
Quantum Computer
Microarchitecture
for color centers in diamond

Q. van Wingerden

Quantum
Computer

Microarchitecture
for color centers in diamond

by

Q. van Wingerden

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday, August 26 2021 at 14:00.

Student number: 4476913
Project duration: Nov 1, 2020 – July 1, 2021
Thesis committee: Prof. dr. ir. J.S.S.M Wong, TU Delft, supervisor

Dr. F. Sebastiano, TU Delft
Dr. S. Feld, TU Delft

This thesis is confidential and cannot be made public until August 26, 2021.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Nowadays, the need for better and faster computing searches for solutions in the field of quantum com
puting. It is believed that quantum computing can and will surpass conventional, classical computing.
When quantum computing surpasses classical computing, it is called quantum supremacy. There are
many different projects that use different quantum technologies aim to achieve quantum supremacy,
such as projects from Google and Intel. In this thesis, the reader is introduced to a new project: the
Fujitsu Project. The project is a collaboration between TU Delft and Fujitsu and has the goal of fabri
cating a new distributed quantum quantum computer based on color centers in diamond. The focus of
the thesis is the definition of the microarchitecture.

The quantum computer stack is explained in detail. Precise and robust definitions for each of the
seven layers of the quantum computer stack are given, where the definition of the microarchitecure
is most important. A microarchitecture is defined as the list of instructions of the lowest level before
entering control electronics. To define the diamond microarchitecture, a set of goals have to be com
pleted. Other architectures such as QuTech’s QuMA and QuTech’s Central Controller were identified
and analyzed. Combined with the requirements of the overall diamond system architecture as defined
by the project, a list of requirements for the microarchitecture is created. Using these requirements, a
Quantum Instruction Set Architecture (QISA) and a microarchitecture are defined.

Based on the defined QISA and microarchitecture, a compiler is designed. The compiler is made in
OpenQL. OpenQL is a framework for highlevel quantum programming that targets different quantum
computing platforms. The main task of the compiler is to translate highlevel quantum algorithms,
expressed in a highlevel quantum programming language (C++/Python APIs), to quantum microcode.
The quantum microcode consists of instructions that are defined in the microarchitecture.

The QISA, microarchitecture and compiler are verified against the requirements that are set at the
beginning of their respective definition phases. The microarchitecture supports for all gates that are
part of cQASM 1.0. In addition, it supports all diamond color center specific protocols and rules. The
compiler supports all instructions from cQASM as well. Moreover, the compiler supports all standard
(gate) instructions and diamond specific instructions through OpenQL’s Python API.

The work is intended to be a solid baseline, where the future of the project can rely and improve
upon. Possible improvements could be the adaption of the microarchitecture to the growth of the num
ber of controlled qubits per controller, the parallelization of the microarchitecture instructions to improve
instruction throughput, and alignment with the quantum network group. The compiler can also be im
proved with for example enhanced scheduling, differentiation between qubit types and an entanglement
library. The next step in the design of the microarchitecture will be the design of a microarchitecture
simulator, which takes the microcode as input and simulates the hardware architecture.

ii

Preface
Starting my studies at TU Delft I always had affinity with computer. I always wanted to know how
electronics worked and how computers worked from the inside. Because of this, I started my bach
elor Electrical Engineering at the TU Delft. After completing the BSc, I pursued a master’s degree in
Computer Engineering to learn more about how computers work. Nearing the end of the first year of
this enjoyable master it was time to search for a thesis project. I had gathered interest for quantum
computing and, StephanWong answered my email with an interesting project about quantum computer
microarchitectures. After an online meeting we decided that I would take the project.

Now, a year later, the thesis project has come to an end. I have learned many things, not only
about quantum computing and microarchitectures, but also how to write, present, and have meaningful
discussions with other people in (online) meetings. I am proud to have completed the thesis, but not
without the help of the following people:

First, I would like to thank my supervisor Stephan Wong for always being critical and getting the
most out of me. He challenged me in multiple ways by having me give presentations to large crowds
in online meetings or by reviewing my thesis time after time until it met the requirements.

Second, I would like to thank my parents for supporting me and always being there to talk to. They
taught me valuable skills when I was growing up and that helped me complete the thesis.

Third, I would like to thank Jeroen van Straten for assiting me with all the work I have done with
the OpenQL compiler. Jeroen was one of the maintainers of OpenQL and helped me understand the
program and guided me through adding my own code to the framework. I could not have built the
compiler as is without Jeroen. I would also like to thank Luc Enthoven for the valuable discussions
about the workflow of the quantum computer and about the requirements of the microarchitecture. I
also would like to thank Erwin van Zwet and Jaco Morits from TNO that helped form the blueprint for
the overall system architecture and thus a blueprint for the microarchitecture.

Fourth, I would like to thank my friends for always being there when I had something to complain
about or when I had good results that I could share with them. I want to thank two people in special
that helped me do so, namely Thijs Timmer and Suzanne Brand. I could not have done this project
without you.

I hope you enjoy reading this thesis as much as I had fun reading, learning from, thinking, program
ming, reviewing and submitting it.

Q. van Wingerden
Ridderkerk

August 26, 2021

iii

Contents

1 Introduction 1
1.1 The Fujitsu Project . 1
1.2 Problem Statement . 2
1.3 Methodology . 2
1.4 Thesis Overview . 2

2 Background 4
2.1 Quantum Information Theory . 4

2.1.1 Qubits . 4
2.1.2 Gates . 5
2.1.3 Quantum Circuits and Algorithms . 6

2.2 The QuTech Quantum Computer Stack . 6
2.2.1 Quantum Algorithm. 6
2.2.2 Programming Paradigm & Languages . 7
2.2.3 Quantum Arithmetic, Runtime and Compiler . 8
2.2.4 Quantum Instruction Set Architecture . 8
2.2.5 Microarchitecture . 8
2.2.6 Quantum to Classical. 8
2.2.7 Quantum Chip . 8

2.3 NVcenters in Diamond. 8
2.3.1 Other types of Qubit . 9

2.4 Quantum Computer Microarchitectures . 10
2.4.1 QuMA . 10
2.4.2 QuTech Central Controller . 14
2.4.3 Central Controller. 15
2.4.4 CCSpin . 18

2.5 Quantum Networking . 19
2.5.1 Quantum Communication . 19
2.5.2 Entanglement and Teleportation . 20
2.5.3 Quantum Tools for Networking. 20

2.6 OpenQL . 21
2.7 Conclusion . 22

3 QISA and Microarchitecture 23
3.1 Diamond Microarchitecture Requirements . 23
3.2 System Architecture . 24
3.3 Quantum Instruction Set Architecture (QISA) . 25

3.3.1 Refining of the QISA . 25
3.4 Finalized QISA and microachitecture . 27

3.4.1 Supported HighLevel Instructions. 27
3.4.2 Example of decomposition . 28

3.5 Conclusion . 31

4 Tool 33
4.1 OpenQL . 33
4.2 Compiler Design . 33

4.2.1 Compiler Requirements . 33
4.2.2 Diamond backend in OpenQL . 34
4.2.3 Microcode Translator Pass. 34

iv

Contents v

4.3 Using the Compiler . 38
4.4 Conclusion . 39

5 Verification 40
5.1 QISA and microarchitecture . 40

5.1.1 Deterministic and precise control of the control electronics 40
5.1.2 Classical instructions for flow control . 40
5.1.3 Basic quantum gate instructions (X, Y, Z, S and T) 41
5.1.4 cQASM Gateset . 41
5.1.5 Diamond specific protocols and instructions . 41

5.2 Compiler Tool . 43
5.3 Conclusion . 45

6 Conclusion 47
6.1 Summary . 47
6.2 Main Contributions . 48
6.3 Future Work. 49

6.3.1 Development of the Fujitsu Project . 49
6.3.2 Alignment with the Fujitsu Global Controller . 49
6.3.3 Design of the microarchitecture . 50
6.3.4 Improvements of the OpenQL Compiler. 50

A Microarchitecture Documentation 52
A.1 ISA Instructions . 55

A.1.1 Qubit Gate . 55
A.1.2 Qubit Rotation . 55
A.1.3 Qubit Readout . 55
A.1.4 Qubit Initialize. 55
A.1.5 nop . 56
A.1.6 Entanglement . 56
A.1.7 Nuclear Spin Operations . 56
A.1.8 Biasing and Checks . 56
A.1.9 Calibration . 57
A.1.10 Timing . 58
A.1.11 Standard (Classical) Instructions . 58

A.2 microarchitecture Instructions . 59
A.2.1 Quantum Operations . 59
A.2.2 Timing . 59
A.2.3 Additional Instructions . 60
A.2.4 Standard (Classical) Instructions . 60

B Decomposition Microcode 62
B.1 Measurement . 62
B.2 Initialization . 62
B.3 qentangle . 62
B.4 NVentangle . 62
B.5 memswap . 63
B.6 sweep_bias . 63
B.7 decouple . 63
B.8 calculate_bias . 64
B.9 calculate_voltage . 64
B.10 cal_meas . 64
B.11 cal_pi . 65
B.12 cal_halfpi . 65

vi Contents

C List of Supported Functions and Gates of the Compiler 67
C.1 Initialization . 67

C.1.1 prep_z. 67
C.1.2 prep_x. 67
C.1.3 prep_y. 67
C.1.4 initialize . 67

C.2 Measurement . 68
C.2.1 measure. 68
C.2.2 measure_z . 68
C.2.3 measure_x . 68
C.2.4 measure_y . 68

C.3 Single Qubit Gates . 68
C.4 Two Qubit Gates . 68
C.5 Three Qubit Gate . 68
C.6 Diamond Calibration . 69

C.6.1 cal_measure . 69
C.6.2 cal_pi . 69
C.6.3 cal_halfpi . 69
C.6.4 decouple . 69
C.6.5 Custom Rotations . 69
C.6.6 rz . 69
C.6.7 rx . 69
C.6.8 ry . 69
C.6.9 cr . 69
C.6.10 crk . 70

C.7 Diamond Protocols and Sequences . 70
C.7.1 crc . 70
C.7.2 rabi_check . 70
C.7.3 excite_mw . 70
C.7.4 qentangle . 70
C.7.5 nventangle . 70
C.7.6 memswap . 71
C.7.7 sweep_bias . 71

C.8 Timing . 71
C.8.1 wait . 71
C.8.2 qnop. 71

C.9 Classical Support Functions . 71
C.9.1 calculate_current . 71
C.9.2 calculate_voltage . 71

Bibliography 72

1
Introduction

Nowadays, in the search for better and faster computing, there is a very large interest in quantum com
puting. It is believed that quantum computing can solve some problems exponentially quicker using
its quantum technology than with its classical counterpart [1]. When quantum computing surpasses
classical computing, it is called quantum supremacy. To achieve quantum supremacy, quantum algo
rithms are needed. An example of such an algorithm is Shor’s algorithm [2], which is designed to factor
a number N into its prime factors p and q using the power of the Quantum Fourier Transform (QFT).
Shor’s algorithm can be used to break RSAencryption because RSA assumes that it is a hard problem
to factor a large number N into its prime integers p and q. Another wellknown example is Grover’s
Search Algorithm [3], which provides a quadratic speedup in the unstructured search. Unstructured
search is that out of 𝑁 options the correct option 𝜔 has to be picked. Classically, at best one try is
needed and at worst 𝑁 tries. On average, 𝑁2 tries are needed. With Grover’s algorithm, √𝑁 tries are
needed, thus providing quadratic speedup.

The field of quantum computing is rapidly evolving. Several quantum computers have been made
already, such as the systems by DWave [4], which uses quantum annealing, or Sycamore, the 54qubit
quantum processor from Google that claims it showed quantum supremacy [5]. Within QuTech and
through the Quantum Inspire platform [6], two quantum accelerators (Spin2 and Starmon5) are made
publicly available. More examples are the Quantum Processing Units (QPUs) from Intel, Microsoft and
IBM, but there are many more QPUs in existence.

Each of these QPUs work with different types of quantum bits (qubits), which are the physical en
tities that are used to perform calculations on. The qubits are fundamental particles where quantum
computers are based on. There are many different technologies available for the creation of different
types of qubits. Examples of these types of qubits are transmon, majorana fermion, quantum dots and
color centers in diamond (such as NVcenters) [7].

This thesis documents the (beginning of) the development of a microarchitecture for quantum com
puting using color centers in diamond. This Chapter will introduce the project. The thesis is part of
the Fujitsu Project, that is introduced in Section 1.1. After that, the problem statement is introduced in
Section 1.2 and the project methodology is discussed in Section 1.3. The Chapter ends with a overview
of the thesis in Section 1.4.

1.1. The Fujitsu Project
The Fujitsu Project is a collaboration between TU Delft and Fujitsu Limited. The project has a duration
of five years, and the goal of is to develop a distributed quantum computer based on color centers in
diamond. Color centers contain a particle, typically an electron, that has a spin and thus can be used as
a qubit. The goal is to develop and fabricate a scalable quantum computer using these qubits. Because
of the modular nature of the architecture, retaining scalability should be expected. In addition to that,
the color center qubits have special characteristics compared to other types of qubit1. In contrast to
other qubits, color center qubits can function at room temperature. This means less cooling and thus

1This also depends on the type of color center qubit. At Fujitsu, NVcenters as well as SnVcenters are used.

1

2 1. Introduction

less energy consumption. In addition, the qubits have long coherence times. This means that the qubit
can hold its state longer, which is beneficial for quantum computing. Color center qubits are ODMR,
which stands for Optically Detected Magnetic Resonance. This means that the qubits can be read out
with lasers and photondetectors, and can be controlled by magnetic fields. Using these qubits, there
are two important goals that the project aims to achieve:

1. Demonstration of scalable fabrication of the integrated circuits that contain the qubit, the control
electronics and other parts needed to function.

2. Demonstration of a unit with a 20 qubits operating with a high fidelity.

1.2. Problem Statement
For the Fujitsu Project, a microarchitecure needs to be developed that will work with the diamond spin
qubits. It should interface with the control electronics that are directly connected to the qubits. The
following research question arises:

How is a microarchitecture for a quantum computer based on color centers in diamond defined?

To answer this research question, three goals have been set:

1. Define the overarchingQuantum Instruction Set Architecture (QISA) that interfaces with the higher
layers of the quantum computer stack.

2. Define the microarchitecture.
3. Build a compiler that is able to translate a quantum algorithm to quantum microcode, defined by

the microarchitecture, using the higher layer and interfaced with an existing compiler framework.

1.3. Methodology
To complete these goals and answer the research question, a number of tasks are performed:

1. Identify how other quantum microarchitectures are defined.

2. Determine the requirements of the diamond microarchitecture.

3. Define the microarchitecture.

4. Fabricate a simple compiler that compiles an algorithm to diamondspecific assembly code.

5. Verify the results by comparing them to their requirements.

1.4. Thesis Overview
In Chapter 2, the background material needed to understand the rest of the thesis is provided. First,
it covers basics, such as quantum information theory. Second, it covers the quantum computer stack
that is defined within QuTech. Third, NVcenters, a type of color center in diamond, are discussed.
Fourth, the reader is introduced to quantum computer microarchitectures. An overview of develop
ments in quantum networking is given in the following section. Finally, an overview about OpenQL, the
framework for highlevel quantum programming in C++/Python, is given.

In Chapter 3, the design of the microarchitecture is discussed. It will cover what the microarchitec
ture needs to be able to do. After that, an overview of the system where the microarchitecture is being
designed for is given. The design process of the QISA as well as the microarchitecture is discussed.
The finalized version of both the QISA and the microarchitecture is presented. At the end of the chapter,
decompositions from the QISA to the microarchitecture are presented.

In Chapter 4, we discuss the compiler tool that translates highlevel quantum algorithms to low
level assembly code (microcode). OpenQL is briefly refreshed upon. After that, the requirements of
the design and the design itself are presented. At the end of the chapter it is explained how to use the
compiler tool.

In Chapter 5, we present the verification of the designed microarchitecture. It is split in two parts.
The first part discusses the completeness of the microarchitecture. It compares its functions with the

1.4. Thesis Overview 3

requirements that are stated in Chapter 3. In the second part of the Chapter, the compiler is verified
against the requirements introduced in Chapter 4.

In Chapter 6, we conclude the thesis by taking a look at at the work that is done. A summary is
given and the research question is answered using the goals and tasks defined in this introduction.
Furthermore, the main contributions are listed as well as ideas and suggestions for future work.

Appendix A documents the documentation for reading and using the defined microarchitecture.
Appendix B presents details about decompositions that are explained in Chapter 3.
Appendix C contains the documentation for the compiler tool.

2
Background

This chapter will present all the information that is needed to understand the thesis work. In Section 2.1,
the theory behind quantum computing, also called quantum information theory, is briefly touched upon.
Here, qubits are explained, just as basic quantum operations, gates and how to build circuits and algo
rithms. Then in Section 2.2, the QuTech quantum computer stack is explained. The stack is an impor
tant reference for the design of quantum computers. In this section, the definition of a microarchitecture
is given. After the stack has been presented, NVcenters in diamond will be explained in Section 2.3.
Section 2.4 will discuss quantum computer microarchitectures. After that, a short introduction to quan
tum networking is presented in Section 2.5. Finally, in Section 2.6, OpenQL, a framework for highlevel
quantum programming, is introduced.

2.1. Quantum Information Theory
This section will give a short summary of quantum information theory. It will cover quantum bits (qubits)
by explaining what they are and how they differ from classical bits. The section will also cover quantum
gates (operations on the qubits) and quantum algorithms (quantum programs).

2.1.1. Qubits
A qubit is different from a classical bit. Where a classical bit can be either in state ‘0’ or ‘1’, a qubit can
be in a linear superposition of these states. The notation of qubits is called the Dirac notation [8]. This
can be illustrated by the following formula:

|Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩

Here, it can be seen that the qubit consists of state |0⟩ by part 𝛼 and state |1⟩ by part 𝛽. However,
since a qubit must be ‘complete’, the chance of the qubit existing must be 1. Therefore, it must hold
that |𝛼|2 + |𝛽|2 = 1.

There are a other rules that the qubits must follow. One of the most important ones is that when you
measure a qubit, the outcome is not deterministic. Measuring a qubit is a probabilistic process. For
example, if 𝛼 and 𝛽 have the same value (which is valid for a value of 1

√2), the chance of measuring |0⟩
and |1⟩ is the same, as | 1√2 |

2 = 0.5. If measuring that specific qubit and the outcome is |0⟩, then the
full state becomes |Ψ⟩ = |0⟩. This means that the qubit state collapses to either |0⟩ or |1⟩, depending
on the measurement result. In the case of the example, the state has been collapsed to the zerostate.

A good way to visualize the state of a qubit is by using the Blochsphere, depicted in Figure 2.1.
Note that the Blochsphere visualization only works for a single qubit. The qubit will be anywhere on the
edge of the sphere. It can help to understand what the state of the qubit is when applying the quantum
gates in algorithms. It also means that the formula from earlier can be rewritten as:

|Ψ⟩ = 𝑐𝑜𝑠(𝜃2) |0⟩ + 𝑒
𝑖𝜙𝑠𝑖𝑛(𝜃2) |1⟩

4

2.1. Quantum Information Theory 5

In addition to the previous notations, there is also a notation that is particularly helpful when doing
(hand) calculations on qubits when they are in the socalled Clifford states, which are found on the
Blochsphere as +z, z, +x, x, +y and y axis.

