Robust map building for
robot navigation in dynamic
environments

Prakash Radhakrishnan

Robust map bullding for rooot navigation in
dynamic environments

Master thesis project

by

~rakash Radhakrishnan

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Wednesday September 22, 2021 at 13:00 .

Student number: 5007224
Project duration: November 15, 2020 — September 22, 2021

Thesis committee: Prof. dr. ir. Wei Pan, TU Delft, Chair and supervisor
Prof. dr. ir. Javier Alonso Mora, TU Delft, External Committee
Ir. Yujie Tang, TU Delft, Daily supervisor

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Acknowledgments

This master thesis marks the completion of the number of credits required to obtain
the Masters in Mechanical Engineering under the track ‘Vehicle Engineering’ at the
Delft University of Technology.

| would like to thank my supervisor, Dr. Wei Pan, for allowing me to work on an excit-
ing graduation project. | express my sincere gratitude to the daily supervisor Ir.Yujie
Tang for her timely support and guidance throughout my work.

| would like to share warm greetings with my family and friends for their unconditional
support during this journey.

Finally, I would like to acknowledge all the beautiful souls who motivated and helped
me during this master program.

Prakash Radhakrishnan
Delft, September 2021

Abstract

Simultaneous Localisation and Mapping (SLAM) provide a novel solution for the robots
to localise and navigate an unknown environment. Initial SLAM research focused
mainly on the indoor environment, assuming the background to be primarily static. In
contrast, the real world has dynamic interactions that restrict the implementation of
SLAM to limited scenarios. This brings a higher requirement to deal with the moving
objects in dynamic environments for robust SLAM performance.

Semantic understanding of the environment helps in filtering out the influence of dy-
namic objects in the vicinity. An instance segmentation based on two-stage neural
architecture is used for this purpose, which is hard to operate in real-time navigation.
In this project, the benefits of single stage neural architecture are studied in terms of
speed and accuracy for improving the efficiency of dynamic features removal in the
application of SLAM.

Although Instance segmentation architecture helps to identify the potentially dynamic
object by learning from the dataset, it cannot differentiate moving objects from non-
moving objects in the dynamic class. Hence, all the features corresponding to the
predicted dynamic class are removed even when the objects remain stationary, af-
fecting the quality of SLAM performance. A two-stream encoder-decoder architecture
is developed to segment the moving masks using RGB and optical flow input, improv-
ing feature tracking without affecting robustness. The feasibility of encoding dynamic
information to enhance quality semantic mapping is also studied.

Contents

Acknowledgments iii
Abstract '
List of Figures xii
List of Tables xiii
1 Introduction 1
1.1 MOtIVatIoN ..o 2
1.2 Research qUestiono 2
1.3 CoNntribULIONSo 3
R O Y=Y 1= Y 3
2 Related work 5
21 SLAM architeCture.ooooiii i i 5
211 Directmethodo 5
2.1.2 Feature-based methodo 6
2.2 DynamiC ObJeCtS ... oo 8
2.2.1 Geometrical approachesccoiiiiiiiiii i 8
2.2.2 Learning based approaches.............coviiiiiiiiiiiiiiii i 10
2.3 Review on deep learning architectures ... 1"
2.3.1 Objectdetectioncouiuiiiii 11
2.3.2 Segmentation..........oiiiiiiii i 12
2.3.21 Semantic segmentation ... 12
2.3.2.2 Instance segmentation ..., 13
3 Methodology 17
3.1 Methodology OVEIVIEWiri i 17
3.1.1 Classification of dynamic objects ..., 17
3.1.2 Stages of development 18
3.2 TrACKING . ettt 19
3.21 Base-ORB-SLAM2 ... 19
3.2.2 Stage 1 - Dynamic object segmentation............................. 22
3.2.2.1 SOLOV2 network architecture.....................ooooee 22
3.2.2.2 Combining dynamic object segmentation with ORB-

SLAM . 24
3.2.3 Stage 2 - Moving object segmentation 25
3.2.3.1 Two stream network architecture.......................... 25

3.2.3.2 Combining moving object segmentation with ORB-SLAM2 26
3.3 MapPPiNg ..o e 27

viii Contents
3.3.1 Dynamic semantic mappingoueuiiiiiiiiii i 28

3.3.2 Instance semantic Mappingc.cooeiiiiiiiii e 29

3.3.2.1 Multi-object trackingcooiiiiiiii 29

3.3.2.2 Combining multi-object tracking with ORB-SLAM2 30

3.3.3 Dynamic density estimation ... 31

4 Dataset and metrics 33
4.1 Dataset ... 33
41 SLAM . 33

4.1.2 Stage 1-Segmentationdataset ...l 34

4.1.3 Stage 2 - Moving objectdataset ... 35

4.1.3.1 New datasetgeneration................coooiiiiiin... 36

4.2 MetriCS i 36
4.2.1 Absolute trajectory error - SLAM ... 36

4.2.2 10U estimation - Segmentation ..., 37

5 Experimentation and results 39
5.1 Object segmentation and trackingmodelsooiill 39
5.1.1 SOLOV2 - Dynamic object segmentation 39

5.1.1.1 Resultand discussionc.coiiiiiiiiiiiiiiiian. .. 40

5.1.2 Two stream architecture - Moving object segmentation............ 41

5.1.2.1 Resultand discussionccooviiiiiiiiiiiiiinannn.. 42

5.1.3 Multi-object tracking...........coooiii i 45

5.1.3.1 Selection of feature embedding model.................... 46

5.1.3.2 Resultanddiscussionooiiiiiiiiiiiiiiin... 47

5.2 Experiments on SLAMo i 48
5.2, 1 TraCKiNgoviii i 48

5211 Base-ORB-SLAMZ oot 48

5.2.1.2 Stage 1 - Dynamic object segmentation 49

5.2.1.3 Stage 2 - Moving object segmentation.................... 50

5.2.2 MaPPINg ...t 53

5.2.2.1 Dynamic Semantic mappingc.coovvieiiiiiiiiinaan 54

5.2.2.2 Instance semantic mapping.............cciiiiiiiiiiiiaa... 55

5.2.2.3 Dynamic density estimation................................ 55

5224 Mapmanagementc.ooiiiiiiiiiiiiiii i 56

5.3 Real-world validation e 58

6 Conclusion 61
6.1 Recommendationsooouiiiiiiiiii e 62

A Appendix 63
A1 SLAM Backgroundcoiiiiiiiii i 63
A.1.1 Featurematching ..o 63

A.1.2 Coordinate transformations 64

A.1.3 Epipolarconstraint ... 65

A4 Triangulation 66

A.1.5 Bundle adjustment 66

Contents

A1.6 Graphbased SLAMo

A.1.7 Optical flow ...

A.2 Deep learning Backgroundooouiiiiiiiii i
A.2.1 Neural NetWorksooiii i e
A2 1.1 NEUION. ... et

A.2.1.2 Activationfunction ...

A2.1.3 LosSSTUNCHONo e

A2.1.4 OpPtMISEroooniiii e

A.2.2 Convolutional Neural Networkcooviiiiiiiiieens
A.2.2.1 Convolution and its propertiescooiiiin.t.

A.2.3 Pooling........

A2.4 Strideand Padding.........cooiiiiiiiii i
A2.4.1 UpSampling ...c.iriieiii

B Appendix

B.1 Geometrical approach-Stage 2 ...

B.2 Semi-dense Mapping

Bibliography

66
67
68
69
69
70
71
71
73
73
73
74
74

75
75
76

88

List of Figures

2.1 Directand feature based SLAM 6
2.2 Degenerative MOtioNoouii 9
2.3 Deep learning on feature extraction.................ooiiii i 10
2.4 Two stage detectors OVervIEWooiiiii i i 12
2.5 Mask-RCONN ... e 14
2.6 Comparison of instance segmentation architectures 14
3.1 Dynamic classification ... 17
3.2 Stage 1 classification............coooiii i 18
3.3 Stage 2 classification.............ooiiiiii i 19
3.4 Components of ORB-SLAM2Z i 20
3.5 SOLOVZ2maskheadcooouiiiiiiiiii i 23
3.6 Two stream architecture ... e 26
3.7 SemantiC MapPPINgouiii ittt 28
3.8 Multi-object trackingcooriiii i e 30
3.9 Track image representation.............c.coooiiiiiiiiii i 30
4.1 Ground truth of KITTlI odometry dataset ...l 34
4.2 KITTlsegmentationdataset ... 35
4.3 KITTIMoSeg reflnemento i 35
4.4 Moving object segmentation dataset generation............................ 36
4.5 Trajectory alignment.o 36
4.6 10U MEIIICS .. 38
5.1 Quantitative comparison - SOLOV2 and Mask-RCNN 40
5.2 Qualitative comparison - SOLOV2 and Mask-RCNN 41
5.3 Loss function BCE 10SS VS diCE 10SSvviiiiiiiii i 42
5.4 Moving object segmentation-Result ...l 42
5.5 Moving object segmentation - Analysis ..., 43
5.6 Flow image on pure translation................oiiiii i 43
5.7 Heat map of moving objectinthe dataset L. 44
5.8 Flow image without cameramotioncoiiiiii i 44
5.9 Flowimageonpurerotation............cooiiiiiiiii i 44
5.10 Moving object segmentation - Refinement 45
5.11 Implementation of trackingmodule 46
5.12 Selection of feature embedder model..................ccii 47
5.13 Multi-object tracking - Result ... 47
5.14 ROS implementation of our pipeline ... 48
5.15 Tracking error comparison - Baselinevs Stage 1........................... 49
5.16 Tracking result - Stage 1o 50
5.17 Limitation of Stage 1 - Kittisequence 05 ..., 50

Xi

Xii List of Figures
518 Trackingresult-Stage 2. 51
5.19 Individual trajectory compariSon...........couuiiiiiiiii i 52
5.20 ATE plot - Base vs Stage1 vs Stage2.........ccooviiiiiiiiiiiiiiin e 52
5.21 Base stalic mMapooiiiii e 53
5.22 Dynamic semanticmap-Stage 1. 54
5.23 Dynamic semanticmap-Stage 2.t 54
5.24 Instance semantic Mapoviiiiiii i e 55
5.25 Low dynamic interaction example........ ... 56
5.26 Dynamic density estimation ... 56
5.27 Octomap with differentresolution ... 57
5.28 RODOt SEIUD ..o e 58
5.29 Real world experiment result - Tracking and mapping...................... 59
A1 Epipolar geometry 65
A.2 Graphbased SLAM ... 67
A.3 Optical flow explanation........ ... 68
A.4 Optical flow representation ... 68
A.5 Activation funCtions. ... 70
A.6 Learning rate explanation..............coooiiiiiiiiiiii 72
A.7 Max and average pPooliNgouiiiiiii e i 74
A.8 Qualitative comparison............oviiii i 74
B.1 Individual feature tracking using flow vectorso 75
B.2 Epipolar line with tracked features 76
B.3 Semi-dense mapping - ORB-SLAMZ2 implementation 77

B.4 Semi-dense mapping resultscooiiiiiiii i 77

4.1

5.1
5.2
5.3
5.4

List of Tables

KITTI odometry dataset ... 34
Parameter setting - Motion segmentation model............................ 41
Absolute trajectory error - Stage 1 experimentsL. 49
Absolute trajectory error - Stage 2 experimentsoL 51
Map memory managementot 57

Xiii

Introduction

The autonomous robot uses perception to understand the surrounding environment
and performs actions based on planning and control. Robots’ autonomy opens new
possibilities in various applications, including unmanned ground vehicles, drones, and
even underwater robots. The primary task of an autonomous robot is to localize itself
in the given space. Currently, most outdoor applications localize using GPS signals
[1] and pre-built maps available in the system. However, the GPS signal is not robust
due to disturbances in closely spaced buildings, tunnels and dense plantations. Simul-
taneous Localisation and Mapping (SLAM) is a well-known solution for locating and
navigating an unknown environment by making the system operate independently with
its learnt representations of surroundings. SLAM helps in tracking the poses of the
ego-vehicle and maps the surrounding environment space. The versatility of SLAM
usage comes with its flexible nature to adapt to various scenarios.

Simultaneous Localization and Mapping perceives the data from the exteroceptive
sensors like camera, lidar, radar and IMU. Exteroceptive sensors acquire measure-
ments that contain meaningful representations of the surroundings. SLAM usually
process data from one of the sensors or in some case it fuses information from mul-
tiple sensors to generate the final output. We focus on visual SLAM, which uses a
camera as the primary sensor modality. Cameras are passive sensor that is relatively
cheap and consumes less power for its operation. Monocular cameras are a minimal-
istic visual sensor configuration with much practical application but suffer heavily from
scalability issues. It captures the three-dimensional space into a two-dimensional im-
age by losing depth information. Nevertheless, visual features are always challenging
to process compared to the other sensors. Our study focuses on simultaneous local-
ization and mapping using monocular cameras.

The main challenges of SLAM are loop closure, initialization, semantic reasoning and
handling dynamic objects in the environment [2]. Visual SLAM research has evolved
to address the initialization and loop closure issues. On the other hand, dynamic ob-
jects are dealt with using the geometrical method that produces satisfactory outcomes.
After the advent of deep learning in computer vision, understanding semantics from
the visual features are learnt at ease. Atrtificial intelligence(Al) models achieve accu-
rate and faster inference, which makes them popular across various domains. The

1

2 1. Introduction

semantics of the environment learnt from the Al model is used to identify and isolate
the dynamic objects to enhance the robustness in the SLAM functionality. This study
tackles important limitations such as semantic reasoning and dynamic object handling
by fusing the output of convolutional neural networks in SLAM to enhance tracking and
mapping results.

1.1. Motivation

Initial SLAM research mainly focuses on the indoor environment where the objects in
the surroundings are static [3]. This static assumption might not be valid in the real
world, causing inconsistent tracking and mapping results. High dynamic interaction in
the outdoor environment aggravates the problem affecting the quality of tracking and
mapping further. Thus, static assumption restricts SLAM to be implemented in limited
scenarios. Semantic perception of the environment gives fundamental knowledge of
the vicinity to deal with dynamic interactions [4]. The output of deep learning models
(learning-based approaches) offers valuable insight on learning semantics for improv-
ing tracking and navigation by removing dynamic features. In addition to removing the
dynamic object, it is vital to semantically associate the learned representation in 3D
space to understand the map better. Hence, this study uses single-stage instance
segmentation architecture combined with moving object detection and multi-object
tracking to remove the dynamic objects in the tracking process and build a semanti-
cally meaningful instance map.

1.2. Research question

The objective of the study is to build a semantically meaningful map using SLAM tech-
niques while managing dynamic interactions, which helps enhance robot navigation
quality.

Our research question is,

‘How to build robust interactive map handling dynamic objects
that enhances the navigation quality of robots? ’

The following sub questions are framed from main research question,
* Whatis a popular approach to overcome challenges of dynamic objects in SLAM?
» How to improve the quality of tracking and mapping with dynamic interaction?

* How to build a semantically meaningful map?

1. Introduction 3

1.3. Contributions

We answer the research questions by following contributions.

+ Single-stage instance segmentation architecture - According to the litera-
ture study, the most advanced deep learning architecture used in SLAM is the
two-stage instance segmentation architecture. In this project, the benefits of sin-
gle stage instance segmentation architecture are studied and implemented for
dynamic object identification in SLAM.

* Moving object segmentation - To distinguish moving objects from non-moving
objects, individual object states in three-dimensional space are tracked in tightly
coupled methods [5] which are computationally intensive. On the other hand,
loosely coupled methods [6] based on a learning-based approach attain real-
time performance on finding a particular class but fail to distinguish the mov-
ing object. In this work, the implementation of moving object segmentation un-
leashes the possibility of using loosely coupled methods directly to perform a
similar task that helps attain real-time performance.

» Semantic Mapping - Semantic mapping addresses 2D-3D data association
problems to improve the semantic understanding of the generated map. We cre-
ate dynamic and instance-specific semantic mappings. The dynamic semantic
map categorizes points as static, moving, or non-moving dynamic points. In-
stance semantic mapping detects and distinguishes individual instances of ve-
hicles present in the environment.

* Multi-object tracking - Instance segmentation output does not correlate seg-
mented objects between two frames, which prevents it from tracking the in-
stances in the sequence. We implement a separate tracking module to track
objects by associating the same objects in successive frames.

1.4. Overview

This outline of the report is as follows; Chapter 2 summarizes the literature study
and the critical choices arrived from it. Chapter 3 walks through the learning-based
methodology used in our research to improve tracking and mapping results of SLAM.
Chapter 4 explains the selection of the dataset and chosen metrics used to evaluate
our procedures. Chapter 5 concentrates on the experiments, results and discussion
to justify the selection of architecture and showcases the improvement in SLAM with
our implementation. Chapter 6 winds up our study and suggest future direction on
improving key modules. At last, the appendix reveals trials on the geometrical ap-
proach for moving object detection and semi-dense mapping, which are not included
in our final pipeline. It also delves into essential concepts on SLAM and deep learning
needed for comprehending the methods used in this study.

Related work

The objective of the chapter is to find the suitable SLAM architecture and discuss
various approaches to overcome the challenges of dynamic interaction in the SLAM.
The last part covers the widely used learning-based method and proves the empirical
choice of single-stage instance segmentation for completing our pipeline. Detour to
the appendix A would help brush up the basics before diving into the details of SLAM
and deep learning models.

2.1. SLAM architecture

Visual SLAM architecture uses optical sensors such as Monocular, stereo and RGB-
D cameras to acquire information about the surroundings. In this study, monocular
cameras were kept as the prime focus. Monocular SLAM is categorised further into
feature-based, direct and learning-based methods based on how the image is pro-
cessed to attain the desired outcome on tracking and mapping.

2.1.1. Direct method

The direct method correlates the pixel intensity values across the frames to find corre-
spondences and build a map. Direct methods can generate dense, sparse, and semi-
dense maps based on the utilisation of pixel correspondence. An important problem
of the direct method is the computational cost [7] and sensitiveness to noise due to il-
lumination changes. Lens attenuation and gamma correction improve the robustness
against noise. On the other hand, direct methods are very robust towards motion blur
and camera defocus.

Dense Tracking and Mapping (DTAM) [8] is one of the direct methods which uses
input from the handheld camera and process them using GPU to achieve real-time
performance. The algorithm estimates inverse depth based on the photometric error
to generate a dense map. Photometric error is the difference in image intensity be-
tween the same point in two image frames. The computation over entire pixels makes
the algorithm run slower in the CPU setting. Hence, sparse and semi-direct meth-
ods naturally become salient for many applications to operate in higher frequencies.
Semi-Direct Visual Odometry (SVO) [9] fuses the direct and feature-based method

5

6 2. Related work

to estimate visual odometry. Algorithm process image patches instead of entire pixels
to reduce the computational cost. Photometric error is minimised to estimate the pose,
and re-projection error is minimised to align the feature patches. Though mapping is
similar to DTAM, depth is calculated in a probabilistic Bayesian fashion to reduce the
complexity. The final map generated by SVO is sparser than DTAM. Direct Sparse
Odometry (DSO) [10] is another direct method that produces a sparser map.

Large-Scale Direct Monocular SLAM(LSD-SLAM) [11] is a semi-dense direct method
designed to achieve real-time performance in the CPU by processing images as keyframes
in a graph-based outline. A keyframe is a representative frame that stores relative in-
formation of all the frames in a given time interval. A key ingredient of LSD-SLAM is

to use the image gradient to recover edges which makes them robust to changes in
intensity when compared with other direct methods.

