
Optimization of User
Equilibrium container
transportation
problems using
toll pricing

L.A.M. Bruijns
Graduation Thesis
MSc Applied Mathematics, TU Delft

Optimization of User
Equilibrium container

transportation
problems using

toll pricing
by

L.A.M. Bruijns
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday September 13, 2018 at 10:00 AM.

Student number: 4227905
Project duration: September 4, 2017 – September 13, 2018
Thesis committee: Prof. dr. ir. K. I. Aardal, TU Delft, supervisor

Dr. J. L. A. Dubbeldam, TU Delft
Dr. F. Phillipson, TNO
Ir. A. Sangers, TNO

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
The goal of this thesis is to provide a method to obtain a User Equilibrium (UE) in a synchro-
modal transportation network in which we transport containers for multiple customers.
We use the Space Time Network (STN), in which the travel time of modalities is fixed and in-
dependent of the occupancy of the network. We define the User Equilibrium solution as the
solution wherein each customer can travel via their cheapest paths possible, and no customer
is harmed by the route choice of other customers. We define the System Optimal (SO) solution
as the solution in which the total costs of the network are minimized.
We expand the goal of finding a UE on the STN to finding a solution where the solution is
both SO as well as UE. The solving method we developed in this thesis, consists of finding SO
solutions by solving the Minimum Cost Multi-Commodity Flow (MCMCF) problem on the STN
to find an SO solution, and create tolls schemes to create a UE solution, while maintaining
the SO solution. We investigate several types of tolls in order to obtain sufficient both SO and
UE solutions.

iii

Preface
This thesis has been submitted as the final requirement to obtain the degree Master of Sci-
ence in Applied Mathematics at Delft University of Technology. The research was conducted
in collaboration with TNO in the period from September 2017 until September 2018.

During the last year, it was a real pleasure to work on my thesis at the Cyber Security &
Robustness department of TNO with intelligent and nice people. First of all, I would like to
thank Alex Sangers, Frank Phillipson and Karen Aardal for providing me the chance to work
at my thesis at TNO and for your supervision during my internship. I would also like to thank
Johan Dubbeldam for his willingness to be part of my thesis committee.

I would also like to express my gratitude to Irina and Kishan, my fellow interns in the Syn-
chromodality project, and all of the other interns during my period at TNO. Thanks to all for
making our time together a time to never forget.

Finishing this thesis feels like the end of an era. Six years ago I started my study Mathe-
matics in Delft, a new study in a new city. I would like to thank my dear family for letting me
make this decision, which brought me nothing but good things, and for their love and support
during my whole life. Lastly I want to thank all my friends from both Krommenie and Delft,
my student years not have been the same without them.

L.A.M. Bruijns
Delft, September 2018

v

Contents

1 Introduction 3
1.1 Problem description . 3
1.2 Technical introduction . 5

1.2.1 Definitions and notation used in this thesis . 5
1.2.2 Space Time Networks . 6

1.3 Thesis structure. 8

2 User Equilibrium and toll systems in the literature 9
2.1 User Equilibrium . 9

2.1.1 User Equilibrium in the literature. 10
2.1.2 Objective function . 13
2.1.3 User Equilibrium vs. System Optimal . 17
2.1.4 Unique User Equilibrium path flows . 20
2.1.5 Lagrangian Dual . 20
2.1.6 Lagrangian duality in User Equilibrium problems 23

2.2 Tolls systems in the literature . 25

3 User Equilibria and Tolls in Space Time Networks 29
3.1 User Equilibrium on Space Time Networks . 29

3.1.1 Using ratios . 31
3.2 Toll In Space Time Networks. 33
3.3 User Equilibrium with tolls on a Space Time Network . 34

4 Tolls on paths 35
4.1 Constraints for finding path tolls . 35

4.1.1 Objective function and choice of constraints . 36
4.2 Generic algorithm for finding path tolls . 41
4.3 Case 1 . 43

4.3.1 Case 1: Examples . 44
4.3.2 Case 1: Finding properties of path tolls . 46

4.4 Case 2 . 58
4.4.1 Case 2: Example . 58
4.4.2 Case 2: Finding properties of path tolls . 59

4.5 Case 3 . 63
4.5.1 Case 3: Example . 63
4.5.2 Case 3: Finding properties of path tolls . 65

4.6 Case 4 . 66
4.6.1 Case 4: Example . 67
4.6.2 Case 4: Finding properties of path tolls . 68

5 Tolls on orders 69
5.1 Case 1 . 71
5.2 Finding connected components in STN . 75
5.3 Case 2 . 79
5.4 Case 3 . 80
5.5 Case 4 . 81
5.6 Solutions of toll on orders . 83

vii

6 Path tolls based on order fairness 87
6.1 Case 1 . 88
6.2 Case 2 . 89
6.3 Case 3 . 90
6.4 Case 4 . 91
6.5 Solutions of fairness tolls. 92

7 Conclusions and discussion 95
7.1 Conclusions. 95
7.2 Discussion and future work . 97

Bibliography 99

viii

List of used notation
𝒢 = (𝒱,𝒜) directed graph

𝑣 ∈ 𝒱 nodes
𝑎 ∈ 𝒜 directed arcs

𝑎 = (𝑖, 𝑗) directed arc from 𝑖 to 𝑗
𝑥 arc flow

OD-pair Origin-Destination-pair
𝑤 ∈ 𝒲 OD-pairs / orders

𝑤 = (𝑤 ,𝑤) OD-pair
𝑑 demand for order 𝑤

𝑝 ∈ 𝒫 paths for OD-pair 𝑤

𝒫 ∶= ⋃
∈𝒲
𝒫 set of all paths

𝑓 path flow
𝑓(,) path flow on shortest path between 𝑤 and 𝑤

𝛿 incidence matrix entry
𝑐 arc cost
𝑚 arc capacity

𝐶 , 𝐶 path cost

𝐶 = ∑
∈𝒫

𝐶 𝑓 = ∑
∈𝒫

𝐶 𝑓 order cost

𝑚 path capacity
𝑡 time step
𝑙 location
𝑠 start point for order 𝑤
𝑒 end point for order 𝑤

𝛽 , 𝛽 toll per path

𝛽 = ∑
∈𝒫

𝛽 𝑓 = ∑
∈𝒫

𝛽 𝑓 toll per order

𝐶 path cost including toll

𝐶 order cost including toll
𝑘 cost of cheapest paths for order 𝑤

𝑟 = 𝐶
𝑘 ratio of order cost

𝑟 = 𝐶 + 𝛽
𝑘 ratio of tolled order costs

𝑟 =
∑ ∈𝒫 𝐶 + 𝛽

𝑘 ratio of tolled path costs

1

1
Introduction

The graduation project, on which this report is based, was carried out at TNO, in the depart-
ment Cyber Security & Robustness. This work has been carried out within the project ‘Com-
plexity Methods for Predictive Synchromodality’ (Comet-PS), supported by NWO (the Nether-
lands Organisation for Scientific Research), TKI-Dinalog (Top Consortium Knowledge and In-
novation) and the Early Research Program ‘Grip on Complexity’ of TNO (The Netherlands Or-
ganisation for Applied Scientific Research).

In Section 1.1 we will introduce the problem framework as used by TNO to describe the
problems in Comet-PS and introduce the term Synchromodality. In Section 1.2 we will intro-
duce the notation used throughout the thesis. In Section 1.3 we specify the research questions
and give an outline of the thesis.

1.1. Problem description
The focus of this thesis will be on the User Equilibrium (UE) problem in synchromodal trans-
portation problems, in which we transport containers for multiple customers.
A User Equilibrium is the situation in a transportation network in which all customers are
satisfied with the paths they travel by and the corresponding costs they need to pay for trans-
portation. Achieving a User Equilibrium can be an objective when assigning container to
transport modalities. Another goal of solving transportation problems can be obtaining a
System Optimal (SO) solution, that is a solution in which the total costs of the network are
minimized. For a transportation problem, it is not always possible to find a solution that is
both SO as well as UE.

We will work from the point of view of a Logistic Service Provider (LSP). The goal of the LSP
is to assign containers of multiple customers to modalities. In order to satisfy the customers,
the costs of transporting the containers need to be minimized for each customer (UE), but in
order to make profit on the transportation, the LSP wants the total costs to be minimized (SO).
The LSP has knowledge of all costs in the network, the customer only knows the costs he has
to pay to transport his goods on the network.

We will investigate User Equilibria in Min Cost Multi-Commodity Flows (MCMCF) in a syn-
chromodal Space Time Network (STN).

When considering container transport, several transport types can be used [3]. One can
choose transporting those by barge, train or truck, which are the most common modalities
when transporting containers in the Netherlands.
One type of transport is unimodal transport (see Figure 1.1), in which a container is assigned
to one mode for the whole traveling distance.

3

Figure 1.1: Unimodality [3]

Another type is intermodal transport (see Figure 1.2), in which different modalities can be
chosen when traveling between different customers and terminals. The last part of the trip is
often done by truck (this is also called; last mile by truck).

Figure 1.2: Intermodality [3]

A relatively new way of transportation is synchromodal transport, in which at each interme-
diate terminal, a container can be assigned to a new modality, based on real-time information
(see Figure 1.3). In order to provide synchromodal transport, both transporters and customers
need to share information about demands and schedules. According to Riessen et al. [20],
it is essential for synchromodal transport plans to allow real-time switching, i.e. real-time
planning updates, but not many real-time planning methods provide a network-wide plan
yet.

Figure 1.3: Synchromodality [3]

Synchromodality is thus the use of different modalities in one transportation network when
transporting units of goods or containers, for which it is possible to switch modalities on every
point and time in the network. Containers are assigned to modalities such that it fits best to
the wishes of the customer or transporter. In this thesis we will assume that the customers’
main requirement is the transport to be as fast and as cheaply as possible. We will take a
closer look at optimizing of planning in an agent-centric network from the Logistics Service
Providers’ point of view, where agent-centric means that satisfying customers is our goal. We
assume a customer is satisfied when its containers are transported as cheaply as possible.
Summarized, we work on the Minimum Cost Multi-Commodity Flow problem (MCMCF) in a
synchromodal Space Time Network (STN), where our goal is to optimize the cost of all indi-
vidual customers who want to transport containers. We will define a User Equilibrium on a
STN as optimizing all individual customers’ objectives. For a definition of an STN we refer to
Subsection 1.2.2.

In the synchromodality project at TNO, four problem settings are defined, as can also be
seen in Figure 1.4. We divide the transportation problem into those four problem settings,
where both infrastructure and events can be fixed or flexible/uncertain. In this project we
focus on problem setting 1, to investigate the deterministic problem. In a later stadium of the
Comet-PS project, the research can be extended into the more complicated problem settings

4

Figure 1.4: Different problem settings

with uncertainties.
Problem setting 1: Assigning containers to modalities, such that the containers reach their
destinations, against minimum cost per customer, given that the transportation schedules
are fixed and the problem is deterministic.

We will investigate how a User Equilibrium can be obtained on an STN with fixed travel
times in problem setting 1. The User Equilibrium problem is investigated already in traffic
assignment problems on roads (see Section 2.1), where the travel times of vehicles depend on
the occupancy of the roads. We will work on a discrete STN, so we will provide a definition of a
User Equilibrium on an STN. In this thesis we will investigate the options of toll pricing to see if
we can optimize the total network (SO) on the STN and, in addition, obtain a User Equilibrium.

1.2. Technical introduction
We consider the Min Cost Multi-Commodity Flow problem (MCMCF), in which the goal is to
transport containers from multiple orders as cheaply as possible through a network where
arcs have weights and may have limited capacity. We can write the MCMCF in an integer
linear programming (ILP) form and we will present this ILP in Subsection 1.2.1. The Linear
Program we use to solve the User Equilibrium traffic assignment problem will be given in
Section 2.1, and in Chapter 4, Chapter 5 and Chapter 6 we consider the Linear Programs for
our own User Equilibrium problem.

1.2.1. Definitions and notation used in this thesis
A directed graph 𝒢 = (𝒱,𝒜) consists of a set of nodes 𝑣 ∈ 𝒱 and a set of directed arcs 𝑎 ∈ 𝒜.
Each arc 𝑎 is a link between two nodes, an origin node 𝑣 and an end node 𝑣 : 𝑎 = (𝑣 , 𝑣),
along which a container can travel. We use 𝑥 to denote the number of units of flow along arc
𝑎. We cannot transport fractions of containers, so the arc flow will always be required to be
integer.
An Origin-Destination-pair (OD-pair) 𝑤 is a pair of two nodes, origin location 𝑤 and destina-
tion location 𝑤 , so 𝑤 = (𝑤 ,𝑤), which is not necessarily an arc. The number of containers
an order wants to transport from 𝑤 to 𝑤 is denoted by 𝑑 , the demand of order 𝑤.
A path 𝑝 consists of a sequence of adjacent arcs between two nodes. In our problem we only
consider paths between origin and destination nodes. 𝑓 denotes the path flow of path 𝑝 (al-
ways integer), with 𝑝 ∈ 𝒫 , 𝑤 ∈ 𝒲, where 𝒫 is the set of all paths for OD-pair 𝑤 and 𝒲 is the
set of all OD-pairs. The total path set is 𝒫 ∶= ⋃

∈
𝒫 . The costs of an arc 𝑎 are denoted by 𝑐

and the path costs of path 𝑝 are denoted by 𝐶 or 𝐶 . The capacity of an arc is denoted by 𝑚
and the capacity of a path is denoted by 𝑚 .

5

In this thesis we use the MCMCF in the following ILP form:

min∑
∈𝒜
𝑐 𝑥 (1.1)

s.t. ∑
∈𝒫

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲 (1.2)

∑
∈𝒫
𝛿 𝑓 = 𝑥 ∀ 𝑎 ∈ 𝒜 (1.3)

𝑥 ≤ 𝑚 ∀ 𝑎 ∈ 𝒜 (1.4)
𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫 (1.5)
𝑥 ∈ ℕ ∀ 𝑎 ∈ 𝒜 (1.6)

with 𝛿 = {1 if 𝑎 is contained in 𝑝, ∀ 𝑎 ∈ 𝒜, 𝑝 ∈ 𝒫,
0 otherwise.

Objective 1.1 minimizes the total cost made in the network, Constraints 1.2 are the demand
constraints, Constraints 1.3 state that the flow on arc 𝑎 is equal to the sum of the flow on all
paths 𝑝 that contain arc 𝑎, Constraints 1.4 are the capacity constraints and Constraints 1.5
and 1.6 assures the non-negativity of all flows. Note that combining Constraints 1.3 and 1.5
make Constraints 1.6 superfluous.

1.2.2. Space Time Networks
A Space Time Network (STN) can be seen as a time-expanded network, as defined as follows:

Definition 1 (Time-expanded network). [22] Let 𝒢 = (𝒱,𝒜) be a network with capacities 𝑚 , non-
negative integral transit times 𝜏 , and costs 𝑐 on the arcs. For a given time horizon 𝑇 ∈ ℤ , the
corresponding time-expanded network 𝒢 = (𝒱 ,𝒜) with capacities and costs on the arcs is defined
as follows. For each node 𝑣 ∈ 𝒱 we create 𝑇 copies 𝑣 , 𝑣 , … , 𝑣 , that is,

𝒱 ∶= {𝑣 | 𝑣 ∈ 𝒱, 𝜃 = 0, 1, … , 𝑇 − 1} .

For each arc 𝑎 = (𝑣, 𝑧) ∈ 𝒜, there are 𝑇−𝜏 copies 𝑎 , 𝑎 , … , 𝑎 where arc 𝑎 connects node 𝑣 to
node 𝑧 . Arc 𝑎 has capacity 𝑚 ∶= 𝑚 and cost 𝑐 ∶= 𝑐 . Moreover, 𝒜 contains holdover arcs
(𝑣 , 𝑣) for 𝑣 ∈ 𝒱 and 𝜃 = 0,… , 𝑇 − 2. The capacity of holdover arcs is infinite and they have zero
cost. Summarizing, the set of arcs 𝒜 is given by

𝒜 ∶= {𝑎 = (𝑣 , 𝑧) | 𝑎 = (𝑣, 𝑧) ∈ 𝒜, 𝜃 = 0, 1, … , 𝑇 − 1 − 𝜏 }

⋃ {(𝑣 , 𝑣) | 𝑣 ∈ 𝒱, 𝜃 = 0, 1, … , 𝑇 − 2} .

We now show an example of the transition of a regular graph into an STN:

Example 1. Given is the graph 𝒢 = (𝒱,𝒜) as in Figure 1.5 with 𝒱 = {𝑠, 𝑣, 𝑤, 𝑒} being the set of nodes
and 𝒜 = {(𝑠, 𝑣), (𝑠, 𝑤), (𝑣, 𝑤), (𝑣, 𝑒), (𝑤, 𝑒)} being the set of directed arcs.

𝑠

𝑣

𝑤

𝑒
𝜏 , = 1

3

2

2

1

Figure 1.5: Static network 𝒢

The transit times 𝜏 on the arcs are given in Figure 1.5. There are no capacity constraints. In this ex-
ample we say the costs are equal to the transit times: 𝑐 = 𝜏 ∀ 𝑎 ∈ 𝒜.

6

To transform this network to an STN, we first take 𝑇 = 6. Then we can create 𝒢 = (𝒱 ,𝒜), with

𝒱 = {𝑠 , 𝑠 , … , 𝑠 , 𝑠 , 𝑣 , 𝑣 , … , 𝑣 , 𝑣 , 𝑤 , 𝑤 ,… ,𝑤 ,𝑤 , 𝑒 , 𝑒 , … , 𝑒 , 𝑒 } ,
𝒜 = {(𝑠 , 𝑣) , (𝑠 , 𝑣) , (𝑠 , 𝑣) , (𝑠 , 𝑣) , (𝑠 , 𝑣) , (𝑠 , 𝑣) , (𝑠 , 𝑤) , (𝑠 , 𝑤) , (𝑠 , 𝑤) , (𝑠 , 𝑤) ,

(𝑣 , 𝑤) , (𝑣 , 𝑤) , (𝑣 , 𝑤) , (𝑣 , 𝑤) , (𝑣 , 𝑤) , (𝑣 , 𝑒) , (𝑣 , 𝑒) , (𝑣 , 𝑒) , (𝑣 , 𝑒) , (𝑣 , 𝑒) ,
(𝑤 , 𝑒) , (𝑤 , 𝑒) , (𝑤 , 𝑒) , (𝑤 , 𝑒) , (𝑤 , 𝑒) , (𝑤 , 𝑒) , (𝑠 , 𝑠) , (𝑠 , 𝑠) , (𝑠 , 𝑠) , (𝑠 , 𝑠) , (𝑠 , 𝑠) , (𝑠 , 𝑠) ,
(𝑣 , 𝑣) , (𝑣 , 𝑣) , (𝑣 , 𝑣) , (𝑣 , 𝑣) , (𝑣 , 𝑣) , (𝑣 , 𝑣) , (𝑤 ,𝑤) , (𝑤 ,𝑤) , (𝑤 ,𝑤) , (𝑤 ,𝑤) , (𝑤 ,𝑤) , (𝑤 ,𝑤) ,
(𝑒 , 𝑒) , (𝑒 , 𝑒) , (𝑒 , 𝑒) , (𝑒 , 𝑒) , (𝑒 , 𝑒) , (𝑒 , 𝑒)}

The set of arcs𝒜 can be found graphically in Figure 1.6. We see that for every arc in𝒜 copies are
made per time step. △

𝑡 = 0 1 2 3 4 5 6

𝑠

𝑣

𝑤

𝑒

Figure 1.6: STN of 𝒢: 𝒢

In this thesis we will use fixed traveling schemes, so departure and arrival times of modal-
ities are known in advance, as well as the release time of orders. Traveling arcs between
different locations represent barges, trains or trucks which are already planned, and we only
need to assign containers to certain modalities regarding the capacities of those modalities.
In Figure 1.7 for example, we see three locations 𝑙: 𝒱 = {1, 2, 3} and four traveling arcs:
𝒜 = {𝑎, 𝑏, 𝑐, 𝑑}. Here the number of time steps is 𝑇 = 5. When an order wants to travel
from location 𝑙 = 1 to 𝑙 = 2, it has the choice between arc 𝑎 and 𝑏, with travel time 2 and 4
respectively. When an order wants to travel from location 𝑙 = 1 to 𝑙 = 3, there are three path
choices: 𝑎𝑐, 𝑎𝑑 and 𝑏𝑑, with costs 4, 5 and 5 respectively.

𝑡 = 0 1 2 3 4 5

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑎 𝑏

𝑐 𝑑

Figure 1.7: Example of an STN

7

1.3. Thesis structure
The goal of this thesis is to find a method to find a solution of assigning containers to modes in
a synchromodal STN, where the solution is both System Optimal as well as User Equilibrium.
As part of this research, we also need to define when a User Equilibrium is reached in our
problem setting 1, and this definition is different from the definition as used in the literature.
We will therefore first investigate how the User Equilibrium problem is defined and solved in
the literature. Next, we will define the User Equilibrium on an STN and compare SO and UE
solutions on an STN. The following step is to obtain solutions which are both SO and UE, by
applying tolls on the STN.

In Chapter 2 we will introduce the User Equilibria as used in the literature, and the appli-
cation of the Lagrangian Dual on User Equilibria in traffic assignment problems. We will also
discuss the use of tolls on traffic problems in the literature. In Chapter 3 we introduce our use
of the Space Time Network and we give the definition of the User Equilibrium in our problem
setting. In this chapter we will also show how we find System Optimal and User Equilibrium
solutions in Space Time Networks. Then in Chapter 4 we show our method to find a solution
of assigning containers on a Space Time Network which is both SO as well as UE, by using
tolls on a path-based level. In Chapter 5 we do this by using tolls on a order-based level. In
Chapter 6 we will combine the previous methods to obtain “fair” path-based toll solutions. In
Chapter 7 we state our conclusions and propose future work.

8

2
User Equilibrium and toll systems

in the literature

In Section 2.1 we describe how User Equilibrium is applied in the literature and in Section 2.2
we give an outline of tolls described in the literature.

2.1. User Equilibrium
In this thesis we will look for a User Equilibrium (UE) solution in discrete time transport net-
works, especially in a Space Time Network (STN). To introduce the term User Equilibrium in
an STN, we will first look how a UE in traffic assignment problems (TAP) is defined. With the
TAP we mean the problems in which units, which can be goods, containers, but also passenger
traffic with cars or public transport, are transported on networks with travel times depending
on the occupancy of links, such as roads.

A User Equilibrium means intuitively that every order which has to be transported on a
given network, is scheduled such that it is handled the best way possible, which means the
fastest, the cheapest, depending on what the customer finds most important. But unfortu-
nately that is hardly ever possible, because in most networks capacity constraints make it
impossible to handle all orders the best way possible.

We will now introduce the notions of equilibrium stated by Wardrop [27]. In a traffic as-
signment problem on a transport network, where the travel time depends on the occupancy
of roads, the following criterion denotes a User Equilibrium (UE) (we will give a definition for
UE as used in the literature in Definition 3 on page 11): The journey times on all the routes
actually used are equal, and less than those that would be experienced by a single vehicle on
any unused route. Here a route is a path between an origin and destination location.
In this literature review, the given criterion for a UE is valid. Beside the definition of a User
Equilibrium, Wardrop also defines a System Optimal solution.

Definition 2 (System Optimal (SO)). The average journey time is a minimum.

We mean by System Optimal that the total cost (or total travel time) of the problem is
minimized, regardless of the conditions for the individual customers.

9

We give a brief outline of User Equilibria as found in the literature in Subsection 2.1.1
and we apply this on a small example network to see what problems occur when solving UE
problems. In Subsection 2.1.2 we take a closer look at the objective function as used in
most of the literature about UE and in Subsection 2.1.3 we compare the objective functions
of User Equilibrium and System Optimal in the literature. In Subsection 2.1.4 we briefly
discuss the existence of a unique path flow in User Equilibria and in Subsection 2.1.5 and
in Subsection 2.1.6 we explain how the Lagrangian Dual is used to solve User Equilibrium
problems.

2.1.1. User Equilibrium in the literature
Most of the literature about User Equilibrium is based on network congestion, where travel
times on roads depend on occupancy of traveling arcs, as in traffic assignment problems. The
literature review in this section is about User Equilibria on those type of networks, our own
definition of User Equilibria will be given in Chapter 3.

Van Essen et al. [24] give a proper review of ways to force a UE into an SO by diffusing
travel information to stimulating some agents to travel non-selfishly to achieve cheaper total
costs.
Peeta and Mahmassani [19] investigate both the System Optimal and the User Equilibrium
Time-Dependent Traffic Assignment. They show that the more goods have to be transported,
the more the solutions of the two models differ from each other. Bar-Gera [4] provide a solu-
tion method for the UE traffic assignment problem which is computationally efficient, memory
conserving and an origin-based solution method.
Xu et al. [29] proposes a stochastic User Equilibrium for a passenger transport network.

Miyagi et al. [18] consider a traffic assignment problem from the view of game theory. They
assume drivers have knowledge of the network and a Nash Equilibrium (which corresponds
to a User Equilibrium) is achievable. Wagner [25] shows that the existence of a Nash Equilib-
rium is guaranteed under some natural assumptions on the travel time models. Also Wang
and Yang [26] show the equality of Nash Equilibrium and User Equilibrium. Levy et al. [16]
consider selfish agents in a traffic assignment problems, and apply properties of game theory
on traffic problems. They start from finding User Equilibrium solution, in which all agents
take the best route for themselves, based on their route choice experiences in the past. The
question then is if it is possible to obtain a System Optimal solution, in which agents are still
selfish.

The relationship between the User Equilibrium and the System Optimal can be examined
by the Price of Anarchy [21], a system often used in both economics and game theory, that
measures how the efficiency of a system degrades due to selfish behavior of its customers.
Roughgarden considers the Price of Anarchy 𝜌, which compares the total costs of the network
when solved as an SO to the UE solution: 𝜌 = 𝑧

𝑧 , where 𝑧 and 𝑧 denote the total cost

value of the UE solution and the SO solution, respectively.

Bar-Gera et al. [5] consider the User Equilibrium problem with the focus on spreading flow
over the network (not time-dependent). They also introduce several criteria which can be taken
into consideration for choosing UE solution methods. Their most important addition to the
subject is the condition of proportionality: the same proportions apply to all travelers facing
a choice between a pair of alternative paths, regardless of their origins and destinations. This
means that if a link in the network is used by multiple OD-pairs, the amount of flow on that
link belonging to one OD-pair compared to the total link flow, is proportional to the total OD
flow compared to the total flow on the network. An important implication of proportionality is
that any route that can be used under the UE conditions, will be used.

10

Corman et al.[8] consider the application of multimodal transport to provide a User Equilib-
rium solution, with the choice of modality based on the wishes of the customers. They assume
customers have access to a system for publishing demand and offering transportation pos-
sibilities. Moreover, they assume everybody has access to truck transportation, so transport
is always possible, regardless of the fact that other modalities are not available. They define
every customer as one unit of transport, which has to choose one specific mode for the whole
travel distance. The goal is to assign customers to modes in such a way that no customer
will change its departure time and its route (and thus will not change its mode), to provide all
customers a sufficient route.

Borchers et al.[7], give the following definition and lemma of a User Equilibrium in network
with travel times based on occupancies of the links:

Definition 3. [Wardrop equilibrium] Consider a traffic flow (𝑓𝑓𝑓,𝑥𝑥𝑥)with corresponding induced costs 𝑐 (𝑥𝑥𝑥).
Then (𝑓𝑓𝑓,𝑥𝑥𝑥) is called a Wardrop equilibrium (or User Equilibrium) if ∀ paths 𝑟, 𝑞, ∈ 𝒫 , and ∀ demands
𝑤 ∈ 𝒲, the following condition is satisfied:

𝑓 > 0 ⇒ {𝐶 (𝑥𝑥𝑥) = 𝐶 (𝑥𝑥𝑥) if 𝑓 > 0
𝐶 (𝑥𝑥𝑥) ≤ 𝐶 (𝑥𝑥𝑥) if 𝑓 = 0

Lemma 1. The following are equivalent for a traffic flow (𝑓𝑓𝑓,𝑥𝑥𝑥):

1. The flow (𝑓𝑓𝑓,𝑥𝑥𝑥) is a Wardrop equilibrium,

2. Beckmann’s formulation:
(𝑓𝑓𝑓,𝑥𝑥𝑥) is a solution of the (convex) program:

min
,
𝑧(𝑥𝑥𝑥) ∶=min ∑

∈𝒜
∫ 𝑐 (𝜏)𝑑𝜏

s.t. ∑
∈𝒫

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲

∑
∈𝒫

𝛿 𝑓 = 𝑥 ∀ 𝑎 ∈ 𝒜

𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫

with 𝛿 = {1 if 𝑎 is contained in 𝑝, ∀ 𝑎 ∈ 𝒜, 𝑝 ∈ 𝒫,
0 otherwise.

The correctness of the lemma is proven in Subsection 2.1.2.
We will now show an example of a traffic network with travel times depending on the

occupancy of the network, where we use the Beckmann formulation of Lemma 1.

User Equilibrium in the literature: an example
Example 2. In this example there are two orders, namely order 1 with demand 𝑑 = 10 traveling from
𝐴 to 𝐵 and order 2 with demand 𝑑 = 6 from 𝐴 to 𝐶.

The network in which orders have to be transfered is given in Figure 2.1, where each directed arc
has a cost function 𝑐 (𝑥) = 𝑠 + 𝑥 (the cost function 𝑐 represents the travel time on arc 𝑎 in this
example), where the cost function consists of two parts: 𝑠 the standard cost and 𝑥 the occupancy on
the arc. The cost functions are given in Figure 2.1. To solve this User Equilibrium problem, we have the

11

A

B

C

7 + 𝑥

3 + 𝑥

7 + 𝑥

2 + 𝑥

3 + 𝑥

2 + 𝑥

Figure 2.1: Example of a UE problem

following objective function and constraints as formulated by Beckmann (see Lemma 1):

min ∑
∈𝒜
∫ 𝑐 (𝜏)𝑑𝜏 (2.1)

s.t. ∑
∈𝒫
𝑓 = 10, with 𝒫 = {𝐴𝐵, 𝐴𝐶𝐵} (2.2)

∑
∈𝒫
𝑓 = 6, with 𝒫 = {𝐴𝐵𝐶, 𝐴𝐶} (2.3)

∑
∈𝒫

𝛿 𝑓 = 𝑥 ∀ 𝑎 ∈ 𝒜 (2.4)

𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫 (2.5)

with 𝛿 = {1 if 𝑎 is contained in 𝑝, ∀ 𝑎 ∈ 𝒜, 𝑝 ∈ 𝒫,
0 otherwise.

Expression 2.1 is the objective function of the User Equilibrium, Constraint 2.2 is the demand con-
straint of order 1 with demand 𝑑 = 10 and Constraint 2.3 the demand constraint of order 2 with 𝑑 = 6.
Constraint 2.4 states that the flow on arc 𝑎 is the sum of all paths 𝑝 that contain arc 𝑎, and Constraint 2.5
assures non-negativity of all (path) flows (which implies non-negativity of arc flows). Note that in this
example there are no capacity constraints.
In this network the objective function is

∑
∈𝒜
∫ 𝑐 (𝜏)𝑑𝜏 =min ∑

∈𝒜
(𝑠 𝑥 + 12𝑥) .

A feasible path flow solution that minimizes the objective function is

𝑓 = 8, 𝑓 = 2, 𝑓 = 6,
from which the arc flow solution follows

𝑥 = 8, 𝑥 = 8, 𝑥 = 2.
The path costs for the used paths are:

𝐶 = 7 + 𝑥 = 7 + 8 = 15,
𝐶 = 3 + 𝑥 + 2 + 𝑥 = 3 + 8 + 2 + 2 = 15,
𝐶 = 3 + 𝑥 = 3 + 8 = 11.

We see that the path costs for all containers of order 1 are equal. The path cost for the unused path
𝐴𝐵𝐶 is

𝐶 = 7 + 𝑥 + 2 + 𝑥 = 7 + 8 + 2 + 0 = 17

12

thus 𝑓 is indeed the cheapest route for order 2. This solution has total cost 216.
How do we interpret this path cost? Every individual customer in the network has to pay for the paths
used, where the path cost is the sum of arc costs when those arcs are in the path. When multiple
containers are using the same arc, the arc cost per container is dependent on all flow put on that arc:
the more containers are on the arc, the higher the cost per player on that arc.
The found solution is a UE, but is it SO as well?
When we want to find the SO solution, we can first work out the problem:

min ∑
∈𝒜
𝑐 (𝑥)𝑥 =min ∑

∈𝒜
𝑠 𝑥 + (𝑥)

s.t. 𝑓 + 𝑓 = 10
𝑓 + 𝑓 = 6

∑
∈𝒫
𝛿 𝑓 = 𝑥 ∀ 𝑎 ∈ 𝒜

𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫

with 𝛿 = {1 if 𝑎 is contained in 𝑝, ∀ 𝑎 ∈ 𝒜, 𝑝 ∈ 𝒫,
0 otherwise.

When solving this Integer Programming problem, we obtain the same solution as we obtained for the
UE objective function. So in this case the SO solution is equal to the UE solution. △

2.1.2. Objective function
As an objective function for User Equilibrium problems, the following expression is often used
in the literature:

min∑
∈𝒜
∫ 𝑐 (𝜏)𝑑𝜏

Beckmann et al. [6] show the correctness of this objective function when observing UE prob-
lems, and is approach for showing that is explained below, using our own notation.

Correctness of the objective and Equilibrium conditions
Beckmann first formulates the EquilibriumConditions. Given arcs 𝑎 ∈ 𝒜 andOrigin-Destination
pairs 𝑤 ∈ 𝒲, we have the path flow and arc flow variables

𝑓 ≥ 0 ∀ 𝑝 ∈ 𝒫, (2.6)

𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜, (2.7)

with parameters 𝛿 = {1 if 𝑎 is contained in 𝑝, ∀ 𝑎 ∈ 𝒜, 𝑝 ∈ 𝒫,
0 otherwise.

From Constraints 2.6 and 2.7 follow the non-negativity constraint for arcs:

𝑥 ≥ 0 ∀ 𝑎 ∈ 𝒜.

Beckmann also states that the total sum of path flow per order equals the demand:

𝑑 = ∑
∈𝒫

𝑓 ,

with 𝑑 the number of units of demand 𝑤, originated at location 𝑣 = 𝑤 . 𝑓 is the path flow
on path 𝑝 with 𝑤 as the begin point and 𝑤 as the end point of the path. Because there are
multiple paths possible for order 𝑤, the demand equals the sum of flow on all possible paths
belonging to that order.

13

𝑤 𝑤
𝑎

𝑏

𝑔

ℎ

𝑐

𝑑

𝑓

𝑒

Figure 2.2: OD-pair with paths , , ,

In Figure 2.2 an example of an OD pair is given, with all optional paths for order 𝑤:
𝒫 = {𝑝 , 𝑝 , 𝑝 , 𝑝 }.