Figure 2.1: The Blochsphere [9].

The Clifford states are:

1. |0⟩ ≡ [10]

2. |1⟩ ≡ [01]

3. 1
√2(|0⟩ + |1⟩) ≡ |+⟩ ≡ [

1
√21
√2
]

4. 1
√2(|0⟩ − |1⟩ ≡ |−⟩) ≡ [

1
√2
− 1
√2
]

5. 1
√2(|0⟩ + 𝑖 |1⟩ ≡ |+𝑖⟩) ≡ [

1
√2𝑖
√2
]

6. 1
√2(|0⟩ − 𝑖 |1⟩ ≡ |−𝑖⟩) ≡ [

1
√2
− 𝑖
√2
]

By representing the states in their vector notations, they can be transformed into new states by
using linear algebra.

Until now, only single qubit states are presented. However, multiple qubits can share a state to
gether. For example, when two qubits share a state together, it can be represented like the following:

|Ψ⟩ = 𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩

The rules that apply to a single qubit state still hold. Multiple qubit states are very useful be
cause they allow for the use of quantum entanglement. Entanglement can be seen as the quantum
mechanical connection between two qubits. It can be seen as a resource [8] that plays a key role in
quantum algorithms.

2.1.2. Gates
Gates can also be represented by their vector notation. This makes that if the Xgate (quantum equiv
alent of the NOTgate) is applied, the calculation becomes:

𝑋 |0⟩ = [0 1
1 0] [

1
0] = [

0
1] = |1⟩

The Xgate is given by the first (2x2) matrix. The qubit itself is represented by the second (2x1) ma
trix. An overview of the most frequently used gates are given in Figure 2.2, together with their circuit
representation. The Hadamard gate, H, maps a qubit into equal chances of measurement of |0⟩ or |1⟩,
creating superposition. The X, Y and Z gates rotate the qubit around the specified axis (x, y or z) with 𝜋
radians. The S and T gate both shift the phase of the qubit over the Zaxis, with 𝜋

2 and
𝜋
4 respectively.

Gates are the building blocks of quantum algorithms, as illustrated in the next section. It is worth noting
that some gates, such as the PauliX gate, can be written as a HZH gate. Other examples are PauliY,
which equals iXZ and PauliZ that equals HXH.

6 2. Background

Figure 2.2: Overview of qubit gates [8, Fig. 4.2]

2.1.3. Quantum Circuits and Algorithms
Quantum algorithms are described using discrete timebased schematics. An example can be found
in Figure 2.3 where the state of the top qubit is teleported to the bottom qubit. As can be seen, multiple
gates from Figure 2.2 are present in the circuit together with two measurements. The majority of
quantum circuits and algorithms are visualized like this. In the Figure, there is an Xgate on qubit 0,
followed by CNOT with qubit 0 as control and qubit 1 as target.Then, a Hadamard gate is performed on
qubit 0 followed by ameasurement on qubits 0 and 1. Depending on the outcome of the measurements,
an X gate and a Z gate are performed on qubit 2. The example is explained in more detail in [8,
Section 1.3.7].

Figure 2.3: Teleportation Circuit. Made with Quantum Inspire [6].

2.2. The QuTech Quantum Computer Stack
As this thesis focuses on the definition of a microarchitecture for a quantum computer based on di
amonds, it is important to get the definitions of said microarchitecture correct. A clear definition of
what the microarchitecture is already exists for classical computing systems and so the same must be
done for quantum computing systems. A clear definition will add clarity for all who are involved in the
development of quantum computers, as different research facilities and different quantum computing
companies might have different definitions right now. Based on work that has been done before, an
abstract quantum computer stack can be created, as depicted in Figure 2.4. The quantum computer
stack presents an overview of the different layers of a quantum computer. It can be observed that there
are a total of seven layers. In this section, the definition of each layer is given, starting with the top
layer and working to the bottom layer.

2.2.1. Quantum Algorithm
This layer contains the definition of the quantum algorithm. Contrary to classical algorithms, where the
data input and data output set are defined, as well as the operations that transform the input data to the
output data, a quantum algorithm consists of a set of discretetime gates operating on qubits as depicted
in Figure 2.3. Examples for use cases are data encryption, finding a new molecule or synthesizing a

2.2. The QuTech Quantum Computer Stack 7

Figure 2.4: The QuTech system stack. Q stands for Quantum.

new vaccine for COVID19 (caused by the SARSCoV2 virus). The quantum algorithms have the
goal of speeding up a use case using quantum computation characteristics, such as superposition
or entanglement. Examples of wellknown quantum algorithms are Shor’s Algorithm [2] or Grover’s
Search Algorithm [3], as explained in the introduction of the thesis.

2.2.2. Programming Paradigm & Languages
In this layer, the quantum algorithm defined in the Q Algorithm layer (for example: Shor’s Algorithm)
gets transformed into a specification using a highlevel quantum programming language. There are
different highlevel quantum programming languages available today, such as Scaffold, Q, Q#, Quipper,
LIQUI|⟩ and Project Q, see Figure 2.5. For some of these languages, compilers have been written.
For example, to compile Scaffold, the ScaffCC compiler and analysis framework is used. Here at
QuTech, we use the OpenQL framework, which uses a Python API or a C++ API as algorithm input.
OpenQL is currently used for the QuTech Central Controller and for the hardware backends that can
be programmed through Quantum Inspire as well [6]. More information about OpenQL can be found
in Section 2.6 or at openql.readthedocs.org.

Figure 2.5: Different programming languages for quantum computing.

openql.readthedocs.org

8 2. Background

2.2.3. Quantum Arithmetic, Runtime and Compiler
At this layer, the initial translation from a quantum algorithm towards the signals used to control the
electronics controlling the qubits is performed. For this purpose, a set of quantum arithmetic operations
is assumed and the target outcome of the compiler is a program that is composed of instructions defined
in the QISA. Similar to traditional compilers, the runtime refers to a highlevel scheduler that is needed
for a larger multiqubit or multinode (with multiple qubits per node) system. The runtime is envisioned
to be programmed using instructions from the QISA.

2.2.4. Quantum Instruction Set Architecture
The QISA can be seen as the bridge between (highlevel) quantum algorithms, expressed using quan
tum programming languages or quantum arithmetic operations, and the microarchitecure level below.
The layer defines the functionality of the quantum computer expressed as a list of quantum instructions
similar to the ISA of a traditional computer. This includes instructions for the functionality of a qubit
as well as instructions for the necessary control logic, including classical instructions. These classical
instructions are also used by the runtime to perform scheduling between qubits. The definition of the
QISA is important, as a well defined QISA allows for adaptability and flexibility of the functions of the
quantum computer.

2.2.5. Microarchitecture
The goal of the microarchitecture is to execute QISA instructions generated by the higher layers in a
deterministic manner with ample runtime support. It should, just like the QISA, support both quantum
operations as classical operations. The microarchitecure is defined as a collection of simple(r) micro
instructions of the lowest level that implements the functionalities of the QISA by controlling the complex
electronics that control qubits.

2.2.6. Quantum to Classical
The Quantum to Classical layer, also called the control electronics layer, is responsible for driving
the physical qubits. It is located very close to the qubits. The layer is controlled by the microarchite
cure layer. Some examples of control electronics are DigitalAnalog Converters (DACs), AnalogDigital
Converters (ADCs), Arbitrary Waveform Generators (AWGs) and UltraHigh Frequency Quantum Ana
lyzers (UHFQAs) as well as relays, optical switches and current sources. These all need to be properly
controlled to ensure correct and full functionality of the quantum computer.

2.2.7. Quantum Chip
The bottom layer of the stack would be the quantum chip layer, or the qubits themselves. There are
different types of qubit available (superconducting, spin, NVcenters and more) and each type demands
different requirements from the higher layers.

2.3. NVcenters in Diamond
There are many ways to implement a qubit available today. Each type of qubit has its own advantages
and disadvantages. The most known types of qubit are superconducting qubits, spin qubits, majorana
fermion qubits and diamond color center qubits [7]. In this thesis, the focus lies on the fourth qubit type:
color center qubits. Within these color center qubits, the focus lies on NVcenters.

A NVcenter is an open space in diamond caused by the replacement of a carbon atom with a
nitrogen atom in the structure of the diamond. The open space, or vacancy, is occupied by a particle that
can act as a qubit. These vacancies can form naturally or be formed by humans in artificial diamonds
[10]. The needed structure can be made using different approaches. One of these approaches could
be to try to “grow chemical vapordeposited diamond onto etchable substrates” [11].

As said previously, an NVcenter is a type of color center, A color center is an impurity or defect that
gives emeralds and rubies their color [11]. Diamond is the optimal environment for an artificial atom
because of the thermal and mechanical properties of the material. Also, there are very few nuclear
spins present in diamond. The nuclear spins that are present can even be used as an advantage.

As the particle inside the vacancy can be used as a qubit, is must be able to have superposition
of quantum states. It is also important that the particle has a long coherence time and this is usually
achieved by isolating the particle from uncontrolled perturbations in the form of noise [10].

2.3. NVcenters in Diamond 9

In [10], it is stated that all of the previously mentioned properties are in fact satisfied by the NV
center. Today, it is widely known that NVcenters can be used to generate, measure and control qubits,
but at the time of [10] this was not trivial.

These particles in the vacancy, from now on qubits, can be controlled with both magnetic as optical
interactions [10]. Readout of the qubit is can be done optically. This is supported by the fact that the
ground state of the NVcenter shines brighter than the excited state [11]. This is one of the properties
of color centers: they react strongly with microwaves and optical fields. Because of these properties,
the qubit can be classified as Optically Detected Magnetic Resonance, or ODMR.

The created diamond and corresponding NVcenter are made purer and purer, enhancing the life
time of the qubit. In 2013, [10] shows that this can be extended to the millisecond range by removing
spins, both nuclear and electronic. These spins normally act as sources of decoherence. Thus, by
minimizing these sources the coherence time of the qubit increases. However, not all material spins
are necessarily bad. It is possible to create Quantum Memory by using the nuclear spin of the carbon
atoms to store data without losing the state because of entanglement generation [12]. In particular,
natural material contains spins with weak hyperfine couplings, a magnetic coupling between atoms/
electrons, between 2050KHz. If these coupling strengths are weak enough (<10KHz), the spins can
survive up to hundreds of entanglement attempts [12]. The Fujitsu Project aims to use the nuclear
spins surrounding the qubit as additional qubits.

These nearby nuclear carbonatom spins can also be used to implement Quantum Error Correction
(QEC) [13]. The authors use the electron found in the NVcenter to initialize, control and read out the
carbon13 spins found close to the center. They have implemented 1 and 2qubit gates with high
fidelity, as well as a threequbit QEC [13]. This supports the statement that nuclear spins around the
qubit do not necessarily influence the NVcenter qubit system badly.

It is important to stress that not every NVcenter is the same. Thus, not every trapped particle is the
same. There are differences in brightness of emitted light and in decay rate [14]. Therefore, a metric
has to be introduced which will indicate the efficiency of a NVcenter. This is done in [14]. Quantum
Efficiency, or QE, is quantified experimentally. They measured between 30 and 40 NVcenters and
mapped their brightness. A broad distribution was found in accordance with previous reports. They
found that the decay rate is influenced by two parts: Radiative and Nonradiative decay rates. NV
centers have a QE of between 10 and 90 percent [14].

Comparing the NV qubit with other types of qubits, we see that the NV electron spin lifetimes are
much longer, about a couple of milliseconds even at room temperature. Other types of qubit are usually
cooled down to less than 4K to be useful.

However, the biggest challenge that comes with NVcenter based qubits is its scalability. The scal
ability of the qubits is very hard to develop well. This is mostly because the quality of the devices and
materials is nowhere near it should be right now. On top of that, optical coupling between qubits is also
needed. Optical coupling between qubits would mean they can also be coupled (and subsequently
entangled) over long distances [11], resulting in a quantum network.

There are also ideas to combine multiple types of qubits into one system. [10] names the combina
tion of superconducting qubits (which are fast and highcontrollable) and NVqubits (to act as quantum
memory and transducers).

Other types of color centers are also present in diamond. Research has been done to other types
as NVcenters have a “large static and dynamic inhomogeneous linewidth”, [15]. Another type of color
center, the negatively charged SiVcenter has good optical behavior and a narrow inhomogeneous
linewidth, making it a good candidate for quantum communication. However, the SiVcenter has a
much smaller coherence time. This can be elongated to one minute at a temperature of 4K [15]. As
mentioned before, the Fujitsu Project also does research about SnVcenters.

A simulator has been proposed by [16] to learn the Hamiltonian that describes the behavior of the
NVcenter qubit. It consists of three parts: 1) a Silicon Quantum Photonic Simulator, 2) a Diamond NV
electron spin system and 3) a classical computer. The system proves that the verification and validation
of quantum systems and quantum devices can be done with a hybridsystem, which is part classical
and part quantum [16].

2.3.1. Other types of Qubit
NVcenters can be used as qubits, and can be controlled using lasers, magnetic fields en electric fields
(ODMR). This is quite different from other types of qubit and also what makes the technology special.

10 2. Background

For example, the decoherence time of NVcenters is longer than superconducting qubits.
Superconducting is perhaps themost popular and thereforemost explored type of qubits. Sycamore,

the quantum computer from Google, uses 53 of these type of qubits [5]. The qubits, as the name sug
gests, consist of superconducting electrodes that are interconnected with JosephsonJunction. Within
the superconducting qubits, there are different types. Examples are: charge, flux, phase and fluxo
nium. At QuTech, the transmon qubit is used. There are two islands, interconnected with a junction.
This junction is comparable with an LCoscillator. Surface code is an example of an application of trans
mon qubits. It uses busresonators, readoutresonators and microwaveinputs to control the qubits [7].

Spin qubits aremore comparable to NVcenters than superconducting qubits. Spin qubits also utilize
the spin of an isolated electron to do calculations. Charge sensing can be used to detect if an electron
spin is present. The space wherein a spin qubit is present is called a quantum dot. Two quantum dots
can be cross coupled, but that has as a disadvantage that the voltage applied to dot #1 also influences
the potential of dot #2. Instead of control with lasers, the control is now done with alternating magnetic
fields. When this alternating field is introduced, the spin starts to rotate as a function of time. The
oscillations are called Rabioscillations. These are important as they form the basis of single qubit
rotations. The oscillations decay because of nuclear spins present in the environment, and so the
frequency of the qubit changes over time. Silicon28 has 0 nuclear spin, thus there is no decay of
oscillations. Together with sequences and other materials an increase of the coherencetime of a qubit
is possible [7].

2.4. Quantum Computer Microarchitectures
Because there are different types of qubits, there must also be different ways to control them, either
because the underlying qubit requires that or because the design philosophy is different. In this section,
a few quantum computer microarchitectures will be highlighted. Note that, because there is a discrep
ancy between the definitions of microarchitecture used in between these examples, the definition might
not add up completely to the definition set in Section 2.2.

2.4.1. QuMA
QuMA, or Quantum Micro Architecture [17], is a heterogeneous microarchitecture aimed at the control
of superconducting qubits. There is a host classical CPU, with a quantum coprocessor. There are,
essentially, three versions of QuMA. The first version, called QuMA, is based on four concepts at the
core: codewordbased event control, Queuebased event timing control, multilevel instruction decoding
and QuMIS, the Quantum Micro Instruction Set. The other versions of QuMa, QuMa_v2 (featuring
eQASM microarchitecture) and QuMa_FT are discussed later.

Codewordbased event control
In QuMa, every event is indexed with a codeword. The events are then triggered by the codewords,
improving control flexibility. Additionally, there is less memory usage. For the AllXY experiment that
serves as a benchmark for QuMA, there is an 83% reduction in used memory.

Queuebased event timing control
Events are buffered in a group of queues. Then, the events can be triggered at the expected timing
resulting in deterministic and precise execution under nondeterministic timing.

The concept is quite simple. Each operation has a time label. A timeline can be created, going
from left to right, where different operations have their own time label. Once the system clock Td has
reached the correct time on which the operation with time label (x) has to be executed, it executes the
operation and resets the system clock for the next event.

Multilevel instruction decoding
Because the preceding two concepts already handle a lot of things, other parts of QuMA can focus on
flexibly decoding instructions. In addition, this part also focuses on filling the queue as fast as possible.

Quantum instructions are defined in the Quantum Instruction Set (QIS). It contains classical and
quantum instructions, where the classical instructions are used for basic arithmetic and logic operations
and program flow control. The quantum instructions determine when and what operation is applied on
which qubit.

2.4. Quantum Computer Microarchitectures 11

Multilevel instruction decoding supports technologyindependent QIS definitions. At the core, quan
tum instructions are decoded into quantum microinstructions, microoperations and eventually code
word triggers.

Quantum Micro Instruction Set
QuMIS is the microinstruction set that is used within QuMA. it has four different instructions:

1. Wait: wait between consecutive time points.
2. Pulse: apply quantum gates on qubits.
3. MPG: generate the measurement pulse.
4. MD: trigger the measurement discrimination process.

The first version of QuMA is no longer used, because there are a flaws in the architecture that
prohibit the architecture from functioning optimally. There is no feedback based on qubits measurement
results, there is limited scalability because of a low instruction information density and it is limited in
flexibility because of the tight bound to the hardware. Because of these flaws, QuMIS can not be
defined as a QISA [17].

This is why Fu proposed a new version featuring eQASM, the executable quantum assembly [17,
18]. Under the definitions set up in Section 2.2, eQASM is an example of a microarchitecture. eQASM
has support for the following:

• Runtime Feedback: Two kinds of feedback are supported within eQASM: fast conditional execu
tion and comprehensive feedback control (CFC).

• Operational Implementation: the definition of eQASM lies on the assembly level and basic rules
of mapping assembly to binary.

• Increased Quantum Operation Issue Rate (QOIR): By adapting a VLIW architecture in addition
to SingleOperationMulipleQubit (SOMQ) execution, alleviating the Quantum Operation Issue
Rate (QOIR).

• Configurable QISA at compile time: eQASM allows the user to configure quantum operations at
compile time instead of at the ISA design stage.

Overview
Quantum computing can be compared with computing in for example OpenCL. OpenCL is a open
industry standard for programming for GPUs. Following this heterogeneous computing mode, we can
also do do the same for a quantum computer, or quantum accelerator. A host program, typically written
in Python or C++ is used with kernels written in OpenQL, a quantum compiler, for the quantum part of
the program. The kernels are compiled to eQASM instructions, which are then loaded into the QPC by
the host CPU and executed. eQASM is defined by five principles, [17, p. 77]:

1. “eQASM should include classical instructions to support quantum program flow control including
runtime feedback;

2. eQASM should contain welldefined methods to specify the timing of quantum operations;
3. Lowlevel hardware information should be abstracted away from the eQASM assembly as much

as possible to avoid eQASM being stuck to a particular hardware implementation;
4. The quantum operation issue rate is a potential bottleneck of the quantum microarchitecture, and

should be addressed, e.g., by densely encoding the instructions such as done with SIMD and
VLIW for classical architectures;

5. Different experiments and radical compilerbased optimization techniques such as quantum opti
mal control [144, 145] may use a different set of quantum operations, which can be uncalibrated
or uncommon. eQASM should be flexible to allow different quantum operations via configuration.”

