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Crafted vs Learned Representations in Predictive
Models—A Case Study on Cyclist Path Prediction

Ewoud A. I. Pool , Julian F. P. Kooij , and Dariu M. Gavrila

Abstract—This paper compares two models for context-based
path prediction of objects with switching dynamics: a Dynamic
Bayesian Network (DBN) and a Recurrent Neural Network (RNN).
These models are instances of two larger model categories, dis-
tinguished by whether expert knowledge is explicitly crafted into
the state representation (and thus is interpretable) or whether the
representation is learned from data, respectively. Both have shown
state-of-the-art performance in previous work. In order to provide
a fair comparison, we ensure that both models are treated similarly
with respect to the use of context cues and parameter estimation.
Specifically, we describe (1) how to integrate the context cues (used
previously by the DBN) into the RNN, and (2) how to optimize
the DBN with back-propagation similar to the RNN, while keeping
an interpretable state representation. Experiments are performed
on a scenario where a cyclist might turn left at an intersection in
front of the ego-vehicle. Results show that the RNN successfully
leverages the context cues, and that optimizing the DBN improves
its performance with respect to existing work. While the RNN
outperforms the optimized DBN in predictive log-likelihood by a
significant margin, both models attain similar average Euclidean
distance errors (23–39 cm for DBN and 31–34 cm for RNN, pre-
dicting 1 s ahead).

Index Terms—Active safety, vulnerable road users (VRUs),
motion prediction.

I. INTRODUCTION

V EHICLE environment perception has made great strides
over the past years, largely thanks to advances in neu-

ral networks such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs). These data-driven
approaches learn an optimized state representation, rather than
requiring a (hand) crafted state representation. At the core of all
neural network methods is gradient descent-based optimization.

The prediction of the future path of Vulnerable Road Users
(VRUs) (e.g. pedestrians, cyclists, and other riders) is a challeng-
ing remaining problem for vehicle environment perception, due
to their high manoeuvrability. Context information, such as body
gestures, road lay-out or the vicinity of other road users have
been shown to improve the accuracy of path prediction compared
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to only using point target kinematics (e.g. [1]). Methods with
learned representations have shown state of the art performance
in specific scenarios.

The downside of purely data-driven approaches is they do
not provide an intuitive explanation of their output: the learned
state representation essentially renders them black-box models.
The lack of interpretability complicates understanding why they
fail when they do, which is disadvantageous for safety-critical
domains such as intelligent vehicles. To counter this, a field of
study emerged to make the reasoning of neural networks explicit
(e.g. [2]), but this remains an open challenge [3]. The lack
of interpretability is especially noticeable with path prediction,
where the temporal aspect implies causality: a cyclist is predicted
to turn left because of the outstretched arm, a pedestrian is pre-
dicted to cross the street because he failed to see the approaching
vehicle, etc.

On the other hand, models with (hand) crafted state rep-
resentations such as dynamic bayesian networks (DBNs) [1]
can capture causal relationships explicitly and are popular for
interpretable probabilistic VRU path prediction. However, as
their crafted representations are an abstraction of the real world,
they might not encode all the useful information that is available
in the data. Additionally, the parameters for these methods are
often not optimized, but instead individually estimated from
ground truth annotations (e.g. [1]) or tuned manually (e.g. [4]).
Estimating parameters individually does not necessarily opti-
mize the predictive performance of the complete model directly.
Furthermore, the additional context ground truth labeling is a
time-consuming investment that is not required for a learned
state representation.

In this paper, we compare the context-based path prediction
performance of a model with a learned state representation, an
RNN, to that of a model with a crafted state representation, a
DBN (Fig. 1). For the comparison, we level the playing field in
two ways with respect to the state of the art. First, we provide an
RNN which can incorporate the context cues effectively, similar
to the DBN. Second, we show that we can employ the same
optimization strategy on the DBN as we employ for the RNN,
namely gradient descent, while ensuring that the meaning of its
crafted state representation is not lost.

II. PREVIOUS WORK

VRU path prediction has attracted great attention in the
previous decade, see recent surveys [5], [6]. Path prediction
methods require VRU positions as input. Ground plane positions
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Fig. 1. Context-based cyclist path prediction with a RNN (“black box,” i.e.
learned representation) and a DBN (“white box,” i.e. crafted representation).
The context cues are: distance to the intersection (static context), time until the
ego-vehicle overtakes (dynamic context), and a possible arm gesture (object
context). Predictions involve distributions over future cyclist positions.

relative to a vehicle reference frame can be obtained from
detections in various sensors (camera [7], radar [8], LiDAR [9]).
If ground plane positions relative to a global reference frame are
needed (e.g. this paper), then vehicle ego-motion compensation
is necessary, as an additional pre-processing step. The following
sub-sections describe various aspects of prediction methods.

A. Motion Models

Two main categories of motion models are physics- and
pattern-based [6]. In physics-based methods, motion is pre-
dicted by forward propagation of a set of explicit dynamics
equations with a physical interpretation. This category contains
the single-motion model case, as in Linear Dynamical Systems
(e.g. plain Kalman filter) and extensions to the non-linear case
(e.g. unscented/extended Kalman filter or particle filtering). This
category also contains more advanced approaches with multiple
motion models, either as a mixture [10] or with switching dy-
namics, e.g. Interacting Multiple Models (IMM). Context cues
can guide the switch in dynamics, leading to a more general
DBN [1], [11], [12].

Pattern-based methods instead derive predictions from previ-
ously seen data. One way of doing this is to match the current
(partial) track to previously seen (complete) tracks in a database,
and use the best matching exemplar for extrapolation [13]. An
alternative is to perform non-linear regression by means of Gaus-
sian Process Dynamic Models (GPDMs) [13], [14], Quantile
Regression [15] or RNNs [16]–[23]. Popular instantiations of
RNNs are Long Short Term Memory networks (LSTMs) and
Gated Recurrent Units (GRUs). The latter uses fewer parameters
than the former while achieving a similar performance [24]. An

RNN can predict a future state as well as its uncertainty (e.g.
Gaussian distribution [17], or like an IMM filter, a mixture of
Gaussians [18]). RNNs cannot inherently handle missing data
(e.g. a frame where a VRU was not detected), and methods have
been proposed to overcome this (e.g. [19]). Some approaches
blur the line between pure physics-based and pattern-based
methods. Fraccaro et al. [20] model the dynamic latent state
of an RNN with a Kalman filter, allowing them to use the exact
inference, prediction, and smoothing of a Kalman filter for the
dynamics. Li et al. [21] propose to make separate predictions
with both a DBN and RNN, and fuse these afterwards in an
online adaptive weighting scheme.

