
 
 

Delft University of Technology

Improving Safety of Vertical Manoeuvres in a Layered Airspace with Deep Reinforcement
Learning

Groot, D.J.; Ribeiro, M.J.; Ellerbroek, J.; Hoekstra, J.M.

Publication date
2022
Document Version
Final published version
Published in
International Conference on Research in Air Transportation (ICRAT) 2022

Citation (APA)
Groot, D. J., Ribeiro, M. J., Ellerbroek, J., & Hoekstra, J. M. (2022). Improving Safety of Vertical
Manoeuvres in a Layered Airspace with Deep Reinforcement Learning. In International Conference on
Research in Air Transportation (ICRAT) 2022

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



ICRAT 2022 University of South Florida, Tampa, FL, USA

Improving Safety of Vertical Manoeuvres in a Layered
Airspace with Deep Reinforcement Learning

Jan Groot, Marta Ribeiro, Joost Ellerbroek and Jacco Hoekstra
Control and Simulation, Faculty of Aerospace Engineering

Delft University of Technology (TU Delft)
Delft, The Netherlands

Abstract—Current estimates show that the presence of unmanned
aviation is likely to grow exponentially over the course of the
next decades. Even with the more conservative estimates, these
expected high traffic densities require a re-evaluation of the
airspace structure to ensure safe and efficient operations. One
structure that scored high on both the safety and efficiency
metrics, as defined by the Metropolis project, is a layered
airspace, where aircraft with an intended heading are assigned
to a specific altitude layer. However, a problem arises once
aircraft start to vertically traverse between these layers, lead-
ing to a large number of conflicts and intrusions. One way
to potentially reduce the number of intrusions during these
operations is by using conventional conflict resolution algorithms.
These algorithms however have also been shown to lead to
instabilities at higher traffic densities. As recent years have shown
tremendous growth in the capabilities of Deep Reinforcement
Learning, it is interesting to see how well these methods perform
in the field of conflict resolution. This research investigates
and compares the performance of multiple Soft Actor Critic
models with the Modified Voltage Potential algorithm during
vertical manoeuvres in a layered airspace. The final obtained
performance of the trained models is comparable to that of the
Modified Voltage Potential algorithm and in certain scenarios,
the trained models even outperform the MVP algorithm. Overall,
the results show that DRL can improve upon the current state
of conflict resolution algorithms and provide new insight into the
development of safe operations.

Keywords—Conflict Detection and Resolution (CD&R), Deep
Reinforcement Learning (DRL), Modified Voltage Potential
(MVP), Unmanned Traffic Management (UTM), Self-Separation,
BlueSky ATC Simulator

I. INTRODUCTION

With the current rise in market demands for faster parcel
delivery combined with the incentive to reduce the cost of
delivery services, more and more companies have started
researching the viability of using drones for these so-called
last-mile delivery operations [1], [2]. Estimates for the drone
delivery market in Paris range widely between 110 k–275 k
drones operating per hour in the city by 2035 [3]. Even at the
lowest estimates, this far surpasses the traffic densities of the
current aviation standards. Thus, Federal Aviation Administra-
tion (FAA) and the International Civil Aviation Organisation
(ICAO) have required drones to be capable of detect and avoid
manoeuvres without the need of a human controller [4].

Constantly requiring avoidance manoeuvres, which likely
move aircraft away from their nominal path, is inefficient
and can lead to instabilities. Therefore, it is worthwhile to
research the effect of airspace structures on the intrinsic
safety of the airspace. The Metropolis project researched a
variety of different structures differing in complexity and
restrictions. It showed that a layered airspace, separating traffic
vertically based on their heading, leads to a high intrinsic
safety without (heavily) impacting the efficiency of the air
traffic operations [5]. This increase in safety can be attributed
to the separation and alignment effect [6]. The problem that
arises, however, is that vertically manoeuvring aircraft do not
benefit from this separation and alignment effect. This results
in these vertical operations leading to a large increase in
conflicts and intrusions, as demonstrated in different studies
[7], [8].