The architectural state of the QPU (Quantum Processing Unit) is shown in Figure 2.6. The Data
Memory buffers intermediate compute results and acts as the communication channels between CPU
and QPU. Instructions are obviously stored in the Instruction Memory while the Program Counter
(PC) keeps track of the instruction addresses. General Purpose Registers (GPRs) are 32bit regis
ters, starting with r1. The comparison result from comparison and branch instructions are stored in the
Comparison Flags. There are two types of Quantum Operation Target Registers: single qubit reg
isters for singlequbit operations and twoqubit registers for twoqubit operations. The physical address

12 2. Background

of a set of qubits is stored in a target register. Same as with QuMA, eQASM features a queuebased
timing control scheme, splitting the process into two domains: deterministic and nondeterministic tim
ing. This is done in the Timing and Event Queues. For storing the measurement results of the qubit,
a set of Qubit Measurement Result Registers are available. There is an Execution Flag Register
for quick conditional execution. The Quantum Registers which serve as a collection of all physical
qubits. A unique index is assigned to each qubit called the physical address.

Figure 2.6: Architectural state of eQASM [17, Figure 4.2]

An important part of eQASM is that one of the goals is that it is technology independent. This
means that eQASM is directed at the assembly level with rules of mapping the assembly code to
binary. eQASM enables freedom for the design of the microarchitecture to enhance performance or
usability.

A program for eQASM consists of quantum and classical operations. An overview of all instructions
can be found in Figure 2.7.

Based on these instructions, eQASM has four features, as also mentioned previously: 1) eQASM
can specify the timing for each quantum operation explicitly, 2) The quantum operations are defined by
the programmer at compile time, meaning there is more flexibility for compilerbased optimization and,
for example, different technologies, 3) SingleOperationMultipleQubit with VLIW architecture and 4)
Two kind of feedback fast conditional for go and nogo decision and CFC for redirecting program flow.

Queuebased Timing Control eQASM also supports an increased QOIR by combining a wait state
ment and a quantum operation onto one instruction: [PI,] <Quantum Operation>, where the
content between [...] is optional.

QuantumOperation Definition and Decoding The quantum operations are defined at compile time.
This means that the programmer can choose what gate set to use and more. The only thing that needs
to be done, is that the assembler translates the quantum operation to the expected opcode and then the
microcode unit translates the opcode to microinstructions using the decoding scheme [17]. These are
then translated into pulses by the pulse generator which applies the operation on qubits with precise
and deterministic timing. All units are configured at compile time.

2.4. Quantum Computer Microarchitectures 13

Figure 2.7: Overview of eQASM microarchitecure instructions [17, Table 4.1]

AddressMechanism Because of SOMQ, we can apply one operation onmultiple qubits at once. This
is useful if we want to initialize the qubits into superposition, which is done by applying the Hadamard
gate on multiple qubits. SOMQ is comparable with SIMD in classical computing.

Very Long Instruction Word In addition to SOMQ, eQASM also allows to apply different operations
on different qubits, in parallel. This is written as a quantum bundle in VLIW:

[PI,] <Quantum Operation> [| <Quantum Operation>]*

Where | is the separator between operations, and * indicates howmany times the operation between
[...] can be repeated. Also see the example in [17, p. 86] on SOMQ and VLIW instructions.

Fast Conditional Execution When doing conditional operations, for example branch operations,
classical computing uses methods to speed up branch operations. Branch operations are the most
timeintensive operations in for example MIPS. To combat the length of these operations, Fu predicts
the outcome of the branch based on previous results called branch prediction.

In eQASM, something similar is done. When the result of the check is stored in the execution
flag, the next operation is either executed or canceled. The execution flags are updated automatically
through the combinatorial logic circuit when the result is read from the qubit. An example can be found
in [17, p. 87].

Comprehensive Feedback Control (CFC) CFC can adjust program flow. It does this based on the
measurements of qubits. The advantage is that there is flexible userdefined feedback but the latency
on the feedback is larger. CFC has three steps: 1) Measurement instruction on qubit i, 2) Fetch the
value of the measurement to a GPR, 3) The GPR is used in a branch instruction in the CPU. Example
in [17, p. 88].

Hardware architecture
eQASM has been adopted to work with the first version of QuMA, featuring codewordbased event
control, multilevel instruction decoding and queuebased timing control. QuMA_v2, as the new archi
tecture is named, supports these three features including all of eQASM. The architecture can be found
in Figure 2.8. On details on what each part does, refer to [17, sec. 4.4.3].

14 2. Background

Figure 2.8: Overview of QuMA_v2 [17].

2.4.2. QuTech Central Controller
The QuTech Central Controller, or QCC, is a system controller based on QuMA [17], controlling a 17
qubit surface code quantum processor based on superconducting qubits [19]. Moreira analysed QuMA
to find weaknesses. By eliminating the weaknesses, he could improve upon QuMA and adapt it to the
17qubit architecture.

The disadvantages that are found in QuMA are:

• Centralized Design makes it so that there is limited scalability.
• Control and scalability challenge because there is a lack of full integration support due to the
number of available inputs and outputs.

• QuMa is not flexible because of the rigid control scheme. Changes in chip size, layout or instru
ment configuration are not supported.

In the adaption, for unknown reason, the platform was first ported to a new hardware platform fea
turing an Xilinx Zynq7000 SoC. The second adaption needed to make QCC ready for 17 qubits. QuMA
did not support such a high number of qubits, so naturally some things needed to be changed. First
and foremost, the instructions SMIS and SMIT in eQASM needed to be enlarged to fit the addresses
for 17 different qubits. Luckily, SMIS was big enough to accompany the increase of qubit. SMIT on the
other hand, required an expansion of 32 twoqubit target registers because of the increased amount of
twoqubit pairs.

Additionally, the part that is responsible for the distribution of events among the devices needed
to be expanded. In total, there are now five AWGs and three UHFQCs. Because of the change of
topology, several other systems also had to undergo changes.

QuMA was quick enough to not throttle under the Quantum Operation Rate Issuerequirements
of the 17qubit architecture. However, the increased number of connected devices means that 288
pins are now needed to connect everything. The FPGA that is used, however, only supports 48 I/O
pins. Moreira solved this by connecting the main (CORE) FPGA with other, similar, FPGA boards in
a starconfiguration. They are connected using a custom backplane, which allows highspeed serial
communication between the I/O boards and the CORE FPGAboard.

As to date, the system architect of the Central Controller, Wouter Vlothuizen, wrote that both QuMA
and QCC are no longer in use at QuTech. The main architecture is the Central Controller, which is
highlighted in the next section.

2.4. Quantum Computer Microarchitectures 15

Figure 2.9: The distributed hardware architecture of the Central Controller (CC). Provided by Wouter Vlothuizen,
TNO.

2.4.3. Central Controller
The Central Controller (CC), not to be confused with he QuTech Central Controller, is a distributed
control architecture used at QuTech, developed by TNO, TU Delft, Zurich Instruments and ETHZurich.
It aims to control transmon qubits, which are a form of superconducting qubits. The goal is to build
a surface17 quantum error correction logical qubit. Part of the development of the Central Controller
was the CBox a master controller with 3 built in AWGs using QuMA_v1. The second generation,
CClight, featured a master controller running QuMA_v2 with multiple external instruments (AWGs,
UHFQC). The third and most recent generation is the Central Controller (CC) as presented in this
section. All information in this subsection is gathered through emails and presentations with and from
Wouter Vlothuizen from TNO.

Hardware Architecture
The CC is designed for 17 qubits, but can be scaled to 49 qubits and even beyond that. It features a
distributed hardware architecture with 12 CCIOs and a CCCORE. An overview can be found in Fig
ure 2.9. A CCIO consists of an FPGA + ARM processor. Every CCIO has one connected instrument
 this can be either an AWG, a UHFQC or a Vector Switch Matrix (VSM). The CCCORE also features
an FPGA and an ARM processor, but acts as a communication hub for lowlatency communication.

Contrary to the architecture of eQASM/QuMA, the CC knows absolutely nothing about quantum
operations. It only knows about the waveform generators and the signals that it needs to send out. In
CC, it is determined in the software and thus not the hardware what signals go where, and then they
are executed by the CCIO FPGAs. The system achieves its scalability by just adding more CCIO
modules no changes in firm or software are needed. For 17 qubits, approximately 10 instruments
are needed whilst for 49 qubits, approximately 20 instruments are needed. Theoretically, no changes
in the firmware are needed if the qubit chips are updated, a new qubit technology is hooked up to the
controller, new instruments are added etc. This is because the knowledge about the system is located
in the compiler. However, new technologies might require signals that are not supported by the CC.

Each CCIO board features a Sequence Processor (SP). Each instrument, whether is is an AWG,
an UHGQC or a VSM, needs a SP to function properly. SPs operate from independent, but coordi
nated programs with a synchronous start. An SP has an instruction size of 64bit, with 65 32bit wide
registers. It supports arithmetic, flow control, coprocessing and sequencing operations. The core runs
at 200MHz whilst the sequencer clock runs at 50MHz. The SPs have cycle accurate synchronization
of the distributed processors. A patent has been filed for this technique. There is fast feedback through
the shared memory. This memory is shared between all CCIO boards in a starconfiguration. Writes

16 2. Background

are distributed to all SPs, while reads are performed locally. In the starconfiguration, the CCCORE
acts as the network switch.

The Q1 Instruction Set
Here, the instruction set that is used withing the CCIO and CCCORE are described. Below, in Ta
ble 2.1, the operand of the instruction set is shown. This information was directly gained from the
instruction set file of the CC, Q1instructionSetCC.rst, that was received fromWouter Vlothuizen.
Note that this file is not complete as there are several “FIXME”s written in the document. However, it
should give a good overview of the instructions of the CC.

In Table 2.2, the actual instructions can be seen. They are divided over multiple categories, of
which the most notable two are at the bottom of the table: q1sec0 and q1qec0. There is a difference
between these two categories and they do not run on the same processor. There are two types of
processors, with one type running the instruction set with the q1sec0 instructions and the other with
the q1qec0 instructions. In addition, to clarify the instructions more, the instructions starting with ’seq’
are instructions that are executed in the sequencer part of the CPU. The ’swreq’ instructions need
action from the ARM processor. The other instructions are for flow control, arithmetic etc as indicated
in Table 2.2.

Comparing this instruction set with the one from QuMA (eQASM), it can be seen there are vast dif
ferences in how they operate. This is entirely due to the fact that eQASM has a centralized architecture,
while the CC is decentralized.

Table 2.1: The operands that are used in the Q1 instruction set as gained from the instruction set file by Wouter
Vlothuizen.

Name Description
Rs, Rd, Rn Source and destination registers. Varying from R0 through R63.
Sn Shared memory address. These range from S0 through S127 and are byte addressable.
addr12 A 12bit direct address or lower 12 bits of a register.
src32 Source operand with a 32bit immediate value or register.
imm32 32bit immediate value.
cnt32
val32
sizeX

2.4. Quantum Computer Microarchitectures 17

Table 2.2: Q1 Instruction Set based on cc_firmware_implementation.docx Wouter Vlothuizen

Category Instruction Description

General
illegal causes an illegal instruction exception, e.g. for empty memory locations

since opcode is 0

stop Stop instruction

nop Nooperation instruction

flow control

jmp addr12 pc = addr12

jge Rs,imm32m,addr12 if(Rs >= imm32) pc = addr12

jge Rs,imm32,addr12 if(Rs <imm32) pc = addr12

loop Rn,addr12 if(–Rn != 0) pc = addr12

arithmetic

move src32,Rd Rd = src32

add Rs,src32,Rd Rd = Rs + src32

sub Rs,src32,Rd Rd = Rs src32

not src32,Rd Rd = !src32

and Rs,src32,Rd Rd = Rs & src32

or Rs,src32,Rd Rd = Rs

xor Rs,src32,Rd Rd = Rs ^src32

asl Rs,src32,Rd Rd = Rs<<src32

asr Rs,src32,Rd Rd = Rs>>src32

coprocessing sw_req src32 software request to ARM processor, src32 is passed

shared memory move_sm Rd Rd = 32bit sharedmemory element as read by the “seq_cl_sm“ instruction.
Blocks until data is available.

real–time
seq_wait cnt32 wait cnt32 cycles

seq_inv_sm Sn,size locally invalidate a region of shared memory from address n (byte aligned)
with size size. Reads from invalidatedmemory flag an error; use this mech
anism to guarantee that late arrival of results is flagged

seq_bar synchronize all participating modules (CCIOs, CCCORE) using the
MOD_SYNC partyline, and then wait for the number of cycles set by Q1
configuration register “SEQ_BAR_CNT“ (which is set using CC SCPI com
mand setSeqBarCnt)

ipc
seq_cl_sm Sn output 32bits SM element at address n (32bit aligned) to the classical part

of the Q1 via a FIFO, so that the Q1 can read it using “move_sm“

seq_sw_sm Sn reads a 128bits shared memory element at address n (128bit aligned),
latches it into a FIFO buffer together with the Q1 program counter and
generates the corresponding interrupt so that ARM processor software can
read it.

real–time: q1seq–0

seq_out val32,cnt32 output the digital value val32 for cnt32 cycles

seq_in_sm Sn,mux,s read the digital input FIFO, pass the value through multiplexer mux, and
distribute the result to sharedmemory address n (size aligned) with transfer
size determined by s (0=8bit, 1=16bit, 2=32bit). If the input FIFO is empty
an error is flagged. Writes from different instruments to overlapping regions
should be prevented.

seq_out_sm Sn,pl,duration read a 128bit shared memory element at address n (128bit aligned), pass
it through programmable logic pl and output the result for duration cycles.
Also updates PL state.

seq_state_sm Sn,pl read a 128bit shared memory element at address n (128bit aligned) and
pass it through programmable logic pl, thus updating PL state. Does not
perform output

seq_state val32 set the state register in Programmable Logic to val32

real–time: q1qec–0

seq_init_a_qb src32 write src32 into the QEC as initial ancilla state

seq_init_a_qb_sm Sn,lut write 128bit shared memory element at SM address n (128bit aligned)
through the multiplexer into the QEC as initial ancilla qubit state. FIXME:
lut

seq_a_qb Sn,lut,cnt32 write 128bit shared memory element at SM address n (128bit aligned)
through the multiplexer into the QEC as ancilla qubits and wait cnt32 cycles

seq_d_qb Sn,Sm,s,lut,cnt32 write 128bit shared memory element at SM address n (128bit aligned)
through the multiplexer into the QEC as data qubits and wait cnt32 cycles;
FIXME: SM address m (32bit aligned), size

18 2. Background

Software Stack
For the software stack, there are four steps, starting at the quantum algorithm and ending at the binary
program that will be executed by the SP.

1. Add timing to the quantum gates. This step is done in OpenQL on the control PC.
2. Convert the quantum gates to codewords that can be used by the instruments. This is done in

the OpenQL CCbackend on the control PC.
3. Then, the programs are compiled and distributed to the CCIO boards by the CCCORE compiler,

that is running on the ARM processor of the CCCORE board.
4. Ultimately, the programs are assembled on the CCIO assemblers running on the CCIO ARM

processors.

2.4.4. CCSpin
CCSpin [20] is a microarchitecture that focuses on controlling spin qubits. Spin qubits are yet another
type of qubits realized by quantum dots. Inside a quantum dot, there is an electron that spins just
like it does in NVcenters. However, the control of the qubits in CCSpin is very different from e.g.
superconducting and NVcenter qubits. First and foremost the design philosophy of the CCSpin mi
croarchitecture looks a lot like how it’s done with QuMA [17]. There is a part cQASM, that is technology
independent, and a technology dependent part eQASM.

CCSpin QISA
The QISA of CCSpin has a set of requirements [20]. First and foremost, it must include both classical
as quantum instructions with runtime feedback. Runtime feedback is necessary for implementation
of decisions based on measurement results. Additionally, the timing constraints should not be present
in the QISA and it should also be hardware independent. Ideally, the QISA should also be qubit
technology independent. Additionally, the instructions should be dense enough so that the Quantum
Operation Issue Rate does not arise. Ultimately, there should be enough flexibility to accommodate
different sets of operations including complex waveform generation.

In CCSpin, the general 32bit QISA instruction format has specified four things: 1) the instruction
type (1 bit), 2) the opcode (9bits), 3) the quantum channel mask, which tells what qubit is at which
address (8bits) and the 4) payload, or the information that needs to be sent, such as amplitude, phase
and frequency (14bits). An example can be see in [20, p. 2829]. Yadav introduces two QISA instruc
tion format designs. In the first design, the number of payload bits have been reduced from 14 to 12
bits. The two free bits are now used to create a mask index, that is fed together with the channels
mask into a simple decoder to enlarge the channel mask from 8bits to 32bits, enabling the control of
32 qubits simultaneously. In the second design, the channel masks are put into a lookup table (LUT).
This method requires more memory but can be done in a single cycle. In addition, there are 256 qubit
channels available. This format also supports the SMIS and SMIT instructions from [17].

Ultimately, however, the LUT approach was too complex for the master thesis project of Yadav, and
the general QISA instruction format was chosen without explicit definition of the payload parameters.

Hardware of CCSpin
The design of the architecture was divided into two areas: Datapath Design and Control Unit Design.
The definition of functional blocks, such as GPRs, Bus sizes etc, are done in the Datapath design whilst
the control unit design focuses on flow control instruction registers, decode logic, program counters
etc. The control unit is also responsible for translating each QISA instruction to microarchitecture
operations that can be executed and ultimately sending signals to the control electronics. In Figure 2.10,
the overview of the hardware architecture of CCSpin can be seen. The flow begins at the left. At the
host PC, the QISA is generated (with OpenQL), then forwarded to the Master Controller. The Master
Controller then translates the QISA operations to microoperations (or microinstructions), which get
send through the SERDER (SerializerDeserializer) to slave FPGAs. The slave FPGAs are connected
to the AWGs which are responsible for the envelope and waveform generation. The waveforms are
then sent to the AnalogtoDigital interface.

2.5. Quantum Networking 19

Figure 2.10: The system view of CCspin, using AWGs and/or DDSDAC [20, Figure 3.2].

2.5. Quantum Networking
If the goal is to build large quantum computing systems, communication between quantum computers
is needed. This means that a network is needed between these socalled nodes. When nodes are
connected together using quantum communication, we speak of a Quantum Network.

This network can be used to connect large compute systems together, but also to connect smaller
nodes together in one system. As seen with QuMA [17], an idea is to make multiple nodes consisting of
tens of qubit and connect them together to make one powerful quantum computer. This is sometimes
called a modular quantum computer or scalable distributed quantum computer, comparable with the
Fujitsu Project.