In case the cost functions are constant functions and there are no capacity constraints
(𝑚 = ∞ ∀ 𝑎 ∈ 𝒜), there is only one cheapest route, and hence

𝑑 = min∈𝒫 ∶
∑ ∈𝒫 is minimized

𝑓 ∀ 𝑤 ∈ 𝒲.

Define 𝑐 the arc cost on arc 𝑎 ∈ 𝒜 and 𝐶(,) the minimum path cost from node 𝑣 to 𝑤 .
𝑓(,) is thus defined as the path flow for the cheapest path between node 𝑣 and destination
𝑤 .

𝑤 𝑣 𝑣 𝑤
𝑝 𝑎

𝑝

𝑝

Figure 2.3: OD-pair with paths , , and arc . Path costs (,) min { , }, (,) . Arc cost
(,) .

Take for example the graph in Figure 2.3. Arc 𝑎 connects 𝑣 to 𝑣 , 𝑎 = (𝑣 , 𝑣). Then with
this arc 𝑎 we can extend the path from 𝑣 to 𝑤 (denoted by 𝑝 to a path from 𝑣 to 𝑤 . There
are thus two optional paths between 𝑣 and 𝑤 , namely 𝑝 and 𝑎 𝑝 , but the graph does not
state whihc is the cheapest route. We can define the minimum path cost of path (𝑣 , 𝑤) as:

𝐶(,) =min {𝐶 , 𝐶 } =min {𝐶 , 𝑐 + 𝐶 } =min {𝐶 , 𝑐 + 𝐶(,)} ,

Which implies

𝐶(,) ≤ 𝑐 + 𝐶(,).

We can rewrite this result: for every pair of points 𝑣 , 𝑣 ∈ 𝒱 there exists a uniquely determined
number 𝐶(,) such that for all 𝑎 = (𝑣 , 𝑣) with 𝑣 an adjacent node of 𝑣 :

𝐶(,) − 𝐶(,) ≤ 𝑐 with equality for some 𝑣 ; 𝐶(,) = 0. (2.8)

The converse is also true: if for every pair of points 𝑣 , 𝑣 ∈ 𝒱 there is a unique value 𝐶(,)

satisfying (2.8), then 𝑓(,) represents the flow on the cheapest path with path cost:

𝐶(,) ∶= min
, ,… ,

(𝑐(,) + 𝑐(,) +⋯+ 𝑐(,) + 𝑐(,)) .

14

𝑤
𝑣 𝑣 𝑣 𝑣

𝑦 𝑦 𝑦 𝑦
𝑤

Figure 2.4: OD-pair with 2 paths.

As an example we show in Figure 2.4 an OD pair 𝑤 = (𝑤 ,𝑤) with two optional paths, where

𝐶 , =min {(𝑐 , + 𝑐(,) +⋯+ 𝑐(,) + 𝑐(,)) , (𝑐 , + 𝑐(,) +⋯+ 𝑐(,) + 𝑐(,))} .

Now write the number of trips for OD-pair 𝑤 on path 𝑞 (thus path flow 𝑓) as a function
of the path cost: 𝑓 = 𝑙 (𝐶), with the inverse relationship 𝐶 = 𝑔 (𝑓). 𝑙 is a monotonic
(decreasing) function (the more path 𝑞 costs, the less often that path is used), so 𝑔 exists.
We may therefore assume

𝜕𝑔
𝜕𝑓 < 0, (2.9)

wherever 𝑔 is differentiable. 𝑐 = ℎ (𝑥) shows the relation between arc cost and arc flow,
which is never decreasing:

𝜕ℎ
𝜕𝑥 ≥ 0. (2.10)

We can say that for arcs that are not in a cheapest route to a location 𝑤 , the flow related to
that location on that arc is zero:

𝛿 𝑓 = 0 if 𝐶(,) − 𝐶(,) < 𝑐 , with 𝑎 = (𝑣 , 𝑣), ∀ 𝑝 ∈ 𝒫 ∀ (𝑤 ,𝑤) ∈ 𝒲.

We can write:

𝐶(,) − 𝐶(,) {=≤} 𝑐 if 𝛿 𝑓 {>=}0.

Substitution of the cost and flow variables gives us the following system:

𝑔(,) (𝑓(,)) − 𝑔(,) (𝑓(,)) {
=
≤}ℎ (𝑥) if 𝛿 𝑓 {>=}0. (2.11)

Multiplication on both sides by 𝛿 𝑓 with arc 𝑎 = (𝑣 , 𝑣) and addition yields:

∑
(,) ∈𝒜

∑
∈𝒫
[𝑔(,) (𝑓(,)) − 𝑔(,) (𝑓(,))] 𝛿 𝑓 = ∑

(,) ∈𝒜
∑
∈𝒫
ℎ (𝑥) ⋅ 𝛿 𝑓 .

We can rewrite both sides of this equation to find the expression with 𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜:

First we rewrite the right hand side:

∑
∈𝒜
∑
∈𝒫
ℎ (𝑥) ⋅ 𝛿 𝑓 = ∑

∈𝒜
ℎ (𝑥)∑

∈𝒫
𝛿 𝑓 = ∑

∈𝒜
ℎ (𝑥)𝑥 .

15

Now the left hand side:

∑
∈𝒜
∑
∈𝒫
[𝑔(,) (𝑓(,)) − 𝑔(,) (𝑓(,))] 𝛿 𝑓

= ∑
∈𝒫
[𝑔(,) (𝑓(,)) − 𝑔(,) (𝑓(,)) + 𝑔(,) (𝑓(,)) − 𝑔(,) (𝑓(,)) + …

+𝑔(,) (𝑓(,)) − 𝑔(,) (𝑓(,))] 𝑓
[use 𝑣 = 𝑤 ⇒ 𝑔(,) = 0]

= ∑
∈𝒫
𝑔(,) (𝑓(,)) 𝑓

= ∑
∈𝒫
𝑔 (𝑓)𝑓

So we can conclude

∑
∈𝒫
𝑔 (𝑓)𝑓 = ∑

∈𝒜
ℎ (𝑥)𝑥 ,

⟺ ∑
∈𝒫
𝐶 𝑓 = ∑

∈𝒜
𝑐 𝑥 , (2.12)

with the left-hand side representing the sum of all route costs and the right-hand side is the
sum of all arc costs.

The following step Beckmann takes, is showing the existence of solutions to the Equilibrium
Conditions. Consider the function

𝐻(… , 𝛿 𝑓 ,…) = ∑
∈𝒫
∫ 𝑔 (𝜏)𝑑𝜏 − ∑

∈𝒜
∫ ℎ (𝜏)𝑑𝜏, (2.13)

which we want tho maximize. Differentiate Equation 2.13 with respect to 𝛿 𝑓 after substi-

tuting 𝑥 = ∑
∈𝒫
𝛿 𝑓 from Equation 2.7. This gives us

𝜕𝐻
𝜕(𝛿 𝑓) = 𝑔(,) (𝑓(,)) − 𝑔(,) (𝑓(,)) − ℎ (𝑥).

The objective is to maximize 𝐻. To have a maximum, all derivatives of 𝐻 in the region with
𝑥 > 0 ∀ 𝑎 ∈ 𝒜, must be less than or equal to zero. From (2.11) we find:

𝜕𝐻
𝜕(𝛿 𝑓) = 0 if 𝛿 𝑓 > 0 and 𝜕𝐻

𝜕(𝛿 𝑓) ≤ 0 if (𝛿 𝑓) = 0. (2.14)

From Equation 2.10 follows that

lim
→

ℎ (𝑥) = ∞. (2.15)

In the closed set defined by the two conditions; 0 ≤ 𝛿 𝑓 and 0 ≤ 𝑥 ≤ 𝑘 < 𝑚 for some suitable
𝑘 , the function 𝐻(… , 𝛿 𝑓 ,…) is continuous since it is a sum of indefinite integrals of Riemann
integrable functions. Beckmann concludes that 𝐻 assumes its maximum at some point. This
will only be the case when 𝑘 it not too close to 𝑚 because of Equation 2.15. At the point of
maximum the necessary conditions Equation 2.13 must be satisfied. But these conditions are
identical to those in (2.11). Therefore there must exist a solution to the inequalities in (2.11)
and the supplementary defining Equation 2.7. 𝐻 was constructed in such a way that the first
order conditions for a maximum (2.14) become identical with the equilibrium condition (2.11).

16

Beckmann shows that finding a solution for this objective function

max 𝐻(… , 𝛿 𝑓 ,…) =max ∑
∈𝒫
∫ 𝑔 (𝜏)𝑑𝜏 − ∑

∈𝒜
∫ ℎ (𝜏)𝑑𝜏

is equivalent to finding an equilibrium that satisfies the following conditions:

𝐶(,) − 𝐶(,) {=≤} 𝑐 if 𝛿 𝑓 {>=}0, with 𝑎 = (𝑣 , 𝑣).

Why does this relation prove the fact that we are allowed to use the following objective func-
tion?

min∑
∈𝒜
∫ 𝑐 (𝜏)𝑑𝜏

(Note that 𝑐 (𝑥) here is equal to the function ℎ (𝑥)).
Given the function 𝐻 from Beckmann, we can easily rewrite the objective:

max 𝐻 =max ∑
∈𝒫
∫ 𝑔 (𝜏)𝑑𝜏 − ∑

∈𝒜
∫ ℎ (𝜏)𝑑𝜏

=min∑
∈𝒜
∫ ℎ (𝜏)𝑑𝜏 − ∑

∈𝒫
∫ 𝑔 (𝜏)𝑑𝜏

This objective aims to minimize the difference between the sum of arc costs and path costs,
with ℎ a non-decreasing function (see Equation 2.10) and 𝑔 is a decreasing function (see
(2.9)).

2.1.3. User Equilibrium vs. System Optimal
In general, the total cost of an SO solution is lower than the total cost of a UE solution.
However, we can prove that the costs of SO and UE solutions are similar in the case that all
arc cost functions are constant, given the definition of a UE as used in the literature. We prove
this as follows, with 𝑧 and 𝑧 the objective values for the SO and UE objective functions,
respectively:

𝑧 = ∑
∈𝒜
𝑥 ⋅ 𝑐 (𝑥) = ∑

∈𝒜
𝑥 ⋅ 𝑐 = ∑

∈𝒜
∫ 𝑐 𝑑𝜏 = ∑

∈𝒜
∫ 𝑐 (𝜏)𝑑𝜏 = 𝑧 .

The problem in this case is, that in a graph with capacity constraints, an SO solution can
be highly adverse for some player in the network, because that player is forced to take an
expensive route for the network to be of optimal cost, while another player can take its cheapest
route. But with constant arc costs, this solution is called UE as well, but it certainly is not
what we want in a UE. So we will give our own definition of a User Equilibrium in Chapter 3.
We will show in the next two examples which solutions can be found in a network with constant
arc cost functions and capacity constraints, and which UE and SO solutions occur.

17

A

B

C

(30, 6)

(3, 10)

(30, 6)
(2, 6)

(3, 10)

(2, 6)

Figure 2.5: Example 3, (,) the cost and capacity for arc , respectively.

Example 3. In this example we have two orders, order 1 traveling from 𝐴 to 𝐵 with demand 𝑑 = 10
and order 2 traveling from 𝐴 to 𝐶 with demand 𝑑 = 6. The network is given in Figure 2.5.

We have the following ILP:

min ∑
∈𝒜
𝑐 𝑥 (2.16)

𝑓 + 𝑓 = 10 (2.17)
𝑓 + 𝑓 = 6 (2.18)

∑
∈𝒫
𝛿 𝑓 = 𝑥 ∀ 𝑎 ∈ 𝒜 (2.19)

𝑥 ≤ 𝑚 ∀ 𝑎 ∈ 𝒜 (2.20)
𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫 (2.21)

Note that the objective in (2.16) is equal for both the SO and UE problem, because of the constant arc
costs. Constraints 2.17 and 2.18 denote the demand constraints, Constraint 2.19 is the arc path flow
conservation, Constraint 2.20 is the capacity constraint for all arcs and Constraint 2.21 make sure all
flows are non-negative and integer.

The arc flow solution of the problem above is

𝑥 = 6, 𝑥 = 10, 𝑥 = 4,

and thus the path flow solution is

𝑓 = 6, 𝑓 = 4, 𝑓 = 6.

Recall that this solution is both SO and UE, because we are using the definitions found in the literature.
The path flows have the following, path costs

𝐶 = 30, 𝐶 = 5, 𝐶 = 3

which gives a total cost of 218 and the total costs per customer:
𝐶 = 200, thus an average of cost 20 per container, and for 𝐶 = 18, an average of cost 3 per container.

We see that order 1, which travels from 𝐴 to 𝐵, is in disadvantage. Suppose we let the customers
choose their paths themselves, and we let order 1 decide first, then we obtain the following solution:

𝑥 = 6, 𝑥 = 10, 𝑥 = 2, 𝑥 = 6 and 𝑓 = 4, 𝑓 = 6, 𝑓 = 4, 𝑓 = 2,

with corresponding path costs

𝐶 = 30, 𝐶 = 5, 𝐶 = 3, 𝐶 = 32,

18

which gives a total cost of 226 and the total costs per customer: 𝐶 = 76, thus an average of cost 12
per container, and for 𝐶 = 150, an average of cost 15 per container.
The cheapest path for order 1 is 𝐴𝐶𝐵 with cost 5 per order and for order 2 it is the direct arc 𝐴𝐶 with cost
3. However, due to the capacity constraints, for 𝑑 = 10, it is not possible for all containers of order 1 to
transport them via path 𝐴𝐶𝐵 and thus the more expensive path 𝐴𝐵 needs to be used. According to the
definitions of UE and SO as given in the literature, this solution is not UE nor SO.

△
More interesting is the following example:

Example 4. We use the same network as in the previous example, but we adjust the capacity con-
straints. The network is given in Figure 2.6. Again we have two orders, order 1 traveling from 𝐴 to 𝐵
with demand 𝑑 = 10 and order 2 traveling from 𝐴 to 𝐶 with demand 𝑑 = 20.

A

B

C

(30, 20)

(3, 10)

(30, 20)
(2, 20)

(3, 10)

(2, 20)

Figure 2.6: Example 4, (,) the cost and capacity for arc , respectively.

We have the following ILP:

min ∑
∈𝒜
𝑐 𝑥

𝑓 + 𝑓 = 10
𝑓 + 𝑓 = 20

∑
∈𝒫
𝛿 𝑓 = 𝑥 ∀ 𝑎 ∈ 𝒜

𝑥 ≤ 𝑚 ∀ 𝑎 ∈ 𝒜
𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫

We give all possible path flow solutions with corresponding costs in Table 2.1. In this network the best
solution for order 1 is given in the first line of Table 2.1. The best solution for order 2 is given in the last
line of Table 2.1.
To state how good a solution is for an order, we use the following ratio:

𝑟 =
∑ ∈𝒫 𝐶
𝑘 ∀ 𝑤 ∈ {1, 2}

where 𝑘 is the total cost of the cheapest paths for order 𝑤 (in this example the values of 𝑘 are denoted
in green in the columns 𝐶 and 𝐶 in Table 2.1). The SO solution (which is equal to the UE solution,
according to the definitions used) is the solution of the last row in Table 2.1. In this network the worst ratio

for order 2 can be 𝑟 = 640
350 = 1.829, which is not as bad as the ratio for order 1 in the SO solution (which

is 𝑟 = 6). When looking purely at the ratios, it may be more fair to choose the situation in which both
orders are disadvantaged equally. This is the case when the difference between the ratios is minimized:
min |𝑟 − 𝑟 |. This is the case in solution

𝑓 = 1, 𝑓 = 9, 𝑓 = 1, 𝑓 = 19

19

with order cost for order 1 being 𝐶 = 30 + 45 = 75 and for order 2 being 𝐶 = 3 + 608 = 611. The

ratios in this case are 𝑟 = 75
50 = 1.5 and 𝑟 = 611

350 = 1.745714, and in the last column of Table 2.1 we
see the minimum ratio difference denoted in cyan.
It is also possible to look at the minimum total ratio, which in this case is the first line in Table 2.1, with
the total ratio denoted in cyan.

Table 2.1: Solutions for Figure 2.6 with , .

| |
- - . . .

. . . .
. . .

. . . .
. . .

. . . .
. . .

. . . .
. . .

. . . .
- . .

The disadvantage of the last two solutions we denoted (the ones with minimum difference in ratio and
minimum ratio sum), is the fact that the total costs are higher than the SO solution (with 𝑓 = 10,
𝑓 = 10, and 𝑓 = 10). But there is a possibility to maintain the SO solution value, while minimizing
the ratios, namely with toll pricing. We will discuss this in Chapters 4, 5, and 6. △

2.1.4. Unique User Equilibrium path flows
Often there exists multiple User Equilibrium solutions concerning the path flow, if a solution
exists. The arc flows 𝑥 ∀ 𝑎 ∈ 𝒜 are unique when cost functions of all arcs are strictly increas-
ing (which is proven by Yang and Huang [30]). The existence of multiple path flow solutions
can cause problems, because in this case different solvers can give different solutions. And
when using the same solver, a small change of the network can cause a huge change in the
path solution [7].
Can we force uniqueness? One option to do so is: For a given (unique) arc flow part of a UE
one can compute a feasible route flow 𝑓𝑓𝑓 that minimizes an objective 𝐺 with fixed demand and
arc flow:

min 𝐺(𝑓𝑓𝑓) s.t. 𝑓𝑓𝑓 ∈ ℱ.

The solution 𝑓𝑓𝑓 is unique when 𝐺 is strictly convex on ℱ [17].
In this thesis we will assume the arc flows are not unique: there can be multiple solu-

tions with equal arc flows, but with different path flows. We do not demand a unique User
Equilibrium solution in the thesis.

2.1.5. Lagrangian Dual
We will use the Lagrangian Dual to show the correctness of Wardrops definition of a User

Equilibrium and the commonly used objective function for those problems (∫ 𝑐 (𝜏)𝑑𝜏) in

Subsection 2.1.6. We will first explain the Lagrangian Dual in this section.

The common used User Equilibrium problem in traffic assignment problems consists of an
objective function with several equality and inequality constraints. In this section we consider

20

a general notation of the IP:

𝑧 =min 𝑔(𝑥𝑥𝑥)

s.t. 𝐴𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏
𝐷𝑥𝑥𝑥 = 𝑑𝑑𝑑
𝑥𝑥𝑥 ∈ 𝑋 ⊆ ℕ

(IP)

We can compare this general form with the User Equilibrium IP in traffic assignment prob-

lems: take as objective function 𝑔(𝑥𝑥𝑥) = ∫ 𝑐 (𝜏)𝑑𝜏, with 𝐴𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏 the capacity constraints on

the arcs and 𝐷𝑥𝑥𝑥 = 𝑑𝑑𝑑 the demand constraints.

We will now create a relaxation of the IP: For any values of 𝜆𝜆𝜆 = (𝜆 ,… , 𝜆) ∈ ℝ ,
𝜇𝜇𝜇 = (𝜇 ,… , 𝜇) ∈ ℝ we define the problem

𝑧(𝜆𝜆𝜆,𝜇𝜇𝜇) =min 𝑔(𝑥𝑥𝑥) + 𝜆𝜆𝜆(𝐴𝑥𝑥𝑥 − 𝑏) + 𝜇𝜇𝜇(𝐷𝑥𝑥𝑥 −𝑑𝑑𝑑)
s.t. 𝑥𝑥𝑥 ∈ 𝑋 (IP(𝜆𝜆𝜆,𝜇𝜇𝜇))

Where (IP(𝜆𝜆𝜆,𝜇𝜇𝜇)) is a relaxation of (IP) for all 𝜆𝜆𝜆 ≥ 0, 𝜇𝜇𝜇 ∈ ℝ [28, Proposition 10.1]. This holds
because the feasible region of (IP(𝜆𝜆𝜆,𝜇𝜇𝜇)) is at least as large as the feasible region of (IP), because

{𝑥𝑥𝑥 | 𝐴𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏, 𝐷𝑥𝑥𝑥 = 𝑑𝑑𝑑, 𝑥𝑥𝑥 ∈ 𝑋} ⊆ 𝑋.

Also the objective value is at least as small in (IP(𝜆𝜆𝜆,𝜇𝜇𝜇)) as in (IP) for all feasible solutions in
(IP), because as 𝜆𝜆𝜆 ≥ 0 and 𝐴𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏 for all 𝑥𝑥𝑥 ∈ 𝑋, then 𝑔(𝑥𝑥𝑥) + 𝜆𝜆𝜆(𝐴𝑥𝑥𝑥 − 𝑏𝑏𝑏) ≤ 𝑔(𝑥𝑥𝑥) for all 𝑥𝑥𝑥 ∈ 𝑋.
𝜆𝜆𝜆 and 𝜇𝜇𝜇 are called the Lagrange vectors. Problem (IP(𝜆𝜆𝜆,𝜇𝜇𝜇)) is called a Lagrangian relaxation
of (IP) with parameters 𝜆𝜆𝜆, 𝜇𝜇𝜇. With the dual we can find a lower bound on our minimization
problem.

The Lagrangian Dual problem is denoted as:

𝑤 =max {𝑧 (𝜆𝜆𝜆,𝜇𝜇𝜇) | 𝜆𝜆𝜆 ≥ 0}
=max

,
𝑧 (𝜆𝜆𝜆,𝜇𝜇𝜇) (LD)

The Lagrangian Dual can give us a lower bound on our minimization problem (IP) and
sometimes even leads to an optimal solution of (IP) [28].

Proposition 1. If 𝜆𝜆𝜆 ≥ 0,

1. 𝑥𝑥𝑥(𝜆𝜆𝜆) is an optimal solution of IP(𝜆𝜆𝜆), and

2. 𝐴𝑥𝑥𝑥(𝜆𝜆𝜆) ≤ 𝑏𝑏𝑏, and

3. (𝐴𝑥𝑥𝑥(𝜆𝜆𝜆)) = 𝑏 whenever 𝜆 > 0 (complementarity),

then 𝑥𝑥𝑥(𝜆𝜆𝜆) is optimal in IP. [28, Proposition 10.2]

For equality constraints (𝜇𝜇𝜇 in our problem): Condition (3) is automatically satisfied, so an
optimal solution to IP(𝜇𝜇𝜇) is optimal for IP if it is feasible in IP.

The question for now is, is the Lagrangian Dual useful to solve our User Equilibrium Problem?
Therefore we need to know how good the bound is, which is obtained by solving the Lagrangian
Dual, and how to actually solve it.
The strength of a bound can be expressed by the following theorem:

21

Theorem 1. 𝑤 =min {𝑔(𝑥𝑥𝑥) | 𝐴𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏, 𝐷𝑥𝑥𝑥 = 𝑑𝑑𝑑, 𝑥𝑥𝑥 ∈ conv(𝑋)}. [28, theorem 10.3]

Proof.

𝑤 =max
,
𝑧 (𝜆𝜆𝜆,𝜇𝜇𝜇)

=max
,
{min
∈
[𝑔(𝑥𝑥𝑥) + 𝜆𝜆𝜆 (𝐴𝑥𝑥𝑥 − 𝑏𝑏𝑏) + 𝜇𝜇𝜇 (𝐷𝑥𝑥𝑥 −𝑑𝑑𝑑)]}

=max
,
{ min

,…,
[𝑔(𝑥𝑥𝑥) + 𝜆𝜆𝜆 (𝐴𝑥𝑥𝑥 − 𝑏𝑏𝑏) + 𝜇𝜇𝜇 (𝐷𝑥𝑥𝑥 −𝑑𝑑𝑑)]}

=max 𝜂
s.t. 𝜂 ≤ 𝑔(𝑥𝑥𝑥) + 𝜆𝜆𝜆 (𝐴𝑥𝑥𝑥 − 𝑏𝑏𝑏) + 𝜇𝜇𝜇 (𝐷𝑥𝑥𝑥 −𝑑𝑑𝑑) for all 𝑡

𝜆𝜆𝜆 ∈ ℝ , 𝜇𝜇𝜇 ∈ ℝ , 𝜂 ∈ ℝ
where the set 𝑋 consist of a finite number of points {𝑥 , … ,𝑥𝑥𝑥 }, and the chosen 𝑥𝑥𝑥 denotes the optimal
solution such that the expression 𝑧(𝜆𝜆𝜆,𝜇𝜇𝜇) is minimized. The new variable 𝜂 is introduced to represent a
lower bound on 𝑧(𝜆𝜆𝜆,𝜇𝜇𝜇).
Taking the dual of the latter (linear) problem gives:

𝑤 =max{min
∈ℝ
−𝜂 +∑𝑢 (𝜂 − 𝑔(𝑥𝑥𝑥) − 𝜆𝜆𝜆 (𝐴𝑥𝑥𝑥 − 𝑏𝑏𝑏) − 𝜇𝜇𝜇 (𝐷𝑥𝑥𝑥 −𝑑𝑑𝑑))}

=max{min
∈ℝ
𝜂 (∑(𝑢) − 1) +∑𝑢 (−𝑔(𝑥𝑥𝑥) − 𝜆𝜆𝜆 (𝐴𝑥𝑥𝑥 − 𝑏𝑏𝑏) − 𝜇𝜇𝜇 (𝐷𝑥𝑥𝑥 −𝑑𝑑𝑑))}

=min{∑𝑢 (𝑔(𝑥𝑥𝑥) + 𝜆𝜆𝜆 (𝐴𝑥𝑥𝑥 − 𝑏𝑏𝑏) + 𝜇𝜇𝜇 (𝐷𝑥𝑥𝑥 −𝑑𝑑𝑑))}

s.t. 𝜆𝜆𝜆 ∈ ℝ , 𝜇𝜇𝜇 ∈ ℝ , 𝑢𝑢𝑢 ∈ ℝ .
This equivalent to

𝑤 =min ∑𝑢 𝑔(𝑥𝑥𝑥)

s.t. ∑𝑢 (𝐴𝑥𝑥𝑥 −𝑏𝑏𝑏) ≤ 0

∑𝑢 (𝐷𝑥𝑥𝑥 −𝑑𝑑𝑑) = 0

∑𝑢 = 1

𝑢𝑢𝑢 ∈ ℝ

Setting 𝑥𝑥𝑥 =∑𝑢 𝑥𝑥𝑥 , with∑𝑢 = 1, 𝑢𝑢𝑢 ∈ ℝ we get:

𝑤 =min 𝑔(𝑥𝑥𝑥)
s.t. 𝐴𝑥𝑥𝑥 ≤ 𝑏𝑏𝑏

𝐷𝑥𝑥𝑥 = 𝑑𝑑𝑑
𝑥𝑥𝑥 ∈ conv(𝑋)

22

To solve the formulation in Theorem 1 we need a constraint generation (or cutting plane)
approach, because of the large amount of constraints.
Wolsey also gives a Sub-gradient algorithm for the Lagrangian Dual, where you start with an
initial Lagrangian multiplier which you adjust every step.

Algorithm 1 Sub-gradient algorithm for the Lagrangian Dual [28]
Initialization. 𝑢𝑢𝑢 = 𝑢𝑢𝑢 .
Iteration k. 𝑢𝑢𝑢 = 𝑢𝑢𝑢 .
while 𝑢𝑢𝑢 ≠ 𝑢𝑢𝑢
do Solve the Lagrangian Problem IP(𝑢) with optimal solution 𝑥𝑥𝑥(𝑢𝑢𝑢).
𝑢𝑢𝑢 =max{𝑢𝑢𝑢 − 𝜇 (𝑑 − 𝐷𝑥𝑥𝑥(𝑢𝑢𝑢)), 0}
𝑘 ← 𝑘 + 1.
end while

𝑑𝑑𝑑 − 𝐷𝑥𝑥𝑥(𝑢𝑢𝑢) is a sub-gradient of 𝑧(𝑢𝑢𝑢) at 𝑢𝑢𝑢 . The difficulty of this algorithm is in choosing the
step lengths {𝜇 } :

Theorem 2. [28, theorem 10.4]

(a) If ∑ 𝜇 → ∞, and 𝜇 → 0 as 𝑘 → ∞, then 𝑧(𝑢𝑢𝑢) → 𝑤 is the optimal value of LD.

(b) If 𝜇 = 𝜇 𝜌 for some parameter 𝜌 < 1, then 𝑧(𝑢𝑢𝑢) → 𝑤 if 𝜇 and 𝜌 are sufficiently large.

(c) If 𝑤 ≥ 𝑤 and 𝜇 = 𝜖 [𝑧(𝑢𝑢𝑢)−𝑤]/||𝑑𝑑𝑑−𝐷𝑥𝑥𝑥(𝑢𝑢𝑢)|| with 0 < 𝜖 < 2, then 𝑧(𝑢𝑢𝑢) → 𝑤, or the algorithm
finds 𝑢𝑢𝑢 with 𝑤 ≥ 𝑧(𝑢𝑢𝑢) ≥ 𝑤 for some finite 𝑘.

2.1.6. Lagrangian duality in User Equilibrium problems
We will now use the Lagrangian Dual to show the correctness of Wardrops definition of a User

Equilibrium and the commonly used objective function for those problems: ∫ 𝑐 (𝜏)𝑑𝜏. Let

𝒢 = (𝒱,𝒜) be a directed graph and let 𝒫 be the set of paths 𝑝 in the graph 𝒢. Denote 𝒫 as the
set of paths for OD-pair 𝑤 ∈ 𝒲, and 𝒫 = ⋃

∈𝒲
𝒫 . The User Equilibrium problem is given by

min ∑
∈𝒜
∫ 𝑐 (𝜏)𝑑𝜏 (2.22)

s.t. ∑
∈

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝑊 (2.23)

𝑥 = ∑
∈
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜 (2.24)

𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝑃 (2.25)

with 𝛿 = {1 if 𝑎 is contained in 𝑝,
0 otherwise.

When we interpret the UE as a situation in which each order travels via its cheapest paths
[1], we can state

𝐶 (𝑓𝑓𝑓) =min
∈𝒫

𝐶 (𝑓𝑓𝑓) ∀ 𝑝 ∈ 𝒫 s.t. 𝑓 > 0, 𝑓 ∈ ℕ ∀ 𝑤 ∈ 𝒲.

Beckmann et al. [6] proved that such a flow always exists by considering the following min-
cost multi-commodity flow problem with separable objective function (see Subsection 2.1.2)

min∑
∈𝒜
∫ ℎ (𝜏)𝑑𝜏.

23

In the UE problem, which can have a nonlinear objective, (2.22) is the objective function, with
Constraints 2.23, which states that for every OD-pair 𝑤, the demand is provided by the paths
corresponding to this OD-pair and Constraint 2.24 states that the flow on arc 𝑎 is the sum of
all path flows that make use of this arc.
A Lagrangian Dual of this problem is:

𝑤 =max
∈ℝ

min 𝑍

=max
∈ℝ

min
∈ℕ

∑
∈
∫ 𝑐 (𝜏)𝑑𝜏 +∑𝜆 (𝑑 − ∑

∈
𝑓)

s.t. 𝑥 = ∑
∈
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜

𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫

Theorem 3 (Complementary Slackness). [2] Let 𝑓 , 𝑝 ∈ 𝑃 and 𝜆 , 𝑤 ∈ 𝑊 be feasible solutions to the
primal and dual problem, respectively. They are optimal solutions for the two respective problems if and
only if

𝜆 (∑
∈

𝑓 − 𝑑) = 0 ∀ 𝑤 ∈ 𝒲 (2.26)

and

𝑓 (𝑐 (∑
∈
𝛿 𝑓) − 𝜆) = 0 ∀ 𝑝 ∈ 𝒫 (2.27)

In Equality 2.26 we see the that the part we added to the objective function must be equal
to 0. With Equality 2.27 it can easily be verified that a path 𝑝 can only be used when the costs
of using this path is equal to the minimum cost for OD-pair 𝑤. This minimum cost is thus
denoted by 𝜆 . Because of the fact that 𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫 we can conclude that in the Dual
Problem, the constraints

𝑐 (∑
∈𝒫
𝛿 𝑓) − 𝜆 ≥ 0 ∀ 𝑝 ∈ 𝑃

have to hold. This also is valid because the cost of a path 𝑝 can never be smaller than the
minimum path cost 𝜆 .

24

2.2. Tolls systems in the literature
Instead of solving the UE as we done in the section before, we can solve UE problems as well
by using tolls. In this section we will give an outline of toll in the literature, and in Chapters 4,
5, and 6 we will show our own method of toll pricing.

Hearn and Ramana [13] make use of a toll pricing system by adding a toll term to the cost
function for each arc. They define the system of feasible flows:

𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜 (2.28)

∑
∈𝒫

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲 (2.29)

𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫 (2.30)

𝐹 = {(𝑥𝑥𝑥,𝑓𝑓𝑓) | 𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜, ∑

∈𝒫
𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲, 𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫}

𝑉 = {𝑥𝑥𝑥 | there exists 𝑓𝑓𝑓 s.t. (𝑥𝑥𝑥,𝑓𝑓𝑓) ∈ 𝐹}

where Constraint 2.28 denotes the total arc flow, given all path flows using that arc, Constraint
2.29 the demand constraint, Constraint 2.30 assures all flows are nonnegative, 𝐹 is the set of
all feasible flows and 𝑉 the set of feasible arc flows.

The cost function on arc 𝑎 is 𝑐 (𝑥) and the amount of toll on arc 𝑎 is denoted by 𝛽 , which
can be both positive and negative. Then the adjusted arc costs as perceived by a customer
are given by

𝑐𝑐𝑐 (𝑥𝑥𝑥) = 𝑐𝑐𝑐(𝑥𝑥𝑥) +𝛽𝛽𝛽.

with arc flow vector 𝑥𝑥𝑥, cost vector 𝑐𝑐𝑐(𝑥𝑥𝑥), toll vector 𝛽𝛽𝛽 and tolled cost vector 𝑐𝑐𝑐 (𝑥𝑥𝑥). A tolled
equilibrium then is

𝑐𝑐𝑐 (𝑥𝑥𝑥) (𝑥𝑥𝑥 − 𝑥𝑥𝑥) ≥ 0 ∀ 𝑥𝑥𝑥 ∈ 𝑉

with 𝑥𝑥𝑥 the UE solution vector.
Define the set of tolled equilibrium solutions:

𝑈∗ ∶= {𝑥𝑥𝑥 | (𝑐𝑐𝑐(𝑥𝑥𝑥) +𝛽𝛽𝛽) (𝑥𝑥𝑥 − 𝑥𝑥𝑥) ≥ 0 ∀ 𝑥𝑥𝑥 ∈ 𝑉}.

The SO solution set is given by

𝑆∗ ∶= argmin{𝑐𝑐𝑐(𝑥𝑥𝑥) 𝑥𝑥𝑥 | 𝑥𝑥𝑥 ∈ 𝑉}.

