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Abstract

An increasing load on the Dutch rail network requires new solutions for railway monitoring as increasing
wear and tighter schedules limit the possibilities of regular maintenance. UAV (Unmanned Aerial Vehi­
cle) based photogrammetry is such a solution which limits the presence of people near the railway and
train hindrance. Photogrammetric feature extraction methods struggle with extracting features from the
rusty rail and reflective roll band. Therefore line features are used to aid reconstruction. Based on SfM
(Structure­from­Motion) camera parameters, a line­based reconstruction is created of two data­sets.

A line detection algorithm is used to find line segments in the images. Found segments are matched
between pairs of images by pixel window cross­correlation and geometric boundaries. Matched seg­
ments are then compared to find sets of three matching images. Reconstruction is done by minimizing
line reprojection error in an iterative least squares solution.

Results show promise for manually matched segments, however unfavourable automatic matching re­
sults prevent large scale reconstruction. A case study reveals matching struggles with camera rotation
between images, matching problem mitigation leaves much room for improvement.

iii





Contents

1 Introduction 1

1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Monitoring railways using photogrammetry 5

2.1 Railway construction and monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Camera parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Feature extraction and matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Line representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 View correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Existing methods for 3D line reconstruction. . . . . . . . . . . . . . . . . . . . . . 15

2.4 Geo­referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Quality assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Methods for line reconstruction 21

3.1 Line detection in original images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Pre processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Line detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



vi Contents

3.1.3 Post processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Line matching and structure from motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Two view matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Triple view matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Geo­referencing and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Geo­referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Results 31

4.1 Data­sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Line detection in original images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Lego data­set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Stroe dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Line matching and Structure from Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Lego dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Stroe dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Geo­referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Lego dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.2 Stroe dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Case study on Stroe data­set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Line detection in original images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.2 Line matching and reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.3 Relation between rotation and correlation. . . . . . . . . . . . . . . . . . . . . . . 45

4.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



Contents vii

4.6 Recommendations on solving matching problems . . . . . . . . . . . . . . . . . . . . . . 46

4.6.1 Image alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6.2 Arrangement matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion and recommendations 51

5.1 Line detection in original images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Line matching and reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Geo­referencing and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Answering the research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55





1
Introduction

1.1. Problem definition

The Dutch rail network endures an increasing load of more, heavier and faster trains. Following this,
increasing wear in the ballast keeping rails in place, as well as subsiding foundation of rail superstruc­
ture can be expected. To combat this, regular maintenance is required, which is managed by the Dutch
organisation ProRail. ProRail is responsible for building, maintaining, the operation and safety on and
around the tracks. Activities which are all spread over several sub­contractors.

An important part of maintaining the railway tracks is monitoring. The complete network of tracks is
regularly monitored by contractors of ProRail to check for parts which show wear or displacement.
To guarantee a constant level of quality measurements, ProRail created a guideline RLN00296 which
specifies the requirements for monitoring elements of the so called PVS, covering the geometry of the
rail network. This guideline requires a maximal standard deviation of 15 mm on the XYZ coordinates
of a track, 10 mm on the Z coordinate of switches, and 3 mm on the track cant. All measurements for
ProRail have to be in the Dutch ’Rijksdriehoek’ (RD) coordinate system, with the Z coordinate in the
vertical datum ’Normaal Amsterdams Peil’ (NAP).

Multiple methods of monitoring are currently applied, for example levelling, GPS campaigns, terrestrial
laser scanning, or mobile measurements using a specialised train. Every method has its pros and cons,
on either time or accuracy requirements. Train based measurements often require a specialised train,
which has to be scheduled in on an already overused network. Currently, ProRail is conducting research
with sensors placed on passenger trains, evading this issue. Ground based measurements like GPS,
TLS and levelling require people to work on and around the tracks, which is limited by passing trains.
Therefore, a method is sought after to limit the presence of people around train tracks, the disturbance
of passenger and freight train schedules and the amount of time spend monitoring.

Photogrammetry is one of the options considered, where photographic images are used to get qualita­
tive measurements of an area of interest. In this case, an UAV is used to obtain a large set of photos
of an area in the Dutch rail network. Photogrammetric software is used to extract features from the
images, match those features, estimate the camera poses and, together with accurately measured
ground control points, create a geo­referenced point cloud of the area. Rail fitting is then applied on
the point cloud to identify individual rails and extract their RD/NAP location, [16].

Previous research show an accurate point cloud can be created using UAV based photogrammetry,
which is measured on known locations of control points. However, improvements can be made in the
reconstruction of rails itself. The created point clouds show a loss in detail around the rail locations, to
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2 1. Introduction

a degree where the supposed rail profile is reconstructed as a bell shape. A reason for the decrease
of detail on rail profiles can be found in the homogeneous and reflective nature of a rail.

Photogrammetry algorithms like Structure­from­motion (SfM) have issues finding features and matches
on texture­less, homogeneous and reflective surfaces, [25]. Structure­from­Motion is an algorithm to
create a 3D model (Structure) from highly overlapping photos taken from different locations (Motion).
Its main advantage is the ability to create a 3D model without prior knowledge. With only the input
images, the algorithm provides in automatic feature extraction, matching, camera pose estimation and
calibration to create a sparse point cloud, [27].

Automatic feature extraction methods, the first step of SfM, aim to find parts in images which are dis­
tinctive from other parts. SIFT and SURF aim to find blobs, which are regions with similar properties,
using respectively a Laplacian filter or the Hessian matrix. As with corner detecting base alternatives
like ORB and BRISK, the algorithms look for intensity changes in multiple directions, [21]. Rails are
on a UAV photogrammetry scale beams of homogeneous rusty colour with a reflective rolling band.
Therefore automatic feature detection methods struggle with rail resulting in a minimum amount of
key­points.

As texture­less, homogeneous and reflective surfaces are plentiful in a real world environment, research
has been done in several ways to find a suitable mitigation. Options include adding features to the
objects, where one can think of a matte paint to cover reflective surfaces, or less destructive, adding
points by either using a projector to cover texture­less surface with a grid of points, [19], or using laser
points on a rotating table for smaller objects, [10]. Both are not usable in a larger scale environment.

A different option is found when inspecting man­made objects, which often consist of large planar
homogeneous surfaces. Where texture is absent, and corners few, a lot of lines can be found. Already
in 1999, Baillard et al. proposed a method which utilizes line detection in triplets of aerial photos
to reconstruct roofs on buildings, [1]. Schindler et al. uses vanishing point detection in 2D images of
buildings to classify each line as either vertical or in a horizontal set to reduce the number of parameters
required for 3D line estimation, [17].

More recently, Nurutdinova and Fitzgibbon proposed a method to use 3D curves for camera pose
estimation and sparse reconstruction, [11]. Using curves and some points in a low­texture environment,
a bundle adjustment method is proposed. However, curve matching is not included. Hofer et al. did
include a line matching algorithm, selecting possible matches based on epipolar lines. The research
focussed on the dense reconstruction and proposed a Multi­View Stereo method to create a line based
representation of a scene, [9]. Multi­View Stereo (MVS) is an algorithm to reconstruct a scene. It
requires undistorted images and their camera location and orientation parameters, all estimated by a
Structure from Motion algorithm. The sparse point cloud with matched key­points is used as ground
control points by MVS.

None of these methods incorporates geo­referencing in their research and therefore only access rel­
ative accuracy to ground truth. To be able to geo­reference a SfM point cloud, multiple points are
required with world coordinates (such as RD/NAP). These points can be divided in two types: Ground
Control Points (GCP) and Air Control Points (ACP). GCPs are markers, for example a plane with a
cross painted on, which are geo­referenced by dGPS or Total Station measurements. These points
are then marked and matched on photos in the dataset, which result in points in the point cloud with
known world coordinates. ACPs are the coordinates of the UAV while taking a photo, obtained by
equipping the UAV with a high accuracy GNSS system like PPK. A common method is using the ACPs
as initial estimates for the camera locations in the SfM algorithm, the resulting point cloud is then via a
similarity transformation linked to the GCPs, [4].
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1.2. Research question

This research aims to combine a Structure­from­Motion base with line detection and reconstruction to
provide a pipeline capable of finding lines, matching them, find the camera parameters, and use ground
and/or air control points to reconstruct a geo­referenced line based representation of rails. Therefore,
the research question to be answered is:

What contribution can line recognition on the input images bring to the structure­from­motion based
process to extract the geo­referenced 3D position of railway tracks?

As the research involves different parts leading to one end product, the sub­questions to help answer
the research question have been split in three domains: Line recognition to find the rails in the input
images, Line matching and Structure­from­Motion to match the lines and use them in a Structure­from­
Motion algorithm and geo­referencing and validation to compare the results with existing point­clouds.

• Line recognition in original images

– At what success rate can rails be detected in both orthogonal and oblique 2D images using
line detection algorithms while limiting false positives?

– What is the pixel accuracy of found rail lines in the images, validated with manual inspection?

• Line matching and Structure­from­Motion

– What features can be used to match railway parts such as rails and sleepers between im­
ages?

– Can constraints found in specifications of rail superstructures be used to improve the SfM
model?

• Geo­referencing and validation

– Which methods are available to geo­reference the sparse cloud resulting from the SfM pro­
cess?

– Which accuracy and precision in the RD/NAP coordinate­system can be found on the GCPs
comparing traditional SfM and the proposed method?

– Which accuracy, precision and data completeness in the RD/NAP coordinate system can
be found on the rails comparing 3D rail detection in the traditional SfM point cloud and the
proposed method?





2
Monitoring railways using

photogrammetry

This chapter will provide the background details necessary to build the methods proposed in the next
chapter. Section 2.1 explains the construction of railway infrastructure and currently used monitoring
methods and requirements. Section 2.2 gives an introduction to photogrammetry and explains the
photogrammetric process of Structure­from­Motion. It also covers used geometric concepts such as
internal and external camera parameters.

These parameters are required for section 2.3 to describe correspondences between different images.
The relation between images makes it possible to reconstruct a 3D model from 2D images. The section
starts with an explanation of homogeneous coordinates, which because of their scale independence,
are of great use for reconstruction, then describes the view correspondence techniques used, and ends
with a summary of existing line reconstruction techniques. Section 2.4 explains geo­referencing which
concerns the link between a 3D reconstruction and its real world coordinates. It starts with the coordi­
nate system and height datum used in the Netherlands, and then introduces a method for coordinate
transformation. The section ends with an explanation of various types of coordinate measurements
used in photogrammetry. The section 2.5 explains quality measures used in this thesis. It provides
definitions for accuracy and precision.

2.1. Railway construction and monitoring

In 2018 ProRail managed 7,114 km of railway tracks over which trains travelled 164 million km, [13].
Almost the entire network is made of ballasted tracks, which are used for some structures like bridges
as well as modern high speed tracks. Ballasted, or traditional, tracks are constructed out of different
layers. From top to bottom each layer has his own function to divide the forces a train exerts to the
ground as seen in figure 2.1.

2.1.1. Construction

First, the point loads of the train wheels are horizontally distributed by the rails. In the Netherlands,
3 types of rail types are used: NP46 is the traditionally used rail type, it is only used found in older
existing parts of the network. As a replacement, the internationally approved UIC54 is now used for
regular tracks. The third type, UIC60 is used on high speed rail and some test tracks. All rail types have
a similar shape, as shown in the cross section in figure 2.2, but slightly different dimensions. Table 2.1
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6 2. Monitoring railways using photogrammetry

Figure 2.1: Cross­view of a typical rail bed construction with its force distribution. From top down the rails spread loads via the
sleepers, ballast and finally in the foundation.

Figure 2.2: Cross­section of a generic rail with the parameters
as shown in table 2.1, important parts are the height of the rail
as well as the head width.

Profile NP46 UIC54 UIC60
Height [mm] ℎ𝑟 142 159 172
Head width [mm] 𝑏ℎ 72 70 72
Foot width [mm] 𝐵 120 140 150

Table 2.1: Rail type specifications used in the Netherlands

shows the key dimensions of the rail types. The head width is defined as the width of the profile at a
height 14 mm beneath the top. This height is also used to determine the track gauge, which is defined
as the distance between the two inner points of both rails. In the Netherlands, as of most of Europe and
the world, the gauge is 1,435 mm, which according to EN 13848­1 in practice should be in the range
of 1,430 and 1,450 mm, [14]. Height is also used to determine cant, which is the difference in height
between the left and right rail. This differences causes the railway to have an angle, which is useful
in bends to direct the centripetal forces of the train to the foundation. Without cant, trains would derail
cornering at high speeds.

The rails are kept in place by connecting them to sleepers. Different types of sleepers are found in the
Dutch rail network, in both concrete and wood. The concrete monoblock sleeper is the most common
type, which has the shape of a beam with a slightly narrower and lower middle part, [5]. In railway
switches a solid beam is commonly found.

The sleepers are placed in the ballast, and opposed to the rail­sleeper connection, there is no construc­
tion to keep the sleepers in place. The ballast is made of loose rocks, but with enough roughness to
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create friction. The rocks are very suitable to spread the vertical load to the foundation below, however
it is the roughness which delivers the horizontal stability, [5]. Finally the ballast spreads the load over
rail bed foundation. This is either a concrete construction or a bed of sand or gravel.

2.1.2. Monitoring

Partly because of the loose connection between sleepers and ballast, monitoring is required to check
for deformations in the rail. The complete railway network is regularly monitored by contractors of
ProRail to check for parts which show wear or displacement. To guarantee a constant level of quality
measurements, ProRail created a guideline RLN00296 which specifies the requirements for monitoring
elements of the so called PVS, covering the geometry of the rail network. This guideline requires a
measurement every 2 meters with a maximal standard deviation of 15 mm on the XYZ coordinates of
a track, 10 mm on the Z coordinate of switches, and 3 mm on the track cant. All measurements for
ProRail have to be in the Dutch ’Rijksdriehoek’ (RD) coordinate system with the Z­coordinate in the
vertical datum ’Normaal Amsterdams Peil’ (NAP).