B. Context Cues

Object context cues are those that are directly linked to the
object of interest, in addition to point target kinematics (posi-
tions, velocities). For example, Keller and Gavrila [13] use dense
optical flow features to improve pedestrian path prediction.
Xiong et al. [25] incorporate a learned feature representation of
the VRU related cues, either through the feature representation
of a re-identification network or through the last layer feature
representation of the YOLO object detector [26]. Quintero et al.
[14] recover a full 3D articulated pose of a pedestrian.

Static context cues refer to the influence of the world sur-
rounding the VRU on their path. These are static effects such as
an expectation on where VRUs plan to walk to [4], or the VRU’s
preference to traverse certain kinds of semantic areas (sidewalks,
grass, zebra crossings, etc.). One way of implementing this is
through Inverse Reinforcement Learning (IRL) [27], [28], or
with neural networks [29]. Ballan et al. [30] learn preferred
routes directly on top-down image data rather than on a semantic
map and show that the learned knowledge is transferable to new
locations. Saleh et al. [31] forego the need for a goal by using
IRL only to learn the reward map of a static scene. Another
approach is to directly encode the structure of the road ahead to
limit the possible paths that the VRU can take [10], [32], or to
predict the trajectory along the curvature of the road [33].

Dynamic context cues include whether the VRU is aware
of his or her surroundings. Kooij et al. [1] incorporate both
whether the vehicle and the pedestrian are on a collision course
and the pedestrian’s awareness thereof into a DBN to predict
the future position of a pedestrian who might cross the road.
Additionally, they show the same DBN structure can also be used
to predict the future position of a cyclist who might turn left at an
upcoming intersection. Neogi et al. [34] leverage the interaction
between ego-vehicle and pedestrian for path prediction near an
intersection as well. Other dynamic objects or VRUs can also
influence the future path of VRUs. Social Force Models [22],
[23] model the influence that nearby VRUs have on each other.

C. Parameter Estimation

Methods with learned state representations can optimize their
parameters directly by performing gradient descent of an ob-
jective loss using training data. The main requirement is that
this loss is differentiable. For example, it is possible to directly
optimize the entire predicted trajectory [16] and all parameters at
once [15]. The downside is that while the learned representation
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fits the data, it is not necessarily possible to interpret the hidden
state of the learned representation. Being able to interpret why
such a model predicts what it does is an active field, both in
path prediction [19] as well as in detection [2]. Attentive neural
networks [35] improve the interpretability of a neural network
by forcing the network to make predictions on a subset of all
available information, such that the “attention” of the network
points to specific areas or moments in time.

Methods with a crafted state representation on the other hand
often explicitly fix certain parameters a priori which ensures that
the latent state is interpretable. Kooij et al. [1] fix the dynamic
models in a DBN to a constant-velocity model as well and
estimate the other parameters for the context cues by annotating
all context variables at each frame. A similar approach can be
found in [21]. Hashimoto et al. [12] use a DBN and fix its
dynamic model to be a constant-velocity model while optimizing
the other parameters through maximum likelihood estimation.
Batkovic et al. [4] specifically structure their model so the few
parameters can be tuned by hand. If the goal is to optimize the
DBN for estimating the current state (i.e. filtering) and the DBN
only has discrete hidden variables, both the optimal parameters
and structure can be computed [36]. If it has both discrete
and continuous hidden variables, parameter optimization can
be done by Expectation-Maximization (EM) [37] or gradient
descent [38, p. 169].

D. Contributions

Our main contribution in this paper is a comparison of two
state of the art models for context-based path prediction: one
with a learned state representation, an RNN, and one with a
crafted state representation, a DBN, at a level playing field. To
ensure that both models are treated similarly with respect to the
use of context cues and parameter estimation, we describe
� how to integrate the context cues (used previously by the

DBN [1]) into an RNN [16]1, and conversely,
� how to optimize the DBN [1] with gradient descent by

utilizing back-propagation (similarly to the RNN [16]),
while keeping its state representation interpretable.

The comparison is made on a cyclist scenario. All relevant
experimental data is made available to the scientific community
for non-commercial benchmarking.2

III. METHODOLOGY

For the path prediction task, we consider models that predict
at every time step t a probability distribution over the top-
down 2D position x, n steps into the future, given all previ-
ous measurements y0:t. A measurement yt = [xt, ct] contains
the position xt as well as multiple context cue measurements
ct = [c1t , . . . , cNct

], where ct ∈ RNc . In general, the prediction
task can be written as p(xt+n|y0:t). This section covers the
structure of the two approaches used to determine p(xt+n|y0:t):
one RNN-based (Section III-A) and its training scheme
(Section III-B), and one DBN-based (Section III-C) and its
training scheme (Section III-D).

1[16] is our earlier conference paper that this article builds upon.
2For the dataset, follow the links at www.intelligent-vehicles.org.

Fig. 2. The processesing of measurements over time by the RNN. This figure
shows the incorporation of inputs over three time steps.

A. Recurrent Neural Network Model

For the RNN, the position is supplied as the difference in
position between two time steps, xt − xt−1, as is done in [17].
The input for the RNN is then ỹt = [xt − xt−1, c1t , . . . , cNct

]�.
At t0 the position difference is taken as zero. The architecture
of the RNN can be split up into two parts: the first incorporates
inputs ỹt into the hidden state over time (i.e. inference), and the
second predicts a Gaussian distribution as the future trajectory
based on the hidden state at a certain time step.

The first part, the inference architecture, is laid out schemat-
ically in Fig. 2. The main component is a Gated Recurrent Unit
(GRU), which is used because of its relatively low number of
parameters. The hidden layer ht, a vector with Nh elements, is
decoded into an expected input, which is subtracted from the
actual input, and the result ut is fed into the GRU:

ut = Wenc (ỹt −Wdec(ht)) (1)

= Wenc

([
xt − xt−1

ct

]
−
[
Wpos(ht)

Wcues(ht)

])
, (2)

where Wenc(ht) = wencht + benc, a linear layer with wenc and
benc as trainable parameters. All other functions W(·)( ) are
linear layers as well, with parameters w(·) and b(·). The goal
of the linear layers is solely to scale the internal representation
of the GRU, and as such no nonlinear functions are added.

