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Abstract
The natural modes of Ontario Lacus surface oscillations, the largest lake in Titan’s

southern hemisphere, are simulated and analysed as they are potentially of broad in-
terest in a variety of dynamical researches. We found that tidal forces are too low in
frequency to excite the (barotropic) normal modes. Broadband wind forcing likely spans
the resonant frequencies. High wind speed, which could be encountered under episodic
phenomenon such as storms, would be required to significantly excite the normal modes.
While the slower baroclinic normal modes could more easily be resonantly forced by the
low-frequency tidal forces, addressing this issue demands unavailable information about
the lake stratification.
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1 Introduction
Titan, the largest moon of Saturn, is known for its surface lakes and seas filled with liquid hy-
drocarbons. The Cassini spacecraft, which had been investigating the Saturnian system from
2004 to 2017, detected a methane cycle similar to the hydrological cycle on Earth (Atreya
et al., 2006) as well as surface lakes and seas filled with liquid hydrocarbons (mainly methane
and ethane) (Stofan et al., 2007; Brown et al., 2008; Cordier et al., 2009). The distribution of
these lakes and seas is asymmetric with respect to the equator (Aharonson et al., 2009): there
are more lakes in the northern hemisphere, where the largest liquid bodies are located (Hayes
et al., 2008, 2018). The present work focuses on the largest lake of the southern hemisphere,
Ontario Lacus. It is centered at (72◦ S, 176◦ E) and covers approximately an area of 200 km
× 70 km (Wall et al., 2010). It exhibits well documented shoreline variations: Turtle et al.
(2011) suggested that the difference between the ISS1 images taken in 2005 ( on June 6, Rev09,
Ls = 306◦)2 and 2009 (on March 27, T51, Ls = 355◦) corresponds to possible shoreline varia-
tions. This assumption was given additional support by synthetic aperture radar (SAR) images
in 2009 (T57, Ls = 358◦ and T58, Ls = 359◦) (Wall et al., 2010; Hayes et al., 2011).

Various attempts have been made to understand and explain these variations. Tides were
ruled out by Vincent et al. (2016) as the tidal range is too small. Nowadays, the most common
explanation involves evaporation/infiltration of surface liquid (Turtle et al., 2011; Lunine et al.,
2009) as the observations took place during the southern summer, when evaporation was pre-
dicted to be the largest. Due to their low resolution, analysis of ISS images were inconclusive
and the existence of seasonal shoreline variations remained questionable as the data are, within
measurement error, consistent with no changes at all (Cornet et al., 2012). Subsequent SAR
images (T65 in 2010, Ls = 5.5◦) suggested no significant shoreline changes in comparison with
2009 images. On the other hand, lacustrine features of the southern hemisphere seem to disap-
pear between subsequent SAR observations (from 2007 to 2008/2009), corresponding to liquid
evaporation or infiltration into the ground (Hayes et al., 2011; Hayes, 2016). Such observations
tilt the balance in favour of shoreline variations taking place in Titan southern hemisphere (at
least from 2007 to 2009). Ontario Lacus would likely experience such variations although they
could be less significant than suggested by the variations observed between 2005 ISS and 2009
SAR images.

While the tidal motion of Titan’s liquid bodies has been the subject of several studies(see
Tokano, 2010; Tokano et al., 2014; Vincent et al., 2016, 2018), the normal modes were only
briefly investigated by Lorenz (1994), Dermott and Sagan (1995) and Tokano (2010).Dermott
and Sagan (1995) used Merian’s formula to investigate resonance phenomenon in a hypothet-
ical rectangular lake on Titan, while Tokano (2010) calculated the period of a fundamental

1Imaging Science Subsystem: it takes pictures in visible, near-ultraviolet, and near-infrared light. (see Porco
et al., 2004).

2The solar longitude of Saturn, Ls , is the angle between the Sun and Saturn and describes the season of
Saturn and its moons.
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slosh in Ontario Lacus and Kraken Mare. Such modes need to be understood for a whole
range of dynamical studies. Furthermore, they could form a signature that could be remotely
sensed and, if they were observed, could possibly be used to infer lake characteristics such as
the bathymetry. Indeed, detecting liquid motion associated with a natural period of the lake
could give further insight into the bathymetry as the natural periods are related to the depth
of the lake. Using such an inverse approach, one could, for instance, gain an insight about the
material/configuration properties of a wind-chime from the modes excited by broadband wind.