Traditionally monitoring of railway infrastructure is done with well known surveying techniques, for ex­
ample triangulation, levelling and GPS (Global Positioning System) campaigns. All can deliver highly
accurate measurements, but do so in sparse points and take a lot of time to measure. Terrestrial laser
scans provide dense measurements in the form of a pointcloud, but are expensive. More and more
measurements are done with train based sensors such as a laser scanner mounted on the train. Their
main advantage is the reduced presence of people on and around the tracks and the usage of trains
riding their usual route. Disadvantages are problems regarding geo­referencing a moving scanner with
GPS. Post­Processed Kinematics (PPK) solutions are preferred but hard to obtain with large monitoring
areas. Also planning of mounting scanners on trains in practice require a lot of time and certificates.

2.2. Photogrammetry

Photogrammetry is the science of measuring objects by the use of photographic images. It involves
all processes necessary to convert images to a form where information like distances can be deter­
mined, [6]. In this research these images are taken by a Unmanned Aerial Vehicle (UAV) mounted
camera which, together with air­plane, helicopter or balloon based pictures, is called aerial photogram­
metry. Common usage of aerial photogrammetry contains Digital Elevation Model (DEM), Digital Sur­
face Model (DSM) and map generation, but it is also used in landslide monitoring, canopy mapping and
soil bulk volume estimation.

Most applications of geoscience based Photogrammetry used a process called Structure­from­Motion
(SfM), sometimes together with a Multi­View­Stereo (MVS) algorithm. SfM is build around using a set
of highly overlapping images to create a 3D model of the area. The difference with more traditional
photogrammetry methods is the lack of required prior information. SfM does not require camera cal­
ibration parameters, camera locations or selected matching points as an input but will determine all
parameters itself, [27].

To do this a SfM pipeline usually has the following components:

• Image acquisition

• Feature extraction and matching

• Bundle adjustment

These components are explained in detail below. The camera parameters are the geometric compo­
nents used to relate 2D pixels on a photo sensor with 3D points in the real world. Image acquisition is
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explained to understand what is required for a good set of photos for reconstruction. Feature extraction
and matching describes existing methods to find notable points in each image as well as method to
match those points between different images. Bundle adjustment finally describes the iterative process
used to estimate both the camera parameters as well as 3D points. The result is a sparse 3D model
in image scale, which has to be scaled and transformed to real world coordinates in order to be useful
for measurements.

2.2.1. Camera parameters

Each photo contains points with a 2D pixel location. Reconstruction of the 3D environment can be
visualized as casting a ray from the camera centre through each pixel in the photo. Given different
cameras containing the same environment, a 3D point is found by intersecting rays of the same object
pixel. To be able to cast these rays, both the location and orientation of the camera has to be known,
as well as the transformation from a pixel location to a real world point. This information is defined in
the internal and external camera parameters.

External camera parameters The external parameters contain both the position and orientation of
the camera. The 3D vector 𝐶 being the location of the camera centre and a [3x3] matrix 𝑅𝑐 being the
rotation around its centre and thus the intrinsic rotation matrix which are visualised in figure 2.3.

Both are combined in an [3x4] extrinsic matrix [𝑅|𝑡] which is a concatenation of the extrinsic rotation
matrix 𝑅 and the translation vector 𝑡. Both are computed from the intrinsic parameters using:

𝑅 = 𝑅𝑇𝑐 , 𝑡 = −𝑅𝐶 (2.1)

Figure 2.3: External camera parameters: intrinsic rotation 𝑅𝐶 and camera center 𝐶

Internal camera parameters The internal parameters provide, as the name suggests, information of
the cameras inside. This is stored in the camera matrix 𝐾 which contains both sensor properties as
size, resolution and principle point, and the lens’ focal point. The matrix 𝐾 is given by:

𝐾 = [
𝛼𝑥 0 𝑢0
0 𝛼𝑦 𝑣0
0 0 1

] , 𝛼𝑖 = 𝑓 ⋅ 𝑚𝑖 (2.2)
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Here is 𝛼𝑖 the focal length in pixels for both the 𝑥 and 𝑦 direction, which is calculated using the focal
length 𝑓 in millimetres and a scaling factor 𝑚𝑖 being the amount of pixels per mm on the sensor. 𝑢0
and 𝑣0 are the pixel offset to the principal point of the sensor, which for a perfect camera would be in
de sensor centre. Figure 2.4 visualizes these parameters.

Figure 2.4: Internal camera parameters: focal length 𝑓, and offset 𝑢0 and 𝑣0.

A camera lens has another property besides the focal point: lens distortion. In a perfect pinhole camera,
every real world point is projected in a straight line to the camera sensor. But due to optical and
manufactural imperfections this is not true for actual cameras. Radial distortion is caused by lens
imperfections and is divided in two categories: barrel and pincushion distortion. Both are named to
the shape of their respective distortion patterns, which are shown in figure 2.5. It can be mitigated by
calibrating the camera. This estimates parameters based on a distortion model which describes the
error of each pixel as a function of their 𝑥 and 𝑦 coordinates.

Figure 2.5: Barrel and pincushion distortion, showing the apparent smaller and larger middle of an image compared to its
surroundings

Projection matrix The projection matrix P gives the relation between a 3D point in the real world
and a 2D point on a camera sensor, [8]. It is the combination of both the internal and external camera
parameters and therefore follows from equations 2.1 and 2.2:

P = 𝐾[𝑅|𝑡] (2.3)

The result is a 3x4 projection matrix P, which projects the 3D point x to the 2D point x via:

x = Px (2.4)

As the formula to obtain the fundamental matrix shows in section 2.3.2 it is sometimes useful to rewrite
P as a matrix­vector combination which divides in a calibration and transformation section:

P = [𝑀| − 𝑀𝑇], 𝑀 = 𝐾𝑅, 𝑇 = −𝑅𝑇𝑡 (2.5)
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Figure 2.6: Image acquisition used for the Stroe dataset. Camera locations are the top of each pyramid which indicates the
orientation of the camera. An oblique method is used, pointing the camera towards the subject.

Calibration External camera parameters are obtained by a combination of an inertial measurement
unit andGNSS (Global Navigation Satellite System)measurements but are usually part of the estimates
following a SfM workflow. Internal camera parameters are estimated by camera calibration which can
be divided in three methods: Lab calibration, camera calibration using a test field and camera self­
calibration. The first is the most accurate. In a lab special equipment is used to determine the relation
between a viewing ray and the camera sensor. Despite being the most accurate this method is not
often used because of its time consuming and costly nature.

The seconds method uses a 2D or 3D test field with known specifications. One the most simple forms
being a chequerboard picture where the size of each rectangle is measured beforehand. One (for a
large 3D test field) or more pictures are than taken of the board after which the keypoints in each photo
are either manually or automatically determined to find the calibration parameters.

The last and most used method is the self­calibration where the calibration parameters are estimated
as part of the bundle adjustment algorithm. This method is most used because of the requirement of
the other methods to have a stable camera. A slight change in the set focus, focal range or in extreme
cases even temperature can render the calibration parameters useless. For camera self­calibration
the calibration parameters are determined for every picture and therefore counteract slight changes in
the camera parameters, [6].

2.2.2. Image acquisition

A well thought image acquisition method is essential for creating an accurate 3D model. Without the
correct photos it is possible a model cannot be created at all. Important parts of the acquisition plan
are: flight plan of the UAV, nadir or oblique photos, amount of overlap between photos and the usage
and placing of ground control points. Choices on these points depend on the required accuracy, subject
to be scanned and the software which is available. Also important is the flight height in relation to the
camera specifications. This determines theoretical accuracy described in Ground Sampling Distance
(GSD). The GSD is the distance between samples on the ground which in case of photogrammetry
is described as the distance covered by a single pixel. It depends on the distance between camera
and subject. For UAV photogrammetry this translates to flight height and the focal length used which
determine the angle of view and the size of a pixel on the sensor.
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Figure 2.6 shows the image acquisition geometry of the Stroe dataset. An oblique method is used
where the camera is oriented towards the subject. The pyramid outlines show the camera rotation and
the acquisition position is located on the top of each pyramid.

2.2.3. Feature extraction and matching

After acquiring the set of photos, their relation has to be estimated. A computer just sees a set of
unrelated pixels and does not see a relation between any pixels like humans do. Therefore each photo
is processed to find a set of distinguishable areas where each has an unique descriptor.

The process of finding these areas is known as feature extraction. Features could be of any shape
or size, but right now the most common methods are point based. Numerous methods exist such as
SIFT, SURF, ORB, BRIEF. Each has a different way to find points in photos with distinctive features.
Most methods try to find features which are robust to scaling, rotation and affine transformation, and
are a trade off between the number of key­point and computational cost.

The most well known, and possibly most used, methods is SIFT, developed in 2004 by D.G. Lowe which
is an abbreviation of Scale­Invariant Feature Transform. It is based on the calculation of Difference of
Gaussian (DoG) on different scales. DoG is a approximation of the Laplacian of Gaussian which is a
method often used to detect blobs in images. When a blob is detected on different scales on the same
location the neighbourhood of the blob is stored as a unique descriptor of the key­point, [21].

With the features extracted each photo has a list of key­points with descriptors. Matching is done by
comparing the lists and finding the corresponding matches. This will be rarely exact on all descriptors
and therefore some margin is introduced in matching. This will also cause some false positives as well
in the form of matches between key­points which are in reality not related. False positives are removed
with a process called outlier detection.

2.2.4. Bundle adjustment

Bundle adjustment is the most commonly used algorithm to estimate the 3D position of keypoints found
in the given set of images. This estimation includes both the position of the points as well as the external
and internal camera parameters of the images. The external parameters cover the position (x, y, z)
and the orientation (pitch, roll, yaw) of the camera. The internal parameters consist of the focal length,
principal point and lens distortion of the camera.

The bundle adjustment algorithm starts with a list of images and a list of features. The algorithm selects
pairs of images based on the amount of shared features. These pairs are than iteratively processed
solving for the unknown 3D position of shared features and the camera parameters. The algorithm is
iterative because of its non­linear model and is usually solved by assuming local linearity, [6].

2.3. Reconstruction

Reconstruction is the process to create a virtual model of a real environment. The model is sometimes
also be called a digital twin of the real world. Traditional photogrammetry results in a reconstruction of
the object which is photographed, where the virtual model is represented in a point cloud. Laser scans
also reconstruct models in point clouds.

This section focusses on the 3D reconstruction of lines. It starts with a representation of lines in homo­
geneous coordinates. First in 2D as found in images and then in 3D as used in reconstruction. Next
view correspondences explain several ways to describe geometric relations between images. These
relations are used in the next chapter both to restrict the search area for matching lines between images
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2D 3D Transformations
inhomogeneous 𝑥 𝑋 R
homogeneous x X H

Table 2.2: Used notation for homogeneous and inhomogeneous coordinate entities.

and the reconstruction of these lines in 3D.

Then geo­referencing is explained where the digital model is scaled to match real world coordinates.
This provides information about the coordinate system used for railways in the Netherlands and meth­
ods to transform between coordinate systems.

2.3.1. Line representations

Homogeneous coordinates Homogeneous coordinates are a way of representing geometric entities
such as points and lines. They are defined as being invariant to multiplication by any value 𝜆 ≠ 0,
[6]. This means all points 𝜆x with 𝜆 ≠ 0 are coordinates of the same entity. The relation between
homogeneous and Euclidean coordinates is defined by the multiplication 𝜆, which is also called the
scale factor. For a 2D Euclidean point 𝑥 the relation is be written as:

𝑥 = [𝑥𝑦] => x [
𝜆𝑥
𝜆𝑦
𝜆
] => 𝑥 = [𝑥/𝜆𝑦/𝜆] (2.6)

Notation is chosen to follow Wröbel, [6]. Here inhomogeneous coordinates are displayed in bold italic
and homogeneous in bold as visible in table 2.2.

There are several advantages of using homogeneous instead of Euclidean coordinates. The most
important is their possibility of straight line preserving transformations such as translation and rotation
but also projection. This last characteristic is particularly useful in photogrammetry as it simplifies
projection of 3D points to the 2D camera sensor to a matrix­vector multiplication. A second practical
characteristic for photogrammetry is the possibility of points in infinity. Where 𝜆 ≠ 0 is required to have
a relation between a homogeneous and euclidean point, choosing 𝜆 = 0 gives a point in infinity which
is used for calculating epipolar lines.

Lines can also be represented in homogeneous coordinates. In a 2D Euclidean space a line is repre­
sented in its Hessian form as follows:

𝑥 cos𝜙 + 𝑦 sin𝜙 − 𝑑 = 0, (2.7)

where 𝜙 is the angle with positive x­axis and 𝑑 the orthogonal distance of the line to the origin as shown
in figure 2.7. In its Hessian form a line is per definition of infinite length as no endpoints are represented
in its coordinates.