For prediction, the signal that is fed into the GRU is computed
as:

ut = Wenc (0) . (3)

All future hidden states ht+2, . . . , ht+n are then computed as
shown in Fig. 3. The predicted Gaussian distribution over the
future position N (x̂t+n,Σt+n) is computed as in [17]:

x̂t+n = xt +

n∑
i=1

Wpos(ht+i) (4)

[
l[0] l[1] l[2]

]�
= Wcov(ht+n) (5)

σ1 = exp (l[0]) (6)

σ2 = exp (l[1]) (7)

ρ = tanh (l[2]) (8)

Σt+n =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
. (9)
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Fig. 3. The prediction of p(xt+n|y0:t) at time step t by the RNN. The layers
Wenc and Wpos are shared with the temporal update process (see Fig. 2). The
block labeled Comb is the combination of Eqs. (4) to (9).

B. Recurrent Neural Network Training

The RNN is trained by minimizing the negative log-likelihood
of the predicted Gaussian distribution on the known future
position. To ensure that the output of each model is a consistent
path the loss is averaged over each time step and the entire
range of 1 time step up to and including n time steps ahead.
The optimized parameters in the RNN are those of the GRU,
the layers Wenc, Wpos, Wcues, Wcov , and h0. Each of these
parameters is initialized randomly using the default PyTorch
strategy for such layers.

Two training strategies will be considered to reduce overfitting
and improve convergence. Firstly, data normalization: The mean
and variance of ỹt in the training data are computed. The input
ỹt is scaled and translated accordingly before it is fed to the
RNN. The inverse of the scaling and translation is applied to
the output of each prediction step in Eq. (4), i.e. Wpos(ht+i).
The covariance matrix predicted by the RNN is not scaled in
any way. Secondly, during training, we reset the hidden state ht

back to the initial hidden state h0 with a probability of 5% at
every time step. This is to prevent the RNN from overfitting
by recognizing a specific trajectory from just the first few
measurements. Experiments showing the importance of these
training strategies are given in Section V-A2.

C. Dynamic Bayesian Network Model

This paper discusses the specific version of a DBN as de-
scribed in [1], although the methodology can be used for al-
ternative scenarios as well, e.g. [11]. At any time step t, the
entire state of the DBN is defined by a partially observable
continuous hidden state ht and discrete hidden state Dt. The
discrete hidden stateDt = [Mt, C1t , C2t . . . CNCt] specifies the
current dynamic mode Mt as well as NC discrete variables
representing the state of the context cues. For a single time
step, there are in total |D| = |M | × |C1| × · · · × |CNC

|possible
combinations for the discrete state.

In the DBN, the discrete state at time t = 0 follows a cat-
egorical distribution D0 ∼ Cat(P0) with parameters P0, and

stochastically transitions at subsequent time steps to a new value:

Dt ∼ Cat
(
P(Dt−1)

)
. (10)

Here,P(Dt−1) is a |D|-dimensional parameter vector conditioned
on the past discrete state Dt−1, i.e. the row from a |D| × |D|
transition table. Of the NC discrete variables Cnt

, Nc have cor-
responding measurements cnt

and their probability distribution
p(cnt

|Cnt
) is specific for that context cue. The propagation of

the continuous state ht over time and the relation between the
measurement xt and the continuous state ht are as follows:

ht = A(Mt)ht−1 + εt, εt ∼ N
(
μ(Mt)
ε , Q(Mt)

)
(11)

xt = C ht + ηt, ηt ∼ N (0, R). (12)

Similar to Eq. (10), the superscript (Mt) indicates that there
is a separate matrix/vector for each of the NM models Mt. The
matrices A and C are model parameters. Both the measurement
and the state are perturbed by Gaussian noise that is not directly
measurable, denoted by η and ε, respectively, with parameters
με, Q, and R. Finally, the prior on the continuous state is
normally distributed, p(h0) ∼ N (h0, P0) with parameters h0

and P0.
Inference and prediction with this model only apply matrix

multiplications, inversions, and additions, so their gradient can
be computed analytically (see appendix).

D. Dynamic Bayesian Network Training

The DBN is trained just as the RNN: by minimizing the
negative log-likelihood of the predicted Gaussian distribution.
The loss is again averaged over the entire range of 1 to n
time steps ahead. During optimization, certain parameters are
fixed such that the interpretability of the state is guaranteed.
For example, assume the continuous measurements are the
top-down 2D positions. If the first two items in the continuous
state vector of length 4 should represent the 2D position, then

fixingC =

[
1 0 0 0
0 1 0 0

]
during optimization ensures a correct state

representation. Exact details for our case-study are given in
Section IV-B.

Additionally, to ensure that the covariance matrices are pos-
itive definite, they are reparameterized as upper-triangular ma-
trices U during optimization, e.g. Q = U�U [38, p. 169]. To
improve numerical stability, all covariance matrices have a small
epsilon 10−6 added to their diagonal.

The initial state distribution and the transition matrices for
the discrete variables are also re-parameterized, using softmax
functions [38, p. 169], since optimizing the values in the proba-
bility tables directly could result in invalid values. For example,
a row P(Dt) from a probability table is re-parameterized with
|D| learnable parameters P̃(Dt) as follows:

P(Dt)
i =

exp
(
P̃(Dt)
i

)
∑|D|

j=1 exp
(
P̃(Dt)
j

) . (13)

Each parameter of the context measurement distributions
p(cnt

|Cnt
) that has a limited domain can be re-parameterized
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as well. For example, the variance σ of a Gaussian can be kept
positive by re-parameterizing it as σ = exp(σ̃).

For the initial value of all parameters, we can select a more rea-
sonable initial estimate than random values specifically because
each parameter and state variable has a certain interpretation
assigned to it, unlike the RNN. For certain parameters this is done
by defining them explicitly, such as the motion models A(Mt)

and measurement modelC. For the noise parameters of Eqs. (11)
and (12), the discrete measurement likelihoods p(cnt

|Cnt
), and

the discrete state transition probability P(Dt), there are two op-
tions. The first option, annotation-based initialization (as in [1]),
is to estimate these using additional ground truth annotations
for the discrete variables. Those annotations, together with the
context measurements cnt

are used to fit the p(cnt
|Cnt

) distri-
butions. The transition probability P(Dt) is estimated from the
discrete state annotations as well. A downside is that annotating
ground truth for these latent variables is laborious and often
ambiguous. The second option, annotation-free initialization, is
to forego the annotations and select initial values for the variables
based on expert knowledge. This has become possible thanks to
the optimization step afterward. The two options are described
for our use case in Section IV-B2 and IV-B3.