The resonant frequencies of barotropic modes3 of a lake with complex shoreline and bathy-
metry such as Ontario Lacus can be bound by considering its geometry. The highest resonant
frequencies would take place in a small cove, where a high-frequency slosh could occur. One can
obtain a simple estimate of the lower bound from the period of a fundamental slosh4 along the
larger axis of the lake, of length L. This period is approximated by Merian’s formula (Merian,
1828) for a rectangular domain: T = 2L√

gh
, where g = 1.352 m/s2 is the mean gravitational

acceleration and h is the mean depth of the lake. For Ontario Lacus, it results in a period much
smaller than 1 Titan Day (TD). Such modes could not be excited in the models of Tokano
(2010) and Vincent et al. (2016) as the only forcing taken into account was that induced by the
orbital eccentricity and Titan’s obliquity, whose period is 1 TD. Other astronomical forcings
with smaller magnitude that were not taken into account in previous studies or some atmo-
spheric forcings could have a period matching those of the barotropic normal modes. Baroclinic
modes could also resonate and generate significant liquid displacement within the lake but are
not associated with large surface elevations. Furthermore, there is not enough information
about the stratification of Ontario Lacus to study them properly, therefore, we did not consider
these modes.

We numerically studied the normal modes of Ontario Lacus for two bathymetries available
in the literature, that of Ventura et al. (2012) and that of Hayes (2016) and Mastrogiuseppe
et al. (2018)5. The bathymetries were derived from different data sets and using different meth-
ods. Ventura et al. (2012) used a model to derive the bathymetry from the SAR data of the
T65 flyby (January 12, 2010) while Hayes (2016) and Mastrogiuseppe et al. (2018) derived their
bathymetry from the T49 flyby (December 21, 2008) by means of an extrapolation method.
The methodology of Ventura et al. (2012) is a combination of electromagnetic modelling and
a Bayesian approach to perform the inversion and to derive from SAR backscattering values
the lake optical thickness. The conversion to physical depth is then achieved by using the loss
tangent value as calculated in Hayes et al. (2010). Hayes (2016) and Mastrogiuseppe et al.

3When studying the motion of liquid bodies, one can separate the signal between barotropic and baroclinic
modes. The former concerns the motion of a constant density liquid and are mostly external modes, i.e.
approximately depth-dependent, while the latter differently impacts each layer of various density, resulting in
internal oscillations.

4A fundamental slosh is a normal mode with 1 node in the domain, i.e. it is the longest standing wave that
can be observed in the domain.

5Although the bathymetry was derived following the method described in Mastrogiuseppe et al. (2018), it
was first published in Hayes (2016). We refer to this bathymetry as the bathymetry of Hayes (2016) throughout
this article.
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Figure 1: Synthetic Aperture Radar map of Ontario Lacus. The dashed line correspond to
the ISS shorelines from 2005. The red letter A denotes the area where the largest shoreline
variations occurred. (Adapted from (Hayes et al., 2011); original image credit: Cassini Radar
Science team, NASA/JPL/Caltech)7

(2018) applied the method of Mastrogiuseppe et al. (2014) to the altimetry data from T49.
This method consists in deriving the bathymetry from subsurface reflections in the Cassini
radar altimeter. Nevertheless, T49 was the first pass over a liquid body and the default at-
tenuator settings were overwhelmed, leading to saturation. Mastrogiuseppe et al. (2016, 2018)
used a radar altimetry simulator to recover the data over the saturated area, resulting in the
bathymetry reported in Hayes (2016). A more detailed comparison of the methods is available
in Section 2.3 of Vincent et al. (2016) while technical details are available in Ventura et al.
(2012) and Mastrogiuseppe et al. (2014, 2016, 2018). The lake shoreline considered are derived
from T58/T59 flyby. It corresponds to the lowest level of the lake (see Fig. 1). Due to the
complexity of Ontario Lacus’ shoreline, unstructured grids are used to discretize the domain.
It allows for a better representation of the shoreline without significantly increasing the compu-
tational and memory costs. The article is organised as follows: the method used to simulate
the natural modes and periods of the lake is presented in Section 2. The periods of the various
astronomical forcings acting on Titan are discussed in Section 3 and compared to the natural
periods of Ontario Lacus in Section 4. Among the natural modes predicted, some of them stand
out as they correspond to large area(s) with positive/negative sea surface elevation and could
therefore be detected by an orbiter. They are briefly introduced in the same Section. Finally,

7Reprinted from Transient surface liquid in Titan’s polar regions from Cassini, 211, Hayes, A. G.; Aharonson,
O.; Lunine, J. I.; Kirk, R. L.; Zebker, H. A.; Wye, L. C.; Lorenz, R. D.; Turtle, E. P.; Paillou, Philippe; Mitri,
G and others, 655–671, Copyright (2011), with permission from Elsevier
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the results are discussed in Section 5 and conclusions are drawn in Section 6.