For matrix­vector multiplication the Hessian form has to be rewritten as a vector. This is straightforward
by storing 𝑥 and 𝑦 in a homogeneous point x which makes it possible to rewrite the Hessian form to:

x𝑇l = 0, x = [
𝑥
𝑦
1
] , l = [

cos𝜙
sin𝜙
−𝑑

] (2.8)

This shows the line l can be written as a 3­vector with the three Hessian components cos𝜙, sin𝜙 and
𝑑 which is invariant to scale as multiplying x𝑇l with some 𝜆 will be equal to 𝜆 ⋅ 0 = 0 for any x on line l.
A line vector l is rewritten to its Hessian form by taking out the multiplication via:

l = [
𝑎
𝑏
𝑐
] = ±√𝑎2 + 𝑏2 [

cos𝜙
sin𝜙
−𝑑

] (2.9)
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Figure 2.7: A 2D line in Euclidean space, with its parameters 𝜙 and 𝑑

Using its three parameters 𝑎, 𝑏 and 𝑐, the Hessian parameters of line l are found using:

𝜙 = atan2(𝑏, 𝑎), 𝑑 = − 𝑐
√𝑎2 + 𝑏2

(2.10)

In 3D an extra dimension has to be added. For Euclidean points this is straightforward and similar to
their 2D variant:

𝑋 = [
𝑥
𝑦
𝑧
] => X =

⎡
⎢
⎢
⎣

𝜆𝑥
𝜆𝑦
𝜆𝑧
𝜆

⎤
⎥
⎥
⎦
=> 𝑋 = [

𝑥/𝜆
𝑦/𝜆
𝑧/𝜆

] (2.11)

Homogeneous line coordinates are somewhat different. A 3D line 𝐿 is defined using four parameters
in 2 ways:

As an intersection of two planes which can be rewritten as the combination of the intersection lines
between the planes and the XY and XZ planes therefore requiring two parameters per plane.

As a connection between two 3D points. Similar to planes this can be rewritten as a combination of
plane intersection and therefore requires the 𝑥 and 𝑦 coordinates of one point and 𝑦 and 𝑧 of the
other.

To be able to form a homogeneous system Plücker came up with a homogeneous vector notation using
6 parameters constructed of 2 orthogonal 3D vectors, [6]. Figure 2.8 shows a visualization of a Plücker
line. Vector Lℎ represents the direction of line L. Vector L0 is called the moment of L and is obtained by
the cross product between the line direction and any point P on this line. It is a vector crossing through
the origin and is perpendicular to both L and its orthogonal vector through the origin. The redundant
2 parameters are constraint by the requirement of both vectors being orthogonal, called the Plücker
constraint.
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Figure 2.8: Visualization of Plücker vectors L and L0 as drawn by Wrobel, [6]

Given two homogeneous points X and Y, their connecting Plücker line is constructed as follows:

L = [LℎL0] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑡𝑥 [
𝑢𝑦
𝑣𝑦
𝑤𝑦
] − 𝑡𝑦 [

𝑢𝑥
𝑣𝑥
𝑤𝑥
]

⎡
⎢
⎢
⎣

𝑢𝑥
𝑣𝑥
𝑤𝑥
𝑡𝑥

⎤
⎥
⎥
⎦
×
⎡
⎢
⎢
⎣

𝑢𝑦
𝑣𝑦
𝑤𝑦
𝑡𝑦

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.12)

This 3D homogeneous line vector is a basis of this thesis as it gives the possibility to linearly project L
to a 2D form l. This is used to estimate reconstruction later in section 3.2.3.

2.3.2. View correspondences

The previous section mentions the relation between a 3D object and a 2D object on the sensor of a
camera. As reconstruction requires multiple views of the same object, relations between these views
help in the reconstruction process. These relations are for example used in the matching algorithm of
section 3.2.

Fundamental Matrix. The fundamental matrix F describes the relation between points in two images.
For each pair of points x𝑖 in image 𝑖 and x𝑗 in image 𝑗, their relation is written as:

x𝑇𝑗Fx𝑖 = 0 (2.13)

The right part of this equation Fx𝑖 gives the epipolar line of x𝑖 in image 𝑗. This line contains all possible
projections of x𝑖 on 𝑗, [8].

Deduction of the fundamental matrix is based on the epipolar line equation. Two 3D points are chosen
which both project to the same 2D point on image 𝑖. The first point is the camera location 𝑇𝑖 of 𝑖 and
the second is an arbitrary point x in infinity (a point with a zero value scale factor: 𝑡𝑥 = 0). Rewriting
the projection matrices using the rotation 𝑀 and translation 𝑇 parts as described in section 2.2.1 give
projection matrices 𝑃𝑖 = [𝑀𝑖| − 𝑀𝑖𝑇𝑖] of image 𝑖 and 𝑃𝑗 = [𝑀𝑗| − 𝑀𝑗𝑇𝑗] of image 𝑗. The projections p1𝑗
and p1𝑗 of the camera location 𝑇𝑖 and the arbitrary point in image 𝑗 are given by:

p1𝑗 = 𝑀𝑗(𝑇𝑖 − 𝑇𝑗), p2𝑗 = 𝑀𝑗𝑀−1𝑖 [
𝑢𝑥
𝑣𝑥
𝑤𝑥
] (2.14)
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A line is defined by the cross product of both points p1𝑗 and p1𝑗. As both points project to the same
point on image 𝑖,this defines the epipolar line:

𝑙𝑒 = 𝑀𝑗(𝑇𝑖 − 𝑇𝑗) × 𝑀𝑗𝑀−1𝑖 [
𝑢𝑥
𝑣𝑥
𝑤𝑥
] = 𝑀−1

𝑗 𝑀𝑖[𝑀𝑖(𝑇𝑖 − 𝑇𝑗)]× [
𝑢𝑥
𝑣𝑥
𝑤𝑥
] (2.15)

Here []× is a skew­symmetric matrix representing a cross­product as a × b = [a]×b. The equation
𝑙𝑒 = 𝑀−1

𝑗 𝑀𝑖[𝑀𝑖(𝑇𝑖 − 𝑇𝑗)]𝑥x) gives the epipolar line for each point x, which is used to determine the
fundamental matrix:

𝐹 = 𝑀−1
𝑗 𝑀𝑖[𝑀𝑖(𝑇𝑖 − 𝑇𝑗)]𝑥 (2.16)

Trifocal Tensor Where the fundamental matrix describes the relation between points in two images,
the trifocal tensor does something similar with three views. Given projections of a line or point in two
images, the trifocal tensor gives the location of this line in the third view via:

𝑙𝑘 = [
𝑙𝑇𝑖 𝑇1 𝑙𝑗
𝑙𝑇𝑖 𝑇2 𝑙𝑗
𝑙𝑇𝑖 𝑇3 𝑙𝑗

] (2.17)

Where 𝑇𝑛 are 3x3 slices of the 3x3x3 Trifocal tensor. Given the projection matrices 𝑃𝑖 = [𝑀𝑖| − 𝑀𝑖𝑇𝑖],
𝑃𝑗 = [𝑀𝑗| − 𝑀𝑗𝑇𝑗], 𝑃𝑘 = [𝑀𝑘| − 𝑀𝑘𝑇𝑘] of images 𝑖, 𝑗 and 𝑘 via:

e𝑖 = 𝑀𝑖(𝑇𝑘 − 𝑇𝑖) (2.18)

e𝑗 = 𝑀𝑗(𝑇𝑘 − 𝑇𝑗) (2.19)

A = 𝑀𝑖𝑀−1𝑘 (2.20)

B = 𝑀𝑗𝑀−1𝑘 (2.21)

Which are then used to calculate each slice 𝑛 of 𝑇, taking the 𝑛𝑡ℎ column of A and B, [15]:

𝑇𝑛 = (e𝑖B𝑇𝑛)𝑇 − e𝑗A
𝑇
𝑛 (2.22)

2.3.3. Existing methods for 3D line reconstruction

Point based features are mainstream and therefore many different techniques exist. But there has been
some research in line based reconstruction as well. Baillard et al. proposed a method to reconstruct
building roofs with aerial photos using line features, [1]. With sharp edges and large planar surfaces,
roofs are an excellent example of line heavy objects. Their method uses geometric constraints for line
matching between views together with pixel based correlation scores. Reconstruction is done using a
planar search method where a rotating plane around a line is checked to match with other lines.

Extending on roofs, most man­made structures have plenty of lines. Schindler et al. proposed amethod
for street­view photos which, thanks to the lower viewpoint, uses vanishing point detection to classify
lines being either vertical or horizontal, [17]. After manual matching the vanishing point classification
is used as an extra constraint in the 3D reconstruction and optimization. Instead of the general 4
parameters required for line reconstruction, known orientation reduces this to 2.

Hofer et al. proposed a different method combining the matching and reconstruction problem, [9].
The matching is done purely based on geometric constraints. For all lines a set of possible matching
segments is created by calculating the epipolar lines and looking for similar segments in other photos.
Using the epipolar lines a set of possible matches is found, and the combination of all sets is then used
to find a 3D reconstruction which optimizes the sets of matches, [9].
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This thesis builds on the matching method proposed by Baillard, both utilising the geometric constraints
to limit the set of possible matching and the pixel based correlation to find the best match. Because
rails have a more complicated shape, the reconstruction method is not suitable. Instead reconstruction
is done by implementing a method of Bartoli and Sturm which propose a method using Plücker lines
for an iterative quasi­linear reconstruction, [2].

2.4. Geo­referencing

Geo­referencing is the process to link coordinates within a digital format in the form of either pixels,
points or lines with coordinates in the real world. These coordinates should be specified in a coordi­
nate reference system and a height datum, which in this thesis is the Dutch Rijksdriehoeksstelsel with
NAP as a height datum. However, the known positions of the photos are obtained via GNSS mea­
surements which use the WGS84 reference system. Therefore coordinate transformation has been
applied. Several algorithms exist to apply this process, but all determine a transformation based on
control points. This section will answer the following subquestion:

• Which methods are available to geo­reference the sparse cloud resulting from the SfM process?

Reference systems Coordinates express the location relative to a certain origin. In its most simple
form a point is expressed in it’s 𝑋 and 𝑌 coordinate with an additional 𝑍 for vertical displacement.
Reference systems define a way to describe how coordinates is determined based on origin, orientation
and scale. On Earth coordinates are generally easier to write in a spherical model, where latitude and
longitude describe a location on a sphere [22]. WGS84 uses coordinates based on a reference ellipsoid
which approximates the shape of the Earth. Vertical datums similarly describe the relative height to an
origin which usually is a surface defined as zero height.

The Rijksdriehoekstelsel is the coordinate reference system used in the Netherlands. It is a projection
to a plane and therefore ignores the curvature of the Earth. Its origin is based in the city of Amersfoort,
although this is not specified as the coordinate pair [0, 0] but has the coordinates [155000, 463000].
This shift has two reasons: all coordinates within the border of the Netherlands have positive values
and for every point the y­coordinate is larger than the x­coordinate.

The vertical datum used is the Normaal­Amsterdams­Peil or Amsterdam Ordnance Datum, which is
based on the average high water level in the river IJ in the 17th century. In the 19th century this was
deemed to be the national height datum for the Netherlands and via several levelling campaigns a
network of NAP points was created. During the last campaign between 1996 and 1999, a combination
of optical and hydrostatic levelling was used in combination with GNSS measurements. This created
a way to connect the orthometric height obtained by levelling, and the ellipsoidal height measurement
by GNSS, [24].

Transformation and projection As mentioned before, the GPS­coordinates of the photos are given
in the WGS84 reference system with EGM96 height datum, while the coordinates of the rails are re­
quired in the RD system with NAP height. This means the coordinates have to be transformed, and in
the case of RD also projected.

The first step is to transform the coordinates from WGS84 to ETRS89. This is the reference sys­
tem linked to the European stable plate. Because this plate moves relative to the WGS84 reference
points, the coordinates shift over time. Both systems are connected by several realisations, the so
called reference frames. The connection is specified as transformation parameters on a given time. To
transform coordinates, first the shift caused by the time difference has to be corrected, after which the
transformation is applied, [24].
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Transforming between different systems is done with a 7­parameter transformation. This process, also
called the Helmert transform, uses 7 parameters: a scale factor 𝑆, 3 rotation angles Ω𝑥 , Ω𝑦 , Ω𝑧 which is
rewritten as the product of 3 rotation axis combined in matrixR and 3 translation axis 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧 which form
the translation vector t. The Helmert transformed coordinates 𝑋′, 𝑌′, 𝑍′ then follow from their original
coordinates 𝑋, 𝑌, 𝑍 via:

[
𝑋
𝑌
𝑍
] = 𝑆 ⋅ R ⋅ [

𝑋′
𝑌′
𝑍′
] + t (2.23)

The Helmert transform is also used for transforming the lines from image scale to real world RD/NAP
coordinates. Helmert transform is regularly used in geo­referencing. It uses points with known coor­
dinates to estimate the transformation parameters. These are then used to transform the whole point
cloud accordingly. Major photogrammetry software developers such as Agisoft, Pix4D and Reality
Capture use possibly different methods, but as all off them do not disclose their source or methods, it
is not possible to implement.

Control points Control points are points in the dataset with known real world coordinates. These
points should be easy to find in the data, and are usually obtained by taking accurate GNSS measure­
ments or triangulation.

One can divide the control points in two groups, the most used are the ground control points (GCPs)
which are markers placed on the ground. Figure 2.9 shows an example used for the Stroe dataset.
Coordinates for these points are obtained either by triangulation from a known point, or using GNSS.
Modern markers sometimes have a built in GNSS receiver.

Another type of control points are the so called ACPs or Air Control Points. This type is more often
available in UAV based projects as the vehicle is usually equipped with a GNSS receiver. Using GNSS
data, the location of the measurement device is known. Logging this information simultaneously with
taking a photo creates a control point in the air.

A normal GNSS receiver has an accuracy in the order of meters, which is not adequate for high accuracy
remote sensing. Therefore a technique called Post­Processed Kinematics is used, where simultane­
ously with UAV based measurements also GNSS measurements are obtained from a known location.
Post­processing the combination of both measurements eliminates important error sources and enable
an accuracy in the order of millimetres.