They require

∅ ≠ 𝑈∗ ⊆ 𝑆∗, (2.31)

because we want the resulting UE has a solution and every equilibrium solution is SO. If a
toll vector 𝛽𝛽𝛽 suffices (2.31), it is a valid toll vector.
The set of all these toll vectors is

𝒯 ∶= {𝛽𝛽𝛽 | ∅ ≠ 𝑈∗ ⊆ 𝑆∗}.

Also define

𝑊(𝑥𝑥𝑥) = {𝛽𝛽𝛽 | 𝑥𝑥𝑥 ∈ 𝑈∗ }, with 𝑥𝑥𝑥 ∈ 𝑉

and we can say

𝑊(𝑥𝑥𝑥) = 𝑁(𝑥𝑥𝑥; 𝑉) − 𝑐𝑐𝑐(𝑥𝑥𝑥),

25

where 𝑁(𝑥𝑥𝑥, 𝑉) = {𝑢𝑢𝑢 | 𝑢𝑢𝑢 (𝑥𝑥𝑥 − 𝑥𝑥𝑥) ≥ 0 ∀ 𝑥𝑥𝑥 ∈ 𝑉}. From Hearn and Ramana [13] also follows that the
toll vector set can be denoted as

𝒯 = ⋃
∗∈ ∗

𝑊(𝑥𝑥𝑥∗)

Hearn and Ramana also give a problem formulation for Mathematical Programs with Equilib-
rium Constraints with tolls:

min ∑
∈𝒜
𝑐 (𝑥)𝑥

s.t. 𝑥𝑥𝑥 ∈ 𝑉
(𝑐𝑐𝑐(𝑥𝑥𝑥) +𝛽𝛽𝛽) (𝑥𝑥𝑥 − 𝑥𝑥𝑥) ≥ 0 ∀ 𝑥𝑥𝑥 ∈ 𝑉.

𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜

∑
∈𝒫

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲

𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫

(MPEC)

This problem has both 𝛽𝛽𝛽 and 𝑥𝑥𝑥 as its variables. Our path based toll model is based on the
MPEC of Hearn and Ramana.
They also describe the Robinhood formulation, in which the sum of all tolls must be zero, so
that there is no profit for the system: all money that is payed by certain customers in the
system will arrive at other customers inside the system.
In this case they calculate the toll after a System Optimal solution is found. Then they state
the following ILP:

min ∑
∈𝒜
𝛽 𝑥

s.t. ∑
∈𝒜
𝛽 𝑥 = 0

(2.32)

According to Florian and Hearn [10], the application of those types of toll is hard to implement
on traffic networks regarding variable travel times, although the selective use of negative tolls
to influence route choice of users might have some appeal. In this thesis we will show a way
of applying both negative and positive tolls.

Larsson et. al. [15] give an algorithm to calculate tolls to links in such a way that the tolls
force individual drivers to choose routes such that the total costs and environmental solution
are minimized (so finding an SO solution) while drivers still search for their own optimal route
in ways of travel time and costs.
The question is how to divide tolls over the network. As stated by Small [23]: “the people who
benefit from congestion relief and revenue uses do not necessarily coincide with those who
pay the fees or who suffer inconvenience in order to avoid them.” We state that fairness is
reached when customers who are not causing any bottleneck, should not pay tolls which solve
that certain bottleneck, therefore we divide the customers in different sets, as we will show in
Chapter 5.

Yang and Han [12] investigate the use of tolls with the help of the price of anarchy. Yang
and Zhang [32] constructed an anonymous link toll system to add traveler-dependent tolls.
They concluded that there exist nonnegative links tolls identical to all users to decentralize the
Wardropian System Optimum as a UE-CN (Cournot-Nash) mixed equilibrium, and the valid
toll set is made up of a convex set of linear equalities and inequalities. Yang and Han [12]
and Yang and Zhang [32] use nonnegative tolls. Our approach is to use tolls that sum up

26

to zero. Yang and Huang [31] state that Value Of Time (VOT) is a very important concept in
transportation system modeling. The VOT of an order is a constant which denotes the impor-
tance of that customer. We will assume the VOT is equal for all customers in the network, so
all time based costs have the same urgency for each customer.

Didi-Biha, Marcotte and Savard [9] also use nonnegative tolls. Their goal is to maximize
the toll revenue for the highway authority while the users of the network want to minimize
their traveling costs. They introduce their bi-level programming Toll Optimization Problem,
both arc, arc-path and path based.

Yang [30] proved the existence of a Pareto refunding scheme that returns the congestion
pricing revenues to all users to make everyone better off. This Pareto refunding scheme re-
funds class-specific and OD-specific toll revenue equally to all users in the same OD pair in
the same user class.

27

3
User Equilibria and Tolls
in Space Time Networks

In this chapter, we will discuss the User Equilibrium problem on Space Time Networks. In
Subsection 1.2.2 we introduced the definition of a UE by Wardrop, in this chapter we will
formulate our demands for the definition of a User Equilibrium. In Section 3.1 we will show
how we can solve the UE problem on the Space Time Network. In Section 3.2 we introduce
the use of tolls on the STN and in Section 3.3 we introduce the definitions of User Equilibria
for different types of tolls.

3.1. User Equilibrium on Space Time Networks
To define the User Equilibrium on Space Time Networks, we need to know what conditions
the solutions need to meet. To find those conditions, we will use Example 5 and Example 6.
But first we introduce some notation: recall that we denote the path cost by 𝐶 or 𝐶 . The
total order cost is denoted by 𝐶 for all 𝑤, with

𝐶 = ∑
∈𝒫

𝐶 𝑓 = ∑
∈𝒫

𝐶 𝑓 .

We denote the cheapest path cost for an order by 𝑘 . We calculate this cheapest path cost by
assigning containers of order 𝑤 to paths assuming this order is the only one traveling in the
STN.
We will show two examples to explain how the STN can be used and how we can compare
different solutions with each other.

Example 5. In this example there are three locations, 𝒱 = {1, 2, 3}, and five time steps. We have two
connections between location 𝑙 = 1 and 𝑙 = 2 and two between 𝑙 = 2 and 𝑙 = 3. Those arcs all have
capacity 𝑚 = 1, and 𝑚 = ∞ for waiting arcs. We have two orders, order 1 and 2 both start at location
1, order 1 has to go to 𝑙 = 2 and order 2 to 𝑙 = 3. Every node column shows a time step and each arc
has cost 𝑐 = 1. The two possible solutions are given in Figure 3.1, with 𝑠 denoting the starting point
and 𝑒 denoting the end point for order 𝑤.

In Figure 3.1a we see the SO solution, that is the solution where the total costs are minimized. Here
order 1 is delivered first with cost 𝐶 = 2 and therefore order 2 can only take path 𝑏𝑑 with cost 𝐶 = 5.
In Figure 3.1b a solution is given where both orders pay cost 4, that is path 𝑏 for order 1, and path 𝑎𝑐
for order 2.
We can see that each order has its own preferable solution, that is the one in which they can travel via
arc 𝑎, which is in the cheapest path for both orders.

29

𝑡 = 0 1 2 3 4 5

𝑠 , 𝑠𝑙 = 1

𝑒𝑙 = 2

𝑒𝑙 = 3

𝑎 𝑏

𝑐 𝑑

(a) The SO solution.

𝑡 = 0 1 2 3 4 5

𝑠 , 𝑠𝑙 = 1

𝑒𝑙 = 2

𝑒𝑙 = 3

𝑎 𝑏

𝑐 𝑑

(b) The alternative solution.

Figure 3.1: STN with two orders, with for all arcs between two different locations, otherwise.

The question now is, can we call one of those solutions a User Equilibrium? Assuming customers
choose their own routes, the solution depends on which customer gets to choose first. According to
Wardrops definition (see Section 2.1) a User Equilibrium is obtained if the costs for all customers are
equal (so the situation in Figure 3.1b), but we have to keep in mind that this equality only holds if the
customers are having the same OD-pair. According to the objective function for UE in traffic assignment
problems, the UE solution is equal to the SO solution, due to the constant arc costs (as we also saw in
(2.12)):

min 𝑧 =min ∑
∈𝒜
∫ 𝑐 (𝜏)𝑑𝜏 =min ∑

∈𝒜
𝑐 𝑥 =min ∑

∈𝒫
𝐶 𝑓 = 𝑧 .

Thus, for the definitions as used in the literature, the solution given in Figure 3.1a is the best User Equi-
librium, because in this solution 𝑧 is minimized. But we can easily verify order 2 is not satisfied with
this solution.

We can also look at the ratio between the cheapest path and the alternative path per customer in
this example, to see how worse it will be for an order to travel via its alternative path. A ratio of 1 means
that the order can travel via its cheapest path, and thus is satisfied.
For order 1, the cheapest path cost is 𝑘 = 𝐶 = 2, the alternative path cost is 𝐶 = 4. Then we obtain

the ratio 𝑟 = 𝐶
𝑘 = 2. For order 2, the cheapest path cost is 𝑘 = 𝐶 = 4, the alternative path cost is

𝐶 = 5. Then we obtain the ratio 𝑟 = 𝐶
𝑘 = 5

4 .

We see that both order 1 and order 2 want to travel via arc 𝑎 in order to travel via their cheapest
path. If order 1 is forced to take his most expensive path 𝑏 in order to let order 2 travel via its cheapest
path 𝑎𝑐, it is more expensive for order 1 to travel via its second-best path than when order 2 is forced

to travel via its second-best path (because 𝑟 = 2 > 𝑟 = 5
4). So we could conclude that letting order 2

traveling via path 𝑏𝑑 and letting order 1 take its cheapest path, is the User Equilibrium (thus in this case
the SO solution, denoted in Figure 3.1a), because in this solution all customers are harmed as little as
possible. △

We can conclude from this example, that we want to minimize the harm of traveling via
alternative paths, which are all paths except for the cheapest path. We will use the ratio to
denote the harm of a customer in the current compared to its cheapest path:

𝑟 = 𝐶
𝑘 ∀ 𝑤 ∈ 𝒲.

So the ratio is the cost payed by an order divided by the cheapest path costs of that order.
We will endorse the benefit of the minimization of harm by the following example:

30

Example 6. We adjusted Example 5: we added one extra time step and moved arc 𝑑 one time step.
The two possible solutions are given in Figure 3.2, with 𝑠 denoting the starting point and 𝑒 denoting
the end point for order 𝑤.

𝑡 = 0 1 2 3 4 5 6

𝑠 , 𝑠𝑙 = 1

𝑒𝑙 = 2

𝑒𝑙 = 3

𝑎 𝑏

𝑐 𝑑

(a) SO solution 1

𝑡 = 0 1 2 3 4 5 6

𝑠 , 𝑠𝑙 = 1

𝑒𝑙 = 2

𝑒𝑙 = 3

𝑎 𝑏

𝑐 𝑑

(b) SO solution 2

Figure 3.2: STN with two orders, with for all arcs between two different locations, otherwise.

In this case there are two SO solutions, because both solutions have the same objective cost:
𝐶 + 𝐶 = 8.
We compare the two solutions by calculating the ratio of the current solution divided by the cheapest
path for each individual order (again arc 𝑎 is in the cheapest paths for both orders):
Solution in Figure 3.2a:

Order 1: 𝑘 = 𝐶 = 2, chosen path cost 𝐶 = 2: Ratio 𝑟 = 𝐶
𝑘 = 2

2 = 1.

Order 2: 𝑘 = 𝐶 = 4, chosen path cost 𝐶 = 6: Ratio 𝑟 = 𝐶
𝑘 = 6

4 =
3
2 .

Solution in Figure 3.2b:

Order 1: 𝑘 = 𝐶 = 2, chosen path cost 𝐶 = 4: Ratio 𝑟 = 𝐶
𝑘 = 4

2 = 2.

Order 2: 𝑘 = 𝐶 = 4, chosen path cost 𝐶 = 4: Ratio 𝑟 = 𝐶
𝑘 = 4

4 = 1.
The higher the ratio is, the more the order is disadvantaged. So in order to have satisfied customers,
we want all ratios to be as low as possible. When looking at the example, then the solution as given in
Figure 3.2a is the best User Equilibrium, so order 1 traveling via path 𝑎 and order 2 via 𝑏𝑑. △

3.1.1. Using ratios
As shown in the section above, finding a solution in which all orders are satisfied, is not
always possible. A way of defining a User Equilibrium where all orders are harmed as little as
possible, is looking at the ratios of the used path cost compared to the cheapest path cost for
that order. We can state this in an ILP with objective function

min ∑
∈𝒲
𝑟 =min ∑

∈𝒲

𝐶
𝑘 =min ∑

∈𝒲
(1
𝑘 ∑

∈𝒫
𝐶 𝑓) .

We use the following ILP:

min ∑
∈𝒲
(1
𝑘 ∑

∈𝒫
𝐶 𝑓)

s.t. ∑
∈

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝑊

𝑥 = ∑
∈
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜

𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝑃

31

We refer to this objective function as the Weighted Ratio objective. In the following example
we will show the influence of using this objective function.

Example 7. In this example we have three orders, order 1 traveling from location 𝑙 = 1 to 𝑙 = 3, order
2 from 𝑙 = 1 to 𝑙 = 4 and order 3 from 𝑙 = 2 to 𝑙 = 4. The demands are 𝑑 = 𝑑 = 1 and 𝑑 = 2. The
UE solution is given in Figure 3.3a and the Weighted Ratio solution is given in Figure 3.3b, the values
of the solutions can also be read in Table 3.1.

t= 0 1 2 3 4 5 6 7 8

𝑠 , 𝑠

𝑠

𝑒

𝑒 𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎 𝑏

𝑐 𝑑 𝑒 𝑓

𝑔 ℎ 𝑖 𝑗
𝑘

(a) SO solution.

t= 0 1 2 3 4 5 6 7 8

𝑠 , 𝑠

𝑠

𝑒

𝑒 𝑒 , 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎 𝑏

𝑐 𝑑 𝑒 𝑓

𝑔 ℎ 𝑖 𝑗
𝑘

(b) Weighted Ratio solution.

Figure 3.3: STN with three orders, with for all arcs between two different locations, otherwise.

Table 3.1: Solution of STN in Figure 3.3a

Order 1 Order 2 Order 3 Total Cost Total Ratio
cheapest paths cost 𝑘 2 3 8
Solution Weighted Ratio 2 5 16 23
Solution SO 5 5 11 21
Ratio of Weighted Ratio 𝑟 1 1.6667 2 4.66667
Ratio of SO 𝑟 2.5 1.6667 1.375 5.54167

We see that the total costs of the Weighted Ratio solution are higher than those of the SO solution.
Note that the SO solution is not unique: the costs of the containers of orders 2 and 3 can be switched
without influencing the total costs. The benefit of using the Weighted Ratio objective function, is the fact
that the total ratio is minimized. It is less harmfull for order 3 to pay more than it is for order 1, compared
to their cheapest path costs. △

32

The question now arises, what do we rather achieve? When looking for a User Equilibrium,
do we want the total costs minimized (SO), or do we want to divide the extra costs fairly
compared to cheapest path costs (Weighted Ratio)? The best solution would be a combination,
in which we obtain an SO, and the extra costs made by having to travel via non-cheapest paths
are divided in a fair way over the orders. In the next section we will introduce a method to
find this combination, by adding tolls the the network, and we will give definitions of a User
Equilibrium.

3.2. Toll In Space Time Networks
Our goal is to reach as well an SO solution regarding the total costs, as achieving a UE. By a
SO solution we mean a solution in which the total costs are minimized. However, it is always
the case that a UE has a total cost equal or higher to the total cost of the SO solution. To
avoid this higher total cost in a UE, we introduce the use of tolls in three ways:

1. Tolls on orders: assign tolls to the orders after obtaining the SO solution, to create a UE
solution in which costs are divided over the orders in a fair way.

2. Tolls on paths: assign tolls to paths after obtaining the SO solution and create tolled path
costs on the STN, in which the paths of the SO solution have cheapest (tolled) paths costs
and thus a UE solution is obtained.

3. Tolls on arcs: assign tolls to arcs after obtaining the SO solution and create tolled arc
costs on the STN, in which the paths of the SO solution have cheapest (tolled) path costs
and thus a UE solution is obtained.

The outline of the procedure is to calculate the SO solution in the STN, then add tolls (which
can be both positive and negative) to arcs, paths or orders, in such a way that the total sum
of all tolls on orders (in the order case), on used paths (in the path case) or on used arcs (in
the arc case), is equal to zero. We will assume that all OD-pairs are individual customers.

In this thesis we will investigate the first two ways of adding tolls: on orders and on paths.
We use the following notation for tolls: the toll on path is 𝛽 and the toll on order is given by

𝛽 = ∑
∈𝒫

𝛽 𝑓 .

We define the tolled order costs:
𝐶 = 𝐶 + 𝛽

as the order cost including the tolls, and the tolled path costs:

𝐶 = 𝐶 + 𝛽

as the path cost including the tolls. Note that

𝐶 = 𝐶 + 𝛽 = ∑
∈𝒫

(𝐶 + 𝛽) = ∑
∈𝒫

𝐶 ∀ 𝑤 ∈ 𝒲.

𝑘 is the cost of the cheapest paths for order 𝑤.

We can compare the tolls on orders to real life instances. We see in real life instances that
adding toll on orders is as assigning “fair” costs to customers which use the same transport
modalities (multiple containers on the same train or barge). We assume when assigning toll
to orders, that the customer is familiar with the initial STN, but that the tolls will give final
costs that satisfy a certain “fairness” criterion. We will discuss this in Chapter 5.

Adding toll on paths gives us a new cost network wherein the goal is that each customer
will choose paths which are also assigned to him in the SO solution. We assume that the cus-
tomers only know the new cost network (and thus do not know the initial costs of all paths).

33

We can say a UE is reached when the costs of the paths are defined such that in the case all
capacity constraints are removed, still the same paths will be chosen by the customers. We
will discuss this in Chapter 4.

To investigate the behavior of tolls, we will divide MCMCF problem on an STN into different
cases:

• Case 1: demand 𝑑 = 1 ∀ orders 𝑤 ∈ 𝒲, capacity 𝑚 = 1 ∀ 𝑎 between two different
locations, 𝑚 = ∞ otherwise, 𝑎 ∈ 𝒜,

• Case 2: demand 𝑑 ≥ 1 ∀ orders 𝑤 ∈ 𝒲, capacity 𝑚 = 1 ∀ 𝑎 between two different
locations, 𝑚 = ∞ otherwise, 𝑎 ∈ 𝒜,

• Case 3: demand 𝑑 = 1 ∀ orders 𝑤 ∈ 𝒲, capacity 𝑚 ≥ 1 ∀ 𝑎 between two different
locations, 𝑚 = ∞ otherwise, 𝑎 ∈ 𝒜,

• Case 4: demand 𝑑 ≥ 1 ∀ orders 𝑤 ∈ 𝒲, capacity 𝑚 ≥ 1 ∀ 𝑎 between two different
locations, 𝑚 = ∞ otherwise, 𝑎 ∈ 𝒜.

When investigating adding tolls, we use the different cases described above. In all cases, for
all waiting arcs, thus horizontal arcs in an STN, we define 𝑚 = ∞, so there is no capacity
constraint for waiting at a location.

3.3. User Equilibrium with tolls on a Space Time Network
We define a User Equilibrium per situation which we will investigate, so we have a definition
for path based tolls and one for order based tolls:

Path based tolls: For each order there are multiple paths to travel by. Here we define User
Equilibrium as follows:

Definition 4 (Path based User Equilibrium). A User Equilibrium is reached when each customer can
travel via their cheapest paths.

This is obviously not always possible when concerning only the initial networks, so we need
the path tolls for this. We will assume that customers are not familiar with the path costs in
the initial STN, they only have knowledge of the tolled path costs.

Order based tolls: When we observe the costs payed by each order, we can define a “fairness”
criterion in order to satisfy customers. For each customer in the problem, we introduce the
ratio between the order costs of the SO solution 𝐶 and the order costs if there were no other
orders in the network, so the cost of the cheapest paths for order 𝑤 ∈ 𝒲: 𝑘 .

The ratio for all orders 𝑤 ∈ 𝒲 is 𝑟 = 𝐶
𝑘 and the ratio of tolled order costs are denoted by

𝑟 =
𝐶
𝑘 , with 𝐶 = 𝐶 + 𝛽 , where 𝛽 is the order toll for order 𝑤.

Definition 5 (Order based User Equilibrium). A User Equilibrium is reached when the extra costs made
in the network compared to the cheapest path costs of all orders, are payed rationally by all orders. In
other words, compared to its cheapest path costs, each order pays the same percentage of extra costs
given its cheapest path costs. So 𝑟 = 𝑟 ∀ 𝑤 ,𝑤 ∈ 𝒲 (the “fairness” constraint).

In Chapter 4 we will introduce an algorithm to calculate the path tolls, and also show the
properties of the found tolls. In Chapter 5 we will do the same for the order tolls. In Chapter 6
we will combine those two toll types and their properties.

34

4
Tolls on paths

In this chapter, our goal is to find a Path tolled User Equilibrium. Our approach is to first find
an SO solution, and then add tolls to paths, which create a new cost scheme for paths. When
we offer the STN with the adjusted path costs to the customers, they can selfishy choose
routes, and the outcome of their path choice will correspond with our own path to order
assignment for finding an SO.

4.1. Constraints for finding path tolls
We assume that customers are not familiar with the path costs of the initial STN in which
we want to find an SO solution. We want to find path tolls 𝛽 such that when starting with
an SO solution, we can adjust the network costs (by adding tolls) in such a way that each
customer is satisfied with its route, and thus a UE is achieved. It even should be possible for
all customers to let them choose their routes themselves. So we should adjust the path costs
in such a way that each path which needs to be traversed in order to obtain an SO solution,
will be chosen by the customer.
We only use tolls to obtain both an SO and UE solution, so we do not need to make profit on
the tolls. We will discuss the choice of our objective function in Subsection 4.1.1, but we can
already state that we want to minimize tolls added to certain path sets.
In order to make sure we do not make profit on the toll system, we require that all tolls payed
or received by customers sum up to zero:

∑
∈SO solution

𝛽 𝑓 = 0.

So, if there are tolls needed to obtain a UE, there will be one or multiple customers who need
to pay toll, as well as there are one or multiple customers who receive toll. This last group
thus has a sort of discount on the routes which we want those customers to take. We do not
want the toll received by a customer to be higher than the initial path cost (which would mean
that a customer does not have to pay, but only receives money for choosing a certain path),
so we use the constraints:

𝐶 + 𝛽 ≥ 0 ∀ 𝑝 ∈ 𝒫 ⟺ 𝛽 ≥ −𝐶 ∀ 𝑝 ∈ 𝒫.

Our goal is to achieve a UE solution by calculating the path tolls 𝛽 , starting from an SO
solution. We calculate these tolls with the Nonlinear Programming problem NP-𝛽 (as described
in Section 4.2 in Algorithm 2 Step 4 at page 42). In Subsection 4.1.1 we will explain our
choice for the objective function of the NP-𝛽 and we will explain the choice of constraints.
In Sections 4.3 up to and including 4.6 we will see how path tolls can be added in the four
different cases as described in Section 3.2.

35

4.1.1. Objective function and choice of constraints
The NP-𝛽 consists of an objective function that minimizes the path tolls of a certain path
set, and a set of constraints mentioned above. We will elaborate on those constraints in
Algorithm 2, but here we will already state the different steps of the algorithm:
Outline Algorithm 2:

1. Create SO problem,

2. Solve SO problem, output: path flows 𝑓 ∀ 𝑝 ∈ 𝒫,

3. Create two lists for each order 𝑤 ∈ 𝒲: ℎ , and ℎ , ,

4. Create NP-𝛽,

5. Solve NP-𝛽, output: path tolls 𝛽 ∀ 𝑝 ∈ 𝒫,

6. Create SO-𝛽 problem, by adding the path tolls to the path costs of the initial STN,

7. Solve SO-𝛽, output: path flows 𝑓 ∀ 𝑝 ∈ 𝒫.

We have different choices for the objective function of the NP-𝛽, those choices concern mini-
mizing different path sets. Define the set of paths used in the SO solution by

ℎ , ∶= {𝑝 | 𝑓 > 0, 𝑝 ∈ 𝒫 } ,

and the sets of all other paths (which are not in the SO solution) by

ℎ , ∶= {𝑝 | 𝑓 = 0, 𝑝 ∈ 𝒫 } .

𝑡 = 0 1 2 3 4 5 6

𝑠 , 𝑠

𝑒 𝑒

𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑏

𝑎 𝑒 𝑓

𝑑 𝑔𝑐

Figure 4.1: STN with two orders, ∀ ∈ 𝒲, with for all arcs between two different locations, otherwise.
The denoted solution is SO. Paths ∈ , are denoted in red, paths ∈ , in cyan.

To illustrate those path sets, we look at Figure 4.1. There we see two orders both with
demand 2 (so this is a Case 2 problem, because 𝑚 = 1 for all arcs 𝑎 between two different
locations and 𝑑 ≥ 1 ∀ 𝑤 ∈ 𝒲). The SO solution is graphically denoted in red and cyan for
order 1 and 2 respectively. We have path sets 𝒫 = {𝑎, 𝑒, 𝑏𝑐, 𝑓} and 𝒫 = {𝑏, 𝑎𝑑, 𝑎𝑔, 𝑒𝑔, 𝑓𝑔}. The
SO solution gives us the path sets:

ℎ , = {𝑎, 𝑒}, ℎ , = {𝑏𝑐, 𝑓}, ℎ , = {𝑏, 𝑓𝑔}, and ℎ , = {𝑎𝑑, 𝑎𝑔, 𝑒𝑔, 𝑓𝑔}.

We will discuss three possible objective functions for the NP-𝛽 in Algorithm 2 Step 4. Notice
that we use the absolute values of the path tolls, because we allow both positive and negative
tolls.

36

The three possible objective functions:

• min ∑
∈𝒲

∑
∈ ,

|𝛽 |: minimize the tolls added to paths which are in the SO solution.

• min ∑
∈𝒲

∑
∈ ,

|𝛽 |: minimize the tolls added to paths which are not in the SO solution.

• min∑
∈𝒫
|𝛽 |: minimize all tolls.

We also discuss whether we want to use the Total-sum-zero constraint∑
∈𝒫
𝛽 = 0, which forces

the total sum of all tolls added to the STN to be zero. The question arises whether this con-
straint is necessary to obtain good solutions. By good solutions we mean solutions in which
little toll needs to be added to the STN in order to obtain a UE solution.

We first introduce the standard constraints of the NP-𝛽 (for Algorithm 2 step 4):

∑
∈𝒲

∑
∈ ,

𝛽 𝑓 = 0 (4.1)

𝛽 − 𝛽 ≤ 𝐶 − 𝐶 ∀ (𝑖, 𝑗), 𝑖 ∈ ℎ , , 𝑗 ∈ ℎ , ∀ 𝑤 ∈ 𝒲 (4.2)
𝛽 ≥ −𝐶 ∀ 𝑝 ∈ 𝒫 (4.3)

where Constraint 4.1 ensures all tolls on paths used in the SO solution sum up to zero,
Constraint 4.2 ensures the paths used in the SO solution for one order, have equal or lower
costs than the paths for that order which are not in the SO solution, and Constraint 4.3
ensures no tolled cost can become negative. We will choose our objective function later on.
Note that if we work with Case 1, 2 or 3 (as described in Section 3.2), Constraint 4.1 can be
replaced (due to the capacity and/or demand constraints) by

∑
∈𝒲

∑
∈ ,

𝛽 = 0.

This formulation is equivalent because the path flows of paths 𝑝 ∈ ⋃
∈𝒲
ℎ , will always be

equal to one due to the capacity and/or demand constraints, and the path flows of paths
𝑝 ∈ ⋃

∈𝒲
ℎ , will always be equal to zero.

Constraint 4.2 is equivalent to

𝐶 + 𝛽 ≤ 𝐶 + 𝛽 ∀ (𝑖, 𝑗), 𝑖 ∈ ℎ , , 𝑗 ∈ ℎ , ∀ 𝑤 ∈ 𝒲.

In this equivalent formulation we see the goal of the constraints more clearly.

We use the following two examples to illustrate the influence of the three optional objective
functions: ∑

∈𝒲
∑
∈ ,

|𝛽 | , ∑
∈𝒲

∑
∈ ,

|𝛽 | and ∑
∈𝒫
|𝛽 |, and the influence of the optional Total-

sum-zero constraint ∑
∈𝒫
𝛽 = 0.

37

𝑡 = 0 1 2 3 4 5 6 7

𝑠 , 𝑠

𝑒

𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎 𝑏 𝑐

𝑑

𝑒

𝑓

𝑔

ℎ

𝑖

Figure 4.2: STN with two orders, ∀ ∈ 𝒲, with for all arcs between two different locations, otherwise.
The denoted solution is SO. Paths ∈ , are denoted in cyan, paths ∈ , in red.

Example 8 (Case 1). The network in Figure 4.2 is of the type Case 1, so𝑚 = 1 for all arcs 𝑎 between
two different locations and 𝑑 = 1 ∀ 𝑤 ∈ 𝒲. Order 1 travels from location 1 to 3 and order to travels
from 1 to 4, 𝑑 = 𝑑 = 1. We have the following path costs:

Order 1: 𝐶 = 2, 𝐶 = 5, 𝐶 = 7, 𝐶 = 5, 𝐶 = 7, 𝐶 = 7,
Order 2: 𝐶 = 2, 𝐶 = 5, 𝐶 = 7, 𝐶 = 5, 𝐶 = 7, 𝐶 = 7.

Solving the corresponding SO problem gives us the solution:

𝑓 = 1, 𝑓 = 1,

with path costs of the used paths:

𝐶 = 2, 𝐶 = 5.

Then ℎ , = {𝑎𝑑} and ℎ , = {𝑏𝑔}. We now solve the NP-𝛽 with the different objective functions and
also observe the effect of the Total-sum-zero constraint: ∑

∈𝒫
𝛽 = 0:

• Constraint ∑
∈𝒫
𝛽 = 0:

– Objective: min ∑
∈𝒲

∑
∈ ,

|𝛽 | =min (|𝛽 | + |𝛽 |) = 0.

Tolls: 𝛽 = −3, 𝛽 = −5, 𝛽 = −3, 𝛽 = −5, 𝛽 = 19,
𝛽 = 3, 𝛽 = −2, 𝛽 = −2, 𝛽 = −2,

New path costs: 𝐶 = 5 − 3 = 2, 𝐶 = 7 − 5 = 2, 𝐶 = 5 − 3 = 2,
𝐶 = 7 − 5 = 2, 𝐶 = 7 + 19 = 26, 𝐶 = 2 + 3 = 5,
𝐶 = 7 − 2 = 2, 𝐶 = 7 − 2 = 5, 𝐶 = 7 − 2 = 5.

The costs of the paths used in the SO solution are thus: 𝐶 = 2, 𝐶 = 5.

38

– Objective: min ∑
∈𝒲

∑
∈ ,

|𝛽 | =min (|𝛽 | + |𝛽 | + |𝛽 | + |𝛽 | + |𝛽 | + |𝛽 | + |𝛽 |+

|𝛽 | + |𝛽 | + |𝛽 |) = 0.

Tolls: 𝛽 = 3, 𝛽 = −3,
New path costs: 𝐶 = 2 + 3 = 5, 𝐶 = 5 − 3 = 2.

The costs of the paths used in the SO solution are thus: 𝐶 = 5, 𝐶 = 2.

– Objective: min∑
∈𝒫
|𝛽 | =min (|𝛽 | + |𝛽 | + |𝛽 | + |𝛽 | + |𝛽 | + |𝛽 | + |𝛽 | + |𝛽 |+

|𝛽 | + |𝛽 | + |𝛽 | + |𝛽 |) = 6.

Tolls: 𝛽 = −3, 𝛽 = 3,
New path costs: 𝐶 = 7 − 3 = 4, 𝐶 = 2 + 3 = 5.

The costs of the paths used in the SO solution are thus: 𝐶 = 2, 𝐶 = 5.

• No constraint ∑
∈𝒫
𝛽 = 0:

– Objective: min ∑
∈𝒲

∑
∈ ,

|𝛽 | =min (|𝛽 | + |𝛽 |) = 0, total sum of tolls is∑
∈𝒫
𝛽 = −24.

Tolls: 𝛽 = −3, 𝛽 = −5, 𝛽 = −3, 𝛽 = −5, 𝛽 = −5,
𝛽 = 3, 𝛽 = −2, 𝛽 = −2, 𝛽 = −2,

New path costs: 𝐶 = 5 − 3 = 2, 𝐶 = 7 − 5 = 2, 𝐶 = 5 − 3 = 2,
𝐶 = 7 − 5 = 2, 𝐶 = 7 − 5 = 2, 𝐶 = 2 + 3 = 5,
𝐶 = 7 − 2 = 5, 𝐶 = 7 − 2 = 5, 𝐶 = 7 − 2 = 5.

The costs of the paths used in the SO solution are thus: 𝐶 = 2, 𝐶 = 5.

– Objective: min ∑
∈𝒲

∑
∈ ,

|𝛽 | = 0, total sum of tolls is ∑
∈𝒫
𝛽 = 0.

Tolls: 𝛽 = 3, 𝛽 = −3,
New path costs: 𝐶 = 2 + 3 = 5, 𝐶 = 5 − 3 = 2.

The costs of the paths used in the SO solution are thus: 𝐶 = 5, 𝐶 = 2.

– Objective: min∑
∈𝒫
|𝛽 | = 3, total sum of tolls is ∑

∈𝒫
𝛽 = 3.

Toll: 𝛽 = 3,
New path cost: 𝐶 = 2 + 3 = 5.

The costs of the paths used in the SO solution are thus: 𝐶 = 2, 𝐶 = 5.

△

We see that using the objective min ∑
∈𝒲

∑
∈ ,

|𝛽 | is highly inefficient. Inefficiency here

means that given the SO solution, if there are a lot of cheaper alternative paths for orders
𝑤 ∈ 𝒲 (so 𝐶 ≤ 𝐶 for 𝑝 ∈ ℎ , , 𝑞 ∈ ℎ ,), we need to add tolls to all those paths in order to

39

𝑡 = 0 1 2 3 4 5 6 7

𝑠 , 𝑠

𝑒 𝑒

𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎 𝑏 𝑐

𝑑

𝑒

𝑓

𝑔

ℎ

𝑖

Figure 4.3: STN with two orders, , , with for all arcs between two different locations, otherwise.
The denoted solution is SO. Paths ∈ , are denoted in cyan, paths ∈ , in red.

obtain a UE. We need to do this regardless of the constraint ∑
∈𝒫
𝛽 = 0. In the next example

we will thus only consider the other two objective functions.

Because in order to maintain the paths costs for the used paths, one needs to adjust all
costs of the alternative paths for all orders. When increasing the demand for order 1 from the
previous example to 2, we can see what more pressure on the network does for the solutions.