2.5.1. Quantum Communication
As stated previously, quantum communication can be used to link quantum computers or quantum
nodes together. There are two big reasons for the need of a quantum communication network, of which
the first has been mentioned already: using multiple nodes or multiple computers to solve a problem
that needs more compute power. The second reason is that a quantum network supports tasks that
a classical network can not [21]. Examples are secure communications, secure cloud computing and
quantumenhanced measurement networks [22]. Quantum Key Distribution (QKD) is the best known
application for such networks.

To realize both types of networks, a few challenges have to be solved. However, the amount of
challenges and the details of these challenges are unknown. There are at least three important chal
lenges, being transmission losses, decoherence and nocloning [22]. Construction requirements for
largescale quantum networks do not exist yet.

Quantum networks consist of both classical and quantum hardware. Both types of hardware need

20 2. Background

to be integrated together very precisely so that the network works optimally. This calls the need for a
new quantum network stack. Unfortunately, the definition of this stack is challenged by technological
limitations. Moreover, protocols need to be defined as done in [22]. However, despite these limita
tions, QuTech’s quantum networking group led by Stephanie Wehner has done research in the field of
quantum network stacks, operating systems and architectures.

Further insights in quantum networks and communications have been found using adhoc stud
ies [21]. The effort required to set up the conditions of the adhoc simulation is very high, and thus
the method is tiresome. To gain more knowledge about quantum networks and quantum networking,
researchers have investigated how quantum communication works. For example, QuTech made a
quantum network simulator called NetSquid [21]. It can be used to predict and test the performance
of both quantum networks as modular quantum computers. There are many other tools available with
different goals in mind.

2.5.2. Entanglement and Teleportation
As shown by [23, Figure 1] and elaborately described in [8], teleportation and entanglement are closely
related. Essentially, when entanglement between two nodes has been established, one can send over
a data qubit. This will, however, consume the entanglement pair. If one wants to send over another
data qubit, entanglement has to be created again.

According to [8], “Entanglement is a uniquely quantum mechanical resource that plays a key role
in many of the most interesting applications”. When two particles are entangled with each other, they
are ’linked’ by quantum channels. So, teleportation of quantum states is a utilization of quantum entan
glement. With teleportation, the state can be measured at point A and then remade at point B based
on the measurement values of the entangled states. For more on teleportation, refer to [8, Sec. 1.3.7].
Entanglement and teleportation solve the challenges of losses and nocloning [22].

2.5.3. Quantum Tools for Networking
[24] describes what the theoretical limits for quantum entanglement are from a mathematical perspec
tive. This is useful when comparing different network simulators. It also describes how to estimate
waiting times and fidelity for quantum networks. Then, in [24, sec. IV], the author describes simulation
tools including NetSquid, a quantum network simulator made by QuTech. The goal of the paper is to
review the research dedicated to analytical and simulation tools for quantum network communication,
making a unified description.

Generally speaking, there are three choices of evaluation: experimental, through simulation and
analytical. The choice of the method depends on factors such as cost, accuracy and flexibility [24] and
each choice has its drawbacks and advantages. For example, experimental methods give the most
accurate answers to concrete scenarios. Such methods are costly and if the hardware does not exist
yet, evaluation is not possible. Both simulation and analytical methods do not have these drawbacks,
but they are less accurate. They are, however, less time consuming and cheaper.

Simulation Tools
Analytical models are well suited for smaller and simpler models, but they evaluate them at different
points, such as protocols, topology and network usage [24]. Compared to analytical tools, simulation
tools are used in more complicated scenarios. Simulation of network usually undergoes four steps [24]:

1. Problem Formulation: Definition of the goal of the performance evaluation.
2. Theoretical Modeling: Definition of the boundary conditions, assumptions and the level of detail for

protocols and models. A full specification, including behavior of elements and their interactions,
is the output of this step.

3. Implementation: The model that was specified in the previous step is written in software.
4. Simulation: Run the simulation and verify the outcome.

The main limitation for simulation is the network size. When simulating quantum networks clas
sically, only networks consisting of a few bits can be simulated. However, since many interesting
scenarios only consist of Clifford gates with Pauli noise, classical simulation is still viable. Classical
simulation is also viable for smallqubit sized networks.

At the time of writing, there are multiple platforms available that simulate quantum networks. Simu
laQron [25] and QuNetSim [26] both focus on the facilitation of network development, where QuNetSim

2.6. OpenQL 21

is more aimed at ease of implementation. It uses the an OSIinspired model and is used to explore
routing schemes [24]. SimulaQron can simulate the network by having the different nodes at differ
ent classical computers. It is used to explore the verification of entanglement and other protocols.
SQUANCH, the Simulator for Quantum Networks and CHannels [27], is tailored to simulate quantum
information network protocols with realistic noise.

QUantum Internet Simulator Package (QuISP) [28] captures the complete complex quantum net
work behavior. It is a module of OMneT++, which is an opensource classical network simulator. The
main mode of operation of QuISP is tracking down Pauli errors. Simulator of QUantum Network Com
munication (SeQUeNCE) [29] aims at accurate physical simulation. NetSquid [21] also does this. Net
Squid has shown that its modular design and quantum engine makes it possible to simulate up to one
thousand of nodes for some models [21, 24].

2.6. OpenQL
OpenQL is used when programming quantum computers. It converts an algorithm written in a higher
level language, such as cQASM or OpenQL (C++/Python), to an form of executable code, which can
be cQASM or the diamond microcode. This executable code can then be run on the corresponding
quantum accelerator. In other words: “The objective of an OpenQL compiler is to produce an output
external representation of the input program that satisfies the needs of what comes next”, [30].

An overview of the basic operation of OpenQL can be found in Figure 2.11. The input on the
right is fed into the framework together with the configuration file, which contains information about
the quantum computer, such as: the number of available qubits, the primitive gate set, topology of
the target. The configuration file is crucial to the OpenQL framework, as without it, there is no way
of the framework knowing the compilation target. The input undergoes a series of compiler passes,
which can be defined as an updater to the quantum internal representation, or QIR. The QIR is key to
understanding how OpenQL works. There are different types of passes such as a mapper, a scheduler
and a Clifford optimizer. For the full list, see [30].

Figure 2.11: A schematic overview of the OpenQL framework. Source: Hans van Someren

Currently, the OpenQL framework has several uses at TU Delft. The starmon experiments as well
as the Quantum Inspire backend for the starmon accelerators use OpenQL.

As for current development, the developers are looking at the possibility to parallelize the compiling
so that OpenQL can run more efficiently on multicore processors. In addition, a second version of
cQASM, called cQASM 2.0 is being developed and support for that is also in the OpenQL roadmap.

22 2. Background

2.7. Conclusion
In this chapter, we introduced the reader to some specific topics needed to understand the rest of the
thesis. We started with the introduction of quantum information theory in Section 2.1. We explained
qubits, quantum gates and quantum algorithms. In Section 2.2, the quantum computer stack, that
serves as a lead thread in the quantum computer design process, was discussed. Each level was
presented briefly and definitions were made for each layer. Then, in Section 2.3, NVcenters were
discussed. NVcenters are discussed because the Fujitsu Project focuses on color center qubits, which
NVcenters are. It is made clear what they are, how they can be made and how they can be controlled.
This is especially useful, as in Section 2.4 the different quantum computer microarchitectures were
presented. We saw that there are a few of them, but none of them are aimed towards color center
qubits in diamond. However, a lot of information can still be used to work towards the goal of a color
center quantum computer. In the next section, Section 2.5, an overview of quantum networks was
given. Quantum networks are important, as when we are scaling the Fujitsu Project computer, it feels
and behaves a lot like a network. We learned about why quantum networks and quantum internet are
important as they enable applications such as QKD and quantum device communication. Finally, in
Section 2.6, we introduced OpenQL, the platform for highlevel quantum programming developed by
QuTech. OpenQL aims at translating a technology independent algorithm to a technology dependent
assembly code.

3
QISA and Microarchitecture

In this chapter, the definition process of the microarchitecture is discussed. It will start with the require
ments in Section 3.1. From there, the overall system architecture (as to date) is discussed briefly in
Section 3.2. The signals needed by the layer below the microarchitecture layer (control electronics) are
identified and operations are mapped in the operation flow chart. This is presented in Section 3.3. Later
on, the microarchitecture is refined using the overall system architecture and the flow chart. Ultimately,
the microarchitecure is decomposed from the instruction set architecture (ISA). The microarchitecture
forms the lowest level of instructions before signals are sent to the control electronics. After the pre
sentation of the QISA and microarchitecture in Section 3.4, an example is given on how to read them,
in addition to the decompositions from QISA to microarchitecture.

3.1. Diamond Microarchitecture Requirements
As stated in the introduction of this chapter, the microarchitecture is responsible for controlling the
control electronics. This means that it is responsible for sending the correct signals at the needed
moment to the expected destination. Failure to do so will result in unwanted behavior, such as wrong
application of gates, false measurements and more that will result in incorrect algorithm execution.

A detailed list of what the microarchitecture needs to support and why can be created:

1. Deterministic and precise control of the control electronics.

This is needed to ensure that the qubit is excited with the correct signals at the expected time.
If this does not happen, then wrong operations will be acted out on the qubit. In addition, the
instructions of the microarchitecture should be of the lowest level possible. There should be no
possibility for decompositions in the microarchitecture instructions.

2. Classical instructions for flow control.

Flow control is needed because the diamond operations require checks with branches, loops and
other arithmetic operations. This automatically requires flow control. Moreover, the microarchi
tecture needs to perform classical calculations. Therefore, classical instructions are also needed.

3. Basic quantum gate instructions (X, Y, Z, H, S and T).

Without basic quantum gate instructions, the microarchitecture cannot execute basic quantum
algorithms. The ability to support quantum gates is trivial.

4. Additional gate instructions according to cQASM 1.0, as found on the knowledge base of
Quantum Inspire [6].

23

https://www.quantum-inspire.com/

24 3. QISA and Microarchitecture

Aligning the available gate set with the entire gate set of cQASM 1.0 makes sure that the mi
croarchitecture is futureproof: it has to support most algorithms that are known today and will be
discovered in the future.

5. Support for diamond specific protocols and instructions.

Diamond color centers require specific protocols in order to have a quantum computer that func
tions properly. Examples are the magnetic biasing of the color center or the charge resonance
check. Without support for these functionalities, the completeness of themicroarchitecture cannot
be ensured.

3.2. System Architecture
Before thinking about the QISA andmicroarchitecture, the overall system architecture should be known.
This is important as it can give information about what instructions and functionality is needed. Addi
tionally, it can be seen what types of electronic devices need to be controlled and what signals they
need.The overall system architecture is observed in Figure 3.1. A more closed up figure is depicted
in Figure 3.2. Looking at the figures, a number of things can be concluded. First, there are two types
of controllers. There are local realtime controllers and there is a global controller. Per color center,
or per node, there is one local realtime controller. However, the system architecture may change in
the future, so for now it is assumed that each color center has a dedicated local realtime controller.
The microarchitecure that is defined in the rest of this chapter will be present on the local controllers.
The global realtime controller oversees the local controllers and gives them instructions. Second,
there is a number of electronic devices that need to be controlled by the local controller (and thus,
microarchitecture):

• A voltage source,
• A current source,
• Three MEMS switches, which are optical switches,
• A variable optical attenuator per MEMS switch,
• A Photon Sideband (PSB) detector, which detects photons,
• and an Arbitrary Waveform Generator (AWG).

Figure 3.1: The system overview of the color center layout. Made by Erwin and Jaco, TNO.

The global controller interfaces with the local real time controller with two connections. One con
nection is for data and one is for timing synchronization. The other connections of the global controller

3.3. Quantum Instruction Set Architecture (QISA) 25

are for a set of photondetectors that are needed to herald entanglement, and an external computer.
The master controller that is being used in NVcenter experiments uses an ADwinbased microcon
troller [31, Supplementary Information]. The external computer is responsible for sending the quantum
algorithm/program to the global microcontroller, which in turn sends the desired instructions to the local
controllers. The local controllers will then report back the the global controller when the instructions
are completed. Depending on the instruction, the local controllers will also send additional data to the
global controller. As an example, the local controller sends back what the measurement result is or
what the amount of detected photons for certain calibrations is.

Figure 3.2: A closed up system overview of a color center layout. Made by Erwin and Jaco, TNO.

3.3. Quantum Instruction Set Architecture (QISA)
With the information from the overall system architecture in mind, the flow of the quantum program
execution was determined. The flow graph can be seen in Figure 3.3. The flow graph is very useful to
determine what needs to be done at what time, but can also be used to determine instructions needed
in the QISA. For example, it can be seen that if a qubit is measured (readout), there are more steps
involved then just measure, namely that the readout laser has to be enabled and photons have to be
detected. Moreover, it is important to differentiate between diamondspecific instructions and the actual
quantum algorithm. The actual quantum algorithm is represented in the gatessection, which, as the
name suggests, consists only of quantum gates, as is expected with quantum algorithms as seen in
Section 2.2. Most of the other blocks, such as magnetic biasing or determine rabi frequency
are diamond specific, or not used or not common to other quantum technologies.

The large, colored blocks were used to determine the functionalities of the QISA. Using these func
tionalities, a first draft could be made. The instructions of the QISA were highlevel. Although these
instructions should not be lowlevel, the level of the instructions was a bit too high to be used to con
trol the electronics directly. The instructions were based on the names and functions of the colored
blocks of Figure 3.3, and thus could be decomposed into smaller instructions. In the first draft, the
decomposition was done irregularly and therefore the QISA was inconsistent. This first version of the
QISA, however, proved to be a good starting point for discussions about the overall functionality and
the requirements of the QISA.

3.3.1. Refining of the QISA
The discussions with other work packages led to refinements within the QISA. Through these discus
sions, it was more clear what was expected from the QISA. It also become more clear what the general
idea was. For example, it became clear that, in order to shine a laser pulse on a color center, there
had to be an optical path that is controlled with MEMS optical switches (as also seen in the system
overview, Figure 3.1. These advancements led to choices made that would have instructions be part
of the QISA and of the microarchitecture. Additionally, it became clear that calibration sequences were

26 3. QISA and Microarchitecture

Figure 3.3: The operation flow graph for quantum computing in NVcenters.

3.4. Finalized QISA and microachitecture 27

needed. At first, the magnetic biasing, rabi check and charge resonance check were the only methods
of calibration. Now, measurement, pi rotation and halfpi rotation should also be options for calibration.
Each calibration method is aimed at increasing the fidelity of the operations of the quantum computer.

QISA and microarchitecture
Included in the refinement is that the QISA was split up into two tables: the QISA and the microar
chitecture. The QISA that was developed so far still had instructions that could be decomposed. For
example, the measurement instruction was still called qread, but when looking at the operation flow
chart it consists of multiple steps. These steps could be part of a microarchitecture, defined as the
list of instructions that are of the lowest level before the electronics. These instructions could not be
decomposed and are aimed at controlling the control electronics directly or through a dedicated control
chip 1. Because in the quantum computer stack the QISA and the microarchitecture are direct neigh
bors, they should work together seamlessly. This is why the definition of a QISA and microarchitecture
that work together is important, as it allows the decomposition of highlevel quantum instructions into
smaller technology specific low level assemblylike instructions, often called microcode.

3.4. Finalized QISA and microachitecture
Below in Table 3.1, the finalized QISA is presented. The QISA lists the type, syntax, description and
decomposability for each instruction. The type shows what category the instruction belongs to as it
is a quantum gate or a classical instruction. The actual instruction name and its syntax is given next.
It shows how to use the instruction and what its arguments are. After that, the description of the
instruction is presented. The description gives a short summary about the instruction. Finally, the last
column presents whether the instruction is decomposable or not. If the instruction is decomposable,
it can be split up into multiple smaller instructions. These microcode instructions will be part of the
defined microarchitecture.

In Table 3.2, the microarchitecture can be seen. Just like with the QISA, the type, syntax and
description of the instructions are presented. The instructions have all been verified and checked to
make sure they are not decomposable, therefore the decomopsability is not listed in the table.

More details about the instructions of both the QISA and the microarchitecture can be found in
Appendix A. Larger versions of the QISA and the microarchitecture can be found in Table A.1 and
Table A.2 respectively.

3.4.1. Supported HighLevel Instructions
The combination of the QISA and microarchitecture supports all instructions that are needed to enable
quantum computing in diamond. However, there are some caveats. For example, it is assumed that
most electronic devices, such as the MEMS switches, are controlled by the microarchitecture simply by
writing a value to a register. Another example for this is the magnetic biasing. The microarchitecture
itself is not able to create the current that is needed to change the magnetic field. So instead, it sup
plies the value that is needed to a control chip that connects to a current source that is able to create
the currents that are needed. This will not always be the case, as some hardware could be directly
controlled by the microarchitecture without a dedicated control chip in between. For most electronic
devices however, the assumption that there is a control chip between the microarchitecture and the
actual electronics is valid. Furthermore, it is easier to create the microarchitecture because there are
less instructions needed, to write a value to a register in a control chip, the movecommand suffices. As
per the requirements, the QISA and microarchitecture should have support for all diamond protocols
and functions. The following (diamond specific) instructions and protocols are supported:

• Magnetic Biasing
• Determine Rabi frequency
• Charge Resonance Check
• Initialization of qubits
• Calibration

– measurement
– pi rotation

1For example, it is assumed the MEMS switches have a control chip

28 3. QISA and Microarchitecture

Table 3.1: The QISA for quantum computing in diamond color centers.

Type Syntax Description Decomposable

Qubit Gate
X, Y, Z, S, T qRd Apply a single Quantum gate on qubit qRd, No

CNOT, CZ, CR qRs, nqRd, [<angle>]
Apply a twoqubit Quantum gate with qRs as control and qRd
as destination. Angle is optional and only used for CR and CR𝑘
gates.

No

Qubit Rotation excite_MW <env>, <dur>, <freq>,
<phase>, <amplitude>, qRd

Excite the qubit for time duration <duration>with frequency
<freq>, phase <phase>and <amplitude> on qubit Rd. The value
of these arguments determine the rotation / action of the excita
tion.

No

Qubit Readout measure qRd, Rd

Measure qubit qRs and stores result in Rd. First, excite the
laser on a particular NVcenter. Then, the number of photons are
counted by the control electronics and put into a register. The
microarchitecture then needs to fetch the result from the control
electronics register and store it in a main register.

Yes

Qubit init initialize qRd
Initialize the qubit to state 0 using readout until no photons are
measured. Yes

nop qnop The quantum nooperation. Can be used as a filler operation. No

Entanglement
qentangle qRs, nqRd

Entangle an NVcenter qubit with a nuclear spin qubit. This is a
sequence of gates. Yes

Nventangle qRs, qRd
Entangle an NVcenter qubit with a NVcenter qubit. There are
multiple steps and thus multiple gates. Yes

Nuclear Spin Ops memswap qRs, qRd
Swap the state from the NVcenter to the nuclear spin qubit, func
tioning as memory. Is a sequence of gates. Yes

Biasing and Checks

sweep_bias <value>, dacReg,
<start>, <df>, <fstop>, <memo
ryaddress>

Set the new current value for the biasing on control electronics
register and sweeps microwave whilst storing a frequency/pho
toncount pair for each swept frequency.