IV. CASE STUDY

We now describe the case study used to compare the RNN
and DBN models. We first give an overview of the dataset, along
with a description of the relevant context cues and their related
measurements. We thereafter define the scenario-specific parts
of the DBN: its crafted state representation, how it is trained and
finally the two initial estimate strategies.

A. Dataset

The RNN and DBN from Section III are trained and evaluated
on the tracks from the cyclist scenario used for the original
DBN [1]. This dataset contains 51 tracks of a cyclist approaching
an intersection at a steady pace. These are recorded with a
stereo-camera setup at 16 fps from a moving vehicle that drives
behind the cyclist, resulting in 5744 frames total. There are
no other traffic participants nearby. The cyclist is instructed
beforehand to either raise their arm or not, and then either turn
left or continue straight at the intersection.

The dataset contains the longitudinal and lateral position of
the cyclist in a global reference frame, as well as measurements
of the three context cues shown schematically in Fig. 1. The
first is distance to intersection (DTI), the distance between the
cyclist and the intersection along the longitudinal axis of the
road. The second, Tmin, is the time it takes for the vehicle to
overtake the cyclist if they would both keep moving with the
same velocity. The third, Arm Detector (AD), indicates whether
the arm of the cyclist is raised. This is given as a confidence score
as computed by a Naive Bayes classifier.

The tracks are divided into several sub-scenarios, based on
whether the cyclist turned left or went straight, whether the arm
was raised or not, and on how critical the situation was. These
sub-scenarios are divided into two categories, based on whether

TABLE I
BREAKDOWN OF THE NUMBER OF TRACKS IN THE CYCLIST DATASET FOR THE

SUB-SCENARIOS WITH NORMAL (ABOVE THE LINE) AND ANOMALOUS

CONTEXTUAL BEHAVIOR (BELOW THE LINE) [1]

the overall combination of context cues refers to a typical (“nor-
mal”) scene in real traffic or not. For instance, raising an arm
in a critical situation before turning left is considered a typical
combination of context cues in such a scenario, whereas not
raising an arm in a critical situation is not. The number of tracks
per sub-scenario is given in Table I.

Each track involving turning has the frame where the cyclist
first visibly starts to turn manually labeled as Time To Event
(TTE) = 0. Frames before and after the labeled frame have neg-
ative and positive TTE values, respectively. In the experiments
TTE is used to temporally align tracks in a meaningful way [13].
For the straight tracks, TTE = 0 is defined as the first frame on
which the cyclist is past the point on the intersection where 25%
of the turning tracks have already started their turn, according
to the annotations.

Some of the tracks from the dataset contain frames without
position information. Because the proposed RNN has no inher-
ent way to handle missing data, we use the smoothed tracks as
described in [1] for both training and evaluating the RNN and
DBN.

B. DBN Scenario-Specific Crafting

We first explain the DBN state representation from [1], to-
gether with what parts of the model we fix during training to keep
the model interpretable. Next, we describe the annotation-based
method from [1] to find the initial estimate for the remaining
parameters. Finally, we explain the annotation-free method for
selecting initial parameters. The training of this method is iden-
tical to the annotation-based method.

1) Model Definition and Training: The model has two
constant-velocity models as dynamic modes: one for when the
cyclist moves straight and one for when the cyclist turns left.
Its graph representation is given in Fig. 4. The elements in
the continuous hidden state vector ht ∈ R6 are the lateral and
longitudinal position (referred to as x and y in this section), the x
and y velocity of the cyclist if turning left, and the x and y velocity
of the cyclist if moving straight. The discrete hidden state Dt =
[Mt, AUt, HAUt, AIt, SCt] contains the current model Mt and
four context-related binary variables: whether the cyclist’s arm
is raised,AUt, whether the cyclist’s arm has been raised,HAUt,
whether the cyclist is at the intersection, AIt, and whether the
situation is critical, SCt.
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Fig. 4. The graph representation of the DBN from [1]. Rectangular nodes are
discrete, round nodes are continuous. Gray nodes indicate measured values.

For the discrete state, Fig. 4 shows that each variable in the
discrete state is assumed to only depend on parts of the previous
discrete state. This leads to 5 separate transition tables, one
for each discrete state: PAU , PHAU , PAI , PSC , and PM . For
PHAU , to represent whether the cyclist has had an arm up, it
encodes the following rule:

p (HAUt|HAUt−1, AUt) =

{
true if (HAUt−1 ∨AUt)
false otherwise.

(14)
PHAU is fixed during optimization, the others are optimized.

The optimizable continuous state parameters are shown in
Table II. When initialized, the A matrices encode two constant-
velocity models. During optimization, the A matrices are con-
strained in such a way that the hidden state keeps the rep-
resentation of position and velocity, but the constant-velocity
assumption is removed. Instead, the velocity at the next time
step can be any linear combination of the previous x and y
velocity. In the initial parameter estimation, the process noise
N (με, Q) is assumed to only affect the position and is assumed
to be zero-mean. During optimization, N (με, Q) can affect both
the position and the velocity, and is not assumed to be zero-mean.
The measurement noise covarianceR is not constrained. Finally,
the continuous initial state distribution N (h0, P0) is defined
with the assumption that the initial state of the cyclist is moving
straight. Therefore, the position should initially not affect the
mean and covariance of the latent turning speed when moving
straight. As such, N (h0, P0) is set up so that the position only
correlates with the velocity of the cyclist moving straight. During
optimization, the same structure is kept.

2) Annotation-Based Initial Estimate: The parameters from
Table II that require an initial estimate are Q, R, h0, and P0.
In [1], these are found by running a Kalman smoother over the
tracks, which gives a ground truth position and velocity at each
time step. The transition tables for PAU , PAI , PSC , and PM are
estimated by first annotating their related discrete variables (i.e.
arm up, at intersection, situation critical, and current model)
for each frame. Then, the entries of the transition tables are
computed by counting the number of occurrences where the
discrete ground truth annotations involves the corresponding
switch from one discrete state to another. Finally, p(cnt

|Cnt
),

the distribution for each context feature measurement given

TABLE II
THE INITIAL ESTIMATION AND OPTIMIZATION FOR ALL PARAMETERS IN THE

DBN THAT RELATE TO ITS CONTINUOUS STATE. THE STATE VECTOR IS, IN

ORDER: THE X AND Y POSITION, THE X AND Y VELOCITY IF TURNING LEFT,
AND THE X AND Y VELOCITY IF MOVING STRAIGHT. 0 INDICATES THAT PART

IS FIXED TO BE ZEROS, I INDICATES THAT PART IS FIXED TO BE IDENTITY. IN

THE LEFT COLUMN, (·) INDICATES VALUES RETRIEVED FROM THE INITIAL

ESTIMATION STEP [1]. IN THE RIGHT COLUMN, IT INDICATES WHICH VALUES

ARE ALTERED DURING OPTIMIZATION. THE SIZE OF EACH (·), 0 OR I IS 2× 2,
EXCEPT FOR THE VECTORS µε AND h0 WHERE IT IS 2× 1

their respective discrete variable, is fit using either Mixtures
of Gaussians (MoGs) or beta distributions, equal to [1].