One potential solution to this rise in conflicts would be to
use conventional conflict resolution algorithms. However, at
higher traffic densities, these algorithms might potentially lead
to instabilities [9]. Conflict resolution at high traffic densities
essentially is a multi-agent coordination problem. Deep Re-
inforcement Learning (DRL) has been shown to successfully
learn how to operate in these environments by adapting to
emergent behaviour that follows from these continuous inter-
actions. Furthermore, studies have also shown that DRL can
be used for lane changing and merging of cars in highway
scenarios, which can be considered a 2D version of the layer
transition problem [10]. Because of this, this research will
investigate the capabilities of DRL for improving the safety
of vertical manoeuvres in a layered airspace structure through
direct control of the drones.

The DRL models will be trained for a variety of degrees
of freedom in large scale simulations, simulating both pack-
age deliveries and take-offs. The performance of the final
converged models will then be compared to the Modified
Voltage Potential (MVP) conflict resolution algorithm to see
if there is a benefit to using DRL over conventional methods.
It is decided to use the MVP algorithm as previous research
has shown that it is optimal at resolving conflicts whilst
minimizing additional travel distance [11].
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II. PROBLEM FORMULATION

To compare the effectiveness of DRL and the MVP algo-
rithm at resolving vertical conflicts and improving the overall
safety of vertical manoeuvres, vertical operations will be
simulated in the BlueSky Open Air Traffic Simulator [12]. In
this simulation environment, drones will be tasked with either
climb or descent commands to a specific target layer within
this airspace. During these vertical manoeuvres, the goal of
the model is to safely control the drone to the target layer
while avoiding the other aircraft. From now on, individually
controlled aircraft will be referred to as agents, whereas
the model is used to define which policy is used by these
individual agents.

The margin by which other aircraft must be avoided is
based on a minimum horizontal and vertical separation. If
any two aircraft are within these margins of each other, then
an intrusion occurs. In this research a conflict between two
aircraft means that the distance at the predicted closest point
of approach between these aircraft is smaller than the required
separation margins, indicating a potential future intrusion.

How these conflicts are resolved depends on which model
the agent is based. For the MVP models, when the agent is
in conflict, the shortest way out of the conflict is determined
and translated to a set of actions that should be taken by the
agent. The DRL based agents on the other hand are able to
select actions at any time, independent of whether or not the
agent is in conflict.

For this research the DRL and MVP models are further
subdivided into different models based on the freedom they
have in their actions, as it is currently unknown which set of
actions will result in the optimal performance. In total three
individual actions can be isolated: a change in vertical speed,
a change in horizontal speed and a change in heading. These
actions are combined to obtain the following ’sub-models’:

• ‘vs’, control of the vertical speed only.
• ‘v+vs’, control of the vertical and horizontal speed.
• ‘v+hdg’, control of the horizontal speed and heading.
• ‘full’, or 3 degrees of freedom, control of all motions.

III. METHODS

Here, the methods used in the experiments will be presented.
First, the Markov Decision Processes (MDPs) are formulated
to allow the usage of DRL methods. Then the employed DRL
algorithm, Soft Actor-Critic, will be further elaborated. Finally,
an overview of the used resolution baseline, MVP, will be
given.

A. Markov Decision Process

To ensure that DRL can be used for the defined problem, this
problem must first be formulated as an MDP. An MDP is a
mathematical framework that can be used for decision making
in systems with uncertainty. An important element of the MDP

is the so-called Markov-property, which entails that the future
states of the system should only be dependent on the current
state of the system. For the scenario of conflict resolution with
MVP this Markov-property holds, as for a specific conflict,
the used resolution manoeuvre, and therefore future states, are
independent of how these aircraft came to be in conflict. It is
therefore assumed that this property also holds for DRL. This
allows the problem to be formulated as an MDP, described by
the quadruple (S,A,P,R): [13]

1) S, the state space of the system.
2) A, the action space of the system.
3) P([s,a],s′), the state transition function.
4) R(s,a,s′), the reward function.