In photogrammetry, one of the products of Structure­from­Motion is the estimation of camera poses.
Applying a transformation to these poses geo­references the resulting dataset.

2.5. Quality assessment
In order to assess the reconstruction quality, it is required to set some objective measurements to
quantify the error of the used methods. Three quality measurements used in this thesis are accuracy,
precision and data completeness.

Accuracy Accuracy describes the difference between measured data and the actual true value of
that data. This difference is a combination of a bias and a random spread in measurements, and is
measured via the sample mean square error, [23]:

𝑀𝑆𝐸 = 1
𝑁

𝑁

∑
𝑖=1
(𝑦𝑖 − 𝑥)2, (2.24)
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Figure 2.9: Ground control point example for Stroe dataset

Figure 2.10: Accuracy and precision examples

where 𝑁 is the amount of measurements, 𝑦𝑖 the 𝑖𝑡ℎ measurement and 𝑥 the true value. For readability,
the root mean square is used, as the root value has the same units as the measured data.

Precision Precision is part of accuracy, as it is a measurement of the random spread. A dataset
which contains a large bias, but very little spread, has low accuracy but high precision. Precision is
sometimes called repeatability, as it is an indication of repeated measurements resulting in similar data.

2.6. Conclusion

This chapter introduced the parameters required for railway monitoring, as well as the current methods
to monitor. It explained the parts found in rail infrastructure and which specifications are important
for monitoring. Followed by an introduction to the researched monitoring method: photogrammetry.
This section introduced the photogrammetry workflow from image acquisition to feature extraction and
matching after which 3D reconstruction is done with bundle adjustment. It also introduced internal and
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external camera parameters such as the rotation and calibration matrix, as well as their combination in
the projection matrix, which are all important for methods used in this thesis.

The next section covered reconstruction which provided several methods to describe geometric rela­
tions between different images based on the camera parameters from the previous section. It also
introduced homogeneous coordinates for both points and lines, which because of their scale dimen­
sion are very useful in reconstruction. The section geo­referencing described methods to transform a
reconstruction in image­space to real­world coordinates. It also explained the transformation between
WGS84 coordinates used by GPS, and RD­NAP coordinates used in the Netherlands. The final section
provided methods to assess the quality of obtained results, where precision is the spread in error and
accuracy is the combination of precision with a bias.





3
Methods for line reconstruction

This chapter provides the methods used to answer the research question and sub­questions. Like the
sub­questions, this chapter is divided in 3 main parts:

• Line detection in original images

• Line matching and reconstruction

• Geo­referencing and validation

Following the flowchart of figure 3.1, each part describes how the input data is processed: Section
3.1: Line detection in original images starts with optimizing the images for line extraction, extracting
the actual lines and filtering outliers. This also describes how Structure­from­Motion is used.

Next section 3.2 takes the filtered lines, and tries to match detected segments between images. First
in pairs, and then using those pairs to find triplets. After removing suspected outliers, these matches
are used to reconstruct a 3D model of the rails, again in two parts. First a linear method is used to
generate a first estimate of the 3D position of each line. Then an iterative process is used to increase
the quality of this estimate. Finally outliers again are removed from the data.

Geo­referencing and validation is covered in section 3.3 which starts with translating the filtered re­
construction from image coordinates to its RD/NAP real world location, which is the end product of this
thesis. Then the part provides validation methods used to help answer the sub­questions by being able
to give an quality estimate in line detection, reconstruction and geo­referencing.

3.1. Line detection in original images

The main idea of this thesis is to utilize very recognisable lines in images, which are not well covered
by point based feature detection methods. Primarily used in image processing areas as line detection,
a lot of research has been done on line detection algorithms and numerous methods exist with each
their own benefits and problems.

In this thesis, the Line Segment Detector (LSD) as proposed by von Gioi is used, [7]. It is state­of­the­
art, used by many projects and delivers sub­pixel accurate lines. Other advantages are the linear­time
computation, the lack of parameters to be set, and build in false positive detection.

21
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Figure 3.1: Flowchart of used methods. Input images are processed in both line detection and Structure from Motion, which are
finally combined in a geo­referenced model

3.1.1. Pre processing

Before the actual line detection algorithm is run, the images are first processed to create an environment
as easy as possible to detect lines in. First, the original images are undistorted. All cameras have
imperfections in the lens and sensor, causing distortions in images. This is done with Structure­from­
Motion (SfM) using the open source software Meshroom. Within Meshroom, a pipeline is created with
functions starting with reading the images, then extracting SIFT features, matching these and finally
reconstructing a sparse point­cloud model. The reconstruction is saved as JSON file which contains
all camera orientations, internal parameters and matched SIFT points. The pipeline of Meshroom is
finished by running a undistortion function which applies the found distortion parameters to retrieve the
undistorted images.

After distortion removal the images are converted to a greyscale image because LSD requires a single
channel image as input. This channel can be experimented with as there are many ways to scale RGB
colours to a single greyscale. For this thesis, the build in method of OpenCV is used, [12] :

Grey = 0.299 ⋅ Red+ 0.587 ⋅Green+ 0.114 ⋅ Blue (3.1)

Because of the way Meshroom processes images, their contrast is compressed while the image is
saved as an EXR file which is made for high dynamic range multi channel raster data. To mitigate this,
the image contrast is increased while converting the EXR to a JPG file. This is done by scaling the
minimum and maximum found intensity to 0 and 255 respectively.



3.1. Line detection in original images 23

3.1.2. Line detection algorithm

With the image set prepared, lines are detected by implementing the LineSegmentDetector algorithm
as proposed by von Gioi et al. [7]. This is based on region­growing, which iteratively determines an
intensity gradient of a pixel, and then checks the surrounding pixels for a gradient in the same direction.
When similar, the pixel is added to the region and the process is repeated.

Each resulting region is checked to have a rectangular shape and then is considered a candidate line
segment. All candidates are then validated. The angles of pixel gradients are compared to the angle
of the rectangle with a threshold. For an image with pixel values between 0­255 this threshold is set
to about 2. The amount of aligned pixels is then tested in an a contrario approach which considers
the probability of detection a pixel region with a similar amount of aligned pixels. The remaining line
segments are returned and stored per image.

3.1.3. Post processing

Figure 3.2a shows an example output of the line detection algorithm. This shows a corner piece in
which bends are displayed as series of small segments. The line detection algorithm detected rails
as well as sleepers and some outliers. For the matching algorithms, longer segments are preferred to
reduce matching time and non­rail outliers should be removed.

(a) LineSegmentDetector results of a Lego data­set image. The black
line show the detected line segments which represent a Lego bend rail
piece.

(b) The original image of the Lego data­set. this also needs a lot of thext
to be even close to aligning to the other image, maybe just a little more

Figure 3.2: LineSegmentDetector results and the original image for the Lego data­set used as input.

First step is to remove all lines shorter than a set minimal length. The minimum value is chosen to
be larger than most of the ballast rocks, removing these outliers. As all images are taken on roughly
the same distance towards rails, the threshold is kept constant over all images. The second step is
to merge collinear segments. This is done by computing the homogeneous line vector, explained in
section 2.3.1. Homogeneous line vectors do not rely on endpoints, but are described by a direction and
an offset. Therefore all segments with the same vector are collinear. To prevent two random segments
which happen to be in the same direction from merging, a threshold has been set on the maximum
distance between two segments. Figure 3.3b shows the processed result of a section of an image in
the test dataset. In comparison with the original segments displayed in figure 3.3a most outliers have
been removed and small segments have beenmerged in larger pieces. Downside is the disappearance
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of some small segments on actual rail beams, which are filtered out.

(a) Line detection example on test data without post­processing. Many
small segments are visible, for example covering the Lego dots. These
should be removed before matching.

(b) Line detection example on test data after post­processing. Most non­
rail outliers are removed by filtering, at the cost of some removed line
segments on the rail itself.

Figure 3.3: Line detection example before and after post­processing.

3.2. Line matching and structure from motion

Reconstruction requires the same 3D line to be visible in multiple images. Therefore the line segments
found in the previous section have to be matched to represent the same line. This is done by imple­
menting a method proposed by Schmidt and Zisserman using geometric correspondences between the
images, as found by the SfM process, to estimate possible matching segments and then comparing
the surrounding pixels of each candidate to find the match with the highest correlation, [18].

3.2.1. Two view matching

In the two view matching process, pairs of images are compared both for and backward. The matching
process is run both from image 𝑖 to image 𝑗 and from 𝑗 to 𝑖. With a set of 𝑛 images, this would result in
𝑛(𝑛−1) comparisons. To reduce comparisons a preselection is made based on point correspondences
between images. These points are found in the sparse point cloud as a result of the SfM preprocessing.
For each 3D point in the point cloud the images showing this point are known. With all points considered,
a minimum count of correspondences restricts the amount of pairs.

With the filtered image pairs, the lines considered in each pair are filtered as well. For each line 𝑙𝑖𝑚
in image 𝑖, the endpoints are projected on image 𝑗 by the epipolar lines l𝑒𝑖𝑚𝑘 as explained in section
2.3.2:

l𝑒,𝑖,𝑚,𝑘 = F𝑖,𝑗𝑝𝑙𝑖,𝑚 ,𝑘 (3.2)
Where F𝑖𝑗 is the fundamental matrix linking image 𝑖 to 𝑗 and 𝑝𝑙𝑖𝑚𝑘 the 𝑘 = 0, 𝑙 endpoints of line segment
𝑙𝑖𝑚 with 𝑙 the length of the line in pixels.

The area between epipolar lines l𝑒,𝑖,𝑚,0 and l𝑒,𝑖,𝑚,𝑙 is called the epipolar beam. Every candidate match
has to either intersect or lie within the beam. For each line satisfying this requirement, matching pixels
are found by intersecting the epipolar line from each pixel 𝑘 in image 𝑖 with the candidate line 𝑙𝑗𝑚 in
image 𝑗.

𝑝𝑙𝑗,𝑚 ,𝑘 = l𝑒,𝑖,𝑚,𝑘l𝑗,𝑚 (3.3)

Each intersection point 𝑝𝑙𝑗,𝑚 ,𝑘 is checked to lie between the endpoints l𝑗,𝑚 to make sure only overlapping
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line segments are compared. For both points 𝑝𝑙𝑖,𝑚 ,𝑘 and 𝑝𝑙𝑗,𝑚 ,𝑘 a 15× 15 pixel window is then obtained
from images 𝑖 and 𝑗. These windows 𝑊𝑖 and 𝑊𝑗 are then given a score based on their 2D correlation
coefficient. 𝑊𝑖𝑚𝑛 and𝑊𝑗𝑚𝑛 are single pixels with coordinates (𝑚, 𝑛) in the windows𝑊𝑖 and𝑊𝑗. 𝑊̄𝑖 and
𝑊̄𝑗 are the average of all pixels within𝑊𝑖 and𝑊𝑗:

corr(𝑊𝑖 ,𝑊𝑗) =
∑𝑚 ∑𝑛(𝑊𝑖𝑚𝑛 − 𝑊̄𝑖)(𝑊𝑗𝑚𝑛 − 𝑊̄𝑗)

(∑𝑚 ∑𝑛(𝑊𝑖𝑚𝑛 − 𝑊̄𝑖)2)(∑𝑚 ∑𝑛(𝑊𝑗𝑚𝑛 − 𝑊̄𝑗)2)
(3.4)

This process is repeated for all pixels in the overlapping segments of l𝑖,𝑚 and l𝑗,𝑚. The final correlation
score is determined by taking the mean of all windows. In two­view matching the best match is chosen
by the line with the highest correlation score. In triple view matching, the top 10 two view scoring line
are used as input in the algorithm.

3.2.2. Triple view matching

Triple view matching uses two view candidates and checks each candidate pair for matching in a third
view. A selection on possible triplets is made to prevent three cameras to be collinear. This is done by
dividing the cameras in strips parallel to the railway track. Triplets are limited to have cameras from at
least two different strips.

Triple view matching with a triplet of images 𝑖, 𝑗 and 𝑘 is done by projecting lines from image 𝑖 and 𝑗 to
image 𝑘. A line l𝑖,𝑚 in image 𝑖 with matching line l𝑗,𝑚 in image 𝑗 can be projected in image 𝑘 using the
Trifocal Tensor T explained in section 2.3:

l𝑘,𝑚 = [
l𝑖,𝑚 T1 l𝑖,𝑚
l𝑖,𝑚 T1 l𝑖,𝑚
l𝑖,𝑚 T1 l𝑖,𝑚

] (3.5)

Any candidate line in image 𝑘 should ideally be on l𝑘,𝑚. However, due to small errors in the Trifocal
Tensor and detected lines it is possible lines do not exactly overlap. Therefore all lines similar to l𝑘,𝑚 are
considered a candidate, where similarity is checked based on direction of each line and the orthogonal
distance of their endpoint to l𝑘,𝑚. The threshold is set to be 5 degrees in direction. The threshold on
endpoint distance is normalised over the length of the line segment and is set to 9 pixels per 100 pixels.
From the filtered candidates a match is chosen based on the average correlation score found in two
view matching. The highest average correlation is picked as match.

3.2.3. Reconstruction

Reconstruction is the actual lifting of the found and matched lines in 2D images to a 3D environment.
This is achieved by implementing a triangulation method proposed by Bartoli and Sturm, [2]. The idea
is to find a 3D Plücker line Lwhich minimizes the reprojection error. This error is given by the orthogonal
distance of two points to the Plücker line reprojected to a 2D line on the original photo. The two points
can be any points on the 2D line, and are chosen to be the endpoints. The orthogonal distance of a
point q to a line l is calculated by:

𝑑2⊥(q, l) =
(q𝑇l)2
(𝑙21 + 𝑙22)

(3.6)

Where 𝑙1 and 𝑙2 are the first and second value of the vector l.

