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Abstract

This paper examines the impact of faulty nodes on Practical Byzan-
tine Fault Tolerance (PBFT) algorithms, focusing on the AWARE op-
timization. While AWARE improves average-case latency by assigning
larger voting weights to well-connected nodes, it is vulnerable to ex-
ploitation by Byzantine nodes. We propose modifications to AWARE
to enhance resilience of dynamic link latency estimation. Experiments
show that comparing predicted and actual consensus latencies helps de-
tect and mitigate performance issues caused by malicious nodes. Inte-
grating latency information with BFT-SMaRt’s leader change algorithm
offers a more robust solution. We also analyse shortcomings of AWARE
dynamic leader selection system.

1 Introduction
Blockchain consensus algorithms make it possible to execute a state machine
in a distributed system where some nodes might be faulty. This is called
distributed execution. However, distributed execution requires a lot of infor-
mation exchange between nodes. In many systems deployed in the real world,
latency is limited, so communication takes up more time compared to other
steps. One attempt to solve this issue was made by introducing WHEAT[8]
optimization. It allows achieving subsecond latency improvement in a geo-
diverse setting, by assigning larger voting weight to a better connected nodes.
This approach was automated with AWARE[2] algorithm. It introduces extra
reconfiguration step to a BFT system that periodically sends latency measure-
ment messages and based on the results reassigns voting weights.

Experiments with these optimizations focus on acceleration of BFT dis-
tributed algorithms in an average case, when high voting weights are obtained
by correct nodes. However, when analysing worst case researchers reach only
theoretical conclusions, by showing that algorithms still satisfy all properties
that BFT replication algorithm must have: safety, availability and consis-
tency. This approach follows Lampson’s recommendation for computer sys-
tems: "Handle normal and worst case separately as a rule because the require-
ments for the two are quite different. The normal case must be fast. The worst
case must make some progress" [7].

Goal of our research it to take more critical look at the worst case perfor-
mance. We are going to analyse how faulty nodes can leverage weighted voting
to degrade BFT algorithm performance. Also, we will provide a modification
of AWARE link latency estimation that mitigates some possible attacks.
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2 Background
Practical Byzantine Fault-Tolerance (PBFT) [3] is an algorithm that allows to
execute state machines in a distributed environment where up to f nodes and
any number clients can be faulty. It guarantees that in a system with 3f + 1
nodes all correct replicas will agree on the same output state machine should
give.

2.1 BFT-SMaRt

BFT-SMaRt [9] is a Java library that implements all features required to run
PBFT in a network of computers with JVM support connected using Internet
Protocol (IP) [1]. It is a well maintained open source project that is used in
multiple deployed to production distributed systems. That makes it a good
foundation for researchers who want to experiment with a real world perfor-
mance of BFT replication algorithms. Also, developers of it provide multiple
demo applications. Their performance can be measured under different BFT-
SMaRt modifications and used as a comparasent metrics.

2.2 WHEAT

In a geo distributed settings BFT system spends most of the time on a node to
node message exchange due to high network latency. WHEAT paper provides
literature survey on latency-related optimization topic. Most importantly it
proposes to include extra replicas into a system without increasing quorum
size, it makes number of different possible quorums larger. Also, WHEAT
adds voting weights assignment scheme that allows well-connected nodes to be
more important and form quorums of smaller size. These two optimizations
allow achieving protocol latency improvement in a wide area networks.

2.3 AWARE

AWARE extends on the WHEAT weighted voting idea by introducing algo-
rithm that dynamically allocates voting weights. It introduces monitoring
mechanism, that periodically sends latency measurement messages to every
other node. Results are later reported using a consensus mechanism and stored
in a latency matrix. Final step of AWARE is to periodically use exhaustive
search or simulated annealing to reassign voting weights and a leader in a way
that minimizes overall consensus latency.
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2.4 Intrusion tolerance

Intrusion tolerance is an original term describing a property of a system that
can function with some components being faulty [6]. Making it possible was
one of the original motivations behind developing BFT algorithms. However,
wider adoption of systems based on BFT made other issues such as high la-
tency or non-malicious faults more relevant for researchers. BFT-SMaRt paper
mentions that its throughput can be reduced to 10% of a normal one during
well coordinated attack by Byzantine nodes. Some algorithms were proposed
to improve worst case scenario including Advrak [5] and Spinning [10]. We are
going to analyse how intrusion tolerant are AWARE optimizations.