The goal of the model is to learn which action a ∈ A given
a state s ∈ S maximizes the total reward ∑r ∈ R over all the
state transitions s,a → s′, where s′ indicates the new state.

1) State: The state vector is a combination of the ownship
states and the (relative) states of the intruders. Note that the
number of aircraft in the vicinity of the ownship is variable,
but the proposed method required the state representation to
be constant in size. This means that the problem has to be
converted to a partial observable MDP (POMDP). For this
research, it is decided to include 5 aircraft in the state represen-
tation sorted by time until the closest point of approach (Tcpa)
with a maximum distance at the closest point of approach
(Dcpa) of 250m, which is 5 times the minimum horizontal
separation (PZh) between 2 aircraft. This ignores aircraft that
are moving away from the agent and only includes the aircraft
with the smallest Tcpa in the state, e.g, the aircraft that require
the most imminent action. An exception to this is made for
aircraft that are in conflict, these are prioritized over other
aircraft and are always included in the state, again sorted by
Tcpa. All the horizontal states considered for state inclusion are
given in Fig. 1. CPA stands for the closest point of approach,
which is the point at minimum horizontal distance. Apart from
this also the vertical distance, Dz, and relative vertical velocity,
Vw, are considered.

For the ownship state, the height difference with the target
layer (∆h), vertical speed (Vs), horizontal speed (Vown) and
heading difference with the current layer (∆hdglayer) are used
for the state vector. The final state vectors for all the models
are given in table I. Not all models are given the same state
vector as it is assumed that a too-large state vector containing
non-relevant information will negatively impact the required
training time of the models.

Finally, all states are normalized using equation 1 before
usage, which makes the distribution of all states have a zero
mean and unit variance. This ensures that the initial weights for
all states are of a similar magnitude. In this equation, µs refers
to the mean value of this state and σs to the standard deviation.
The values for σs and µs are determined by observing 100.000
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state transitions. An exception for the normalization of the
state vector is made for the conflict boolean parameter, which
is kept as a boolean.

S =
si −µs

σs
(1)

Figure 1. Visualization of the (horizontal) states related to an intruder.

TABLE I. The resulting state vector for the different experiments.

vert vert+ hor full
Ownship States
Vs x x x x
Vown x x x
∆hdglayer x x
∆h x x x x
Intruder States (x5) ↓
Tcpa x x x x
Dcpa x x x x
Conflict with ownship (boolean) x x x x
Dz x x x x
Dx x x x
Dy x x x
Vu x x x
Vv x x
brg x x
∆hdgint x x

2) Action Space: For the action space, the allowable actions
and their limits have to be defined. The allowable actions are
dependent on the different models, defined in section II. The
limits for the different actions are given in table II. In this
table, the increment column indicates the maximum change
in action per time-step of the simulation. Note that the sign
of allowed vertical speed is bounded to the objective of the
agent.
3) State Transition Function: The state transition function is
fully determined by the underlying dynamics implemented in
the BlueSky Open Air Traffic Simulator

TABLE II. Allowed range and increments per time-step for each of the
different actions.

Action Range Increment
Vertical Speed (m/s) [-5, 5] [-5, 5]
Horizontal Speed (m/s) [5, 15] [-1.5, 1.5]
Heading (deg) [0, 360] [-45, 45]

4) Reward: It is preferred to keep the reward function as
simple as possible while encompassing all the requirements
of the solution to the problem [14]. This leads to the reward
function given in equation 2. Here starget refers to a state in
which the agent is in the corresponding target layer and sLoS
is a state in which an intrusion with the agent is present.

r =

 1 s = starget
−1 s = sLoS
0 otherwise

(2)

B. Deep Reinforcement Learning: Soft Actor Critic

To solve the (PO)MDP defined in section III-A use is made
of the Soft Actor-Critic (SAC) DRL algorithm. SAC is an
off-policy, model-free, DRL algorithm, which means that it
can learn from past experiences without explicitly knowing
the environment dynamics or reward function. Off-policy is
preferred over on-policy methods because on-policy methods
have a lower sample efficiency, which would result in slower
learning. SAC also has shown to be very stable during training,
even in environments with sparse rewards, which makes it a
prime candidate for this research. The hyperparameters used
for this research are the same as the ones used by the original
authors with a reward scale of 10 [15].