Direct methods such as DTAM, DSO and SVO are relatively slow and do not sup-
port loop closure functionality. On the other hand, LSD-SLAM efficiently handles the
global maps, which makes loop closure feasible. Hence, LSD-SLAM with semi-dense
maps is a natural choice among other direct methods due to its ability to operate real-
time and loop-closure.

Feature-Based Direct
Input Input
Images Images
Extract & Match
Features
(SIFT / SURF/ ...)
abstract image to feature observations keep full images (no abstraction)
Track: i) Track: i]
min. reprojection error| s “E¢ i min. photometric error
(point distances) (intensity differences)
C pvaps) ! C map:2
est. feature-parameters - est. per-pixel depth & 5
(3D points / normals) [~ (semi-dense depth map)| | % %3/

Figure 2.1: Comparison between direct and feature based method [12]

2.1.2. Feature-based method

Feature-based SLAM uses extracted visual features from the images for estimating
pose and map 3D landmarks. Unlike the direct method that utilises pixel intensities,
feature-based SLAM takes advantage of the geometry of the environment, making
them robust to noises. Most of the feature-based process runs in real-time but cre-
ates a sparser map representation compared to the direct method.

2. Related work 7

Mono slam [13] is a feature-based filtering approach for monocular cameras that
focuses mainly on localisation compared to mapping. Probabilistic state estimation
is used to track the moving cameras and map landmarks. The map is initialised with
known objects and updated sequentially after tracking. The filtering based approach
encapsulates single probability distribution for all the estimated poses. The size of the
covariance matrix explodes with an increase in features resulting in a quadratic rise
of computational cost, which makes the algorithm restricts to a small-scale environ-
ment. Parallel tracking and mapping (PTAM) [14] is developed to achieve real-time
performance by adding a parallel thread for tracking and mapping. Unlike sequential
tracking and mapping adapted in MonoSLAM, parallelizability allows the maps to be
optimised using bundle adjustment instead of incremental mapping. It is essential to
observe that bundle adjustment still increases the computational cost based on the
number of frames. Thus, usage of keyframes provides a trade-off between accuracy
and computational cost. The important drawback of PTAM is that five-point stereo
map initialisation is done based on the user input manually. In the advent of track-
ing failure due to changes in the environment, this might lead to map failure. PTAM
explicitly developed to a small AR environment restricting them from large scale map-
ping. ORB-SLAM [15] is a successor of PTAM designed specifically for monocular
cameras. ORB-SLAM contains three parallel threads for tracking, mapping, loop clo-
sure, and two modules explicitly for place recognition and map. ORB-SLAM2 [16]
is an improvised version of ORB-SLAM that could process stereo and RGB-D inputs
in addition to monocular camera input. Unlike PTAM, ORB-SLAM2 allows automatic
initialisation using two geometric models based on homography for a planar scene
and a fundamental matrix for a non-planar scene. Heuristic calculation based on the
equation 2.1 identifies whether the scene is planar. If Ry > 0.45, then homography
is chosen for initialisation or vice versa. A detailed explanation of all the modules in
ORB-SLAM?2 is discussed later in the report.

Sy +Se
The vital difference between ORB-SLAM2 with other feature-based methods is their
ability to perform loop closure. ORB-SLAM2 is the best architecture among other

feature-based methods due to its ability to run in real-time, reinitialise automatically
and provide large scale mapping.

(2.1)

Ry

Conclusion - Choice of SLAM The learning-based approach supports visual odom-
etry only. They do not provide a complete solution to SLAM and hence are not dis-
cussed in detail the report. Based on the survey of direct and feature-based method,
the selection of SLAM architecture is narrowed down to LSD-SLAM and ORB-SLAM2
on account of their ability to run in real-time with loop closure functionality. In terms of
versatility, ORB-SLAM2 extend its support to various visual sensors such as monoc-
ular camera, stereo camera, and RGB-D input, but LSD-SLAM baseline uses only
monocular cameras. As our work is more focused on dynamic interaction, the SLAM
algorithm must be suitable for both indoor and outdoor environments. Outdoor envi-
ronments tend to have global illumination changes, which violates the assumption of
brightness constancy used in LSD-SLAM. Also, based on the experimental compari-
son between ORB-SLAM2 and LSD-SLAM by [17], it is shown that the ORB-SLAM2

8 2. Related work

algorithm provides robust tracking results on popular odometry datasets. Hence ORB-
SLAM2 algorithm is chosen as SLAM architecture in our pipeline.

2.2. Dynamic objects

After selecting the SLAM architecture, we aim to find an effective method to improve
the robustness of SLAM results while managing the dynamic interaction of the envi-
ronment. The issue of dynamic interaction is addressed by either eliminating dynamic
moving objects as outliers or track the individual dynamic object state in its 3D repre-
sentation. To narrow down the review based on the final choice of SLAM, this part will
solely concentrate on studies related to ORB-SLAM2(feature based methods).

2.2.1. Geometrical approaches

In the conventional SLAM approach, the area of static entities are considered as
background and dynamic objects as foreground. The moving object detection (MOD)
method [18] match the extracted features of moving objects with the previous set of
descriptors database created using prior knowledge. Three representative features of
moving objects are selected, and the assumption of rigidity aids in determining their
motion. It is a naive method since it can only identify objects based on a previous list
of features; however, the representation of feature descriptions varies substantially in
the actual world.

Some of the other studies deal with the background subtraction method [19] where ba-
sic polynomial constraints is used to detach moving objects from the stationary states.
Researchers also use sparse labelling and rank restrictions to track points in the frame
and computes a projection matrix to solve for inliers and outliers. The primary draw-
back of this point-based method is that it does not consider structure consistency in
the calculation. The majority of background subtraction algorithms are only success-
ful when the visual sensor is static and assumes the surrounding environment as a
planar surface.

To deal with dynamic objects captured by freely moving cameras, researchers ex-
ploited the epipolar constraint. According to the constraint, static points always lie
closer to the epipolar line whereas points located outside the epipolar line are classi-
fied as dynamic objects. A similar approach was used in [20], where, in addition to
the epipolar restriction, a Flow vector bound was added to account for degenerative
motion. Degenerate motion [21] occurs when the objects in the scene move paral-
lel along the direction of the camera motion. Since, the points corresponding to the
objects move along the epipolar line, making it harder for epipolar constrains to sep-
arate dynamic points. The flow vector bound defines how points translate in relation
to the depth. By specifying upper and lower limits for depth values, the displacement
of the points associated with those constraints may be calculated. A feature vector
that extends beyond these displacement limits is termed dynamic. Inaccurate depth
estimation precludes the use of flow vector bounds in monocular cameras.

Optical flow from the image sequence is compared with the predicted artificial op-

2. Related work 9

P (3D point) ___Non-degenerative
Degenerative o /~_ movement

movement N P’

C1 (Camera centre) C2 (Camera centre)

Figure 2.2: Degenerative vs non-degenerative motion

tical flow to determine the dynamic pixels in the study [22]. Artificial optical flow is
estimated based on the relative pose variation acquired through homography during
tracking. The generated optical flow is calculated based on the ego-motion of the
camera, which influences the quality of prediction when the camera is moving. Dis-
entangling the camera motion from rest of the object is essential for detecting moving
objects in a scene, which is often accomplished by ego-motion compensation. Ego-
motion compensation using frame differencing is experimented by [23] in which
a list of feature correspondence is tracked to estimate the ego-motion. Frame differ-
encing of an ego-compensated image with the current frame helps to identify poten-
tially moving points. A similar idea of using compensated image in frame differencing
along with particle filtering is subsequently experimented on RGB-D SLAM [24]. The
main limitation of the frame differencing approach is the assumption of small parallax
between image sequences. The algorithm does not work well in handheld cameras
where the parallax could vary significantly.

Correlation between the generated map points is also used in [25] to eliminate the
influence of dynamic objects in the surroundings. The relative position of any two
points on the map is always consistent in temporal space; hence these points could
be correlated. Such a correlation always exists between static points in 3D space.
The technique uses graph initialization, edge culling, and static point determination to
identify correlation represented as a sparse graph. Point correlation optimized using
bundle adjustment and squared Mahalanobis distance to remove inconsistent edges.
The graph with the greatest volume is considered static. However, when the ratio of
moving objects in the scene exceeds the ratio of static objects, the system fails.

According to the above discussed methods, it is apparent that geometrical approaches
make several assumptions to locate dynamic points. These assumptions are often vi-
olated in real-world situations. For example, the optical flow assumption of constant
brightness and velocity smoothness across adjacent pixels does not hold in the real
world. In the case of ego-motion compensation and point correspondence, the back-
ground is required to be larger than the foreground, which might not be possible in the
actual world.

10 2. Related work

2.2.2. Learning based approaches

To overcome the shortcomings of the geometrical method, the learning-based tech-
nique is used to eliminate dynamic objects from the image frame using neural archi-
tecture. The main idea is to integrate the output of deep learning models with SLAM,
thereby excluding features that fall inside the predicted area of the model output, con-
sidering them to be dynamic. A learning-based approach could be applied either using
object detection or a segmentation architecture to remove the dynamic associations.
Small detour to next section would help in understanding the details of various convo-
lutional neural architectures clearly. This section reviews various studies conducted
on SLAM using learning based approaches.

Object detection model YOLO [26] adapted by [27] for predicting dynamic classes,
and features extracted inside the predicted bounding box are removed considering
them as moving. However, some of the static zones which are not part of dynamic
objects are also included inside the bounding box as shown in the figure 2.3. Exact
contours identification of the object boundary is needed to isolate the dynamic areas.
These contours were usually estimated using depth histograms which could not be
directly applied in monocular cameras due to the inconsistent depth estimation. PO-
SLAM [28] applies a similar technique to segment contours in YOLO prediction using
depth histograms. The major disadvantage of utilizing object detection is that it ne-
cessitates using a separate algorithm to segment the object’s mask, which steers the
research towards semantic segmentation architecture.

(a) Object detection (b) Segmentation

Figure 2.3: Deep learning on feature extraction

The Semantic Segmentation is a simple and ready to use technique in SLAM since
it avoids contour estimation. For the same model complexity, the inference time of
semantic segmentation is slightly longer than that of the object detector. Taking this
into consideration, the shallow semantic network such as ENet [29] is usually adapted
in ORB-SLAM2 to segment the dynamic classes in real-time [30]. Recent research
has merged learning-based and geometric approaches to remove dynamic classes
that neural networks have not learned efficiently. DS-SLAM [31] combines SegNet
architecture [32] along with moving consistency (based on epi-polar constraint) to seg-
ment pedestrians from an image. SOF-SLAM [33] extracts feature correspondence
of moving objects using semantic segmentation and optical flow. While the basic idea
of SOF-SLAM is similar to that of DS-SLAM, the former handles many classes.

While semantic segmentation is superior to object detectors, it lacks the ability to
recognize individual instances. To enhance pixel-level categorization and instance
identification, Mask-RCNN [34] is used by SLAM researchers. In the study [35],
Mask-RCNN is amended to segment the output of a dynamic mask. The output of

2. Related work 11

Mask-RCNN is not quite accurate along the boundaries of the predicted mask. To
improve the accuracy along the edges, contour refinement using canny edge detec-
tion is used. Canny edge detection refines edges by calculating moments between
the contour centroid and the edge centroid. Additionally, the Dyna-slam [36] study
utilises Mask-RCNN as a priori for detecting dynamic objects. The study also uses
multiview geometry utilising parallax angle (projection of key points from the previous
frame to the current frame) and depth to segment the moving objects in the current
scene as a region growth algorithm.

Conclusion Segmentation is preferred to the object detection as a separate mod-
ule is needed to extract the shapes of the objects inside the bounding boxes. Under
segmentation, semantic segmentation architectures such as segNet and ENet used
in SLAM achieve a faster inference but are not sufficiently precise. On the other hand,
instance segmentation using Mask-RCNN is not optimized for real-time applications.
Though the learning-based method delivers promising results, it is necessary to per-
form a careful study to select an architecture that provides a favourable tradeoff be-
tween speed and accuracy. The following section discusses various convolutional
neural architectures used in the computer vision domain.

2.3. Review on deep learning architectures

Deep learning techniques such as recurrent networks, convolutional neural networks
(CNNs), and a few generative networks aid in the solution of several computer vi-
sion tasks such as detection, localization, and segmentation. This chapter highlights
the various computer vision tasks for predicting moving objects using a convolutional
neural network and aims to select the state of the art model for our experiments.

2.3.1. Object detection

Object detection is a technique that uses bounding boxes to locate an object in a given
picture. A substantial evolution of deep learning started after the onset of AlexNet
[37] which classify 1000 different classes in ImageNet challenge. Two significant cat-
egories of object detectors are two-stage and single-stage detector. Only the archi-
tectures which are used in SLAM research were reviewed in detail.

The Two stage object detector detects objects in two stages: the first stage gener-
ates region proposals, and the second step predicts the class for the generated pro-
posals. Region proposal by selective search algorithm is adapted in R-CNN (Regions
with CNN features) [38]. Since the proposals were chosen using a preset method, it is
possible to have inadequate recommendations. Fast-RCNN [39] process each can-
didate feature proposal separately, bounding box and class predictions are obtained
jointly from the proposals. However, the model had poor inference due to the exter-
nal region proposal approach, preventing Fast-RCNN from being used in real-time.
Faster-RCNN [40] overcomes the issue of external region proposals by implement-
ing Region Proposal Network (RPN), which uses a convolutional neural network to
predict possible proposals. The proposals are reshaped to a fixed size using ROI
pooling, and the objectness score for each proposal is estimated using RPN to pre-

12 2. Related work

dict five outputs (4 for rectangular boxes and 1 for score). Non-maximal suppression
and cross-boundary implementation were adapted to remove the redundant results.
Faster-RCNN runs much faster than previous methods; however, it suffers from re-
dundant computation with expensive training procedures at each stage. Mask-RCNN
used in one of our experiment inherits properties from Faster-RCNN. While Faster-

Box offset
regressor
[3

SVM cbject
classifier
[

Box offset softrmax Box offset softmax
regressor classifier regressor classifier
¥ ¥ ¥ T

—
I Region CNN lI Region CNN Region CNM
features features featuras

A
Py

RPN

|I hon Deep II Region Deep
proposal CNN progosal CNN Deep CNM I

b
3
F:

R-CNN Fast R-CNN Faster R-CNN

Figure 2.4: Overview of two stage object detectors [41]

RCNN has a high degree of accuracy, it is computationally intensive. The introduction
of single-stage detectors resolves this computation problem by automatically predict-
ing bounding boxes and class categories from the picture without a separate region
proposal network. The design of a single-stage detector allows end-to-end optimiza-
tion during the training. You Only Look Once(YOLO) is a single-stage object detector
predicts the output based on a global understanding of the picture. This global rep-
resentation eliminates false positives (a common issue with two-stage detection) and
generalizes the model well on unseen data. YOLO divides the input image into grids,
and each grid is then responsible for detecting the presence of an object. The in-
clusion of a spatial restriction in terms of grid boxes prevents YOLO from anticipating
smaller items within the trained class. To address this problem, the output is predicted
at various scales in designs such as Single Shot MultiBox Detector [42], and YOLOv3
[43].

2.3.2. Segmentation

The segmentation network predicts an output label per pixel in the given images. The
segmentation network categorized into semantic segmentation and instance segmen-
tation based on its ability to estimate object instances.

2.3.2.1. Semantic segmentation

Semantic segmentation categorizes the object boundaries and predicts class labels
for each pixel in an image. The final prediction of the network is interpreted as a clus-
ter of semantically meaningful labels. Supervised semantic segmentation architec-
tures are grouped as feature-enhancement-based, deconvolution-based, and context-
based approaches depending on the information flow for predicting the final semantic
output [44].

2. Related work 13

Feature enhancement techniques restore spatial characteristics in the network by
allowing feature information to flow from previously extracted feature levels to deeper
layers. Skip connections allow the semantics of shallow layers to be combined with
the semantics of deeper levels, helps in preserving object location and edges. It also
helps to restore the loss of spatial information caused by max-pooling layers. Fully
Conventional Networks (FCN) [45] and UNet [46] are two popular architectures that
employ feature enhancement approaches. Concatenating features from previous lay-
ers raises the memory requirement, which is one of the significant drawbacks of this
method. Deconvolution-based semantic segmentation adapts encoder-decoder ar-
chitecture where pooling indices at each encoding stage are saved and retrieved in the
decoder stage to overcome the memory requirement issue faced by feature enhance-
ment methods. The SegNet architecture [32] implements the deconvolution technique
for semantic segmentation across the encoder and decoder architecture. The use of
pooling indices in the max-pooling step considerably decreases the trainable param-
eters and increases the inference speed, making it suited for various SLAM tasks.
Context-based approach enlarge the receptive field of neural networks to perceive
characteristics on global scales. Global average pooling and dilated convolution are
used commonly to enlarge the receptive field of neural networks. Pyramid Scene
Parsing Network (PSPNet) [47] retrieves the global context by aggregating the fea-
tures from pyramid pooling modules (stack of features in various scales) to produce
semantic segmentation. Global scaling improves segmentation in complicated situa-
tions, creates a connection between different classes, and reduces scaling error.

Semantic segmentation does not offer a clear difference between the object’s in-
stances, which is required to enhance map robustness. Instance segmentation ar-
chitecture is adapted to address the need of comprehending object instances.

2.3.2.2. Instance segmentation

The important distinction between instance segmentation architecture and semantic
segmentation architecture is that instance segmentation architecture identifies indi-
vidual object locations for each pixel. In instance segmentation, there are two primary
methods used, namely top-down and bottom-up approaches. The top-down method
identifies objects using bounding boxes and then generates a segmentation mask. On
the other hand, bottom-up approaches establish relationships between pixels from the
same instance that are processed as embedding vectors.

Mask-RCNN [34] is a popular instance segmentation architecture employed in SLAM
applications that adopts a top-down method. It is built on Faster-RCNN (two-stage
object detector), adding a parallel branch for mask prediction. The masking branch
process each feature output using a fully convolutional layer to produce a binary mask.
The primary issue with Mask-RCNN is misclassification and incorrect masking as a
result of the fixed mask resolution. In addition, the computational cost owing to the
extra masking branch is quite high.

On the other hand, single-stage instance segmentation models improve the perfor-
mance of instance segmentation tasks by achieving real-time inference. Only the

14 2. Related work

1

=
Mask : :

: Box regression Classification :

LE———, 1

masik 1 1

- Head — branch : Fully connected :
1 4 1 [layers 1
] [P H
: [Fixed size feature map =
| — 1 L}
'l - ROI align layer 1
1 2 2 e :
= P Feature map [
[] 1
[L}
[L}
[L}
= Convolutional backbone :
L} L}
! Faster |
L} L}
1 R-CINMN !
R L T I e P

Figure 2.5: Mask-RCNN architecture

architecture that achieves real-time inference speed is reviewed here. Based on fig-
ure 2.6, YOLACT [48] generates output mask using two parallel tasks by generating
the set of prototype masks and predicting per instance mask coefficients. Though
YOLACT is fast, it suffers from misalignment of bounding boxes and localization fail-
ure in the presence of many objects resulting in reduced accuracy.