Yes

decouple qRd Decouple the qubit according to the XY8 protocol Yes

calculate_bias Rs, Rt, Rd

Calculate the new value for the current in amperes. This opera
tion is purely classical and involves standard instructions to cal
culate the new value and put it in a register. First, it fetches the
data from memory location Rs and old value Rt, then calculates
the new value and puts it in Rd.

Yes

calculate_volt Rs, Rt, Rd

Calculate the new value for the voltage in Volt. This operation
is purely classical and involves standard instructions to calculate
the new value and put it in a register. First, it fetches the data
from memory location Rs and old value Rt, then calculates the
new value and puts it in Rd.

Yes

Calibration
cal_meas qRd Calibrate the qubit readouttime to ensure optimal readout. Yes

cal_pi qRd Calibrate the qubit rotation amplitude for optimal pirotation. Yes

cal_halfpi qRd Calibrate the qubit rotation amplitude for optimal half pirotation. Yes

Timing wait <value> Wait an amount of cycles, No

Standard Instructions

AND/OR/XOR/NOT Rs, Rd
Apply a classical AND/OR/XOR/NOT gate to registers and store
result. No

ADD(i)/SUB(i) Rs, Rt, Rd Add or subtract two registers and store the result. No

MUL/DIV Rs, Rt, Rd Multiply or divide two registers and store the result. No

MOV Rs, Rd Move the contents of a register to another register. No

LD(i)/ST(i) Rs, Rd Load from memory to register or Store from register to memory. No

BR <comp>, <address> Jump if the comparisons statement is true. No

jump <address> Jump unconditionally. No

– half pi rotation
• Application of gates on qubit according to cQASM 1.0 specifications

– Standard gates: X, Y, Z, S(†), T(†)
– 90 degree rotations: +/ x90, +/ y90
– Twoqubit gates: CNOT, CZ, SWAP
– Toffoligate through decompositions
– Custom rotations: CR and CR𝑘
– Full userspecific gates using excite_MW
– Binarycontrolled gates

• Readout and storage of quantum states

3.4.2. Example of decomposition
In this section, an example the decompositions will be given. The first two instructions can be seen
in Figure 3.5, where measurement is seen in part a and initialize in part b. Note that the two
instructions look a lot like each other. This is because initialize is based on measurements. As

3.4. Finalized QISA and microachitecture 29

Table 3.2: The microarchitecture for quantum computing in diamond color centers.

Type Syntax Description

Quantum Operation

qgate <type>, qRd
Apply a single Quantum gate. <type>defines which gate (X, Y, Z, H, I, S (=
pi/2), T (= pi/2)). qRd is the target qubit.

qgate2 <type>, qRs, nqRd, [<angle>]
Apply a twoqubit Quantum gate. <type>defines which gate (CNOT, CZ).
qRs is the source qubit and qRd is the target qubit. The angle argument is
optional and only used for CR and CR𝑘 gates.

excite_MW <env>, <dur>, <freq>, <phase>,
<amplitude>, qRd

Excite the qubit for time duration <duration>with frequency <freq>, phase
<phase>and <amplitude> on qubit Rd. The value of these arguments de
termine the rotation / action of the excitation.

qnop Apply a quantum nooperation. Can be used as a filler operation.

Timing wait <cycles> Wait an amount of <cycles>.

Support
switchOn <address>, [<duration>]

Switch the optical switch with address <address>to the ”on” position (op
tional: for time <duration>).

switchOff <address> Switch the optical switch with address <address>to the ”off” position.

Standard Instructions

AND/OR/XOR/NOT Rs, Rd
Apply a classical AND/OR/XOR gate to registers Rs and Rd, storing the
result in Rd.

ADD(i)/SUB(i) Rs, Rt, Rd
Add or subtract two registers Rs and Rt (or values when using immediate),
storing the result in Rd.

MUL/DIV Rs, Rt, Rd Multiply or divide two registers Rs*Rt or Rs/Rt and store the result in Rd.

MOV Rs, Rd Move the contents of register Rs to Rd.

LD/ST Rs/Rd, Rt Load from memory to register or Store from register to memory.

BR <comparison>, <offset>/Rd
Jump to <offset>is the <comparison>is true. If the offset is a register, store
the comparison result in that register.

jump <address> Jump to <address>.

LDi <value>, Rd Load immediate value <value>in register Rd.

one would expect with decompositions, the single QISA instruction is decomposed into a set of smaller
instructions. In the case of measurement and initalization, a single instruction can be realized by de
composing it into 6 (or 7, for initialize) instructions. The smaller instructions are always part of the
microarchitecture defined earlier in this chapter. The remaining instructions that are decomposable are
discussed later in this section, and the microcode for each decomposition can be found in Appendix B.

measurement
The measurement instruction uses two input arguments. The first is the qubit to be measured and the
second is the place where the result of the measurement needs to be stored. These arguments are
taken into the decomposition. It can be seen that the optical path is switched on for qubit q1 as required
by the QISA instruction. Following this instruction, the counter for the number of photons has to be
reset to zero. This is to ensure that only the photons emitted during the duration are measured. Then,
the laser is enabled with its parameters (envelope, duration, frequency and phase) on the requested
qubit. The photondetectors count the number of photons automatically and stores it in the photonReg
register, which is read by the microarchitecture by using the movcommand. Mov moves the contents
of a classical register to another classical register. Then, the optical path is closed. The number of
counted photons is then compared to a predefined threshold, which is stored in R33. Depending if the
number of counter photons is lower or higher than the threshold, the result register is set to either ‘0’
or ‘1’.

initialize
The initialize instruction works largely the same as measurement, but instead of comparing with
a set threshold, it compares with ‘0’. If the amount of detected photons is higher than 0, it means the
quantum state is not in |0⟩. The process needs to be repeated until 0 photons are detected.

qentangle
With qentangle, the electron qubit is entangled with a nuclear spin qubit. This happens according to a
set protocol, found in [32, Fig. 4]. After the decomposition, the user needs to measure the electron qubit
and depending on the result, a halfpi y rotation is acted out on another electron qubit. The protocol
itself consists of three gates that are executed sequentially: 1) x90 gate on electron, 2) +x90 gate
with electron as control and nuclear spin qubit as target and 3) a +90x gate on the electron.

30 3. QISA and Microarchitecture

NVentangle
NVentangle, as the name suggests, entangles two color centers. In this case, the color centers are
NVcenters. This means that if other color centers are to be used, such as SnVcenters, then the
protocol showed here might not work. Additionally, the Fujitsu project might use a different scheme
nonetheless 2 For now, the decomposition is based on a protocol using the method from Barrett and
Kok [33]. The protocol from [33] has four steps: 1) apply a pipulse to both NVcenters, 2) wait t_wait
for photon detection, 3) wait t_relax to relax the qubit cavity system and 4) X rotation for both qubits
and repeat step one, two and three. If ’0’ or ’2’ photons have been detected, entanglement has failed.
Else, heralded entanglement has been achieved.

Translating this protocol to microcode means that an optical path has to be created for both qubits,
then the laser has to be enabled and then the system has to wait for a moment to detect photons. After
the wait time is over, we can switch off the optical path and copy values from the photondetectors to
general purpose registers. After the first round, it has to be made sure that the xgate is applied on both
qubits and the steps are repeated. This is done using a combination of quantum gates and classical
branch instructions.

memswap
This instruction swaps the quantum state of the electron qubit with the state of a nuclear spin qubit
inside the same color center. This protocol has also been taken from [32, Fig. 4]. The protocol consists
of a sequence of four quantum gates: 1) +y90 with electron as control and nuclear qubit as target,
2) x90 on electron, 3) +x90 with electron as control and nuclear qubit as target and 4) y90 on the
electron.

sweep_bias
When the user wants to sweep a laser with varying frequency over a qubit, sweep_bias is used. The
instruction stores the frequencyphotoncount pair and using that information, the optimal biasing current
can be calculated. The function is to be used together with calculate_bias to perform magnetic biasing
on the color center. First, a starting value for the biasing has to be set together with a start frequency,
a step frequency and a stop frequency. The memory address, to where to store, also has to be set.
Subsequently, there is a series of load immediate instructions taking care of this setup first. Then a
loop will be started, that excites the color center with a laser, counts the number of photons, stores the
frequencyphotoncount pair and increments the frequency by the step frequency. This is repeated until
the stop frequency has been reached, which is checked by a branch instruction.

decouple
Periodically, the color center electron needs to be decoupled because it is influenced from natural oc
currences such as magnetic and electric fields and nuclear spins. The decoupling ’resets’ the electron
spin, so it can retain its state longer. For the Fujitsu project, XY8decoupling is used and that is what
the decouple instruction implements. XY8decoupling consists of a series of 8 rotations around x and
y, as shown in Figure 3.4.

Figure 3.4: XY8decoupling protocol.

calculate_bias
This instruction is used to calculate the new value for magnetic biasing. However, since there is no
information yet about how to calculate the new value based on the old value and the stored frequency
photoncount pairs, the decomposition of this instruction into classical instructions is not done yet.

2At the time of writing, the desired entanglement protocol was not yet known.

3.5. Conclusion 31

(a) (b)

Figure 3.5: Examples of decomposition using the measurement (a) and initialize (b) instructions.

calculate_voltage
This instruction is the same as calculate_bias, but instead it calculates a new value for electrical biasing.
Because the calculation of this value is different than for calculate_bias, a different function had to be
introduced. Again, the calculation itself is unknown, so the decomposition is not done yet.

cal_meas
The system needs to be calibrated periodically, and one of the things that needs calibration is mea
surement. The time period that the laser excites the color center can be optimized, gaining maximum
readout fidelity. The protocol consists of six steps: 1) prepare the qubit in |0⟩, 2) laser on for 40us
and count the emitted photons while timestamping them, creating a photontime pair. Next, in step 3)
the qubit is prepared in |1⟩, 4) repeat step 2, 5) repeat the preferred amount of times and 6) calculate
the new readout time, which is the point with the highers amount of emitted photons. The calculation
process is a classical process which has not been elaborated on because that is out of the scope of
this thesis.

cal_pi
Rotation with a angle of pi also has to be calibrated for maximum fidelity. Contrary to the measurement
calibration, this protocol calibrates the amplitude of the laser signal. This protocol has four steps: 1)
prepare the qubit in |0⟩, 2) perform 11pi pulses with the same amplitude, 3) measure the fidelity and
4) change the amplitude and repeat.

cal_halfpi
Rotation with a angle of pi/2 also has to be calibrated. This is done differently compared to a pi rotation,
as there are now 5 rotations with pi/2 instead of 11, followed by a reset and 5 rotations of 3pi/2. This
creates two curves, one going up and one going down, making the shape of an X. The crossing of the
curves is the optimal point and the amplitude can be determined accordingly.

It can be a tedious process to manually translate the QISA instructions to microcode. Because of this,
a tool is developed that autotranslates QISAcode to microcode. The tool is described in Chapter 4.

3.5. Conclusion
In this chapter, we defined the microarchitecture for diamond quantum computing. We listed the re
quirements the microarchitecture should have in Section 3.1, where it was determined that it should
support all diamondspecific protocols and instructions. Moreover, it should support all cQASM 1.0 in
structions as found on the knowledge base of [6]. In Section 3.2, we saw the overall system where the
microarchitecture will be part of. The system architecture was introduced to give a better view of the job
of the microarchitecture, as well as to give a better overview of the entire project. Next, we introduced

32 3. QISA and Microarchitecture

the Quantum Instruction Set Architecture (QISA) and the microarchitecture in Section 3.3. We saw
that the first draft was created with the help of information obtained from the literature research and
information about the required diamondspecific instructions and operations. We also saw that some
instructions were decomposable. This resulted in a separation between the QISA and the microarchi
tecture, where the instructions of the microarchitecture are of the lowest level before entering control
electronics. The result of the development was shown in Section 3.4, where the QISA and correspond
ing microarchitecture were presented. We went over the supported highlevel instructions as well as
an example of a decomposition.

4
Tool

This chapter will discuss the development of the compiler tool that translates a quantum algorithm to
microcode (diamond quantum computer assembly). The compiler is made within the OpenQL plat
form, which was briefly discussed in Section 2.6. The chapter will begin with a recap of OpenQL in
Section 4.1. Subsequently in Section 4.2, the design process will be laid out. Each step of the design
process will be elaborated on. After that, a brief example on how to use OpenQL and the compiler pass
is presented in Section 4.3. The chapter ends with a conclusion on the design of the tool. The tool can
be found on GitHub [34].

4.1. OpenQL
OpenQL is QuTech’s solution to quantum computer code compilation. It is a framework for highlevel
quantum programming in C++/Python, but also accepts cQASM files as input [30]. The focus lies on
compiling down to assembly code for different quantum computing platforms, such as QuTech’s Central
Controller. OpenQL is publicly available under the Apache 2.0 license [34].

OpenQL takes two inputs. The first input is the algorithm, either written in the C++ API, the Python
API or in a cQASM file. When using a cQASM file, the file has to be loaded in using the Python API.
The second input is the platform configuration file that tells OpenQL what the target hardware looks
like. It conveys the available gates, the available devices and more. Much more information about how
OpenQL works and its concepts can be read at [30, /manual/concepts].

4.2. Compiler Design
In the list below, the workflow of the creation of the compiler is seen. Each step is elaborated into detail.

1. Identify requirements of the compiler.
2. Add the Diamond backend to OpenQL.
3. Add and design the microcode translator pass to OpenQL.
4. Test the compiler with commands.
5. Test the compiler with a quantum algorithm.

4.2.1. Compiler Requirements
The first step of the compiler design is to determine the requirements and goals of the compiler. The
main goal of the compiler is to translate a highlevel quantum algorithm to microcode. The microcode
instructions are found in the microarchitecture table. Preferably, the compiler is more than a translator.
It should also, to some extent, schedule operations, although this is typically done in the runtime part
that is present in the same layer. Within OpenQL, several passes are already available that do map
ping, scheduling and Clifford optimization [30]. From the goal, a number of requirements follow. The
requirements of the compiler are found in the following list:

1. Translate highlevel quantum algorithms to diamond microcode

33

34 4. Tool

This is the main function of the microcode compiler.

2. Support for all instructions defined in the QISA/microarchitecture

Without support for all instructions defined in the QISA/microarchitecture, the compiler does not
fully support the microarchitecture and therefore would not be complete.

3. Support all diamondspecific protocols/sequences such as, but not limited to:
(a) Magnetic Biasing
(b) Rabi Frequency Determination
(c) Charge Resonance Check
(d) Calibration of measurement, pi and pi/2 rotation
The full list is already shown for the microachitecture in Subsection 3.4.1. These protocols/se
quences are needed for the correct functionality of the color center qubit.

4. To some extent, schedule necessary diamondspecific operations automatically

Instruction scheduling is important in the compiler. Without some form of scheduling, the compiler
is nothing more than a simple translator. With the addition of scheduling, the compiler has more
functionalities and will therefore be more complete.

The work on the compiler starts with installing OpenQL. Because contributions to OpenQL are going
to be made, the framework has to be built from source. Every time a change is made to the source
code, the program has to be build again. Instructions on how to build from source are documented in
[30]. The system on which the compiler was developed is Ubuntu 20.04.2 LTS. The operating system
was a virtual machine using VMWare Workstation 16 Player with Windows 10 as the host system. The
compiler was programmed using CLion, a cross platform IDE.

4.2.2. Diamond backend in OpenQL
The first thing that was done, is creating a new backend and add it to OpenQL. A backend can be seen
as a target system for which OpenQL compiles for. CClight and CC are examples of backend. We
create and add a new backend by creating a new folder in /src/ql/ called Diamond. In here, a new
file, called info.cc is made that serves as the information file about the new backend. It includes
the standard platform configuration file, hwconf_default.json, that also has to be made inside
/src/ql/diamond/resources/. Inside info.cc, some settings are defined, such as the name of
the backend, the namespace which the backend falls under, and what passes are used in the backend.
Note that the same diamond folder also has to be made in /include/arch/ with inside the header
file for info.cc, info.h. Besides these changes, the backend also needs to be registered to the
system. This is done by adding the backend to the backend list in /src/ql/arch/factory.cc.
Important is to not forget to add the new files to CMakeLists.txt.

Now, the newly made (but empty) backend should be present within OpenQL. However, because
there is no pass added to the backend, there is no functionality.

4.2.3. Microcode Translator Pass
To ensure that the backend is functional, a pass has to be added. Usually, a pass is added in /ql/
pass/, but because the diamond microcode translator pass is backendspecific, the pass should be
added in /ql/arch/diamond/pass/. Additionally, because the pass is a generator, it should be
placed in a folder called gen.

After the pass has been configured, including the main functions that dumps documents, the gen
eration of the friendly name (human readable name) and the constructor for the pass, the pass has to
be added to the diamond backend. At the end of info.cc, found in the src/.../diamond folder,
the user should add:

manager.append_pass(”arch.diamond.gen.Microcode”, ”diamond_codegen”);

in the populate_backend_passes function to add the pass to the diamond backend. Now, it is time
to fill in the pass with the functionality that is desired.

4.2. Compiler Design 35

1 for (const ir::KernelRef &kernel : program>kernels) {
2 for (const ir::GateRef &gate : kernel>gates) {
3 const auto &data = program>platform>find_instruction(gate>name);
4

5 outfile << ”# ” << gate>qasm() << ”\n”;
6

7 // Determine gate type.
8 utils::Str type = ”unknown”;
9 auto iterator = data.find(”diamond_type”);
10 if (iterator != data.end() && iterator>is_string()) {
11 type = iterator>get<utils::Str>();
12 }
13

14 if (type == ”qgate”) {
15 // print code to outfile
16 } else if (type == ”qgate2” {
17 // print code to outfile
18 } else {
19 if (gate>name == ”measure”) {
20 // Code for measurement
21 } else if (gate>name == ”initialize”) {
22 // Code for initialization
23 }
24 }
25 }
26 }

Listing 1: The idea of the microcode pass.

The main idea of the pass was to have it be an enormous switchcase statement, that checks the
name of a gate, and based on the name of the gate writes something to the microcode file, or output
file. While this idea is nonsophisticated, it can provide for all the functionality that is desired in the early
stages of the compiler.

Under the runfunction, the code for the pass behavior can be written. First and foremost, it should
be clear to what file any output should be written. After that has been done, a nested forloop has to
be made that makes it possible to loop through every gate, as shown in lines 12 of Listing 1.

It can also be seen that the type of gate is determined. This is useful for grouping gates. For
example, when using a standard quantum gate such as X, Y, Z, S and T, the output of the microcode is
qgate <gatename>, qubit. This has the same output form for every standard gate, and thus can
be standardized by giving a type to the instruction. This also holds for 2qubit gates, as indicated in the
listing. Gates can be brought under a type by defining that in the platform configuration file like this:

1 ”x”: {
2 ”duration”: 40,
3 ”diamond_type”: ”qgate”
4 },

Using this method, custom rotations around an axis (rx, ry and rz gates) can also be categorized under
a type to make the code more readable.