C. Baseline Resolution Algorithm: Modified Voltage Potential

To provide a reference for the performance of the DRL
models, all scenarios are also simulated with the MVP conflict
resolution algorithm [16]. MVP determines the closest point
of approach of two aircraft, and, if the distance between the
two aircraft at CPA is smaller than the minimum separation
distance, a repelling ‘force’ is determined which changes the
velocity vector such that the shortest way out of the conflict
is determined. This is visually presented in Fig. 2. This also
entails that, unlike the DRL agents, MVP agents will only
change the current course if the aircraft is in conflict. To ensure
a fair comparison between the MVP and the DRL models, the
MVP model will have the same constraints on their degrees
of freedom imposed as their DRL counterpart.

IV. EXPERIMENTAL SETUP

A. Experimental Scenario

For all conducted experiments, the goal of the agent is to
traverse through the different layers in a layered airspace and
reach the target layer without intrusions.

The layered airspace in question consists of 2 sets of 8
altitude layers, each having an allowed heading range of 45



ICRAT 2022 University of South Florida, Tampa, FL, USA

PZIntruder

Repelling
Force

Ownship

Heading
Deviation

•

CPA

Intruder

Speed
Change

Figure 2. Graphical representation of the MVP algorithm, adapted from [16].

degrees, covering all the possible heading angles twice. The
purpose of having 2 sets of layers is that long-distance travel
can be done at higher speeds in the top layers, whereas short-
distance commute is allocated to the slower bottom layers
[5]. For this research, however, the different layers function
solely as a way to artificially generate the need for vertical
manoeuvres. A transition layer is placed between each layer
that can only be accessed by aircraft conducting vertical
manoeuvres, which allows the agent to adapt to the new layer
before merging. All layers are 25ft in height.

Within this airspace, aircraft operating in the top 8 layers
will have a certain probability to obtain a descent command
to one of the 8 bottom layers, simulating the delivery of a
package. Similarly, aircraft flying in the bottom 8 layers have
a probability to get a climb command, simulating the return
to a warehouse or place outside of the city. This probability is
selected such that on average 5% of the aircraft in the airspace
are conducting vertical manoeuvres at any given time. This
means that at any given time roughly 5% of the aircraft in the
airspace will be controlled by either DRL or MVP.

B. Traffic Density and Conflict Probability

The traffic density in the airspace is selected to be 55AC/NM2,
equally distributed over all of the heading layers. The conflict
probability between an agent and any other aircraft, based on
the equations in Sunil [9], equals 9.9%.

C. Control Variables

1) Simulation time-steps: The simulation is run with time-
steps of 1.5 seconds. Thus, the DRL agent selects an action
for the aircraft every 1.5 seconds. The MVP agent selects an
action for the aircraft every 1.5 seconds only when in conflict.
2) Minimum Separation: The protected zone around all air-
craft is set at 50m horizontally (Rpz) and 25 feet vertically
(hpz). These values are based on comparable work [17], as
currently no standard for separation requirements has been
specified for unmanned aviation.
3) Conflict Detection: For all experiments, instead of look-
ahead time use is made of a ‘search cylinder’ with a radius of
500m, spanning from the agent’s altitude to the altitude of the
target layer. All aircraft within this cylinder with a Dcpa < PZh
are evaluated for potential conflicts. This is done by comparing
the times in and out of the horizontal and vertical minimum