2 Method
A normal mode (also called eigenmode) is a pattern of motion under which a system can freely
oscillate following a perturbation of its equilibrium state. The frequency associated with the
oscillation is called the normal frequency. The normal modes of a linear system form a complete
basis set, i.e. any motion of the system can be described as a weighted sum of its eigenmodes.
The motion associated with the excitation of a normal mode of a liquid body is called a seiche,
which is defined by Baretta-Bekker et al. (1998) as “A standing wave occurring in lakes or semi-
enclosed embayments as a result of some sudden disturbance. The topography of the basin
determines the form and period of the different seiche modes that may occur.”. These modes
can be predicted from the linearised equations of motion.

Various methods allowing computing the eigenmodes of a liquid domain are described here-
after. For regular structured grids, the eigenmodes can be computed analytically by introducing
a space Fourier mode in the discretized equations, leading to the dispersion relation which de-
pends on the grid and numerical scheme (e.g. Sauter and Wittum, 1992). Another way to
study the eigenmodes is to solve the stationary equations8 for a range of angular frequencies
(e.g. Webb, 2013). This allows predicting the frequencies associated with resonance (and, hence,
the normal periods and normal modes). Ontario Lacus has a complex shoreline and bathymetry
which would require a high resolution structured grid to be properly captured. On the other
hand, the geometrical flexibility of unstructured meshes allows one to locally increase the spa-
tial resolution. This permits an accurate representation of the shoreline and the bathymetry
(See Fig. 2) whilst demanding less memory and computer time than calculations based on a
structured mesh. The abovementioned approaches being not easily applicable to unstructured
grids, we used the alternative approach of Bernard et al. (2008), which is adapted to these
grids. The key feature of this method are laid out below. The modes are predicted from the
linearized, frictionless shallow-water equations:

∂u

∂t
+ fez ∧ u + g∇η = 0

∂η

∂t
+ ∇ · (hu) = 0

(1)

where u is the depth-averaged velocity; ∇ is the horizontal del operator; f = 2Ω sinφ is the
Coriolis parameter (Ω = 4.5601× 10−6 s−1 is Titan’s orbital angular velocity and φ is the lati-
tude); ez is a unit vector pointing upwards in the local non-inertial Cartesian basis; g = 1.352
m/s2 is the mean gravitational acceleration at Titan’s surface; η is the surface elevation (posi-
tive upward); and h is the reference height of the liquid column.

One can rewrite this system as
8These equations are obtained by separation of variables.
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Figure 2: Discretization of Ontario Lacus using mesh-generation package GMSH. The mesh is
refine nearshore and where the bathymetry gradient is significant.

∂U
∂t

+∇ · F(U) + S(U) = 0 (2)

where U =

 η
u
v

 is the vector of unknowns, F =

 hu hv
gη 0
0 gη

 is the flux matrix and

S =

 0
−fv
fu

 is a vector related to the Coriolis force. These equations are discretized on

an unstructured mesh following the discontinuous Galerkin finite element method (DGFEM):
Eq. 2 is multiplied by a test function and integrated over the domain. Using a Riemann solver
to compute the flux at the element interfaces, one obtains the semi-discrete Discontinuous
Galerkin (DG) formulation for a spatial piecewise discontinuous polynomial approximation Up

∂Up

∂t
= LUp (3)

where L is the DG formulation of the linear shallow water space operator (see Bernard et al.
(2008) for further details about this transformation). Finally, this linear operator transforms
to

∂

∂t
Up = M−1AUp (4)

where M is the mass matrix of the domain9 and A is a matrix representing the spatial
9The mass matrix results from the integral of the product of the shape functions over each element of the
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terms. M−1A is never assembled numerically as it would require a time and resource consuming
inversion of M. Consequently, the linear operator corresponding to the numerical equation is

M
∂

∂t
Up = AUp (5)

This is a generalized eigenvalue problem whose complex eigenvalues, λ, satisfy the fact that
A-λM is singular (i.e. the determinant is zero). The discrete solutions Up are the real part of

Up = Re{Xp(x, y)ejλt} (6)

where Xp(x, y) is the eigenvector and j =
√
−1. These eigenvalues and the associated

eigenvectors Xp can be computed using eig function of the scipy.linalg package of the python
library (see Jones et al., 2001). Indeed, this is cheaper than inverting M and then multiplying A
by M−1. Function eig uses the ggev routine from LAPACK and BLAS libraries. This routine
performs a QZ decomposition (also called generalized Schur decomposition) to compute the
eigenvalues and eigenvectors.