3) Annotation-Free Initial Estimate: For the initial state h0,
the initial position is taken from the mean position of all initial
positions. The cyclist moving straight velocity is assumed to
be 18 km/h. We assume the same velocity when turning left,
albeit at a 45-degree angle. The initial covarianceP0 is estimated
as a diagonal matrix. The initial position variance is set to the
variance of the lateral and longitudinal initial position. The initial
covariance of the velocity in both directions and both modes is
one-tenth of the initial velocity. The observation noise R is set
to identity in meters. The process noise Q acting on the position
is set to one-tenth of the initial velocity.

For the context parameters, the context transition matrices
have a 0.01 probability of transitioning to another binary state,

PAU = PAI = PSC =

[
0.99 0.01

0.01 0.99

]
. (15)

The model transition matrix PM is set to have a transition
probability from straight to turning of 0.01 when the conditions
of a normal turning subscenario are met, as given in Table I,
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TABLE III
THE LOG-LIKELIHOOD OF THE PREDICTIONS 16 STEPS (ONE SECOND) IN THE FUTURE, AVERAGED OVER THE PERIOD TTE ∈ [−15, 15]. THE MODELS ARE

ONLY TRAINED ON TRACKS FROM THE NORMAL SUB-SCENARIOS. FOR THE RNNS, THE LETTERS INDICATE WHICH CONTEXT CUES WERE

AVAILABLE TO THE RNN: I IF THE RNN USED THE DISTANCE TO INTERSECTION, A T IF THE RNN USED THE TIME UNTIL THE VEHICLE

COULD OVERTAKE, AND AN A IF IT USED THE PROBABILITY THAT THE ARM WAS UP

otherwise it is 0. Finally, the parameters for the conditional
probabilities p(cnt

|Cnt
) are selected in an intuitive sense: for

example, the “at intersection” normal distribution is centered
at the intersection, with the “not at intersection” MoG before
and after the intersection. The same distributions types from
the annotation-based method are used for the annotation-free
method.

V. EXPERIMENTS

In Section V-A, we evaluate the performance of the RNN and
investigate whether incorporating context cues improves its pre-
dictive accuracy. In Section V-B, we evaluate the performance
impact of gradient-based optimization of the DBN parameters in
comparison to the previously used annotation-based parameter
estimation method. After having ensured that both the RNN and
DBN models can be trained on the same context cues with the
same optimization strategy, we compare their performances in
Section V-C.

Given the measurements up to time step t, each model com-
putes a distribution of the future positionxt+n at time step t+ n:
p(xt+n|y0:t). As in [1], we evaluate this predictive distribution
n = 16 steps (one second) into the future, around the point
where the cyclist may turn left: the range TTE ∈ [−15, 15].
Let x̂t+n be the actual future position in the data. Following [1],
we use two different performance metrics to evaluate a se-
quence, namely, the log-likelihood of this future position under
the predictive distribution (higher is better) and the Euclidean
distance between predicted expected position and this actual
future position (lower is better):

ll (t+ n|t) = log p (xt+n = x̂t+n|y0:t) (16)

error (t+ n|t) = ∣∣Ext+n
[p (xt+n|y0:t)]− x̂t+n

∣∣ . (17)

The predictive distribution for the DBN is a mixture of N2
M

Gaussians (NM = 2) [1]. It is a single Gaussian for the RNN. All
models are implemented in PyTorch [39] and evaluated using
leave-one-out cross-validation on a Titan X Pascal GPU. For
the RNN, after a preliminary hyperparameter search we select a
hidden layer size of Nh = 32, and train using the Amsgrad [40]
algorithm for 2000 iterations with a learning rate of 0.0015,
taking 50 minutes per cross-validation fold. The DBN is trained
for 1000 iterations with a learning rate of 0.0001 using the same
algorithm, taking 130 minutes per fold. Both models run in real-
time: 4 ms per frame for the RNN, and 10 ms per frame for the
DBN.

A. RNN Evaluation

We analyze how well the RNN incorporates context cues in
its prediction by looking at the performance of the RNN with
every combination of context cues as input values. Next, we
analyze the effectiveness of the training strategies of Section III-
B through an ablation study.

1) Incorporating Context Cues in an RNN: Table III shows
the predictive log-likelihood of RNNs incorporating different
combinations of context cues (the caption defines the naming
convention). From left to right, the table shows RNNs with
increasingly more information available to them. On the normal
sub-scenarios, the addition of one cue (columns RNNI, RNNT,
and RNNA) improves the likelihood over the model without
any context cues. We observe that using two cues does not
improve performance over using a single cue. Apparently, the
additional information does not outweigh the disadvantage of
increasing the input dimensionality. Utilizing all three context
cues (RNNITA), however, does result in the best performance.

All models perform better on the straight sub-scenarios than
on the turning sub-scenarios, likely due to the more complex
dynamics in the turning scenario.

The full model also attains the lowest log-likelihood of all
models on the anomalous data. This further shows that it lever-
ages the context information to inform on its predictions, as
the only difference between the normal and anomalous sub-
scenarios is the validity of the context cues. The full RNN model
thus successfully discriminates between such sub-scenarios and
has shifted the mass of its predictive distribution away from the
anomalous cases.

For a more in-depth analysis, Fig. 5 shows the log-likelihood
over time, using the annotated TTE to temporally align the
tracks. These graphs show the log-likelihood of a prediction
made at that specific TTE, e.g. the point at TTE = −10 shows
the likelihood of the prediction for TTE = 6. Fig. 5(a) shows
that the RNNs increase in accuracy starting around TTE =
−10, a moment where the RNN predicts what happens after
the turn. That means that the RNN detects that the cyclist will
turn over half a second before the annotated point of turning,
TTE = 0.

For the normal sub-scenarios where the cyclist continues
straight (Fig. 5(b)), all models perform relatively similar. The
performance of the full model does decrease slightly over time.
This is in line with the results of Table III: the main reason for
the overall better performance of the full model is the improved
performance on the tracks of the normal turning sub-scenarios,

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 13:07:18 UTC from IEEE Xplore.  Restrictions apply. 