404

351

¥ SOLOv2
SOLO

B Mask R-CNN

30 1 * A TensorMask

* YOLACT

@ PolarMask

® BlendMask

COCO Mask AP

Real-time
25 T T T

T T
0 25 50 100 125 150
Inference time (ms)

Figure 2.6: Speed vs accuracy comparison - instance segmentation architectures [49]

SOLO [50] is another significant single-stage instance segmentation design that pre-
dicts the instances from an entirely new perspective. It splits an image into grids and
associates each cell for generating class, instance and mask. SOLOV2 [49] is a suc-
cessor of SOLO, which use dynamic convolution and matrix non-maximal suppression
to achieve faster inference. Based on the comparison of popular instance segmenta-
tion architecture as shown in figure 2.6, it is clear that SOLOV2 could achieve faster
inference without compromising the segmentation accuracy.

Conclusion - While various deep learning architectures have been suggested, seg-
mentation architecture has successfully integrated dynamic object information with
SLAM. As our research question concentrates on generating an interactive map, we
adapt an instance segmentation model to improve the tracking and mapping. A theo-
retical comparison among the common instance segmentation architectures reveals

2. Related work 15

that SOLOV2 is suitable to our study for dynamic object removal. Network architec-
ture and implementation details of SOLOV2 are explained in detail in the following
chapters.

Methodology

The chapter explains the overall implementation of the various methodology adapted
in the project to improve the tracking and mapping results of ORB-SLAM2 by efficiently
handling the dynamic objects in the scene. The structure of the chapter first introduces
a basic outline of our implementation in the methodological overiview 3.1 and then
explains systematical inclusion of the proposed methods with ORB-SLAM2 to study
the behaviour in tracking and mapping results.

3.1. Methodology overview
3.1.1. Classification of dynamic objects

The core of this project is to build robust map for robot navigation in dynamic environ-
ment. Firstly, our research is devoted to managing dynamic objects in the scene and
the improvement is studied by observing the tracking result. Elimination of dynamic
objects negates the tracking failure which inherently improves the mapping perfor-
mance. So, it is essential to understand the basic categorization of dynamic classes
used in our studies using an example.

Potential Dynamic class

iy
000
L[)

Non-moving dynamic class
@ Op

| 72

Figure 3.1: Classification of dynamic objects

i)

17

18 3. Methodology

Let us consider that a deep learning model is used to predict the dynamic classes from
an RGB image. For instance, vehicles and pedestrians are two dynamic classes that
would possibly move within the environment. In the project, we classify the classes
that have ability to move as potentially dynamic objects based on our previous knowl-
edge. However, the generic CNN model could not determine the moving vehicle sep-
arately. To realize predefined classes movement in the scene, we should divide po-
tentially dynamic objects into moving and non-moving dynamic classes. In a nutshell,
all the cars observed in the scene is considered as potentially dynamic class. While
parked cars are sub-categorized as non-moving dynamic objects and the cars that are
actually moving in the current instance are sub-classified as moving dynamic objects.

3.1.2. Stages of development

The primary objective of our approach is to answer the research questions 1.2 with a
suitable methodology. To build interactive map, we need to improve both tracking and
mapping results. Initially the tracking quality is studied in dynamic interactions where
the learning based method reviewed in the chapter 2 is implemented with baseline
ORB-SLAMZ2. The deployment of these learning based methods are done in three
distinct stages. Each step is developed in response to the limitations of the preceding
stage.

The summary of each development step that contributes to the handling of dynamic
objects is as follows:

» Base - Base implementation of ORB-SLAM2 architecture without any modifica-
tions.

» Stage 1 - This stage uses a single-stage instance segmentation architecture
in association with ORB-SLAMZ2 to understand the semantics of all potentially
dynamic classes. In practice, SLAM would process the features into two groups
of points: static (e.g. buildings) and potential dynamic objects (e.g. all the cars
in the scene).

®
’,' A _ Potentially dynamic points
Eg: all the cars

Static points
Eg: trees, building
@

Camera centre

Figure 3.2: Stage 1 - Dynamic classification

3. Methodology 19

» Stage 2 - This stage incorporates moving object segmentation(not reviewed in
chapter 2) over stage 1 implementation to distinguish moving and stationary ob-
jects. Overall, in the final process have three subsets namely static (e.g. Build-
ings), moving dynamic class(e.g. moving cars) and non-moving dynamic class
(e.g. parked cars) as shown in figure 3.3

Non-moving dynamic points
Eg: parked cars

Moving dynamic points
Eg: moving cars

Static points
Eg: trees, building
@

Camera centre

Figure 3.3: Stage 2 - Dynamic classification

Finally, our approach is directed towards strengthening the quality of maps by seman-
tic reasoning. Our study experiments a concept of semantic mapping by efficiently
using the learnt features from stage 1 and stage 2 implementation by generating dy-
namic and instance semantic maps. Output from the models that predicts dynamic
classes could be directly used for generating dynamic semantic maps. However, the
implementation of instance semantic segmentation involves the utilisation of the multi-
object tracking in the segmentation output. Additionally, we compute a dynamic den-
sity to determine the amount of traffic in a given region based on the dynamic map.
Lastly, map management is presented to store the global maps as point clouds and
octomaps.

3.2. Tracking
3.2.1. Base - ORB-SLAM2

ORB-SLAM2 algorithm comprises of tracking, mapping and loop detection module.
These module runs in parallel on three different thread to estimate visual odometry
and map the environment. ORB-SLAM2 is a graph-based system that optimizes pose
graph of keyframes by reducing re-projection error to generate landmarks. The func-
tioning of graph based system is explained in the appendix. In addition to three parallel
threads, each thread operates based on the subclasses such as frame, frame drawer,
keyframe, keyframe database, initializer, map point, map drawer, ORB extractor, ORB
matcher, solvers, and viewer. All the classes are inter-linked, i.e.,any change to one
has a detrimental effect on the output. Hence, modifications on the class function

20 3. Methodology

during our implementation is done carefully to ensure that base functionalities of the
SLAM are not jeopardized. We are primarily concerned with modules that contribute
to final tracking and mapping in this project; no changes are made to the loop closure
thread.

TRACKING
Initial Pose Estimation
Extract |, Track New KeyFrame
-- ORB : fr(;n;lloa::\lfi;;r:i\:nor Local Map Decision
v
Map Initialization MAP
PLACE MapPoints KeyFrame 5
RECOGNITION Insertion g
Visual Recent ;
Vocabulary — MapPoints || >
Covisibility Culling B
Recoghition Graph g
Database Spanning New Points || &
Loop Correction Loop Detection Local BA
— 1 Local
lcs)s?st:emn:lzael Loop Compute || Candidates ‘ KeyFrames
Graph Fusion Sim3 Detection " Culling
j

LOOP CLOSING

Figure 3.4: Components of ORB-SLAM2 [16]

Tracking thread: The tracking thread in ORB-SLAM2 is responsible for the estima-
tion of visual odometry. Primarily it extracts features from individual frames and uses
a perspective-n-point algorithm to estimate the camera poses. The tracking thread
comprises of motion model, reference keyframes and relocalization module to track
the camera instances. The motion model assumes the constant velocity constraint
to predict the feature points based on the previous frame. The tracking is marked as
successful or unsuccessful based on the number of inliers. The motion model works
quite well only if the relative change between poses is minimal. When the motion
model fails to track, reference keyframes are used in tracking. Visual features based
on a bag of words are generated for the current frame compared to the reference
keyframe features to estimate poses. Local bundle adjustment is used to rectify these
postures. In certain situations, tracking might completely fail. To relocalize the cur-
rent camera position in the advent of tracking failure, feature matching is performed
across all the keyframe. One with the highest similarity score was chosen to estimate
the current pose based on the perspective-n-point algorithm.

In addition to the estimation of camera poses, the tracking module search for new
matches based on previous landmarks of the local map. These local maps are cre-
ated using a collection of keyframes that shares the similar features of the current
frames. The 3D points from the local maps are projected onto the current image
frame and added as new matches if the viewing angle and distance from the camera
centre are under a specified threshold. Recent matches are then optimized to refine
the estimated poses.

3. Methodology 21

The tracking module also superintends the selection of new keyframes based on the
following condition.

» Gap between the last relocalization and current frame is at least 20
* Gap between the last keyframe and current frame is at least 20
» Current frame tracks at least 50 key points

* Local map thread is idle

Similarity of points between the current frame and reference keyframe should
be less than 90%

Mapping thread: The mapping thread is responsible for maintaining keyframes and
map points. After a tracking thread selects a new keyframe, the mapping thread in-
serts it into the covisibility graph and ensures that visual features corresponding to
the keyframes are updated appropriately. The covisibility graph is a layout where the
nodes correspond to keyframes, and the edges represent map points. Map points
and keyframes were added generously by the tracking thread. The map culling mod-
ule monitors newly added points and retains them in the final map only if the created
points could be observed in three keyframes, and the tracking module detects the
points in 25% of frames. As map point culling, keyframe culling eliminates redundant
keyframes when 90% of its associated map points is observed in at least three more
keyframes. The culling process in the mapping thread assists in limiting the growth of
the graph.

The main functionality of mapping thread is the ability to insert new map points, which
results in a denser final map. Unmatched features in the current frame are examined
in the other keyframe for potential matches to triangulate as a new map point. New
map points should have depth, re-projection error, and scale within the specified limits
in addition to satisfying the epipolar requirement. Local bundle adjustment optimizes
the pose of the current keyframe and its neighbouring keyframes along with new map
points associated with those keyframes.

Loop closing thread: The loop closure module recognizes the features of the re-
gions seen by the system in the previous instance that helps the system correct the
drift during tracking and mapping. The candidate frames for loop closure are chosen
based on the predicted similarity score in the covisibility graph. The similarity score
is determined by comparing the keyframe’s bag of words representations. Similarity
transformation with maximum inliers picked as a representative loop closure frame.
The transformation matrix with seven degrees of freedom generated during the loop
closure optimization corrects the current keyframe. It propagates the adjustment to
all adjacent keyframes until the whole graph is corrected.

Theoretical representation:

Let Z, X, and O denote the camera measurement, the camera state, and the object
state, respectively. | denotes the estimated 3D landmark generated by SLAM. Let
w, ¢, and g symbolize the coordinates expressed with respect to world, camera, and

22 3. Methodology

object at any point in time i. Additionally, the superscript and subscript o imply the
predicted class, s and d indicate static and dynamic objects, k denotes the current
time instance, and N denotes the number of dynamic objects in the given space.

Generally, SLAM works well under the assumption of a static environment [3]. Hence
with static world assumption poses and landmark for the given measurements could
be represented as,

p (X, U1Zy) (3.1)

When the dynamic objects are present in the environment, their states 0, and corre-
sponding landmarks [° are also assumed to be static by the SLAM algorithm repre-
sented in equation 3.2. This static assumption of dynamic objects affects the estima-
tions by creating false feature matches.

p(Xkl lr Okrlolzk) (32)

This is one of the important limitations of SLAM that affects the quality of tracking.
In highly dynamic scenarios, inconsistent feature correspondences cause tracking to
even fail. Even though the camera measurement Z identifies distinctive visual fea-
tures, the equation 3.2 demonstrates that pose estimation and map points of static
and dynamic entities are closely intertwined. However, in the real world, the states
of camera and dynamic objects are entirely independent; thus equation 3.2 can be
modified as

P (X, YOk, 1°, Zy) (3.3)

The methodology implemented in stage 1 and stage 2 exploits the independent state
representation to overcome the limitation of static assumption.

3.2.2. Stage 1 - Dynamic object segmentation

This stage uses the deep learning models to find potentially dynamic classes and
remove corresponding features in the ORB-SLAM2. To achieve this objective, our lit-
erature review demonstrates that a single-stage instance segmentation architecture,
particularly SOLOV2, could successfully generate an accurate output mask with faster
inference.

We only identify classes like vehicles, pedestrians, and bicycles as potentially dynamic
objects in our experiments. The important assumption of stage 1 implementation
is that regardless of how predicted classes move in their surroundings, we clas-
sify them as dynamic. Firstly, the neural architecture of SOLOV2 is explained, and
later integration of output with ORB-SLAM2 is discussed.

3.2.2.1. SOLOV2 network architecture

SOLO is a term that refers to segmenting object by locations. As implied by the name,
the segmentation mask is produced depending on the image’s location. The central
idea is similar to that of a single-stage object detector, i.e., SOLOV2Z analyzes the
presence of object instances and investigates the possibility of segmenting objects
based on their centre position.

3. Methodology 23

SOLOV2 [49] framework splits the input image into grid cells, and each cell is respon-
sible for pixel-wise categorization and object instance association. The architecture
uses the ResNet-FPN backbone [51] to extract features at different scales from the in-
put image, which are then utilized by the instance head and mask head. The instance

G: §SxSxD

kernel

branch

T~ (i3,)
e [N
e] 22 > :

£
{ i f oy ——
y feature

branch

\

L/ F: HxWxE

Figure 3.5: SOLOv2 mask head [49]

head is further subdivided into category head and kernel head. The category head
is in charge of determining the labels for the items included inside the grids, while
the kernel head calculates the filter weights for dynamic convolution. The dynamic
convolution module combines the output from the mask head with the kernel head to
produce the instance segmentation output. In SOLO, kernels convolve over feature
maps to create a single big tensor mask which is decoupled in SOLOV?2 as a separate
kernel and mask to enable faster inference.

Unlike skip connection used in other segmentation architecture, the system gains
translation invariance by incorporating the normalized pixel coordinates into convo-
lutional layers through the CoordConv operator [52]. When the coordconv layer is
added to the input dimension of H W * C, the channel size increases by two, resulting
in a dimension of H x W = (C + 2).

SOLOV?2 trained using conventional focal loss [53] and dice loss [54]. The details
of conventional focal loss and dice loss is as follows,

Dice loss: To comprehend the dice loss, one must first analyze the intricacies of
the dice coefficient. Dice coefficient is calculated as the ratio of correctly predicted
pixel to the total summation of pixels contributed by prediction and ground truth which
could be represented as,

N
2% yigt;
N N
i vi+ X gt
Dice loss is constructed based on the dice coefficient, which determines the overlap

between the ground truth and predicted segmentation that helps the model learn the
boundaries elegantly.

Dice Coefficient =

(3.4)

N
2xY yigti+1
N N
Yoyt + X gti +1

Dice Loss =1 — (3.5)

24 3. Methodology

Focal loss: Focal loss is a modified version of cross-entropy loss [55] designed to
work better on the highly imbalanced dataset. Focal loss contains hyperparameters
that gives lower weightage to the simple examples while increasing the weight of dif-
ficult ones. Whereas cross-entropy and weighted cross entropy [56] are used to cal-
culate the gradient flow based on the positive and negative samples only. Positive
samples indicate target classes, while negative samples are usually background.

CrossEntropy (p;) = —a; * log (p;) (3.6)

where,
_ p,y=1
Pe = { 1 —p, otherwise } (3.7)

Equation 3.6 differentiates both positive and negative samples but does not provide
insight between easy and hard samples. Easy samples are those that are correctly
classified as foreground or background, while hard samples are those that are mis-
classified. Focal loss address this problem with the following implementation,

Focal Loss (p,) = —a; (1 —p,)" log (p,) (3.8)

a; and y are the hyper parameters that take value between 0 and 1 which are either
learnt or fixed during the training. If y = 0 then focal loss becomes cross entropy
loss.

3.2.2.2. Combining dynamic object segmentation with ORB-SLAM2

This section discusses the algorithm used to blend the segmentation output from
SOLOV2 with ORB-SLAM2 that helps identify the measurements that belong to poten-
tially dynamic objects. The stage 1 implementation categorise the feature measure-
ment Z into two subsets as static measurements Z;,, potentially dynamic object’s
measurement Z;. These feature subset identified using segmentation mask modifies
the equation 3.3 as

P (X, UZy) - Ok, 1°1Z3) (3.9)

Algorithm 1 describes the implementation steps involves in stage 1 to process individ-
ual images and their associated masks to split the output features into subsets. The
algorithm is implemented on the feature extraction stage of ORB-SLAM2(in Frame
subclass).

A key difference between our approach from other research studies is that our solu-
tion discards dynamic features during the tracking step but includes them exclusively
at the mapping stage(discussed later in the chapter). Thus our implementation not
only improves robustness in tracking results but also creates semantically meaning-
ful dynamic maps. Since we preserve the details of map points of all the objects,
the final result obtained by the combination of SOLOv2 with ORB-SLAM2 could be
probabilistically expressed as,

P(Xi, U1 Z3) - p(1°1Z5) (3.10)

3. Methodology 25

Algorithm 1 Processing features as static and potential dynamic class
1: fortimei = 0to K do

2: Z; < RGB; ORB feature extraction
3 for Number of Z; do

4: if Z; in Mask; then Checking features in dynamic area
5: Z? =True

6: else

7: Z; =True

8: end if

9: end for

10: end for

11: return Z;;, & Z¢

3.2.3. Stage 2 - Moving object segmentation

Though we adopt a state of the art instance segmentation architecture to remove
dynamic objects through stage 1, the experimental results achieved during the sim-
ulation are not convincing. The main drawback comes from the inability of SOLOV2
to identify whether the predicted mask is moving or not. The current section dis-
cusses the techniques employed for classifying dynamic objects into moving
and non-moving entities. Some conventional methods based on the geometrical
approach reviewed in the literature study might well be utilized to find moving objects.
We performed experiments using the geometrical approach with epi-polar constraint
to detect dynamic objects in the segmentation output. But the final results obtained
from geometrical methods are not consistent in all the use cases. The appendix B.1
contains the specifics of the geometric method implementation. To that extent, we
started exploring the possibilities of finding the moving object using a learning-based
approach for better generalization.

Action recognition [57] is an important area of computer vision that uses visual-temporal
characteristics to anticipate the action in the video sequence. Using the idea from ac-
tion recognition, we develop two-stream encoder-decoder CNN architecture to find the
moving object from the potential dynamic subset. The inclusion of temporal features
is the primary modification needed in stage 2 to detect moving subsets.

3.2.3.1. Two stream network architecture

Two-stream architecture developed in our project follows a similar structure with MOD-
Net [58]. The model uses a RGB image and an optical flow input to detect moving
objects and segment the spatial mask. The architecture contains two encoder and
two decoder units. Numerous modifications have been made to the base MODNet
structure to improve the final accuracy.

The encoder part of the network is based on VGG [59] backbone which extracts fea-
tures from RGB and flow inputs. Optical flow input to the network is generated by
FlownetV2 [60] architecture. Optical flow quantifies the temporal connection between

26 3. Methodology

neighbouring frames in the near term. Moving elements observed between the two
consecutive images exhibit significant differences in form and degree of flow com-
pared to static regions. FlowNet model captures these changes as two-dimensional
flow maps representing the direction of flow along the x and y axes. The flow vectors
are transformed to an RGB picture based on the magnitude and direction of the flow
using the colour-coded encoding [61]. This colour-coded flow image could then di-
rectly be used to identify the features using convolutional layers. The details of optical
flow representation could be reviewed in section A.1.7.

The spatial and temporal features extracted by two encoders are combined in the
network fusion stage. Features from intermediate layers are fused together by con-
catenation of channel space or by summation operation. The feature fusion helps to
achieve better segmentation accuracy on moving object segmentation. The combined

VGG 16 | FCN8s

Spatial encoder Spatial decoder

Input image lﬁ /L |_|:\

VGG 16 FCN8s

’_/_JJ Flow encoder Motion decoder

Optical flow Moving segmentation

Figure 3.6: Two stream encoder decoder architecture for moving object segmentation

features are then processed by two FCN8-based [45] decoders. The spatial decoder
infers the semantic segmentation of all the cars in the image, while the moving seg-
mentation decoder infers the semantic segmentation of just the moving vehicle. ReLU
and max-pooling layers used in the encoders reduce the spatial resolution of feature
maps. Hence, high dimensional feature maps are upsampled by transposed convolu-
tion to obtain the required final dimension. To enhance the information flow from the
encoder to the decoder at various scales, fused features from each stage are concate-
nated carefully into the decoder unit through skip connections, as shown in figure 5.8.
This information from the encoder improves the localization of the features associated
with the objects in the final segmentation output.