3 Methodology
First task of our algorithm should be to detect situations when faulty nodes
are slowing down performance. Luckily AWARE computes predicted latency
of reaching consensus while searching for the best voting weight configuration.
We can compare that estimated number with a real amount of time it took to
reach consensus. Large difference between them would mean that some kind
of attack on the network is happening.

Next task for every correct node should be to identify attackers and punish
them. Our proposal is to do it in extra self reflection step, right before latency
reporting. During it every node reviews all successfully completed consensus
instances to identify delayed ones. Next node will calculate estimated arrival
time of each message in the consensus. Finally, it will run a new Reflection
algorithm that can identify nodes who are delaying messages and punish them
by increasing reported link latency to them. In a case when multiple correct
replicas report high latency to a faulty node, that node should get low voting
weights during the next reconfiguration.

3.1 Reflection algorithm

Reflection algorithm executes right before invoking report latency order. First
it finds all messages in a monitoring window that arrived with a significant
delay. It is calculated using latency matrix from a consensus message was part
of. Significance is an adjustable parameter in our algorithm, we propose to
calculate it as a ratio of delay to estimated message travelling time. It allows to
compensate for some network randomness. Then we compute new estimation
of that message arrival time using latest latency matrix. It gives a chance for
a node who sent a delayed message to explain it by blaming some other link
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it did depend on. However, if both estimations are earlier than a real arrival
time it means node delays messages and can not explain it. So we will punish
that node by setting new link latency to a value that would explain a delay.
Instead of number that was computed using measurement messages.

This approach has a zero tolerance to late messages. Any delay in a moni-
toring window needs to be explained in the latest latency matrix. That means
we not only mitigate faulty replicas effect by exposing their real latencies, but
also get more conservative latency matrix that shows worst case delay for every
link.

3.2 Delay estimation

Expected and actual message arrival times are essential information to make
reflection algorithm work. Luckily AWARE provides a simulator to estimate
global consensus speed. That means we just need slightly modify it to return
intermediate expected times. In a BFT-SMaRt model there are 3 types of
consensus messages PROPOSE, WRITE and ACCEPT. Their arrival times
are Pt, W n

t and An
t with n being sender ID (see Figure 1.). We can estimate

waiting times between them using a latency matrix and compare calculations
with actual measurements.

Figure 1: Sequence of message arrival
times in BFT-SMaRt from Node 0 per-
spective.

In the next section symbols will
have this meaning:
la,b - link latency between nodes a and
b.
L - leader ID.
c - current node ID.
N - set of all node IDs.

3.2.1 PROPOSE messages

It is a first message that tells replica
to create a new consensus instance.
That means it can arrive any time,
and we can only use real Pt as a ref-
erence point to start our delay esti-
mation.
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3.2.2 WRITE messages

Every node going to receive some
number of WRITE messages, at most
one from every replica. Expectation
of every arrival time W n

t can be com-
puted using a simple formula W n∗

t =
Pt−lL,c+lL,n+ln,c First we start with
a reference time Pt then we need to
subtract lL,c from it to get a time when leader dispatched PROPOSE messages
to all replicas. Last step is to add travel times of PROPOSE from a leader to
node n and WRITE from n to a current node. Now we can subtract expected
W n∗

t from actual W n
t and get a delay.

3.2.3 ACCEPT messages

It is a bit more complicated to estimate ACCEPT arrival time, because correct
node sends it only after collecting enough WRITE messages. That means to
estimate An∗

t we first need to estimate when WRITEs reached node n. If we
know the time of WRITE arrival W k

t to a current node c, then its arrival time
to n should be W k

t − lk,c + lk,n. So next we need to find latest of all WRITE
messages that reached node n and allowed it to form a quorum. Finally we
can estimate An∗

t as ln,c +W k
t − lk,c + lk,n where latest message sender ID is k

in a quorum of node n.