754 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 6, NO. 4, DECEMBER 2021

Fig. 5. One second ahead prediction log-likelihood mean (thick line) and one-sigma standard deviation (shaded area) of RNNs over time. When turning (Fig. 5(a)),
the RNN with all three context cues (RNNITA, blue line) performs the best.

without losing too much performance on the normal straight
sub-scenarios.

When comparing the average Euclidean distance error of the
predictions, the full model outperforms the other models as well,
albeit only slightly: the average Euclidean distance error is 33 cm
when evaluated on the tracks from the normal sub-scenarios
(34 cm/31 cm on normal turning/straight sub-scenarios, respec-
tively). The other RNNs with one or two context cues have an
error between 34 cm and 35 cm, the RNN with no context cues
has an error of 49 cm.

Overall, we find that the RNN exploits the additional context
cues. This mirrors the results for the DBN found in [1]: both
approaches benefit most from combining all distinct types of
context in the normal sub-scenarios, while as expected both
also assign a low probability to the designed anomalous cyclist
responses to these context cues. We thus conclude that both
models have homogenized context input.

2) RNN Training Strategies: Next we demonstrate the im-
portance of the training strategies discussed in Section III-B
through an ablation study. The RNN is trained with all three
context cues as additional input and evaluated on all tracks
from the normal sub-scenarios. As shown before, the proposed
RNNITA achieves an average prediction log-likelihood of 0.81.
Without normalization, the prediction log-likelihood drops to
−5.85. Without resetting the hidden layer during training, it
drops to −0.61. This shows that both training strategies help
improve the accuracy of the RNN.

B. DBN Evaluation

Turning to the DBN, we first verify that the optimization
increases the performance compared to the annotation-based
initial parameter estimation. Secondly, we show that the opti-
mization improves the alignment of the latent turning probability
with the annotated moment of turning. Finally, we compare the
performance of the annotation-based initial estimate with the
annotation-free initial estimate.

To better understand the effects of the optimization, we cate-
gorize the relevant parameters into three groups, see Table IV.

TABLE IV
THE CATEGORIZATION OF ALL DBN PARAMETERS INTO DISTINCT GROUPS, TO

STUDY THE EFFECT OF OPTIMIZING RELATED PARAMETERS. THE SUPERSCRIPT

(·)(Mt−1) INDICATES THAT THE PARAMETER IS DISTINCT FOR EACH DYNAMIC

MODE. THE LETTER IN BRACKETS IS USED TO SPECIFY WHAT HAS BEEN

OPTIMIZED IN A DBN

Various combinations of these groups are either fixed to their
initial estimate or optimized. The letter within brackets in the
table is used to specify what has been optimized in a DBN. For
example, DBNCN has both the Context and Noise parameters
optimized. DBN (no superscript) refers to the original, unopti-
mized DBN from [1]. When optimized, constraints as mentioned
in Section III-D apply.

1) Optimizing the DBN: Table V shows the performance
of the original and optimized DBNs. Every optimized DBN
improves overall performance compared to the original DBN.
Optimizing all parameters (DBNCNK) results in the best overall
performance.

The Euclidean distance error improves for each optimized
model, save one. The unoptimized DBN has an error of 64 cm
for the turning sub-scenarios, and 25 cm when moving straight.
All optimized DBNs except DBNC attain an error of 39-42 cm
when turning, and 22-24 cm when moving straight. For DBNC,
the error increases to 67 cm when turning, and decreases to 19 cm
when going straight.

To understand the performance over time, Fig. 6 shows the
prediction log-likelihood of the three best performing optimized
DBNs alongside the unoptimized DBN. For the turning case
(Fig. 6(a)), the main improvement in performance stems from
better modeling of the turning dynamics. Because the context
cues only inform on the likelihood of switching rather than the
likelihood of the current dynamic mode, the DBN can only
infer the cyclist is turning from position information. For the

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 13:07:18 UTC from IEEE Xplore.  Restrictions apply. 



POOL et al.: CRAFTED VS. LEARNED REPRESENTATIONS IN PREDICTIVE MODELS—A CASE STUDY ON CYCLIST PATH PREDICTION 755

TABLE V
THE LOG-LIKELIHOOD THE DBNS ON THEIR PREDICTIONS 16 STEPS (ONE SECOND) IN THE FUTURE, AVERAGED OVER THE PERIOD TTE ∈ [−15, 15]. THE

MODELS ARE ONLY TRAINED ON TRACKS FROM THE NORMAL SUB-SCENARIOS. THE NAMES INDICATE WHICH PARAMETER GROUPS WERE

FURTHER OPTIMIZED (SEE TABLE IV).

Fig. 6. One second ahead prediction log-likelihood mean (thick line) and one-sigma standard deviation (shaded area) of DBNs over time. In the turning
sub-scenarios (Fig. 6(a)), the performance of the DBN with no additional parameter optimization (DBN, red line) deteriorates after TTE = 5. The optimized DBNs
do not see this deterioration. In the straight scenario (Fig. 6(b)), optimization improves performance.

sub-scenarios where the cyclist continues straight (Fig. 6(b)),
optimizing consistently improves the performance.

2) Detection of Dynamics Change: The probability of being
in the turning dynamic mode should remain close to zero when
the cyclist moves straight. This is indeed the case: our experi-
mental records show that the average probability of turning on
straight scenarios is less than 0.5% for all models.

Conversely, the turning probability should go up for the
normal turning tracks around TTE = 0, the annotated moment
of turning. Fig. 7 shows how this probability changes over time
for the turning scenario. The graph shows that optimizing the
context group has no discernible effect on when the model
switches to turning: DBNCNK coincides with DBNNK, DBNCN

with DBNN, and DBNC with DBN. This is because the context
cues inform the model on when the switch from straight to turn-
ing is more likely to occur. Whether the cyclist is actually turning
is determined by the likelihood of the position measurements and
therefore by the dynamics.

The other parameter groups do affect the model’s reaction
to turning. Optimizing the noise parameter group moves the
moment of turning closer to TTE = 0. Optimizing the kinematic
parameter group moves it even closer.