3.2.3.2. Combining moving object segmentation with ORB-SLAM2

Moving object segmentation categorizes the output into two distinct classes: moving
and non-moving objects. These moving segmentation outputs are processed similar
to that of stage 1 implementation by modifying the feature extraction stage of ORB-
SLAM2. In stage 2, the extracted features are subdivided into three subsets of mea-
surements denoted by Zj, 429, Z2, which represent static, moving, and non-moving
dynamic features, respectively. The stage 2 implementation on the feature extraction

3. Methodology 27

stage of ORB-SLAMZ2 is explained in algorithm 2.

Algorithm 2 Processing features as static, moving and non-moving dynamic objects
1: fortimei = 0to K do

2 Z; < RGB; ORB feature extraction
3 for Number of Z; do

4 if Z; in Mask; then

5: if Mask; == dynamic then

6: 179 = True Checking moving features
7 else

8: SZ7 = True Checking non-moving features
9: end if

10: else

11: Z; =True Checking static features
12: end if

13: end for

14: end for

15: return Z;, & 479 & $79

Sub-categorisation of non-moving dynamic features in stage 2 overcomes the draw-
back of our previous implementation. The non-moving dynamic features are combined
with static features to enhance the robustness of the tracking. Similar to stage 1, in-
stead of removing moving features, we use them in semantic mapping. Combined
optimisation of the subset of features could probabilistically represented as,

p(Xie, 1212123, 2) - p(M1°1Z3) (3.11)

The first portion of the equation 3.11 is responsible for producing poses and landmarks
using static and non-moving dynamic features. The second part of the equation, which
detects the moving object features in the vicinity, is utilized only for mapping.

3.3. Mapping

The previous implementations in section 3.2 concentrate more on handling the dy-
namic objects to improve the tracking. As mentioned earlier, the robustness in track-
ing would inherently estimate robust three dimensional maps. However the mapping
results of ORB-SLAM2 will represent all the map points as static. Inclusion of the
points corresponding to the dynamic objects without modifications would also be rep-
resented as static. So, we investigate the possibility of using the semantic information
obtained in stage 1 and stage 2 algorithms to enhance the quality of the map. This
section discusses the technicalities involved in semantic mapping implementation and
the prediction of dynamic density.

In ORB-SLAMZ2, a monocular camera image is processed by triangulation to transform
two-dimensional visual features to three-dimensional map points. These map points

28 3. Methodology

represent the extracted static visual features and do not possess any additional infor-
mation about these features. Semantic mapping helps in identifying the information
about individual map points generated by ORB-SLAM2. The semantic information
could be merged in two ways: directly or in parallel fusion [30]. Direct semantic fusion
processes the final 3D point clouds directly to understand their underlying structure
and related semantics. The direct approach requires 3D annotated data and requires
heavy computation to predict the structure from the point cloud. On the other hand,
parallel semantic fusion utilizes the 2D image to comprehend the scene and associate
the 2D semantic knowledge appropriately in 3D space. As our solution already uses
deep learning models to infer semantics from images, we could immediately use the
information from previous stages to fuse it in a parallel fashion. Our implementation
integrates the dynamic classification and instance semantic segmentation to build a
dynamic semantic map and instance semantic map. The below sub-section 3.3.1 and
3.3.2 will cover the implementation details of these semantic mapping in detail.

Figure 3.7: Semantic mapping. Semantic information associated with different color in 2D image(left)
is associated with 3D map points(right)

3.3.1. Dynamic semantic mapping

In general, semantic mapping associates the object class present in the environment
such as pedestrians and cars with map points. We take the idea of semantic mapping
one step ahead where in addition to finding the car present in the 3D space, we as-
sociate the dynamic information. Hence, in dynamic semantic mapping, the details of
the dynamic subset obtained in the feature extraction stage are used in the mapping
thread. 2D-3D data association from feature extraction to mapping thread is the key
to translating image semantics to three-dimensional space.

The algorithm 3 details the various steps involved in the data association to built a
dynamic semantic map based on the output of stage 2. It is important to note that the
subset of feature measurements varies as per the stages. The algorithm 3 could be
slightly changed to adapt the result from stage 1.

Stage 1 classifies static or potentially dynamic features, producing static landmark
[and a dynamic landmark [° respectively. While stage 2 classifies them into three
subsets creating static landmark [, non-moving dynamic landmark °I° and moving
points ¢1°. Thus final map generated by stage 2 output provides dynamically separa-
ble semantic maps in three-dimensional space.

3. Methodology 29

Algorithm 3 Dynamic semantic mapping
1: for Z; = 0to K do

2 points « Triangulate(Z;, Z; + 1) Depth estimation
3 for Number of points do
4 if Z; = True then Static points
5: l=True
6 else if °Z{ = True then Non-moving dynamic points
7 $I° =True
8 else if ?Z¢ = True then moving dynamic points
o: a1 = True
10: end if
11: end for
12: end for

13: return [& S[°& 41°

3.3.2. Instance semantic mapping

The implementation of SOLOV2 in our pipeline helps us to take advantage of instance
segmentation output to build instance semantic maps [62] [63]. While the SOLOV2
algorithm provides instance segmentation for each image, the output mask cannot be
correlated across successive frames. Thus, it is critical to track the instances pro-
duced between two consecutive frames in order to construct instance semantic map-
ping. A tracking module is developed to track instances between consecutive images
that generate an instance id for each image that could be later used in mapping to
identify two similar objects across frames.

3.3.2.1. Multi-object tracking

The tracking module is developed based on the idea of multi-object tracking (MOT)
[64]. In general, object tracking examines the video to find the existence of the same
object seen in the previous frame and tracks them until the object becomes apparent.
Tracking by detection is a common technique adapted for addressing MOT problems
in which the output of detection is acquired first, and tracking is done afterwards. After
the detection, the predicted area is cropped as patches from the corresponding RGB
image. A separate CNN model subsequently processes these image patches to pro-
duce feature embedding. Feature similarity among the acquired embeddings on two
image frames is used to track the same object by assigning it to a unique instance-
id. The discussed approach is also known as the Separate Detection and Embed-
ding(SDE) model [66]. The other techniques include joint detection embedding and
cropping patch directly from feature maps. We chose to adopt the separate detection
and embedding technique in our study because it enables the tracking algorithm to be
implemented separately without any modification to SOLOV2. The independence of
our implementation allow us to adapt pre-trained weights of SOLOV2 and even extend
the tracking module to work with different architecture in future.

The feature embedder model is the principal part of the tracking module. Any pre-

30 3. Methodology

Figure 3.8: Multi-object tracking [65]

trained CNN based backbone architecture would be appropriate for the feature em-
bedding model. However, ResNet18 architecture [67] pre-trained on the ImageNet
dataset is chosen as the feature embedder in our pipeline. In addition to the feature
embedding model, our tracking module has a class constraint and IOU filtering, which
help us to reduce the computation needed in the feature matching stage. The section
5.1.3.1 will demonstrate why ResNet18 was selected and overall implementation of
tracking module in detail.

3.3.2.2. Combining multi-object tracking with ORB-SLAM2

Each segmentation mask of SOLOV?2 is processed in the tracking model possesses
an associative instance identification number(id). The results of tracked instances are
stored as an image(say as track image) by representing the pixel value of the segmen-
tation mask replaced with instance id value as shown in figure 3.9. In addition to the
mask produced by SOLOV2, the ORB-SLAM2 algorithm is now adjusted to receive
track images as well. As a result of this modification, ORB-SLAM2 now accepts RGB
images, segmentation mask images, and track images.

Segmentation image Track image

Instance id: 2 ” Instance id: 1

Figure 3.9: Track image representation

The fundamental step in the instance semantic mapping is to identify a cluster of points
belonging to the same object instance and associate them with unique semantic la-
bels. The algorithm 4 describes how tracked identifiers from object tracking modules

3. Methodology 31

could be correlated with three-dimensional points in order to identify the individual
cluster.

Algorithm 4 Instance ID association
1: for Z; = 0to K do

2 points « Triangulate(Z;, Z; + 1) Depth estimation
3 instance;y < Z; at track; Object ID from tracking module
4: for Number of points do

5 if Z) = True then 3D association
6 12 ctance = instance;q

7 end if

8: end for

9: end for

10: return l?nstance

The representation of track id as track image helped us to directly extend the im-
plementation on the feature extraction module done on stage 1 and stage 2. The
2D-3D data association involves linking instance ids from the track image to each fea-
ture measurement (map points are triangulation of similar features) if the extracted
features fall in one of the contours on the track image. For instance mapping, we only
consider all landmark points that belong to potential dynamic objects 17, ., ,.,.. (results
of stage 1) and specifically on car class.

3.3.3. Dynamic density estimation

This section explains the utilization of the output of semantic maps through dynamic
density estimation. The dynamic density is nothing more than a metric for enumerat-
ing the degree of dynamic interaction occurring in the local environment. Identifying
the level of dynamic interaction in the environment enables the robots’ navigation to
function more effectively by establishing appropriate priors to regulate the speed.

In contrast to tracking and mapping, dynamic density is calculated instantly based
on the current location of the ego-vehicle and is therefore shown only as visualization
output at the present instant. There are two approaches for estimating dynamic inter-
action: one utilizes two-dimensional semantic information directly received from the
neural network, and the other is based on three-dimensional semantic maps. Though
two-dimensional semantics is used in the previous mapping implementation, it is inef-
fective in dynamic density estimation as the results become more reliant on the image
being seen. Due to the limitation in the camera focus, the dynamic objects that are
not recorded in the field of view could miss few objects present around it. In contrast,
the second approach that utilizes generated maps overcome the limitation, providing
more intuitive information around the space of the ego vehicle.

The dynamic semantic map from stage 2 encapsulates all the information about the
moving dynamic objects which is used to identify the dynamic classes that move in a

32 3. Methodology

Algorithm 5 Dynamic density estimation

1. dynamic_count = 0
2: for Number of points in map do

3: if 21° = True then

4: x,y,z < 41°

S: Xe»Yor Ze < Xi

6: if Equation 3.12 is satisfied then
7: dynamic_count + +

8: end if

9: end if

10: end for

11: if dynamic_count > 10 then
12: display = highly dynamic
13: else

14: display = less dynamic
15: end if

local 3D space. With the centre set on the current camera pose, the spherical con-

straint determines if the dynamic points are bounded inside the sphere. Spherical

constraint to find the 3D local space is given by,
x,y,z=41°

Xe»Yor Ze = Xi (3.12)

VE—x)* + —Y)2 + (z—2z)*<r

where:

419 = |landmark associated with moving class
X, = current camera pose
r = radius of sphere

The map points satisfying the bounding conditions are the only points that involve
in the density calculation. The algorithm 5 explains how local space is classified into
high or low dynamic interaction states. To account for the potential outliers in the
mapping stage, we consider the local area to be dynamic only if at least ten dynamic
points satisfy the equation 3.12.

Dataset and metrics

4.1. Dataset

Proper choice of the dataset is essential to test our implementations proposed in the
methodology. This section deals with the selection of our dataset for testing SLAM
and segmentation models. Furthermore, it covers our contribution on generating a
new dataset for moving object segmentation.

41.1. SLAM

To validate our proposed methodology on ORB-SLAM2, we need an odometry eval-
uation dataset specifically tailored for visual SLAM. We conducted a review on three
widely used datasets, namely the EuRoC [68], TUM [69], and KITTI [70]. EuRoC
dataset is a collection of stereo sequences of the indoor environment recorded using
a micro aerial vehicle. Also, the TUM dataset contains collection of sequences that
are primarily focused on the indoor environment. On the other hand, the KITTI odom-
etry dataset gathers outdoor environments, especially urban and highway settings.
Outdoor spaces have a high level of dynamic interactions, which aligns our interest in
the KITTI dataset.

KITTI odometry dataset contains 22 sequences, out of which only 11 sequences have
ground-truth information. In the 11 sequences only for six sequences loop closure is
possible as shown in the table 4.1. After manually observing these six sequences, we
noticed that only sequences 05 and 07 include a mix of moving and stationary vehi-
cles, which could be ideal to evaluate our approaches. However, to better understand
our methodology in a highly dynamic setting, we also included the 04 sequence in our
list of selected datasets.

The ground truth of sequence 04 has 271 poses where camera motion runs almost
straight with path length closer to 394 meters. Sequence 07 has 1101 ground-truth
poses covering the loop with an average length of 694 meters, and sequence 05 is
the longest path with a stretch of 2205 meters with 2761 ground-truth poses.

33

34 4. Dataset and metrics

| Sequence No. | Remarks | Dynamic details | Loop closure | Selection |
00 Urban Parked cars Yes No
01 Highway Moving cars No No
02 Highway and Urban Parked cars Yes No
03 Urban Parked cars No No
04 Highway Moving cars No Yes
05 Urban Mixed traffic Yes Yes
06 Urban Parked cars Yes No
07 Urban Mixed traffic Yes Yes
08 Urban Mixed traffic No No
09 Urban Parked cars Yes No
10 Urban Parked cars No No

Table 4.1: KITTI odometry dataset [70]

400 04 05
400
350 100

300 300

200

z(m)
)
S
z(m)
z (m)

150 100

-200 -150 -100 =50 0 50 100 150 200 -200 -100 0 100 200 -200 -175 -150 -125 -100 -75 =50 -25 0
x(m) x(m) x(m)

(a) Sequence 04 (b) Sequence 05 (c) Sequence 07

Figure 4.1: Ground truth of KITTI odometry dataset

4.1.2. Stage 1 - Segmentation dataset

Single-stage segmentation architecture for stage 1 is selected based on the litera-
ture study. However, to justify our choice of architecture through quantified results
in SLAM setting, a segmentation dataset in an outdoor environment with dynamic
classes is needed. Images captured in Cityscape [71] and KITTI dataset are taken in
outdoor scene. Since SLAM odometry is evaluated on the KITTI dataset, we leverage
the KITTI segmentation dataset to assess our selected deep learning models. The
dataset contains 400 images with different classes where 200 images for each train
and test data. Although the labels include various dynamic classes, the training data
with car labels are used in the final evaluation. This is because almost 85% of the
potentially dynamic object seen in the KITTI odometry sequences belong to the car.

The KITTI segmentation dataset selected for stage 1 is just used for the final eval-
uation of the models and not used in the training of the model.

07

4. Dataset and metrics 35

(b) Ground truth

Figure 4.2: KITTI segmentation dataset

4.1.3. Stage 2 - Moving object dataset

The two stream neural architecture used in stage 2 requires details of the movement of
cars and optical flow images and RGB images to train the model. These requirements
are satisfied only by the KITTI MoSeg dataset [72] which contains semantic segmen-
tation for all the cars and the bounding boxes for moving cars detection along with
optical flow images. Since our implementation requires ground truth segmentation in-
put for both the decoders, the KITTIMOseg dataset needs to be modified to generate
a segmentation mask for the moving object from the bounding box. In addition, flow
images available in the dataset are distorted, representing inaccurate object bound-
aries. As the authors do not disclose the details of the generation of flow images in
the paper, we use FlowNetV2 to regenerate the flow images.

o

(a) original distorted (b) Modified flow image

Figure 4.3: Improving boundaries of flow image KITTIMoseg

36 4. Dataset and metrics

4.1.3.1. New dataset generation

In this project, we created a new dataset based on KITTI odometry sequences target-
ing moving object segmentation. Polygon tool Labelme [73] is used for annotation.
The polygon points are converted into segmentation images with a separate python
script. In total, 3085 static cars and 893 moving cars are annotated. FlowNetV2 ar-
chitecture is used for generating optical flow images. The new dataset contains 1014
distinct sample frames with associated flow images and mask. A sample of our newly
created dataset is shown in the figure 4.4.

Figure 4.4: Stage 2 dataset created based on KITTI dataset. Row (i) RGB image, (ii) Flow image, (iii)
Segmentation mask of all cars, (iv) Segmentation of moving cars

4.2. Metrics
4.2.1. Absolute trajectory error - SLAM

This section explores the metrics used to compare the SLAM tracking results obtained
in each stage of our methodology with baseline. Quantitative metrics such as absolute
trajectory error and relative pose error are used to evaluate the estimated trajectory
against the ground truth. Absolute trajectory error used in ORB-SLAM2 paper is uti-
lized in our experiment to facilitate comparisons. Absolute trajectory error first aligns

Estimate X

Aligned Estimate X'

"“ [rajectory Alignment
Groundtruth X

Figure 4.5: Trajectory alignment for absolute trajectory error [74]

the estimated trajectory with ground truth and then calculates the root mean square

4. Dataset and metrics 37

error between aligned trajectory and ground truth [75]. Due to the scale ambiguity in
monocular slam, alignment of the trajectory becomes mandatory to obtain accurate
estimates. The Umeyama method [74] is used to estimate the alignment transforma-
tion as a least square problem, as illustrated in the algorithm 6. The estimated trans-
formation for rotation, translation and scale based on the Umeyama method would
result in the trajectory alignment as shown in the figure 4.5.

Algorithm 6 Umeyama - Alignment transformation estimation

1: Input: Estimated positions P and ground truth position P
2: Calculate the mean — p,; = %Zf{zo P, and Kgt = %Zfl]:o P,

A

Pn_.“esi:”2 and O-Zt =

. 1 N
3: Calculate the variance — o4, = =Y g

N n=0
2
%Zgzo 1B = rge|
. Calculate the co-variance matrix — X = %ZLO (Py — uge) (B — uest)T

4
5: Perform singular value decomposition — X = UDVT
6. if |U| |V| <0 then
7.
8

; W = diag(1,1,-1)
. else
9: W = Identity Matrix

10: end if

11: Calculate rotation R = UWVT

12: Calculate scale s = % trace(DW)

p
13: Calculate translation t = Hge — SRilest
14: return R, s, t

After the trajectory alignment, the root mean square error of the euclidean distance
between new estimated poses and ground truth poses obtains the absolute trajectory
error. The primary advantage of the metrics is that a single number captures over-
all variation in position estimation over the whole trajectory. However, the calculated
error is sensitive to time. During experiments, ATE for the change in the position is
calculated by the following formula,

N
ATEpos _ % z ”pzligned _ pﬁt”2 (4.1)
n=0

where:

p = position of individual pose

4.2.2. 10U estimation - Segmentation

Average precision is used as a metric to evaluate the accuracy of segmentation. Av-
erage precision is usually calculated over all the classes and across all IOU threshold.
IOU [76], also known as intersection over union, determines the overlap of the ground

38 4. Dataset and metrics

truth(A) and predicted masks(B) to distinguish true positives, false positives, and false
negatives. If the IOU value is higher than the set threshold, it is considered as cor-
rectly predicted. Usually, IOU threshold values are iterated from 0 to 1 in steps of 0.1,
and their final average is used for the comparison.

Overlap area

IOU =
Union area

Figure 4.6: IOU metrics

Experimentation and results

The chapter covers various experiments conducted in the project and discuss the ob-
tained result by comparing against the baseline. Though the final objective is to build
robust mapping by improving the SLAM process through the learning-based method,
we first analyse the deep learning architectures separately and then investigate the
influence of the model on SLAM in the second section.

