2012), deep learning offers an
alternative downscaling approach by incorporating diverse data sets without the need for statistical linear re-
lationships and integrating good generalization capabilities for efficient climate parameter downscaling. How-
ever, significant steps still need to be taken, as the inherent “black box” nature of deep learning poses challenges
in interpreting deep learning models. Anticipated efforts in enhancing the interpretability of the model are ex-
pected to refine its overall effectiveness and integration into climate research methodologies (Guidotti
et al., 2018; La Rocca & Perna, 2022; Savage, 2022).

6. Conclusion
The relatively coarse spatial resolution in RCMs is insufficient for accurately capturing small‐scale variations
in surface melt across the Antarctic Ice Sheet. In response, we adapted the super‐resolution architecture of
SRResNet with physical constraints to create SUPREME, a physically‐constrained super‐resolution model that
incorporates remote sensing data—specifically albedo and elevation—into the architecture. Using the SU-
PREME architecture, the surface melt component from RACMO at 27 km was downscaled to 5.5 km res-
olution. SUPREME achieved excellent out‐of‐sample performance within the training region, encompassing
the Antarctic Peninsula, as validated by comparisons with AWS and RACMO 5.5 km. Outside the training
region, SUPREME exhibited year‐to‐year variations that closely mirrored those of RACMO 27 km for in-
dividual ice shelves and on an Antarctic‐wide scale, while also providing additional spatial details absent in
RACMO 27 km. Moreover, comparing SUPREME with other melt products, like RACMO 2 km, QuikSCAT,
PMW remote sensing, and optical remote sensing, showed similar melt patterns. This study underscores the
potential of multi‐image super‐resolution in downscaling climate variables. Beyond the input features and
model architecture examined in this research, numerous other combinations deserve exploration to further
enhance the resolution of RCMs.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004212

DE RODA HUSMAN ET AL. 19 of 29

 19422466, 2024, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004212 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Appendix A: Additional Figures

Figure A1. Relation between RACMO 27 km and RACMO 5.5 km surface melt. The red line indicates the regression line,
while the black dashed line shows the 1:1 line, highlighting RACMO 5.5 km's tendency to underestimate surface melt
compared to RACMO 27 km. RMSE and bias are in mm w.e. yr− 1.

Figure A2. Locations of the five AWS used in this study. For additional details on the AWS, see Jakobs et al., 2020. Elevation
in the background map is from the Reference Elevation Model of Antarctica (REMA) (Howat et al., 2019).
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Figure A3. Location of the 13 patches used in training the super‐resolution models, all positioned on the Antarctic Peninsula.
The red box in the upper right corner highlights the specific location of the Antarctic Peninsula, with a background image of
the Cryosat‐2 elevation map (Helm et al., 2014).
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Figure A4. Overview of the five highlighted regions in this study, featuring an Antarctic‐wide perspective (a) along with
specific views of Larsen C (b), Abbot (c), Roi Baudouin (d), Amery (e), and Shackleton (f) ice shelves. The pixels in this
figure have a 27 km resolution matching the RACMO 27 km resolution, and for data with 5.5 km resolution (albedo,
elevation, RACMO 5.5 km), all data within these pixels were considered. Region‐wide assessments involved selecting all
pixels, ice shelf‐wide assessments only considered the red pixels, and grounding zone assessments focused solely on the
green ones.
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Figure A5. The mean surface melt for SUPREME (a), along with the median (b) and standard deviation (c) of albedo for 2001–2019. Caution is advised when
interpreting the data sets marked with an asterisk (i.e., Larsen C), as a part of these data were used in training SUPREME.
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Figure A6. The two physical activation functions (albedo Q5 and elevation) implemented in the SUPREME architecture are
depicted by black dashed lines. The weighted scatter plot represents normalized surface melt data for (a) RACMO 5.5 km
between 2001 and 2019 on the Antarctic Peninsula, (b) RACMO 27 km between 2001 and 2019 Antarctic‐wide, and
(c) QuikSCAT between 2001 and 2009 Antarctic‐wide.
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Figure A7. Boxplots of yearly average surface melt for the melt seasons of 2001–2019 at every pixel across different model
architectures, with median (in blue) and mean (in orange) values in mm w.e. yr− 1. Corresponding spatial maps are provided
in Figure 10, and the spatial extents analyzed are shown in Figure A4. Caution is advised when interpreting the data sets
marked with an asterisk (i.e., Larsen C in panel (a)), as a part of these data were used in training SUPREME.
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Data Availability Statement
Antarctic‐wide RACMO 27 km data at a 3‐hourly resolution can be obtained from van Wessem et al. (2022).
Additionally, RACMO 5.5 km data, as discussed in van Wessem et al. (2016), are accessible from Wallis
et al. (2023). RACMO 2 km data from Noël et al. (2023b) can be acquired from Noël et al. (2023b). Automatic
weather station data are accessible from Jakobs et al. (2020). In this research, the automatic weather station data
from Jakobs et al. (2020) were updated and provided through personal communication with Maurice van Tig-
gelen. The passive microwave data, as discussed in Picard and Fily (2006), can be downloaded from the following
link: https://snow.univ‐grenoble‐alpes.fr/melting/. The melt and slush data can be obtained from Dell et al.
(2024b). All scripts and data used in this study are accessible at https://github.com/SdeRodaHusman/SUPREME,
and the data are also archived at 4TU.ResearchData (de Roda Husman et al., 2024). For additional details
regarding the code and data, please feel free to contact us via email at S.deRodaHusman@tudelft.nl.
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Table A1
Analysis of the Yearly Average RMSE and Bias of SUPREME Compared to RACMO 5.5 km and RACMO 27 km Within the
Training Period (2001–2006) and the Subsequent Period (2007–2019)

Comparison RMSE Bias R2

(a) Data used during training (2001–2006)

SUPREME versus RACMO 5.5 km (Antarctic Peninsula) 4.8 − 1.4 0.96

SUPREME versus RACMO 27 km (Antarctic Peninsula) 4.4 − 3.4 0.99

SUPREME versus RACMO 5.5 km (Larsen C) 2.6 − 0.7 0.89

SUPREME versus RACMO 27 km (Larsen C) 1.6 − 1.2 0.97

(b) Data not used during training (2007–2019)

SUPREME versus RACMO 5.5 km (Antarctic Peninsula) 5.5 4.5 0.84

SUPREME versus RACMO 27 km (Antarctic Peninsula) 2.8 − 2.1 0.96

SUPREME versus RACMO 5.5 km (Larsen C) 2.5 1.8 0.73

SUPREME versus RACMO 27 km (Larsen C) 1.5 − 1.1 0.93

Note. RMSE and bias are in mm w.e. yr− 1. The spatial extents analyzed are shown in Figure A4.

Table A2
Antarctic‐Wide Performance Metrics of Deep Learning Model Architectures Compared to RACMO 27 km

Model architecture RMSE Bias R2

SUPREME 32.1 6.7 0.77

SRResNet 33.0 9.1 0.79

SUPREMEonly encoder 32.5 8.1 0.80

SUPREMEonly spotlighter 54.5 − 1.6 0.51

SUPREMEonly physical activation 53.3 2.06 0.59

SUPREMEno albedo 32.1 8.4 0.80

SUPREMEno elevation 60.4 8.4 0.41

Note. RMSE and bias are in mm w.e. yr− 1.
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