The eigenvalues should be purely imaginary as no dissipation term is present in Eqs. 1.
However, they are actually complex (see Figs. 3). This is due to the dissipation introduced in the
discrete equations by the Riemann solver used to deal with the spatial operators (Bernard et al.,
2008). The real part of the eigenvalues quantify this dissipation. For this application, the real
part of the eigenvalues ranges from 0 to 0.03 s−1 or 0.04 s−1, depending on the bathymetry. The
eigenmodes of interest in our analysis (they are represented by red dots on Fig. 3) correspond
to eigenvalues whose real part is small (it is at most O(10−8) s−1). The real part of some
eigenvalues are much more significant but they are associated with modes corresponding to
numerical dissipation (i.e. without any physical meaning). The eigenvalues always come in
complex conjugates pairs of same norms and dissipation. Furthermore, they are characterized
by the same frequency but with opposed directions of rotation. As the eigenvalues are complex,
so are the eigenvectors. Both real and imaginary parts contribute to the motion associated
with the eigenmode. Indeed, eigenmodes theory relies on the assumption that the solutions are
periodic , i.e. Up(x, y, t) = Re{Xp(x, y)ejωt} where j =

√
−1, ω is the imaginary part of the

eigenvalues and Xp(x, y) = Xp
r(x, y) + jXp

i (x, y) are the eigenvectors – Xr and Xi respectively
denotes the real and imaginary part of the eigenvectors. For complex eigenvectors the solution
can be rewritten as

Up(x, y, t) = Re {[Xp
r(x, y) + jXp

i (x, y)] [cos(ωt) + j sin(ωt)]} (7)

⇔ Up(x, y, t) = Re {[Xp
r(x, y) cos(ωt)−Xp

i (x, y) sin(ωt)] + j [Xp
i (x, y) cos(ωt) + Xp

r(x, y) sin(ωt)]}
(8)

One can see that both the real and imaginary parts of the eigenvectors can contribute to
the motion but there is a phase lag of π

2
between them.

The main drawback of the method used herein is that one mode is associated with each
degree of freedom of the discrete equations, which results in an excessively large number of

domain.
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Figure 3: Plot of the eigenvalues for the bathymetry of Hayes (2016) (a) and Ventura et al.
(2012) (b). One can see the vertical symmetry of the plots corresponding to the fact that
the complex eigenvalues always come with their complex conjugates. The resolved modes are
coloured in red. They all correspond to eigenvalues whose real part is really small (it is at most
O(10−8)).
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modes. Hence, both resolved and unresolved modes are obtained. The latter shorter normal
modes have a wavelength that is too short to be well represented on the mesh (i.e. the mesh
resolution is not significantly smaller than the wavelength) or represent numerical noise. These
modes have to be distinguished a posteriori from the resolved modes and are disregarded.

3 Astronomical forcings
In this section, the astronomical forcings that could resonantly force Titan liquid bodies are
listed. Tokano (2010) and Vincent et al. (2016) studied the tidal motion induced by Titan’s
obliquity and orbital eccentricity. However, other components of the tidally induced motion of
the surface lakes and seas such as those induced by the Sun, planets of the solar system and Sat-
urn’s moons were neglected because they are much weaker (Sagan and Dermott, 1982; Tokano,
2010). Nevertheless, the forcings associated with these celestial bodies could, despite their
small magnitude, excite a normal mode, resulting in a seiche through resonant amplification.
Such phenomenon could generate a much larger liquid motion than the diurnal tidal motion.
The most important of those tidal forcings arise through periodic perturbations in Titan’s orbit
induced by the other moons of Saturn and celestial bodies of the solar system, resulting in a
variation of Titan’s gravitational force acting on the surface lakes and seas. Such variations
were studied by, among others, Vienne and Duriez (1991, 1992, 1995), who took into account
perturbations induced by the Sun and by the other satellites of Saturn. The short-period vari-
ations predicted in these articles are listed in Table 1. Another way to detect a short period
variation of the forcing acting on Titan is to study its position as a function of time, which
is available in the HORIZONS Web-Interface (https://ssd.jpl.nasa.gov/horizons.cgi).
We took into account two reference points while studying the position of Titan: Saturn and
the solar system barycenter. In both cases, we studied the evolution of the position with three
different time steps: 1 day, 1 hour, and 1 min. Focusing on the days/months before the first ISS
observation ( 6th of June 2005), we did not detect any other periodic variations than those listed
in Vienne and Duriez (1991, 1992, 1995). According to Hussmann et al. (2010), a resonance
between Titan and Hyperion, which is not mentioned in Vienne and Duriez (1991, 1992, 1995)’s
list, can also be observed. This resonance has a period of 640 days and a libration amplitude
of 36◦.