3.3 Latency reporting

At this step we should finally punish nodes that are suspected to be faulty.
However not all nodes that delayed a message are faulty. It might be that
some of them could not collect enough voting weights on time. To distinguish
between faulty nodes and nodes that are slowed down, we are going to do
simple calculation. Currently, we have real message arrival times W n

t , An
t

and estimated times using old latency matrix W n∗
t , An∗

t . Now we are going
to compute other estimated arrival times W n∗

t(new), A
n∗
t(new) using latest latency

matrix lnewN×N this time. That will give a chance to correct nodes that delayed a
message to explain it by increasing some values in a latency matrix. However,
in a case when still W n∗

t(new) < W n
t or An∗

t(new) < An
t that means node did not

provide an explanation for the delay yet, so latency to it will be increased for
now.

Also, we are going to introduce coefficient γ that will be used to calculate
if delay is significant. To do it we will multiply γ by sum of all positive link
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latencies used in message arrival time estimation and compare it with the
delay. For example, if γ is 0.1 reflection algorithm will act only if WRITE
delay is longer than 0.1 ∗ (lL,n + ln,c).

3.4 Formal algorithm outline

In an original AWARE implementation latency reporting algorithm runs peri-
odically. During it node does 2 things:

1. Sends a measurement message with a random number to all other nodes
to calculate link latencies.

2. Makes a request to start new consensus that will update corresponding
row in a latency matrix with new latency vector L⃗.

In our implementation we introduce extra reflection step between 2 mentioned
tasks:

1. We start with new L⃗ and latest latency matrix llastN×N .
i← Current node ID.
N ← Set of all node IDs.
L⃗← Vector of latest measurements.
llastN×N ← Latest latency matrix from a Monitor.
γ ← Coefficient to calculate if delay is significant.
Rt ← Time when node sends response to a user.

2. Loop over every successfully completed (without a view change) Con-
sensus instance in a monitoring time window. Compute a delay of every
WRITE message:

for c ∈ {All stored consensus IDs} do
loldN×N ← latency matrix at a consensus start.
Pt ← Propose for this consensus arrived.
L← Leader of this consensus ID.
for W n

t ∈ {WRITE arrival timestamps from every node} do
W n∗

t ← Pt − loldL,i + loldL,n + loldn,i ▷ Estimated arrival time.
W n∗

t(new) ← Pt − llastL,i + llastL,n + llastn,i ▷ Estimated new arrival time.
dnc ← W n

t −W n∗
t ▷ Delay of the WRITE.

end for
end for
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3. Now we can assume that leader is correct. So we can adjust latencies
based on WRITE delays. This part makes sure that waiting times be-
tween PROPOSE and WRITE calculated based on the latest latency
matrix are longer or equal than observed ones.

for c ∈ {All stored consensus ids} do
loldN×N ← latency matrix at a consensus start.
L← Leader of this consensus id.
for n ∈ N do

if dnc =∞ and W n∗
t(new) + γ ∗ (llastL,n + llastn,i ) < At

i then
L⃗n ←∞

else
if dnc > γ ∗ (llastL,n + llastn,i ) then

L⃗n ← max{W n
t − (Pt − llastL,i + llastL,n ), L⃗n}

end if
end if

end for
end for

4. Last extra step has a similar goal as a previous one. It ensures that
calculated waiting times between WRITE and ACCEPT messages are
longer or equal to real times.

for c ∈ {All stored consensus ids} do
loldN×N ← latency matrix at a consensus start.
for An

t ∈ {ACCEPT arrival timestamps from every node} do
v ← 0 ▷ Voting weight counter
K ← N ▷ Set of all node ids
while v < Qv do

k ← such that min{W k
t − loldk,c + loldk,n} | k ∈ K

v ← v + Vk ▷ Add voting weight
K ← K \ {k}

end while
An∗

t ← loldn,c +W k
t − loldk,c + loldk,n

v ← 0 ▷ Voting weight counter
K ← N ▷ Set of all node ids
while v < Qv do

k ← such that min{W k
t − llastk,c + llastk,n } | k ∈ K

v ← v + Vk ▷ Add voting weight
K ← K \ {k}

end while
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An∗
t(new) ← llastn,c +W k

t − llastk,c + llastk,n

dnc ← An
t − An∗

t ▷ Delay of the ACCEPT from n.
if dnc =∞ and An∗

t(new) + γ ∗ (llastn,c + llastk,n ) < Rt then
L⃗n ←∞

else
if dnc > γ ∗ (llastn,c + llastk,n ) then

L⃗n ← max{An
t − (W k

t − llastk,c + llastk,n ), L⃗n}
end if

end if
end for

end for

5. Now that vector L⃗n have been adjusted we can report it in a same way
as it is done in AWARE implementation.

4 Experiments and results
To test how reflection algorithm affects latency of AWARE we are going to run
counter app in a locally simulated network. You can find it in the BFT-SMaRt
demo applications folder. This is an implementation of distributed counter that
increases by 1 with each request and then returns latest value. So, to compare
performance of AWARE and Reflection algorithms we are going to measure
how fast value increasing transactions are executed in a specific network set
up. Also, as goal of reflection algorithm is to mitigate performance degradation
caused by Byzantine nodes we will test it under multiple attack patterns.