Next, all other gates defined in the QISA can be added to the ifelse statement as shown in lines
1923, Listing 1.

As an example, the measurement instruction can be looked into further, see Listing 2. It can be
seen that the function is explained in comments, followed by a set of operations. Each operation is
written to the outfile with the use of the «operator. Note that operations begin with detail::. This
is because the functions for a operation, for example switchOn, are defined in separate files, /sr
c/arch/diamond/pass/gen/detail/function.c and its header file that is found in the same
path.

The measure instruction takes two arguments, of which one is inherent to the first. In OpenQL’s
Python API, measurement is called by using kernel.gate(’measure’, [0]). The argument
between [] is the qubit which needs to be measured. Inherently, this result is stored into a bit register
called breg[x], where x is the same number as the qubit number. The measurement operation has

36 4. Tool

the same behavior, where the qubit number is taken (gate>operands[0]) and used in the functions
to always print the correct number when needed.

1 if (gate>name == ”measure”) {
2 // Measures a qubit and stores the result in ResultRegQ,
3 // where Q is the qubit number. Also stores the result in
4 // breg[Q], as per OpenQL standard.
5 Str qubit_number = to_string(gate>operands[0]);
6 const Str threshold = ”33”;
7

8 outfile << detail::switchOn(gate>operands[0]) << ”\n”;
9 outfile << detail::loadimm(”0”, ”photonReg”, qubit_number) << ”\n”;
10 outfile << detail::excite_mw(”1”, ”100”, ”200”, ”0”, gate>operands[0]) << ”\n”;
11 outfile << detail::mov(”photonReg”, qubit_number, ”R”, qubit_number) << ”\n”;
12 outfile << detail::switchOff(gate>operands[0]) << ”\n”;
13 outfile << detail::branch(”R”, qubit_number, ”<”, ”R”, threshold,
14 ”ResultReg”, qubit_number) << ”\n”;
15 }

Listing 2: Example of the measurement instruction in the microcode pass.

Instructions with multiple parameters
Some instructions, such as excite_mw, take more arguments than the qubit number. OpenQL does
not directly support this, but one of the maintainers, Jeroen van Straten, suggested annotations could
be used. How these annotations work is “c++ magic”, according to Jeroen and subsequently will not
be further discussed in this thesis. However, might the successor working on this compiler need to add
more annotations, the process is described for the excite_mw instruction.

First and foremost, an annotations file should be included in the project. A new file, annota
tions.h, has been made, which is found in /include/.../diamond/. In this file, a struct is made,
as seen in Listing 3. It can be seen that the additional parameters for the instruction are defined in
this struct. Next, the instruction should be added to the kernel of OpenQL. In api/kernel.h, the
instruction is defined as a function:

void diamond_excite_mw(size_t envelope, size_t duration, size_t frequency, size_t phase,
size_t qubit);

1 /** \file
2 * Defines annotations about the diamond architecture.
3 */
4

5 #pragma once
6

7 #include ”ql/utils/num.h”
8

9 namespace ql {
10 namespace arch {
11 namespace diamond {
12 namespace annotations {
13

14 struct ExciteMicrowaveParameters {
15 utils::UInt envelope;
16 utils::UInt duration;
17 utils::UInt frequency;
18 utils::UInt phase;
19 };

Listing 3: An example of annotation setup.

This function is then filled in kernel.cc, as seen in Listing 4. Note that the name of the function
has the prefix diamond_. This is to distinguish the instruction as diamondspecific.

The final step is to add the function to the documentation. This is done in kernel.i. Please keep
in mind that unless the structure is the exact same as the other instructions (white rules etc), errors will
come up when compiling. The code for the excite_mw instruction is seen in Listing 5.

4.2. Compiler Design 37

1 /**
2 * Appends the diamond excite_mw instruction.
3 */
4 void Kernel::diamond_excite_mw(size_t envelope, size_t duration, size_t frequency,
5 size_t phase, size_t qubit) {
6

7 kernel>gate(”excite_mw”, qubit);
8 kernel>gates.back()>set_annotation<ql::arch::diamond::annotations::
9 ExciteMicrowaveParameters>({envelope, duration, frequency, phase});
10 }

Listing 4: Function definition for annotation setup.

1 %feature(”docstring”) ql::api::Kernel::diamond_excite_mw
2 ”””
3 Appends the diamond \”excite_mw\” instruction.
4

5 Parameters
6
7 envelope : int
8 The envelope of the microwave.
9

10 duration : int
11 The duration of the microwave in nanoseconds.
12

13 frequency : int
14 The frequency of the microwave in kilohertz.
15

16 phase: int
17 The phase of the microwave.
18

19 qubit: int
20 The target qubit index.
21

22 Returns
23
24 None
25 ”””

Listing 5: An example of annotation documentation setup.

The final step is to ‘get’ the annotations. This is done inside the code for a particular gate after the
name of the gate has been determined. This is done using the following line:

const auto ¶ms = gate>get_annotation<annotations::ExciteMicrowaveParameters>();

The annotations, or set values or the envelope, duration and other defined parameters are stored in
params and accessed using params.envelope (and similar for others). Now, the gate can be called
from the Python API using kernel.diamond_exite_mw(1, 100, 200, 0, 0). Unfortunately,
due to the nature of OpenQL’s internal representation, it is not possible to call annotated gates from
cQASM. This limits the usability of cQASM as the input for algorithms.

Scheduling of Instructions
The compiler has to be smart. Now, all functionality is aimed at directly converting operations, gates,
and diamondspecific sequences to microcode. However, some of this can be performed automatically.
For example, from Figure 3.3, it can be seen that every time an algorithm is executed on the diamond
quantum computer, there are magnetic biasing checks.

This can be automated by copying the OpenQL kernel to a temporary kernel, adding gates in front,
and copying the temporary kernel back to the original kernel. This is precisely what is done, as can be
seen in Listing 6.

From line 13 onwards, the functions that need to be put in front of the normal algorithm gates are
added. For operations that need annotations (such as magnetic biasing’s sweep_bias instruction),
these annotations can be set using kernel.gates.back()>set_annotation<struct>();

38 4. Tool

1 // for each kernel
2 for (const auto &kernel : program>kernels) {
3

4 // copy the kernel and put it into a temp kernel
5 ir::Kernel temp_kernel(
6 ”dummy”,
7 program>platform,
8 kernel>qubit_count,
9 kernel>creg_count,
10 kernel>breg_count
11);
12

13 // for each qubit, do magnetic biasing
14 // for each qubit...
15

16 // Copy the gates to the original kernel and set the cycles_valid flag to false
17 // because the cycle count is not accurate anymore.
18 kernel>gates = std::move(temp_kernel.gates);
19 kernel>cycles_valid = false;
20 }

Listing 6: The microcode scheduler.

Apart from the operations that are scheduled before the algorithm gates, there are some operations
that go in between these gates. The Charge Resonance Check (CRC) is done for every qubit every 10
gates because this is needed in the diamond architecture to maintain correct functionality of the qubits.
Additionally, the compiler also keeps track of labels. This is done by using a global variable that gets
incremented each time a label is made.

Conditional Gates
Because cQASM 1.0 also supports conditional gates, the principle of conditional gates has also been
added to the microcode pass. OpenQL also has support for conditional gates, so that functionality was
used in the pass. When using a conditional gate, it gets translated tomicrocode using three instructions:
1) a branch instruction that jumps to a label if the condition is fulfilled, 2) the gate and 3) the label. If
the condition is fulfilled, the gate gets skipped. Note that this branch condition has to be the opposite
of the actual condition because of the structure.

If a conditional gate is used, then the branch is put automatically before the gate. At the end, if the
branch is put before the gate, a label is automatically added. This way, all gates can be conditional like
per cQASM specifications [6, Knowledge Base>binary controlled gates].

4.3. Using the Compiler
In this section, a brief introduction to the usage of OpenQL and the diamond backend including the
microcode pass will be given. For all supported functions and gates, and how to use them, please refer
to Appendix C. An example file with all possible gates can be found in OpenQLexamplesdiamond.

First and foremost, when OpenQL is installed, it can be called from any Python script as long as
OpenQL is imported (import openql as ql for example). How this Python API works is written
in the documentation, [30], but a brief example is being shown in Listing 7. It can be seen that in
this example, the cQASM reader is used before the microcode pass. This ensures that the algorithm,
written in cqasm_test.cq, gets loaded into OpenQL and gets translated to the IR of OpenQL, which
serves as the input for the microcode pass. All gates that are added to the kernel (in this case, the X
gate on qubit 0 and the diamond_excite_mwoperation) are deleted if the cQASM pass is put before
the microcode pass. This is intended behavior by the cQASM reader pass.

When not using the cQASM reader pass, the user has to put the algorithm in the Python API.
Two examples of this are given in lines 13 and 14 of Listing 7. The two methods have advantages
and disadvantages. The cQASMmethod is easy to use and provides organized files. In addition, the
cQASM files can be used in simulators such as QX [35]. However, it does not support all the instructions
of the diamondQISA. Custom instructions, such as the diamond_excite_mwinstruction, that also has
annotations, are not supported through cQASM because they are not supported (yet) by OpenQL. The
Python API, whilst not that user friendly, does support these instructions. In the future, the OpenQL

4.4. Conclusion 39

1 import openql as ql
2

3 ql.set_option('prescheduler', 'no')
4 # Specify the platform
5 platform = ql.Platform(”diamond_test”, ”diamond”)
6

7 # Put a cQASM reader before the diamond pass
8 platform.get_compiler().prefix_pass('io.cqasm.Read', '', {'cqasm_file': 'cqasm_test.cq',
9 'gateset_file': 'gateset.json'})
10

11 nqubits = 1^^I
12 p = ql.Program(”testProgram”, platform, nqubits)
13 k = ql.Kernel(”testKernel”, platform, nqubits)
14

15 k.gate('x', [0])
16 k.diamond_excite_mw(0, 100, 200, 0, 0)
17

18 p.add_kernel(k)
19 p.compile()

Listing 7: Example Code of using the diamond backend in OpenQL.

kernel and/or IR may be updated to support annotations and the custom instructions with cQASM.
Once the algorithm is put into cQASM or into the Python API, OpenQL can be executed by running the
Python script. For Ubuntu, that is done with pyhton3 <filename>.py. Note that in addition to the
cQASM file, a gateset file also has to be included. This gateset file acts as the library that OpenQL
uses to translate between cQASM and the OpenQL IR.

4.4. Conclusion
In this chapter, we discussed the design of the compiler. First, a brief recap about OpenQl was given
in Section 4.1. We determined that OpenQL takes two inputs: the algorithm and the platform config
uration file. Then, in Section 4.2, the design of the compiler was discussed. We learned the design
methodology of the compiler and the requirements of the compiler. Using this information, we have
seen how to create and add a backend to OpenQL. In addition, we have seen how to create and add a
pass to OpenQL. The pass that was added to OpenQL is our microcode translator pass, which sched
ules the gates and operations of the algorithm and prints the output microcode to an outfile. We have
seen the different design aspects of the pass, such as custom instructions with multiple operands and
conditional gates. Finally, in Section 4.3, we made comments on how to use the compiler and how to
use OpenQL.

5
Verification

In this chapter, the verification of the microarchitecture and the compiler tool is discussed. The re
quirements that were listed in Chapter 3 and Chapter 4 will be repeated and a brief discussion will be
presented per requirement whether the design fails or passes the requirement and why.

5.1. QISA and microarchitecture
When designing the microarchitecture, several requirements were given, as seen in Section 3.1. In
this section, the QISA and microarchitecture is tested on these requirements. For reference, the re
quirements for the microarchitecture are:

1. Deterministic and precise control of the control electronics.
2. Classical instructions for flow control.
3. Basic quantum gate instructions (X, Y, Z, S and T).
4. Additional gate instructions according to cQASM1.0, as found on the knowledge base of Quantum

Inspire [6].
5. Support for diamond specific protocols and instructions.

5.1.1. Deterministic and precise control of the control electronics
Deterministic and precise control of control electronics plays a key part in the microarchitecture. As
stated previously the quantum computer cannot function properly and reliably without a microarchitec
ture. If an operation is too late, too long, too short or not up to specifications, then the intended rotation
ends up being another unwanted rotation.

There is a distinction between the contents of a signal and when the signal is sent. Regarding when
the signal is sent: the microarchitecture that was designed works sequentially. That is, every instruction
gets executed one for one using only one thread. This means that timing information is not sent with
the instruction but instead wait statements have to be added between the instructions to comply with
correct scheduling. If instructions 1 to 20 have taken 200ns, and instruction 21 has to be executed at t =
250ns, then the system would have to wait the appropriate amount of cycles using the waitinstruction
before being able to execute instruction 21 at the right time. This gets increasingly complex as, for
example, the excite_mw instruction has a durationparameter.

Concerning the content of the signals, the signal itself (Xgate, Ygate, Rxgate, switchOn etc) does
not correlate to the moment the signal has to be send to the lower layer. This means that the signal
should always be the correct signal, regardless of the timing of the signal. If an Xgate needs to be
executed, it will always be an Xgate. Keep in mind that if the Xgate, for example, is sent to the qubit
later than planned, the rotation of the qubit at the end of the algorithm may not be what is expected,
because of the natural decoherence of the qubit.

5.1.2. Classical instructions for flow control
Besides flow control, classical instructions are also needed to perform other functions, such as calcu
lations. With the possibility for branch instructions, jumps and label definitions, flow control has been

40

https://www.quantum-inspire.com/
https://www.quantum-inspire.com/

5.1. QISA and microarchitecture 41

Table 5.1: The comparison between cQASM 1.0 instructions and the diamond microarchitecture.
!: full support,%: no support,A: partial support 1.

prep_z prep_y prep_x X Y Z H I Rx Ry Rz 90deg rot S
cQASM ! ! ! ! ! ! ! ! ! ! ! ! !

Diamond MA ! A A ! ! ! ! ! ! ! ! ! !

Sdag T Tdag CNOT CZ SWAP Toffoli CR CR𝑘 Measure_z Measure_y Measure_x Measure_all
cQASM ! ! ! ! ! ! ! ! ! ! ! ! !

Diamond MA ! ! ! ! ! ! A ! ! ! A A %

adequately established. For calculations, such as (re)calculating the value for magnetic biasing, the
microarchitecture supports various classical instructions that support the calculations. For example,
arithmetic instructions such as adding, subtracting, multiplying and dividing are present. But also bi
nary operations are present, such as AND and OR. In addition, loading and storing of data is included,
as is moving/copying of data. As a result, the classical instructions supported by the microarchitecture
should be sufficient to act out calculations and flow control.

5.1.3. Basic quantum gate instructions (X, Y, Z, S and T)
The microarchitecture supports the basic single qubit quantum gate instructions X, Y, Z, S, Sdag, T,
Tdag, Hadamard (H), +/X90, +/Y90 and twoqubit gate instructions Besides that, the basic quantum
instructions that cannot be executed by the standard gate operations (or for microISA, qgate and
qgate2) are able to be executed using the excite_mwinstruction when using the right parameter
values.

5.1.4. cQASM Gateset
In order to verify whether the microarchitecture features the full cQASM gateset, a table has been made
to verify this. The comparison is found in Table 5.1. It can be seen that most of the instructions are
supported fully, but some instructions are not fully supported. For measurement in y and in x, the qubit
first needs to be rotated into those axis before a normal measurement or preparation can be done. For
preparation, the rotation happens after initialization. The toffoli gate is not natively supported on the
diamond architecture, and therefore also not on the diamond microarchitecture. However, it can be de
composed into single and two qubit gates that are available, making the toffoli gate partially supported.
Finally, if the user wants to measure all qubits, then all qubits should be measured sequentially.

5.1.5. Diamond specific protocols and instructions
To aid the verification process, a list of the diamond specific instructions and protocols can be seen
below. For reference, Figure 3.3 is used to determine the needed protocols. Note that, whilst some
instructions that are included by cQASM, such as measurement instructions, are handled differently
by the diamond architecture than another qubit architecture, they are not labeled as diamond specific.
Diamond specific instructions are solely the instructions that are not used in other architectures.

• Magnetic Biasing
• Determination of Rabi Frequency
• Charge Resonance Check
• Calibration

– Readout
– Pi rotation
– Pi/2 rotation

• Enabling the optical path
• Pulse picking
• Read out photondetectors

– PSB
– ZPL

• Dynamical Decoupling
1Partial support means the instruction is supported through decomposition or a sequence of other instructions.

42 5. Verification

Magnetic Biasing
For magnetic biasing, the microarchitecture needs to be able to sweep a laser frequency over a qubit
with a set value for the magnetic biasing. Then, depending on the measurements result which is a
combination of number of detected photons and current frequency, a new value can be calculated for
the magnetic biasing. The microarchitecture features this functionality in sweep_bias and calcu
late_bias. Therefore, magnetic biasing is supported.

Determination of Rabi Frequency
As can be seen in the flow graph, determination of the rabi frequency is complex. It is an exhaustive
protocol, but can be realized very well within the microarchitecture. In Subsection 5.1.4, it is seen that
initialization and readout is supported, as well as custom excitation of a color center using excite_mw.
The outer loop of the protocol can be realized with the classical instructions loading, storing and flow
control. Therefore, the determination of the rabi frequency is supported.

Charge Resonance Check
The CRC, is used to check if the color center is in the right charge state. If not, then the center needs
to be charge pumped and the electric field has to be changed to verify if the center is still calibrated to
the laser. Charging the color center is done by enabling the charge pump laser for a short amount of
time. The electrical biasing is done similarly to magnetic biasing. The microarchitecture is able to do
both, therefore is capable of performing a CRC.

Calibration
Calibration comes in threefold. The readoutoperation has to be calibrated, as well as pirotation and
pi/2 rotation pulses. These operations are not listed in the flow graph of Figure 3.3, but are still important
to be able to perform.

Readout calibration is done by reading out the color center for 40us, and counting photons whilst
timestamping the photon measurement. This is done both for |0⟩ and |1⟩. It is then repeated and the
readout time is set at the highest point of the mean curve (fidelity vs readout time). These operations
are fully supported by the microarchitecture as it is possible to excite the color center, detect photons,
store and load data, make loops and perform calculations.

Pipulse calibration is done similarly to readout calibration, but instead of measuring versus readout
time, the fidelity of |0⟩ is measured versus MW amplitude. First, 11 MW Xrotations are executed,
resulting in an endstate of |1⟩. Then, the state ismeasured and the fidelity/amplitude pair is stored. This
is repeated a number of times, depending on what is required by the user, with a changing amplitude.
After that, the lowest point of the curve (lowest fidelity 𝐹(|0⟩)) is determined and the corresponding
amplitude is set for pipulse. These are all basic operations that are supported by the microarchitecture.
However, the microarchitecture does not support direct extraction of fidelity. This does not mean that
it is not possible to execute the calibration. To get the fidelity, the rotation and measurement has to be
repeated multiple times (under the same conditions) and then the fidelity can be calculated classically
using the measurement data.