4 Normal modes
A fundamental slosh is unlikely to develop as its period is much smaller than the period corre-
sponding to the astronomical forcings listed in Table 1. Indeed, the latter have time scales of
days while Merian’s formula (Merian, 1828) results in periods of 20.5678 hours for the bathyme-
try of Hayes (2016) (whose mean depth is about 27.33 m) and 34.56 hours for that of Ventura
et al. (2012) (whose mean depth is about 9.68 m). Inverting Merian’s formula to get the depth
needed to create a wave slow enough to correspond to the periods of the astronomical forcings

9



Table 1: Short period terms inducing perturbations of Titan orbital parameters larger than
10 km (a is the semi major axis, λ is the mean longitude, and z = e exp(iω) (where e is the
eccentricity and ω is the perihapsis longitude of Titan) represents the eccentricity and pericenter
of Titan) due to the Sun and other satellites of Saturn found in (Vienne and Duriez, 1991, 1992,
1995). The amplitude of the associated perturbations (amplitude smaller than 20 km are not
specified) are shown in the third column and the mean depth required to develop a fundamental
slosh are displayed in the fourth column.

Orbital parameter Period (in days) Amplitude [km] Depth [m]

a 6.303 20.5 0.505
a 3.304 1.838
λ 6.303 0.505
z 15.945 81.7 0.0789
z 4.518 0.983

results in mean depths of less than two meters (see Table 1), which does not correspond to the
observations. Consequently, for a reasonable range of depths, none of the astronomical forcings
periods corresponds to that of the fundamental slosh. Celestial bodies can also modify the
length-of-day and polar motion of Titan due to the gravitational torque exerted on Titan and
to the dynamic variations in the atmosphere (Coyette et al., 2018). Those rotation variations
also influence the tides but are too small to affect significantly the tidal motion in Ontario
Lacus. Moreover the main atmospheric forcing is at annual, semi-anual, ter-annual and 1/4
annual periods, which is too long to resonantly excite a barotropic mode. Therefore, they will
not be able to generate any liquid motion on the surface lakes or seas, which is why they are
not taken into account. Nevertheless, astronomical forcings could induce other resonance phe-
nomena. In order to study such phenomena, the eigenmodes of Ontario Lacus are computed
following the method of Bernard et al. (2008), as described in Section 2. As one can see in
Figs. 4 and 5, the periods of the astronomical forcings (in red) do not match with any of the
lake natural frequencies. Nevertheless, as there are uncertainties about the bathymetries and
as the latter have an impact on the period and shape of the normal modes, we also studied the
normal modes whose natural period is close (i.e. the difference is less than 2 hours) to that of
the forcings but they correspond to unresolved modes. Consequently, astronomical forcing is
not expected to excite significant barotropic normal modes in Ontario Lacus.

Various types of normal modes can develop in a lake such as Ontario Lacus, depending on
the relative importance of gravity, Titan’s rotation speed, the depth of fluid column and the
gradient of it. The variation of the Coriolis parameter is negligible over the lake, which is why
Rossby waves are unlikely to be observed. The size of the lake being much smaller than the
external Rossby radius of deformation (R =

√
gh
|f | ∼ 700 km), most inertia-gravity modes are

little influenced by Titan’s rotation. Nevertheless, some of the present numerical results point
to the existence of normal modes bearing some similarities with Kelvin waves or topographic

10
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Figure 4: Period of the normal modes of Ontario Lacus with the bathymetry of Hayes (2016)
with focus from 0 to 10 Titan days and from 0 to 1 Titan day. The red and blue dots respectively
correspond to the periods of the astronomical forcings and the natural periods of the modes
associated with large scale phenomena. The lower axis and the upper one of each subplot are
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Figure 5: Period of the normal modes of Ontario Lacus with the bathymetry of Ventura et al.
(2012) with focus from 0 to 10 Titan days and from 0 to 1 Titan day. The red and blue dots
respectively correspond to the periods of the astronomical forcings and the natural periods of
the modes associated with large scale phenomena. The lower axis and the upper one of each
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Rossby waves. These modes are localised along the shores of the lake, some of which can be
associated with area where local variation in the bathymetry are observed. Pure gravity waves
are also obtained, mainly as sloshing modes. Some of them correspond to small oscillations
in coves and bays while others correspond to the largest-scale oscillations calculated by the
present method. For instance, a normal mode appearing as a fundamental slosh was observed
for both bathymetries (see the natural modes shown in Figs. 6 (d) and 7 (d)). The natural
periods of these modes respectively are 21.829 hours and 53.876 hours, which is close to the
period predicted by Merian’s formula (Merian, 1828) (i.e. 20.5678 hours and 34.56 hours using
the mean depth of the lake).