Example 9 (Case 2). This example is of the type Case 2, because 𝑚 = 1 for all arcs 𝑎 between two
different locations and 𝑑 ≥ 1 ∀ 𝑤 ∈ 𝒲. We have the same STN as in the previous example, now
with 𝑑 = 2, 𝑑 = 1. Solving the SO problem gives the following solution, which is also displayed in
Figure 4.3:

𝑓 = 1, 𝑓 = 1, 𝑓 = 1,

𝐶 = 5, 𝐶 = 7, 𝐶 = 2.
Then ℎ , = {𝑏𝑓, 𝑐ℎ}, ℎ , = {𝑎𝑒}. We now solve the NP-𝛽 with the different objective functions and
also observe the effect of the Total-sum-zero constraint, by removing this constraint from the NP-𝛽 and
compare the values of ∑

∈𝒫
𝛽 .

• Constraint ∑
∈𝒫
𝛽 = 0:

– Objective: min ∑
∈𝒲

∑
∈ ,

|𝛽 | = 6.

Tolls: 𝛽 = 3, 𝛽 = −2, 𝛽 = −3, 𝛽 = 3, 𝛽 = −1,
New path costs: 𝐶 = 2 + 3 = 5, 𝐶 = 7 − 2 = 5, 𝐶 = 7 − 3 = 4,

𝐶 = 2 + 3 = 5, 𝐶 = 7 − 1 = 6.

The costs of the paths used in the SO solution are thus: 𝐶 = 5, 𝐶 = 4, 𝐶 = 5.

– Objective: min∑
∈𝒫
|𝛽 | = 10.

Tolls: 𝛽 = 3, 𝛽 = −2, 𝛽 = −2, 𝛽 = 2, 𝛽 = −1,
New path costs: 𝐶 = 2 + 3 = 5, 𝐶 = 7 − 2 = 5, 𝐶 = 7 − 2 = 5,

𝐶 = 2 + 2 = 4, 𝐶 = 7 − 1 = 6.

40

The costs of the paths used in the SO solution are thus: 𝐶 = 5, 𝐶 = 5, 𝐶 = 4.

• No constraint ∑
∈𝒫
𝛽 = 0:

– Objective: min ∑
∈𝒲

∑
∈ ,

|𝛽 | = 3, total sum of tolls is ∑
∈𝒫
𝛽 = 3.

Tolls: 𝛽 = 3, 𝛽 = −2, 𝛽 = 3, 𝛽 = −1,
New path costs: 𝐶 = 2 + 3 = 5, 𝐶 = 7 − 2 = 5,

𝐶 = 2 + 3 = 5, 𝐶 = 5 − 1 = 4.

So 𝐶 = 4, 𝐶 = 5, 𝐶 = 5.

– Objective: min∑
∈𝒫
|𝛽 | = 7, total sum of tolls is ∑

∈𝒫
𝛽 = 7.

Toll: 𝛽 = 5, 𝛽 = 2,
New cost: 𝐶 = 2 + 5 = 8, 𝐶 = 5 + 2 = 7.

The costs of the paths used in the SO solution are thus: 𝐶 = 5, 𝐶 = 7, 𝐶 = 2.

△

We can see in the previous examples, that adding the Total-sum-zero constraint does not give
better solutions when the goal is to add as little as toll necessary, which we want to achieve.
So we will no longer use this Total-sum-zero constraint.
From now on we will minimize the tolls added to paths which are not in the SO solution, so
take we take as the objective function:

∑
∈𝒲

∑
∈ ,

|𝛽 | .

4.2. Generic algorithm for finding path tolls
We start determining tolls by solving the SO, and then add tolls to the path costs in the STN
such that no customer is harmed by that solution and thus a UE is reached. The sum of all
tolls payed and received by all customers has to be zero. The way of finding tolls which give
us a UE solution in a initial SO problem is described in Algorithm 2, which is partly based
on the solution algorithms used by Hearn and Ramana [13] and Jiang and Mahmassani [14].
Hearn and Ramana work with a toll pricing framework:

1. Solve the SO problem to obtain an optimal solution 𝑥𝑥𝑥∗.
2. Define the toll set.
3. Define and optimize an objective function over the toll set.

Note that in our case we can use the Robinhood objective as in Equation 2.32.
Jiang and Mahmassani have a Unifying Solution Algorithm for both discrete and continuous
Value of Time:

0. Initialization.
1. Traffic Simulation.
2. Generating Path Set: Find cheapest path for each user.
3. Update Path Assignment: For each user, update path flow by using Method of Successive

Averages.
4. Convergence Check.

41

The difference with the framework of Hearn and Ramana is that we do not define the toll set,
because in our approach there is no need to obtain this total set. The difference with Jiang
and Mahmassani is that we apply tolls on paths instead of updating path assignment.

Recall, to calculate the path tolls, we divide all paths into two sets, one with all paths
which are used in the SO solution: ℎ , , and one with all other paths (which are not in the
SO solution): ℎ , . We define these sets as follows:

ℎ , = {𝑝 | 𝑓 > 0, 𝑝 ∈ 𝒫 } , ℎ , = {𝑝 | 𝑓 = 0, 𝑝 ∈ 𝒫 }

Algorithm 2 Calculating path tolls
1: Create SO problem:

min ∑
∈𝒫
𝐶 𝑓

s.t. 𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜

∑
∈𝒫

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲

𝑥 ≤ 𝑚 ∀ 𝑎 ∈ 𝒜
𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫
𝑥 ∈ ℕ ∀ 𝑎 ∈ 𝒜

(4.4)

2: Solve SO problem, output: path flow vector 𝑓𝑓𝑓.
3: Create two lists for each order 𝑤: ℎ , = {𝑝 | 𝑓 > 0, 𝑝 ∈ 𝒫 }, ℎ , = {𝑝 | 𝑓 = 0, 𝑝 ∈ 𝒫 }.
4: Create NP-𝛽:

min ∑
∈𝒲

∑
∈ ,

|𝛽 | (4.5)

s.t. ∑
∈𝒲

∑
∈ ,

𝛽 𝑓 = 0 (4.6)

𝛽 − 𝛽 ≤ 𝐶 − 𝐶 ∀ (𝑖, 𝑗), 𝑖 ∈ ℎ , , 𝑗 ∈ ℎ , ∀ 𝑤 ∈ 𝒲 (4.7)
𝛽 ≥ −𝐶 ∀ 𝑝 ∈ 𝒫 (4.8)

where Constraint 4.6 ensures the total toll sum of the chosen paths to be zero, Constraint 4.7 ensures
that the paths in the SO solutions are the ones with cheapest costs 𝐶 and Constraint 4.8 ensures
no path can have a negative 𝐶 cost.

42

The NP-𝛽 in Algorithm 2 Step 4 is non-linear, which makes this problem hard to solve. We
therefore use the equivalent linear formulation of the problem:

min ∑
∈𝒲

∑
∈ ,

𝛾

s.t. ∑
∈𝒲

∑
∈ ,

𝛽 𝑓 = 0

𝛽 − 𝛽 ≤ 𝐶 − 𝐶 ∀ (𝑖, 𝑗), 𝑖 ∈ ℎ , , 𝑗 ∈ ℎ , ∀ 𝑤 ∈ 𝒲
𝛽 ≥ −𝐶 ∀ 𝑝 ∈ 𝒫
𝛽 ≤ 𝛾 ∀ 𝑝 ∈ 𝒫 (4.9)
− 𝛽 ≤ 𝛾 ∀ 𝑝 ∈ 𝒫 (4.10)
𝛾 ≥ 0 ∀ 𝑝 ∈ 𝒫 (4.11)

where 𝛾 replaces the absolute value variable |𝛽 | with Constraints 4.9-4.11.

5: Solve NP-𝛽, output: 𝛽 .
6: Add tolls 𝛽 to the SO problem, SO-𝛽:

min ∑
∈𝒫
(𝐶 + 𝛽) 𝑓

s.t. 𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜

∑
∈𝒫

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲

𝑥 ≤ 𝑚 ∀ 𝑎 ∈ 𝒜
𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫
𝑥 ∈ ℕ ∀ 𝑎 ∈ 𝒜

7: Solve SO-𝛽 problem, output path flow vector 𝑓𝑓𝑓.

The desired outcome of Algorithm 2, is that the solution to the SO-𝛽 problem is equal to
the initial SO problem. The resulting path costs are the only costs that are showed to the
customers, so the customers do not have any knowledge about the initial STN and those
path costs. We will consider the problem of solving an STN in different cases, as stated in
Section 3.2.

4.3. Case 1
Case 1 is the situation in which 𝑑 = 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 = 1 ∀ arcs between different locations.
For all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
We illustrate the correctness of Algorithm 2, by solving a number of examples in Subsec-
tion 4.3.1. In Subsection 4.3.2 we will derive properties of the path tolls.

43

4.3.1. Case 1: Examples
In Example 10 and Example 11 we will show the outcome of the algorithm on the problems
and have a small discussion on the tolls found the algorithm.

Example 10. We use the STN as in Figure 3.1, again showed in Figure 4.4. Recall that all arcs have
cost 1 and all diagonal arcs have capacity constraints of 1. We have two orders: 𝒲 = {1, 2}.
The SO solution is given in Figure 4.4, with 𝑠 denoting the start point and 𝑒 denoting the end point for
order 𝑤.

𝑡 = 0 1 2 3 4 5

𝑠 , 𝑠𝑙 = 1

𝑒𝑙 = 2

𝑒𝑙 = 3

𝑎 𝑏

𝑐 𝑑

Figure 4.4: STN with two orders with for all arcs between two different locations, otherwise. The denoted
solution is SO.

We have path costs

𝐶 = 2, 𝐶 = 4, 𝐶 = 4, 𝐶 = 5 and 𝐶 = 5,

and the path sets following from the SO solution as obtained in Algorithm 2 in Step 3:

ℎ , = {𝑎}, ℎ , = {𝑏𝑑}, ℎ , = {𝑏}, ℎ , = {𝑎𝑐, 𝑎𝑑}.

We see that due to capacity constraints, order 2 is not able to choose his best route in the SO and has
to take path 𝑏𝑑 with cost 5.
The tolls given by Algorithm 2 are

𝛽 = 1, 𝛽 = −1,

so all tolls on paths 𝑝 ∈ ⋃
∈𝒲
ℎ , are zero and so is the objective value of the NP-𝛽.

We will take a closer look at how we can look at these tolls and adjusted costs: The paths 𝑎 and 𝑏𝑑 are
in the SO solution with a total objective value of 7.
We now can set bounds on the toll: one could say that the toll of order 1 can be at most 2, so 𝛽 < 2,
which gives a lower bound of −2 to the toll of order 2: 𝛽 > −2. We set those bounds because if the
toll of order 1 on path 𝑎 gets higher than 2, it is more beneficial for order 1 to take its alternative route
𝑏. For order 2, the smallest toll can be −1, so 𝛽 > −1, which gives an upper bound of 1 to the toll of
order 1: 𝛽 < 1. If we do not set those bounds, order 2 adjusted path cost will be cheaper than traveling
via its cheapest path in the initial network.

But if we look at the tolled ratios 𝑟 = 𝐶 + 𝛽
𝑘 , where we compare the adjusted path cost to the cheap-

est path cost, we see that a toll of 1 for order 1 is more disadvantageous than the initial SO solution was
for order 2 (see Table 4.1).

When we assume that all customers do know the path costs of the initial network (contrary to what
we assume in this Section), order 2 will not accept path 𝑏𝑑 as its route as long as 𝛽 > −1, because
then 𝐶 = 5 + 𝛽 >= 𝐶 = 𝑘 and thus path 𝑎𝑐 is still a cheaper route to take. A negative toll of
value 𝛽 = −1 will be satisfying for order 2, because then 𝐶 = 𝐶 + 𝛽 = 5 − 1 = 4 = 𝐶 = 𝑘 ,
and thus there is no difference in both optional paths costs.
Order 1 can accept paying the toll of 𝛽 = 1, because then the cost of path 𝑎 will still be less than its

44

Table 4.1: Solutions for Figure 4.4: Ratios ()/ per toll

Order 1 𝐶 𝑟 Order 2 𝐶 𝑟
𝑘 2 4
𝐶 2 1 5 1.25
𝛽 0.5 2.5 1.25 −0.5 4.5 1.125

1 3 1.5 −1 4 1
2 4 2 −2 3 0.75

alternative path 𝑏 which has cost 𝐶 = 4 (and 𝐶 = 𝐶 +𝛽 = 2+1 = 3 < 4). The question is however,
to what extent order 1 is willing to pay ‘voluntarily’ to order 2, to obtain a User Equilibrium.

Now assume the customers do not have any knowledge of the path costs of the initial STN. Then we
can offer a choice to order 1 of choosing the path 𝑎 with toled cost 𝐶 = 2 + 1 = 3 or path 𝑏 with tolled
cost 𝐶 = 5 − 1 = 4, and offer to order 2 three paths, with 𝑎𝑐 and 𝑏𝑑 having both tolled cost 4 and
𝑎𝑑 having cost 5. Then they can both choose their most favorable route (𝑎 and 𝑏𝑑 respectively) without
harming the other order.
But what will happen if we use tolls |𝛽 | < 1 ∀ 𝑝 ∈ 𝒫, and we assume we only add tolls to paths chosen
in the SO solution? Take for example path tolls 𝛽 = 𝛽 = 0.5 and 𝛽 = 𝛽 = −0.5. Then order 1 gets
to choose between a path costs 𝐶 = 2.5 and 𝐶 = 4, while order 2 has to choose between 𝐶 = 4,
𝐶 = 5 and 𝐶 = 4.5. Then both orders will choose their cheapest path, but those paths both contain
the first diagonal arc going from location 1 to 2. So this solution will not give the desired choices of the
orders.

The best solution of the NP-𝛽 is indeed the solution as obtained from Algorithm 2 Step 5:

𝛽 = 1, 𝛽 = 0, 𝛽 = 0, 𝛽 = 0, 𝛽 = −1

and with those tolls we obtain the path costs:

𝐶 = 3, 𝐶 = 4, 𝐶 = 4, 𝐶 = 5 and 𝐶 = 4,

so both orders can travel via their cheapest paths, so both an SO and a UE are obtained. △

Is it sufficient to only add tolls to paths that are in the SO solution, or do we need to also take
the other paths into account? We will show in the following example that adding tolls to paths
𝑝 ∈ ⋃

∈𝒲
ℎ , can also be useful.

Example 11. We changed the network from Example 10 by changing two diagonal arcs starting at 𝑡 = 3
in Figure 4.4 to 𝑡 = 2. We will now observe which toll we need to add to obtain a UE which equals the
initial SO. Again we have two orders: 𝒲 = {1, 2}. The SO solution is given in Figure 4.5, with 𝑠 and 𝑒
denoting the start end point of order 𝑤, respectively.
We have path costs

𝐶 = 2, 𝐶 = 3, 𝐶 = 3, 𝐶 = 5 and 𝐶 = 5,

and the path sets following from the SO solution:

ℎ , = {𝑏}, ℎ , = {𝑎𝑐}, ℎ , = {𝑎}, ℎ , = {𝑎𝑑, 𝑏𝑑}.

The solution given by Algorithm 2 Step 5 is

𝛽 = −1, 𝛽 = 1.

We see that with this tolls, order 1 can choose between path 𝑎 with cost 𝐶 = 1 and path 𝑏 with cost
𝐶 = 1, so it makes no difference to order 1 which path is chosen. Order 2 can choose between

45

𝑡 = 0 1 2 3 4 5

𝑠 , 𝑠

𝑒

𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑎 𝑏

𝑐 𝑑

Figure 4.5: STN with two orders with for all arcs between two different locations, otherwise. The denoted
solution is SO.

paths 𝑎𝑐, 𝑎𝑑 and 𝑏𝑑, where the path cost of path 𝑎𝑐 is still cheaper than the other two path costs:
𝐶 = 4 < 5 = 𝐶 = 𝐶 .
When we want to add tolls to used paths only, we obtain the following bounds on the path tolls: order
1 does not travel via its cheapest route 𝑎, so he wants his route 𝑏 cheaper with cost 1, 𝛽 < −1, while
order 2 can pay 2 before his alternative path 𝑏𝑑 becomes cheaper than the initial cheapest path 𝑎𝑐: so
𝛽 < 2. We see that the given toll solution satisfy those bounds.

Another valid solution of the NP-𝛽 could be adding only toll to path 𝑎: 𝛽 = 1, 𝛽 = 0, 𝛽 = 0, 𝛽 =
0, and 𝛽 = 0.
With those tolls we obtain the path costs: 𝐶 = 3, 𝐶 = 3, 𝐶 = 3, 𝐶 = 5 and 𝐶 = 5 and we see
that the paths chosen in the SO solution now indeed are the cheapest paths for the customers.
But note that this solution does not minimize the objective function of the NP-𝛽, because

∑
∈𝒲

∑
∈ ,

|𝛽 | = |𝛽 | + |𝛽 | + |𝛽 | = 1,

which is higher than the objective value of the solution given by Algorithm 2 Step 5 (which is 0). △

We can conclude from the two previous examples that for instances with two orders, the
gap between the cheapest path and the initial SO solution plus tolls has to be zero to force
the customers to take the paths that satisfy the SO solution.

4.3.2. Case 1: Finding properties of path tolls
In this section we will show some properties of path tolls in Case 1. In this Case 1, we have
for all 𝑝, 𝑎: 𝑓 ∈ {0, 1}, 𝑥 ∈ {0, 1}. After solving the SO problem we can define

ℎ , = {𝑝 | 𝑓 = 1, 𝑝 ∈ 𝒫 } , |ℎ , | = 1 ∀ 𝑤 ∈ 𝒲,

ℎ , = {𝑝 | 𝑓 = 0, 𝑝 ∈ 𝒫 } .

In this case the flow of an order is 1, so we can write

∑
∈𝒲

∑
∈ ,

𝛽 𝑓 = ∑
∈𝒲

∑
∈ ,

𝛽 = 0.

We use the NP-𝛽 as in Algorithm 2 Step 4.

We start with an observation of the output types of path tolls.

46

Observation 1. If a solution to the NP-𝛽 for path tolls exist, it is of one of the following forms:

1. 𝛽 = 0 ∀ 𝑝 ∈ 𝒫,

2. 𝛽 ≠0 for at least two paths 𝑝 ∈ ⋃
∈𝒲
ℎ , and 𝛽 = 0 ∀ 𝑝 ∈ ⋃

∈𝒲
ℎ , ,

3. 𝛽 ≠0 for at least one path 𝑝 ∈ ⋃
∈𝒲
ℎ , and 𝛽 = 0 ∀ 𝑝 ∈ ⋃

∈𝒲
ℎ , ,

4. 𝛽 ≠0 for at least two paths 𝑝 ∈ ⋃
∈𝒲
ℎ , and 𝛽 ≠ 0 for at least one path 𝑝 ∈ ⋃

∈𝒲
ℎ , .

When 𝛽 = 0 ∀ 𝑝 ∈ 𝒫 , it means that the SO solution is equal to the UE solution in the
initial problem. The question is, if it is sufficient to have solutions of the form 2 and 3, or if
there problems in which it is necessary to have solutions of the 4th form.

To illustrate the solutions above, we show the following example.

Example 12. We use the STN of Figure 4.5 on page 46. The SO solution is given for the two demand
pairs, 𝑓 = 1 for order 1 and 𝑓 = 1 for order 2. We create the NP-𝛽 as in Algorithm 2 Step 4 and solve
it.
We can obtain several outcomes for this STN:

2. 𝛽 = 1, 𝛽 = −1 ⇒ 𝐶 = 2, 𝐶 = 3 − 1 = 2, 𝐶 = 3 + 1 = 4, 𝐶 = 5,

3. 𝛽 = 1 ⇒ 𝐶 = 2 + 1 = 3, 𝐶 = 3, 𝐶 = 3, 𝐶 = 5,

4. A combination of the solutions 2 and 3 is also a valid solution:
𝛽 = 1, 𝛽 = −1, 𝛽 = 1, ⇒ 𝐶 = 2 + 1 = 3, 𝐶 = 3 − 1 = 2, 𝐶 = 3 + 1 = 4, 𝐶 = 5.

We see that a solution of the first form (𝛽 = 0 ∀ 𝑝 ∈ 𝒫) is not a solution in this example. Based on the
objective function min ∑

∈𝒲
∑
∈ ,

|𝛽 | we use solving the NP-𝛽, solution 2 is the best solution. △

We will now investigate the path toll solutions by increasing order size.

Case 1 with 1 order
If we have an STN with only 1 order, then the SO solution will always be equal to the UE
solution, more specifically, the SO solution will always be traveling by the cheapest path of
the order. An example is given in Figure 4.6.

𝑠

𝑒

𝑝
𝑝

𝑝

Figure 4.6: One order with multiple paths

Case 1 with two orders
When multiple orders have to be transported in the same time frame, paths for the different
orders can have joint arcs. When this is the case, it can influence the SO, due to the capacity
constraint that only one container can travel an arc (𝑚 = 1). We can see this in Figure 4.7.

47

𝑠
𝑠 𝑒

𝑒
𝑎
𝑎

𝑎

Figure 4.7: Network with two orders with multiple paths

Here we have two orders, with three arcs between the start point of order 2, which is 𝑠 , and
the end point of order 1, which is 𝑒 : the arcs we denote by 𝑎 , 𝑎 and 𝑎 . Assume the following
holds for the arc costs: 𝑐 ≤ 𝑐 ≤ 𝑐 . Then for both orders arc 𝑎 is in the cheapest path, but
because 𝑚 = 1 for all arcs, only one order can traveling via 𝑎 . We see that in this example it
is possible in the SO solution for one order to travel via its cheapest path.

We show that it is sometimes better to let no order travel via its cheapest path in order to
obtain an SO solution. We show the following example.

Example 13. We use the graph in Figure 4.8.

𝐴 𝐵

𝐶 𝐷 𝐸

1

3 1 3

1 1

Figure 4.8: Network with order OD-pairs and .

Suppose all arcs in this network have capacity 𝑚 = 1 and there are two orders, both transporting
one container, one traveling from 𝐴 to 𝐷 and one from 𝐴 to 𝐸. The costs of the arcs are given in
Figure 4.8. For order 1 there are three paths: 𝐴𝐵𝐷, 𝐴𝐵𝐶𝐷, 𝐴𝐶𝐷, and for order 2 there are also three
paths: 𝐴𝐵𝐷𝐸, 𝐴𝐵𝐶𝐷𝐸, 𝐴𝐶𝐷𝐸. The path costs are 𝐶 = 𝐶 = 4, 𝐶 = 3, 𝐶 = 𝐶 =
5, 𝐶 = 4. An SO solution in this example is order 1 traveling via 𝐴𝐵𝐷 and order 2 via 𝐴𝐶𝐷𝐸,
although then both orders cannot travel via their cheapest path.

We can also translate this graph into an STN: see Figure 4.9.

,

Figure 4.9: STN with costs on diagonal arcs, for all arcs between two different locations, otherwise. The
denoted solution is SO.

In this network it is sufficient to add toll to the unused arc 𝐵𝐶 to make sure no order will travel via this

48

path. Adding an arc toll 𝛽 = 1 is sufficient, because then for each order all paths have the same costs.
This arc based toll is equivalent to adding toll to the paths 𝐴𝐵𝐶𝐷 and 𝐴𝐵𝐶𝐷𝐸: 𝛽 = 1, 𝛽 = 1,
respectively. When we solve the NP-𝛽 for this problem, we want to minimize the path tolls of unused
paths. But in this case no order can travel via its cheapest path, so we are forced to increase the path
costs of those cheapest paths 𝐴𝐵𝐶𝐷 and 𝐴𝐵𝐶𝐷𝐸, which both contain arc 𝐵𝐶. △

Assume the SO problem in the STN with capacity𝑚 = 1 for all traveling arcs 𝑎 = (𝑙 , 𝑙) ∈ 𝒜
with 𝑙 ≠ 𝑙 , has an optimal solution.
Define

ℎ , ∶= {𝑝 | 𝑓 > 0, 𝑝 ∈ 𝒫 } , ℎ , ∶= {𝑝 | 𝑓 = 0, 𝑝 ∈ 𝒫 } ∀ 𝑤 ∈ 𝒲, |ℎ , | = 1 ∀ 𝑤 ∈ 𝒲.

We will show in general that an SO solution does not always contain cheapest paths for some
orders, as we showed for the STN in Figure 4.9.
We define 𝑠 ∈ 𝒮 a feasible solution, with 𝑠 = (𝑥𝑥𝑥 ,𝑓𝑓𝑓) and 𝒮 the set of all feasible solutions. We
denote the SO solution by 𝑠 = (𝑥𝑥𝑥 ,𝑓𝑓𝑓) ∈ 𝒮, and 𝑠 = (𝑥𝑥𝑥 ,𝑓𝑓𝑓) ∈ 𝒮, 𝑗 ∈ {2, 3, … , |𝒮| − 1, |𝒮|} are all
other feasible solutions.

For the following propositions, we will define the following: 𝒲 = {1, 2}, 𝑑 = 𝑑 = 1, and the
path set for both orders:

𝒫 = {𝑟 , 𝑟 , … , 𝑟 }, 𝒫 = {𝑞 , 𝑞 , … , 𝑞 }.
So 𝒫 = 𝒫 ⋃𝒫 = {𝑟 ,… , 𝑟 , 𝑞 , … , 𝑞 }. Assume the paths are ordered such that

𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 and 𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 ,

and assume the SO solution value is 𝐶 + 𝐶 , so the path vector 𝑓𝑓𝑓 of 𝑠 contains elements
𝑓 = 1, 𝑓 = 1, 𝑓 = 0 ∀ 𝑝 ∈ 𝒫 ⧵ {𝑟 , 𝑞 }. Then

𝐶 + 𝐶 ≤ 𝐶 + 𝐶 ∀ 𝑠 = (𝑥𝑥𝑥 ,𝑓𝑓𝑓) ∈ 𝑆 ⧵ {𝑠 } with 𝑓 = 1, 𝑓 = 1, 𝑓 = 0 ∀ 𝑝 ∈ 𝒫 ⧵ {𝑟 , 𝑞 } .
Which solutions on the tolls do we obtain?

• If for order 1: 𝑟 ∈ ℎ , and for order 2: 𝑞 ∈ ℎ , (so both orders are traveling via their
cheapest path), then no tolls need to be added: 𝛽 = 0 ∀ 𝑝 ∈ 𝒫, see Proposition 2 and
Figure 4.10.

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑟

𝑞
𝑞

𝑞

Figure 4.10: Two orders with multiple paths: situation as in Proposition 2, SO solution in cyan.

• If for order 1: 𝑟 ∈ ℎ , and for order 2: 𝑞 ∈ ℎ , , 2 ≤ 𝑙 ≤ 𝑚 with path costs such that
𝐶 + 𝐶 ≤ 𝐶 + 𝐶 òr
if for order 1: 𝑟 ∈ ℎ , , 2 ≤ 𝑘 ≤ 𝑛 and for order 2: 𝑞 ∈ ℎ , with 𝐶 +𝐶 ≤ 𝐶 +𝐶 , then
it is sufficient to add tolls on the used paths only, see Proposition 5 and Figure 4.11a
and 4.11b (in Figure 4.11a we have paths costs such that 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 with 𝑙 = 2
always holds, and in Figure 4.11b we have path costs such that 𝐶 + 𝐶 ≤ 𝐶 + 𝐶
with 𝑘 = 2 always holds). In Figure 4.11c and Figure 4.11d we see more examples of
Proposition 5: in Figure 4.11c we assume 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 and in Figure 4.11d we
assume 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 .

49

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑟

𝑞
𝑞

𝑞
(a) SO solution in cyan with

.

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑞

𝑞

𝑟

𝑞

(b) SO solution in cyan with
.

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑞
𝑞

𝑟

𝑞
(c) SO Solution in cyan with

.

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑞
𝑞

𝑟

𝑞
(d) SO Solution in cyan with

.

Figure 4.11: Two orders with multiple paths: situation as in Proposition 5.

• If for order 1: 𝑟 ∈ ℎ , , 2 ≤ 𝑘 ≤ 𝑛 and for order 2: 𝑞 ∈ ℎ , , 2 ≤ 𝑙 ≤ 𝑚, then tolls on
the unused paths with lower path cost are necessary (so tolls on paths 𝑝 ∈ ℎ , with
𝐶 ≤ 𝐶 and paths 𝑝 ∈ ℎ , with 𝐶 ≤ 𝐶), see Proposition 3 and Figure 4.12.

𝑠 , 𝑠

𝑒 , 𝑒

𝑟 , 𝑞
𝑟 , 𝑞

𝑟 , 𝑞

Figure 4.12: Two orders with multiple paths: situation as in Proposition 6, SO solution in cyan.

We will now give the Proposition corresponding to the example network given in Figure 4.10.

Proposition 2 (Case 1 with two orders, |𝒫 | = 2 ∀ 𝑤 ∈ 𝒲). Given is an SO problem with two orders
with demand 1 and capacity 1 on all traveling arcs. Assume the paths are ordered such that

𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 and 𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 ,

where 𝑟 ∈ 𝒫 ∀ 𝑗 ∈ {1, … , 𝑛} and 𝑝 ∈ 𝒫 ∀ 𝑗 ∈ {1, … ,𝑚}. If the SO solution contains 𝑓 = 1 with 𝐶 = 𝐶
and 𝑓 = 1 with 𝐶 = 𝐶 , then there are no tolls needed because the SO solution is a UE.

Proof. For both orders the cheapest path can be traversed, so for every individual order the path choice
is optimal, so a UE is reached.

In the following proposition both orders cannot travel via their cheapest path, so we need to
assign toll to paths in ℎ , ∪ ℎ , . We show that it is possible to give a solution with only
tolls on paths in those path sets, and thus no tolls added to paths in ℎ , ∪ ℎ , .

50

Proposition 3 (Case 1 with two orders, |𝒫 | ≥ 2 ∀ 𝑤 ∈ 𝒲). Given is an SO problem with two orders
with demand 1 and capacity 1 on all traveling arcs. Assume the paths are ordered such that

𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 and 𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 ,

where 𝑟 ∈ 𝒫 ∀ 𝑗 ∈ {1, … , 𝑛} and 𝑝 ∈ 𝒫 ∀ 𝑗 ∈ {1, … ,𝑚}. If we have an SO solution with 𝑟 ∈ ℎ , ,
2 ≤ 𝑘 ≤ 𝑛 and 𝑞 ∈ ℎ , , 2 ≤ 𝑙 ≤ 𝑚, it is sufficient to have only tolls on the paths in the path set
⋃
∈𝒲
ℎ , and thus 𝛽 = 0 ∀ 𝑝 ∈ ⋃

∈𝒲
ℎ , such that the tolled SO-𝛽 is a UE.

Proof. We want to find a solution of the NP-𝛽 with 𝛽 = 0 for all 𝑝 ∈ ⋃
∈𝒲
ℎ , .

We have two orders, so𝒲 = {1, 2}, with 𝑑 = 𝑑 = 1 and paths for each order:

𝒫 = {𝑟 , 𝑟 , … , 𝑟 }, 𝒫 = {𝑞 , 𝑞 , … , 𝑞 }.

So 𝒫 = 𝒫 ⋃𝒫 = {𝑟 ,… , 𝑟 , 𝑞 , … , 𝑞 }. Assume the paths are ordered such that

𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 and 𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 ,

and assume the SO solution value is ∑
∈𝒫
𝐶 𝑓 = 𝐶 + 𝐶 , with 𝑟 ≠ 𝑟 and 𝑞 ≠ 𝑞 , so 𝑠 contains

𝑓 = 1, 𝑓 = 1 and 𝑓 = 0 ∀ 𝑝 ∈ 𝒫 ⧵ {𝑟 , 𝑞 }. Then

𝐶 + 𝐶 ≤ 𝐶 + 𝐶 ∀ 𝑠 = (𝑥𝑥𝑥 ,𝑓𝑓𝑓) ∈ 𝒮 ⧵ {𝑠 } with 𝑓 = 1, 𝑓 = 1, and 𝑓 = 0 ∀ 𝑝 ∈ 𝒫 ⧵ {𝑟 , 𝑞 } .

Then the SO solution is flow on path 𝑟 and on 𝑞 , thus we have

ℎ , = {𝑟 }, ℎ , = {𝑞 }, ℎ , = 𝒫 ⧵ {𝑟 } , ℎ , = {𝑞 }, ℎ , = 𝒫 ⧵ {𝑞 }

Because both orders do not travel via their cheapest paths, tolls on the chosen paths should be
negative: 𝛽 ≤ 0, 𝛽 ≤ 0.
The constraint of the NP-𝛽, ∑

∈𝒲
∑
∈ ,

𝛽 = 0, gives us 𝛽 = −𝛽 and with the fact we want the tolls

on to used paths to be negate, we obtain 𝛽 = 𝛽 = 0. Then we can derive the following toll constraints
on the toll variables:

𝛽 − 𝛽 ≤ 𝐶 − 𝐶
⋮

𝛽 − 𝛽 ≤ 𝐶 − 𝐶
𝛽 − 𝛽 ≤ 𝐶 − 𝐶

⋮
𝛽 − 𝛽 ≤ 𝐶 − 𝐶
𝛽 − 𝛽 ≤ 𝐶 − 𝐶

⋮
𝛽 − 𝛽 ≤ 𝐶 − 𝐶
𝛽 − 𝛽 ≤ 𝐶 − 𝐶

⋮
𝛽 − 𝛽 ≤ 𝐶 − 𝐶

⟺
⋮
⟺
⟺
⋮
⟺
⟺
⋮
⟺
⟺
⋮
⟺

−𝛽 ≤ 𝐶 − 𝐶
⋮

−𝛽 ≤ 𝐶 − 𝐶
−𝛽 ≤ 𝐶 − 𝐶

⋮
−𝛽 ≤ 𝐶 − 𝐶
−𝛽 ≤ 𝐶 − 𝐶

⋮
−𝛽 ≤ 𝐶 − 𝐶
−𝛽 ≤ 𝐶 − 𝐶

⋮
−𝛽 ≤ 𝐶 − 𝐶

⟺
⋮
⟺
⟺
⋮
⟺
⟺
⋮
⟺
⟺
⋮
⟺

𝛽 ≥ 𝐶 − 𝐶 > 0
⋮

𝛽 ≥ 𝐶 − 𝐶 > 0
𝛽 ≥ 𝐶 − 𝐶

⋮
𝛽 ≥ 𝐶 − 𝐶
𝛽 ≥ 𝐶 − 𝐶 > 0

⋮
𝛽 ≥ 𝐶 − 𝐶 > 0
𝛽 ≥ 𝐶 − 𝐶

⋮
𝛽 ≥ 𝐶 − 𝐶

51

Which give us

𝛽 = 𝐶 − 𝐶 > 0
⋮

𝛽 = 𝐶 − 𝐶 > 0
𝛽 = 0

⋮
𝛽 = 0

and

𝛽 = 𝐶 − 𝐶 > 0
⋮

𝛽 = 𝐶 − 𝐶 > 0
𝛽 = 0

⋮
𝛽 = 0

Adding these tolls give the following costs for the SO-𝛽 problem:

𝐶 = 𝐶 + 𝛽 = 𝐶
⋮

𝐶 = 𝐶 + 𝛽 = 𝐶
𝐶 = 𝐶 + 𝛽 = 𝐶

⋮
𝐶 = 𝐶 + 𝛽 = 𝐶

and

𝐶 = 𝐶 + 𝛽 = 𝐶
⋮

𝐶 = 𝐶 + 𝛽 = 𝐶
𝐶 = 𝐶 + 𝛽 = 𝐶

⋮
𝐶 = 𝐶 + 𝛽 = 𝐶

so the SO-𝛽 solution is a UE, because now for each order, all path costs are higher or equal to the cost
of the chosen path.