separation. If there is overlap between these times the aircraft
are labelled as in conflict. The choice for a look-ahead distance
instead of look-ahead time is made to ensure that aircraft that
are flying (almost) parallel to the agent, but that are very close
in absolute distance, will not be overlooked for state inclusion.
This has as a drawback that aircraft with a very high relative
speed, and therefore a much smaller Tcpa than other aircraft,
might initially be ignored.
4) Default Speeds: All cruising aircraft will be flying at a
constant horizontal speed of 10m/s. The default vertical speed
for the baseline and MVP during climb or descent is 4m/s.
5) Conflict Resolution: For all of the aircraft that are not con-
ducting vertical manoeuvres the conflict resolution is turned
off. Solely the agents are responsible for resolving conflicts.

D. Dependent Variables

Three safety parameters are used: the average number of
conflicts encountered during a vertical manoeuvre, average
time spent in conflicts, and the average number of intrusions or
losses of minimum separation. The latter is the most important
as it directly relates to the safety of the operations. The
number of conflicts encountered can give a good indication
of the relative stability between the different methods and
the percentage of time spent in conflict can be related to the
efficacy of the performed resolution manoeuvres.

E. Experimental Hypotheses

1) Action Space Usage: It is hypothesized that all the models
that can control the vertical speed will opt for a high mean
vertical speed. This hypothesis is based on the findings of Sunil
and Tra where it is shown that lower vertical speeds lead to
more intrusions [7], [8].

For the horizontal speeds, it is expected that the mean
horizontal speed will be equal to the mean cruise speed. This
also implies that the mean horizontal speed change will be
equal to zero. This hypothesis stems from the fact that having
a horizontal speed equal to the cruise speed lowers the relative
horizontal velocity between the aircraft.

Finally, the heading changes are expected to be small of
magnitude, as large heading changes will also change the ob-
served aircraft by the agent considerably. From a predictability
point of view, this is unfavourable, as the agent has less control
over the next state.
2) Performance Differences: For the performance differences,
it is hypothesized that the models with more degrees of
freedom will have fewer intrusions than the models with fewer
degrees of freedom at the cost of higher training time. This
is because it was shown that having more degrees of freedom
increases the safety of a DRL model in a lane-changing and
merging task on the highway [10]. Simultaneously it is hy-
pothesized that the total number of conflicts will increase due
to the Domino Effect of conflict resolution manoeuvres [18].



ICRAT 2022 University of South Florida, Tampa, FL, USA

(a) (b) (c)

Figure 3. Boxplots for the selected actions during conflict resolution and during non-conflict situations. a) Selected (absolute) vertical speed. b) Selected horizontal
speed changes. c) Selected heading changes. Note that these are selected actions per time-step.

Finally, it is not expected that the DRL models will out-
perform the MVP models. This is hypothesized as MVP
has been shown to be very effective at resolving conflicts
whilst simultaneously having minimal loss at the overall (path)
efficiency. The used DRL models on the other hand are an
initial attempt in terms of MDP formulation, model choice and
hyperparameter selection and have not yet been extensively
optimized and researched in regards of performance.

V. RESULTS

For the results, the performance of the final trained DRL
models will be shown next to the performance of the MVP
conflict resolution algorithm with the same degrees of free-
dom. First, the usage of the action space will be shown to
illustrate the final trained policies. Then, the results of the
safety metrics will be shown for the different models. For the
results, more than 10.000 vertical flight manoeuvres have been
simulated per model with randomly generated surrounding
traffic.

A. Model Policy Differences

To better understand the differences in performance in terms
of safety and efficiency the differences in policies between the
different models is shown. This is done through a selected
action boxplot for all 3 actions, given in Fig. 3.

Analysis of the action space usage shows that the DRL
model’s policy is semi-independent on the Boolean conflict
variable, which specifies if an agent is in conflict or not.
Instead, a more notable correlation is observed with the Tcpa
and Dcpa variables, as indicated in Fig. 4, which shows the
mean magnitude of the actions for all DRL models against
Tcpa and Dcpa. From this figure, it is noticeable that the most
prevalent differences in the policy can be observed for Dcpa
< 100m and Tcpa < 20s.