We only pay attention to the normal modes whose associate motion covers a significant
portion of the lake. For both bathymetries, some of the normal modes (both their real and
imaginary parts as explained in Section 2) correspond to large scale variation of the lake sur-
face elevation (see Figs. 6, 7). They are associated with limited dissipation, as shown by the
smallness of the real parts of the eigenvalues: the maximum is O(10−8) s−1 (see the eigen-
values associated with the modes in Figs. 6, 7). The periods of the normal modes shown in
Figs. 6, 7 are respectively 5.397, 7.555, 10.839 and 21.829 hours for the bathymetry of Hayes
(2016) (Fig. 6) and 15.079, 15.904, 21.759, and 53.876 hours for that of Ventura et al. (2012)
(Fig. 7). Such periods are small with respect to a Titan day – which is about 382.74 hours.
Consequently, only phenomena characterised by a short time scale, such as atmospheric events,
would be able to resonantly excite them. All of these modes correspond to sloshing modes and
their natural period is close to the approximation given by Merian’s formula (Merian, 1828).
Although the amplitude of the motion associated with the normal modes cannot be theoreti-
cally predicted, we conducted simulations under arbitrary wind conditions capable of exciting
the natural modes shown in Figs. 6(d) and 7(d). This allowed estimating the order of magni-
tude of the liquid motion associated with these normal modes. For a wind blowing along the
main axis of the lake with a sinusoidal variation in time and a maximum speed10 of 1 m/s, the
amplitude of the free surface displacements of the ensuing modes does not exceed 0.2 m. This
value should not be viewed as a true upper bound as stronger winds or other modes could be
associated with a larger lake surface elevation.

5 Discussion
Due to the large discrepancy between the astronomical forcings periods and the natural periods
of the lake, these forcings can be ruled out as a potential source of excitation of the normal
modes. Indeed, although the natural periods critically depend on the bathymetry – as is shown
by the variation between the two bathymetry maps implemented –, the variations needed to
get an overlap between the natural periods and those of the astronomical forcings are too large.
For instance, the depth required to generate a fundamental slosh is not consistent with the
observations (a simple approximation predicts a depth of less than 2 m, which is inconsistent
with Cassini radar images). Indirect rocking by the tidal response of the global subsurface

10The maximum wind speed is set to 1 m/s in accordance with existing data and atmospheric model results.
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(a.1) Real part (a.2) Imaginary part

(a) ω = 2.37 10−8 + 3.23 10−4j s−1

(b.1) Real part (b.2) Imaginary part

(b) ω = 7.65 10−9 + 2.31 10−4j s−1

(c.1) Real part (c.2) Imaginary part

(c) ω = 3.55 10−9 + 1.61 10−4j s−1

(d.1) Real part (d.2) Imaginary part

(d) ω = 6.52 10−10 + 8 10−5j s−1

Figure 6: Real and imaginary parts of the lake surface elevation normal modes of Ontario Lacus
with the bathymetry of Hayes (2016). The red areas correspond to lake surface elevation above
the reference level while the blue correspond to a lake surface elevation below the reference
level. By definition, the eigenvectors are defined up to a multiplying constant. Consequently,
their amplitude has no meaning while the spatial patterns do. The vectors are chosen so that
the square of their Euclidean norm is 1. The (small) real part of the eigenvalues is due to the
numerical dissipation of the numerical scheme used.
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(a.1) Real part (a.2) Imaginary part