3) Annotation-Free Initial Estimation: To assess the need for
annotations, we perform the annotation-free initial estimation
scheme laid out in Section IV-B3, and then optimize the model as
before, i.e. like DBNCNK. This leads to an average log-likelihood

Fig. 7. The mean (lines) and one-sigma standard deviation (shaded area) of
the turning probability for the normal turning tracks. The turning probability
is most in line with the annotated moment of turning when all parameters are
optimized (DBNCNK, green line, and DBNNK, dashed orange line).

over all scenarios of −0.2, which still outperforms the
unoptimized DBN (−1.53, see Table V), but is slightly worse
than the log-likelihood of DBNCNK with annotation-based initial
estimation (−0.12). At the same time, the average Euclidean
distance error over all normal scenarios did improve from 33 cm
to 31 cm. We conclude that we can do without the laborious
manual annotation step of the latent variables of the DBN and
still obtain a competitive performance.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 13:07:18 UTC from IEEE Xplore.  Restrictions apply. 



756 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 6, NO. 4, DECEMBER 2021

Fig. 8. The mean (lines) and one-sigma standard deviation (shaded area) of the one second ahead prediction log-likelihood (Fig. 8(a)) and Euclidean distance
error (Fig. 8(b)) for the normal turning sub-scenarios.

C. Comparison of DBN With RNN

After having established that both the RNN and the DBN can
be trained on the same context cues using the same optimiza-
tion strategies, we now compare both approaches to assess the
performance impact for using either a crafted or a learned state
representation. When comparing the average log-likelihood, the
best RNN in Table III outperforms the best optimized DBN in
Table V: 0.81 to −0.12. However, at the same time, the average
Euclidean distance error over all normal sub-scenarios is 33 cm
for both. The source of the Euclidean distance error is not equal
for both models, however. The average Euclidean distance error
made by the RNN on the turning sub-scenarios and the straight
sub-scenarios is almost identical: 34 cm and 31 cm, respectively.
Because the RNN is a generic model, it is reasonable that it
has no bias towards either type of dynamics. In contrast, the
linear models of the DBN can directly encode a cyclist going
straight with a constant velocity model, whereas the varying
radii of a cyclist turning left cannot be represented as well. The
corresponding error values are 39 cm and 23 cm, for the best
optimized DBN.

More in-depth, Fig. 8(a) shows the predicted likelihood over
time for all tracks from the normal turning sub-scenarios, cen-
tered around TTE = 0. The results are shown for the best
performing RNN, RNNITA, as well as the unoptimized DBN and
the two best performing optimized DBNs. From TTE = −10,
the performance of the RNN (blue line) starts to diverge from
the two optimized DBNs (green and orange line). While the
gap narrows from around TTE = 0, it never fully closes. When
comparing the Euclidean distance errors on the same tracks
(Fig. 8(b)), we see the same divergence between the RNN and
the two optimized DBNs starting at TTE = −10 but find that
the difference in Euclidean distance error returns to almost zero
starting at TTE = 2. It seems that the DBN, when its parameters
are optimized, can predict the average position almost as well
as the RNN, thus differences in the log-likelihood are mostly
due to larger variance in the predictive distribution required to
compensate the DBN’s linear dynamics.

As a last observation, both the RNN and the DBNs with
optimized parameters show a dip in prediction log-likelihood
(Fig. 8(a)), but the RNN recovers around 10 frames earlier
than the DBNs: TTE = −10 versus TTE = 0. This seems to
indicate that the current context cues, together with the position
information, already contain additional relevant information to
predict when a cyclist will turn, but that the DBN is not yet
properly capturing this aspect.

VI. DISCUSSION

We examined two models for predicting the distribution over
the future position of a cyclist: the RNN and DBN. They use
completely different state representations for the dynamic state
of the kinematics and context information. When performance
is the only goal, the RNN is currently the best choice, as it
attained the highest average log-likelihood. By using the right
training strategies, the RNN was able to leverage the information
present in the context cues (Table III). However, because of
the “black-box” nature of the RNN, it is difficult to inspect
the model and explain how the context cues exactly affect
its predictions, other than empirical validation and statistical
arguments. On the other hand, the DBN has the benefit that
we can ensure that its discrete latent state is interpretable by
appropriately specifying the structure of the model (Fig. 7) and
its parameters. Interestingly, our results show that after gradient
descent based optimization similar to the RNN, the performance
gap is significantly reduced compared to previously reported
results [1]. The optimized DBN even attains similar Euclidean
distance errors as the RNN (Section V-C). Moreover, one can
do without the laborious manual annotation step of all latent
variables of the DBN (as is the norm in the state-of-the-art
experimentation) and still obtain a similar performance.

An added value of investigating both an approach with a
learned representation such as an RNN and an approach with a
crafted representation such as the DBN is that they provide com-
plementary insights: the former shows if certain measurements
or context cues can help improve prediction, the latter shows how
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well our assumptions on the measurements and context cues
hold. In our case, the similar Euclidean distance error but the
worse log-likelihood of the DBN compared to the RNN lead us
to conclude that the DBN at times over-estimates the uncertainty
in its predictions. This can be attributed to the DBN using only
two linear dynamical models for varying turning behaviors. An
important direction to improve the DBN is thus to allow for more
varied motion dynamics. This could be achieved by relaxing
existing assumptions, e.g. that noise is constant over time, or
by incorporating non-linear motion models with an extended or
unscented Kalman filter or particle filter. Another direction is to
learn more varied and specialized dynamic modes from the track
data itself, e.g. by estimating the number of dynamics and their
context with appropriate priors during model optimization [10],
[41].

An open challenge is to create predictive methods that scale
to a more diverse set of real-life traffic conditions (i.e. multiple
scenarios, different road users) while remaining interpretable
and incorporating a rich set of context cues. For the DBN, the
computational complexity can be partially curbed by limiting
the dependencies between discrete states (Fig. 4), though it
may be necessary to learn these dependencies from data in-
stead of designing these relations manually as was done here.
The interesting alternative is to take a learned representation
method and encode expert knowledge in specific areas of the
model, thereby making it interpretable and keeping its high
performance. Possible directions include combining learned
context representations to predict distributions over a fixed set of
predefined dynamics [42], and incorporating agent interaction
explicitly as a graph structure in the neural networks [23], [43]. In
contrast, attentive networks [35] provide interpretability through
inspection of node activations for specific inputs, rather than
through explicit encoding of expert knowledge.

The advent of large-scale naturalistic datasets such as Ar-
goverse [44] will be important to further these future research
directions. Even so, our current findings on the impact of
gradient-based optimization are also relevant to other scenarios
where DBNs have already been successfully applied without
such optimization strategies, such as signalized [12] and non-
signalized [21], [45] pedestrian crossing, and in joint pedestrian-
driver awareness collision risk estimation [11]. We also note that
our approach of studying the representation in isolation may be
useful for other applications too, such as surveillance with path
prediction in crowds, where traditional expert-designed repre-
sentations [46] have been fully replaced by learned represen-
tations [23]. Ideally, expert knowledge and semantic concepts
can be seamlessly incorporated in the learned representation and
optimized jointly, potentially resulting in the best of both worlds.