This shows that the agent changes course even if it is not
necessarily in conflict. Therefore it is decided to define the

Figure 4. Color plot of the mean selected action magnitude, averaged for all
the DRL models and different actions, normalized between 0 and 1. Plotted

against Tcpa and Dcpa

“Conflict Resolution” category in Fig. 3 as all actions selected
whilst Tcpa is smaller than 20 seconds and Dcpa smaller than
100 meters. The “Non-Conflict” category is then defined as all
other actions. An exception to this definition is for the MVP
model, which is called based on the Boolean conflict variable,
for this model the category is simply: selected actions whilst
in conflict.

The high number of outliers in Fig. 3 is also a direct result
of highlighting only the differences based on Tcpa and Dcpa,
as the influence of other state variables on the selected action
can not be represented in the same figure.

From Fig. 3 it is visible that a broader area of the action
space is utilized by the DRL models when resolving conflicts
than during nominal flight, indicated by the larger whiskers and
higher frequency of outliers. This shows that the DRL models
successfully learn the concept of danger, and understand
that continuing the current course of action might result in
dangerous states or even intrusions.

Similarly, the narrow distribution during nominal flight
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conditions shows that the agent understands that, in principle,
there is no need to change the actions during safe operations.

Fig. 3a shows the selected vertical speeds by the different
models. It is interesting to notice the differences in policy
between the ‘vs’ and the ‘v+vs’ model. The ‘vs’ model utilizes
a low vertical speed during nominal operations, during conflict
resolution the mean vertical speed is slightly lower whilst
simultaneously having more outliers in the direction of increas-
ing vertical speed. The exact opposite policy is observed for
the ‘v+vs’ model. The reason for the lower vertical speeds of
the ‘vs’ and ‘full’ models is currently unknown and contradicts
the hypothesis that the models would prefer a higher vertical
speed.

For the horizontal speeds, it is visible that the mean speed
change is centred around zero for all models except the ‘full’
model. This partially confirms the hypothesis that the models
will prefer a horizontal speed equal to the horizontal cruise
speed. As the ‘full’ model has a lower mean vertical speed
it might be possible that the lower horizontal speed is used
to increase the climb/descent angle, although more research is
required to see if this behaviour is actually beneficial for the
safety of the operations.

Overall it seems as if the differences in policy between
“Conflict Resolution” and “Non-Conflict” are smaller for the
‘full’ model. It is possible that, because it can combine 3
different actions, the required magnitude of the actions to
transition to a safer state is lower, indicated also by the
relatively low spread in actions. Furthermore, as the DRL
model does not necessarily resolve the conflict in a single time
step this smaller spread in selected actions does not indicate
that the DRL model is capable of resolving the conflict with
smaller total deviations than MVP.

The difference is that MVP will always compute the re-
quired state-change to resolve the individual conflicts at the
current time-step, this paired with the summation of conflict
resolutions in multi-aircraft conflict scenarios can lead to large
initial deviations. The DRL model on the other hand can
decide to wait before resolving or resolve a conflict in a series
of small increments, which might still result in a large total
deviation, not indicated by Fig. 3. The only exception to this
is the selected vertical speed, as that does not reflect a change
from the current state, but an absolute speed.

B. Safety Analysis

First, looking at the total number of conflicts shown in Fig.
5, it becomes apparent that for all cases the total number of
conflicts encountered during operations increases with respect
to the metrics for not using any conflict resolution. This is a
common phenomenon often described as the Domino Effect
[18], [9]. In essence, the resolving manoeuvres conducted by
the agents result in a larger volume of airspace being used. This
in turn increases the number of potential conflict pairs when

Figure 5. Average number of conflicts encountered during a vertical
manoeuvre.

compared to flying in a straight line. The largest increase in the
number of conflicts is observed in the ‘vs’ and ‘full’ models,
and can be partially related to the overall lower vertical speed
these models have during operations, as shown in Fig. 3a.