(a) ω = 9.27 10−9 + 1.16 10−4j s−1

(b.1) Real part (b.2) Imaginary part

(b) ω = 6.28 10−9 + 1.1 10−4j s−1

(c.1) Real part (c.2) Imaginary part

(c) ω = 2.53 10−9 + 8.02 10−5j s−1

(d.1) Real part (d.2) Imaginary part

(d) ω = 2.92 10−10 + 3.24 10−5j s−1

Figure 7: Real and imaginary parts of the lake surface elevation normal modes of Ontario
Lacus with the bathymetry of Ventura et al. (2012). The red areas correspond to lake surface
elevation above the reference level while the blue correspond to a lake surface elevation below
the reference level. By definition, the eigenvectors are defined up to a multiplying constant.
Consequently, their amplitude has no meaning while the spatial patterns do. The vectors are
chosen so that the square of their Euclidean norm is 1. The (small) real part of the eigenvalues
is due to the numerical dissipation of the numerical scheme used.
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ocean would rock the lake at the same frequency (i.e. the tidal frequency) and so, is unlikely
to generate resonant amplification in the lakes. A resonant subsurface ocean could rock at
frequencies smaller than the tidal frequency and hence resonantly force the lake but the liquid
motion in the ocean widely varies with the parameter assumptions and there is no observations
of such a phenomenon. The inability of astronomical forcings to resonantly force a normal
mode is given support by the observations of Cassini. Although shoreline variations were
observed, they are claimed to be due to methane evaporation and/or infiltration. Indeed, the
2005 shoreline lies beyond the 2009 coastline except in the north-west corner but this could
not compensate the negative sea surface elevation elsewhere in the lake. Furthermore, sloshing
conserves volume and the slope in the fluid induced by an almost uniform retreat should be
detectable by SAR.

Atmospheric forcing such as the wind could also resonantly force the normal modes of the
lake. Annual and diurnal wind variations predicted by the global circulation models (GCM)
are slow, at most 2 m/s, but, thanks to the density difference between Titan’s atmosphere and
the lake liquid, they can generate significant liquid motion in the northern seas (see Tokano
and Lorenz, 2015). However, they are unlikely to resonantly force the lake due to their diurnal
period. Shorter period travelling waves taking place in Titan’s atmosphere are more likely to
excite a natural mode in the lake. Such waves were predicted by, among others, Lebonnois et al.
(2012). The frequencies of the dominant groups of waves are 5-7 cycles/Titan day and 10-12
cycles/Titan day (Lebonnois et al., 2012). The magnitude of the zonal and meridional wind
associated with the travelling waves strongly varies with the altitude: from less than 1 m/s in
the lower troposphere to more than 10 m/s in the stratosphere (see Figs. 15 and 16 of Lebonnois
et al. (2012)). Hence, the magnitude of the forcing acting on the lake, which is a function of the
wind velocity 10 meters above the lake surface, should be very small11 despite the significant
density difference between the atmosphere and the lake. If the resulting forcing is strong enough
to excite the natural modes, it would result in localized lake surface motion near the shore. The
amplitude of such motions, although presumably small, could be significant as compared to the
tidal range. Mitchell et al. (2011) also predicted eastward propagating equatorially trapped
Kelvin waves whose period and phase speed at the equator are about 8 days and 12 m/s and
a slow westward propagating mode whose period and phase speed are about 100 days and 1
m/s. Those wave periods are much larger than the lake’s natural periods. Furthermore, the
lake is located at high latitudes, far from the equator. Hence, interactions between these waves
and Ontario Lacus are unlikely. One-time events such as storms could results in stronger winds
more likely to generate large amplitude liquid motion. Using a mesoscale model, Charnay
et al. (2015) predicted that methane storms are accompanied by eastward gust front above
the surface. The wind speed in these fronts can reach up to 10 m/s, which would be more
than enough to resonantly force the normal modes of Ontario Lacus, depending on the gusts
spatial and temporal pattern. Such storms are characterized by the presence of convective
clouds. The convection cells associated with such clouds have been reported as able to generate

11According to Lebonnois et al. (2012), the wind velocity associated with theses waves is less than 0.4 m/s
near the surface (see Figs. 15 and 16 (a) of Lebonnois et al. (2012)).
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significant seiches on Earth (see, for instance, the seiche in Rotterdam harbour described by
De Jong and Battjes, 2004). Rodriguez et al. (2013) and Turtle et al. (2018) have listed the
clouds observations on Titan for over 13 years. Observations prior to the arrival of Cassini
were made by means of Earth-based instruments until Cassini’s Visual and Infrared Mapping
Spectrometer (VIMS) and Imaging Science Subsystem (ISS) could be used. Outbursts of large
clouds at Titan’s southern pole were observed almost continuously by Earth-based campaigns
from December 2001 until December 2005 (Rodriguez et al., 2013). Afterwards, cloud activity
in the south pole began to decline and the stormy activity disappeared after 2008 (Turtle
et al., 2018). Consequently, during the period of large clouds outbursts, strong winds able to
resonantly force the lake could have occurred in the vicinity of Ontario Lacus. Unfortunately,
the observations of Ontario Lacus do not show lake surface elevation corresponding to the
normal modes.