We now give results for a situation as given in Figure 4.13.

Proposition 4 (Case 1 with two orders, |𝒫 | = 2 ∀ 𝑤 ∈ 𝒲). Given is an SO problem with two orders
with demand 1 and capacity 1 on all traveling arcs. 𝑟 , 𝑟 are the paths of order 1, and 𝑞 , 𝑞 the paths
of order 2. If the paths are ordered such that

𝐶 < 𝐶 and 𝐶 < 𝐶

and the following holds:

𝐶 + 𝐶 ≤ 𝐶 + 𝐶 ,

then it is sufficient to have only tolls on the paths in the path set ⋃
∈𝒲
ℎ , and thus 𝛽 = 0 ∀ 𝑝 ∈

⋃
∈𝒲
ℎ , , such that the SO-𝛽 is a UE.

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑞

𝑞

Figure 4.13: SO solution as in Proposition 4

52

Proof. We want to find a solution with 𝛽 = 0 for all 𝑝 ∈ ⋃
∈𝒲
ℎ , .

We have two path sets: 𝒫 = {𝑟 , 𝑟 }, 𝒫 = {𝑞 , 𝑞 }. So 𝒫 = 𝒫 ⋃𝒫 = {𝑟 , 𝑟 , 𝑞 , 𝑞 }. Solving the SO
problem gives

ℎ , = {𝑟 }, ℎ , = {𝑟 }, ℎ , = {𝑞 }, ℎ , = {𝑞 }.

In order to reach a UE after applying tolls, we need a negative toll on path 𝑞 : 𝛽 < 0 (because
𝐶 > 𝐶). The constraint ∑

∈𝒲
∑
∈ ,

𝛽 = 0 gives us 𝛽 = −𝛽 and thus 𝛽 > 0. We will show a

solution exists when we state 𝛽 = 0 ∀ 𝑝 ∈ ⋃
∈𝒲
ℎ , . We have the following toll constraints:

−𝐶 ≤ 𝛽 ∧ 𝛽 − 𝛽 ≤ 𝐶 − 𝐶 < 0
0 ≤ 𝛽 ∧ 𝛽 − 𝛽 ≤ 𝐶 − 𝐶

⟺
−𝐶 ≤ 𝛽 ∧ 𝛽 ≤ 𝐶 − 𝐶 < 0

0 ≤ 𝛽 ∧ 𝛽 ≤ 𝐶 − 𝐶
⟺

−𝐶 ≤𝛽 ≤ 𝐶 − 𝐶 < 0
0 ≤𝛽 ≤ 𝐶 − 𝐶

⟺
𝐶 ≥ −𝛽 ≥ 𝐶 − 𝐶 > 0

0 ≤𝛽 ≤ 𝐶 − 𝐶

Using 𝛽 = −𝛽 gives us the four inequalities:

0 < 𝐶 − 𝐶 ≤𝛽 ≤ 𝐶
0 ≤𝛽 ≤ 𝐶 − 𝐶

∧
−𝐶 ≤𝛽 ≤ 𝐶 − 𝐶 < 0

𝐶 − 𝐶 ≤𝛽 ≤ 0

Which give us

max {𝐶 − 𝐶 , 0} ≤ 𝛽 ≤min {𝐶 , 𝐶 − 𝐶 } (4.12)
∧

max {−𝐶 , 𝐶 − 𝐶 } ≤ 𝛽 ≤min {𝐶 − 𝐶 , 0} (4.13)
⟺

𝐶 − 𝐶 ≤ 𝛽 ≤min {𝐶 , 𝐶 − 𝐶 } (4.14)
∧

max {−𝐶 , 𝐶 − 𝐶 } ≤ 𝛽 ≤ 𝐶 − 𝐶 (4.15)

Note that Equation 4.14 and Equation 4.15 are equivalent, because

𝛽 = −𝛽 and min {𝐶 , 𝐶 − 𝐶 } = −max {−𝐶 , 𝐶 − 𝐶 } .

So a solution exists when

𝐶 − 𝐶 ≤ 𝛽 ≤min {𝐶 , 𝐶 − 𝐶 } . (4.16)

This inequality is always valid (given that 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 as assumed):

• If min {𝐶 , 𝐶 − 𝐶 } = 𝐶 , then (4.16): 𝐶 − 𝐶 < 𝐶 =min {𝐶 , 𝐶 − 𝐶 } is valid.

53

• If min {𝐶 , 𝐶 − 𝐶 } = 𝐶 − 𝐶 , then (4.16): 𝐶 − 𝐶 ≤ 𝐶 − 𝐶 = min {𝐶 , 𝐶 − 𝐶 } is
valid because of the assumptions: 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 ⟺ 𝐶 − 𝐶 ≤ 𝐶 − 𝐶 .

So we can always obtain a solution for the NP-𝛽 such that

𝐶 = 𝐶 + 𝛽 < 𝐶 = 𝐶 ,
𝐶 = 𝐶 + 𝛽 < 𝐶 = 𝐶 ,

so the SO-𝛽 solution is a UE.

We will now give results for situations as given in Figure 4.11

Proposition 5 (Case 1 with two orders, |𝒫 | ≥ 2 ∀ 𝑤 ∈ 𝒲). Given is an SO problem with two orders
with demand 1 and capacity 1 on all traveling arcs. Assume the paths are ordered such that

𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 and 𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 ,

where 𝑟 ∈ 𝒫 ∀ 𝑗 ∈ {1, … , 𝑛} and 𝑝 ∈ 𝒫 ∀ 𝑗 ∈ {1, … ,𝑚}. If the SO solution 𝑠 contains the cheapest
path for one of the orders, and a non-optimal path for the other order, there are two options:

(i) Assuming paths 𝑟 , 𝑞 , 2 ≤ 𝑙 ≤ 𝑚 are in the SO solution and 𝐶 − 𝐶 ≤ 𝐶 − 𝐶 , or
assuming paths 𝑞 , 𝑟 , 2 ≤ 𝑘 ≤ 𝑛 are in the SO solution and 𝐶 −𝐶 ≤ 𝐶 −𝐶 , then all tolls for
paths 𝑝 ∈ ⋃

∈𝒲
ℎ , are zero, tolls can be added to paths 𝑝 ∈ ⋃

∈𝒲
ℎ , , so ∑

∈𝒲
∑
∈ ,

|𝛽 | = 0,

(ii) Assuming paths 𝑟 , 𝑞 , 2 ≤ 𝑙 ≤ 𝑚 are in the SO solution and 𝐶 − 𝐶 ≥ 𝐶 − 𝐶 , or
assuming paths 𝑞 , 𝑟 , 2 ≤ 𝑘 ≤ 𝑛 are in the SO solution and 𝐶 −𝐶 ≥ 𝐶 −𝐶 , then all tolls for
paths 𝑝 ∈ ⋃

∈𝒲
ℎ , are zero, tolls can be added to paths 𝑝 ∈ ⋃

∈𝒲
ℎ , , so ∑

∈𝒲
∑
∈ ,

|𝛽 | = 0.

𝑠

𝑠

𝑒

𝑒

⋮

⋮

𝑟

𝑟

𝑞 𝑞

𝑟

𝑞

𝑞

Figure 4.14: An example of a situation as in Proposition 5 with .

Proof. (i) In this case (assume 𝑟 , 𝑞 in SO solution, solving the case where 𝑟 , 𝑞 are in the SO solution
can be solved in the same way), we want the toll of the non-optimal chosen path (here that is 𝑞) to
be negative, such that the adjusted path cost 𝐶 is equal to the initial cheapest path cost 𝑘 = 𝐶 ,
thus 𝐶 = 𝐶 . The adjusted path cost is 𝐶 = 𝐶 + 𝛽 . So we want

𝛽 = 𝐶 − 𝐶 = 𝐶 − 𝐶 ,

which is negative because 𝐶 ≤ 𝐶 .
Because we only have two paths in the SO solution, we need −𝛽 = 𝛽 in order to obtain

54

∑
∈𝒲

∑
∈ ,

𝛽 = 0. For 𝛽 we have the restriction 𝛽 ≤ 𝐶 − 𝐶 in order to avoid that the

cheapest path 𝑟 becomes more expensive than its last but one cheapest path 𝑟 . Then we obtain
the restriction

−(𝐶 − 𝐶) = −𝛽 = 𝛽 ≤ 𝐶 − 𝐶 .

So in order to have a valid solution, the following inequality must hold:

𝐶 − 𝐶 ≤ 𝐶 − 𝐶 ,

which is what we assumed. So it is sufficient to only add tolls to the paths 𝑝 ∈ ⋃
∈𝒲
ℎ , .

(ii) In this case (assume 𝑟 , 𝑞 in SO solution, solving the case where 𝑟 , 𝑞 are in the SO solution can
be solved in the same way), suppose we only add tolls to the paths 𝑝 ∈ ⋃

∈𝒲
ℎ , . Then−𝛽 > 𝛽 ,

which does not match the constraint ∑
∈𝒲

∑
∈ ,

𝛽 = 0. So we have two options left: or adding only

tolls on paths 𝑝 ∈ ℎ , , or adding tolls on both paths in ℎ , as well in ℎ , . The tolls obtained
by solving the NP-𝛽 suffice the fact that tolls on the unused paths 𝑝 ∈ ⋃

∈𝒲
ℎ , are minimized and

∑
∈𝒲

∑
∈ ,

𝛽 = 0. This implies that the toll solution will add tolls also on paths 𝑝 ∈ ℎ , , because

then the objective value ∑
∈𝒲

∑
∈ ,

|𝛽 | is minimal.

We show an example of Proposition 5.(ii):

Example 14. We use the network given in Figure 4.15. The path costs in this network are 𝐶 = 1,
𝐶 = 4, 𝐶 = 5, 𝐶 = 5, 𝐶 = 6, 𝐶 = 7. The SO solution 𝑠 as denoted in Figure 4.15 has total
cost 1 + 7 = 8. There are two toll solutions:

1. Tolls on paths in ℎ , as well on paths in ℎ , : 𝛽 = 1, 𝛽 = −1, 𝛽 = 1 ⇒ 𝐶 = 2, 𝐶 = 6,
𝐶 = 6,

2. Tolls only on paths in ℎ , : 𝛽 = 2, 𝛽 = 1 ⇒ 𝐶 = 7, 𝐶 = 7.

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑞 𝑞

𝑟

𝑞

Figure 4.15: An example of a situation as in Proposition 5 with , , , , , .

55

In both solutions the total absolute value of all tolls is 3, but ∑
∈𝒲

∑
∈ ,

|𝛽 | = 1 for solution 1 and

∑
∈𝒲

∑
∈ ,

|𝛽 | = 3 for solution 2. So if we want to minimize the NP-𝛽 objective, the best toll solution

will be adding tolls on both the chosen paths as on the unchosen paths, so solution 1. △

Case 1 with multiple orders
In the next proposition we will show what conditions need to hold in order to obtain path tolls
with 𝛽 = 0 ∀ 𝑝 ∈⋃ℎ , .

Proposition 6 (Case 1 with for 𝑛 ≥ 2 orders). Given is an SO solution in Case 1 with orders 𝑤 ∈ 𝒲,
define path sets ℎ , and ℎ , ∀ 𝑤 ∈ 𝒲. Define 𝒫 = {𝑝 ,… , 𝑝 } with 𝐶 ≤ … ≤ 𝐶 ∀ 𝑤 ∈ 𝒲.
Define paths 𝑝 ∈ ℎ , , 𝑝 ∈ ℎ , . If 𝐶 ≥ 𝐶 for one or more orders 𝑤 ∈ 𝒲, it is sufficient to have

only tolls on the paths in the path set ⋃
∈𝒲
ℎ , and thus 𝛽 = 0 ∀ 𝑝 ∈ ⋃

∈𝒲
ℎ , such that the SO-𝛽 is

a UE⟺

∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶) ≤ ∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶)

⟺ ∑
∈𝒲

∑
∈ ,

𝐶 ≤ ∑
∈𝒲

∑
∈ ,

𝐶 + ∑
∈𝒲

∑
∈ ,

𝐶 ,

with 𝑝 ∈ ℎ , ∀ 𝑤 ∈ 𝒲.

Proof. We want to find a solution with 𝛽 = 0 for all 𝑝 ∈ ⋃
∈𝒲
ℎ , .

Define𝒲 = {1, 2, … , 𝑛 − 1, 𝑛} and 𝑑 = 1 ∀ 𝑤 ∈ 𝒲 and path sets for each order: 𝒫 ∀ 𝑤 ∈ 𝒲. Assume
the paths are ordered such that

𝐶 ≤ 𝐶 ≤ … ≤ 𝐶 ≤ 𝐶 , ∀ 𝑤 ∈ 𝒲 with 𝑚 = |𝒫 |,

so 𝒫 = {𝑝 ,… , 𝑝 } ∀ 𝑤 ∈ 𝒲, and assume there exists an SO solution: for each order 𝑤 denote the
chosen path by 𝑝 . Then

ℎ , = {𝑝 }, ℎ , = 𝒫 ⧵ {𝑝 } ∀ 𝑤 ∈ 𝒲.

We can say that if other solutions exist (so if |𝒮| > 2), the SO cost satisfies the following inequality:

𝐶 + 𝐶 + … + 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 + … + 𝐶 + 𝐶

with 𝑝 ∈ ℎ , ∀ 𝑤 ∈ 𝒲 and 𝑝 the chosen paths in solution 𝑠 .
If the UE solution does not equal the SO solution (so there are tolls needed to obtain a UE when

traveling via the paths chosen in the SO solution), then there are paths chosen in the SO for which the
path cost is not equal to the cheapest path cost (otherwise the SO solution is already equal to the UE
solution). So for at least one order 𝑤 it holds that 𝐶 > 𝐶 for some 𝑝 ∈ ℎ , , 𝑝 ∈ ℎ , .
We add some extra notation: for each path in the SO solution for each order we define the path sets

𝑔 = {𝑝 ,… , 𝑝 }, 𝑙 = {𝑝 ,… , 𝑝 }.

All paths in 𝑔 have lower cost than paths 𝑝 and all paths in 𝑙 have higher cost. So in Case 1 in which
we are now working (recall solutions of Case 1 have one chosen path per order), we can split ℎ , into
those two path sets for each order 𝑤 ∈ 𝒲:

ℎ , = 𝑔 ∪ 𝑙 ∀ 𝑤 ∈ 𝒲.

56

If 𝑝 ≠ 𝑝 , we know 𝑝 ∈ 𝑔 ≠ ∅, and we require 𝛽 < 0. Since we only require tolls on paths in
⋃
∈𝒲
ℎ , , we can state

∑
∈𝒲

∑
∈ ,

𝛽 = − ∑
∈𝒲

∑
∈ ,

𝛽

Then we obtain the following bounds for the tolls:

−𝐶 ≤ 𝛽 ≤ 𝐶 − 𝐶 < 0 ∀ 𝑝 ∈ 𝑔 ≠ ∅, 𝑤 ∈ 𝒲
−𝐶 ≤ 𝛽 ≤ 𝐶 − 𝐶 ∀ 𝑝 ∈ 𝑙 , 𝑔 ≠ ∅, 𝑤 ∈ 𝒲 (redundant because 𝐶 − 𝐶 < 0 < 𝐶 − 𝐶)

0 ≤ 𝛽 ≤ 𝐶 − 𝐶 ∀ 𝑝 ∈ 𝑙 , 𝑔 = ∅, 𝑤 ∈ 𝒲
⟺

−𝐶 ≤ 𝛽 ≤ min {𝐶 − 𝐶 ,… , 𝐶 − 𝐶 } < 0, 𝑔 ≠ ∅, 𝑤 ∈ 𝒲

0 ≤ 𝛽 ≤ min {𝐶 − 𝐶 ,… , 𝐶 − 𝐶 } , 𝑔 = ∅, 𝑤 ∈ 𝒲

⟺
−𝐶 ≤ 𝛽 ≤ 𝐶 − 𝐶 < 0, 𝑔 ≠ ∅, 𝑤 ∈ 𝒲

0 ≤ 𝛽 ≤ 𝐶 − 𝐶 , 𝑔 = ∅, 𝑤 ∈ 𝒲

Then when we add all constraints with 𝑔 ≠ ∅ (so 𝑝 ≠ 𝑝) and add all constraints with 𝑔 = ∅ (so
𝑝 = 𝑝), we obtain

∑
∈𝒲

∑
∈ ,

−𝐶 ≤ ∑
∈𝒲

∑
∈ ,

𝛽 ≤ ∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶)

0 ≤ ∑
∈𝒲

∑
∈ ,

𝛽 ≤ ∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶)

⟺

∑
∈𝒲

∑
∈ ,

𝐶 ≥ ∑
∈𝒲

∑
∈ ,

−𝛽 ≥ ∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶)

0 ≤ ∑
∈𝒲

∑
∈ ,

𝛽 ≤ ∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶)

⟺

max

⎧⎪
⎨⎪⎩

∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶) , 0
⎫⎪
⎬⎪⎭

≤ ∑
∈𝒲

∑
∈ ,

𝛽 = ∑
∈𝒲

∑
∈ ,

−𝛽

≤min

⎧⎪
⎨⎪⎩

∑
∈𝒲

∑
∈ ,

𝐶 , ∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶)
⎫⎪
⎬⎪⎭

⟺

∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶) ≤ ∑
∈𝒲

∑
∈ ,

𝛽 = ∑
∈𝒲

∑
∈ ,

−𝛽 ≤min

⎧⎪
⎨⎪⎩

∑
∈𝒲

∑
∈ ,

𝐶 , ∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶)
⎫⎪
⎬⎪⎭

57

This inequality is only valid if

∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶) ≤min

⎧⎪
⎨⎪⎩

∑
∈𝒲

∑
∈ ,

𝐶 , ∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶)
⎫⎪
⎬⎪⎭

holds. We can easily verify that

∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶) ≤ ∑
∈𝒲

∑
∈ ,

𝐶

is always valid. Then we need to make verify the other inequality:

∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶) ≤ ∑
∈𝒲

∑
∈ ,

(𝐶 − 𝐶) .

So if this inequality holds, then there are no tolls necessary on paths 𝑝 ∈ ℎ , ∀ 𝑤 ∈ 𝒲.

We showed how tolls in Case 1 behave, by expanding the problem in order size. We started
with problems with one order, and expanding the order size to 𝑛 orders. When adding tolls,
we aim for a solution in which as little tolls as possible are added to paths which are not in
the SO solution, so paths in ⋃

∈𝒲
ℎ , . So the main result of this section is Proposition 6,

which states what conditions on the path costs are needed in order to obtain a toll solution
with no tolls added to paths 𝑝 ∈ ⋃

∈𝒲
ℎ , .

4.4. Case 2
Case 2 is the situation in which 𝑑 ≥ 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 = 1 ∀ arcs between different locations.
For all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
We show an example of solving a Case 2 problem in Subsection 4.4.1 and in Subsection 4.4.2
we will derive properties for path tolls.

4.4.1. Case 2: Example
Example 15. We use the STN in Figure 4.16 with two orders of size 2: 𝑑 = 𝑑 = 2.
The possible paths for the orders are:

𝒫 = {𝑎, 𝑏𝑐, 𝑒, 𝑓}, 𝒫 = {𝑏, 𝑎𝑑, 𝑎𝑔, 𝑒𝑔, 𝑓𝑔}.

The SO solution is given in Figure 4.16, with 𝑠 and 𝑒 denoting the end point of order 𝑤, respectively.

We have path costs

𝐶 = 2, 𝐶 = 4, 𝐶 = 4, 𝐶 = 5, 𝐶 = 3, 𝐶 = 4, 𝐶 = 6, 𝐶 = 6, and 𝐶 = 6,

and the path sets following from the SO solution:

ℎ , = {𝑎, 𝑒}, ℎ , = {𝑏, 𝑓𝑔}, ℎ , = {𝑓}, and ℎ , = {𝑎𝑑, 𝑎𝑔, 𝑒𝑔}.

The order costs are

𝐶 = 𝐶 + 𝐶 = 2 + 4 = 6, 𝐶 = 𝐶 + 𝐶 = 3 + 6 = 9.

We can easily see that 𝑘 = 𝐶 +𝐶 = 2+4 = 6 and 𝑘 = 𝐶 +𝐶 = 3+4 = 7, so in this case order 2
does not reach its optimum. We thus do not have a UE and we need to assign tolls to the STN in order

58

𝑡 = 0 1 2 3 4 5 6

𝑠 , 𝑠

𝑒 𝑒

𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑏

𝑎 𝑒 𝑓

𝑑 𝑔𝑐

Figure 4.16: STN with two orders, ∀ ∈ 𝒲, with for all arcs between different locations, on waiting
arcs. The denoted solution is SO.

to reach a UE.

We can see that for both orders, three or more paths are possible, from which two paths have to be
traversed. For order 1 there are paths of costs 2, 4 and 5 and for order 2 there are paths of costs 3, 4
and 6 (there are multiple paths with cost 6). To calculate the tolls, we again use the NP-𝛽 in Algorithm 2:

min |𝛽 | + |𝛽 | + |𝛽 | + |𝛽 | + |𝛽 |

Subject to 𝛽 + 𝛽 + 𝛽 + 𝛽 = 0 (4.17)

𝛽 − 𝛽 ≤ 3, 𝛽 − 𝛽 ≤ 2,
𝛽 − 𝛽 ≤ 1, 𝛽 − 𝛽 ≤ 0,

𝛽 − 𝛽 ≤ 1, 𝛽 − 𝛽 ≤ 3, 𝛽 − 𝛽 ≤ 3,
𝛽 − 𝛽 ≤ −2, 𝛽 − 𝛽 ≤ 0, 𝛽 − 𝛽 ≤ 0

(4.18)

𝛽 ≥ −2, 𝛽 ≥ −4, 𝛽 ≥ −4, 𝛽 ≥ −5,
𝛽 ≥ −3, 𝛽 ≥ −4, 𝛽 ≥ −6, 𝛽 ≥ −6, 𝛽 ≥ −6. (4.19)

A valid solution is 𝛽 = 2, 𝛽 = −2 and 0 for all other path tolls. So the objective value of this NP-𝛽 is
0, which means no toll on paths 𝑝 ∈ ⋃

∈𝒲
ℎ , are assigned. These tolls give us the new path costs

𝐶 = 2 + 2 = 4, 𝐶 = 4, 𝐶 = 3, 𝐶 = 6 − 2 = 4,
𝐶 = 5, 𝐶 = 4, 𝐶 = 4, 𝐶 = 6, 𝐶 = 6.

So we see that an optimal solution for the SO-𝛽 is the solution of the initial SO problem, because all
path costs are equal to or higher than the costs of that initial SO solution. △

4.4.2. Case 2: Finding properties of path tolls
Case 2 with two orders
For the following propositions, we will define the following: Define𝒲 = {1, 2}, 𝑑 = 𝑑 = 2, and
paths for each order:

𝒫 = {𝑟 , 𝑟 , … , 𝑟 }, 𝒫 = {𝑞 , 𝑞 , … , 𝑞 }.
So 𝒫 = 𝒫 ⋃𝒫 = {𝑟 ,… , 𝑟 , 𝑞 , … , 𝑞 }. Assume the paths are ordered such that

𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 and 𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 ,

and assume the SO solution value is 𝐶 + 𝐶 + 𝐶 + 𝐶 , so the path flow vector 𝑓𝑓𝑓 of 𝑠
contains elements 𝑓 = 1, 𝑓 = 1, 𝑓 = 1, 𝑓 = 1 and 𝑓 = 0 ∀ 𝑝 ∈ 𝒫 ⧵ {𝑟 , 𝑟 , 𝑞 , 𝑞 }. Then

𝐶 + 𝐶 + 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 + 𝐶 + 𝐶 ∀ 𝑠 = (𝑥 , 𝑓) ∈ 𝑆 ⧵ {𝑠 }

with 𝑓 = 1, 𝑓 = 1, 𝑓 = 1, 𝑓 = 1 and 𝑓 = 0 ∀ 𝑝 ∈ 𝒫 ⧵ {𝑟 , 𝑟 , 𝑞 , 𝑞 } .

59

Which solutions on the tolls do we obtain?

• If for order 1: 𝑟 , 𝑟 ∈ ℎ , and for order 2: 𝑞 , 𝑞 ∈ ℎ , , then no tolls are added:
𝛽 = 0 ∀ 𝑝 ∈ 𝒫, see Proposition 7 and Figure 4.17.

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑟

𝑞
𝑞

𝑞

Figure 4.17: Two orders with multiple paths: situation as in Proposition 7, SO solution in cyan.

• If for order 1: ℎ , = {𝑟 , 𝑟 }, 2 ≤ 𝑘 ≤ 𝑛 and for order 2: ℎ , = {𝑞 , 𝑞 }, 2 ≤ 𝑘 < 𝑙 ≤ 𝑚 with
the condition

𝐶 + 𝐶 + 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 + 𝐶 + 𝐶 ⟺ 𝐶 + 𝐶 ≤ 𝐶 + 𝐶

òr
if for order 1: ℎ , = {𝑟 , 𝑟 }, 2 ≤ 𝑘 < 𝑙 ≤ 𝑛 and for order 2: ℎ , = {𝑞 , 𝑞 }, 2 ≤ 𝑘 ≤ 𝑚 with
the condition

𝐶 + 𝐶 + 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 + 𝐶 + 𝐶 ⟺ 𝐶 + 𝐶 ≤ 𝐶 + 𝐶 ,

then it is sufficient to add tolls on the used paths only, see Proposition 8 and Figure 4.18a
and 4.18b (here 𝐶 − 𝐶 ≤ 𝐶 − 𝐶 with 𝑙 = 2 always holds in Figure 4.18a and
𝐶 − 𝐶 ≤ 𝐶 − 𝐶 with 𝑘 = 2 always holds in Figure 4.18b).

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑟

𝑞
𝑞

𝑞
(a) SO solution in cyan with

.

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑞

𝑞

𝑟

𝑞

(b) SO solution in cyan with
.

Figure 4.18: Two orders with multiple paths: situations as in Proposition 8.

Note that for Figure 4.19 there is only one solution possible, due to the capacity con-
straints.

• If for order 1: ℎ , = {𝑟 , 𝑟 }, 2 ≤ 𝑘 < 𝑙 ≤ 𝑛 and for order 2: ℎ , = {𝑞 , 𝑞 }, 2 ≤ 𝑘 < 𝑙 ≤ 𝑚
then tolls on the unused paths with lower path cost are necessary, see Proposition 8 and
Figure 4.20.

60

𝑠

𝑠

𝑒

𝑒

𝑟

𝑟

𝑞
𝑞

𝑟

𝑞

Figure 4.19: SO solution in cyan with
(the only possible solution).

𝑠 , 𝑠

𝑒 , 𝑒

𝑟 , 𝑞𝑟 , 𝑞
𝑟 , 𝑞

𝑟 , 𝑞

𝑟 , 𝑞

Figure 4.20: Two orders with multiple paths: situation as in Proposition 8, SO solution in cyan.

The following proposition corresponds to Figure 4.17.

Proposition 7 (Case 2 with two orders). Given is an SO problem with two orders with demand 𝑑 > 1
for both orders and capacity 1 on all traveling arcs. Assume the paths are ordered such that

𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 and 𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 ,

where 𝑟 ∈ 𝒫 ∀ 𝑗 ∈ {1, … , 𝑛} and 𝑝 ∈ 𝒫 ∀ 𝑗 ∈ {1, … ,𝑚}. If the SO solution contains 𝑓 = 1 ∀ 1 ≤ 𝑖 ≤ 𝑑
and 𝑓 = 1 ∀ 1 ≤ 𝑖 ≤ 𝑑 , then there are no tolls needed because the SO solution is a UE.

Proof. For both orders the cheapest paths can be traversed, so for every individual order the path choice
is optimal, so a UE is reached.

Case 2 with multiple orders
The following proposition gives us the condition which has to hold when we only want tolls on
the chosen paths, given an SO solution.

Proposition 8 (Case 2 with multiple orders). Given is an SO solution with orders 𝑤 ∈ 𝒲, define path
sets ℎ , and ℎ , ∀ 𝑤 ∈ 𝒲. Define 𝒫 = {𝑝 ,… , 𝑝 } with 𝐶 ≤ … ≤ 𝐶 ∀ 𝑤 ∈ 𝒲. Define for each
path 𝑝 ∈ ℎ , ∀ 𝑤 ∈ 𝒲: 𝑔 ∶= {𝑝 | 𝑖 < 𝑗, 𝑝 ∈ ℎ , }, 𝑙 ∶= {𝑝 | 𝑖 > 𝑗, 𝑝 ∈ ℎ , } . Then to obtain a
toll solution where there are only tolls on chosen paths, so ∑

∈𝒲
∑
∈ ,

|𝛽 | = 0, the following inequality

needs to hold:

∑
∈𝒲

∑
∈ ,

𝐶 ≤ ∑
∈𝒲
(∑

∈ ,

min
∈ ,

𝐶) .

61

Proof. Assume ∑
∈𝒲

∑
∈ ,

|𝛽 | = 0. The toll constraints are

𝛽 ≥ −𝐶 ∀ 𝑞 ∈ ℎ , ∀ 𝑤 ∈ 𝒲
𝛽 − 𝛽 ≤ 𝐶 − 𝐶 ∀ 𝑞 ∈ ℎ , , 𝑟 ∈ ℎ , ∀ 𝑤 ∈ 𝒲

If there is no toll on ℎ , , then 𝛽 = 0 ∀ 𝑟 ∈ ℎ , ∀ 𝑤 ∈ 𝒲 and thus

𝛽 ≥ −𝐶 ∀ 𝑞 ∈ ℎ , ∀ 𝑤 ∈ 𝒲
𝛽 ≤ 𝐶 − 𝐶 ∀ 𝑞 ∈ ℎ , , 𝑟 ∈ ℎ , ∀ 𝑤 ∈ 𝒲

⟺
−𝐶 ≤ 𝛽 ≤ 𝐶 − 𝐶 ∀ 𝑞 ∈ ℎ , , 𝑟 ∈ ℎ , ∀ 𝑤 ∈ 𝒲.

We defined for each path 𝑝 ∈ ℎ , ∀ 𝑤 ∈ 𝒲 the path sets 𝑔 ∶= {𝑝 | 𝑖 < 𝑗, 𝑝 ∈ ℎ , } and
𝑙 ∶= {𝑝 | 𝑖 > 𝑗, 𝑝 ∈ ℎ , } . Then for each path 𝑞 ∈ ℎ , we obtain the following constraints:

𝛽 ≥ −𝐶 ∀ 𝑞 ∈ ℎ , ∀ 𝑤 ∈ 𝒲
𝛽 ≤ min

∈ ,
{𝐶 − 𝐶 } ∀ 𝑞 ∈ ℎ , ∀ 𝑤 ∈ 𝒲. (4.20)

Note that ℎ , = ⋃
∈ ,

𝑔 ∪ 𝑙 , and with this we can rewrite Constraint 4.20:

𝛽 ≤ min
∈

{𝐶 − 𝐶 } < 0 ∀ 𝑞 ∈ ℎ , ∀ 𝑤 ∈ 𝒲

𝛽 ≤min
∈

{𝐶 − 𝐶 } ∀ 𝑞 ∈ ℎ , ∀ 𝑔 = ∅, 𝑤 ∈ 𝒲.
(4.21)

If tolls are necessary, we need both positive and negative tolls, because ∑
∈𝒲

∑
∈ ,

𝛽 = 0. In order to

obtain this zero sum and the fact that we want tolls on chosen paths only, the following needs to hold:

∑
∈𝒲

∑
∈ ,

∅

𝛽 = ∑
∈𝒲

∑
∈ ,

∅

−𝛽

⟺

∑
∈𝒲

∑
∈ ,

∅

|𝛽 | = ∑
∈𝒲

∑
∈ ,

∅

|𝛽 | .

We know for paths with 𝑔 ≠ ∅ that 𝛽 < 0, because if we do not require this, there will be unused
paths with cheaper path cost than some used paths. So we can rewrite the equality to

− ∑
∈𝒲

∑
∈ ,

∅

𝛽 = ∑
∈𝒲

∑
∈ ,

∅

𝛽 .

62

This only holds if the inequalities (4.21) are satisfied when we sum over these inequalities:

∑
∈𝒲

∑
∈ ,

∅

min
∈

(𝐶 − 𝐶) ≤ − ∑
∈𝒲

∑
∈ ,

∅

𝛽 = ∑
∈𝒲

∑
∈ ,

∅

𝛽 ≤ ∑
∈𝒲

∑
∈ ,

∅

min
∈

(𝐶 − 𝐶)

⟺

∑
∈𝒲

∑
∈ ,

∅

min
∈

(𝐶 − 𝐶) ≤ ∑
∈𝒲

∑
∈ ,

∅

min
∈

(𝐶 − 𝐶) .

⟺

∑
∈𝒲

∑
∈ ,

𝐶 ≤ ∑
∈𝒲

⎛
⎜

⎝

∑
∈ ,

∅

min
∈

𝐶 + ∑
∈ ,

∅

min
∈

𝐶 ⎞
⎟

⎠
⟺

∑
∈𝒲

∑
∈ ,

𝐶 ≤ ∑
∈𝒲
(∑

∈ ,

min
∈ ,

𝐶)

So in order to obtain a tolled UE solution with no tolls on unchosen paths, the last inequality needs to
hold.

As we did for Case 1, we explored the toll solutions for Case 2 based on the initial path
costs, and in Proposition 8 we see what conditions are necessary to add tolls on paths used
in the SO solution only, which is equivalent to optimally minimize the NP-𝛽.

4.5. Case 3
Case 3 is the situation in which 𝑑 = 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 ≥ 1 ∀ arcs between different locations.
For all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
We show an example of solving a Case 3 problem in Subsection 4.5.1 and in Subsection 4.5.2
we will derive properties for path tolls.