Pi/2 pulse calibration is, again, similar to pipulse calibration. However, now the experiment is done
with 5 pi/2 pulses and then 5 pi/2 pulses followed by a pipulse. This creates a graph in the shape
of a X, where one line is the first experiment and the other line the second. The point at which the
lines intersect is found at the desired pi/2 amplitude. Again, this calibration protocol is supported by
the microarchitecture.

Optical Path
Optical path switching is important as it allows the laser to reach the color center when desired. It is
easier to control MEMS optical switches per color center than to control the laser itself. Therefore,
as also seen in Figure 3.1, there are three MEMS switches per color center. These switches can be
controlled using switchOn and switchOff respectively, where both take a argument with the address
of the switch.

Pulse Picking
Pulse picking is extremely important for creating entanglement between color centers. At the time
of writing, it is not clear yet what entanglement protocol is going to be used in the project, but there

5.2. Compiler Tool 43

is an idea, as can be seen in Figure 3.2. The idea is that pulses are ’picked’ by two color centers’
variable optical attenuator, ensuring that the two centers are excited by the same laser pulse at the
exact same time, creating entanglement when reading out the ZPL photondetector. This means that the
microarchitecture should at least be able to control the attenuators. This is abstracted to reading/writing
a value from/to a register of the attenuator, meaning the microarchitecture can pick pulses.

Photondetectors
The photondetectors play a major part in the diamond architecture. Without it, a lot of operations are
not possible. There is a distinction between two types of photondetectors PSB and ZPL. PSB is mainly
used for measurement operations (including initialization). ZPL is used for creating heralded entangle
ment between two color centers. Just like with the attenuator, it is expected that the photondetectors
have their own controller and therefore the microarchitecture only has to read and write to and from a
register on the controller, done typically with the MOVinstruction.

Dynamic Decoupling
The qubits need to be decoupled dynamically to preserve the state. This is supported through the
decoupleinstruction. This instruction works in both the Python API as in cQASM, because it was
added to the gateset.json file.

5.2. Compiler Tool
The requirements for the compiler tool, listed in Subsection 4.2.1, are repeated below for convenience.

1. Translate highlevel quantum algorithms to diamond microcode
2. Support for all instructions defined in the ISA/microISA
3. Support all diamondspecific protocols/sequences
4. To some extent, schedule necessary diamondspecific operations automatically

To illustrate whether the compiler tool meets these requirements, a set of two examples is created.
These examples can be found in Figure 5.1 and Figure 5.2 respectively. The first example is an example
of automatic decomposition of a measurement of a qubit using a cQASM input. Because cQASM does
not support all instructions, another example has been made that illustrates a Python API input. These
examples are shownwithout the scheduling (magnetic biasing, rabi check, CRC check and initialization)
because then the microcode would be too long. A example of scheduling is discussed later in the
section.

version 1.0

qubits 1

measure q[0]

(a) Compiler cQASM input.

switchOn q0
LDi 0, photonReg0
excite_MW 1, 100, 200, 0, 60, q0
mov photonReg0, R0
switchOff q0
BR R0<R33, ResultReg0

(b) Compiler Output without scheduling.

Figure 5.1: An example of the in and output of the compiler using the measureinstruction. Note that the input is
cQASM input only the python API looks like in Listing 7.

k.diamond_excite_mw(1, 100, 200,
0, 60, 0)

(a) Compiler cQASM input.

excite_MW 1, 100, 200, 0, 60, q0

(b) Compiler Output without scheduling.

Figure 5.2: An example of the in and output of the compiler using the excite_MWinstruction. This input is from
the python API, as the function cannot be called from cQASM.

44 5. Verification

Translation of highlevel algorithms to microcode
As can be seen by the examples, the compiler translates higherlevel quantum algorithms, which is
only one gate in the example, to diamond microcode.

Support for ISA instructions and diamond protocols
Ultimately, the quantum algorithm should be the main input for the compiler. Within quantum algo
rithms, calibration protocols are not called manually, just as classical instructions such as AND/OR
etc. However, these instructions can be called when testing the quantum computer or under other
circumstances, so it would still be wise to have support.

Quantum gate instructions, such as X, Y, Z etc are all supported. The input, either in cQASM as
‘x q[0]’ or in the Python API as k.gate(’x’, [0]) gets translated to the qgateinstruction
appropriately. This is the same for the twoqubit operations, such as CNOT and CZ, but instead they
get translated to qgate2instructions. The toffoligate is also supported it is properly decomposed to
single and two qubit gates. Custom rotations, such as Rx, Ry and Rz gates are also supported. They
get translated to custom excite_MWinstructions. Furthermore, measurement and initialization are
also supported. Entanglement procedures, both color center to color center and color center to nuclear
spin qubit are supported, but the final entanglement protocol for color center to color center has not yet
been decided on by the people of the Fujitsu Project 2. Furthermore, the instruction for swapping the
state between an electron and a nuclear spin qubit is also supported.

For magnetic biasing, the frequency sweep instruction (sweep_bias) and the calculate_bias
instruction are supported. However, the instruction for calculating the bias value has not been elabo
rated upon, because it is still needed to figure out how the new value must be determined. Therefore,
the microcode instruction is just calculate_current(). The same goes for the calculation of the
voltage for the CRC. Decoupling according to the XY8 protocol is also supported.

For waiting, the amount of cycles that needs to be waited needs to provided. Because OpenQL
supports waiting in its internal system, this is natively supported. In cQASM, we can just put the wait
duration after the wait instruction (wait 10).

Finally, the classical standard instructions that are needed to perform flow control and calculations
are not supported by the tool. The main reason for this is that they are not called manually, but they
could be implemented if needed.

Table 5.2: Overview of the ISA instructions supported by the tool divided into Python API and with cQASM.

Protocol/Instruction Python API cQASM Protocol/Instruction Python API cQASM

X, Y, Z, S, T etc ! ! XY8 Decoupling ! !

CNOT, CZ etc ! ! Toffoligate ! !

excite_mw ! % calculate_bias ! %

measure ! ! calculate_volt ! %

initialize ! ! wait ! !

qnop ! % AND/OR/XOR/NOT % %

qentangle ! % ADD(i)/SUB(i) % %

NVentangle ! % MUL/DIV % %

memswap ! % MOV % %

Magnetic Biasing ! % LD(i)/ST(i) % %

Rabi Frequency ! % BR % %

Charge Resonance Check ! % jump % %

cal_measure ! % cal_pi ! %

cal_halfpi ! %

Scheduling of Instructions
The compiler does some form of automatic scheduling. The gates are still handled sequentially that is
if the algorithm wants gates in order 1, 2, 3 then the output microcode is also in order 1, 2, 3. In addition,
2at the time of writing

5.3. Conclusion 45

the compiler automatically puts the following in front of a algorithm: magnetic biasing for all qubits, rabi
frequency determinations for all qubits, charge resonance check for all qubits and initialization for all
qubits. It does this even when the qubits are specified but nothing is done with them, meaning the
algorithm is empty. These operations can also be called manually from the Python API. Furthermore,
every 10 gates, a CRC is also scheduled for each qubit. For one qubit and an empty algorithm, the
microcode looks like found in Listing 8.

5.3. Conclusion
In this chapter, we verified the defined microarchitecture in Section 5.1. We saw that the QISA and the
microarchitecture meet requirements for deterministic and precise control, including classical instruc
tion support and most of the gates that are defined in the cQASM 1.0 gateset. Furthermore, the QISA
and microarchitecture also support all diamond specific protocols such as magnetic biasing, CRC and
more. It also fits well in the systemoverview that was proposed earlier in the thesis, in Section 3.2.
Subsequently, we have verified the tool in Section 5.2. An example was presented and we saw that
the tool translated higherlevel quantum code, either from the OpenQL Python API or using a cQASM
reader gets translated correctly to diamond microcode. It has support for most instructions defined in
the ISA, except for the standard classical instructions. This is not an issue, as the classical instructions
are not part of quantum algorithms. The cQASM reader of OpenQL limits the functionality with cQASM
algorithms as some functions are not supported because of OpenQL’s IR. Some gates can be added to
the gateset file of the cQASM reader, so the reader can understand the custom gate name and parse
it correctly through the OpenQL IR. However, we still recommend to use the Python API as, while it is
more messy, it does supports all diamond specific gates.

46 5. Verification

1 # sweep_bias q[0]
2 LDi 10, dacReg0
3 LDi 0, sweepStartReg0
4 LDi 10, sweepStepReg0
5 LDi 100, sweepStopReg0
6 LDi 0, memAddr0
7 LABEL LAB0
8 switchOn q0
9 excite_MW 1, 100, sweepStartReg0, 0, 60, q0
10 switchOff q0
11 mov photonReg0, R0
12 ST R0, memAddr0($0)
13 ST sweepStartReg0, memAddr0($0)
14 ADD sweepStartReg0, sweepStartReg0, sweepStepReg0
15 ADDi memAddr0, 4
16 BR sweepStartReg0<sweepStopReg0, LAB0
17
18 # calculate_current q[0]
19 calculate_current()
20
21 # rabi_check q[0]
22 LDi 100, R1
23 LDi 2, R2
24 LDi 3, R3
25 LDi 0, R32
26 LABEL LAB1
27 LABEL LAB2
28 LABEL LAB3
29 switchOn q0
30 LDi 0, photonReg0
31 excite_MW 1, 100, 200, 0, 60, q0
32 mov photonReg0, R0
33 switchOff q0
34 BR R0>0, LAB3
35 excite_MW 1, R2, 200, 0, 60, q0
36 switchOn q0
37 LDi 0, photonReg0
38 excite_MW 1, 100, 200, 0, 60, q0
39 mov photonReg0, R0
40 switchOff q0
41 BR R0<R33, ResultReg0
42 ST ResultReg0, memAddress0($0)
43 ADDi memAddr0, 4
44 ADDi R32, 1
45 BR R32<R1, LAB2
46 ST R2, memAddr0($0)
47 ADDi memAddr0, 4
48 ADDi R2, 10
49 BR R2<R3, LAB1
50
51 # crc q[0]
52 LDi 5, treshReg0
53 LDi 0, dacReg0
54 LABEL LAB4
55 LDi 0, photon Reg0
56 switchOn q0
57 excite_MW 1, 100, 200, 0, 60, q0
58 mov photonReg0, R0
59 switchOff q0
60 BR R0>treshReg0, LAB5
61 calculateVoltage()
62 JUMP LAB4
63 LABEL LAB5
64
65 # initialize q[0]
66 LABEL LAB6
67 switchOn q0
68 LDi 0, photonReg0
69 excite_MW 1, 100, 200, 0, 60, q0
70 mov photonReg0, R0
71 switchOff q0
72 BR R0>0, LAB6
73
74 // quantum algorithm here

Listing 8: Example of scheduling for a 1qubit quantum algorithm.

6
Conclusion

This chapter will serve as a conclusion to the thesis project. It will summarize the work that has been
conducted in Section 6.1. In the section Section 6.2, the main contributions will be discusses. The
research question will also be answered in that section. Section 6.3 will lists any future work recom
mendations for the project.

6.1. Summary
In Chapter 2, we introduced the reader to some specific topics needed to understand the rest of the
thesis. We started with the introduction of quantum information theory in Section 2.1. We explained
qubits, quantum gates and quantum algorithms. In Section 2.2, the quantum computer stack, that
serves as a lead thread in the quantum computer design process, was discussed. Each level was
presented briefly and definitions were made for each layer. Then, in Section 2.3, NVcenters were
discussed. NVcenters are discussed because the Fujitsu Project focuses on color center qubits, which
NVcenters are. It is made clear what they are, how they can be made and how they can be controlled.
This is especially useful, as in Section 2.4 the different quantum computer microarchitectures were
presented. We saw that there are a few of them, but none of them are aimed towards color center
qubits in diamond. However, a lot of information can still be used to work towards the goal of a color
center quantum computer. In the next section, Section 2.5, an overview of quantum networks was
given. Quantum networks are important, as when we are scaling the Fujitsu Project computer, it feels
and behaves a lot like a network. We learned about why quantum networks and quantum internet are
important as they enable applications such as QKD and quantum device communication. Finally, in
Section 2.6, we introduced OpenQL, the platform for highlevel quantum programming developed by
QuTech. OpenQL aims at translating a technology independent algorithm to a technology dependent
assembly code.

In Chapter 3, we defined the microarchitecture for diamond quantum computing. We listed the re
quirements the microarchitecture should have in Section 3.1, where it was determined that it should
support all diamondspecific protocols and instructions. Moreover, it should support all cQASM 1.0 in
structions as found on the knowledge base of [6]. In Section 3.2, we saw the overall system where the
microarchitecture will be part of. The system architecture was introduced to give a better view of the job
of the microarchitecture, as well as to give a better overview of the entire project. Next, we introduced
the Quantum Instruction Set Architecture (QISA) and the microarchitecture in Section 3.3. We saw
that the first draft was created with the help of information obtained from the literature research and
information about the required diamondspecific instructions and operations. We also saw that some
instructions were decomposable. This resulted in a separation between the QISA and the microarchi
tecture, where the instructions of the microarchitecture are of the lowest level before entering control
electronics. The result of the development was shown in Section 3.4, where the QISA and correspond
ing microarchitecture were presented. We went over the supported highlevel instructions as well as
an example of a decomposition.

For the translation from highlevel algorithms to diamond microcode instructions, a compiler was
made using OpenQL. We discussed the design of the compiler in Chapter 4. First, a brief recap about

47

48 6. Conclusion

OpenQl was given in Section 4.1. We determined that OpenQL takes two inputs: the algorithm and the
platform configuration file. Then, in Section 4.2, the design of the compiler was discussed. We learned
the design methodology of the compiler and the requirements of the compiler. Using this information,
we have seen how to create and add a backend to OpenQL. In addition, we have seen how to create and
add a pass to OpenQL. The pass that was added to OpenQL is our microcode translator pass, which
schedules the gates and operations of the algorithm and prints the output microcode to an outfile. We
have seen the different design aspects of the pass, such as custom instructions with multiple operands
and conditional gates. Finally, in Section 4.3, we made comments on how to use the compiler and how
to use OpenQL.

In Chapter 5, we verified the defined microarchitecture in Section 5.1. We saw that the QISA and
the microarchitecture meet requirements for deterministic and precise control, including classical in
struction support and most of the gates that are defined in the cQASM 1.0 gateset. Furthermore, the
QISA and microarchitecture also support all diamond specific protocols such as magnetic biasing, CRC
and more. It also fits well in the systemoverview that was proposed earlier in the thesis, in Section 3.2.
Subsequently, we have verified the tool in Section 5.2. An example was presented and we saw that
the tool translated higherlevel quantum code, either from the OpenQL Python API or using a cQASM
reader gets translated correctly to diamond microcode. It has support for most instructions defined in
the ISA, except for the standard classical instructions. This is not an issue, as the classical instructions
are not part of quantum algorithms. The cQASM reader of OpenQL limits the functionality with cQASM
algorithms as some functions are not supported because of OpenQL’s IR. Some gates can be added to
the gateset file of the cQASM reader, so the reader can understand the custom gate name and parse
it correctly through the OpenQL IR. However, we still recommend to use the Python API as, while it is
more messy, it does supports all diamond specific gates.

6.2. Main Contributions
The problem statement of this thesis was:

How is a microarchitecture for a quantum computer based on color centers in diamond defined?

In this section, the problem statement is answered by checking whether each goal that was set at
the beginning of the thesis is completed. Below, the goals are repeated:

1. Define the overarching QISA that interfaces with the higher layers of the quantum computer stack.
2. Define the microachitecture.
3. Build a compiler that is able to translate a quantum algorithm to quantum assembly, defined by

the microarchitecture, using the higher layer and interfaced with a existing compiler framework.

The completion of the goals can be checked by following the methodology specified in Section 1.3.
The first task was to identify other quantum microarchitectures. Using the QuTech quantum tack, the
first thing that was done was to clear up the definitions of the stack and thus also the definition of
microarchitecture. Different microarchitectures that are used within QuTech, such as QuMA, QuMA_v2,
CCSpin and CC were introduced and analyzed. It was explained how the microarchitectures work and
can conclude that the first task of identifying other microarchitectures is completed.

Based on the knowledge gained from the other microarchitectures and from themeetings held within
the Fujitsu project, a set of requirements on our microarchitecture are drawn. It became clear that the
microarchitecture needs to support both classical and quantum instructions, as well as deliver them
with precise timing to the classicaltoquantum (electronics) layer. In addition, the microarchitecture
should have support for all diamond specific protocols and sequences.

Based on the requirements, the microarchitecture could be defined. However, before that, the
overarching QISA had to be defined first. The requirements list was looked at, as well as the overall
system architecture, which included the electronic devices that need to be controlled, and subsequently
defined a set of instructions of which some could be decomposed into smaller instructions. After the
QISA had been defined, the microarchitecture could be defined. The microarchitecture supports every
instruction specified in the QISA. With the completion of this task the next goals that were set have
been reached. Namely, the overarching QISA was defined and the microarchitecture was also defined.

The next task and goal was to build a simple compiler that translates a highlevel algorithm (ex
pressed in a highlevel quantum programming language) to instructions from the microarchitecture.

6.3. Future Work 49

The compiler was built and in addition to the translation process, it also decomposes certain instruc
tions and has a simple form of scheduling as well, where it prepares each qubit for the algorithm. The
compiler was built using OpenQL. The task and goal of building a compiler are therefore also met.

After the microarchitecture and the compiler have been defined and build respectively, the results
are verified. In the verification process, it was checked if the microarchitecture met the requirements
that were specified or not. This was also performed for the compiler.

6.3. Future Work
In this section, the future work for the project is discussed.

6.3.1. Development of the Fujitsu Project
The first thing that comes to mind is that the defined microarchitecture needs to keep inline with the
developments of the Fujitsu project. The microarchitecture has now been defined with the system
architecture in mind as described in Chapter 3. However, this view can change, meaning some things
in the microarchitecture can subsequently change. It is therefore important to always align with the
overall system architecture.

For example, it could be that the local controller will grow in size, controlling more than one color
center. Fortunately, the microarchitecture that was defined has taken this into account. If the number
of electron qubits should grow, then the only changes that are needed is to change the qubit number
index in the instructions. There are other changes in the development of the project that have impact
on the microarchitecture, such as:

• The growth of the number of controlled color centers by the local controller.

As described in the previous paragraph, this is supported by the microarchitecture.

• The system that is developed right now (and also the overall system architecture) is for a diamond
color center system without the use of cavities.
Should this happen, the microarchitecture needs changes to account for the use of cavities. At
the moment, little is known about these cavities and thus no speculation can be done on the exact
changes of the microarchitecture.

• The Quantum Operation Issue Rate (QOIR) of the microarchitecture might be too low meaning
that the system cannot perform the operations quickly enough.

This may be solved with using a form of quantum SIMD called single operation multiple qubit
(SOMQ). Additionally, a VLIW architecture could be introduced like seen with eQASM/QuMA_v2
that also increases the QOIR. This means that additional hardware is needed as well, that is in
charge of fetching instructions and translating them to a usable format. No changes are needed
to the microarchitecture instructions.

• The direct driving of nuclear spin qubits is something that is wanted in the future of the Fujitsu
project.