5.1. Object segmentation and tracking models

Different convolutional neural network models discussed in the methodology are im-
plemented to improve the quality of the SLAM. This section explains the experiment
details of all the model architectures used in the pipeline and their limitations.

5.1.1. SOLOV2 - Dynamic object segmentation

The choice of single-stage instance segmentation architecture SOLOV2 for dynamic
object removal adapted in development stage 1 [3.2.2.1] is justified by comparing the
segmentation accuracy with other popular baseline models used in SLAM. Based on a
literature review, it is apparent that Mask-RCNN is widely used, for instance segmen-
tation architecture among SLAM researchers. Hence, we evaluate the effectiveness
of our proposed single-stage architecture SOLOV2 by comparing it to the two-stage
instance segmentation architecture Mask-RCNN. As explained in the previous chap-
ter, the KITTI segmentation evaluation dataset is used in our accuracy comparison.
Given that the primary dynamic class of the KITTI sequence is the car, we disregard
all other classes for evaluation.

Initially, SOLOV2 was built from scratch in the Pytorch framework. Since our spec-
ified classes are pedestrians and cars, we adopt the pre-trained model proposed in
the paper. However, the adoption of pre-trained COCO weights directly to our im-
plementation became infeasible due to changes in model parameter naming conven-
tion. Hence SOLOV?2 is later implemented in Python using detectron2 [77], a vision
library developed by Facebook Al researchers using Pytorch framework based on the
reference provided in the paper. The post-processing steps in SOLOV2 have been

39

40 5. Experimentation and results

tweaked to infer just the vehicle labels. For comparison, Mask-RCNN is also imple-
mented in Python. Similar to SOLOV2, pre-trained weights on the COCO dataset are
used in Mask-RCNN, and the post-processing stage of Mask-RCNN is modified to
infer car segments.

5.1.1.1. Result and discussion

Segmentation output for both the models is generated for 200 KITTI images with a
batch size of one and a confidence score of 0.3. Models are tested in the Intel i7-
8850H 16GB RAM CPU system configuration and NVIDIA Quadro P1000 GPU.

Segmentation accuracy

Inference time
1.0 1

200

084 <~ TTTTTTTTTTTTT T TT T T T T T T T 175

150

0.6 q

—
Fad
L

AP_car

100
0.4

time in second

—
()

0.2

=

MaskRCNN
A SOLOV2
=== MaskRCNN_average
0.0 4 === SOLOV2_average

()
LA

0.‘0 012 0?4 0?6 Oi8 1.‘0 MaskRCNN SOLOV?
10U threshold

(a) Segmentation accuracy (b) Inference time

Figure 5.1: Quantitative comparison - SOLOV2 and Mask-RCNN

The quantitative result from the figure 5.1 shows that SOLOV2 improves the seg-
mentation accuracy by 10.27% compared to Mask-RCNN. Mask-RCNN takes about
201.96 seconds to process 200 images, while SOLOV2 takes just 67.25 seconds, i.e.,
SOLOv2 takes 0.4 seconds to process a single image, whereas two-stage architec-
ture takes 0.91 seconds. Overall, the proposed single-stage architecture have 2.5
times faster inference time. The faster inference is analogous to the fact that, un-
like Mask-RCNN, which predicts the bounding box first and then segments inside it,
SOLOV?2 predicts the instance mask directly as a classification problem.

Based on the quantitative analysis, it is evident that MaskRCNN misses most of the
cars when placed closer to each other, while SOLOV2 captures the accurate bound-
aries of all the available instances. One such example is shown in figure 5.2. Mask-
RCNN detects the objects in a fixed resolution which results in poor accuracy on com-
plex scenes. The quantitative and qualitative evaluations justify our choice of the
single-stage instance segmentation architecture in terms of speed and accuracy.

5. Experimentation and results 41

(b) Mask-RCNN

Figure 5.2: Qualitative comparison of SOLOV2 and Mask-RCNN

5.1.2. Two stream architecture - Moving object segmentation

This section covers the basic implementation details of the model used in the stage
2 module [3.2.3.1]. The neural network architecture is developed in python using the
Pytorch framework. VGG-16 architecture imported from torch models and initialised
with pre-trained weights based on ImageNet. Instead of just employing binary cross-
entropy as recommended in the base MODNet paper, dice loss is implemented in
combination with binary cross-entropy for training the model. The details of dice loss

Parameter Name Values
Backbone VGG-16
Optimiser Adam

Loss function BCE and dice loss
Learning rate 1e-4
Learning decay step 10
Learning decay coefficient 0.1

Table 5.1: Parameter setting - Motion segmentation model

and cross-entropy is discussed in the section 3.2.2.1. Most of the hyperparameters are
maintained consistent with the MODNet implementation. Model is trained using Adam
optimiser [A.2.1.4] with a batch size of 1. The current model does not incorporate
any form of regularisation. By default, VGG-16 is trained with an input resolution of
224x224. However, during our experimentation, we increase the input resolution as
448x448 and 370x1226 to improve segmentation accuracy based on the research
paper [78]. The table 5.1 shows the list of parameters used during training. The
intermediate feature fusion, pre-trained weight initialization and joint optimization of

42 5. Experimentation and results

two decoder units accelerates the convergence of the loss function.

5.1.2.1. Result and discussion

Initially, we experiment on the implementation of intermediate features with channel
concatenation and summation junction. The final segmentation results were found
to be better with summation junction. Loss functions have a drastic influence on the
final accuracy. The loss function for the final model is selected by experimenting with
binary cross-entropy and dice loss. Each trial model is trained with an input resolution
of 224x224 for 60 epochs. The result of the convergence of each loss function reveals
dice loss is better. The reason is that dice loss works pretty well with dataset class im-
balance (with respect to background) that occurs on segmentation. In our dataset, the
moving and non-moving mask are not proportionate, and multi-class problem could
make the dice loss convergence unstable. So in the rest of the experiment, we train
our model using the combined loss of dice loss and binary cross-entropy with lambda
as a hyper-parameter to switch between the losses.

| BCE_loss
dice loss

h k

0 10 20 30 a0 50 €0
Epoch number

Figure 5.3: Loss function BCE loss vs dice loss

Finally, the input resolution of 448x448 and 370%1226 is used in training to see the
trade-off between the accuracy and inference time improvement. Based on the above
experimental result, our proposed model trained with the combined loss for input res-
olution of 370x1226 achieves the best outcome. We chose to train with 30 epoch,
as the loss during the experiments always converge after 25 epoch. Our final model

only attains 35% mIOU as the segmentation mask of moving objects is not entirely
accurate.

Figure 5.4: Moving object segmentation - Row (i) RGB image (ii) Ground truth (iii) segmentation result

5. Experimentation and results 43

(a) Poor segmentation(True positive) (b) Inaccurate segmentation(False positive)

Figure 5.5: Moving object segmentation - Analysis

Segmentation results of moving objects obtained from the model fall short of our ex-
pectations. Semantic segmentation mask based on spatial features from decoder 1
yields good results by consistently predicting all the cars in the scene. This helps us
infer that the model can learn spatial features but does not learn temporal features
correctly. The inference is substantiated with the following discussion.

The model works considerably well when the relative change between the images
is purely translational. However, the main problem in a pure translational situation is
that FlowNet does not capture certain vehicles observed in far depth. In such a sce-
nario, our model learns the spatial cues assuming the vehicle appears in the centre
to be moving. Mis-classification occurs on the object present at the centre is due to
the influence of spatial features over temporal features.

Flow estimation when car is moving straight

|
Far cars are not captured in flow map

Figure 5.6: Flow image on pure translation

The observational study done on the dataset reveals that most of the moving cars lie
at the centre of the image, which might bias the model. The heat map 5.7 represent-
ing the concentration of moving objects based on 2000 training images supports our
discussion.

44 5. Experimentation and results

£
0 0 0 0 1000 1200
0

E] 0o 150 %0 20 %0 0 00

Figure 5.7: Heat map of moving object in the dataset

On closer examination of the behaviour, it is apparent that the output of FlowNet
plays a crucial role in determining the final results. The flow generated by the FlowNet
model is very accurate only when there is no relative transformation occurs between
two images in the sequence, i.e., when there is no ego-motion. So the accuracy of
moving object segmentation on the static camera is relatively high.

ey -
L

Flow estimation when car is static

Figure 5.8: Flow image without camera motion

On the other hand, if the relative transformation between image sequences is solely
rotational, the resulting flow does not offer enough information to comprehend the
real-world changes. Figure 5.9 shows the inability of the FlowNet model to estimate
the flow image on the KITTI sequence when the car is turning left.

Flow estimation when car is turning

Figure 5.9: Flow image on pure rotation

5. Experimentation and results 45

Optical flow estimated by Flownetv2 depends exclusively on the image quality, hence
performs poorly on areas with shadow, reflection, and illumination changes [79]. The
reason for the sub-optimal results is primarily due to FlowNet’s inability to fragment
the ego-motion flow. We need a precise depth estimate to have an appropriate ego-
motion estimation. As we use a monocular set-up for our project, the depth estimation
is uncertain. Depth estimation using monocular cameras is a separate domain to ex-
plore. Current research on moving object recognition with a camera utilizes other
sensor modalities to compute depth and suppress ego-motion in order to get an accu-
rate estimate of optical flow. A recent study about moving object estimation in SMSNet
[80] and VM-Modnet [81] reveals that odometry data and IMU are used for ego-motion
compensation. Methods for improving the results of moving object segmentation are
discussed in our future study. Currently, to circumvent the problem of incorrect shape
estimation of moving objects, the output of moving object segmentation is combined
with SOLOV2 based on I0U. The output of combined segmentation is shown below,

Moving object segmentation Fe
Poor segmentation

SOLOV2 segmentation

Moving object segmentation
Refinement

Figure 5.10: Moving object segmentation - Refinement

5.1.3. Multi-object tracking

The multi-object tracking module of the segmentation output used in mapping [3.3.2.1]
is implemented in a python programming language. For each output mask produced
by SOLOV2, the corresponding segmentation from the RGB image is cropped. The
patch would then be re-scaled to fit into the ResNet18 model, which then generates
feature embedding.

Our implementation of class constraint allows only the subset of features that belongs
to the same class to be used in feature matching. These feature embedding after the
class constraint is filtered using IOU metrics (details of IOU metrics is discussed in
section 4.2.2). 10U filtering is hinged on the assumption that the relative velocity be-

46 5. Experimentation and results

Feature embedder model (Resnet-18)

|
ffE ffH f;E ff”E f;*ﬂ

Class constraint and 10U filtering

Tracking result

Search space for
feature matching

»
4

Figure 5.11: Implementation of tracking module

Feature similarity

fi. fi

tween two frames does not vary abruptly. In other words, the relative transformation
of object states between two sequences is always bounded. This assumption facil-
itates the IOU filtering to find the overlapping mask instances in two image frames.
Only masks overlapping with previous segmentation output are used in the feature
similarity stage, which increases tracking accuracy by eliminating false positives and
reducing computation time. The Euclidean distance between two embedding vectors
is used to compute feature similarity in which identical items get a lower similarity
score. Figure 5.11 depicts our pipeline amended in the tracking module.

5.1.3.1. Selection of feature embedding model

This section justify the choice of ResNet-18 architecture as feature embedding model.
The objective of the experiment is to find the architecture with reduced model com-
plexity that help us to achieve faster inference. We select popular backbone archi-
tectures such as VGG-16 [59], AlexNet [82], Resnet-18 [67], DenseNet-161 [83] and
MobileNetv2 [84] for our experimentation.

The pre-trained backbone models from the PyTorch framework is directly used in the
experiments. Input resolution of 224x224 is used in all of our experiments. From the
graph 5.12, one could conclude that AlexNet outperforms all other models in terms of
inference time, while MobilenetV2 has a lower memory requirement. Careful observa-
tion for a trade-off between inference time and memory shows that ResNet-18 has an
inference time of 45ms, which is 45% higher than AlexNet but it requires 80% lesser
space on the upside. Similarly, when compared to MobileNetv2, ResNet-18 provides
32% faster inference at the cost of a 30MB additional memory requirement. From
these trade-offs, it is evident that ResNet-18 would be ideal as the feature embedder
model.

5. Experimentation and results 47

20 .SZEMB s
- 500
300
400
= 250
8 o
e =
i E
E 200 4 - 300
= A 2
E w1
= . 234MB E‘
g 150 g
@ 200 =
it
£
100
111MEB
L A 100
4
- t-'lSHB
i
o 14MB
0 O
VGG-16 Alexnet Resnet-18 Densenet Mobilenetv2

Figure 5.12: Trade-off experiment between inference time and memory for embedder model

5.1.3.2. Result and discussion

The final results of multi-object tracking are validated qualitatively in outdoor scenar-
ios. The result of object tracking experimented on the KITTI sequence is shown in the
figure 5.13. The same colour observed two image frames represent the same object
present in the scene. For correlating the track ids across the whole sequence, the
pixel value of the segmentation output is replaced with the identification number as
discussed in 3.3.2.2. The current implementation of the tracking module only checks
the correlation of the segmentation mask between two consecutive images. In case
of occlusion or missed detection due to poor confidence, the object is reassigned to a
new identification number. This limitation prevents us from comparing our implemen-
tation quantitatively with other studies.

(a) Tracking image @ t (b) Tracking image @ t+1

Figure 5.13: Multi-object tracking - Result

48 5. Experimentation and results

5.2. Experiments on SLAM

Robotics Operating System facilitates communication among various implemented
modules. The primary benefit of utilizing the ROS platform in our experiment is that it
connects various applications written in languages like C++ and Python. In our case,
SLAM was implemented in C++, and deep learning models in python, making ROS an
ideal platform to complete the pipeline. Individual modules as ROS Node might pub-
lish or subscribe to messages as particular ROS topics. A ROS topic is a messaging
channel. Each ROS message follows a unique data structure that could be used from
preset libraries or customized. Based on the methodology and experiments on neural
architecture discussed in the previous section, it is evident that the ORB-SLAM2 pack-
age needs to be modified to subscribe segmentation output and tracking instance-id
along with monocular image input. The corresponding ROS topics are indicated as
/Icamera/usb_cam_1/image_raw, /mask_image, /track_image respectively.

Jcamera

/camera/fusb_cam_1

/camera/usb_cam_1/image_raw]
Imask_image

/Solov2+tracking_node

Jtrack_image

[frosout

/rqt_gui_py_node_5616

Figure 5.14: ROS implementation of our pipeline

/Solov2+tracking_node combines the single-stage instance segmentation model with
multi-object tracking that publishes the mask and track results. ROS graph for the
stage 1 implementation with tracking module is shown in figure 5.14. The same could
be extended to stage 2 by the addition of the motion segmentation model. To minimize
latency during SLAM operations, all relevant images are usually recorded and played
from ROS bags.

5.2.1. Tracking

This section focuses on improving the tracking quality by removing the dynamic inter-
action. We compare the odometry results obtained from ORB-SLAM2 by integrating
different development stages and discuss the limitation of individual stages separately.

5.2.1.1. Base - ORB-SLAM2

Our initial experiments concentrate on creating the baseline results using ORB-SLAM2
[3.2.1] without integrating modules from stage 1 and stage 2. We directly used the ab-
solute trajectory error results from ORB-SLAM and DynaSLAM study as the baseline
for comparing three KITTI sequences 04,05, and 07. DynaSLAM adapts Mask-RCNN
architecture to remove the dynamic objects from the surroundings, which helps us to

5. Experimentation and results 49

validate our SOLOV2 implementation on SLAM. The average of the root mean square
of the absolute trajectory (RMSE) error [75] after five executions in each of the three
sequences is used as the final result to establish consistency. The main factors that
affect the consistency of final results are initialization and the latency introduced by
parallel computation. For appropriate comparison, it is necessary to repeat the exper-
iment at least five times with the same sequence.

5.2.1.2. Stage 1 - Dynamic object segmentation

We experiment our stage 1 implementation [3.2.2.2] for dynamic object removal in a
manner identical to that described above. Five trails were taken, and the average of
RMSE values are shown in the table 5.2.

Sequence Stage 1 - Trajectory error in meter
Number T T2 T3 T4 T5 | Average
04 1.37 | 1.33 | 0.62 | 0.62 | 1.105 | 1.009

05 461 |6.75 | 4.77 | 5.56 | 4.61 5.26
07 203 1182411193 1.72 2.32

Table 5.2: Absolute trajectory error - Stage 1 experiments

The obtained results of stage 1 is compared with baseline results obtained from ORB-
SLAM and DynaSLAM. Overall, our results are in line with the dynaslam except on
sequence 05. From the graph, we could infer that our tracking error is less than base
ORB-SLAM on sequence 04, a dynamic sequence, which complements the proposed
methodology for the removal of dynamic objects. On the other hand, sequences 05

B ORB_SLAM
N Dynaslam
07 = Stagel

5.2

Kitti sequences

162
o 0.97
101

0 1 2 3 4 5
Absolute trajectory error

Figure 5.15: Tracking error comparison - Baseline vs Stage 1

and 07 do not provide satisfactory results. This is because the chosen sequence has
a lower level of dynamic interaction since most vehicles are stationary. Using our
stage 1 module would remove all feature points associated with the potential dynamic
class without differentiating moving and non-moving objects separately. Elimination of

50 5. Experimentation and results

static(stationary cars) features cause the SLAM to use low textured features present
at the far distance, impacting overall tracking results.

Error mapped onto trajectory Error mapped onto trajectory Error mapped onto trajectory

- 2.796 - 8.776

400 -—- reference 00 --- reference --- reference
350 | <~ N

! 100 — 3

' 3
300 300 ! \

' \

‘__]
250 T 50 \

200 f)
e | / £ .
| = “
! b \

200 - 1.440 £ ,T — 4650
~ |

------ o
00 i i e) 3
150 { ! o ! i
i] k 1
! :] !
100 "\ A s H)
0 N\ " >0 i]
\ ']
50 N\ i B
S N
_100 ~100
o - 0.084 - 0541

-150 -100 -50 © 50 100 150 -200 -100 0 100 200 -150 ~100 -50 0
x(m) x(m) x (m)

z(m)

(a) Sequence 04 (b) Sequence 05 (c) Sequence 07

Figure 5.16: Tracking result - Stage 1

Discussion: From equation 3.1, we know that estimated poses and the landmarks
of ORB-SLAM2 depend on features’ quality and quantity. Many seemingly dynamic
classes may exist in the environment without any movement in certain situations, i.e.,
they all are static. Since our segmentation model does not distinguish dynamic classes
into moving and non-moving objects, all the features of dynamic classes are removed
during SLAM tracking. To investigate this issue further, we used KITTI sequences
and analyzed the existence of non-moving dynamic objects. For instance, in KITTI
odometry sequence 05, it is observed that 95% of cars are static. It is possible to
infer from the figure 5.17 that the majority of the vehicles on the left side of the image
are motionless. By excluding features associated with static vehicles(non-moving dy-
namic class), the features available for tracking become skewed toward the right side
of the image. This may impair tracking quality and also make the map sparser.

Figure 5.17: Limitation of Stage 1 - Kitti sequence 05

5.2.1.3. Stage 2 - Moving object segmentation

The limitation of the stage 1 methodology put forward the need for moving object
segmentation (stage 2) [3.2.3.2] in the ORB-SLAM2 method. To prevent bias due to
dynamic object removal in low traffic situations, we must correctly find moving objects
from non-moving objects.