The reprojected 2D line vector l is calculated via l = P𝑡L where P𝑡 is a [3×6] Plücker projection matrix
which is calculated from the camera projection matrix P = [P̄|p] via P𝑡 = [det(P̄)P̄|[p]×P̄].

Using the reprojected 2D line, an error margin is calculated with the distance of both endpoints of the
reprojected line to the actual line with equation 3.6. The total error is taken to be simply the sum of
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distances of both endpoints:

reprojection error =
𝑛

∑
𝑖=1
( (𝑝𝑖𝑇1 P

𝑖
𝑡L)2

((P𝑡L)1)2 + ((P𝑡L)2)2
+ (𝑝𝑖𝑇2 P

𝑖
𝑡L)2)

((P𝑡L)1)2 + ((P𝑡L)2)2
(3.7)

The best fitting 3D Plücker line L is then found by minimising the total reprojection error over all images.

Initial estimate The initial estimate of 𝐿 is calculated by a least squares method. Therefore the error
function has to be linearised, which is done by introducing a bias 𝑤2 = 𝑙21 +𝑙22 = ((P𝑡L)1)2+((P𝑡L)2)2.
The biased least squares reprojection error function is then written as:

biased reprojection error =
𝑛

∑
𝑖=1
((𝑝𝑖𝑇1 P

𝑖
𝑡L)2 + 𝑝𝑖𝑇2 P

𝑖
𝑡L)2) (3.8)

Where 𝑝1 and 𝑝2 are two points on the projection of L on image 𝑖, for example the endpoints found
by the line detection algorithm. This function can be rewritten as ||𝐴L|| where 𝐴 is a 2𝑛𝑥6 matrix for 𝑛
available views:

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑝0𝑇1 P0𝑡
𝑝0𝑇2 P0𝑡
⋮

𝑝𝑛𝑇1 P𝑛𝑡
𝑝𝑛𝑇2 P𝑛𝑡

⎤
⎥
⎥
⎥
⎥
⎦

(3.9)

Solving this system gives an estimate for L. As L is homogeneous, an extra constraint is set as
||L||2 = 1. This additional constraint creates the possibility of solving the system using Singular Value
Decomposition. By decomposing matrix 𝐴 = 𝑈Σ𝑉𝑇, the estimate of L is found in the singular vector
(columns of 𝑉) corresponding to the minimal singular value in Σ.

As the Plücker constraint is not enforced in the estimation, the resulting estimate is not necessarily a
set of orthogonal vectors. Therefore an additional process is required to find the Plücker Line closest to
the estimate. This process is called the Plücker correction. A method is provided by Bartoli and Sturm,
[2], but a faster and easier to implement option is found by Cardoso, Miraldo and Araujo, [3]. Instead
of using two singular value decompositions, this method is more straightforward, dividing L in two 3x1
vectors 𝑎 and 𝑏:

𝑎∗ =
1

1 − 𝛼2 (𝑎 − 𝛼𝑏) 𝑏∗ =
1

1 − 𝛼2 (𝑏 − 𝛼𝑎) (3.10)

𝛼 = 2𝑝
𝑞 + √𝑞2 − 4𝑝2

𝑝 = 𝑎𝑇𝑏 𝑞 = ||𝑎||2 + ||𝑏||2 (3.11)

The resulting Plücker vector L = (𝑎𝑇|𝑏𝑇)𝑇 has orthogonal vectors, and is therefore compliant to the
Plücker constraint.

Iterative process While the linear algorithm provides an estimate for a 3D line, it is very susceptible
for noise due to the bias. Therefore an iterative process is introduced by Bartoli and Sturm, which
uses the linear algorithm to create an initial estimate. The iterative process is created by setting an
additional constraint as L𝑇𝑘GL𝑘+1 = 0 where G = ( 0 𝐼𝐼 0 ) is a 6x6 matrix, and 𝑘 is the iteration. For
L𝑘 == L𝑘+1 = (𝑎𝑇𝑘 |𝑏𝑇𝑘 )𝑇 this is rewritten so to enforce the Plücker orthogonality:

𝑎𝑇𝑘𝑏𝑘 + 𝑏𝑇𝑘𝑎𝑘 = 2𝑎𝑇𝑘𝑏𝑘 = 0 (3.12)

Together with the normalisation ||L||2 = 1 this is solved by a linear least squares optimization, for
which the method is described by Hartley and Zisserman, [8]. This method is based on finding the
orthonormal basis which gives all vectors compliant to the constraint and is equal to the null­space of
L𝑇𝑘G. The null­space is found by extending L𝑇𝑘G with rows of zeros to form a 6x6 matrix. Singular value
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decomposition gives a single singular value, with a corresponding vector in 𝑉. The null­space is given
by the remaining columns on 𝑉, vectors corresponding to a singular value of 0.

With null­space 𝑉̄ the new estimate is computed by L𝑘+1 = 𝑉̄𝛾. The best fitting 5­vector 𝛾 is found by
inserting L𝑘+1 in the linear method described in the previous section:

||𝐴L𝑘+1|| = ||𝐴𝑉̄𝛾|| with ||𝛾||2 = 1 (3.13)

The new estimate L𝑘+1 is used to reweigh 𝐴 by dividing the bias:

𝑤2 = ((P𝑡L𝑘+1)1)2 + ((P𝑡L𝑘+1)2)2 (3.14)

This process is repeated until convergence. The threshold is determined by the change in reprojection
error and is set to 10−6

Outlier removal Incorrectly matched line segments between cameras result in reconstructed lines
which do not correspond with any real world object. To prevent clutter in the reconstructed lines, two
methods are introduced to remove outliers.

The first method is based on the reconstruction method, where in the selected triplet the reprojection
error to each line segment is minimized. As an extra check the 3D reconstructed line is reprojected on
surrounding images with the assumption this image has a line segment corresponding to this 3D line.
A line segment is determined to be corresponding based on a check in line direction and distance as
explained in section 3.3.2. When a threshold is met of 5 degrees in angle and 9 pixels per 100 pixels
segment length in distance, the line segment is considered corresponding. When a line does not find
corresponding segments in two other images, it is considered an outlier and therefore removed.

The second method is based on the expected direction of reconstructed 3D lines. Based on the ge­
ometry of rail infrastructure, where the length of an area of interest is much higher than both the width
and height, it is expected the camera locations of a photo dataset follow the same geometry. This
assumption is used to do a principal­component­analysis on the camera locations in order to obtain the
three major axes of the area of interest.

The first axis corresponds to the direction of the rail, the second is horizontal perpendicular and the
third is the vertical axis. Each 3D line is decomposed in these three axes, and are represented as
percentages when divided by its length. When a line has a vertical component higher than 10 % it is
considered an outlier and removed.

3.3. Geo­referencing and validation

Geo­referencing is required to compare the digital measurements with real­world ground­truth. There­
fore validation and geo­referencing have been combined in the third part of this thesis.

3.3.1. Geo­referencing

The reconstruction process delivers a set of lines in a 3D space, however the coordinates in this space
don’t have any real world relevance. In order to extract usable information from the lines, both the
scale as well as the real world location is required. Therefore geo­referencing is applied to scale,
rotate and translate the coordinates from image scale to real world coordinates referenced in the Dutch
Rijksdriehoekstelsel with NAP height. The Helmert transformation is used to translate, rotate and scale
the image coordinates to real world coordinates.
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Helmert transformation The Helmert transformation, or 7­parameter transform, is a well known
method to transform coordinates and is also often used while transforming between different refer­
ence systems. The coordinates are subsequently scaled, rotated and translated following equation
2.23. According to its name, 7 parameters have to be calculated. Therefore, 3 points with known 3D
points are required as a minimum for parameter estimation. Per dataset there are multiple points with
known positions, either in de form of accurately measured ground­control­points or camera locations
measured via GPS. This is used in a weighted least squares optimization following amethod of Sjöberg,
[20].

The input for the optimization is a set of coordinate pairs (x𝑖 ,y𝑖) for 𝑖 = 1, 2...𝑛, where x𝑖 and y𝑖 are
𝑚­dimensional (in this case 𝑚 = 3) coordinates of the same point 𝑖 in different systems.

3.3.2. Validation

Validation returns the answers to most of the research sub­questions, as well as the main research
question as it gives quantitative results on the methods described above. Each domain has its own
form of validation, either by comparing to a different method applied to the same data, or by manually
providing a ground­truth.

Line detection Validation of line testing has to answer the following sub­questions:

• At what success rate can rails be detected in both orthogonal and oblique 2D images using line
detection algorithms while limiting false positives

• What is the pixel accuracy of found rail lines in the images, validates with manual inspection?

The success rate is a way to describe the fraction of success among a dataset. In this case ”success”
are all the lines needed to reconstruct a rail in 3D. A way to describe the success rate would be to
divide the amount of line found in the images by the lines present in the ground­truth. However, the
lines found are split up in many smaller segments of which multiple can be part of a ground truth line.
Also lines found by the algorithm not necessarily correspond to a ground truth line, and may be a so
called false positive.

To combat this, a method of masking is used which is visualised in figure 3.4. For testing images,
ground­truth lines have been drawn as white lines in a binary image (Only consisting of white ”1” and
black ”0”). After this, the lines found by the algorithm have been drawn in the same image, but this time
in a black colour. Therefore any parts of the ground­truth lines which are found by the algorithm will be
black, where missing parts will remain white. For visualisation purposes, this is first drawn in yellow in
figure 3.4 To leave some room for pixel errors, the found lines drawn have a larger line­width called a
buffer. Therefore lines just next to the ground­truth line will also count as a success.

The success rate is then simply determined by comparing the white pixels in the image after masking 𝑛𝑚
with the image only containing the ground­truth lines 𝑛𝑔𝑡. The amount of pixels found by the algorithm
follow from 𝑛𝑠 = 𝑛𝑔𝑡 − 𝑛𝑚 which gives the formula for a success rate:

Succes rate = 𝑛𝑠
𝑛𝑔𝑡

⋅ 100% (3.15)

The line detection performance is checked on both data completeness and accuracy. To be able to
do this, a ground truth image is selected, and required lines are drawn in manually. The line detection
result of the same image is than compared. All detected lines are assigned to the closest ground truth
line in both direction and distance.
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Figure 3.4: Masking method used for line detection validation, starting left with the ground­truth line in white. The segment
found by LSD (yellow) is given a buffer (dark yellow). Overlap between buffer and ground­truth line is removed, after which the
data­completeness is determined by comparing remaining white pixels with the original line.

Data completeness Data completeness is the percentage of the ground­truth lines which are re­
trieved by the line detection algorithm. Low completeness percentages indicate it will be impossible
to reconstruct the complete railway. The data completeness is calculated by a buffer method. Each
ground­truth line is defined to have a 1 pixel with and are drawn as a white line on a black image. All
lines assigned to the ground­truth line are drawn on the same image in black. The width of these lines
is given by twice the desired buffer size, which is chosen to be 2 pixels in this case. The parts of the
ground­truth line which are not covered by a detected segment remain as white pixels in the image.
The data­completeness is then given by:

completeness = (1 −
𝑛𝑎𝑓𝑡𝑒𝑟
𝑛𝑏𝑒𝑓𝑜𝑟𝑒

) ∗ 100%, (3.16)

where 𝑛 is the amount of white pixels found before and after drawing the line segments.

Accuracy The accuracy of the line detection is given by the error in both direction and distance be­
tween the detected segment and ground­truth line. A line is represented by various detected segments
of different lengths, therefore the length is not taken into account as an error, and the distance is nor­
malized over the length of a segment.

The difference in angle is simple calculated by subtracting the angles of both lines, which are calculated
using the endpoints (𝑥1, 𝑦1) and (𝑥1, 𝑦1) :

𝜙 = tan(𝑥2 − 𝑥1𝑦2 − 𝑦1
) (3.17)

The error is then given by the absolute difference between the lines. Because in this case opposing
line directions are considered equal, the value chosen is the minimum error to either 0 or 𝜋.

The error in distance is computed by taking the orthogonal distance of both endpoints of a segment to
the ground­truth line. This is calculated by:

𝑑2⊥(q, l) =
(q𝑇l)2
𝑙21 + 𝑙22

, (3.18)

where q is a 2D point given in homogeneous coordinates and l = [
𝑙1
𝑙2
𝑙3
] is the homogeneous line vector

of the ground­truth line. The sum of distances is then divided by the segment length to normalize the
error.
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Geo­referencing Validation of geo­referencing has to answer the following sub­questions:

• Which accuracy and precision in the RD/NAP coordinate­system can be found on the GCPs
comparing traditional SfM and the proposed method?

• Which accuracy, precision and data completeness in the RD/NAP coordinate system can be found
on the rails comparing 3D rail detection in the traditional SfM point cloud and the proposed
method?

Accuracy and precision are terms both explained in section 2.5. In short accuracy is the error margin
between the measured data and the ground­truth, or the mean error. Precision is the spread of errors
in the measured data, or the standard deviation of the error.

The first sub­question determines the accuracy and precision of the used transformation algorithm.
Ground control points are accurately measured with GNSSmeasurements, and are considered ground­
truth. These points are also visible in the traditional photogrammetry approach as a collection of points,
and within the line based reconstruction where they are visualized as cross point between two lines
drawn over the ground­control points.

The second question determines the accuracy and precision of the reconstructionmethod by comparing
the reconstructed lines with the position of rails in the ground­truth. Laser­scans of the area of interest in
this case represent the ground­truth. Using the algorithm of Sassen the position of the rails is obtained
per 0.5m, [16]. These points are then compared to the reconstructed lines, where the error is expressed
by equation 3.6.