For both Case 3 and Case 4, we have a new definition of path sets and ℎ , and ℎ , . We

first define the path capacity as 𝑚 = ∑
∈𝒜
𝛿 𝑚 .

We now define the path sets 𝒫 , , ℎ , and ℎ , ∀ 𝑤 ∈ 𝒲:

𝒫 , = { 𝑝𝑚 | 𝑝 ∈ 𝒫 } ,

ℎ , = {
𝑝
𝑓 | 𝑓 > 0, 𝑝 ∈ 𝒫 } ,

ℎ , = {
𝑝

𝑚 − 𝑓 | 𝑚 > 𝑓 , 𝑝 ∈ 𝒫 } .

4.5.1. Case 3: Example
Example 16. In this example we have 5 orders all with demand 1: Order 1,2, 3 and for start at location
1, order 5 starts at location 2. Order 1 and 2 end at location 2 and the others at location 3. The SO
solution is given in Figure 4.21, with 𝑠 and 𝑒 denoting the start end point of order 𝑤, respectively. All
traveling arcs have capacity 1, except for arcs 𝑏 and 𝑓, which have capacity 𝑚 = 𝑚 = 2.

63

So we get the following path sets per order with corresponding capacities:

𝒫 , = 𝒫 , ={
𝑎, 𝑏, 𝑐, 𝑑
1, 2, 1, 1}

𝒫 , = 𝒫 , ={
𝑎𝑒, 𝑎𝑓, 𝑎𝑔, 𝑎ℎ, 𝑏𝑓, 𝑏𝑔, 𝑏ℎ, 𝑐𝑔, 𝑐ℎ
1, 1, 1, 1, 2, 1, 1, 1, 1 }

𝒫 , ={
𝑒, 𝑓, 𝑔, ℎ
1, 2, 1, 1}

𝑡 = 0 1 2 3 4 5

, ,
,

𝑠 𝑒 𝑒

𝑒 𝑒 , 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑏

𝑓

𝑎 𝑐 𝑑

𝑒 𝑔 ℎ

Figure 4.21: STN with two orders, ∀ ∈ 𝒲, with , for ∈ 𝒜 ⧵ { , }, on waiting arcs.
The denoted solution is SO.

We have path costs

𝐶 , = 1, 𝐶 , = 2, 𝐶 , = 3, 𝐶 , = 5,
𝐶 , = 2, 𝐶 , = 3, 𝐶 , = 4, 𝐶 , = 5, 𝐶 , = 3, 𝐶 , = 4, 𝐶 , = 5, 𝐶 , = 4, 𝐶 , = 5,
𝐶 = 2, 𝐶 = 3, 𝐶 = 4, 𝐶 = 5,

where 𝐶 , denotes that for both orders the same path can be traversed, because those orders have
the same origin and destination location. In this example we use path flow vectors 𝑓 instead of 𝑓 ,
because there are orders with the same origin and destination, so with the adjusted notation we can
show which part of the path flow is used for which order. The path sets follow from the SO solution:

ℎ , = {
𝑎
1} , ℎ , = {

𝑏, 𝑐, 𝑑
2, 1, 1} ,

ℎ , = {
𝑐
1} , ℎ , = {

𝑎, 𝑏, 𝑑
1, 2, 1} ,

ℎ , = {
𝑏𝑓
1 } , ℎ , = {

𝑎𝑒, 𝑎𝑓, 𝑎𝑔, 𝑎ℎ, 𝑏𝑓 , 𝑏𝑔, 𝑏ℎ, 𝑐𝑔, 𝑐ℎ
1, 1, 1, 1, 1, 1, 1, 1, 1 } ,

ℎ , = {
𝑏𝑓
1 } , ℎ , = {

𝑎𝑒, 𝑎𝑓, 𝑎𝑔, 𝑎ℎ, 𝑏𝑓 , 𝑏𝑔, 𝑏ℎ, 𝑐𝑔, 𝑐ℎ
1, 1, 1, 1, 1, 1, 1, 1, 1 } ,

ℎ , = {
𝑒
1} , ℎ , = {

𝑓, 𝑔, ℎ
2, 1, 1} .

We see that only orders 1 and 5 travel via their cheapest paths, so we need tolls to create a UE. Solving
the NP-𝛽 gives us

𝛽 = 1, 𝛽 = −2, 𝛽 = 1, 𝛽 = 1, 𝛽 = 1,

64

where for orders 3 and 4 tolls are added to paths not in the SO solution. Then the adjusted path costs
become

𝐶 = 1 + 1 = 2, 𝐶 = 1, 𝐶 = 3, 𝐶 = 3 − 2 = 1, 𝐶 , = 2 + 1 = 3, 𝐶 = 2 + 1 = 3.

△

4.5.2. Case 3: Finding properties of path tolls
Case 3 with two orders
Proposition 9 (Case 3 with two orders). Given is an SO problem with two orders with demand 𝑑 = 1
for both orders and 𝑚 ≥ 1 on all traveling arcs. Assume the paths are ordered such that

𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 and 𝐶 ≤ 𝐶 ≤ ⋯ ≤ 𝐶 ≤ 𝐶 ,

where 𝑟 ∈ 𝒫 ∀ 𝑗 ∈ {1, … , 𝑛} and 𝑝 ∈ 𝒫 ∀ 𝑗 ∈ {1, … ,𝑚}. If the SO solution contains 𝑓 = 1 with 𝐶 = 𝐶
and 𝑓 = 1 with 𝐶 = 𝐶 , then there are no tolls needed because the SO solution is a UE.

Proof. For both orders a cheapest path can be traversed, so for every individual order the path choice
is optimal, so a UE is reached.

Case 3 with multiple orders
The following proposition gives us the condition which has to hold when we only want tolls on
the chosen paths, given an SO solution.

Proposition 10 (Case 3 with multiple orders). Given is an SO solution with orders 𝑤 ∈ 𝒲, define path

sets ℎ , = {
𝑝
𝑓 | 𝑓 > 0, 𝑝 ∈ 𝒫 } and ℎ , = {

𝑝
𝑚 − 𝑓 | 𝑚 > 𝑓 , 𝑝 ∈ 𝒫 } ∀ 𝑤 ∈ 𝒲.

Define 𝒫 = {𝑝 ,… , 𝑝 } with 𝐶 ≤ … ≤ 𝐶 ∀ 𝑤 ∈ 𝒲. Define for each path 𝑝 ∈ ℎ , ∀ 𝑤 ∈ 𝒲:
𝑔 ∶= {𝑝 | 𝑖 < 𝑗, 𝑝 ∈ ℎ , }, 𝑙 ∶= {𝑝 | 𝑖 > 𝑗, 𝑝 ∈ ℎ , }. Then to obtain a toll solution where there
are only tolls on chosen paths, so ∑

∈𝒲
∑
∈ ,

|𝛽 | = 0, the following inequality needs to hold:

∑
∈𝒲

∑
∈ ,

𝐶 𝑓 ≤ ∑
∈𝒲
(∑

∈ ,

min
∈ ,

𝐶 𝑓) .

Proof. Assume ∑
∈𝒲

∑
∈ ,

|𝛽 | = 0. As in the proof of Proposition 8, we can rewrite the toll constraints

𝛽 ≥ −𝐶 ∀ 𝑞 ∈ ℎ , ∀ 𝑤 ∈ 𝒲
𝛽 − 𝛽 ≤ 𝐶 − 𝐶 ∀ 𝑞 ∈ ℎ , , 𝑟 ∈ ℎ , ∀ 𝑤 ∈ 𝒲

to

𝛽 ≤ min
∈

{𝐶 − 𝐶 } < 0 ∀ 𝑞 ∈ ℎ , ∀ 𝑤 ∈ 𝒲

𝛽 ≤min
∈

{𝐶 − 𝐶 } ∀ 𝑞 ∈ ℎ , ∀ 𝑔 = ∅, 𝑤 ∈ 𝒲.
(4.22)

If tolls are necessary, we need both positive and negative tolls, because ∑
∈𝒲

∑
∈ ,

𝛽 𝑓 = 0. We know

for paths with 𝑔 ≠ ∅ that 𝛽 < 0, because if we do not require this, there will be unused paths with
cheaper path cost than some used paths. In order to obtain this zero sum and the fact that we want tolls

65

on chosen paths only, the following needs to hold:

∑
∈𝒲

∑
∈ ,

∅

𝛽 𝑓 = ∑
∈𝒲

∑
∈ ,

∅

−𝛽 𝑓

⟺

∑
∈𝒲

∑
∈ ,

∅

|𝛽 𝑓 | = ∑
∈𝒲

∑
∈ ,

∅

|𝛽 𝑓 | .

This equality only holds if the inequalities (4.22) are satisfied when we sum over these inequalities:

∑
∈𝒲

∑
∈ ,

∅

min
∈

(𝐶 − 𝐶) 𝑓 ≤ − ∑
∈𝒲

∑
∈ ,

∅

𝛽 𝑓 = ∑
∈𝒲

∑
∈ ,

∅

𝛽 𝑓 ≤ ∑
∈𝒲

∑
∈ ,

∅

min
∈

(𝐶 − 𝐶) 𝑓

⟺

∑
∈𝒲

∑
∈ ,

∅

min
∈

(𝐶 − 𝐶) 𝑓 ≤ ∑
∈𝒲

∑
∈ ,

∅

min
∈

(𝐶 − 𝐶) 𝑓 .

⟺

∑
∈𝒲

∑
∈ ,

𝐶 𝑓 ≤ ∑
∈𝒲

⎛
⎜

⎝

∑
∈ ,

∅

min
∈

𝐶 𝑓 + ∑
∈ ,

∅

min
∈

𝐶 𝑓 ⎞⎟

⎠
⟺

∑
∈𝒲

∑
∈ ,

𝐶 𝑓 ≤ ∑
∈𝒲
(∑

∈ ,

min
∈ ,

𝐶 𝑓)

We can also show that Proposition 9 follows from Proposition 10. Suppose we have a
problem with two orders, then due to the fact we are working with Case 3, we have |ℎ , | = 1
for 𝑤 ∈ {1, 2}. Then according to Proposition 10 the inequality

𝐶 + 𝐶 ≤ min
∈ ,

𝐶 + min
∈ ,

𝐶

has to hold.

Summarizing this section, we explored the toll solutions for Case 3 based on the initial
path costs, and in Proposition 10 we see what conditions are necessary to add tolls on paths
used in the SO solution only, which is equivalent to optimally minimize the NP-𝛽.

4.6. Case 4
Case 4 is the situation in which 𝑑 ≥ 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 ≥ 1 ∀ arcs between different locations.
or all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
We show an example of solving a Case 4 problem in Subsection 4.6.1 and in Subsection 4.6.2
we will derive properties for path tolls.

66

Recall the adjusted notation of path sets for Case 3 and 4:

𝒫 , = { 𝑝𝑚 | 𝑝 ∈ 𝒫 } ,

ℎ , = {
𝑝
𝑓 | 𝑓 > 0, 𝑝 ∈ 𝒫 } ,

ℎ , = {
𝑝

𝑚 − 𝑓 | 𝑚 > 𝑓 , 𝑝 ∈ 𝒫 } .

4.6.1. Case 4: Example
Example 17. In this example we have three orders, all with different demand: 𝑑 = 3 from location 1 to
2, 𝑑 = 3 from location 1 to 3 and 𝑑 = 1 from location 2 to 3. An SO solution is given in Figure 4.22,
with 𝑠 and 𝑒 denoting the start end point of order 𝑤, respectively. All traveling arcs have capacity
1, except for arcs 𝑎, 𝑐 and 𝑓, which have capacity 𝑚 = 𝑚 = 𝑚 = 2, which we graphically show by
multiple arcs between a pair of nodes.

𝑡 = 0 1 2 3 4 5

𝑠 , 𝑠

𝑠 𝑒 𝑒 𝑒

𝑒 𝑒 , 𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑎 𝑏 𝑐 𝑑

𝑒
𝑓

𝑔 ℎ

Figure 4.22: STN with two orders, ∀ ∈ 𝒲, with , for ∈ 𝒜 ⧵ { , , }, on waiting
arcs. The denoted solution is SO.

We have path costs

𝐶 = 1, 𝐶 = 2, 𝐶 = 3, 𝐶 = 5,
𝐶 = 2, 𝐶 = 3, 𝐶 = 4, 𝐶 = 5, 𝐶 = 3, 𝐶 = 4, 𝐶 = 5, 𝐶 = 4, 𝐶 = 5,
𝐶 = 2, 𝐶 = 3, 𝐶 = 4, 𝐶 = 5,

The path sets following from the SO solution are:

ℎ , = {
𝑎, 𝑐, 𝑑
1, 1, 1} , ℎ , = {

𝑎, 𝑏, 𝑐
1, 1, 1} ,

ℎ , = {
𝑎𝑒, 𝑏𝑓, 𝑐𝑔
1, 1, 1 } , ℎ , = {

𝑎𝑓, 𝑎𝑔, 𝑎ℎ, 𝑏𝑔, 𝑏𝑔, 𝑐ℎ
2, 1, 1, 1, 1, 1 } ,

ℎ , = {
𝑓
1} , ℎ , = {

𝑒, 𝑓, 𝑔, ℎ
1, 1, 1, 1} .

We see that none of the orders can travel via their cheapest paths, so we need tolls to create a UE.
Solving the NP-𝛽 gives us

𝛽 = 2, 𝛽 = −1, 𝛽 = −1, 𝛽 = 1, 𝛽 = −1,
𝛽 = 2.

Please not that path 𝑏 ∈ ℎ , , so the toll on that path is not actually payed. △

67

4.6.2. Case 4: Finding properties of path tolls
Proposition 11 (Case 4 with multiple orders). Given is an SO solution with orders 𝑤 ∈ 𝒲, define path

sets ℎ , = {
𝑝
𝑓 | 𝑓 > 0, 𝑝 ∈ 𝒫 } and ℎ , = {

𝑝
𝑚 − 𝑓 | 𝑚 > 𝑓 , 𝑝 ∈ 𝒫 } ∀ 𝑤 ∈ 𝒲.

Define 𝒫 = {𝑝 ,… , 𝑝 } with 𝐶 ≤ … ≤ 𝐶 ∀ 𝑤 ∈ 𝒲. Define for each path 𝑝 ∈ ℎ , ∀ 𝑤 ∈ 𝒲:
𝑔 ∶= {𝑝 | 𝑖 < 𝑗, 𝑝 ∈ ℎ , }, 𝑙 ∶= {𝑝 | 𝑖 > 𝑗, 𝑝 ∈ ℎ , }. Then to obtain a toll solution where there
are only tolls on chosen paths, so ∑

∈𝒲
∑
∈ ,

|𝛽 | = 0, the following inequality needs to hold:

∑
∈𝒲

∑
∈ ,

𝐶 𝑓 ≤ ∑
∈𝒲
(∑

∈ ,

min
∈ ,

𝐶 𝑓) .

Proof. Note Proposition 11 is equal to Proposition 10, except for the fact that 𝑑 ≥ 1 ∀ 𝑤 ∈ 𝒲 instead
of 𝑑 = 1 ∀ 𝑤 ∈ 𝒲, so we refer to the proof of Proposition 10.

Summarizing this section, we explored the toll solutions for Case 4 based on the initial
path costs, and in Proposition 11 we see what conditions are necessary to add tolls on paths
used in the SO solution only, which is equivalent to optimally minimize the NP-𝛽.

We give a short conclusion of this Chapter. Recall, a UE is reached when each customers
can travel via their cheapest paths. When applying path based tolls, we assumed customers
do not know the path costs of the initial network (and thus also do not know their cheapest
paths). The tolls are used to adjust the path costs, such that we can offer the customers a
choice of (tolled) paths. Then each customer chooses its cheapest tolled paths (UE), and with
those choices the SO objective value is maintained.
We aimed for a toll solution in which as little as possible toll is added to unused paths in
the SO solution, such that the number of paths with adjusted costs is low. However, adding
tolls to paths can be unfair towards customers, because we just adjust the path cost to give
customers the idea they are traveling via their cheapest paths. In the next chapter we will
investigate tolls on orders, in which we remove the assumption that customers do not know
the initial path costs, and therefore we are forced to find a more fair method of adding tolls.

68

5
Tolls on orders

In this chapter, our goal is to find a Order tolled User Equilibrium. We will use the same
structure to obtain orders tolls, as we used to obtain path tolls.
Recall, we first solve the SO problem in an STN. Then in order to obtain a User Equilibrium,
we adjust the costs by adding tolls. Contrary to the toll principle in the previous chapter, we
do not assume that the customer is not familiar with the initial cost network. In this case,
we assign tolls to the total costs of orders, and thus the value of the tolls do not influence the
path choices of customers. The tolls assigned to orders will make a fair redistribution of the
costs of all orders using the network.

We start by solving the SO, and then make a payment regulation such that no customer is
harmed by that SO solution and thus a UE is reached. The sum of all tolls payed and received
by all customers has to be zero. The way of finding tolls that give us a UE solution in a initial
SO problem is described in Algorithm 3, which has the same structure as Algorithm 2 for path
tolls in Chapter 4.

Recall we use the ratio 𝑟 = 𝐶
𝑘 to calculate how much worse the solution is for order

𝑤, compared to the cheapest costs he could have payed when he was the only order on the

network. We introduce the tolled ratio 𝑟 =
𝐶
𝑘 = 𝐶 + 𝛽

𝑘 , which denotes the ratio of a tolled

solution.

Algorithm 3 Calculating order tolls
1: Create SO problem:

min ∑
∈𝒫
𝐶 𝑓

s.t. 𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜

∑
∈𝒫

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲

𝑥 ≤ 𝑚 ∀ 𝑎 ∈ 𝒜
𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫
𝑥 ∈ ℕ ∀ 𝑎 ∈ 𝒜

2: Solve SO problem, output: 𝐶 = ∑
∈𝒫
𝐶 𝑓 ∀ 𝑤 ∈ 𝒲.

69

3: Create the nonlinear programming problem NP-𝛽 (where we minimize over the absolute value of the
difference of ratios for all pairs of orders):

min ∑
, ∈𝒲

|𝑟 − 𝑟 | = |
𝐶 + 𝛽
𝑘 −

𝐶 + 𝛽
𝑘 | (5.1)

s.t. ∑
∈𝒲
𝛽 = 0 (5.2)

𝛽 ≥ −𝐶 ∀ 𝑤 ∈ 𝒲 (5.3)

where the objective function minimizes the ratio differences for all pairs of orders. Note that we sum
twice over the set of orders: when 𝑤 = 𝑤 , that term of the objective becomes zero. Constraint 5.2
ensures the total toll sum to be zero, and Constraint 5.3 ensures that no path can have a negative
𝐶 cost.

To solve the objective function of the NP-𝛽 in Algorithm 3 Step 3 more easily, we use an
equivalent linear formulation to solve:

min ∑
, ∈𝒲

𝛾 ,

s.t. ∑
∈𝒲
𝛽 = 0

𝛽 ≥ −𝐶 ∀ 𝑤 ∈ 𝒲
𝐶 + 𝛽
𝑘 −

𝐶 + 𝛽
𝑘 ≤ 𝛾 , ∀ 𝑤 ,𝑤 ∈ 𝒲 (5.4)

−
𝐶 + 𝛽
𝑘 +

𝐶 + 𝛽
𝑘 ≤ 𝛾 , ∀ 𝑤 ,𝑤 ∈ 𝒲 (5.5)

𝛾 , ≥ 0 ∀ 𝑤 ,𝑤 ∈ 𝒲 (5.6)

where 𝛾 , replaces the absolute value term |
𝐶 + 𝛽
𝑘 −

𝐶 + 𝛽
𝑘 | in the objective function

with the help of Constraints (5.4) - (5.6).

4: Solve NP-𝛽, output: 𝛽 .
5: Add tolls 𝛽 to the SO problem, SO-𝛽:

min ∑
∈𝒲
(∑

∈𝒫
𝐶 𝑓 + 𝛽)

s.t. 𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜

∑
∈𝒫

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲

𝑥 ≤ 𝑚 ∀ 𝑎 ∈ 𝒜
𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫
𝑥 ∈ ℕ ∀ 𝑎 ∈ 𝒜

6: Solve SO-𝛽 problem, output path flow vector 𝑓𝑓𝑓.

The desired outcome of Algorithm 3, is that the solution to the SO-𝛽 problem is equal to the

70

initial SO problem. We will illustrate how the algorithm works in Section 5.1, with problems
of Case 1. In Section 5.2 we will describe an Algorithm that splits the set of orders such
that we can create a better objective function for the NP-𝛽, to obtain a better division of toll
costs. Then in Sections 5.3, 5.4 and 5.5 we will investigate the other toll on order problems,
regarding Case 2,3 and 4, respectively.

5.1. Case 1
Case 1 is the situation in which 𝑑 = 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 = 1 ∀ arcs between different locations.
For all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.

In Example 18 we will show how we can verify the correctness of the tolls found. In Exam-
ple 19 and Example 20 we take a closer look at the ratios en how those affect the outcome of
the NP-𝛽. In Example 21 and 22 we wll discuss the fairness of certain solutions.

Example 18. We use the STN as in Figure 4.4, again showed in Figure 5.1. The SO solution is given
in Figure 5.1, with 𝑠 denoting the start point and 𝑒 denoting the end point for order 𝑤.

𝑡 = 0 1 2 3 4 5

𝑠 , 𝑠𝑙 = 1

𝑒𝑙 = 2

𝑒𝑙 = 3

𝑎 𝑏

𝑐 𝑑

Figure 5.1: STN with two orders, ∀ ∈ 𝒲, with for all arcs between two different locations, otherwise.
The denoted solution is SO.

We have path costs 𝐶 = 2, 𝐶 = 4, 𝐶 = 4, 𝐶 = 5 and 𝐶 = 5. Given that for order 1 path 𝑎 is
used, and for order 2 path 𝑏𝑑 is used, the order costs are: 𝐶 = 𝐶 = 2, 𝐶 = 𝐶 = 5.We see that due
to capacity constraints, order 2 is not able to choose his best route in the SO and has to take path 𝑏𝑑
with cost 5.
The tolls found by the Algorithm 3 Step 3 are

𝛽 = 1
3 , 𝛽 = −13 ,

with the objective value of the NP-𝛽 being equal to 0, which is the minimal value for an absolute value
function. We show how we can derive the values of the tolls by hand, by evaluating the objective function
of the NP-𝛽 and use the fact that 𝛽 + 𝛽 = 0:

min
, ,

|2 + 𝛽2 − 5 + 𝛽4 | + |5 + 𝛽4 − 2 + 𝛽2 | =min 2 ⋅ |1 + 𝛽2 −
5
4 −

−𝛽
4 | =min 2 ⋅ |−14 +

3
4𝛽 | .

The minimum value of an absolute value is zero, so we can check if this can be the case:

0 = |−14 +
3
4𝛽 | ⟺

1
4 =

3
4𝛽 ⟺ 1

3 = 𝛽 ⇒ 𝛽 = −13.

Then the tolled costs become 𝐶 = 213 , 𝐶 = 423 , so both ratios are 𝑟 = 116 . △

71

Example 19. We use the STN in Figure 5.2.

𝑡 = 0 1 2 3 4 5

𝑠 , 𝑠

𝑒

𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑎 𝑏

𝑐 𝑑

Figure 5.2: STN with two orders, ∀ ∈ 𝒲, with for all arcs between two different locations, otherwise.
The denoted solution is SO.

We will now observe which toll we need to add to obtain a UE that equals the initial SO. The SO solution
is given in Figure 5.2, with 𝑠 and 𝑒 denoting the start and end point of order 𝑤, respectively.
We have path costs 𝐶 = 2, 𝐶 = 3, 𝐶 = 3, 𝐶 = 5 and 𝐶 = 5.
The solution given by Algorithm 3 Step 4 is

𝛽 = −35, 𝛽 = 3
5 ,

and thus the order costs are 𝐶 = 225 , 𝐶 = 335 .
We can see in Table 5.1 that indeed the ratio of current cost compared to the cheapest path cost is

Table 5.1: Example of Figure 5.2: Ratios ()/ per toll

Order 1 𝐶 𝑟 Order 2 𝐶 𝑟
𝑘 2 3
𝐶 (SO) 3 1.5 3 1
𝛽 −0.1 2.9 1.45 0.1 3.1 1.0333

−0.2 2.8 1.4 0.2 3.2 1.0667
−0.3 2.7 1.35 0.3 3.3 1.1
−0.4 2.6 1.3 0.4 3.4 1.1333
−0.5 2.5 1.25 0.5 3.5 1.1667

NP-𝛽 toll: −0.6 2.4 1.2 0.6 3.6 1.2
−0.7 2.3 1.15 0.7 3.7 1.2333
−0.8 2.2 1.1 0.8 3.8 1.2667
−0.9 2.1 1.05 0.9 3.9 1.3
−1 2 1 1 4 1.3333

equal for both orders, namely 𝑟 = 𝑟 = 115 . △

Example 20. In this example there are three orders 𝑤 = {1, 2, 3}, with 𝑑 = 1 ∀ 𝑤 ∈ 𝒲. The STN
and the SO solution are given in Figure 5.3 with 𝑠 and 𝑒 denoting the start and end point of order 𝑤,
respectively.

The order costs of the SO are 𝐶 = 𝐶 = 2, 𝐶 = 𝐶 = 5, 𝐶 = 𝐶 = 3.
We solve the NP-𝛽 manually to see how the solution is found:

min
,

|2 + 𝛽2 − 5 + 𝛽3 | + |2 + 𝛽2 − 3 + 𝛽3 | + |5 + 𝛽3 − 2 + 𝛽2 | + |5 + 𝛽3 − 3 + 𝛽3 |+

|3 + 𝛽3 − 2 + 𝛽2 | + |3 + 𝛽3 − 5 + 𝛽3 | =

72

= min
,

2(|2 + 𝛽2 − 5 + 𝛽3 | + |2 + 𝛽2 − 3 + 𝛽3 | + |5 + 𝛽3 − 3 + 𝛽3 |)

= min
,

2(|−4 + 3𝛽 − 2𝛽
6 | + |3𝛽 − 2𝛽

6 | + |2 + 𝛽 − 𝛽
3 |)

This objective has value zero if all individual absolute values are equal to zero and we also want the
total toll sum zero constraint to hold, so we obtain four equalities:

3𝛽 − 2𝛽 = 4
3𝛽 − 2𝛽 = 0
𝛽 − 𝛽 = −2

𝛽 + 𝛽 + 𝛽 = 0

⟺
⎡
⎢
⎢
⎣

3 −2 0
3 0 −2
0 1 −1
1 1 1

⎤
⎥
⎥
⎦
𝛽𝛽𝛽 =

⎡
⎢
⎢
⎣

4
0

−2
0

⎤
⎥
⎥
⎦
,

which gives us the toll solution as in Table 5.2: 𝛽 = 1
2 , 𝛽 = −114 , 𝛽 = 3

4 , and order costs 𝐶 = 212 ,

𝐶 = 334 , 𝐶 = 334 , so all orders have ratio 𝑟 = 114 .

𝑡 = 0 1 2 3 4 5

𝑠 , 𝑠

𝑠 𝑒

𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑎 𝑏

𝑐 𝑑

Figure 5.3: STN with three orders, ∀ ∈ 𝒲, with for all arcs between two different locations, otherwise.
The denoted solution is SO.

Table 5.2: Ratios ()/ per toll for Figure 5.3

Order 1 𝐶 𝑟 Order 2 𝐶 𝑟 Order 3 𝐶 𝑟

𝑘 2 3 3
𝐶 (SO) 2 1 5 1 3 1
NP-𝛽 toll: 𝛽 2 1 −1 3 1 3 1

In Table 5.2 we can compare the ratios of the SO solution to those of the tolled solution. We see that
the extra costs in the SO solution of order 2, are divided over all orders in the tolled solution. △

Example 21. Here we have three orders, with one order not interfering with the other two orders re-
garding their cheapest paths. The STN is given in Figure 5.4.

The SO solution is given in Figure 5.4, the order tolls are

𝛽 = −23, 𝛽 = 5
12 , 𝛽 = 1

4 .

The question now is, is this solution fair? Order 3 does not cause any bottlenecks for the other orders,
so why would this order have to pay for the problems of other orders? If we claim that order 3 does not
have to pay/receive any toll, so 𝛽 = 0, and solve the NP-𝛽 again, we obtain the “fair” toll solution as in

73

𝑡 = 0 1 2 3 4 5 6 7

𝑠 , 𝑠

𝑠 𝑒

𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑎 𝑏

𝑐 𝑑 𝑒

Figure 5.4: STN with three orders, ∀ ∈ 𝒲, with for all arcs between two different locations, otherwise.
The denoted solution is SO.

Table 5.3: Ratios ()/ per toll for Figure 5.4

Order 1 𝐶 𝑟 Order 2 𝐶 𝑟 Order 3 𝐶 𝑟

𝑘 4 5 3
𝐶 (SO) 5 1 5 1 3 1
NP-𝛽 toll: 𝛽 − 4 1 5 1 3 1
“Fair” toll: 𝛽 − 4 1 5 1 0 3 1

Table 5.3, in which order 1 receives
5
9 from order 2. Then both order 1 and 2 have a ratio 𝑟 = 𝑟 = 119 ,

and 𝑟 = 1. We will discuss this fairness in the next example and in Section 5.2. △

Example 22. This is another example with three orders. The STN is given in Figure 5.5.

𝑡 = 0 1 2 3 4 5 6 7

𝑠 , 𝑠

𝑠 , 𝑠 𝑒

𝑒 𝑒

𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎 𝑏

𝑐 𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

Figure 5.5: STN with four orders, ∀ ∈ 𝒲, with for all arcs between two different locations, otherwise.
The denoted solution is SO.

The SO solution is given in Figure 5.5, the order tolls following from Algorithm 3 are

𝛽 = −37, 𝛽 = 5
7 , 𝛽 = 2

7 , 𝛽 = −47 ,

so the order costs are 𝐶 = 447 , 𝐶 = 557 , 𝐶 = 227 , 𝐶 = 337 .
The question now is, is this solution fair? It looks like optional paths for order 1 and 2 are not interfering
with optional paths for order 3 and 4. Therefore we calculate “fair” tolls, and for that we need to divide
all orders in different sets, each set with their own joint bottleneck arcs.

74

We first compare the path costs per order:

𝒫 = {𝑎, 𝑏} ,
𝒫 = {𝑎𝑒, 𝑎𝑓, 𝑏𝑓} ,
𝒫 = {𝑐, 𝑑, 𝑒, 𝑓} ,
𝒫 = {𝑐𝑔, 𝑐ℎ, 𝑐𝑖, 𝑑ℎ, 𝑑𝑖, 𝑒𝑖} ,

𝐶 < 𝐶 ,
𝐶 < 𝐶 = 𝐶 ,
𝐶 < 𝐶 < 𝐶 < 𝐶 ,
𝐶 < 𝐶 = 𝐶 < 𝐶 = 𝐶 = 𝐶 .

We can easily see in Figure 5.5 that for order 1 and 2, arc 𝑎 is in both cheapest paths (those are path 𝑎
and path 𝑎𝑒) and for order 3 and 4 this is the case for arc 𝑐 (paths 𝑐 and 𝑐𝑔). Now instead of recalculating
the order costs by dividing the total cost per ratio over all orders, we can first divide the orders into two
subgroups in this case, where orders in one subgroup have shared arcs in optional paths. So we create
one subset for arc 𝑎 with orders 1 and 2, and one for arc 𝑐 for orders 3 and 4.

Table 5.4: Ratios ()/ per toll for Figure 5.5

Order 1 𝐶 𝑟 Order 2 𝐶 𝑟 Order 3 𝐶 𝑟 Order 4 𝐶 𝑟

𝑘 4 5 2 3
𝐶 5 1 5 1 2 1 4 1
NP-𝛽 toll: 𝛽 − 4 1 5 1 2 1 − 3 1
“Fair” toll: 𝛽 − 4 1 5 1 2 1 - 3 1

Then we can calculate “fair” tolls, as given in the last column in Table 5.4. We calculated these tolls by
changing the objective of the NP-𝛽 to:

min |𝐶 + 𝛽
𝑘 − 𝐶 + 𝛽

𝑘 | + |𝐶 + 𝛽
𝑘 − 𝐶 + 𝛽

𝑘 | .

such that only the difference between ratios for orders in one subgroup are minimized. △

5.2. Finding connected components in STN
We use the following algorithm, Algorithm 4, to find all connected components in the STN to
divide the order costs more fairly over the orders. We first give a short outline of how the
algorithm works.
We search for the connected components by constructing a graph 𝐺 consisting of orders𝑤 ∈ 𝒲,
where two orders in this graph can share an arc when those orders contain a joint bottleneck.
To obtain these arcs, we first find the cheapest paths per order (in Step 4). For each arc 𝑎
we check if this arc is a bottleneck, that is when the amount of cheapest paths on that arc is
higher than the capacity of that arc (this happens in Step 7), assuming every order travels via
its cheapest path.
If in this step bottlenecks are found, we create bottleneck sets in which paths (bottleneck sets
𝜂) and orders (bottleneck sets Γ) are listed per bottleneck arc 𝑎. We also add an arc in 𝐺
between each pair of orders that are in the same bottleneck set. Then for each cheapest path
of an order that is in the SO solution, we fix this path (so state that this path is taken by
that order) and then recalculate the cheapest paths for all remaining orders (Step 19). Then
if new bottlenecks arise, we add arcs between each pair of orders in this bottleneck set to the
graph 𝐺. We iterate the fixing process until no new bottlenecks arise. Then in Step 51 we
start finding the connected components in graph 𝐺.

75

Algorithm 4 Finding connected components in STN
1: Let 𝒬 = ∅ ∀ 𝑤 ∈ 𝒲 be the set of cheapest paths per order 𝑤, 𝒜 = ∅ the bottleneck set.
2: Create graph 𝐺 with nodes 𝑉 = 𝒲 and arc set 𝐸 = ∅.
3: for 𝑤 ∈ 𝒲 do
4: Find cheapest paths 𝑞 , , 𝑛 ∈ {1, … , 𝑑 } (for each unit of flow a cheapest path is given), 𝑞 , ∈
𝒫 .

5: Add paths 𝑞 , to 𝒬 .
6: end for
7: for 𝑎 ∈ 𝒜 do
8: if 𝑜 > 𝑚 (𝑜 the occupancy on arc 𝑎) then
9: Create bottleneck set: 𝜂 = {𝑞 , | 𝛿 , = 1, 𝑞 , ∈ 𝒬 , ∀ 𝑤 ∈ 𝒲}.