Even though the moving segmentation model results have some false positives in

- 4.052

-2193

-0.335

5. Experimentation and results 51

Sequence Stage 2 - Trajectory error in meter
Number T1 T2 | T3 | T4 | T5 | Average
04 153|114 | 0.96 | 1.26 | 1.35 1.25

05 485|437 |4.85|4.97 | 493 4.79
07 261|199 | 203 | 1.62 | 2.25 1.97

Table 5.3: Absolute trajectory error - Stage 2 experiments

z(m)

rror mapped onto trajector:

400 referenc

350

300 300 d \

250 I T 50)

200 |)
’E\ ’E‘ ————— S . / AN
\
° \ .

= 200 - 1.440 £ il 1 — - 4.659
N N i |)

r ajectony rror mapped onlo trajector
- 2.796 -8.776 - 4.052
e --- reference --- reference
400
" 100 -~ Y

150 i : S b
H | | b
100 i H ! h
o N 4 -s0 i]
R\ P \ i
50 N\ :\ I S

~100 -100
o - 0.084 - 0.541 - 0.335

—150 -100 -5 200 100 100 200 —50 0

x(m) X (m) f((ﬁn)
(a) Sequence 04 (b) Sequence 05 (c) Sequence 07

Figure 5.18: Tracking result - Stage 2

identifying the moving objects, the odometry results demonstrate a substantial in-
crease in the performance of sequences 05 and 07 compared to stage 1. All the
cars in sequence 04 are moving; hence in stage 1, removing the features of vehicles
improved the tracking accuracy but due to misclassification of moving object segmen-
tation tracking error gets higher in stage 2 implementation on sequence 04.

Discussion: The results demonstrate that the implementation of moving object seg-
mentation could handle dynamic interaction in diverse traffic conditions without im-
pairing SLAM’s overall performance. The limitation of stage 2 implementation comes
directly from the output of segmentation achieved from the two-stream network. As
mentioned in moving object segmentation 5.1.2, ego-motion compensation is required
for the proper estimation of flow image (input to the model).

Finally, the individual trajectory obtained for the sequences on each developmental
stages are compared. From the figure 5.19, all our implementation were able to fol-
low the reference trajectory in all three dimensions with minimal variation. Though
the deviation along lateral direction(x) in sequence 04 appears to be prominent in
the graph, the magnitude of the variation is negligible. The violin plot 5.20 empha-
sising the variation of trajectory errors seen at every timestamp reveals that stage 2
implementation on sequences 05 and 07 achieves lower error. The mean density on
05_stage2 and 07_stage2 concentrated on low ATE values. Our work authenticates
a new research direction for improving the performance using loosely linked coupled
approaches rather than primarily depending on tightly coupled approaches, which will
aid in attaining real-time performance in the near future.

52

5. Experimentation and results

200
--- reference ’E ° —--- reference
—— 04_base = —— 05_base
—— 04_stagel —— 05_stagel
—— 04_stage2 N —200 —— 05_stage2
| 5
- 0
£
= -5
-10 -
300
£ 200
N 100
0
5 10 15 2 25 0 50 100 150 200
t(s) t(s)
(a) Sequence 04 (b) Sequence 05
o
—50
= ——— reference
: —100 —— 07_base
_150 —— 07_stagel
—— 07_stage2
4
E 2
=
o
100
. 50
E
~ o
—50
o 20 40 60 80 100 120
t(s)
(c) Sequence 07
Figure 5.19: Individual trajectory comparison along x,y,z direction

APE (m)

~

10

N

[=]

Ty

04 _base

04 _stagel 04_stage2 05_base 05_stagel 05_stage2 07_base
estimate

Figure 5.20: ATE plot - Base vs Stage1 vs Stage?2

07_stagel

bod

07_stage2

L

250

300

5. Experimentation and results 53

5.2.2. Mapping

The fundamental building block of SLAM is to determine the static points in the sur-
rounding environment. This is achieved through the normal implementation of the
ORB-SLAM2 algorithm. The visualisation of the static maps obtained for KITTI se-
quence 04,05 and 07 on base ORB-SLAM2 is shown in figure 5.21. Green colour
points are the static maps, whereas blue frames represent the keyframe poses of
ORB-SLAM2. The mapping section focuses on improving the static maps by incor-

(a) Sequence 04

(c) Sequence 07

Figure 5.21: Base static map of ORB-SLAM2

porating the semantics learnt in stage 1 and stage 2, thereby building dynamic and
instance semantic maps. Later visualisation result of dynamic density estimation and
managing the maps for efficient storage are discussed.

54 5. Experimentation and results

5.2.2.1. Dynamic Semantic mapping

The dynamic subset removed during the tracking in stage 1 and stage 2 are used in
the mapping to generate a dynamically meaningful representation of the surround-
ings. Stage 1 splits the extracted features into static and potentially dynamic subsets.
Based on these subsets, a dynamic map is created on KITTI odometry sequences
where stationary points are represented in green and potentially dynamic points in
red as shown in the figure 5.22. Along with the feature data association, the dynamic
information of each map point also needs to be correlated with respective keyframes.
These implementations allow the poses and map to be optimised through bundle ad-
justment. Though we build maps for all the selected sequences, only KITTI sequence
07 is used to discuss the result in the rest of this section. The dynamic map built
based on the output of stage 2 has three subsets. The effect of our stage 2 imple-
mentation on KITTI odometry sequence 07 shown in the figure 5.23 has static points,
non-moving dynamic points and moving dynamic points.

(a) Sequence 07 (b) Sequence 07 - Closer

Figure 5.22: Dynamic semantic map - Stage 1. Red - Potentially dynamic points, Green - static points

(a) Sequence 07 (b) Sequence 07 - Closer

Figure 5.23: Dynamic semantic map - Stage 2. Red - moving dynamic points, Yellow - Non-moving
points, Green - static points

5. Experimentation and results 55

The map obtained with stage 2 output is not accurate due to the limitation of moving
object segmentation. The false-positive segmentation degrades the semantic quality
when distinguishing moving and non-moving entities. Nevertheless, the maps are still
accurate in finding the objects that belong to the car.

According to the research [15], ORB-SLAM2 allows lifelong mapping because of the
ability to accurately relocalize in the learnt map even when the viewpoint shifts sig-
nificantly. Our dynamic semantic mapping could improve the robustness in scene
perception and make relocalization more successful by considering only static points
eliminating dynamic entities.

5.2.2.2. Instance semantic mapping

While the dynamic semantic mapping distinguishes dynamic classes from static points,
it is often necessary to analyze individual objects in the environment. Instance seman-
tic maps helps to achieve desirable results on identifying individual instances in the
3D space. Multi-object tracking identification is used to relate map points that belong
to the same object. The results shown in the figure 5.24 demonstrate that our imple-
mentation could correctly find the presence of an individual car in the surroundings.
Distinct colours is used to represent the multiple instances of cars. The figure 5.24a
represents the overall visualization of instance semantic map on KITTI sequence 07,
excluding the static points. While the figure 5.24b is the expanded representation of
instances of cars identified in KITTI sequence 05.

(a) KITTI sequence 07 (b) KITTI sequence 05 - Closer look

Figure 5.24: Instance semantic maps - KITTI sequences

5.2.2.3. Dynamic density estimation

The benefit of the dynamic semantic map is exploited to represent the density informa-
tion to motion planning robots. This module is implemented to show the usefulness of
three-dimensional semantic reasoning in a real-time scenario. The dynamic density

56 5. Experimentation and results

estimation done based on spherical bounds are represented as a circle is shown in the
figure 5.25, where yellow and red denotes low and high dynamic density, respectively.
During experimentation, one important observation is that the density estimations of
previously mapped areas are more accurate than those of newly discovered areas.
This is very apparent since the newly created region may contain fewer map points to
study the dynamic interaction of the local map.

(a) Map representation (b) Corresponding RGB image

Figure 5.25: Low dynamic interaction example

SLAM MODE | KFs: 3%

(a) Map representation (b) Corresponding RGB image

Figure 5.26: Dynamic density estimation

5.2.2.4. Map management

By default, ORB-SLAM2 does not support map storage and it only allow us to visualize
the map points during the SLAM operation. This section discusses our implementa-
tion to save maps in point cloud libraries(PCL) [85] and octomaps [86] by untangling
the details of both libraries based on the storage efficiency.

PCL is an open-source library that is designed to handle point clouds efficiently. PCL
supports different data structures for storing point clouds, among which our imple-
mentation make use of PointXYZRGB to save the final map. In the data structure
XYZRGB, each map point requires three-dimensional coordinate values for x, y, and
z, as well as three color intensity information for RGB. X, y, and z values are directly
obtained from the coordinates of the global map generated by ORB-SLAM2. While
RGB information helps to encode the dynamic semantic information of each points.
For instance, the output of stage 1 contains two different categories which are colour

5. Experimentation and results 57

coded as green(x,y,z,0,255,0) and red(x,y,z,255,0,0) in PCL data structure. All the
map visualisation shown in previous chapter are based on the point cloud represen-
tation.

OctoMap uses voxel-based representation(based on leaf resolution) to stores map
efficiently. Octree provides a novel solution to represent maps in cubic volumes with
tree-based architecture designed to update the map in a probabilistic fashion. The
map can be dynamically expanded and also be saved in multi-resolution within the
given cubic space. The representation provides a proper distinction between free,
occupied, and unknown areas. This kind of representation reduces the computational
complexity when retrieving certain points in the map. Changing the leaf size would al-
ter the input resolution and occupancy probability in 3D space. The figure 5.27 shows
the octomap representation for different leaf size on KITTI odometry sequence 07.

(a) Leaf size 0.03m (b) Leaf size 0.06m (c) Leaf size 0.12m (d) Leaf size 0.24m

Figure 5.27: Octomap with different resolution

PCL 1.12.0 library is accommodated in our pipeline to store the maps acquired from
the ORB-SLAM2. The PCL library has an direct extension to save the octomap with-
out any hassle. The system class function of ORB-SLAM2 is modified to loop through
the global map points after global bundle adjustment, ensuring that the final optimized
map points are stored. The map management does not consider the estimated poses
when the map is stored. The comparison of memory needed to save the map as point
cloud library and octomap with high resolution (leaf size 0.03m) is shown in the table
5.4.

| Sequence No. | Size of PCL (in KB) | Size of Octomap (in KB) | % Reduction |

04 328 13.1 96
05 2619 82.5 96.8
07 1275 67.58 94.69

Table 5.4: Map memory management

The table shows the benefit of octomap based on the percentage of reduction in the
memory requirement. Reduced memory footprint enables efficient implementation for
large-scale mapping in embedded devices such as NVIDIA Xavier.

58 5. Experimentation and results

5.3. Real-world validation

We conducted real-world experiments to demonstrate the use of semantic mapping in
a diverse scenario. Instead of classifying dynamic objects in the scene, the implemen-
tation is extended to identify the goal state in three-dimensional space. We gathered
real-time data of our robot dynamics lab with the husky robot using zed2 cameras as
shown in the figure 5.28.

Camera setup

Figure 5.28: Robot setup used for real world experiment

For the demonstration, all the monitors present in the environment are set as our ob-
ject of interest. Similar to the semantic association of car discussed in the earlier
section, a map is built to identify the monitor in 3D space. Along with determining the
semantic points associated with the monitor, we estimate the centroid of each mon-
itor individually to locate the target point in the three-dimensional space. However,
outliers from the mapping process of ORB-SLAM2 would estimate the centroid with
error. This prevents the estimation of centroid directly from the obtained point clouds.
To improve the centroid calculation, the following conditions are employed,

» Only the subset of map points that belong to the same instance-id is selected for
calculation. The output of instance semantic mapping is used for isolating the
subset.

» Subset representing individual object must at least have 20 map points.

+ Distance between the map points in the subset and latest reference keyframe
must be within a certain threshold.

The results attained on real world data reveals that our implementation could be easily
generalised to various applications, such as identifying a target location or avoiding
specific barriers in dynamic object removal.

5. Experimentation and results 59

(a) Monitors in the lab

(b) Mapping result

(c) Tracking result with centroid estimation

Figure 5.29: Real world experiment result - Tracking and mapping

Conclusion

This project thrives on the objective to build robust interactive maps for navigation in
a dynamic environment. The methodology discussed in the thesis is systematically
developed to achieve the final goal by answering the research questions.

1. What is a popular approach to overcome the challenges of dynamic objects
in SLAM?

From the literature study, a learning-based approach was identified as a suitable
methodology for removing the features that correspond to dynamic objects. To that
extend, we investigated the benefits of single stage instance segmentation architec-
ture SOLOV2 with other popular architectures(Mask-RCNN) adapted in SLAM. Ex-
perimental results show that SOLOV?2 is faster and gain 10.27% higher accuracy than
Mask-RCNN.

2. How to improve the quality of tracking and mapping with dynamic interac-
tion?

The evaluation of dynamic object removal using SOLOV2 on the KITTI sequence re-
veals that our proposed method yields good odometry results in the presence of high
dynamic interaction. However, in low traffic scenarios i.e., when most of the cars are
static in the given sequence, tracking results have deteriorated. This insists on clas-
sifying the potential dynamic objects into moving and non-moving entities.

We developed moving object segmentation architecture based on MODNet paper
which uses monocular image and optical flow to find moving and non-moving cars.
Though the results obtained from our model have false positives, the methodology
enhances the tracking results considerably in a low dynamic situation. Improving the
accuracy of the moving object segmentation module would open a new path for other
researchers who works on real-time isolation of moving entities.

3. How to build a semantically meaningful map?

In contrast to other studies which removes the dynamic features entirely from the
SLAM processing, we eliminate dynamic features during the tracking stage of SLAM
but retain them during the mapping stage. This enables us to develop semantically

61

62 6. Conclusion

meaningful dynamic maps, which facilitates understanding of traffic interactions in
three-dimensional space.

In order to enhance semantic reasoning further, multi-object tracking is combined
with instance segmentation to produce instance semantic maps. The overall pipeline
for multi-object tracking was built to process the segmentation output independently
and generate object correspondence between the detected masks of two consecutive
images. The qualitative results of object tracking on images and three-dimensional
instance semantic map demonstrates the potency of the proposed approach. The
real world experiments on the robot manifest the effectiveness of our interactive map-
ping and highlight the generalisation of our method on various application scenarios.
Finally, the map management module examines various approaches to store and ef-
ficiently handle maps.

6.1. Recommendations

* In our study, the monocular camera is used as the primary sensor modality to ex-
periment the dynamic object removal and semantic mapping. The behaviour of
our proposed methodology needs to be studied on stereo and RGB-D cameras.

» Experiments of stage 2 implementation on SLAM infers that moving object seg-
mentation improves tracking marginally. Poor segmentation results from mov-
ing segmentation restrict us to validate the actual benefits of moving and non-
moving classification. The inaccuracy of moving object segmentation is mainly
due to the limitation of ego-motion compensation during optical flow image esti-
mation. Further research needs to be conducted to determine appropriate ego-
motion to compensate for the influence of moving cameras.

» The observational study on the newly created dataset for moving object seg-
mentation using KITTI sequences reveals that moving cars are concentrated on
the centre of the image. Also, the current dataset is annotated to capture only
moving car, not extended to other classes. Henceforward, the dataset needs to
be created with diverse classes with a proper spread of moving objects across
various positions in the image.

* Multi-object tracking tracks the segmentation instances just between two con-
secutive frames. In case of occlusion or variation in the lighting, particular ob-
jects are missed from the monitoring. If the same object is identified in the next
frame, it will switch the identification number to a new id. In future studies, the
search space of the tracking sublet needs to be increased from two to at least
ten frames to reduce the tracking id switch.

 Currently, the deep learning models used in tracking, stage 1 and stage 2, are
processed as separate modules. Joint training and evaluation would speed up
the inference time and improve the final accuracy.

Appendix

This chapter explains the technical concepts and empirical theory of SLAM and deep
learning models that are required to understand the overall implementation done in
this project to achieve the research goal. The structure is divided into two sections,
the first part discusses about SLAM and the second one covers technical details of
neural networks.

A.1. SLAM Background

A.1.1. Feature matching

Image is the collection of light intensity values represented in matrix form. The change
in intensity values provides distinctly useful information that is interpreted as visual
features. These features are the key for constructing data correspondence between
sequential frames. Identifying a single pixel as a feature might not be robust to track
the correspondence in the real world as the intensity value changes due to illumina-
tion. Hence, key points are introduced to find distinct locations and descriptors to
understand the key points’ local structure. Key points are generally the corners where
the gradient change is sharp and distinguishable from other places in the image. In the
real world, these features are not sufficient to identify the appropriate representations.
A bag of visual words with handcrafted features that make the keypoint detection ro-
bust in the practical condition. SIFT [87], SURF [88] and ORB [89] are some of the
commonly used feature matching techniques that deliver potent results. Extracted
features should be robust to change in transformations such as illumination, rotation
and scale. Each method have their own advantage and limitations; a detailed review
of all the keypoint estimation is not the area of focus. Instead, detailing the ORB fea-
ture would be sufficient to understand the pipeline used in the project.

ORB(Oriented Fast and Robust BRIEF) uses FAST [90] and Harris corner measures
to identify the dominant key points. Features extracted from the FAST do not em-
brace orientation and scale. ORB solves the scaling problem by employing the image
pyramid to extract FAST features at each pyramid level. The direction of the vector
between corners and the intensity weighted centroid orients the Fast features. ORB
uses rotation aware BRIEF(Binary Robust Independent Elementary Feature) as their

63

64 A. Appendix

descriptor. This binary descriptor enables faster processing with additional rotation
information. ORB features extracted between two images is used to find the feature
correspondences in this project.

A.1.2. Coordinate transformations

Let the coordinate system used in the SLAM represented as world (w), camera (k),
image (i) and sensor (s) coordinates. The transformation of 3D point in world coor-
dinate system to a 2D point in sensor coordinates is computed based on the extrinsic
and intrinsic parameters,

x5 x"
yW
y |=EK W (A.1)
1 1
where:

E =Tk = extrinsic matrix (world —camera coordinate)

K =T P¢ = intrinsic matrix (camera —image —sensor coordinate)

T = transformation matrix

Extrinsic parameters involve a 3D transformation of world to camera coordinates
which has 6 degrees of freedom, three for rotation and three for translation. Let point
in the world coordinate be VX, (x*, y*,z") and camera centre be kX, (x¥, y¥, z¥), then
the point in camera coordinates is related to world coordinate based on the transfor-
mation as,

kX, =T VX,

A2
kXp:R(WXp_kXO) ()

Here R denotes rotational component of transformation. Usually homogeneous co-
ordinates are convenient in expressing the rotation and translation as a simplified
matrix which makes the computation easier. In homogeneous coordinates equation
A.2 could be expressed as,

KXh = R[I| —*XB] WX} (A.3)

Intrinsic parameters involve 3D to 2D transformation from camera to image coordi-
nates and 2D to 2D transformation from camera to sensor coordinates. 3D-2D trans-
formation is also known as perspective projection. Transformation to sensor coordi-
nates is usually taken care by adding the deviation in the intrinsic parameters along x
and y axis. In an ideal scenario, transformation by the perspective projection matrix
without deviation is given by,

°Xp =P KX}
f 00 (A4)

‘Xp=10 f 0| *x}
001

A. Appendix 65

A.1.3. Epipolar constraint
Consider a 3D point P in the world observed as the features point p; and p, in the
camera coordinate of two individual frames respectively, as shown in the figure A.1.