4.1 Configuration

First we need to create a specific network configuration where Byzantine nodes
can cause evident damage to performance. One possible attack for Byzantine
nodes is to respond correctly to all latency measurement messages, but to ig-
nore or delay some consensus messages. That can lead AWARE to assign Vmax

voting weights to faulty nodes and consequently increase quorum size correct
replicas need to form to advance Blockchain.

Figure 2: Experiment setup with n =
8 nodes and voting weights allocation
Byzantine nodes want.

For example, in a configuration
with parameters f = 2 and ∆ = 1
(see Figure 2.). Where 7 replicas
have similar node to node latencies,
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however one extra correct replica is
located in a different region and all
links to it have high latency. In a case
when 5 correct well-connected repli-
cas obtain all 4 Vmax weights they
will manage to collect Qv = 7 and
advance blockchain without waiting
for distant replica or Byzantine node
response. However, if any of faulty
nodes will manage to get Vmax dis-
tant node will become necessary for the progress. As a result transactions will
be completed way slower than in a case where all nodes function properly.

4.2 Latency simulation

To create a simulation we used Linux Network Namespaces feature, with sep-
arate namespace for every node and veth devices to link them together (See
Figure 3.). Also, Linux Traffic Control (TC) subsystem allowed me to intro-
duce queueing discipline (qdisc) that simulates latency with a jitter between
nodes. So final setup includes 8 namespaces for nodes and 1 for a client each
of them has a veth device that attaches forwards all messages to the bridge.
This setup does not allow simulating every node to node latency independently,
however it is sufficient to create network with a distant node.

Figure 3: Namespaces and virtual cables with latency to connect a network.

Using kernel features like namespace makes latency Introduction more re-
liable. User space program isolated by kernel simply can not reach any other
process without using virtual cables. Also, it allows simulating latencies with-
out any modifications of original AWARE source code. That minimizes chance
of causing bugs when adding latency.
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4.3 Results

All experiments show reflection performance compared to an AWARE in pre-
viously mentioned configuration (Figure 2). We can see the number of transac-
tions a distributed counter executes during different attacks made by Byzantine
nodes (see Figure 5.). In a first attack (Sub figure 5a.) both Byzantine nodes
respond to measurement messages, but don’t send WRITE or ACCEPT. In a
second attack (Sub figure 5b) Byzantine nodes don’t send only ACCEPT mes-
sages. We can see how Byzantine nodes slow down the network. They manage
to obtain Vmax and force other nodes to rely on a slow quorum with a distant
node to make progress. It explains why AWARE attacked executes transac-
tions slower than AWARE normal. However, Reflection algorithm manages
to detect nodes that produce fake reports and increases latency to them. We
can see that after few epochs of working in a slow configuration reconfigura-
tion happens and Reflection algorithm reallocates voting weights of Byzantine
nodes to correct nodes. The result is that counter speed gets on par with a
AWARE normal network speed. Yet later Byzantine nodes manage to get Vmax

and slow down network again. That happens due to short Reflection window,
but its length is configurable parameter that can be adjusted based on the use
case.

Reflection algorithm keeps completed Epoch instances in memory to review
message arrival times in them. So max number of latest Epochs on a heap is a
parameter that should be adjusted. In experiments, it was set to 100 compared
to 3 in a default AWARE. Yet we can see in a (Figure 4.) that it does not
cause any significant heap utilization increase. So it can be set to a way larger
number.
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(a) Reflection (b) AWARE

Figure 4: Heap size comparison

(a) Drop all messages (b) Drop only ACCEPT messages

(c) Drop all messages Reflection average performance over 8 runs

Figure 5: Comparison of counter application speed in a correct network and
networks with Byzantine nodes. Both tests show Reflection and AWARE al-
gorithms.
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5 Responsible Research
Experiment have been conducted in a virtual network simulation. That means
everyone who has available computer with a Linux can reproduce configuration
from fig 3. Also distributed counter application and AWARE implementation
with setup instructions can be found in repo:
https://github.com/bergerch/aware.git.
Source code for reflection algorithm is located in our fork of AWARE repo:
https://github.com/magisterbrown/bft-reflection.git,
so it can be executed by following same steps. main branch has only changes
that implement Reflection algorithm and network simulation. Branches that
have attack-* prefix in their name, add Byzantine nodes to a network. We
used them for our experiments.