Because of these lower vertical speeds, the duration of
vertical operations is also increased, which can result in an
increase of conflicts encountered. It is interesting to note that
this “Domino Effect” is less apparent in the ‘v+vs’ and ‘v+hdg’
DRL models than for their respective MVP models. It is
hypothesized that this can be attributed to the ability of the
DRL models to act when not in conflict. This, for example,
allows the agent to delay returning to nominal conditions after
a resolution if it is observed that this would result in a new
conflict. Because of this conflicts are prevented and therefore
not observed for this metric.

Looking at the percentage of time spent flying in conflicts,
shown in Fig. 6, for most cases a decrease in comparison to
no resolution is observed. This can be attributed to the conflict
resolving actions both the MVP and DRL models use, which
effectively shortens the duration of the conflicts. The only
model for which this decrease is not observed is for the ‘full’
model. As the total number of conflicts is comparable to the
‘v’ model, this indicates that the duration of conflicts for the
‘full’ model, in general, is longer. This might be caused by
either the postponing of resolution manoeuvres or due to less
effective resolution manoeuvres.

Finally, with the total number of intrusions per flight given
in Fig. 7, it can be seen that all of the models successfully
reduce the total number of intrusions when compared to
no resolution. Closer inspection of Fig. 7 also shows that
increasing the degrees of freedom does not necessarily result
in a safer policy for the DRL model. This is interesting, as the
policy of the DRL ‘vs’ model is part of the solution space of
the ‘v+vs’ and ‘full’ models. Similarly, the policy conducted
by the MVP models is also part of the solution space of
their respective DRL models. Because the performance of
the ‘v+vs’ and ‘full’ models does not match the performance
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Figure 6. Average percentage of time spent in conflict while conducting
vertical manoeuvres.

of better available policies (in this case the policy of the
‘v+vs’ MVP model), it can be concluded that these models
are likely stuck in a local optimum. This highlights one of
the drawbacks of using Deep Reinforcement Learning for
higher-dimensional problems. With more actions, the required
exploration increases exponentially, increasing the required
training time whilst decreasing the guarantee of convergence
to the global (or a more optimal local) optimum.

A final remark is that the DRL model found a horizontal
resolution method that outperforms the MVP model in terms of
safety. Fig. 3 already showed that the DRL models also acted
when not in conflict. Because of this, the model encounters
fewer conflicts during vertical manoeuvres, which in turn leads
to fewer potential conflicts leading to an intrusion.

Figure 7. Number of intrusions per vertical manoeuvre.

VI. DISCUSSION

The results of this research have shown that Deep Reinforce-
ment Learning can be used to train a model that learns to
reduce the number of intrusions during vertical manoeuvres in
a layered airspace. It learned this from a simple reward func-
tion that only rewarded successful operations and penalized

intrusions. This shows that simple reward structures can be
used in complex environments, which has as an added benefit
that it is easy to visualize what the desired behaviour of the
agent is when compared to more complex reward structures.

During the safety analysis, the DRL model outperformed
the MVP model in the horizontal scenarios. This performance
difference can be attributed to the fact that the DRL model
is able to perform conflict resolving manoeuvres at different
moments. MVP on the other hand performs the resolution
manoeuvre at the moment a conflict becomes apparent in the
state vector, which is bounded by the look-ahead distance.
DRL has the freedom to find the optimal moment for conflict
resolution. In previous work, it has already been demonstrated
that having a constant look-ahead time might not be opti-
mal [19]. Furthermore, the DRL model has control over the
selected actions during the recovery phase after resolving a
conflict, allowing it to prevent new conflicts from happening.