P (3D point)

/ N
1 (Image @ t) / N 12 (Image @ t+1)
/

C1 (Camera centre) C2 (Camera centre)

Figure A.1: Epipolar geometry

The plane formed between the two camera centres and point P is called the epipo-
lar plane. From the figure A.1, it could be observed that point P could lie at any loca-
tion on the projected ray from the feature p,. The exact location of point P could be
identified by the intersection of the ray projected from feature p, and p;. Hence, the
accuracy of the estimated point location depends on the quality of feature matching.
Relation between feature points in two images could be established using camera
motion model represented as the transformation matrix(rotation R and translation t)
[91].

p1=Rp, +t (A.5)

Cross product with t, then multiplying p1 on both sides we modify the equation into,

p1(t X p1) = p1(t X R.py)

o7 [t Rps = 0 (A-0)

Equation A.6 expresses the relationship between the point in the camera coordinate.
The translation and rotation matrix could be represented together as the essential
matrix E,

piEp; =0 (A.7)

Based on the relationship between essential and fundamental matrix F we can extend
the epipolar constraint between two points u; and u, in the sensor/image coordinates.
Fundamental matrix correlates the same points observed from an scene in two differ-
ent frames.

WK EK 1u,) =0

ulFu, =0 (A-8)

Equations A.7 and A.8 are interchangeably used as epipolar constraints where epi-
polar lines is given by | = Fu, = FTu,. Fundamental matrix and essential matrix
found using eight-point [92] or five-point algorithms [93]. Under pure rotation, it is

66 A. Appendix

hard to estimate the Essential and Fundamental matrix. In such cases, homography
matrix helps to relate a point in an image with another image. Homography is a projec-
tive transformation of planar objects represented in a three-dimensional matrix. The
idea of fundamental matrix, epi-polar geometry, homography would be used in various
components of our SLAM module.

A.1.4. Triangulation

Triangulation estimates the depth in monocular SLAM to an arbitrary scale for esti-
mating 3D map points. It uses epi-polar constraint to estimate 3D location from the
intersection of rays originated from feature points. Error in feature extraction could
cause the rays not to intersect. Re-projection error is used to ensures the quality of
3D points by back-projecting rays onto the image co-ordinate with 2D feature location.
The obtained map points are refined along with camera poses later through bundle
adjustment methods. Details of re-projection error and bundle adjustment are dis-
cussed in next section. The main disadvantage of triangulation is that it does not work
well with pure rotation.

A.1.5. Bundle adjustment

Bundle Adjustment (BA) [94] is an optimisation procedure to find the optimal transfor-
mation that correct the accumulated drift during visual odometry. Bundle adjustment
is the minimisation problem that corrects the estimated poses and map points based
on the re-projection error. If the 3D point P, projected on the camera j (say p;;) is
compared with 2D image coordinate measured from the camera p;;, then reprojection
error is given as,

i=1 j=1

minZZ(pij — Dij) (A.9)

The analytical method cannot be used to solve the equation due high degree of non-
linearity caused by the geometrical constraints associated between poses and cor-
responding map points. Hence, iterated methods [95] such as Gauss-Newton or
Levenberg-Marquardt algorithm used to estimate corrected R, t and P.. Levenberg-
Marquardt algorithm [96] bound the minimisation problem by damping factor which
chooses the optimisation trend between least square and steepest descent achieving
faster convergence. Sparsity observed in SLAM ensures the optimisation could run
in real-time by matrix decomposition. SLAM researchers uses G2o(General graphic
optimisation) [97] library to solve such non-linear optimisation.

A.1.6. Graph based SLAM

The graph-based system enables usage of SLAM in large-scale scenarios. Graph-
based architecture composed of vertices where each vertex (node) in the graph cor-
responds to the poses or landmarks. All nodes are connected by edges which rep-
resents the spatial constraints between the poses/landmarks obtained from the cam-
era measurements. Usually the keyframes that observe similar feature points are
connected with each other. Graph-based SLAM usually has a front-end finding the

A. Appendix 67

Figure A.2: Graph based SLAM [98]

relative transformation of poses to construct graph and back-end bundle adjustment
to correct the drift accumulated due to reprojection error. Let x; be a node that ob-
serves node x; by estimating the relative transformation z;; between these two nodes.
Actual measurement z;; and corresponding information matrix Q (inverse covariance
matrix) identifies the expected location of these poses in the graph as shown in the
figure A.2. Information matrix adds weights to each node during the final optimisation,
where the optimisation involves minimising the loglikelihood. Then the minimisation
problem could be expressed as follows which is then solved using one of the popular
iterative methods discussed in previous section,

X= argminz e/iQ;je;
ij (A.10)

eij(xi, X)) = zi5 — z]}

A.1.7. Optical flow

Optical flow is the estimation of relative motion of pixel intensity values captured be-
tween two camera instances. For the static camera without dynamic objects in the
scene, optical flow is calculated as zero. Optical flow algorithms have two fundamen-
tal assumptions [99],

» Temporal persistence - motion of any given point between two consecutive im-
age frames should be relatively small.

» Brightness constancy - the intensity value of a pixel remains constant between
two subsequent images.

If a point represented as x and y in an image which moves with velocity v from time t
to t + dt, then an image could be represented based on the above assumptions as,

[(x+dx, y+dy, t+dt)=1(x, y, t) (A.11)

68 A. Appendix

| lx+dx
X
y+dy
Y
Image frame 1 Image frame 2

Figure A.3: Optical flow explanation

Using Taylor expansion and associating the first order derivatives to zero based on
the temporal consistence property, the optical flow equation is given by,

ol ol ol
—u+—v+—=0 (A.12)
X y

where:
u, v = flow vectors along x and y direction

Equation A.12 is under-constrained, and it is hard to obtain a direct solution. Lucas-
Kanade or Horn-Schunck method assumes the local and global smoothing respec-
tively to over-constrain the equation A.12, which helps in calculating the optical flow
vectors. Deep learning methods such as FlowNet [100], PWC-Net [101], ARflow [102]
are used as a substitute to the conventional methods achieving the state of the art re-
sult. These deep learning models captures the temporal variation of the image as
horizontal and vertical flow vectors in two channels. These vector representation are
converted as RGB images as shown in the figure A.4 for easy interpretation.

e e R N T B B g
A\ 0057
“SNANANNVV PP
e e T T T T I I
e i B N S -~
I R Y
AT LN NNNNNN
J LA T LAV,
A0V VNNNN

Figure A.4: Optical flow - Color representation [61]

A.2. Deep learning Background

Artificial intelligence brings a new dimension of possibilities to make the computer im-
itate human behaviour. Machine learning is a popular subset of artificial intelligence
where the computer learns to differentiate among the given features to make suitable
decisions. Deep learning is a more specific area of machine learning where the model

A. Appendix 69

trains to learn the features directly for the given task. Inherited representation learning
in deep learning models overcomes the main problem of identifying the features sep-
arately. Training the model, maps the input (x) to the output (Y) which is generalised
as

Y = f(x,60) (A.13)

where:

6 = parameters learnt by the model

The deep learning method is categorized into supervised, semi-supervised, or un-
supervised based on the availability of ground truth information in the training data
[103]. Dataset of supervised learning contains target label for individual input based
on the final task. The model trained on supervised dataset learns the conditional
probability p(Y|x) based on the error between prediction and output labels. Unsuper-
vised learning trains the model in the absence of specific output labels and therefore
it attempts to determine the overall structure of the dataset. For a given input data,
unsupervised techniques determine joint distribution p(x,Y). Unsupervised learning is
typically employed in clustering, dimensionality reduction, and generative networks.
Semi-supervised learning is a hybrid of supervised and unsupervised learning best
suited for situations with a small number of labelled and many unlabeled data. In our
study, we employ supervised learning approaches to train artificial neural networks to
obtain the required outcomes.

A.2.1. Neural networks

Let f represent map function that ideally correlates the input to output. To effectively
learn the representation of the map function we define the model, cost function and
optimization methods. Neural network model is usually the stack of multiple layers
where the overall function f is made up by the combination of features learn from the
intermediate layers represented as

f=h1l2(fz(x,0))) (A.14)

where:

f, = first layer
f, = second layer
f3 = third layer and goes on

Before diving deeper into the different model architecture, the functionality of the
primary component that made up the whole architecture is discussed briefly.

A.2.1.1. Neuron

Neurons are the basic building block of neural networks that store the parameter value
as weight and bias during training [104]. Many neurons act in parallel with each other
and final output is calculated as weighted sum of inputs with a bias term. The equation
below depicts a linear function in which non-linearity is added by activation function.

zzzmT.xi+b (A.15)
i

70 A. Appendix

where:

w = weight term
b = bias term

i ={1,2,.n}

z = {-oos+°°}

A.2.1.2. Activation function

The activation function attempts to behave similarly to neurons in the human brain,
allowing output to pass only when it reaches a specific threshold. It also attempts
to limit the output to a particular range, preventing underflow during calculation. The
activation function might be linear or non-linear. Only non-linear activation functions
are discussed below.

sigmoid tanh RELU

-100 -75 -50 -25 00 25 S0 75 100 -100 -75 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100

Figure A.5: Various types of activation function

Sigmoid function squeezes the output between 0 to 1. Even a small change in
the input value causes significant change in the output which makes sigmoid ideally
suitable for classification task [105].

1
o(2) = 1+e>

Unlike sigmoid function, Tanh function squeezes the output between -1 to 1, which
makes gradient flow much steeper than sigmoid. Though sigmoid and tanh add non-
linearity in the system, they squeeze output to a smaller magnitude which causes
vanishing gradient problems for deeper model architecture [106].

(A.16)

tanh (z) = (A.17)

1+e2x
Rectified Linear Unit (ReLU) [107] is a frequently used activation function that, to
some extent, avoids the problem of vanishing gradient. Because it limits the output
values between 0 and infinity, the ReLU activation may occasionally blow out the gra-
dients. It is considerably more computationally efficient and sparse than sigmoid and
tanh. The primary disadvantage of the ReLU is that it ignores negative output, leading
some neurons to stay dormant. To address these disadvantages, leaky ReLU and pa-
rameterized ReLU may be viable options. Models implemented in our pipeline uses
ReLU activation in intermediate layers.

ReLU(z) = max(0,x) (A.18)

A. Appendix 71

A.2.1.3. Loss function

Neural networks use loss function as the evaluation criterion to minimize the error be-
tween the predicted output and the ground truth. The scalar loss value calculated by
the general loss function A.19 is utilized to update the model parameters iteratively un-
til the global minimum is attained. The choice of loss function depends on the ultimate
problem that the model must answer to complete the desired task. Individual details
of loss functions used in training the model is discussed in the following chapters.
General loss function is given by,

loss = L¢(9,y) (A.19)
where:

Ls = objective function
y = network prediction
y = ground truth label

loss = scalar value

Back-Propagation: Model is trained by feeding the input in forward pass, com-
paring the outcomes based on the loss function, and updating the model parameters.
Back-propagation is a technique for updating network parameters(weight and bias)
which computes partial derivatives based on a given objective function. The updating
rule based on the gradient descent algorithm is given by,

oL
Wi+1) =We — Q@ m

oL
b(t+1) = bt —a ab(t)

(A.20)

where:

a(> 0) = learning rate

A.2.1.4. Optimiser

An optimizer is a method for adjusting the weights that aids in the faster convergence.
One of the significant hyper parameters of optimisation that determine the step size
of gradients flow is the learning rate. Setting a low learning rate will result in a slower
convergence to an optimal solution. The higher learning rate would speed up training,
but the training becomes unstable when the gradient approaches closer to zero [108].

72 A. Appendix

— Optimal learning rate
1(6) — Low learning rate

——— High learning rate

6 parameters

Figure A.6: Learning rate explanation

Gradient descent allows the gradient to flow in the negative direction of slope based
on the error. The primary downside of this approach is that it computes the gradient for
the entire dataset at once in order to optimize the model parameters, which increases
the computational cost. On the other hand, stochastic gradient descent (SGD) [109]
updates the model parameters based on single input data to ease the computation
burden. But, the frequent updating may result in significant variation and uneven
gradients update. The mini-batch gradient descent enhances SGD’s capabilities by
updating after each designated mini-batch.

Gradient descent algorithms have additional hyperparameters (depends on type of
optimiser) to properly govern the direction of the gradient flow by decreasing variation
that occur due to noise. The momentum term [110] is an often used to accelerate
the path of gradients towards global minima, thus avoiding the gradient from getting
trapped in a local minimum. The momentum term B; accumulates an exponentially
weighted average of the past gradients in the current optimization step. The hyperpa-
rameter value B, of 0.9 was selected as default. RMS-prop [111] accelerates learning
in the desired dimension by lowering variation in the other dimension using an expo-
nentially weighted average analogous to momentum. Unlike momentum, this tech-
nique discards extreme past gradients during accumulation, allowing it to converge
quicker. The Adam optimiser [112] is a combination of the momentum and RMS-prop
algorithms that is extensively used in modern neural network implementation. It com-
putes the gradient using first and second order derivatives and adjusts the learning
rate to converge more quickly. During training, we make use of Adam optimiser for
updating weights.

Based on the momentum optimiser,
Vaw = B1 Vaw + (1 — B1) Ow

Vop = ﬁl Vsp + (1 - :31) ob (A21)
c _ vaW c vab
ow —

—— V5, = ————
1-81" %% 1-pi

A. Appendix 73

Based on RMS-prop optimiser,

Sow = P2 Sow + (1 — B2) ow?

Sop = ﬁZ Sab + (1 - :82) abz (A22)
c _ Saw . _ Sob

T g T g

Adam optimiser could hence be derived as,

c
Vaw
[oC

Sow
c
Vab

V5

Wie1) = We — @

(A.23)

bit+1y =b —a

A.2.2. Convolutional Neural Network

A convolutional neural network (CNN) is a popular model architecture for extracting
features from the images. The below section goes through the key components of a
convolutional neural network.

A.2.2.1. Convolution and its properties

Convolution layer extracts spatial information by applying kernel filters to the input
image. Each convolutional layer has a collection of filters that convert the input into
feature maps by learning complicated pattern during training. Convolution mathemat-
ically shares a similar structure as cross-correlation as given in the equation A.24.
Convolution holds commutative property such that output remains the same when
kernel and input are interchanged.

k k
Gli,j] = Z Z Hw, v]F[i — u,j — v] (A.24)
u=—-kv=-k

Unlike normal neural networks, weights of CNN are tied with each other enabling
the parameter to share its local properties spatially. They also provide the benefit
of translation equivariance where the change in the input would also shift the output
accordingly. Convolution, on the other hand, is not equivariant for changes in size and
rotation.

A.2.3. Pooling

Feature maps generated by the convolutional layer are passed through the pooling
layer, usually after the non-linear activation function. The pooling layer captures global
information without making the network bias towards the small non-rigid changes in
the image. The pooling layer does not learn any parameters; instead, it decreases
spatial resolution to smooth out the computational complexity of the subsequent lay-
ers. Commonly used pooling methods are max pooling and average pooling. Max
pooling identifies the largest value in the provided patch of a feature map, whereas
average pooling calculates the average value of the patch to downsample the given
input as shown in figure A.7.

74 A. Appendix

7 8
4 3 Max
—
pooling 9 7
5 7

Average 4.75 4.75
—

pooling
9 [3 | 2 |1 s | 3

Figure A.7: Max and average pooling

A.2.4. Stride and Padding

The stride parameter controls the sliding interval of the kernel window over the input
area. Applying Convolution over image usually reduces the dimension spatially but
in some tasks it is essential to retain output size to establish dimensional coherence
across the model structure. Padding is typically used to restore the size between input
and output layers. Padding is applied around borders of input with a predefined value

of zero.
Stride of 2
0

0 0 0 0 0
0 0
0 0
0 0
0 0

(a) (b)
Figure A.8: Stride (a) and Pooling (b)

A.2.41. Upsampling

Padding could help retaining spatial resolution but the information at the boundaries
is processed as zeros. On the other hand, upsampling techniques with transposed
convolution proven to be an effective strategy for increasing the resolution of the fea-
tures. Transposed convolution learns the weight and bias for upsampling the features
which outperforms conventional interpolation algorithms such as bicubic and bilinear.
The primary drawback is that separate weights have to be learnt during the training.

Appendix

B.1. Geometrical approach - Stage 2

The appendix B contains methodology studied during the phase of our project devel-
opment but not included in the final pipeline. In section 3.2.3, the deep learning model
detects the moving object in the scene. Based on the literature, the moving object in
the scene could also be detected using geometrical approaches. One such geometri-
cal approach, namely epipolar constraint, is studied in our project to classify potential
dynamic objects into moving and non-moving entities.

Epipolar constraint is already associated in ORB-SLAM2 algorithm to find the dynamic
points. The main difference between the epipolar constraint used in our implementa-
tion and ORB-SLAMZ2 lies with the handling of dynamic points. In ORB-SLAM2, the
dynamic points could not associated with the individual object. Due to a lack of object
boundary information, points associated with objects are not entirely categorized as
dynamic would be included in the map. However, in our implementation, the points
corresponding to the dynamic objects are classified based on the segmentation mask
which ensures all the point associated with the object is removed during the SLAM
process. Such an implementation would undoubtedly improve the efficiency of han-
dling dynamic points present in the scene.

Instance segmentation output Isolated Feature tracklets

Figure B.1: Individual feature tracking using flow vectors

Lucas Kanade method of sparse optical flow is used to track the feature correspon-
dence between two consecutive images. Let us consider the feature correspondence

75

76 B. Appendix

points obtained from two images as f;, f;+1. The segmentation output is coupled to
isolate features into the subset based on the instances, as shown in the figure B.1.

Figure B.2: Epipolar line with tracked features

The section A.1.3 suggest that an epipolar line could be formed based on the fun-
damental matrix (F) and feature point as F = f,. Based on the epipolar constraint,
feature correspondence associated with the static points in the next frame always lies
closer to the epipolar line. If the perpendicular distance between the feature points
and the epipolar line is higher than a threshold, the points are considered as dynamic.
We consider an object with at least three dynamic points to be moving. The epipolar
constraint governing the dynamic point detection is given by,

fLLFf =0 (B.1)

The main challenges of using the geometrical approach involves the correct estima-
tion of the fundamental matrix and mismatch of feature correspondence. Though the
feature mismatch problem during our experiments is tackled using IOU and the multi-
object tracking result, the fundamental matrix could not be estimated robustly. In the
case of predominant camera rotation, the estimation of the fundamental matrix be-
comes erratic. Such an inaccurate fundamental matrix would result in outliers causing
inefficient detection of dynamic points. Hence this approach is not implemented as
part of our final pipeline.

B.2. Semi-dense Mapping

ORB-SLAM2 maps the features detected in multiple frames as the landmark in the 3D
space. The sparsity of the map created by ORB-SLAM2 is one of its drawbacks when
compared to direct SLAM approaches. This section explores the dense mapping tech-
nique adapted to the feature-based SLAM architecture to overcome the sparsity.