VII. CONCLUSION

We described two models for predicting a Gaussian-based
distribution over the future position of a cyclist that incorporate
various context cues and learn distinct dynamic modes. The
main distinction between these models was their latent state
representation: crafted vs. learned. For the RNN model with a
learned state representation, we showed that it could leverage the
context cues to improve its path prediction. For the DBN model

with a crafted representation, we explained how to optimize it
while keeping its latent state interpretable.

Comparing the two models thus at a level playing field, we
found that the RNN attains the best predictive performance over-
all (significantly outperforming the optimized DBN on the log
likelihood measure, while performing similarly on the Euclidean
distance error measure, i.e. 31–34 cm vs. 23–39 cm for the
DBN). This suggests, more broadly, that if performance is the
only relevant metric (and sufficient data is available), a learned
state representation is the preferable choice. On the other hand,
results showed that optimizing the DBN did partially close the
performance gap with the RNN, even without a laborious manual
annotation of all latent variables. We conclude that crafted state
representations remain suitable for safety-critical applications
where it is important to understand why a model behaves the
way it does, or for cases where one wishes to further knowledge
of the underlying causalities.

Further work could focus on models that better combine data
adaptation and expert knowledge. The DBN could be allowed
more flexibility to adapt to the data by means of automatic mo-
tion model discovery including extensions to higher-order/non-
linear motion models. Conversely, the RNN could be more
strongly regularized by explicitly encoding physical models or
relevant (infrastructure or otherwise) context known to a human
expert.

APPENDIX

We provide an overview of the computational graph created
for the inference algorithm of the DBN to aid reproducibility
and to demonstrate that the inference algorithm is suitable for
gradient-based optimization. A schematic overview of the data
flow for one time step in the algorithm is shown in Fig. 9.
Inference consists of three main steps: Predict, Update and
Marginalize, see [1]. The update step can only be applied when
integrating past or current measurements; it cannot be used
in future time steps. At each step, the algorithm computes a
new distribution over the DBN’s latent state. The probability
of a discrete state Dt = [Mt, C1t , . . . CNCt] is expressed with

a scalar d
(Dt)
t . The continuous state is represented by NM

means h
(Mt)
t and covariances P

(Mt)
t , one for each model Mt.

The subsections below list the equations corresponding to each
step for the latent states, and the figure also refers to these
equations per step. All equations consist of basic operations
such as matrix multiplications or additions, which are differ-
entiable and straightforward to implement in frameworks such
as PyTorch [39] and TensorFlow [47].

1) Predict: Given p(ht−1,Dt−1|y0:t−1) from the previous
iteration, compute p(ht,Dt,Dt−1|y0:t−1). With the model defi-
nitions of Section III-C, prediction of the next continuous state
is done using a Kalman filter, for every N2

M combination of
current and previous model:

h
(Mt,t−1)

t|t−1 = A(Mt)h
(Mt−1)
t−1 + μ(Mt)

ε (18)

P
(Mt,t−1)

t|t−1 = A(Mt)P
(Mt−1)
t−1 A�(Mt) +Q(Mt) (19)

d
(Dt,t−1)

t|t−1 = P(Dt−1)
Dt

d
(Dt−1)
t−1 (20)
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Fig. 9. A schematic overview of how the DBN incorporates contextual (ct) and positional (xt) measurements to infer the state over time. Each block corresponds
to an equation, referenced in brackets. The computations are done in joint domains ((Mt,t−1) and (Dt,t−1)) for the bold colored lines and in single domain (e.g.
(Dt−1)) for the thin black lines.

The superscript (Mt,t−1) indicates that the predicted state is
computed for each possible model combination (i.e. their joint
probability). Accordingly, the distribution of the hidden state is
defined as a mixture ofN2

M Gaussians [1]. Similarly, the discrete

state probability d
(Dt,t−1)

t|t−1 is computed for the |D|2 joint discrete
state combinations.

2) Update: Obtain p(ht,Dt,Dt−1|y0:t) by incorporating
measurement yt = [xt, c1t , . . . , cNct

], akin to a Kalman update:

S
(Mt,t−1)
t = CPt|t−1C

� +R(Mt) (21)

K
(Mt,t−1)
t = Pt|t−1C

�S−1
t (22)

h
(Mt,t−1)
t = ht|t−1 −Kt(xt − Cht|t−1) (23)

P
(Mt,t−1)
t = (I−KtC)Pt|t−1 (24)

d
(Dt,t−1)
t = d

(Dt,t−1)

t|t−1 p
(
xt|ht|t−1, Pt|t−1

) Nc∏
n=1

p (cnt
|Cnt

)

(25)

Where p(xt|ht|t−1, Pt|t−1) is the likelihood of the measurement

xt for the stateh(Mt,t−1)

t|t−1 with covarianceP (Mt,t−1)

t|t−1 . For readabil-

ity, the superscript (Mt,t−1) has been omitted on the right-hand
side for the variables ht|t−1, Pt|t−1, St, and Kt.

3) Marginalize: Computing the full joint probability by iter-
ating the previous steps would quickly become intractable, as
there are (NM )t motion model combinations after t steps. To
make inference tractable, we marginalize p(ht,Dt,Dt−1|y0:t)
over the past discrete state Dt−1 to obtain approximation
p(ht,Dt|y0:t). The mixture of Gaussians over joint models
(Mt,t−1) is therefore collapsed to a mixture over only the current
motion models (Mt) through moment matching [1]:

d
(Mt−1)
t =

∑
Dt,t−1/(Mt−1)

d
(Dt,t−1)
t (26)

h
(Mt)
t =

∑
Mt−1

h
(Mt,t−1)
t d

(Mt−1)
t (27)

e
(Mt,t−1)
t = h

(Mt,t−1)
t − h

(Mt)
t (28)

P
(Mt)
t =

∑
Mt−1

(
P

(Mt,t−1)
t + e

(Mt,t−1)
t e

�(Mt,t−1)
t

)
d
(Mt−1)
t

(29)

d
(Dt)
t =

∑
Dt−1

d
(Dt,t−1)
t (30)

Here, in Eq. (26) the notation Dt,t−1/(Mt−1) refers to all vari-
ables in the joint discrete state Dt,t−1 except (Mt−1).
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