Additionally, it is interesting to further investigate the fact
that the model preemptively acted when aircraft would get
close, but would not (yet) be in conflict. This behaviour
effectively increases the minimum horizontal separation the
model adheres to, which theoretically could decrease the sta-
bility of the manoeuvres by increasing the number of conflict
resolution manoeuvres [9]. It is possible that the DRL model
actively acts as a conflict prevention mechanism apart from
resolving conflicts. This has two potential benefits, preventing
conflicts requires smaller deviations from the current flight
path than resolving conflicts and larger margins with other
aircraft increases the available solution space in the case of
new conflicts, potentially reducing the occurrence of multi-
conflict scenarios where finding a solution is difficult. When
looking at the total number of conflicts it seems as if this
strategy does indeed lead to a minimal increase in secondary
conflicts for both the ‘vert+’ and ‘hor’ models.

From the results, it is also visible that the DRL models
are not converged to the global optimum. This means that the
performance of the DRL model could potentially be further
improved with either more training (unlikely if the model is
stuck in a local optimum) or a better definition of the Markov
Decision Process (MDP). One of the main problems with
the current implementation of the MDP is the presence of
partial observability in the state representation. Once a problem
becomes partially observable, the theoretical guarantee of
eventual convergence to the global optimum no longer holds.
As the state-space in the simulation environment is continuous
and the environment in real life would be unbounded, partial
observability will always be a problem. However, expanding
the state representation to include more aircraft, researching a
more consistent representation and potentially also including
historic states (k-th order history approach [14]) can all be
done to decrease the impact of partial observability on the
performance. Especially the inclusion of historic observations
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in the state can prove to be of utmost importance, as currently,
it is possible that the agent resolves a conflict and is no longer
aware of the existence of the old conflict in the next time
step, causing the agent to revert to the old state and back into
conflict. This indicates that with the current implementation of
the MDP the problem has areas in which the Markov Property
does not hold. Another possibility would be to still include
aircraft, with which the agent previously was in conflict, in
the state, even though there is no imminent danger anymore.
A final interesting experiment would be to research the effect
of the number of aircraft in the state vector on the performance
of the model. It might be that the performance gradually goes
up due to reduction of the partial observability, at the same
time however a larger state will lead to longer duration of the
training time. Optimizing this trade-off can potentially increase
the performance further.

Finally, there are some limitations to the results. For ex-
ample, the traffic scenarios can be adapted to have higher or
variable traffic densities and include aircraft flying at different
cruise velocities. Furthermore, it is difficult to anticipate how
the model would perform in more complex traffic where not
all aircraft would adhere to the altitude layers. Apart from
this, elements such as static obstacles or maximum horizon-
tal distance travelled during the vertical operations can also
influence the effectiveness of the trained model. To estimate
the true effectiveness of DRL for safe manoeuvring, it should
be trained and tested in a variety of different traffic scenarios
consisting of operations during all stages of flight (potentially
using different models/policies for different conditions). An
initial step in this direction would be the activation of conflict
resolution for cruising aircraft. This extra element will remove
much of the stationarity and therefore the predictability from
the environment, and will better show the ability of the
DRL model to deal with emergent behaviour. This would
however also lead to massive multi-agent operations, which
will negatively impact the stability and duration of training.
Overall, the results obtained however do show that DRL can
potentially be used for improving the safety and can provide
new insights into the understanding of safe operations.

VII. CONCLUSION

This paper analysed the capabilities of Deep Reinforcement
Learning (DRL) for improving the safety of vertical manoeu-
vres in a layered airspace through direct control. It was shown
that DRL is capable of learning policies that effectively reduce
the number of intrusions for a variety of different degrees of
freedom, even outperforming the Modified Voltage Potential
algorithm in certain scenarios. This work shows that DRL
can successfully be used for detect and avoid operations in
high traffic density scenarios. More research is still required
in the design of the Markov Decision Process as well as
the DRL model selection to further improve on the obtained

performance. Additionally, more analysis is required on the
failure cases of the current DRL model to better understand
the weaknesses and areas of improvement. Finally, future work
should investigate the usage of DRL in more competitive and
changing traffic scenarios such as non-uniform traffic densities
and for different control tasks such as horizontal control.
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