6 Discussion
Reflection approach introduces intrusion tolerance into latency aware BFT
replication algorithms. However, when building real world application, that
expects to face attacks from coordinated Byzantine replicas, it might be not
enough to use Reflection algorithm only. Because real attack will probably
involve combination of delaying messages and sending fake data. That means
such system will have to analsze message content in addition to arrival time.
Luckily faulty node detection based on message data is well researched topic
called Accountability. For example, on of algorithms solving this problem is
called Polygraph [4] and can be easily integrated with AWARE because both
of them are based on BFT-SMaRt library.

Another benefit of a Reflection algorithm is that it makes latency matrix
more conservative. If AWARE latency measurement message completes round
trip faster due to network randomness or a smaller size than payload messages,
then latency matrix won’t represent reality any more. But Reflection algorithm
going to adjust its latency according to the slowest payload message, so weights
allocation algorithm will make a decision based on a more realistic data.

6.1 Leader selection

AWARE algorithm has an optional optimization that does dynamic leader re-
allocation to a well-connected site, after voting weights reconfiguration. How-
ever, in a worst case scenario malicious leader can cause significant damage to
a system performance. BFT-SMaRt paper mentions that throughput in such
case can be reduced to 10% of what would it be in a fault free execution.
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There are multiple ways to deal with a faulty leader. For example Spin-
ning algorithm changes leader after each consensus. Advrak checks minimal
throughput of PRE-PROPOSE messages per second from a leader node and
starts reallocation if underperformance is detected. Both of them agree that
any single node can not be trusted to stay a leader for a long time. Overheads
introduced by regular view changes are small compared to delays that faulty
leader can cause.

Increasing amount of view changes, that was already quite high in our
experiments (Figure 5.), would completely remove any benefits that dynamic
leader reallocation provides. Any time AWARE chooses the best leader it
would get soon replaced during some other view change. We think that
AWARE approach of implementing custom leader change mechanism that
works in parallel with one from BFT-SMaRt is beneficial only in an aver-
age case, but can result in unpredictable behaviour under attack. More robust
approach would be to leave leader changes to original algorithm, and mod-
ify ordering of nodes. Instead of constantly looping over all node IDs it would
make better connected node a leader more than once per iteration. That would
allow doing frequent view changes of AWARE to stick with one leader for a
long period of time.

6.2 Improvement on AWARE base case

So as reflection algorithm manages to deduce extra information about link la-
tencies without any additional information exchange. That means it should be
possible to calculate link latencies based only on payload message arrival times.
Current Reflection algorithm uses latency measurement vector as a baseline
and increases value that are too low in it. But we could also use vector of
zeroes instead. That would allow completely remove measurement messages
and benefit BFT algorithms by reducing total amount of data exchange. How-
ever, this approach would make latency estimations between correct replicas
less precise. So comparison between algorithms that use and don’t use latency
measuring messages can be a great next direction for the research of AWARE
like algorithms.

7 Conclusion
Our approach adapts dynamic link latency estimation algorithm for networks
with coordinated Byzantine nodes. It allows detecting links that delay mes-
sages and increase their latency in a matrix. Our experiments show that it
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helps AWARE to reassign Vmax to actually well-connected nodes, instead of
blindly trusting results of measurement messages. Also, we provide multiple
parameters to adapt Reflection algorithm to different levels of network noisi-
ness and node compute capabilities.

Another conclusion of our research is that benefits of AWARE dynamic
leader selection can be eliminated by faulty nodes. So it is better to disable this
optimization in a network where attacks are expected. However, we provide a
direction for research on how to use latency information within BFT-SMaRt
leader change algorithm. That could help to combine AWARE with intrusion
tolerant systems.
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