10: Create order set: Γ = {𝑤 | 𝑞 , ∈ 𝜂 , 𝑞 , ∈ 𝒬 }.
11: 𝒜 ∶= 𝒜 ⋃𝑎.
12: for 𝑤 ,𝑤 ∈ Γ do
13: Add 𝑒 = (𝑤 ,𝑤) to 𝐸.
14: end for
15: else
16: 𝜂 = ∅.
17: end if
18: end for
19: for 𝑎 ∈ 𝒜 do
20: for 𝑞 , ∈ 𝜂 and 𝑞 , ∈ ⋃ ∈𝒲 ℎ , do
21: Fix 𝑞 , : update 𝑜 = 𝛿 , 𝑓 , ∀ 𝑎 ∈ 𝒜.
22: Recalculate the cheapest paths for all remaining orders.
23: Update 𝒬 .
24: Define 𝑙 = (𝑞 ,) (a list of all previous fixed paths) and 𝒜 = ∅.
25: if 𝑜 > 𝑚 for 𝑎 ∉ 𝒜 then
26: Create new bottleneck set 𝜂 = {𝑞 , | 𝛿 , = 1, 𝑞 , ∈ 𝒬 , ∀ 𝑤 ∈ 𝒲}.
27: Create order set: Γ = {𝑤 | 𝑞 , ∈ 𝜂 , 𝑞 , ∈ 𝒬 }.
28: Define 𝒜 ∶= 𝒜 ⋃𝑎 .
29: for 𝑤 ,𝑤 ∈ Γ do
30: Add 𝑒 = (𝑤 ,𝑤) to 𝐸.
31: end for
32: end if
33: for 𝑎 ∈ 𝒜 do
34: for 𝑟 , ∈ 𝜂 and 𝑟 , ∈ ⋃ ∈𝒲 ℎ , do
35: Fix 𝑟 , : update 𝑜 = ∑

, ∈fixed paths 𝛿 , 𝑓 , ∀ 𝑎 ∈ 𝒜
36: Recalculate the cheapest paths for all remaining orders.
37: Update 𝒬 .
38: if 𝑜 > 𝑚 for 𝑎 ∉ 𝒜 then
39: Create new bottleneck set 𝜂 = {𝑞 , | 𝛿 , = 1, 𝑞 , ∈ 𝒬 , ∀ 𝑤 ∈ 𝒲}.
40: Create order set: Γ = {𝑤 | 𝑞 , ∈ 𝜂 , 𝑞 , ∈ 𝒬 }.
41: 𝑙 ∶= (𝑙, 𝑞 ,).
42: Define 𝒜 ∶= 𝒜 ⋃𝑎 .
43: for 𝑤 ,𝑤 ∈ Γ do
44: Add 𝑒 = (𝑤 ,𝑤) to 𝐸.
45: end for
46: end if
47: end for
48: end for
49: end for
50: end for

76

51: 𝑠 = 1.
52: 𝒱 is the set of visited nodes in connected component 𝑠.
53: for 𝑤 ∈ 𝒱 ⧵ ⋃ 𝒱 do

54: 𝒱 ∶= {𝑤 }.
55: for 𝑤 ∈ ⋃

∈𝒱
𝑁 (𝑣) ⧵ ⋃ 𝒱 do

56: 𝒱 ∶= 𝒱 ∪ 𝑤 .
57: end for
58: 𝑠 ∶= 𝑠 + 1.
59: end for
60: 𝑘 ∶= 𝑠 − 1 are the number of connected components of 𝐺.
61: 𝒱 are the connected components of graph 𝐺.

With these connected component sets we can create a new NP-𝛽 for Algorithm 3 for finding
the order tolls:

min ∑ ∑
, ∈𝒱

|
𝐶 + 𝛽
𝑘 −

𝐶 + 𝛽
𝑘 |

s.t. ∑
∈𝒲
𝛽 = 0

∑
∈𝒱
𝛽 = 0 ∀ 1 ≤ 𝑠 ≤ 𝑘

𝛽 ≥ −𝐶 ∀ 𝑤 ∈ 𝒲

This new objective function only compares the new costs of orders that are in the same con-
nected component, and for each connected component the tolls sum up to zero such that
orders only pay/receive for bottlenecks that influence the route choice for them.

We use the following examples to explain Algorithm 4. In Example 23 we consider a problem
with three orders, in Example 24 a problem with four orders is considered.

Example 23. We consider a problem of Case 1. In Figure 5.6 an SO solution of an STNwith three orders
is given,𝒲 = {1, 2, 3}. We can use the algorithm to show that in this case all orders are interfering with
each other.

𝑡 = 0 1 2 3 4 5 6 7

𝑠 , 𝑠

𝑠

𝑒

𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎 𝑏

𝑑 𝑐 𝑒

𝑓 𝑔

Figure 5.6: STN with three orders, with for all arcs between two different locations, otherwise. The denoted
solution is SO.

77

We start with empty sets 𝑄 ∀ 𝑤 ∈ 𝒲 and 𝒜 and we create the graph 𝐺 = (𝑉, 𝐸) with 𝑉 = 𝒲 and
𝐸 = ∅.
Applying Algorithm 4, Step 4 gives cheapest paths 𝑞 , = 𝑎𝑐, 𝑞 , = 𝑎𝑐𝑓, 𝑞 , = 𝑑𝑓.
Step 5 gives 𝑄 = {𝑎𝑐} , 𝑄 = {𝑎𝑐𝑓} , 𝑄 = {𝑑𝑓} .
Step 9 and 10 give bottleneck arcs and order sets per bottleneck: 𝜂 = {𝑎𝑐, 𝑎𝑐𝑓}, Γ = {1, 2};
𝜂 = {𝑎𝑐, 𝑎𝑐𝑓}, Γ = {1, 2} and 𝜂 = {𝑎𝑐𝑓, 𝑑𝑓}, Γ = {2, 3}.
Step 11 gives bottleneck set 𝒜 = {𝑎, 𝑐, 𝑓} .
We add edges (1, 2) and (2, 3) to graph 𝐺.

1 2

3

Figure 5.7: Graph .

We see that all orders are connected: 𝒱 = {1, 2, 3}. Then the NP-𝛽 becomes

min |𝐶 + 𝛽
𝑘 − 𝐶 + 𝛽

𝑘 | + |𝐶 + 𝛽
𝑘 − 𝐶 + 𝛽

𝑘 | + |𝐶 + 𝛽
𝑘 − 𝐶 + 𝛽

𝑘 |

s.t. 𝛽 + 𝛽 + 𝛽 = 0
𝛽 ≥ −𝐶 ∀ 𝑤 ∈ 𝒲

⟺ min |4 + 𝛽4 − 7 + 𝛽5 | + |4 + 𝛽4 − 5 + 𝛽5 | + |7 + 𝛽5 − 5 + 𝛽5 |

s.t. 𝛽 + 𝛽 + 𝛽 = 0
𝛽 ≥ −4
𝛽 ≥ −7
𝛽 ≥ −5

which has an optimal solution with 𝛽 = 4
7 , 𝛽 = −97 and 𝛽 = 5

7 and thus tolled order costs

𝐶 = 447 , 𝐶 = 557 and 𝐶 = 557 . So all orders have ratio 𝑟 = 117 ∀ 𝑤 ∈ 𝒲. △

Example 24. We use the same STN and orders as in Example 22 (so a Case 1 problem), but with arc
𝑑 removed. We see that a whole new SO solution appears, compared to the previous network. This SO
solution is given in Figure 5.8.

𝑡 = 0 1 2 3 4 5 6 7

𝑠 , 𝑠

𝑠 , 𝑠 𝑒

𝑒 𝑒

𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎 𝑏

𝑐 𝑒 𝑓

𝑔 ℎ 𝑖

Figure 5.8: STN with four orders, with for all arcs between two different locations, otherwise. The denoted
solution is SO.

78

We will now apply Algorithm 4 on this network. We start with empty sets 𝑄 ∀ 𝑤 ∈ 𝒲 and 𝒜 and we
create the graph 𝐺 = (𝑉, 𝐸) with 𝑉 = 𝒲 = {1, 2, 3, 4} and 𝐸 = ∅.
Applying Algorithm 4, Step 4 gives cheapest paths 𝑞 , = 𝑎, 𝑞 , = 𝑎𝑒, 𝑞 , = 𝑐, 𝑞 , = 𝑐𝑔.
Step 5 gives 𝑄 = {𝑎} , 𝑄 = {𝑎𝑒} , 𝑄 = {𝑐} , 𝑄 = {𝑐𝑔} .
Step 9 and 10 give bottleneck arcs and order sets per bottleneck: 𝜂 = {𝑎, 𝑎𝑒}, Γ = {1, 2};
𝜂 = {𝑐, 𝑐𝑔}, Γ = {3, 4} .
Step 10 gives 𝒜 = {𝑎, 𝑐} .
We add edges (1, 2) and (3, 4) to graph 𝐺.

1 2

3 4

Figure 5.9: Graph .

Then we want to join order sets in which one order can influence the path choice of another order in the
same set.
We want to see if fixing one path for some order can create extra bottlenecks for other orders, which
starts in the Algorithm in Step 19.
We take 𝑎 ∈ 𝒜 and path 𝑎 ∈ 𝜂 . Note that path 𝑎 ∈ ℎ , .
We fix path 𝑎 for order 1 in the STN and recalculate new cheapest paths for all other orders and we want
to see if new bottlenecks arise. Now because arc 𝑎 is used for path 𝑎, order 2 has to travel via another
path than 𝑎𝑒. Its new cheapest path now is 𝑞 , = 𝑏𝑓. No new bottleneck arc arises, so we check the
next path.
We now take 𝑐 ∈ 𝒜 and path 𝑐 ∈ 𝜂 , 𝑐 ∈ ℎ , and fix this path.
Then order 4 has to find a new cheapest path: 𝑞 , = 𝑒𝑖. Then arc 𝑒 is a bottleneck, because both
𝑞 , = 𝑎𝑒 and 𝑞 , wants to travel via 𝑒. So we create a new bottleneck set 𝜂 = {𝑎𝑒, 𝑒𝑖} and order set
Γ = {2, 4}. So we add edge (2, 4) to graph 𝐺.

1 2

3 4

Figure 5.10: Graph .

We now see that all orders are connected.
Then the tolls become 𝛽 = 137 , 𝛽 = − 3

14 , 𝛽 = −137 , 𝛽 = 217 and thus the tolled order costs become

𝐶 = 537 , 𝐶 = 61114 , 𝐶 = 347 , and 𝐶 = 517 , so all orders have ratio 𝑟 = 157 ∀ 𝑤 ∈ 𝒲. △

5.3. Case 2
Case 2 is the situation in which 𝑑 ≥ 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 = 1 ∀ arcs between different locations.
For all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
We also use Algorithm 4 to find a division of the extra costs in the system in a fair way over
the orders.

79

Example 25. In this example two orders both with demand 𝑑 = 2 are given. The SO solution is given
in Figure 5.11. We see that both orders cannot travel via their cheapest paths.

𝑡 = 0 1 2 3 4 5 6 7 8

𝑠

𝑠

𝑒 𝑒

𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓 𝑔

ℎ 𝑖 𝑗 𝑘

Figure 5.11: STN with two orders, , with for all arcs between two different locations, otherwise.
The denoted solution is SO.

The SO costs are 𝐶 = 8, 𝐶 = 11. Their cheapest paths are 𝑘 = 7 and 𝑘 = 8. Algorithm 4 gives

that both orders are in one connected component, and the NP-𝛽 gives 𝛽 = 13
15 , 𝛽 = −1315 , which give

adjusted costs 𝐶 = 81315 , 𝐶 = 10 215 . Then we can verify that 𝑟 = 𝑟 = 19
15 . △

5.4. Case 3
Case 3 is the situation in which 𝑑 = 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 ≥ 1 ∀ arcs between different locations.
For all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
We also use Algorithm 4 to find the connected components to divide the extra costs (compared
to the cheapest path costs) in the system in a fair way over the orders.

Example 26. We use the same STN as in Example 16. In this example we have 5 orders all with
demand 1: Order 1,2, 3 and for start at location 1, order 5 starts at location 2. Order 1 and 2 end at
location 2 and the others at location 3. The SO solution is given in Figure 4.21, with 𝑠 and 𝑒 denoting
the start end point of order 𝑤, respectively. All traveling arcs have capacity 1, except for arcs 𝑏 and 𝑓,
which have capacity 𝑚 = 𝑚 = 2.

𝑡 = 0 1 2 3 4 5

, ,
,

𝑠 𝑒 𝑒

𝑒 𝑒 , 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑏

𝑓

𝑎 𝑐 𝑑

𝑒 𝑔 ℎ

Figure 5.12: STN with two orders, ∀ ∈ 𝒲, with , for all other arcs between two different locations,
otherwise. The denoted solution is SO.

80

We have path costs

𝐶 , = 1, 𝐶 , = 2, 𝐶 , = 3, 𝐶 , = 5,
𝐶 , = 2, 𝐶 , = 3, 𝐶 , = 4, 𝐶 , = 5, 𝐶 , = 3, 𝐶 , = 4, 𝐶 , = 5, 𝐶 , = 4, 𝐶 , = 5,
𝐶 = 2, 𝐶 = 3, 𝐶 = 4, 𝐶 = 5,

So we have the following path sets per order with corresponding capacities:

𝒫 , = 𝒫 , ={
𝑎, 𝑏, 𝑐, 𝑑
1, 2, 1, 1}

𝒫 , = 𝒫 , ={
𝑎𝑒, 𝑎𝑓, 𝑎𝑔, 𝑎ℎ, 𝑏𝑓, 𝑏𝑔, 𝑏ℎ, 𝑐𝑔, 𝑐ℎ
1, 1, 1, 1, 2, 1, 1, 1, 1 }

𝒫 , ={
𝑒, 𝑓, 𝑔, ℎ
1, 2, 1, 1}

where 𝐶 , denotes that for both orders the same path can be traversed, because those orders
have the same origin and destination location.

Solving the SO problem gives us the order costs

𝐶 = 1, 𝐶 = 3, 𝐶 = 𝐶 = 3, 𝐶 = 2,
while the cheapest costs are

𝑘 = 1, 𝑘 = 1, 𝑘 = 𝑘 = 2, 𝐶 = 2.
We see that only orders 1 and 5 travel via their cheapest paths, so we need tolls to create a UE.

Algorithm 4 gives us one connected components so we can find a solution for the NP-𝛽:

𝛽 = 1
2 , 𝛽 = −112 , 𝛽 = 1.

Then the adjusted order costs become

𝐶 = 112 , 𝐶 = 112 , 𝐶 = 3, 𝐶 = 3, 𝐶 = 1,

so all ratios are 𝑟 = 112 ∀ 𝑤 ∈ {1,… , 5}. △

5.5. Case 4
Case 4 is the situation in which 𝑑 ≥ 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 ≥ 1 ∀ arcs between different locations.
For all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
We also use Algorithm 4 to find the connected components to divide the extra costs (compared
to the cheapest path costs) in the system in a fair way over the orders.

Example 27. We use the STN as in Figure 5.13. There are four orders, with demands 𝑑 = 3, 𝑑 = 2,
𝑑 = 2 and 𝑑 = 4. All diagonal arcs have capacity constraints: 𝑚 = 4, 𝑚 = 4, 𝑚 = 2, 𝑚 = 2,
𝑚 = 2, 𝑚 = 2, 𝑚 = 3, 𝑚 = 3, 𝑚 = 1, 𝑚 = 2, 𝑚 = 2, 𝑚 = 3 and 𝑚 = 2.
The SO solution is given in Figure 5.13, with 𝑠 and 𝑒 denoting the start and end point for order 𝑤,
respectively. Note that order 3 starts at 𝑡 = 3, location 𝑙 = 2.

We have path capacities:

𝒫 , = {
𝑎𝑑, 𝑎𝑒, 𝑎𝑓, 𝑎𝑔, 𝑎ℎ, 𝑏𝑓, 𝑏𝑔, 𝑏ℎ, 𝑐ℎ
2, 2, 2, 3, 3, 2, 3, 3, 2 } ,

𝒫 , = {
𝑎𝑑𝑖, 𝑎𝑑𝑗, 𝑎𝑑𝑘, 𝑎𝑑𝑙, 𝑎𝑑𝑚, 𝑎𝑒𝑘, 𝑎𝑒𝑙, 𝑎𝑒𝑚, 𝑎𝑓𝑗, 𝑎𝑓𝑘, 𝑎𝑓𝑙, 𝑎𝑓𝑚, 𝑎𝑔𝑙, 𝑎𝑔𝑚, 𝑎ℎ𝑚
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2 } ,

𝒫 , = {
𝑔, ℎ
3, 3} ,

𝒫 , = {
𝑑𝑖, 𝑑𝑗, 𝑑𝑘, 𝑑𝑙, 𝑑𝑚, 𝑒𝑘, 𝑒𝑙, 𝑒𝑚, 𝑓𝑗, 𝑓𝑘, 𝑓𝑙, 𝑓𝑚, 𝑔𝑙, 𝑔𝑚, ℎ𝑚
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2 } .

81

𝑡 = 0 1 2 3 4 5 6 7

𝑠 , 𝑠

𝑠 𝑠

𝑒 𝑒 ,
,

𝑒 𝑒 𝑒 , 𝑒 𝑒 , 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎

𝑑 𝑔𝑓

𝑏 𝑐

𝑒 ℎ

𝑖 𝑗 𝑘 𝑙
𝑚

Figure 5.13: STN with four orders, , , , Capacities , , , , , ,
, , , , , , . The denoted solution is SO.

We have path costs for the used paths in the SO solution

𝐶 = 2, 𝐶 = 3, 𝐶 = 5,
𝐶 = 3, 𝐶 = 4,
𝐶 = 2,
𝐶 = 5, 𝐶 = 7.

So the order costs are

𝐶 = 2 + 3 + 5 = 10, 𝐶 = 3 + 4 = 7, 𝐶 = 2 ⋅ 2 = 4 and 𝐶 = 2 ⋅ 5 + 2 ⋅ 7 = 24,

while the cheapest path costs are

𝑘 = 2 ⋅ 2 + 3 = 7, 𝑘 = 3 + 4 = 7, 𝑘 = 2 ⋅ 2 = 4 and 𝑘 = 3 + 2 ⋅ 4 + 5 = 16.

Algorithm 4 gives two connected components: 𝒱 = {1, 2, 4} and 𝒱 = {3}.
When looking at the paths used in the SO, the question arises, why is order 3 in a separate connected
component, while it looks like its taking its cheapest path at the expense of order 4 (it looks like arc 𝑔 is
a bottleneck arc for orders 3 and 4)? In this network however, we can see that it makes no difference
for the two last arriving containers of order 4, if they are transported via path 𝑔𝑙 or ℎ𝑚. So order 3 does
not influence the order costs of orders 1,2 and 4 and therefore is not connected to them.
With the components 𝒱 and 𝒱 , solving the NP-𝛽 gives us order tolls

𝛽 = −1330 , 𝛽 = 21730 and 𝛽 = −2 215 ,

which give the tolled order costs

𝐶 = 91730 , 𝐶 = 91730 , 𝐶 = 4 and 𝐶 = 211315 .

We obtain ratios 𝑟 = 𝑟 = 𝑟 = 11130 and 𝑟 = 1. △

82

5.6. Solutions of toll on orders
After finding the connected components, the question arises whether every NP-𝛽 of Algorithm 3

has a (unique) solution? For each component 𝒱 , there are
1
2|𝒱 |(|𝒱 | − 1) terms in the objective,

and we can state that the best solution possible has objective value 0, so then each term has
to be equal to zero.

0 = |𝐶 + 𝛽
𝑘 −

𝐶 + 𝛽
𝑘 | = |

𝑘 (𝐶 + 𝛽) − 𝑘 (𝐶 + 𝛽)
𝑘 𝑘 | ⟺ 𝑘 𝛽 − 𝑘 𝛽 = 𝑘 𝐶 − 𝑘 𝐶 . (5.7)

We can make a generalization of the optimal solution for tolls on orders: Given we have a
problem with 𝑚 orders, we can create the linear system 𝐴𝛽𝛽𝛽 = 𝑏𝑏𝑏 with 𝐴 a block diagonal matrix:

𝐴 =
⎡
⎢
⎢
⎣

𝐴 0 ⋯ 0
0 𝐴 ⋱ 0
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝐴

⎤
⎥
⎥
⎦

So 𝐴 consists of 𝑚 block matrices, one for each component 𝒱 = {1,… , 𝑛} ∀ 1 ≤ 𝑠 ≤ 𝑚, with
𝑛 = |𝒱 | the number of orders in 𝒱 :

𝐴 =
⎡
⎢
⎢
⎢
⎣

𝐷
𝐷
⋮

𝐷
111 ,

⎤
⎥
⎥
⎥
⎦

with 𝐷 =
⎡
⎢
⎢
⎣

000 , 𝑘 −𝑘 0 ⋯ 0
000 , 𝑘 0 −𝑘 ⋱ ⋮
000 , ⋮ ⋮ ⋱ ⋱ 0
000 , 𝑘 0 ⋯ 0 −𝑘

⎤
⎥
⎥
⎦
, 1 ≤ 𝑗 ≤ 𝑛 − 1, (5.8)

and 111 , is a row vector of 𝑛 ones, 000 , a row vector of 𝑗 − 1 zeros and 000 , ∶= ∅.

The vector 𝑏𝑏𝑏 =
⎡
⎢
⎢
⎣

𝑏𝑏𝑏
𝑏𝑏𝑏
⋮
𝑏𝑏𝑏

⎤
⎥
⎥
⎦
consists of vectors 𝑏𝑏𝑏 for each component 𝒱 = {1,… , 𝑛} ∀ 1 ≤ 𝑠 ≤ 𝑚 with

𝑛 = |𝒱 |:

𝑏𝑏𝑏 =
⎡
⎢
⎢
⎢
⎣

𝑧𝑧𝑧
𝑧𝑧𝑧
⋮

𝑧𝑧𝑧
0

⎤
⎥
⎥
⎥
⎦

with 𝑧𝑧𝑧 =
⎡
⎢
⎢
⎣

𝑘 𝐶 − 𝑘 𝐶
𝑘 𝐶 − 𝑘 𝐶

⋮
𝑘 𝐶 − 𝑘 𝐶

⎤
⎥
⎥
⎦

(5.9)

𝐴 is a∑(12 |𝒱 | ⋅ (|𝒱 | − 1) + 1) × |𝒲| matrix and 𝑏𝑏𝑏 has length∑(12 |𝒱 | ⋅ (|𝒱 | − 1) + 1).

To draw some conclusions out of this equality 𝐴𝛽𝛽𝛽 = 𝑏𝑏𝑏, we first introduce some definitions from
Linear Algebra:

Definition 6 (Row-echelon form). A matrix is in row-echelon form if:

• All zero rows have been moved to the bottom.

• The leading nonzero element (also called a pivot) in any row is farther to the right than the leading
nonzero element in the row just above it.

• In each column containing a leading nonzero element, the entries below that leading nonzero
element are 0.

We can apply elementary row operations (swapping positions of rows, multiply a row by a
nonzero scalar, add one row to a scalar multiple of another row) to modify the matrix until we
obtain a row-echelon form.

83

Theorem 4. [11, Theorem 1.7] Let 𝐴𝑥𝑥𝑥 = 𝑏𝑏𝑏 be a linear system, and let [𝐴|𝑏𝑏𝑏] ∼ [𝐻|𝑐𝑐𝑐], where 𝐻 is in
row-echelon form.

1. The system 𝐴𝑥𝑥𝑥 = 𝑏𝑏𝑏 is inconsistent if and only if the augmented matrix [𝐻|𝑐𝑐𝑐] has a row with all
entries 0 to the left of the partition and a nonzero entry to the right of the partition.

2. If 𝐴𝑥𝑥𝑥 = 𝑏𝑏𝑏 is consistent and every column of 𝐻 contains a pivot, the system has a unique solution.

3. If 𝐴𝑥𝑥𝑥 = 𝑏𝑏𝑏 is consistent and some column of𝐻 has no pivot, the system has infinitely many solutions,
with as many free variables as there are pivot-free columns in 𝐻.

We can thus reduce our problem 𝐴𝛽𝛽𝛽 = 𝑏𝑏𝑏 to 𝐻𝛽𝛽𝛽 = 𝑐𝑐𝑐, where 𝐻 is in row-echelon form. When
solving an NP-𝛽 with two orders and one connected component 𝒱 , we can easily verify that
there always exists a unique solution by reducing the initial system:

[𝑘 −𝑘 𝑘 𝐶 − 𝑘 𝐶
1 1 0] ∼ Multiply row 2 by 𝑘 and subtract row 1 from row 2.

[𝑘 −𝑘 𝑘 𝐶 − 𝑘 𝐶
0 𝑘 + 𝑘 𝑘 𝐶 − 𝑘 𝐶]

We can see that Statement 2 of Theorem 4 holds, because 𝑘 > 0 ∀ 𝑤 ∈ 𝒲.

Then the solution is

𝛽 = 𝑘 𝐶 − 𝑘 𝐶
𝑘 + 𝑘 ,

𝛽 = 𝑘 𝐶 − 𝑘 𝐶
𝑘 + 𝑘𝑘 𝛽 = 𝑘 𝐶 − 𝑘 𝐶

𝑘 + 𝑘
(𝑘 𝐶 − 𝑘 𝐶)
𝑘 (𝑘 + 𝑘) = 𝑘 𝐶 − 𝑘 𝐶

𝑘 + 𝑘 .

We only need to show that the constraints 𝛽 ≥ −𝐶 are satisfied for all 𝑤 ∈ 𝒲:

−𝐶 ≤ 𝛽 = 𝑘 𝐶 − 𝑘 𝐶
𝑘 + 𝑘

−𝐶 ≤ 𝛽 = 𝑘 𝐶 − 𝑘 𝐶
𝑘 + 𝑘

⟺

0 ≤ 𝑘 (𝐶 + 𝐶)
𝑘 + 𝑘

0 ≤ 𝑘 (𝐶 + 𝐶)
𝑘 + 𝑘

So we see that the constraints are always satisfied, since 𝑘 , 𝑘 , 𝐶 , 𝐶 ≥ 0.

We can generalize this to a problem with 𝑛 orders with 𝑚 components: Suppose we have
the NP-𝛽 problem with 𝑛 orders, and 𝒱 = {1,… , 𝑛}, so |𝒱 | = 𝑛 for all 1 ≤ 𝑖 ≤ 𝑚. We have the
problem 𝐴𝛽𝛽𝛽 = 𝑏𝑏𝑏, with 𝐴 being a block matrix. We will show there exist a unique solution for
each sub-problem 𝐴 𝛽𝛽𝛽 = 𝑏𝑏𝑏 , and so a unique solution exist for the original problem.
The row-echelon form consist of the first row of each matrix 𝐷 , so that are the rows
[000 , 𝑘 −𝑘 000 , ()] ∀ 1 ≤ 𝑗 ≤ 𝑛 − 1. All other rows in the matrices 𝐷 can be written
as a linear combination of rows [000 , 𝑘 −𝑘 000 , ()], so those rows are equal to a zero
row in the row-echelon form.

84

For block matrix 𝐴 and corresponding vector 𝑏𝑏𝑏 , we obtain the following row-echelon form
[𝐻 |𝑐𝑐𝑐]:

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑘 −𝑘 0 ⋯ ⋯ ⋯ 0
0 𝑘 −𝑘 0 ⋱ ⋱ 0
0 0 𝑘 −𝑘 0 ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ 0 𝑘 −𝑘 0
0 ⋱ ⋱ ⋱ 0 𝑘 −𝑘

0 ⋱ ⋱ ⋱ ⋱ 0 −∑𝑘

0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ ⋯ ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑐𝑐𝑐 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑘 𝐶 − 𝑘 𝐶
𝑘 𝐶 − 𝑘 𝐶
𝑘 𝐶 − 𝑘 𝐶

⋮
𝑘 𝐶 − 𝑘 𝐶
𝑘 𝐶 − 𝑘 𝐶

∑𝑘 𝐶 −∑𝑘 𝐶

0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

So we can conclude with Theorem 4.2 that for each toll problem with one connected com-
ponent, there is a unique toll solution, because each column in 𝐻 contains a pivot. Then,
it follows that each row in block diagonal matrix 𝐻 has a pivot in each column, and for the
zero rows, 𝑐𝑐𝑐 contain a zero in that row number, so together with the inequality constraints
𝛽 ≥ −𝐶 ∀ 𝑤 ∈ 𝒲 satisfied, Theorem 4.2 holds. We then can conclude that if a solution exists
for a toll order problem given the inequality constraints, the equality constraints provide a
unique solution.

85

6
Path tolls based on order fairness

In Chapter 4 we have seen how we can adjust path tolls in order to create new tolled costs
for the STN, in which the customers can choose their own traveling paths, and the path costs
are constructed in such a way that they will choose paths that minimize the total cost of the
network (SO) and are the cheapest paths for themselves (UE). In Chapter 5 we have seen how
we can redivide the made costs over all orders, such that the use of the network is payed by
all customers, and no customer is more harmed when regarding costs than others when they
are using the same part of the network.
When adding tolls to paths as in Chapter 4, it may feel like we are misleading the customers,
because the tolled path costs can differ a lot from the initial path costs. when taking the
costs of the original networks into account. To avoid this misleading of customers, we can
couple the constraints of fairness as used in the objective function of order tolls, to make the
path based solutions a more fair User Equilibrium, by divide the costs over all orders in the
network, instead of assign higher path costs to certain orders only. In this Chapter we will
explain our procedure.
We assume the customers are unfamiliar with the initial path costs, like we assumed in Chap-
ter 4.

Recall the SO problem (4.4) of Algorithm 2 on page 42. To find path tolls, we start solving
the SO problem:

min ∑
∈𝒫
𝐶 𝑓

s.t. 𝑥 = ∑
∈𝒫
𝛿 𝑓 ∀ 𝑎 ∈ 𝒜

∑
∈𝒫

𝑓 = 𝑑 ∀ 𝑤 ∈ 𝒲

𝑥 ≤ 𝑚 ∀ 𝑎 ∈ 𝒜
𝑓 ∈ ℕ ∀ 𝑝 ∈ 𝒫
𝑥 ∈ ℕ ∀ 𝑎 ∈ 𝒜

With the SO solution found, the next step is calculating the path tolls. Therefore we use
the NP-𝛽 (4.5)-(4.8) from Algorithm 2, but with the extra constraints:

𝑟 = 𝑟 ⟺
𝐶 + 𝛽
𝑘 =

𝐶 + 𝛽
𝑘 ⟺

∑ ∈𝒫 (𝐶 + 𝛽) 𝑓
𝑘 =

∑ ∈𝒫 (𝐶 + 𝛽) 𝑓
𝑘 ∀ 𝑤 ,𝑤 ∈ 𝒱 , ∀ 𝑠 ∈ {1, … , 𝑘},

87

with order sets 𝒱 as in Algorithm 4 on page 76.
Then we obtain the following NP-𝛽 for paths tolls:

min ∑
∈𝒲

∑
∈ ,

|𝛽 | (6.1)

s.t. ∑
∈𝒲

∑
∈ ,

𝛽 𝑓 = 0 (6.2)

∑
∈𝒱

∑
∈ ,

𝛽 𝑓 = 0 ∀ 𝑠 ∈ {1,… , 𝑘} (6.3)

∑ ∈𝒫 (𝐶 + 𝛽) 𝑓
𝑘 =

∑ ∈𝒫 (𝐶 + 𝛽) 𝑓
𝑘 ∀ 𝑤 ,𝑤 ∈ 𝒱 , ∀ 𝑠 ∈ {1, … , 𝑘} (6.4)

𝛽 − 𝛽 ≤ 𝐶 − 𝐶 ∀ (𝑖, 𝑗), 𝑖 ∈ ℎ , , 𝑗 ∈ ℎ , ∀ 𝑤 ∈ 𝒲 (6.5)
𝛽 ≥ −𝐶 ∀ 𝑝 ∈ 𝒫 (6.6)

where the objective (6.1)minimizes the tolls added to unused paths, Constraint 6.2 is enforces
the tolls on used paths to sum up to zero, Constraint 6.3 enforces the same for each connected
component 𝒱 . Constraint 6.4 ensures the ratio of all orders in one connected component are
equal, Constraint 6.5 makes sure the path cost of chosen paths is cheaper than or equal to
the unused path costs for each order, and Constraint 6.6 ensures that no negative path tolls
arise.
In comparison to the NP-𝛽 as used in Chapter 4, Constraint 6.4 is added.

In the following Sections 6.1 up and until 6.4 we will show several examples for the different
cases as desribed in 3.2, and in Section 6.5 we will show there always exists solutions for the
NP-𝛽, so there always is a toll solution to achieve both a UE and an SO.

6.1. Case 1
Case 1 is the situation in which 𝑑 = 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 = 1 ∀ arcs between different locations.
For all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
To show the what toll solutions we obtain, we use the STN as in Example 10:

Example 28. The SO solution is given in Figure 6.1.

𝑡 = 0 1 2 3 4 5

𝑠 , 𝑠𝑙 = 1

𝑒𝑙 = 2

𝑒𝑙 = 3

𝑎 𝑏

𝑐 𝑑

Figure 6.1: STN with two orders, , with for all arcs between two different locations, otherwise. The
denoted solution is SO.

88

In this SO solution the path costs are 𝐶 = 2, 𝐶 = 4, 𝐶 = 4, 𝐶 = 5, 𝐶 = 5. The chosen
paths are ℎ , = {𝑎}, ℎ , = {𝑏𝑑}, so the costs per customer are 𝐶 = 𝐶 = 2, 𝐶 = 𝐶 = 5, while the
cheapest path costs are 𝑘 = 2, 𝑘 = 4. The output of the NP-𝛽 is denoted below:

𝛽 = 1
3 , 𝛽 = 2

3 , 𝛽 = −13 ,

𝐶 = 213 , 𝐶 = 423 , 𝐶 = 423 .

The total order costs are:

𝐶 = 𝐶 = 213 , 𝐶 = 𝐶 = 423 .

If we solve the NP-𝛽 of order toll, we obtain the same tolled order costs as when solving the NP-𝛽
described in this Chapter. Here the ratio is 𝑟 = 116 for both customers.
We can compare this solution to the path toll solution as found in Example 10. Here we found path tolls

𝛽 = 1 and 𝛽 = −1, which gave the tolled ratios 𝑟 = 3
2 and 𝑟 = 1. With those tolls order 1 had to

pay the extra costs made in the network. With the path tolls based on order fairness, the extra costs are
divided over both orders. △

6.2. Case 2
Case 2 is the situation in which 𝑑 ≥ 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 = 1 ∀ arcs between different locations.
or all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
We show an example for Case 2: we use the STN as in Example 15:

Example 29. The SO solution is given in Figure 6.2.

𝑡 = 0 1 2 3 4 5 6

𝑠 , 𝑠

𝑒 𝑒

𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑏

𝑎 𝑒 𝑓

𝑑 𝑔𝑐

Figure 6.2: STN with two orders, , with for all arcs between two different locations, otherwise. The
denoted solution is SO.