3.4. Tools

The following tools will be used during this research, subjective to change or extension. Listed software
will be used on both a Dell Latitude with an Intel i7­8750H processor, 16 GB RAM, and a Nvidia MX
130 graphics card, and a HP Zbook G5 Studio x360 with an Intel i7­8750H processor, 16 GB RAM, and
a Nvidia Quadro P1000 graphics card.

AliceVision An open source SfM­MVS software written in C++, highly customizable and command
line support.

Meshroom A Python based GUI written for AliceVision

Python Scripting language, using libraries: Numpy, Json, Itertools, pyLSD.

OpenCV An open source computer vision library for both C++ and Python, has multiple options for
line extraction, camera calibration and some other photogrammetry scripts

CloudCompare Software to view, compare and edit point­clouds Used for comparison with existing
point clouds
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Results

This chapter explains the results of the methods described in the previous chapter. Section 4.1 intro­
duces the used data­sets together with some key properties. The following sections provide results
divided per part:

4.2 Line detection in original images

4.3 Line matching and reconstruction

4.4 Geo­referencing and validation

The parts are split in subsections for each data­set and end with a short conclusion. Section 4.5
contains a deeper dive considering two cases: one where the methods work as intended, and one
where they do not. Finally section 4.6 provides recommendations on issues found in section 4.5.

4.1. Data­sets

Two data­sets are used in this thesis. The main dataset is obtained using a DJI MATRICE 600 Pro
unmanned aerial vehicle (UAV) with a Phase One iXU1000 camera capturing photos in a 11608 x 8708
pixel resolution. It is called the Stroe data­set. With the 80 millimetre focal length lens, medium format
sensor and a 30 meter flight height, these images have a ground sampling distance of around 1.5
millimetre. For testing purposes a small scale data­set is created using a Canon 70d digital camera
and is called the Lego data­set. It contains 32 pictures of a Lego railway track, with photo dimensions
of 5472 x 3648 pixels. With a camera to ground distance of about 1 meter, a 1.6x crop sensor and a
50 mm lens, this results in a ground sampling distance of about 0.5 mm. Geo­referencing this dataset
is not possible, however a 3D model was used to estimate relative accuracy.

Stroe A region of interest of around 350 m was captured in a set of 762 images with the camera angled
towards the track. 12 Ground Control Points are available with 2.4 mm accuracy XYZ positions.

Lego A set of 32 images were captured with the camera angled towards the track. No reference points
are available.

A Terrestrial laser scan point cloud is also available for the Stroe dataset, it is geo­referenced with the
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same control points as used for the photogrammetry set. Because of its high accuracy, this is used as
ground truth.

4.2. Line detection in original images

This part will answer the following sub­questions:

• At what success rate can rails be detected in both orthogonal and oblique 2D images using line
detection algorithms while limiting false positives?

• What is the pixel accuracy of found rail lines in the images, validated with manual inspection?

4.2.1. Lego data­set

The line detection algorithm, including pre and post processing was run on all 32 images of the Lego
data­set. Figures 4.1a and 4.1b show the results of the line detection algorithm on the Lego data­set.
Figure 4.1a shows a lot of smaller segments spread over the whole image. Figure 4.1b shows that the
post­processing does remove the smaller segments not belonging to rail infrastructure. It also merges
parts of the lines to form longer segments, although not all of them. Curved rail parts are represented
by small line segments, which brings the possibility to reconstructed curves as well as straight lines.
On the downside, the algorithm also removed some of the found line segments which should be kept.

The results of line detection are validated using manually drawn ground­truth lines, as described in sec­
tion 3.3.2. As the post­processing example in figure 4.1b shows, 61 of 106 found segments correspond
with the actual rails. The other 45 lines are found on the sleepers. However, ground truth is specified
in 4 lines per rail as explained in section 2.1. This causes many lines to be obsolete in success rate
and pixel accuracy testing.

For the Lego dataset, a test is run on 4 images with ground truth lines drawn in. The line detection
algorithm is run on these images with changing parameters:

Minimal segment length ­ from 50 to 200 pixels in steps of 50.

Maximal segment length ­ from 50 to 200 pixels in steps of 50.

For all sets of parameters, the error in angle and distance between found segments and ground truth
lines is measured, as well as data completeness. Figures 4.2a, 4.2b and 4.3, show the results of these
measurements as a function of both the minimal line and maximal gap length.

Figures 4.2a and 4.2b show a decreasing error in both angle and distance with longer minimal length
and maximal gap length, which is expected as merged segments smooth errors over a longer length.
The minimal angle error was found with a segment length of 200 pixels, where the error rounds to 0.09
degrees. Results for a segment length of 150 pixels with a gap length of 200 pixels have the same
error. The minimal distance error was lowest for the same parameter set, where it equalled an average
error of 1.4 pixels, normalised to a 100 pixel length segment.

Data completeness in figure 4.3 shows a different story, where the results decreased for increasing
parameter values. Stricter filters result in more segments to be discarded from the data, therefore
resulting in areas without any segments. The best result was found for a segment length of 50 pix­
els with a maximal gap of 200 pixels, where 45 % of the lines were detected. The results show the
chosen parameters for minimal segment length and maximal gap length are a compromise between
data completeness on one side and line accuracy in the form of angle and distance error on the other
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(a) Line detection on Lego data without post­processing, this result con­
tains 12844 line segments of which 2856 correspond to the actual rails.

(b) Line detection on Lego data after post­processing, this result con­
tains 106 line segments of which 61 correspond to the actual rails

Figure 4.1: Line detection on an example image from the Lego data­set both before (a) and after (b) post­processing. Lines are
coloured to show segments with similar directions.

side. Therefore the chosen parameters are 100 pixels for both parameters as they removed a lot of the
outliers and limit the decrease of data completeness.

4.2.2. Stroe dataset

The Stroe dataset contained 762 photos with a resolution of 11608 x 8708 pixels. The quality of the
lines depends on the chosen parameters because the parameters in the line­detection post­processing
script are specified in pixels. Therefore a test run was performed on four images of the dataset with
different parameter values.

The first requirement is to choose a pre­merging minimal length value which is higher than the size
of ballast stones in the photo. The post­merging length filter is found to have little to no use on the
filtering of lines. With the false positives filtered out by the pre­merging parameter, the additional filter
only removed true positives.

The maximum gap parameter is less trivial. It is a trade­off between creating longer lines and the
chance of merging lines which are not connected in the real world which is shown in figure 4.4. Longer
line segments are both easier and faster to match and reconstruct. Lego results show gap errors are
also less prone when a higher minimal segment length is chosen as errors mainly arise from shorter
false positives which happen to line up. Therefore in the Stroe data set, only the minimal line length
was tested.
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(a) Angle error of line segments. Mean angle difference in degrees be­
tween the ground­truth lines and line segments after post­processing us­
ing changing values for minimal segment length and maximal gap length
between collinear segments.

(b) Distance error of line segments. Mean distance of endpoints of found
line segment to ground­truth line, normalized over segment length, after
post­processing using changing values for minimal segment length and
maximal gap length between collinear segments.

Figure 4.2: Quality of detected line segments in both angle error and distance error as a function of post­processing parameters.

Figure 4.3: Data completeness of line segments. Percentage of ground­truth lines covered by found line segments after post­
processing using changing values for minimum segment length and maximum gap length between collinear segments.

The results of line detection were validated with manually drawn ground­truth lines described in section
3.3.2. Figures 4.5a and 4.5b show the ground truth and found lines by the algorithm respectively.
Results from the Lego data­set found most detected lines correspond with actual rails shown in the
post­processing example in figure 4.1b. However, the lines required to determine the location of rails
as specified in section 2.1 are not always completely covered.

Ground truth lines have been drawn on 4 selected images of the Stroe dataset. After which the valida­
tion on both accuracy and completeness has been determined for ranges of parameters. The results
are shown in figures 4.6a, 4.6b and 4.7. These figures show respectively accuracy, split between angle
and distance error, and line completeness as a function of minimal length.

Similar behaviour as in the Lego data set can be seen in the Stroe figures as well. The error in angle
shows a decrease with increasing minimal line length, and minimizes at 0.08 degrees for a segment
length of 200 pixels. The distance error was minimal for a segment length of 200 pixels as well, but
was with 1.5 pixels slightly higher compared to the Lego data set.

Data completeness was found to be lower with 38.4 % for the most optimal parameter values and
dropped more steep for increasing values as well. Just as the Lego data­set, the drop can be explained
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Figure 4.4: Example of merged lines with no real world connection. A high maximum merge gap setting causes collinear lines to
be merged while not having a real world connection. In this case line segments between separate sleepers are merged shown
in the blue borders A and B.

(a) Example photo from the Stroe dataset with in green the manually
drawn ground truth lines, each rail has 4 lines which represent the rail
dimensions. dummy text to align image, might need to be a little longer
still a bit longer

(b) Example photo from the Stroe dataset with in green the manually
ground truth lines and in blue the detected line segments. As there are
some visible green lines, not all lines are completely covered by the line
detection algorithm.

Figure 4.5: Line detection results from an example photo of the Stroe dataset with manually drawn ground­truth lines (a) and
automatically detected line segments (b).

by stricter filter settings filtering out segments which should be kept in. The lower initial completeness
compared to the Lego data­set can probably be explained by edges of the rail not having enough
contrast to the surrounding rail parts. Especially rail top edges sometimes have almost equal colour to
the rail bottom below and were therefore not picked up by the line detection algorithm.
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(a) Angle error of line segments. Mean angle difference in degrees be­
tween the ground­truth lines and line segments after post­processing
using changing values for minimum segment length between collinear
segments.

(b) Distance error of line segments. Mean distance of endpoints of found
line segment to ground­truth line, normalized over segment length, af­
ter post­processing using changing values for minimum segment length
between collinear segments.

Figure 4.6: Quality of detected line segments expressed in both angle error and distance error as a function of post­processing
parameters.

Figure 4.7: Data completeness of line segments. Percentage of ground­truth lines covered by found line segments after post­
processing using changing values for minimum segment length between collinear segments.

4.2.3. Conclusion

This section showed the results of line detection in the original images, which aimed to detect line
segments corresponding to rails. Results using the LSD algorithm showed small differences between
the Lego set and the actual dataset. In the Lego set data­completeness decreased from 45 to 31 % for
increasing minimal segment length. Orientation and position errors decreased from 0.4 to 0.1 degrees
and 2.4 to 1.4 pixels respectively for increasing segment length.

The Stroe dataset showed data completeness with a drop from 38 to 20 % for increasing minimal
segment length. Orientation and position errors are almost equal with a decrease from 0.2 to 0.1
degrees and 2.9 to 1.5 pixels respectively. Limiting false positives, some filtering is required. Therefore
a trade­off has to be made between line accuracy and data completeness. For both datasets, this is
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chosen to be a minimal line segment length of 100 pixels.

4.3. Line matching and Structure from Motion

With line segments detected in the images, matches need to be made between different images in
order to be able to construct a 3D reconstruction. This part will answer the following sub­questions:

• What features can be used to match railway parts such as rails and sleepers between images?

• Can constraints found in specifications of rail superstructures be used to improve the SfM model?

4.3.1. Lego dataset

With a threshold of 1000 SIFT key­points in common, the algorithm found 123 pairs to consider out
of the maximum possible 496. Figure 4.8 shows matching results between two images. The colours
of the matching lines correspond to their correlation score, where green equals a perfect correlation
and red negative correlation. The figures show the lower scoring lines (more red) generally are false
matches.

Figure 4.8: Line matching on Lego data. Matches are chosen based on a cross correlation score. The lines link the best matches
between the left and right image. A higher correlation score is shown as a more green line, lower scores are more red.

Triple view matching takes the 10 most related candidates found by images pair matching, and tries to
find the best fitting option for three images by checking for geometric matches using the fundamental
matrix. After this, the resulting matches are reconstructed in a 3D model of the Lego data set, which
are shown in figure 4.9. The mismatches result in a messy cloud, which obstructs any well matched
lines.

As the matching so far is not accurate enough, reconstruction based on these matches is not accurate
either. However the method has been tested on manually drawn and matched lines. The result of this
are shown in figure 4.10, with a dense point cloud reconstruction shown as context. The general shape
of the reconstruction is quite good, but some large variance is visible in the sleeper lines as well. As
the lines are hand drawn, on a resized image, it is expected most (if not all) of this error is due to 2D
line errors.

4.3.2. Stroe dataset

Compared to the Lego data, the set of Stroe contains a lot more images with each having a higher
resolution as well. Line detection results showed to have similar accuracy compared with Lego images,
however a slightly smaller data completeness.

An advantage of the images in the Stroe dataset is availability of real world imperfections in the railway
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Figure 4.9: Automatic reconstruction result. The general shape of the rail, shown as a photogrammetric point­cloud, is visibly
reconstructed by the white lines. Also some lines are reconstructed beneath the actual scene shown in the yellow border, this is
because of mismatches.

construction. Unlike plastic Legos coming from a perfect mold, rails rust unevenly, do not sit on top of
perfectly spaced sleepers, and are surrounded by a random noise induced by ballast. Therefore the
matching process is expected to find pairs of lines more accurately compared to the Lego set.

Figure 4.11 shows some matching results of the Stroe dataset. As with the Lego data­set results shown
in figure 4.8 line with a high cross correlation score are shown in green, and a low score is shown in red.
It shows that the differences brought by a real world example do not bring the expected improvement
on matching accuracy as many lines are not matched correctly, and there are lines mismatched with
high cross correlation scores.