The lake bathymetry does influence the period and shape of the natural modes. The sig-
nificant lake level change observed between 2005 and 2009 by Hayes et al. (2011) and Turtle
et al. (2011) would, for instance, results in variations of the normal modes shape and period.
Hayes et al. (2011) predicted a lake level change of about 4 meters over a period of 4 years.
While studying the impact of such a variation on all the normal modes would be complicated
due to the absence of a bathymetry and coastline corresponding to the 2005 data, it is inter-
esting to assess whether its impact on the normal modes is significant. To this end, Merian’s
formula (Merian, 1828) is resorted to to compute the period of a fundamental slosh within the
lake for a bathymetry increased by 4 meters (without modifying the coastline). It results in
decreasing the fundamental slosh’s period by 1.36 hours and 5.49 hours for Hayes (2016)’s and
Ventura et al. (2012)’s bathymetries, respectively. The latter being more shallow, the natural
periods are more sensitive to the lake level variation. Although significant, these differences
are smaller than those observed between the normal periods for both bathymetries. Indeed,
while the shape of the natural modes remains similar, the periods of similar modes can be
significantly different, which can be explained by the significant depth variations (up to 38 m)
between the bathymetries. The shape of a natural mode can be considered as rather insensitive
to the bathymetry but they can change with the shoreline. Consequently, if the lake is filled
with methane precipitation or if another strong evaporation period took place, the shape and
period of the natural mode would change.

The normal modes of Ontario Lacus, if excited to a sufficiently large amplitude, could
be observed by future missions. Among the proposals discussed in the literature, some are
better suited for this purpose than others. An orbiter such as Oceanus (see Sotin et al., 2017),
could detect modes whose period is at least twice the sampling period, in accordance with the
Nyquist-Shannon sampling theorem. The main limitation would be related to the amplitude
that can be measured by a spacecraft instrument. The amplitude of the liquid motion associated
to the normal modes is expected to be of the order of 10−1 m under astronomic forcing and
no stormy wind conditions. Stormy wind conditions would increase the amplitude but the
cloud outbursts associated with such an event could prevent observations, depending on the
instrument used. A lake probe with an orbiter (such as the E2T, see Mitri et al., 2014), a drifted
capsule (similar to the TiME proposed for Ligeia Mare, see Lorenz et al., 2012), a lander (such
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as the Dragonfly rotorcraft Lorenz et al., 2018), or a submarine (such as the Titan sub proposed
for Kraken Mare, see Hartwig et al., 2016) would be better suited to observe natural modes
without discrimination as to their period. Observations from a probe would be conditioned by
its landing site and its ability to observe lake surface elevation. If it sinks in the lake, it could
act as a tidal gauge and would be able to detect all the normal modes excited as well as the tide
at a specific location. On Earth, tidal gauge are accurate up to 10−3 m. Accoustic/radar tidal
gauge rely on wave propagation within the liquid while the mean density and the atmospheric
pressure are required to use a pressure tidal gauge. If the probe lands near the shores, it could
use a laser rangefinder but it would have to use a wavelength to which the liquid is opaque. A
lander would have the same advantages but would be able to study several areas. A floating
platform or a surfaced submarine could also perform similar measurements and would offer the
additional benefit of being able to conduct measurements at various locations. Using a sonar or
a laser rangefinder would allow to accurately measure the lake surface elevation as a function
of time. Such platforms would still be better suited if they were motorised as their localization
and their spatial evolution could be forced instead of being driven by the fluid flow or wind
stress.

6 Conclusion
Ontario Lacus was the focus of various studies since its discovery. Although many aspects of
the lake were studied, the natural modes were only briefly investigated by Tokano (2010). In
this paper, we numerically predicted the normal modes of the lake for the two bathymetries
available in the literature. We used the method of Bernard et al. (2008) to compute the modes
of the lake as this method allows us to use unstructured meshes to discretize the domain, hence
the spatial resolution can be increased to capture the coastline while keeping a reasonable
computer cost.

The frequency of the tidal forces is too small to excite the (barotropic) normal modes and a
slosh between the northern and southern shores would require a fast propagation speed corre-
sponding to a mean lake depth not met by the observations. Such low-frequency forcings could
more easily resonantly force the baroclinic normal modes but investigating this phenomenon
requires unavailable information about the lake stratification. On the other hand, wind forcing
could likely coincide with the resonant frequencies but it would require specific events such as
a storm to generate wind strong enough to excite the normal modes significantly enough to
be observable by an orbiter. The large scale normal modes predicted could be observed by an
orbiter if they were excited but it was not the case during the Cassini observation.
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