In this SO solution the path costs are 𝐶 = 2, 𝐶 = 4, 𝐶 = 3, 𝐶 = 5, 𝐶 = 3, 𝐶 = 4, 𝐶 = 6,
𝐶 = 6, 𝐶 = 6. The chosen paths are ℎ , = {𝑎, 𝑒}, ℎ , = {𝑏, 𝑓𝑔}, so the costs per customer are
𝐶 = 𝐶 + 𝐶 = 6 and 𝐶 = 𝐶 + 𝐶 = 9, while the cheapest path costs are 𝑘 = 6 and 𝑘 = 7. Again
we calculate the NP-𝛽 for path tolls and obtain the tolls and tolled path costs:

𝛽 = 2, 𝛽 = −1 113 , 𝛽 = 1 126 , 𝛽 = 1
26 , 𝛽 = −12526 ,

𝐶 = 4, 𝐶 = 21213 , 𝐶 = 4 126 , 𝐶 = 4 126 , 𝐶 = 4 126 .

89

The total orders costs are:

𝐶 = 𝐶 + 𝐶 = 61213 , 𝐶 = 𝐶 + 𝐶 = 8 113 .

Here the ratios are 𝑟 = 𝑟 = 1 213 , so equal for both customers. △

We see that the addition of the ratio constraint provides a more fair division of the costs
over the customers, given that they can decide between the path (and corresponding tolled
path costs) we offered them.

6.3. Case 3
Case 3 is the situation in which 𝑑 = 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 ≥ 1 ∀ arcs between different locations.
or all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.

Example 30. In this example we have 5 orders all with demand 1: Order 1,2, 3 and for start at location
1, order 5 starts at location 2. Order 1 and 2 end at location 2 and the others at location 3. The SO
solution is given in Figure 6.3, with 𝑠 and 𝑒 denoting the start end point of order 𝑤, respectively. All
traveling arcs have capacity 1, except for arcs 𝑏 and 𝑓, which have capacity 𝑚 = 𝑚 = 2.
So we get the following path sets per order with corresponding capacities:

𝒫 , = 𝒫 , ={
𝑎, 𝑏, 𝑐
2, 1, 1}

𝒫 , = 𝒫 , ={
𝑎𝑒, 𝑎𝑓, 𝑎𝑔, 𝑏𝑓, 𝑏𝑔
2, 1, 1, 1, 1 }

𝒫 , ={
𝑑, 𝑒, 𝑓, 𝑔
1, 2, 1, 1}

𝑡 = 0 1 2 3 4 5

, ,
,

𝑠 𝑒 𝑒

𝑒 𝑒 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓 𝑔

Figure 6.3: TN with five orders, ∀ ∈ 𝒲, with , for ∈ 𝒜 ⧵ { , }, on waiting arcs. The
denoted solution is SO.

We have costs

𝐶 , = 2, 𝐶 , = 3, 𝐶 , = 5,
𝐶 , = 3, 𝐶 , = 4, 𝐶 , = 5, 𝐶 , = 4, 𝐶 , = 5,
𝐶 = 2, 𝐶 = 3, 𝐶 = 4, 𝐶 = 5,

where 𝐶 , denotes that for both orders the same path can be traversed, because those orders have
the same origin and destination location.

90

The path sets follow from the SO solution:

ℎ , = {
𝑎
1} , ℎ , = {

𝑎, 𝑏, 𝑐
1, 1, 1} ,

ℎ , = {
𝑐
1} , ℎ , = {

𝑎, 𝑏
2, 1} ,

ℎ , = {
𝑎𝑒
1 } , ℎ , = {

𝑎𝑒, 𝑎𝑓, 𝑎𝑔, 𝑏𝑔
1, 1, 1, 1 } ,

ℎ , = {
𝑏𝑓
1 } , ℎ , = {

𝑎𝑒, 𝑎𝑓, 𝑎𝑔, 𝑏𝑓, 𝑏𝑔
2, 1, 1, 1, 1 } ,

ℎ , = {
𝑑
1} , ℎ , = {

𝑒, 𝑓, 𝑔
2, 1, 1} .

We have two order sets: 𝒱 = {1, 2, 3, 4} and 𝒱 = {5}. Solving the NP-𝛽 gives us

𝛽 = 4
5 , 𝛽 = −215 , 𝛽 = 1

5 , 𝛽 = 115 ,

where for orders 3 and 4 tolls are added to paths not in the SO solution. Then the adjusted path costs
become

𝐶 = 1 + 45 = 2
4
5 , 𝐶 = 5 − 215 = 2

4
5 , 𝐶 = 4 + 15 = 4

1
5 , 𝐶 = 3 + 115 = 4

1
5 .

Now all orders have ratio 𝑟 = 125 . △

6.4. Case 4
Case 4 is the situation in which 𝑑 ≥ 1 ∀ 𝑤 ∈ 𝒲, and 𝑚 ≥ 1 ∀ arcs between different locations.
or all horizontal arcs within one location, the so-called waiting arcs, we have 𝑚 = ∞.
We use the STN as in Example 27:

Example 31. We use the STN as in Figure 6.4.

𝑡 = 0 1 2 3 4 5 6 7

𝑠 , 𝑠

𝑠 𝑠

𝑒 𝑒 ,
,

𝑒 𝑒 𝑒 , 𝑒 𝑒 , 𝑒

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑎

𝑑 𝑔𝑓

𝑏 𝑐

𝑒 ℎ

𝑖 𝑗 𝑘 𝑙
𝑚

Figure 6.4: STN with four orders, , , , Capacities , , , , , ,
, , , , , , . The denoted solution is SO.

91

There are 5 orders, with demands 𝑑 = 3, 𝑑 = 2, 𝑑 = 2 and 𝑑 = 4. All diagonal arcs have capacity
constraints: 𝑚 = 4, 𝑚 = 4, 𝑚 = 2, 𝑚 = 2, 𝑚 = 2, 𝑚 = 2, 𝑚 = 3, 𝑚 = 3, 𝑚 = 1, 𝑚 = 2,
𝑚 = 2, 𝑚 = 3 and 𝑚 = 2.
The SO solution is given in Figure 6.4, with 𝑠 and 𝑒 denoting the start and end point for order 𝑤,
respectively. Note that order 3 starts at 𝑡 = 3, location 𝑙 = 2.

We have path sets:

𝒫 , = {
𝑎𝑑, 𝑎𝑒, 𝑎𝑓, 𝑎𝑔, 𝑎ℎ, 𝑏𝑓, 𝑏𝑔, 𝑏ℎ, 𝑐ℎ
2, 2, 2, 3, 3, 𝑓, 3, 3, 2 } ,

𝒫 , = {
𝑎𝑑𝑖, 𝑎𝑑𝑗, 𝑎𝑑𝑘, 𝑎𝑑𝑙, 𝑎𝑑𝑚, 𝑎𝑒𝑘, 𝑎𝑒𝑙, 𝑎𝑒𝑚, 𝑎𝑓𝑗, 𝑎𝑓𝑘, 𝑎𝑓𝑙, 𝑎𝑓𝑚, 𝑎𝑔𝑙, 𝑎𝑔𝑚, 𝑎ℎ𝑚
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2 } ,

𝒫 , = {
𝑔, ℎ
3, 3} ,

𝒫 , = {
𝑑𝑖, 𝑑𝑗, 𝑑𝑘, 𝑑𝑙, 𝑑𝑚, 𝑒𝑘, 𝑒𝑙, 𝑒𝑚, 𝑓𝑗, 𝑓𝑘, 𝑓𝑙, 𝑓𝑚, 𝑔𝑙, 𝑔𝑚, ℎ𝑚
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2 } .

We have path costs for the used paths in the SO solution

𝐶 = 2, 𝐶 = 3, 𝐶 = 5,
𝐶 = 3, 𝐶 = 4,
𝐶 = 2,
𝐶 = 5, 𝐶 = 7.

So the order costs are 𝐶 = 10, 𝐶 = 7, 𝐶 = 4 and 𝐶 = 24, while the cheapest path costs are
𝑘 = 7, 𝑘 = 7, 𝑘 = 4 and 𝑘 = 16. Algorithm 4 gives two connected components: 𝒱 = {1, 2, 4} and
𝒱 = {3}. △

6.5. Solutions of fairness tolls
The question arises whether we can always obtain a combined toll solution? For the inequality
constraints we can always find a valid solution:

𝛽 ≥ −𝐶 ∀ 𝑖 ∈ 𝒫
𝛽 − 𝛽 ≤ 𝐶 − 𝐶 ∀ (𝑖, 𝑗), 𝑖 ∈ ℎ , , 𝑗 ∈ ℎ ,

The first set of constraints provide a lower bound for all path tolls, and the last set of con-
straints give an upper bound for all paths tolls for paths 𝑝 ∈ ⋃

∈𝒲
ℎ , , the path tolls for the

other paths are unbounded. We can always find a toll vector 𝛽𝛽𝛽 that satisfies those inequality
constraints. If 𝐶 − 𝐶 < 0 for some (𝑖, 𝑗), 𝑖 ∈ ℎ , , 𝑗 ∈ ℎ , , set 𝛽 ∶= 𝐶 − 𝐶 for all those
paths 𝑗 and 𝛽 ∶= 0 for all other paths. This shows the solution space is non-empty.

We now will investigate if the equality constraints provide a valid solution in combination
with the inequality constraints. The equality constraints are

∑
∈𝒲

∑
∈ ,

𝛽 = 0 (6.7)

∑
∈𝒱

∑
∈ ,

𝛽 = 0 ∀ 𝑠 ∈ {1,… , 𝑘} (6.8)

∑ ∈𝒫 (𝐶 + 𝛽) 𝑓
𝑘 =

∑ ∈𝒫 (𝐶 + 𝛽) 𝑓
𝑘 ∀ 𝑤 ,𝑤 ∈ 𝒱 , ∀ 𝑠 ∈ {1, … , 𝑘}. (6.9)

Constraint (6.7) is superfluous, because it is equal to summing up Constraints (6.8):

∑
∈𝒲

∑
∈ ,

𝛽 = 0 ⟺ ∑ ∑
∈𝒱

∑
∈ ,

𝛽 = 0.

92

If 𝑑 = 1 ∀ 𝑤 ∈ 𝒲 this problem corresponds to finding solutions in Section 5.6. If 𝑑 ≥ 1
∀ 𝑤 ∈ 𝒲 we can rewrite constraint (6.9) for a pair of two orders 𝑖 and 𝑗, 𝑖, 𝑗 ∈ 𝒲 (we assume
ℎ , = {𝑝 ,… , 𝑝 }, ℎ , = {𝑞 ,… , 𝑞 }:

𝐶 + 𝛽
𝑘 =

𝐶 + 𝛽
𝑘

⟺ 𝑘 𝛽 − 𝑘 𝛽 = 𝑘 𝐶 − 𝑘 𝐶

⟺ 𝑘 ∑
∈𝒫
𝛽 𝑓 − 𝑘 ∑

∈𝒫
𝛽 𝑓 = 𝑘 ∑

∈𝒫
𝐶 𝑓 − 𝑘 ∑

∈𝒫
𝐶 𝑓 .

We can calculate the tolls per connected component.

• If 𝒱 = {1}, then constraint (6.8) state:

∑
∈ ,

𝛽 𝑓 = 0.

So we do not need to add tolls to the STN, because this order can take its cheapest
paths, because it does not use any bottleneck arcs, which indicates there are no issues
in traveling via its cheapest paths.

• If 𝒱 = {1, 2}, then constraint (6.8):

𝛽 + 𝛽 = 0 ⟺ 𝛽 = −𝛽 ⟺ ∑
∈𝒫
𝛽 𝑓 = −∑

∈𝒫
𝛽 𝑓 .

We can use this to continue our rewriting of constraint (6.9):

(𝑘 + 𝑘) ∑
∈𝒫
𝛽 𝑓 = 𝑘 ∑

∈𝒫
𝐶 𝑓 − 𝑘 ∑

∈𝒫
𝐶 𝑓

⟺ ∑
∈𝒫
𝛽 𝑓 =

𝑘 ∑ ∈𝒫 𝐶 𝑓 − 𝑘 ∑ ∈𝒫 𝐶 𝑓
𝑘 + 𝑘 .

The equality always has a solution because 𝑘 + 𝑘 ≠ 0.

• If 𝒱 = {1, 2, 3}, then (6.8):

∑
∈𝒫
𝛽 𝑓 + ∑

∈𝒫
𝛽 𝑓 + ∑

∈𝒫
𝛽 𝑓 = 0,

and (6.9):

𝑘 ∑
∈𝒫
𝛽 𝑓 − 𝑘 ∑

∈𝒫
𝛽 𝑓 = 𝑘 ∑

∈𝒫
𝐶 𝑓 − 𝑘 ∑

∈𝒫
𝐶 𝑓

𝑘 ∑
∈𝒫
𝛽 𝑓 − 𝑘 ∑

∈𝒫
𝛽 𝑓 = 𝑘 ∑

∈𝒫
𝐶 𝑓 − 𝑘 ∑

∈𝒫
𝐶 𝑓

𝑘 ∑
∈𝒫
𝛽 𝑓 − 𝑘 ∑

∈𝒫
𝛽 𝑓 = 𝑘 ∑

∈𝒫
𝐶 𝑓 − 𝑘 ∑

∈𝒫
𝐶 𝑓

We see this problem corresponds to the order toll problem, where the constraints we just
observed are contained in the objective function (see (5.7)), and so a solution exist for each
problem (see Section 5.6). In this case there are infinitely many solutions, because the row-
echelon form of the problem satisfies Theorem 4.3. We will show this, but first introduce

93

some extra notation: with 𝑥 we denote the number of paths for orders 1 up until 𝑗 − 1:

𝑥 = | ⋃ 𝒫|, and we denote path flow found in the SO solution by 𝑓 instead of 𝑓 . We assume

𝑙 = |𝒫 | ∀ 𝑗 ∈ 𝒲.

We have 𝐴𝛽𝛽𝛽 = 𝑏𝑏𝑏 with matrix 𝐴 =
⎡
⎢
⎢
⎣

𝐴 0 ⋯ 0
0 𝐴 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝐴

⎤
⎥
⎥
⎦
, with sub-matrix 𝐴 =

⎡
⎢
⎢
⎣

𝐷
⋮

𝐷
𝑔𝑔𝑔 ,

⎤
⎥
⎥
⎦
for each

𝑖 ∈ {1, … ,𝑚} with 𝒱 a connected component, 𝒱 = {1,… , 𝑛}. The matrices 𝐷 , 1 ≤ 𝑗 ≤ 𝑛 − 1. are
defined as follows:

𝐷 =
⎡
⎢
⎢
⎢
⎣

000 , 𝑘 𝑓 ⋯ 𝑘 𝑓 −𝑘 𝑓 ⋯ −𝑘 𝑓 0 ⋯ ⋯ ⋯ ⋯ 0
000 , 𝑘 𝑓 ⋯ 𝑘 𝑓 0 ⋯ 0 −𝑘 𝑓 ⋯ −𝑘 𝑓 0 ⋱ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0

000 , 𝑘 𝑓 ⋯ 𝑘 𝑓 0 ⋯ ⋯ ⋯ ⋯ 0 −𝑘 𝑓 ⋯ −𝑘 𝑓

⎤
⎥
⎥
⎥
⎦

,

and vector 𝑔𝑔𝑔 , consists of all path flows for orders the connected component 𝑖:

𝑔𝑔𝑔 , = [𝑓 ⋯𝑓 𝑓 ⋯𝑓 ⋯ ⋯ ⋯ 𝑓 ⋯𝑓] .

Vector 𝑏𝑏𝑏 =
⎡
⎢
⎢
⎣

𝑏𝑏𝑏
𝑏𝑏𝑏
⋮
𝑏𝑏𝑏

⎤
⎥
⎥
⎦
consists of 𝑏𝑏𝑏 =

⎡
⎢
⎢
⎢
⎣

𝑧𝑧𝑧
𝑧𝑧𝑧
⋮

𝑧𝑧𝑧
0

⎤
⎥
⎥
⎥
⎦

∀ 1 ≤ 𝑖 ≤ 𝑚 with 𝑧𝑧𝑧 =
⎡
⎢
⎢
⎣

𝑘 𝐶 − 𝑘 𝐶
𝑘 𝐶 − 𝑘 𝐶

⋮
𝑘 𝐶 − 𝑘 𝐶

⎤
⎥
⎥
⎦
.

Now we want to show this system 𝐴𝛽𝛽𝛽 = 𝑏𝑏𝑏, has infinitely many solutions. We therefore need
to show that in the row-echelon form 𝐻𝛽𝛽𝛽 = 𝑐𝑐𝑐, matrix 𝐻 contains columns with no pivots. The
row-echelon form of sub-matrix 𝐴 is

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ∑ ⋯ ∑

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the vector 𝑐𝑐𝑐 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑘 𝐶 − 𝑘 𝐶
𝑘 𝐶 − 𝑘 𝐶

⋮
𝑘 𝐶 − 𝑘 𝐶

∑𝑘 𝐶 −∑𝑘 𝐶

0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. We see that the number of pivots in 𝐻 equals

the number of orders, which is less than the number of path toll variables, so according to
Theorem 4.3: if a solution exists, there are infinitely many solutions for this toll problem.

94

7
Conclusions and discussion

7.1. Conclusions
The goal of this thesis was to provide a method to obtain a User Equilibrium (UE) in a synchro-
modal Space Time Network (STN) in which we transport containers for multiple customers.
We defined User Equilibrium as the solution where each customer can travel via its cheapest
paths, and no customer is harmed by the route choice of other customers.
We expanded this goal to also finding a solution of assigning containers to modes where the
solution is both System Optimal (SO) as well as User Equilibrium, by finding a System Opti-
mal solution and add tolls to the orders or paths.

In most research about User Equilibria, transportation via roads is considered, where the
speed of vehicles on roads is dependent of the occupancy of the road it travels. There the goal
is to divide the vehicles over the network in such a way that for each vehicle in the network,
the transportation time is minimized given the total network and its users.
In our synchromodal STN, the travel time of modalities is not dependent of the occupancy
of water, rail and road. The STN consists of discrete time steps and locations to model the
transportation of containers. We assumed the travel times of barges, trains and trucks are
fixed and known beforehand and transportation schedules for those modalities are known as
well. Our goal was to obtain a User Equilibrium in this deterministic network, by assigning
containers to the different modalities, in order to deliver each container as fast as possible.
Because all our modalities have fixed travel times, the travel times are not dependent of the
occupancy of the transportation arcs in the network, however, travel times are dependent of
the capacity constraints on the arcs.

In order to provide an SO solution in which a UE is reached as well, we applied tolls to
the network costs. But in order to obtain a User Equilibrium, we need to define when a User
Equilibrium is reached. For each type of tolls investigated we have a different definition of a
UE. We considered three type of tolls: path based, order based and fair path based. For all
type of tolls, we demand that tolls payed by customers have to sum up to zero, such that no
profit is made out of those tolls.
For path tolls, we say a UE is reached when each customer can travel via its cheapest tolled
paths, regardless of the path choices of other customers. For order tolls, we say a UE is
reached when all extra costs (compared to the cheapest path costs) made in the network, are
divided over the orders in a fair way, concerning the ratio of the payed costs compared to the
cheapest path cost. For fair path tolls, we say a UE is reached when both customers can travel
via their cheapest paths, and the extra costs in the network are divided in a fair way over the
customers. In our approach, one unit of toll represents one unit of time.
The first step in all toll algorithms is to calculate the SO based on the path costs of contain-
ers traveling from their origin to their destination. The next step is to calculate tolls that are
added to the path or order costs, depending on what kind of tolls we considered.

95

When considering order tolls, the tolled order costs (initial costs plus the tolls) are the prize
customers have to pay to transport their goods. The order tolls provided a fair cost division:
for each set of customers who want to use the same traveling arcs in the network, the ratio of
their tolled order costs compared to their cheapest costs (those cheapest costs are calculated
by assuming they are the only customer in the network) are equal. We showed there always
exists a unique toll solution in which a UE is reached and the SO objective value is maintained.

When applying path based tolls, we assume customers do not know the path costs of the
initial network (and thus also do not know their initial cheapest paths). Here the tolls are
used to adjust the path costs, such that we can offer the customers a choice of tolled paths.
Then when the customer gets assigned its cheapest tolled paths, those paths are in the SO
solution and the solution is UE as well. The solution is UE because the offered path costs are
the cheapest option according to the information available for the customer.

Because the path tolls described above are somewhat misleading, as we offer customers
path costs different from the initial network path costs, we also provided a fair path toll. In
this fair path toll we combined the fairness ratios of the order tolls (total payed costs compared
to their cheapest path costs), but assume that customers choose their routes themselves. It
is thus a combination of both path and order toll. When we calculate the tolled path costs
here, they sum up to the tolled order costs as calculated in the previous toll case.

We succeeded in finding an approach to obtain both an SO and a UE solution on an STN.
We showed for path tolls that given some properties of the path costs of the initial network,
it is possible for path tolls to find a toll scheme where tolls are only added to paths which
are used to transport containers. For order tolls we showed there always exists a unique toll
solution and for fair path tolls there always exists infinitely many solutions.

Based on the facts that we want the UE solution to be fair to all customers and we want
customers to choose their routes themselves, the fair path toll is the best type of toll to solve
this problem. However, finding path tolls have to be done before the transportations, because
we want customers to choose their routes themselves. So we need to have information of all
incoming orders beforehand, in order to calculate which route choice suits the set of order
best in order to obtain an SO and to create the UE tolled path costs. In practice however, often
the demands of the orders arrive over time, so then with each new incoming order, one needs
to recalculate the SO solution. When using path tolls, we also need to adjust the tolls on the
paths each time a new order has been assigned to the network. So order based tolls are better
applicable in practice, because although the SO solution needs to be recalculated with each
incoming order, finding order based tolls only has to be done once (when all transportations
are done). Then we only have to calculate the tolls once, while with path based tolls we need
to recalculate the path tolls each time a new order has been assigned to the network.

It may be clear that this thesis is particularly a theoretical view of obtaining a User Equi-
librium in a deterministic network. We showed a User Equilibrium can be obtained when
using tolls to adjust the costs of the STN. The question is, how can we apply the principle of
tolls on real life instances? In the literature a lot more is known about achieving a System
Optimal solution in a transportation network. That is why we used an SO solution as a base
for creating new path or order costs to provide a User Equilibrium while the total costs of the
SO can be maintained. Our work is thus a contribution to the connection of SO to UE. We
succeeded in finding a method to find of assigning containers to modes in a synchromodal
STN, where the solution is both System Optimal as well as User Equilibrium. The method
found for solving this problem is using tolls on the synchromodal STN.

96

7.2. Discussion and future work
Our work is mainly theoretical and we made a simplification of transportation networks in
order to get an idea of how we could solve the UE problem. The main improvements of this
research thus lie in applying our toll approach to real life instances. In order to do so, we still
need to more research on some steps:

One important part of logistics planning is the due date of orders. In this thesis we did not
take those due dates into account, we just wanted all orders to be delivered as fast as possible,
in other words, as cheaply as possible. When we do take due dates into account, it can be the
case that orders will arrive too late compared to this due date. We then need to add a penalty
function to the cost objective function in order to minimize the number of orders arriving too
late. With the tolls, it is possible to share the penalty costs by all orders who are causing the
lateness of the delayed orders.

Another improvement of our work can be the application of Value Of Time (VOT), when
regarding the fairness of solutions. In the transportation business, it is often the case that it
is more important for some customers to be served on time that for others, in other words,
some customers may allow lateness, while others will not. Then in order to keep customers
as satisfied as possible, it is more important to avoid lateness (in the case due dates are taken
into account) for customers who will not tolerate that. The VOT of those customers must be
set to a high value, such that the assignment of their customers to modes weight more heav-
ily.
The VOT can also be used to cover the problem in the case customers have different indi-
vidual objectives. This can be for example when some customers want the containers to be
transported as fast as possible, while other customers prefer the cheapest transport possible,
regardless of the travel time of those transportations. The Value Of Times of customers can
then be applied as weights in objective functions in order to satisfy all customers. Another
option is to group the customers per objective type, and for those groups of orders create con-
straints based on their demands, while the objective can be minimizing the tolls used, as in
our approach.

We worked on obtaining a UE solution is a deterministic network, so work has to be done
in order to apply UE on problems with both flexible infrastructure and uncertainties, such as
delays of modalities or delayed orders, and uncertain events.
Research can also be done concerning uncertain events (so dynamic incoming orders). As
mentioned before, orders tolls can be applied on those uncertain events, but for path tolls is
the first step to investigate how to calculate those path tolls. An option is to use historical
data of container-to-route assignment.
When we also need to plan the modalities in the network (so the schedules of the transporta-
tions are not known in advance), it can be possible to take the User Equilibrium into account
when making this planning. This can be done by creating the (tolled) cost schemes while
making the planning of all modalities.

97

Bibliography
[1] Wardrop equilibria. http://dii.uchile.cl/~jcorrea/papers/Chapters/CS2010.

pdf.

[2] How to take the dual of a linear program. http://www.cs.columbia.edu/coms6998-3/
lpprimer.pdf. Accessed: 2017-12-11.

[3] Platform synchromodaliteit. http://www.synchromodaliteit.nl/definitie/. Ac-
cessed: 2018-06-14.

[4] Hillel Bar-Gera. Origin-based Algorithms for Transportation NetworkModeling. PhD thesis,
Chicago, IL, USA, 1999. AAI9954880.

[5] Hillel Bar-Gera, David Boyce, and Yu (Marco) Nie. User-equilibrium route flows and the
condition of proportionality. Transportation Research Part B: Methodological, 46(3):440
– 462, 2012. ISSN 0191-2615. doi: https://doi.org/10.1016/j.trb.2011.10.010. URL
http://www.sciencedirect.com/science/article/pii/S0191261511001639.

[6] Martin Beckmann, C.B. McGuire, and Christopher B. Winsten. Studies in the Economics
of Transportation. Yale University Press in New Haven, 1956.

[7] Marlies Borchers, Paul Breeuwsma, Walter Kern, Jaap Slootbeek, Georg Still, andWouter
Tibben. Traffic user equilibrium and proportionality. Transportation Research Part B, 79:
149–160, 2015.

[8] Francesco Corman, Francesco Viti, and Negenborn Rudy R. Equilibrium models in mul-
timodal container transport systems. Springerlink.com, 2015.

[9] Mohamed Didi-Biha, Patrice Marcotte, and Gilles Savard. Path-based formulations of a
bilevel toll setting problem, pages 29–50. Springer US, Boston, MA, 2006. ISBN 978-
0-387-34221-4. doi: 10.1007/0-387-34221-4_2. URL https://doi.org/10.1007/
0-387-34221-4_2.

[10] Michael Florian and Donald Hearn. Network Equilibrium and Pricing, volume 23, pages
373–411. 01 2003. doi: 10.1007/0-306-48058-1_11.

[11] J.B. Fraleigh, R.A. Beauregard, and V.J. Katz. Linear Algebra. Number v. 1 in Featured
Titles for Linear Algebra. Addison-Wesley, 1995. ISBN 9780201526752. URL https:
//books.google.nl/books?id=XRJ_QgAACAAJ.

[12] Deren Han and Hai Yang. The multi-class, multi-criterion traffic equilibrium and the
efficiency of congestion pricing. Transportation Research Part E: Logistics and Trans-
portation Review, 44(5):753 – 773, 2008. ISSN 1366-5545. doi: https://doi.org/10.
1016/j.tre.2007.07.011. URL http://www.sciencedirect.com/science/article/
pii/S1366554507000889.

[13] D.W. Hearn and M.V. Ramana. Solving congestion toll pricing models. Marcotte P.,
Nguyen S. (eds) Equilibrium and Advanced Transportation Modelling. Centre for Research
on Transportation, 1998.

[14] L. Jiang and H. Mahmassani. Toll pricing: Computational tests for capturing heterogene-
ity of user preferences. Transportation Research Record: Journal of the Transportation
Research Board, page 105–115, 2013. doi: 10.3141/2343-13.

99

http://dii.uchile.cl/~jcorrea/papers/Chapters/CS2010.pdf
http://dii.uchile.cl/~jcorrea/papers/Chapters/CS2010.pdf
http://www.cs.columbia.edu/coms6998-3/lpprimer.pdf
http://www.cs.columbia.edu/coms6998-3/lpprimer.pdf
http://www.synchromodaliteit.nl/definitie/
http://www.sciencedirect.com/science/article/pii/S0191261511001639
https://doi.org/10.1007/0-387-34221-4_2
https://doi.org/10.1007/0-387-34221-4_2
https://books.google.nl/books?id=XRJ_QgAACAAJ
https://books.google.nl/books?id=XRJ_QgAACAAJ
http://www.sciencedirect.com/science/article/pii/S1366554507000889
http://www.sciencedirect.com/science/article/pii/S1366554507000889

[15] Torbjörn Larsson and Michael Patriksson. Side constrained traffic equilibrium models
- traffic management through link tolls. Marcotte P., Nguyen S. (eds) Equilibrium and
Advanced Transportation Modelling. Centre for Research on Transportation, 1998.

[16] Nadav Levy, Ido Klein, and Eran Ben-Elia. Emergence of cooperation and a fair sys-
tem optimum in road networks: A game-theoretic and agent-based modelling approach.
Research in Transportation Economic, 2016.

[17] Shu Lu and Yu (Marco) Nie. Stability of user-equilibrium route flow solutions for the
traffic assignment problem. Transportation Research Part B: Methodological, 44(4):609
– 617, 2010. ISSN 0191-2615. doi: https://doi.org/10.1016/j.trb.2009.09.003. URL
http://www.sciencedirect.com/science/article/pii/S0191261509001155.

[18] Toshihiko Miyagi and Genaro C. Peque. Informed-user algorithms that converge to
nash equilibrium in traffic games. Procedia - Social and Behavioral Sciences, 54:438 –
449, 2012. ISSN 1877-0428. doi: https://doi.org/10.1016/j.sbspro.2012.09.762. URL
http://www.sciencedirect.com/science/article/pii/S1877042812042243. Pro-
ceedings of EWGT2012 - 15th Meeting of the EURO Working Group on Transportation,
September 2012, Paris.

[19] Srinivas Peeta and Hani S. Mahmassani. System optimal and user equilibrium time-
dependent traffic assignment in congested networks. Annals of Operations Research,
1995.

[20] Bart Riessen, Rudy R. Negenborn, and Rommert Dekker. Synchromodal container trans-
portation: An overview of current topics and research opportunities. 6th International
Conference on Computational Logistics (ICCL’15), pages 386–397, 2013.

[21] Tim Roughgarden. Selfish routing and the price of anarchy. OPTIMA-2007, 2006. URL
https://theory.stanford.edu/~tim/papers/optima.pdf.

[22] Martin Skutella. An Introduction to Network Flows over Time, pages 451–482. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-540-76796-1. doi: 10.1007/
978-3-540-76796-1_21. URL https://doi.org/10.1007/978-3-540-76796-1_21.

[23] Kenneth A. Small. Using the revenues from congestion pricing. Transportation, 19(4):
359–381, Dec 1992. ISSN 1572-9435. doi: 10.1007/BF01098639. URL https://doi.
org/10.1007/BF01098639.

[24] Mariska van Essen, Tom Thomas, Eric van Berkum, and Caspar Chorus. From user
equilibrium to system optimum: a literature review on the role of travel information,
bounded rationality and non-selfish behaviour at the network and individual levels.
Transport Reviews, 36(4):527–548, 2016. doi: 10.1080/01441647.2015.1125399. URL
https://doi.org/10.1080/01441647.2015.1125399.

[25] Nicolas Wagner. The dynamic user equilibrium on a transport network : mathematical
properties and economic applications. 2014.

[26] C. Wang and Y. Tang. The discussion of system optimism and user equilibrium in traffic
assignment with the perspective of game theory. Transportation Research Procedia, 25:
2974,2983, 2017. doi: 10.1016/j.trpro.2017.05.200.

[27] John Glen Wardrop. Some theoretical aspects of road traffic research. Road Engineering
Division Meeting, Road Paper No. 36:325 – 378, 1952.

[28] Laurence A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

[29] Wangtu Xu, Lixin Miao, and Wei-Hua Lin. Stochastic user equilibrium assignment in
schedule-based transit networks with capacity constraints. Discrete Dynamics in Nature
and Society, Vol. 2012, Article ID 910754, 2012. doi: https://doi.org/10.1155/2012/
910754.

100

http://www.sciencedirect.com/science/article/pii/S0191261509001155
http://www.sciencedirect.com/science/article/pii/S1877042812042243
https://theory.stanford.edu/~tim/papers/optima.pdf
https://doi.org/10.1007/978-3-540-76796-1_21
https://doi.org/10.1007/BF01098639
https://doi.org/10.1007/BF01098639
https://doi.org/10.1080/01441647.2015.1125399

[30] Hai Yang and Hai-Jun Huang. Social and spatial equities and revenue redistribution.
pages 203–238, 2005.

[31] Hai Yang and Hai-Jun Huang. Fundamentals of user-equilibrium problems. pages 13 –
46, 2005.

[32] Hai Yang and Xiaoning Zhang. Existence of anonymous link tolls for system opti-
mum on networks with mixed equilibrium behaviors. Transportation Research Part
B: Methodological, 42(2):99 – 112, 2008. ISSN 0191-2615. doi: https://doi.org/10.
1016/j.trb.2007.07.001. URL http://www.sciencedirect.com/science/article/
pii/S0191261507000719.

101

http://www.sciencedirect.com/science/article/pii/S0191261507000719
http://www.sciencedirect.com/science/article/pii/S0191261507000719

	Introduction
	Problem description
	Technical introduction
	Definitions and notation used in this thesis
	Space Time Networks

	Thesis structure

	User Equilibrium and toll systems in the literature
	User Equilibrium
	User Equilibrium in the literature
	Objective function
	User Equilibrium vs. System Optimal
	Unique User Equilibrium path flows
	Lagrangian Dual
	Lagrangian duality in User Equilibrium problems

	Tolls systems in the literature

	User Equilibria and Tolls in Space Time Networks
	User Equilibrium on Space Time Networks
	Using ratios

	Toll In Space Time Networks
	User Equilibrium with tolls on a Space Time Network

	Tolls on paths
	Constraints for finding path tolls
	Objective function and choice of constraints

	Generic algorithm for finding path tolls
	Case 1
	Case 1: Examples
	Case 1: Finding properties of path tolls

	Case 2
	Case 2: Example
	Case 2: Finding properties of path tolls

	Case 3
	Case 3: Example
	Case 3: Finding properties of path tolls

	Case 4
	Case 4: Example
	Case 4: Finding properties of path tolls

	Tolls on orders
	Case 1
	Finding connected components in STN
	Case 2
	Case 3
	Case 4
	Solutions of toll on orders

	Path tolls based on order fairness
	Case 1
	Case 2
	Case 3
	Case 4
	Solutions of fairness tolls

	Conclusions and discussion
	Conclusions
	Discussion and future work

	Bibliography