One explanation of this might be found in the change in angle between matched views. Because of the
slight rotation between both images, compared pixel windows show lower correlation than expected on
matching lines. Therefore no obvious match is found and a list of semi correlating matches is returned.

These mismatches also influence the results of the triple view matching, and therefore the reconstruc­
tion process. Figure 4.12a shows the result of reconstruction, together with the photogrammetry point
cloud. All the white line should correspond to part of a rail, but most of the lines do not. Some of the
reconstructed lines shown in white are reconstructed parallel to the rail but on the wrong location, as
visible beneath the point cloud. Others do not seem to resemble any coherence with the scene and
point in random directions, for example the group of vertical lines.

Because of the amount of incorrectly reconstructed lines, post­processing is applied to remove outliers.
Section 3.2.3 introduced two methods to detect outliers and removed lines when a threshold is met.
Figure 4.12b shows reconstruction after reprojection and filtering. Although the result is less cluttered,
it is more visible there are very few lines corresponding to actual rails shown in the photogrammetry
point cloud.

4.3.3. Conclusion

Matching turned out to be the hardest part in reconstruction of both data sets. Because of slight defects
in the rails, and a random pattern in the ballast, it was expected line matching using pixel values would
yield adequate results. This was also found in smaller test images. However, for the large data it does
not work, probably due to camera rotation. Therefore full size reconstruction using this method so
far did not yield the expected results. In order to have geo­referenced results, separate parts of the
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Figure 4.10: Reconstruction of manually matched Lego data. The white reconstructed lines resemble the rail from the pho­
togrammetric point­cloud, two lines per rail show the top and two lines the bottom of the rail.

Figure 4.11: Stroe matching example. Matches are chosen based on a cross correlation score, the lines link the best matches
between the left and right image. A higher correlation score is shown as a more green line, lower scores are more red.

datasets are inspected. Reconstruction did not benefit of rail superstructure specifications due to failed
reconstruction as mentioned before. In order to aid reconstruction with known specifications, each
line segment has to be reconstructed accurate enough to estimate its location in the superstructure.
Because of failed reconstruction, no specification based constraints have been applied.

4.4. Geo­referencing

This part will answer the following sub­questions:

• Which accuracy and precision in the RD/NAP coordinate­system can be found on the GCPs
comparing traditional SfM and the proposed method?

• Which accuracy, precision and data completeness in the RD/NAP coordinate system can be found
on the rails comparing 3D rail detection in the traditional SfM point cloud and the proposed
method?



40 4. Results

(a) Reconstruction of Stroe data­set without post­processing. Next to
the building some lines are shown representing rails (A), but most of the
lines are reconstructed in a seemingly random direction and location
(B).alignment text

(b) Reconstruction of Stroe data­set with post­processing. Filtering re­
moved the vertical outliers, resulting in a more clear reconstruction.
However quite some lines are floating above (A) or below (B) the scene
as visible in the photogrammetric point­cloud.

Figure 4.12: Reconstruction results of the Stroe data­set before (a) and after (b) post­processing.

4.4.1. Lego dataset

Because the Lego dataset does not have a geo­referenced real world model and any control points ei­
ther, it is not possible to answer the sub­questions concerning the RD/NAP coordinate system. There­
fore the reconstruction is compared with a 3D model of a Lego rail piece. Both models are registered
by point­picking with CloudCompare, and the matched pair is shown in figure 4.13.

Figure 4.13: Reconstruction of Lego data together with ground­truth model. As a background the photogrammetric point­cloud
is visible. In green the 3D model of the Lego rail which is aligned with the point­cloud. The white lines following manual recon­
struction follow the model precisely.

For each line as shown in figure 4.13 the orthogonal distance to its ground truth line is determined.
Over 8 lines, this results in a mean reconstruction error of just 0.56 mm, with a standard deviation of
0.22 mm. To give it a sense of scale: the Lego piece is 125 mm long, and the top of the rail is 3.2 mm
wide.
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4.4.2. Stroe dataset

The Stroe dataset does have ground control points, and is therefore geo­referenced according to PPK
GPS measurements on these points. Figure 4.14 shows the available ground control points on the
photogrammetry point cloud. Using Helmert transformation, the rotation, translation and scaling pa­
rameters can be determined as explained in section 2.4.

Figure 4.14: The photogrammetric point­cloud of the Stroe area. In yellow the locations of accurately measured Ground Control
Points

Given the results of figure 4.12b, accuracy and precision of reconstructed lines is difficult to measure.
Comparing all lines to their actual location would result in an average error in the order of meters. The
best result is shown in figure 4.15, over a small part there are enough images with similar viewing an­
gles, where photos are taken without camera rotation. The algorithm is able to reconstruct some of the
lines using this set of images. Unfortunately, this part of the Stroe area is not examined during previous
research and therefore there is no laser scan or traditional photogrammetric point cloud available.

Figure 4.15: Best results for reconstruction found in the Stroe data­set. Reconstructed lines shown in yellow. Although most
lines are in the general direction and location of actual rails, some lines have a vertical component which does not exist in reality
(highlighted by the blue border).
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4.4.3. Conclusion

Due to matching problems, a geo­referencing result cannot be given. It is impossible to link the inco­
herent reconstructed lines to their ground­truth twin. Therefore it is also not possible at this moment to
answer the sub­questions regarding accuracy, precision and data completeness.

4.5. Case study on Stroe data­set

To get more insight in why automatic reconstruction fails, a case study has been performed following
a line segment in the Stroe data­set. The case study is split in two parts, one to show a working
example and the other one with a failing reconstruction. This section uses the same structure as the
whole chapter, excluding geo­referencing. Line detection in original images introduces the used set of
images, and the line segments found on these images. A single line is than chosen to be followed and
in Line matching and reconstruction both a working and failing example are discussed.

(a) Image 1 with 33 detected line segments (b) Image 2 with 35 detected line segments

(c) Image 3 with 28 detected line segments (d) Image 4 with 87 detected line segments

Figure 4.16: Photos of Stroe data­set used in case study with the detected line segments drawn. Image 1 is the base image.
Image 4 has a notably higher count of line segments which are probably explained by the presence of an extra rail­line and part
of a switch visible in the lower bottom.

4.5.1. Line detection in original images

Four images have been selected which all cover the same area. All images are shown in figures
4.16a, 4.16b, 4.16c and 4.16d. For all images, the line detection algorithm is run with a minimum line
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segment length of 100 px and a maximum merge gap length of 150 px. For this case study, one line
segment l is chosen to be followed which is shown in image 4.17. The image containing this segment
is considered the base image. All other images have a segment�l corresponding to l as well as other
detected segments:

Image 1 33 line segments.

Image 2 35 line segments.

Image 3 28 line segments.

Image 4 87 line segments.

The large difference in the amount of detected segments between image 4 and the other images can
be explained by the additional rail present in this image. The rails in this image are expected to double
the amount of found segments. In addition, due to the presence of additional rails because of a switch,
this number is slightly increased as the switch introduces a third rail.

Figure 4.17: Line segment l in image 1 shown in blue. This line segment has been chosen to be the subject for this case study.

4.5.2. Line matching and reconstruction

With all line segments found, this section is focussed on matching l in image 1 with barl in image 2, 3
and 4 as well as matching�l to�l between images 2, 3 and 4. After matching between pairs, triplets are
formed to check for the best matching candidates which are then reconstructed in 3D.

Pair matching Pair matching is performed on all pairs of images. For pairs containing image 1 this
is only done for line segment l, but for other pairs all segments are considered because of necessary
triplet matching candidates as explained in section 3.2. This means for images 2, 3, 4 there are a
maximum of 10 possible candidate matches to segment l with a correlation score based on a pixel
window comparison. This yields the following results:

Image 2 3 candidates with a maximum correlation score of 0.98 and an average score of 0.36.

Image 3 10 candidates with a maximum correlation score of 0.96 and an average score of 0.77.
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Image 4 10 candidates with a maximum correlation score of 0.81 and an average score of 0.63.

The results differ for each pair. Both image 2 and 3 have candidates with a high correlation score,
where the score of image 4 is slightly lower. Image 2 has a clear favourite candidate, with the other
two candidates having a much lower score. Image 3 however, has both more candidates and the other
candidates scores are closer to the maximum as well.

A possible reason for this is the geometric restriction used in the matching algorithm. As explained in
section 3.2, epipolar lines l𝑒 are calculated from both endpoints of a segment in image 𝑖 and then used
as an area restriction in image 𝑗 by limiting possible candidates to segments between both epipolar
lines. Figure 4.18 shows the epipolar lines of the endpoints of line segment l on image 2 in blue. It
shows the so­called epipolar beam is really small, severely limiting the possible candidates.

Figure 4.18: Epipolar lines from both endpoints of line segment l in image 1 shown as blue lines on image 2. Only line segments
between both epipolar lines are considered possible matching candidates. The segment in blue is enlarged shown in the bottom
right corner, showing the narrow space between both epipolar lines thus limiting the possible candidates.

The shape of the epipolar beam, explained in section 3.2, depends on both the segment length and
the relative motion between both images. When the motion between the first and second image is
primarily in the direction parallel to the line segment, as is the case in figure 4.18, the resulting epipolar
beam is very narrow and almost parallel with the line segment as well. On the other hand, motion
perpendicular to the line segment results in a beam­width equal to the length of the line segment itself.
With line segment l stretching from the left border to the right border of image 1, this means almost
all line segments in a perpendicular translated image are considered possible candidates. This is the
case in image 3 and 4.

The lower maximum score of candidate matching segments in image 4 is possibly caused by the cam­
era rotation between image 1 and 4. The 15x15 pixel windows considered for calculating the correlation
score are taken oriented to the 𝑥 and 𝑦 axis of an image and do not consider the angle of the camera
with respect to the line segment. This means a rotated image will not have a high correlation score for
the matching line segment which will probably cause mismatches.

The maximum score candidates of both image 2 and 3 are the line segments�l corresponding to l, with
a correlation score of 0.98 and 0.96 respectively. For image 4 this is not the case due to rotation, the
maximum score candidate correspond corresponds with a line segment representing a sleeper with a
correlation score of 0.81.
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Triplet matching With the pair matches completed, triplets have to be formed in order to be able to
reconstruct line segment l. Image 1 is again taken as the base image, and two separate triplets are
considered; image 1, 2 and 3 and image 1, 2 and 4. Triplet matching considers all candidate matches
from the second image of a triplet and uses the combination of each candidate and line segment l
together with the trifocal tensor explained in section 2.3.2 to determine the projection of the matched
line on the third image as shown in blue in image 4.19a. With this projected line, possible matches are

(a) Projection of line l on image 4 as a result of pair matching between
image 1 and 2. The correct match between image 1 and 2 results in a
projected line corresponding to�l in image 4.

(b) Projection of line l on image 3 as a result of pair matching between
image 1 and 2. Due to amismatch between image 1 and 2, the projection
in image 3 does not correspond with�l.

Figure 4.19: Successful (a) and failed (b) triplet matching results.

found by comparing line segments considering both direction and distance to the line. When multiple
candidates are found, the triplet of candidates with the highest correlation score will be picked. Here
the correlation score is taken to be the average correlation score of these segments in all pairs. For
an incorrect match between the first and second image, the projected line will likely not correspond
to any candidate in the third image as shown in figure 4.19b. In the case a segment will correspond,
correlation is expected to be lower than a correct matching triplet.

The candidates are restricted to segments already considered a possible match in pair matching.
Therefore the possible candidates are an overlapping subset of the candidates between the first and
third image, and the second and third image. This poses a problem for the second triplet, as�l in im­
age 4 is not found as a possible candidate in image pair 1­4, it is not considered in triplet matching.
Therefore, although the correct projection as shown in figure 4.19a, the second triplet does not yield a
correct match due to an absence of suitable candidates in image 4.

Reconstruction Both triplets result in a single line segment to be reconstructed. As seen in the previ­
ous section, this is one correct match for the first triplet, and a mismatch for the second. Reconstruction
will take the 3 segments per triplet and find the best fitting 3D line corresponding to these segments
based on the reprojection error.

Figure 4.20 shows the resulting reconstructed lines, in green the correctly matched line from triplet 1
and in red the incorrectly matched line from triplet 2. Although both triplets use the same segments
from image 1 and 2, the mismatch in the third image causes a line to be reconstructed both in the wrong
direction and location, which is therefore useless.

4.5.3. Relation between rotation and correlation

The case study results show camera rotation between images decreases pair matching correlation
scores and cause mismatches. To quantify this, a set of pixel windows from multiple images have been
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Figure 4.20: Reconstruction of line l for both a correct triplet match shown in green, and an incorrect triplet match shown in red.
Background is the SfM result of the Stroe data­set

rotated after which the correlation between the original and rotated window is determined. Doing this
over a range of angles gives an insight in the decrease of correlation over angles and provides an
recommended maximum angle of rotation between images.

Figure 4.21 shows the found relation between rotation and average correlation following rotating the
set of windows between ­180 and 180 degrees. The maximum correlation of 1.0 is logically found for
zero rotation. Between ­2.5 and 2.5 degrees the correlation is higher than 0.99. Larger rotation angles
show an increasing drop in correlation between the windows. For an absolute rotation of 8.1 degrees
a cross­correlation of 0.90 is found and the correlation drops below 0.80 for a rotation of over 13.2
degrees.

As mismatches occurred between image 1 and 4 which had a correlation score of 0.81, correlation
between correctly matched line segments would ideally be higher than 0.90. Therefore a maximum
rotation angle between images of 8.1 degrees would be advised.