The current implementation is based on the research proposed in [113]. The main
idea behind the semi-dense mapping lies in the estimation of inverse depth for the
neighbouring pixel association. Feature pixels of keyframes with high gradient values
are searched along the epipolar line to generate inverse depth hypotheses, proba-
bilistically represented in the gaussian distribution. A cost function based on modulo

B. Appendix 77

FEATURE-BASED MONOCULAR SLAM

TRACKING
Initial Pose Estimation
Extract Track New KeyFrame
Frame -—-| ORB from last frame or ||| 0o pap Decision
Epipolar Inverse Depth PLACE -
Smoothing RECOGNITION KeyFrme 8
search Intra-Keyframe MapPoints Insertion || 32
Inverse Depth Rocent E
% y @ MapPoints || >
o Culling %
Q || Hypoth Covisibility b
g M Graph New Points || &
Creation
w .
7] Epipolar
E Search Local BA
2 Stereo Local
E Search Essential Graph Loop Loop |_ KeyFrames
5 9
7]

Constraining Optimization Fusion Culling
I LOOP CLOSING

Figure B.3: Semi-dense mapping - ORB-SLAM2 implementation [113]

and orientation values is considered in addition to the intensity values to ensure ro-
bust estimation void of outliers. The search space of hypotheses is confined using
the known depth estimated during tracking and local mapping. After the depth hy-
potheses, intra-keyframe and inter-keyframe depth checking and smoothening are
performed to remove the outliers and provide smoothened edges. The qualitative re-
sult analysed in the paper suggest that reconstructed maps have better edges than
LSD-SLAM.

The reconstructed semi-dense mapping of KITTI sequences is shown below,

Figure B.4: Semi-dense mapping results

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bibliography

Giulio Reina, Andres Vargas, Keiji Nagatani, and Kazuya Yoshida. Adaptive
kalman filtering for gps-based mobile robot localization. In 2007 IEEE Interna-
tional Workshop on Safety, Security and Rescue Robotics, pages 1-6. |IEEE,
2007.

Muhammad Sualeh and Gon-Woo Kim. Simultaneous localization and mapping
in the epoch of semantics: a survey. International Journal of Control, Automa-
tion and Systems, 17(3):729-742, 2019.

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, lan Reid, and John J Leonard. Past, present, and future of simul-
taneous localization and mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 32(6):1309-1332, 2016.

loannis Kostavelis and Antonios Gasteratos. Semantic mapping for mobile
robotics tasks: A survey. Robotics and Autonomous Systems, 66:86—103,
2015.

Berta Bescos, Carlos Campos, Juan D Tardds, and José Neira. Dynaslam ii:
Tightly-coupled multi-object tracking and slam. IEEE Robotics and Automation
Letters, 6(3):5191-5198, 2021.

Chieh-Chih Wang, Charles Thorpe, Sebastian Thrun, Martial Hebert, and Hugh
Durrant-Whyte. Simultaneous localization, mapping and moving object tracking.
The International Journal of Robotics Research, 26(9):889-916, 2007.

Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual slam algorithms:
a survey from 2010 to 2016. /IPSJ Transactions on Computer Vision and Appli-
cations, 9(1):1-11, 2017.

Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam:
Dense tracking and mapping in real-time. In 2011 international conference on
computer vision, pages 2320-2327. IEEE, 2011.

Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semi-direct
monocular visual odometry. In 20714 IEEE international conference on robotics
and automation (ICRA), pages 15-22. IEEE, 2014.

Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry.
IEEE transactions on pattern analysis and machine intelligence, 40(3):611-625,
2017.

79

80

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Jakob Engel, Thomas Schops, and Daniel Cremers. Lsd-slam: Large-scale
direct monocular slam. In European conference on computer vision, pages
834-849. Springer, 2014.

Thomas Schops, Jakob Engel, and Daniel Cremers. Semi-dense visual odom-
etry for ar on a smartphone. In 2014 IEEE international symposium on mixed
and augmented reality (ISMAR), pages 145-150. IEEE, 2014.

Andrew J Davison, lan D Reid, Nicholas D Molton, and Olivier Stasse.
Monoslam: Real-time single camera slam. IEEE transactions on pattern anal-
ysis and machine intelligence, 29(6):1052—-1067, 2007.

Georg Klein and David Murray. Parallel tracking and mapping for small ar
workspaces. In 2007 6th IEEE and ACM international symposium on mixed
and augmented reality, pages 225-234. IEEE, 2007.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a
versatile and accurate monocular slam system. IEEE transactions on robotfics,
31(5):1147-1163, 2015.

Raul Mur-Artal and Juan D Tardés. Orb-slam2: An open-source slam sys-
tem for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics,
33(5):1255-1262, 2017.

Maksim Filipenko and llya Afanasyev. Comparison of various slam systems for
mobile robot in an indoor environment. In 2018 International Conference on
Intelligent Systems (1S), pages 400—407. IEEE, 2018.

Yin-Tien Wang, Ming-Chun Lin, and Rung-Chi Ju. Visual slam and moving-
object detection for a small-size humanoid robot. International Journal of Ad-
vanced Robotic Systems, 7(2):13, 2010.

Yaser Sheikh, Omar Javed, and Takeo Kanade. Background subtraction for
freely moving cameras. In 2009 IEEE 12th International Conference on Com-
puter Vision, pages 1219-1225. IEEE, 2009.

Abhijit Kundu, K Madhava Krishna, and Jayanthi Sivaswamy. Moving object
detection by multi-view geometric techniques from a single camera mounted
robot. In 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4306—4312. IEEE, 20009.

Muhamad Risqi U Saputra, Andrew Markham, and Niki Trigoni. Visual slam
and structure from motion in dynamic environments: A survey. ACM Computing
Surveys (CSUR), 51(2):1-36, 2018.

Gonzalo R Rodriguez-Canosa, Stephen Thomas, Jaime Del Cerro, Antonio
Barrientos, and Bruce MacDonald. A real-time method to detect and track
moving objects (datmo) from unmanned aerial vehicles (uavs) using a single
camera. Remote Sensing, 4(4):1090-1111, 2012.

Bibliography 81

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Boyoon Jung and Gaurav S Sukhatme. Detecting moving objects using a single
camera on a mobile robot in an outdoor environment. In International confer-
ence on intelligent autonomous systems, pages 980-987. Citeseer, 2004.

Yuxiang Sun, Ming Liu, and Max Q-H Meng. Improving rgb-d slam in dynamic
environments: A motion removal approach. Robotics and Autonomous Sys-
tems, 89:110-122, 2017.

Weichen Dai, Yu Zhang, Ping Li, Zheng Fang, and Sebastian Scherer. Rgb-d
slam in dynamic environments using point correlations. |EEE Transactions on
Pattern Analysis and Machine Intelligence, 2020.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 779-788, 2016.

Gumin Jin, Xingjun Zhong, Shaoqing Fang, Xiangyu Deng, and Jianxun Li.
Keyframe-based dynamic elimination slam system using yolo detection. In Inter-
national Conference on Intelligent Robotics and Applications, pages 697—705.
Springer, 2019.

Peiyu Guan, Zhigiang Cao, Erkui Chen, Shuang Liang, Min Tan, and Junzhi Yu.
A real-time semantic visual slam approach with points and objects. International
Journal of Advanced Robotic Systems, 17(1):1729881420905443, 2020.

Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello.
Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv preprint arXiv:1606.02147, 2016.

Zhuo Chen, Weimin Zhang, Fangxing Li, Yongliang Shi, Yang Wang, Fuyu Nie,
Chi Zhu, and Qiang Huang. A research on the fusion of semantic segment net-
work and slam. In 2019 IEEE International Conference on Advanced Robotics
and its Social Impacts (ARSO), pages 304-309. IEEE, 2019.

Chao Yu, Zuxin Liu, Xin-Jun Liu, Fugui Xie, Yi Yang, Qi Wei, and Qiao Fei.
Ds-slam: A semantic visual slam towards dynamic environments. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1168-1174. IEEE, 2018.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. IEEE trans-
actions on pattern analysis and machine intelligence, 39(12):2481-2495, 2017.

Linyan Cui and Chaowei Ma. Sof-slam: A semantic visual slam for dynamic
environments. /EEE Access, 7:166528—-166539, 2019.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision, pages
2961-2969, 2017.

82 Bibliography

[35] Lili Zhao, Zhili Liu, Jianwen Chen, Weitong Cai, Wenyi Wang, and Liaoyuan
Zeng. A compatible framework for rgb-d slam in dynamic scenes. IEEE Access,
7:75604-75614, 2019.

[36] Berta Bescos, José M Facil, Javier Civera, and José Neira. Dynaslam: Track-
ing, mapping, and inpainting in dynamic scenes. IEEE Robotics and Automation
Letters, 3(4):4076—4083, 2018.

[37] Alex Krizhevsky, llya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25:1097-1105, 2012.

[38] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 580-587, 2014.

[39] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), December 2015.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards
real-time object detection with region proposal networks. |[EEE transactions on
pattern analysis and machine intelligence, 39(6):1137-1149, 2016.

[41] Lilian Weng. Object detection for dummies part 3: R-cnn family.
lilianweng.github.io/lil-log, 2017 .

[42] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21-37. Springer, 2016.

[43] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[44] Shijie Hao, Yuan Zhou, and Yanrong Guo. A brief survey on semantic segmen-
tation with deep learning. Neurocomputing, 406:302—-321, 2020.

[45] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431-3440, 2015.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234—-241.
Springer, 2015.

[47] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2881-2890, 2017.

Bibliography 83

[48] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time
instance segmentation. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 9157-9166, 2019.

[49] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. Solov2:
Dynamic, faster and stronger. arXiv preprint arXiv:2003.10152, 2020.

[50] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and Lei Li. Solo: Seg-
menting objects by locations. In European Conference on Computer Vision,
pages 649-665. Springer, 2020.

[51] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
2117-2125, 2017.

[52] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank,
Alex Sergeev, and Jason Yosinski. An intriguing failing of convolutional neural
networks and the coordconv solution. arXiv preprint arXiv:1807.03247, 2018.

[53] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Fo-
cal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980-2988, 2017.

[54] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge
Cardoso. Generalised dice overlap as a deep learning loss function for highly
unbalanced segmentations. In Deep learning in medical image analysis and
multimodal learning for clinical decision support, pages 240-248. Springer,
2017.

[55] Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy loss for training
deep neural networks with noisy labels. In 32nd Conference on Neural Infor-
mation Processing Systems (NeurlPS), 2018.

[56] Yaoshiang Ho and Samuel Wookey. The real-world-weight cross-entropy loss
function: Modeling the costs of mislabeling. IEEE Access, 8:4806—4813, 2019.

[57] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories.
In Proceedings of the IEEE international conference on computer vision, pages
3551-3558, 2013.

[58] Mennatullah Siam, Heba Mahgoub, Mohamed Zahran, Senthil Yogamani, Mar-
tin Jagersand, and Ahmad El-Sallab. Modnet: Moving object detection net-
work with motion and appearance for autonomous driving. arXiv preprint
arXiv:1709.04821, 2017.

[59] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

84

Bibliography

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Eddy lig, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep
networks. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2462-2470, 2017.

Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and
Richard Szeliski. A database and evaluation methodology for optical flow. In-
ternational journal of computer vision, 92(1):1-31, 2011.

Margarita Grinvald, Fadri Furrer, Tonci Novkovic, Jen Jen Chung, Cesar Ca-
dena, Roland Siegwart, and Juan Nieto. Volumetric instance-aware seman-
tic mapping and 3d object discovery. IEEE Robotics and Automation Letters,
4(3):3037-3044, 2019.

Martin Runz, Maud Buffier, and Lourdes Agapito. Maskfusion: Real-time recog-
nition, tracking and reconstruction of multiple moving objects. In 2018 IEEE In-
ternational Symposium on Mixed and Augmented Reality (ISMAR), pages 10—
20. IEEE, 2018.

Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, and Tae-
Kyun Kim. Multiple object tracking: A literature review. Artificial Intelligence,
page 103448, 2020.

Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin Bal-
achandar Gnana Sekar, Andreas Geiger, and Bastian Leibe. Mots: Multi-object
tracking and segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7942—7951, 2019.

Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang. Towards
real-time multi-object tracking. In Computer Vision—ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part X| 16, pages
107-122. Springer, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770-778, 2016.

Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Re-
hder, Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc
micro aerial vehicle datasets. The International Journal of Robotics Research,
35(10):1157-1163, 2016.

Jurgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. A benchmark for the evaluation of rgb-d slam systems. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages
573-580. IEEE, 2012.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision
meets robotics: The kitti dataset. The International Journal of Robotics Re-
search, 32(11):1231-1237, 2013.

Bibliography 85

[71]

[72]
[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

M Siam. Multi-task learning with motion and appearance.

Kentaro Wada. labelme: Image Polygonal Annotation with Python. https:
//github.com/wkentaro/labelme, 2016.

Shinji Umeyama. Least-squares estimation of transformation parameters be-
tween two point patterns. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 13(04):376-380, 1991.

Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory
evaluation for visual (-inertial) odometry. In 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 7244-7251. |IEEE,
2018.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, lan Reid,
and Silvio Savarese. Generalized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 658—-666, 2019.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross
Girshick. Detectron2. https://github.com/facebookresearch/
detectron2, 2019.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In International Conference on Machine Learning, pages
6105-6114. PMLR, 2019.

Rishav Rishav, Ramy Battrawy, René Schuster, Oliver Wasenmdlller, and Didier
Stricker. Deeplidarflow: A deep learning architecture for scene flow estimation
using monocular camera and sparse lidar. In 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 10460-10467. IEEE,
2020.

Johan Vertens, Abhinav Valada, and Wolfram Burgard. Smsnet: Semantic mo-
tion segmentation using deep convolutional neural networks. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
582-589. IEEE, 2017.

Hazem Rashed, Ahmad El Sallab, and Senthil Yogamani. Vm-modnet: Vehicle
motion aware moving object detection for autonomous driving. arXiv preprint
arXiv:2104.10985, 2021.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997, 2014.

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

86 Bibliography

[83] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4700-4708, 2017.

[84] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 4510-4520, 2018.

[85] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl).
In 2011 IEEE international conference on robotics and automation, pages 1-4.
IEEE, 2011.

[86] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: An efficient probabilistic 3d mapping framework based on
octrees. Autonomous robots, 34(3):189-206, 2013.

[87] David G Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision, 60(2):91-110, 2004.

[88] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust fea-
tures. In European conference on computer vision, pages 404—417. Springer,
2006.

[89] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In 2017 International conference on computer
vision, pages 2564-2571. leee, 2011.

[90] Edward Rosten and Tom Drummond. Machine learning for high-speed cor-
ner detection. In European conference on computer vision, pages 430—443.
Springer, 2006.

[91] Robert C Bolles, H Harlyn Baker, and David H Marimont. Epipolar-plane im-
age analysis: An approach to determining structure from motion. International
Journal of computer vision, 1(1):7-55, 1987.

[92] Richard | Hartley. In defense of the eight-point algorithm. IEEE Transactions on
pattern analysis and machine intelligence, 19(6):580-593, 1997.

[93] David Nistér. An efficient solution to the five-point relative pose problem.
IEEE transactions on pattern analysis and machine intelligence, 26(6):756—770,
2004.

[94] Bill Triggs, Philip F McLauchlan, Richard | Hartley, and Andrew W Fitzgibbon.
Bundle adjustment—a modern synthesis. In International workshop on vision
algorithms, pages 298-372. Springer, 1999.

[95] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006.

Bibliography 87

[96] Jorge J Moré. The levenberg-marquardt algorithm: implementation and theory.
In Numerical analysis, pages 105-116. Springer, 1978.

[97] Rainer Kimmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram
Burgard. g 2 o: A general framework for graph optimization. In 2011 IEEE In-
ternational Conference on Robotics and Automation, pages 3607-3613. IEEE,
2011.

[98] G. Grisetti, R. Kimmerle, C. Stachniss, and W. Burgard. A tutorial on graph-
based slam. IEEE Intelligent Transportation Systems Magazine, 2:31-43, 2010.

[99] Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial
intelligence, 17(1-3):185-203, 1981.

[100] Alexey Dosovitskiy, Philipp Fischer, Eddy llg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional networks. In Proceedings of
the IEEE international conference on computer vision, pages 2758-2766, 2015.

[101] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns
for optical flow using pyramid, warping, and cost volume. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 8934—
8943, 2018.

[102] Liang Liu, Jiangning Zhang, Ruifei He, Yong Liu, Yabiao Wang, Ying Tai, Dong-
hao Luo, Chengjie Wang, Jilin Li, and Feiyue Huang. Learning by analogy: Re-
liable supervision from transformations for unsupervised optical flow estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6489-6498, 2020.

[103] lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[104] S Agatonovic-Kustrin and Rosemary Beresford. Basic concepts of artificial neu-
ral network (ann) modeling and its application in pharmaceutical research. Jour-
nal of pharmaceutical and biomedical analysis, 22(5):717-727, 2000.

[105] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 249-256. JMLR Workshop
and Conference Proceedings, 2010.

[106] Chigozie Nwankpa, Winifred ljomah, Anthony Gachagan, and Stephen Mar-
shall. Activation functions: Comparison of trends in practice and research for
deep learning. arXiv preprint arXiv:1811.03378, 2018.

[107] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Ilcml, 2010.

[108] Josh Patterson and Adam Gibson. Deep learning: A practitioner’s approach. ”
O’Reilly Media, Inc.”, 2017.

88 Bibliography

[109] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient

descent as approximate bayesian inference. arXiv preprint arXiv:1704.04289,
2017.

[110] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145-151, 1999.

[111] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for
machine learning lecture 6a overview of mini-batch gradient descent. Cited on,
14(8):2, 2012.

[112] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[113] Raul Mur-Artal and Juan D Tardds. Probabilistic semi-dense mapping from
highly accurate feature-based monocular slam. In Robotics: Science and Sys-
tems, volume 2015. Rome, 2015.

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research question
	Contributions
	Overview

	Related work
	SLAM architecture
	Direct method
	Feature-based method

	Dynamic objects
	Geometrical approaches
	Learning based approaches

	Review on deep learning architectures
	Object detection
	Segmentation
	Semantic segmentation
	Instance segmentation

	Methodology
	Methodology overview
	Classification of dynamic objects
	Stages of development

	Tracking
	Base - ORB-SLAM2
	Stage 1 - Dynamic object segmentation
	SOLOV2 network architecture
	Combining dynamic object segmentation with ORB-SLAM2

	Stage 2 - Moving object segmentation
	Two stream network architecture
	Combining moving object segmentation with ORB-SLAM2

	Mapping
	Dynamic semantic mapping
	Instance semantic mapping
	Multi-object tracking
	Combining multi-object tracking with ORB-SLAM2

	Dynamic density estimation

	Dataset and metrics
	Dataset
	SLAM
	Stage 1 - Segmentation dataset
	Stage 2 - Moving object dataset
	New dataset generation

	Metrics
	Absolute trajectory error - SLAM
	IOU estimation - Segmentation

	Experimentation and results
	Object segmentation and tracking models
	SOLOV2 - Dynamic object segmentation
	Result and discussion

	Two stream architecture - Moving object segmentation
	Result and discussion

	Multi-object tracking
	Selection of feature embedding model
	Result and discussion

	Experiments on SLAM
	Tracking
	Base - ORB-SLAM2
	Stage 1 - Dynamic object segmentation
	Stage 2 - Moving object segmentation

	Mapping
	Dynamic Semantic mapping
	Instance semantic mapping
	Dynamic density estimation
	Map management

	Real-world validation

	Conclusion
	Recommendations

	Appendix
	SLAM Background
	Feature matching
	Coordinate transformations
	Epipolar constraint
	Triangulation
	Bundle adjustment
	Graph based SLAM
	Optical flow

	Deep learning Background
	Neural networks
	Neuron
	Activation function
	Loss function
	Optimiser

	Convolutional Neural Network
	Convolution and its properties

	Pooling
	Stride and Padding
	Upsampling

	Appendix
	Geometrical approach - Stage 2
	Semi-dense Mapping

	Bibliography