4.5.4. Conclusion

This case study described step by step the reconstruction process of a line segment in the Stroe dataset.
It showed the importance of matching for reconstruction accuracy and some of the flaws in the used
matching methods. The main issue found in matching is camera rotation between images. In two im­
ages with little rotation the correct matching line segment was matched with a correlation score of 0.98
and 0.96. For a large rotation a mismatch occured where the line segments were matched with a cor­
relation score of 0.81. When matching is successful, the reconstruction method shows an accurate line
is reconstructed in 3D. Rotating several test segments provided an estimation for the relation between
camera rotation and correlation. It found an absolute rotation of 8.1 degrees decreases the correlation
to 0.90 for perfectly matching pixel windows.

4.6. Recommendations on solving matching problems
The conclusion that matching problems caused by camera rotations prevented adequate reconstruction
indicates following research should focus on solving that problem. Therefore this section provides
two recommendations on methods to improve matching performance. The first is image alignment in
section 4.6.1, which rotates images according to an estimated angle of the railway tracks. The second
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Figure 4.21: Average correlation found between a pixel window and its copy rotated over an angle between ­180 and 180
degrees.

is arrangement matching in section 4.6.2. This method uses pairs of line segments for more robust
matching as well as an line descriptor which prevents rotation issues.

4.6.1. Image alignment

The first option is to rotate images in order to align the railway tracks. When the tracks are aligned, the
pixel windows used for matching should be aligned as well and therefore correlation between match­
ing line segments improves. An expected downside of this method is the loss in image detail due to
interpolation required for image rotation.

As the image is rotated, the camera parameters need to be rotated accordingly to correct for this. With­
out correcting the rotation matrix, the geometric relations between cameras as used in matching would
not be aligned and therefore finding matching segments would become impossible. The correction is
done by applying a rotation to the intrinsic rotation matrix 𝑅𝑐. The camera is looking in the negative­z
direction, a rotation of the sensor plane is therefore a rotation around the z­axis of the camera. For a
given rotation 𝜃 the corrected intrinsic rotation matrix 𝑅′𝑐 follows from:

𝑅′𝑐 = [
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

]𝑅𝑐 (4.1)

The images as well as the lines on the image are rotated by multiplying the upper left 2x2 part of the
equation with the pixel coordinates.

To estimate the angle 𝜃 different options exist. One could use a selection of matched SIFT key­points
following from the Structure­from­Motion algorithm to find a rotation relative to a fitted plane through
those points. Another option is to first detect line segments in the images and use the assumption that
the majority of those line segments do belong to railway tracks as the results show in section 4.2. Figure
4.22 shows a boxplot of the distribution of angles found in the images used for the Stroe case study.
The red line shows the median value of the line segments in each image. This median is used as an
estimate for the angle of the railway tracks. The box around the median show the angles corresponding
to 50% of the line segments in each image.
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The angle estimate is around ­0.15 rad or ­10 degrees for the first three images and ­1.5 rad or ­90
degrees for the fourth image which is as expected as image four is about 90 degrees to the other
images. This also raises a problem with this method as image four is rotated over 1.5 rad in a counter­
clockwise direction instead of just under 1.5 rad in a clockwise direction. Rotating the image according
to the found angle flips the image upside down which does not help the matching algorithm. Pixel
window matching would yield a negative correlation score for a flipped image where the algorithm
looks for high positive correlation.

Figure 4.22: Boxplot distributions of the angles of detected line segments as found in the four images used for the Stroe case
study. Red line shows median value.

With aligned images and camera parameters rotated accordingly, matching is performed using the
same method from section 3.2. Figure 4.23 shows a comparison between a rotated and original pixel
window of the same part. The middle square shows the difference between both windows where
no difference is shown in black. A completely black square would indicate a correlation score of 1,
indicating a match. Some loss of correlation due to rotation is expected using this method. Rotating
an image causes points from a regular pixel grid to end up between multiple grid points. In order to
be able to save the image all these points have to be converted to pixels within the grid again, which
is done by interpolating these points to corresponding pixels. This interpolation causes some loss of
detail, which decreases the correlation score.

A test on the 4 case study images from section 4.5 show a slight increase in correlation scores for lines
which were correctly matched without this method as well. Image 1 and 2 have a relative rotation of
just 0.1 degrees, correcting for this resulted in a correlation improvement from 0.981 to 0.983 or a 0.1%
increase for the highest scoring segment. Image 1 and 3 have a relative rotation of 1.5 degrees, and
the correction resulted in an increase from 0.958 to 0.988 or 3.1%. The determined relative rotation
between image 1 and 4 is 74.8 degrees, as visible in figure 4.22. As the image was found to be flipped
this was however corrected to 105.2 degrees. In the case study the maximum correlation score found
was 0.81 although for an incorrect match where two line were matched.

The case study images show a promising increase in matching performance after aligning the images,
although flipped images possibly causes issues. Using a different method to find the angle of the railway
tracks might solve this, as for example a set of matching SIFT key­points is insensitive for this. There
is some loss of correlation to be expected due to interpolation, but the increasing correlation for little
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Figure 4.23: Difference between pixel windows of an original and aligned image. The middle square shows the correlation
between both squares on the side, dark areas are have a higher correlation because they are more alike.

rotation image pairs are positive. Additional research is required to find it’s effect on full scale matching
performance.

4.6.2. Arrangement matching

Arrangement matching utilizes a combination of non­parallel line segments to form a group where
features from all segments are used to get a unique descriptor. Preferably close to orthogonal segments
are combined in a set as they form intersections which are used as an anchor. One example using this
method is Wang et al. [26]. Their method forms pairs of segments where possibilities are filtered based
on the angle and the distance between end points of both lines. This prevents far away and parallel line
segments from becoming a pair. The intersection point of pair segments is used as an extra geometric
constraint by projecting it on the matching image. Figure 4.24 shows the pair to be matched on the left,
with the intersection marked in red. The epipolar line of this intersection is shown on the right on top
of a candidate pair of segments. The intersection of this candidate pair should match the intersection
of the original pair. Therefore only candidate pairs with an intersection close to the epipolar line are
considered a possible match.

To combat rotation errors, Wang et al. proposes a 5 band Line Band Descriptor (LBD). After determining
overlapping segments between the original and candidate pair, a rectangular region parallel to each
segment is transformed by affine transformation to remove camera rotation. The LBD is then calculated
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Figure 4.24: Segment pair matching. Original pair on the left with the intersection marked. Dotted line in the candidate image is
the epipolar line of the intersection. The intersection of the candidate segment pair shown should be on this epipolar line.

by dividing the region in 5 equally sized bands parallel to the segment, and estimating the pixel gradient
over the band. The 5 gradients of these bands and the mean and standard deviation of the intensity
values within these bands form the Line Band Descriptor which is used to determine if a candidate
following the geometric constraints is a possible match.

The LBD should mitigate the rotation errors from this thesis’ method, while the intersection relation
between pairs of segments should help prevent flipping mistakes as found in the image alignment
method. A possible downside of this method is the downsampling of pixel details to three features in
5 bands. Further research will have to show whether the descriptor is able to be distinguishable for
repetitive environments as railway tracks.

4.6.3. Conclusion

Two methods have been provided to improve results of this research, which suffers from line segment
mismatching due to camera rotation between images. One method tries to solve the rotation itself, by
aligning all images before performing the matching process. Tests show increased performance on
the case study images from section 4.5 however there is some ambiguity between rotating an image
counter­clockwise or clockwise which causes flipped images.

The second method uses a more strict geometric constraint by matching intersecting line segment
pairs. Using epipolar lines as constraints for both the line segments and the intersection, possible
mismatches are limited. It also solves the rotation issue by using a line based descriptor, describing
a line segment in 15 parameters spread over 5 bands. This means some detail found in pixel window
correlation is lost, which leaves the question if 15 parameters will be a unique enough descriptor to
match railway track line segments.

The more constrained method of matching pairs of line segments, arrangement matching, prefers fur­
ther research as it both solves the camera rotation issues as well as introduces more strict geometric
constraints which limits possible mismatches. When the line descriptor proves to be insufficient, a more
detailed descriptor can be implemented by combining both methods.
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Conclusion and recommendations

This thesis has been done to find an improvement for rail infrastructure monitoring where rails are
reconstructed in a geo­referenced point cloud in order to measure their accurate real­world location.
Photogrammetry is a method to create such a point cloud, but it has difficulties reconstructing rails. On
photos obtained by UAV carried cameras rails appear as long small beams with a homogeneous rusty
texture and a reflective rolling band on top. In this scale they do not have enough features for automatic
feature extraction methods used for photogrammetry. Their line like nature brought the idea to use line
based features for reconstruction instead of points used in traditional photogrammetry methods. This
research brought a method starting with extracting line features from images, matchings those features
and reconstructing the lines in 3D. The next sections provide the conclusions of that research divided
over Line detection in original images, Line matching and reconstruction and Geo­referencing and
validation. Each sections also includes recommendations on further research. The chapter ends with
an answer on the main research question.

5.1. Line detection in original images

In order to find the rails in photos, line detection was applied as rail to the human eye is a line­like feature
instead of a point­like feature. The goal of this part was to test whether an automated algorithm would
think the same. To test this, an algorithm has been found in the form of the Line Segment Detector by
von Gioi et al. Raw results showed many found segments found were small and did not correspond to
either rails or sleepers. The algorithm found 12844 segments on an image of the Lego dataset where
2856 corresponded to rails.

To mitigate this, post­processing in the form of segment length filtering and segment merging was
applied. On the same image this reduced the amount of segments to 106 and 61 corresponding to
rails. A range of parameters has been tested to find optimal performance. This resulted in a data­
completeness for the Lego data­set between 31% and 45%, and a slightly lower data­completeness
for the Stroe data­set between 20% and 38%. Line quality was similar for both data­sets, measured in
both accuracy in angle and accuracy in distance. For the Lego data­set the angle error lies between
0.1 and 0.4 degrees, with an distance error between 1.4 and 2.4 pixels. For the Stroe data­set, the
angle error was found to be between 0.1 and 0.2 degrees, with an distance error between 1.5 and 2.9
pixels.

The error in angle and distance is considered a good result. Compared with the ground sampling
distance it translates to 1.2 millimetre for the Lego dataset and 4.5 millimetre for the Stroe dataset.
The data­completeness needs improvement.The ProRail requirement of a rail position measurement
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every 2 meters as described in section 2.1 leaves some room for missing parts of the railway tracks
but this requires at least measurements on the same cross section of the track. The results show the
data­completeness is not capable to do that.

To improve data­completeness new line detection algorithms can be researched. The Line Segment
Detector is well known and well praised, but newer algorithms are available. Another option is to
extend the current workflow. The results showed most line segments after detection correspond with
rails. Gaps between segments can be filled by methods more smart than the maximal gap distance
used in this research. Here one could for example use the region growing idea already implemented
in LSD.

5.2. Line matching and reconstruction

Line matching is required to find multiple views with the same line segment in order to estimate its
3D position. Pixel based matching was used between detected segments in image pairs. Aided by
a geometric constraint it takes a window of pixels around the line segment and a matching window
from the other image. It then calculates the cross­correlation between both windows and selects the
10 candidates with the highest average score.

Results from both data­sets showed many mismatches limited usability of matched segments for re­
construction. Therefore case­study was conducted which showed rotation was a cause of mismatches
due to low correlation scores. It found correct matches with a score of 0.96 and 0.98. For a rotated
image an incorrect match was found with a correlation score of 0.81. Rotating windows over a range
of angles showed correlation is constant for lower rotation angles. A correlation score higher than 0.99
was found for an absolute rotation smaller than 2.5 degrees. Using this method it is advised to keep
camera rotation lower than 8.1 degrees as the correlation than drops to 0.90.

The matching performance translates in an incoherent reconstruction and therefore unusable result.
The manually matched Lego dataset and the case­study showed reconstruction to be promising for
correctly matched line segments, although this is not quantified.

Two recommendations on matching improvement are already provided in section 4.6. One method
aligns images before matching, correcting for camera rotation. The method showed an increasing cor­
relation score for test images, but it suffered from ambiguity between clockwise and counter­clockwise
rotation. Wang et al. [26] provides a second method which matched pairs of intersecting segments in­
stead of separate segments. The intersection provides an additional geometric constraint for matching.
Camera rotation issues are solved by a Line Band Descriptor which is aligned.

5.3. Geo­referencing and validation

Geo­referencing links the reconstruction with real­world coordinates and is therefore of vital importance
to be able to get accurate measurements usable for railway monitoring. Due to matching problems,
a geo­referencing result cannot be given. It was impossible to link the incoherent reconstructed lines
to their ground­truth twin. Therefore it was also not possible to answer the sub­questions regarding
accuracy, precision and data completeness of the geo­referenced results.

The results of the manually matched Lego dataset show precise reconstruction is possible for correctly
matched line segments. It found a mean distance error of 0.56 millimetre. Translating the size of a
Lego railway track to real railway infrastructure this corresponds with an error of 12.2 millimetre.
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5.4. Answering the research question
This research started with the question What contribution can line recognition on the input images
bring to the structure from motion based process to extract the geo­referenced 3D position of railway
tracks?. Some of sub­questions included to help answer the main question were left unanswered due
to matching and reconstruction problems. Therefore the contribution of the used method is limited.
Results showed the matching method was susceptible to camera rotation between images. An angle
of over 8.1 degrees causes a decrease in correlation to 0.90, even for perfect matching windows. This
causes mismatches which led to failing reconstruction.

However manually matched segments in the Lego dataset showed the reconstruction algorithm is
promising. The precise line segments were able to reconstruct parts of the railway track which were not
visible in the traditional photogrammetry result. It is therefore concluded the contribution of line recog­
nition deserves more research, for which recommendations are given to improve matching results and
line detection data­completeness.
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