This is currently not entirely supported by the microarchitecture. Using a DDRFbased scheme,
one interleaves an RF pulse on the nuclear spin qubit with a pipulse on the electron qubit. The
pipulse is supported, the RF pulse on the nuclear spin qubit is not. However, an instruction can
be added easily that will send a RF pulse on a target spin qubit with a certain envelope, amplitude,
frequency and duration that will make the direct driving possible.

6.3.2. Alignment with the Fujitsu Global Controller
The proposed microarchitecture is for the local realtime controllers. However, these controllers need
to be controlled using the global controller that oversees multiple color centers. The global controller
should send control signals along with timing synchronization signals to the local controllers based on
the algorithm it receives from the classical control PC. It is of upmost importance to get this right, as

50 6. Conclusion

it is fundamental for the correct functioning of the quantum computer. Right now, the experiments are
done using a ADwinbased global controller on NVcenters. It would be a good starting point to see
how that is executed exactly.

6.3.3. Design of the microarchitecture
Since the microarchitecture has now been defined, the microarchitecture also has to be designed. This
means the the components have to be sorted out and linked to each other correctly, as is done with
eQASM for CCLight by Fu, see Section 2.4. The QISA is what is fed into the microarchitecture, there
fore the microarchitecture should have a decoder from QISA to microarchitecture before it executes the
micro instructions, typically called a microcode unit. In addition, the microarchitecture should have a
timing control unit that controls the timing of the instructions in another way than using wait statements
to enable smart scheduling. There are a few other things that should be accounted for:

• The number and type of registers.
• The communication protocol with the electronics.
• Possibility of codeword based event control.
• The microarchitecture should be quick enough to not be throttled by the QuantumOperation Issue
Rate (QOIR) the microcode can be coded more densely by using SIMDbased instructions or a
VLIW architecture.

• In line with the previous point, the microarchitecture should work more parallel, using more than
one thread.

• The aforementioned microcode unit.
• The interface with the classicaltoquantum electronics.

Whilst designing the microarchitecture, it has to be kept in mind that the system should be easily ex
pandable. For now, we assumed that each colorcenter would have one dedicated local controller,
but there have also been ideas that a color centers can share a local controller. Therefore, the local
controller microarchitecture has to be flexible and ready for the expansion of the system.

The next step would be the design of a simulator that takes the QISA code as input, converts the
QISA code to microcode and has the needed (digital) signals ready at the output of the simulator. The
simulator will be a very important phase of the project, as now the functionality, flexibility and adaptability
can be tested far more easily than when the entire microarchitecture has to be fabricated for example.

Even thought the design of thismicroarchitecture is important, the people from the group of Stephanie
Wehner have conducted research in the field of the Quantum Internet. Color center based quantum
computers have a lot in common with quantum network. Because the Fujitsu project’s goal is a dis
tributed system, there are nodes that connect with each other and therefore can resemble a quantum
network. New information about quantum networks and quantum internet, including their microarchi
tecture can be very helpful for the future of this project. Stephan Wong is already in (preliminary)
contact with two people from Wehner’s group, but further discussions have yet to take place. I highly
recommend setting up and participating in these discussions to steer the project in the right direction.

In short:

• Design the architecture components.
• Design the simulator and simulate a quantum algorithm.
• Align with Stephanie Wehner’s group about the comparison of the diamond microarchitecture and
the research towards quantum network microarchitectures.

6.3.4. Improvements of the OpenQL Compiler
The designed compiler is very simple it supports the translation of algorithm code to microcode, and
does very simple scheduling. There are few things that the compiler doesn’t support, which it should
in the future. Namely:

• Support for differentiation of electron qubits and nuclear spin qubits.
• A library that tells the compiler which qubits pairs can entangle with each other, which are entan
gled with each other (and therefore also which qubits cannot entangle with each other)

• Improved scheduling this can also be something that is needed from the operating system (OS)
of the quantum computer.

6.3. Future Work 51

• The entanglement procedures have to be decided upon by the people working on the project and
have to be added into the tool correctly.

• Now, values for example duration, frequency and various other things have been a educated
guess, because those values are not known for the real color centers. However, as research
progresses in these fields, it is important to keep aligning with other work packages.

• Support for all diamond specific instructions from the cQASM reader. This will have the advantage
that cQASM is much easier to use than the C++ or Python API of OpenQL. In addition, it is more
accessible.

A
Microarchitecture Documentation

This appendix will go into the details of the ISAs. It will not explain concepts such as decomposition
and how the ISAs were designed, but instead it will go over the information in the tables. It will be
explained, per instruction, what the instruction is, what it does and how it is used in more detail than is
found in the table itself.

The following two pages show the ISA and microarchitecture respectively, but in a larger format
than found in the thesis previously.

52

53

Table A.1: The QISA for quantum computing in diamond color centers.

Type Syntax Description Decomposable

Qubit Gate
X, Y, Z, S, T qRd Apply a single Quantum gate on qubit qRd, No

CNOT, CZ, CR qRs, nqRd,
[<angle>]

Apply a twoqubit Quantum gate with qRs as con
trol and qRd as destination. Angle is optional and
only used for CR and CR𝑘 gates.

No

Qubit Rotation
excite_MW <env>, <dur>,
<freq>, <phase>, <ampli
tude>, qRd

Excite the qubit for time duration <duration>with
frequency <freq>, phase <phase>and <ampli
tude> on qubit Rd. The value of these arguments
determine the rotation / action of the excitation.

No

Qubit Readout measure qRd, Rd

Measure qubit qRs and stores result in Rd. First,
excite the laser on a particular NVcenter. Then,
the number of photons are counted by the control
electronics and put into a register. The microar
chitecture then needs to fetch the result from the
control electronics register and store it in a main
register.

Yes

Qubit init initialize qRd
Initialize the qubit to state 0 using readout until
no photons are measured. Yes

nop qnop
The quantum nooperation. Can be used as a
filler operation. No

Entanglement
qentangle qRs, nqRd

Entangle an NVcenter qubit with a nuclear spin
qubit. This is a sequence of gates. Yes

Nventangle qRs, qRd
Entangle an NVcenter qubit with a NVcenter
qubit. There are multiple steps and thus multiple
gates.

Yes

Nuclear Spin Ops memswap qRs, qRd
Swap the state from the NVcenter to the nuclear
spin qubit, functioning as memory. Is a sequence
of gates.

Yes

Biasing and Checks

sweep_bias <value>,
dacReg, <start>, <df>,
<fstop>, <memoryad
dress>

Set the new current value for the biasing on con
trol electronics register and sweeps microwave
whilst storing a frequency/photoncount pair for
each swept frequency.

Yes

decouple qRd Decouple the qubit according to the XY8 protocol Yes

calculate_bias Rs, Rt,
Rd

Calculate the new value for the current in am
peres. This operation is purely classical and in
volves standard instructions to calculate the new
value and put it in a register. First, it fetches the
data from memory location Rs and old value Rt,
then calculates the new value and puts it in Rd.

Yes

calculate_volt Rs, Rt,
Rd

Calculate the new value for the voltage in Volt.
This operation is purely classical and involves
standard instructions to calculate the new value
and put it in a register. First, it fetches the data
from memory location Rs and old value Rt, then
calculates the new value and puts it in Rd.

Yes

Calibration
cal_meas qRd

Calibrate the qubit readouttime to ensure optimal
readout. Yes

cal_pi qRd
Calibrate the qubit rotation amplitude for optimal
pirotation. Yes

cal_halfpi qRd
Calibrate the qubit rotation amplitude for optimal
half pirotation. Yes

Timing wait <value> Wait an amount of cycles, No

Standard Instructions

AND/OR/XOR/NOT Rs, Rd
Apply a classical AND/OR/XOR/NOT gate to reg
isters and store result. No

ADD(i)/SUB(i) Rs, Rt, Rd Add or subtract two registers and store the result. No

MUL/DIV Rs, Rt, Rd
Multiply or divide two registers and store the re
sult. No

MOV Rs, Rd
Move the contents of a register to another regis
ter. No

LD(i)/ST(i) Rs, Rd
Load from memory to register or Store from reg
ister to memory. No

BR <comp>, <address> Jump if the comparisons statement is true. No

jump <address> Jump unconditionally. No

54 A. Microarchitecture Documentation

Table A.2: The microarchitecture for quantum computing in diamond color centers.

Type Syntax Description

Quantum Operation

qgate <type>, qRd
Apply a single Quantum gate. <type>defines which
gate (X, Y, Z, H, I, S (= pi/2), T (= pi/2)). qRd is the
target qubit.

qgate2 <type>, qRs, nqRd,
[<angle>]

Apply a twoqubit Quantum gate. <type> defines
which gate (CNOT, CZ). qRs is the source qubit and
nqRd is the target qubit. The angle argument is op
tional and only used for CR and CR𝑘 gates.

excite_MW <env>, <dur>,
<freq>, <phase>, <ampli
tude>, qRd

Excite the qubit for time duration <duration>with fre
quency <freq>, phase <phase>and <amplitude> on
qubit Rd. The value of these arguments determine
the rotation / action of the excitation.

qnop
Apply a quantum nooperation. Can be used as a
filler operation.

Timing wait <cycles> Wait an amount of <cycles>.

Support
switchOn <address>, [<dura
tion>]

Switch the optical switch with address <address>to
the ”on” position (optional: for time <duration>).

switchOff <address>
Switch the optical switch with address <address>to
the ”off” position.

Standard Instructions

AND/OR/XOR/NOT Rs, Rd
Apply a classical AND/OR/XOR gate to registers Rs
and Rd, storing the result in Rd.

ADD(i)/SUB(i) Rs, Rt, Rd
Add or subtract two registers Rs and Rt (or values
when using immediate), storing the result in Rd.

MUL/DIV Rs, Rt, Rd
Multiply or divide two registers Rs*Rt or Rs/Rt and
store the result in Rd.

MOV Rs, Rd Move the contents of register Rs to Rd.

LD/ST Rs/Rd, Rt
Load from memory to register or Store from register
to memory.

BR <comparison>, <offset>/Rd
Jump to <offset>is the <comparison>is true. If the
offset is a register, store the comparison result in that
register.

jump <address> Jump to <address>.

LDi <value>, Rd Load immediate value <value>in register Rd.

A.1. ISA Instructions 55

A.1. ISA Instructions
A.1.1. Qubit Gate
Qubit gates are divided into two options: 1qubit gates and 2qubit gates. 1qubit gates are gates that
act on a single qubit, such as X, Y, and Z.

X, Y, Z, S, T
Operation: X, Y, Z, S, T qRd
Description: Acts out a single qubit gate on qubit qRd. Supported gates are: X, Y, Z, S, T, S dagger,
T dagger, Hadamard (H), +/ X90 and +/Y90. Note that each of these gates can also be executed
using the excite_MW instruction.
Decomposable: No.
cQASM Equivalent: x q[0]

Example: X q0

CNOT, CZ
Operation: CNOT, CZ qRs, nqRd, [<angle>]
Description: Acts out a twoqubit gate between qubit qRs (control qubit) and qRd (target qubit). Op
tions are: CNOT, CZ, SWAP, PMX90, PMY90, PMX180, PMY180, CR and CR𝑘. When using CR or
CR𝑘, the angle option has to be specified. Note that in diamond, two qubit gates can only happen
between a electron and a nuclear spin qubit.
Decomposable: No.
cQASM Equivalent: cnot q[0], q[1]

Example: CNOT q0, q1

A.1.2. Qubit Rotation
excite_mw
Operation: excite_mw <envelope>, <duration>, <freq>, <phase>, <amplitude>, qRd
Description: This type of gate is a full custom rotation. The user can set the envelope, duration, fre
quency, phase, amplitude and target register when calling the instruction.
Decomposable: No.
cQASM Equivalent:

Example: excite_mw 0, 100, 200, 0, 60, q0

A.1.3. Qubit Readout
measure
Operation: measure qRd, Rd
Description: This operation measures qubit qRd. It then stores the result in register Rd. The result is
either ‘0’ or ‘1’.
Decomposable: Yes.
cQASM Equivalent: measure q[0]

Example: measure q0, ResultReg0

A.1.4. Qubit Initialize
initialize
Operation: initialize qRd
Description: Initializes a qubit to the |0⟩state. Should the qubit be initialized to the |1⟩state, the ini
tialisation should be followed with an xgate.
Decomposable: Yes.
cQASM Equivalent: prep_z q[0]

Example: initialize q0

56 A. Microarchitecture Documentation

A.1.5. nop
qnop
Operation: qnop
Description: The quantum nooperation. Useful when the system needs to do nothing for a cycle. Is
equivalent to waiting one cycle. The instruction is hardly used.
Decomposable: No.
cQASM Equivalent:

Example: qnop

A.1.6. Entanglement
qentangle
Operation: qentangle qRs, nqRd
Description: Creates quantum entanglement between two qubits, where one qubit (qRs) is the elec
tron of the color center the so called qubit, and the other qubit (nqRd) is one of the nuclear spin qubits
that surround the electron. The nuclear spin qubits are carbon13 atoms.
Decomposable: Yes.
cQASM Equivalent:

Example: qentangle q0, nq5

NVentangle
Operation: NVentangle qRs, qRd
Description: This instruction attempts to achieve heralded entanglement between two qubits. Right
now, this is implemented according to the protocol of Barrett and Kok [33], but the protocol that will be
used in the Fujitsu Project will undoubtedly be something different.
Decomposable: Yes.
cQASM Equivalent:

Example: NVentangle q0, q1

A.1.7. Nuclear Spin Operations
memswap
Operation: memswap qRs, qRd
Description: Swaps the state of a color center qubit (electron) with a nuclear spin qubit (carbon13),
similar to the normal SWAP operation.
Decomposable: Yes.
cQASM Equivalent:

Example: memswap q0, nq6

A.1.8. Biasing and Checks
sweep_bias
Operation: sweep_bias qRd, <value>, dacReg, <start>, <df>, <fstop>, <memaddr>
Description: Sweeps the frequency of the laser over qubit qRd. The user also specifies the value of
the magnetic biasing, the target DAC (dacReg), the start value of the sweep, the step of the sweep
and the stop value of the sweep, all in kHz. The instruction stores the frequency/photoncount pair in
memory with address memaddr.
Decomposable: Yes.
cQASM Equivalent:

Example: sweep_bias q0, 0, dacReg0, 0, 200, 2000, 0

A.1. ISA Instructions 57

decouple
Operation: decouple qRd
Description: Decouple qubit qRd according to the XY8 decoupling protocol [36].
Decomposable: Yes
cQASM Equivalent:

Example: decouple q0

calculate_bias
Operation: calculate_bias Rs, Rt, Rd
Description: Calculates the new value for the current in milliamperes. This operation is purely clas
sical and involves standard (classical) instructions to calculate the new value and put it in a register.
First, it fetches the data from memory location Rs and old value Rt, then calculates the new value and
puts it in Rd.
Decomposable: Yes.
cQASM Equivalent:

Example: calculate_bias R0, R1, R0

calculate_voltage
Operation: calculate_voltage Rs, Rt, Rd
Description: Calculates the new value for the voltage in milliVolts. This operation is purely classical
and involves standard (classical) instructions to calculate the new value and put it in a register. First, it
fetches the data from memory location Rs and old value Rt, then calculates the new value and puts it
in Rd.
Decomposable: Yes.
cQASM Equivalent:

Example: calculate_voltage R0, R1, R0

A.1.9. Calibration
Additional calibration instructions

cal_measure
Operation: cal_measure qRd
Description: Calibrates the readouttime of the laser to ensure that the readout happens with maximum
fidelity.
Decomposable: Yes.
cQASM Equivalent:

Example: cal_measure q0

cal_pi
Operation: cal_pi qRd
Description: Calibrates the amplitude of the laser to ensure that a pirotation happens with maximum
fidelity.
Decomposable: Yes.
cQASM Equivalent:

Example: cal_pi q0

cal_halfpi
Operation: cal_halfpi qRd
Description: Calibrates the amplitude of the laser to ensure that a half pirotation happens with maxi
mum fidelity.
Decomposable: Yes.

58 A. Microarchitecture Documentation

cQASM Equivalent:

Example: cal_halfpi q0

A.1.10. Timing
wait
Operation: wait <value>
Description: Waits for <value> cycles. Can be used to stall the system or to wait between operations.
Decomposable: no.
cQASM Equivalent: wait 5, where the system waits 5 time units

Example: wait 5

A.1.11. Standard (Classical) Instructions
AND/OR/XOR/NOT
Operation: AND/OR/XOR/NOT Rs, Rd
Description: Applies the classical bitwise operation on registers Rs and Rd. Stores the result in reg
ister Rd. For NOT, Rs is not used.
Decomposable: No.
cQASM Equivalent:

Example: AND/OR/XOR r0, r1 ; NOT r2

ADD(i)/SUB(i)
Operation: ADD(i)/SUB(i) Rs, Rt, Rd
Description: Add Rs with Rt and store in Rd. For immediate, Rs can be a integer.
Decomposable: No.
cQASM Equivalent:

Example: ADD/SUB r0, r1, r0 ; ADDi/SUBi 5, r0, r0

MUL/DIV
Operation: MUL/DIV Rs, Rt, Rd
Description: Multiply Rs with Rt and store in Rd or divide Rs by Rt and store in Rd.
Decomposable: No.
cQASM Equivalent:

Example: MUL r0, r1, r0

MOV
Operation: MOV Rs, Rd
Description: Move (copy) the contents from register Rs to register Rd.
Decomposable: No.
cQASM Equivalent:

Example: MOV r0, r1

LD(i)/ST(i)
Operation: LD(i)/ST(i) Rs, Rd($i)
Description: Load or store data from or to memory.
Decomposable:
cQASM Equivalent:

Example: LD/ST r0, r1($0) ; LDi/STi 0, r0

A.2. microarchitecture Instructions 59

BR
Operation: BR <comp>, <register/address>
Description: Branch operation that, if the comparison flag is true, sets the output register to a value
of ‘1’, or jumps to a defined label address.
Decomposable: No.
cQASM Equivalent:

Example: BR r0>r1, LAB1

jump
Operation: jump <address>
Description: Unconditional jump to the specified address.
Decomposable: No.
cQASM Equivalent:

Example: jump LAB1

A.2. microarchitecture Instructions
A.2.1. Quantum Operations
qgate
Operation: qgate <type>, qRd
Description: Executes a single qubit gate on qubit qRd. Options for <type> are: X, Y, Z, S, T, S
dagger, T dagger, Hadamard (H), +/ X90 and +/Y90.

Example: qgate X, q0

qgate2
Operation: qgate2 <type>, qRs, nqRd
Description: Executes a two qubit gate with qubit qRs as control and qRd as target. Options are:
CNOT, CZ, SWAP, PMX90, PMY90, PMX180, PMY180.

Example: qgate2 CNOT, q0, q1

excite_mw
Operation: excite_mw <envelope>, <duration>, <freq>, <phase>, <amplitude>, qRd
Description: Excites a color center electron with a laser with a set envelope, duration, frequency,
phase and amplitude. The combination of values determines the rotation on the qubit. <envelope>:
for now, either ‘0’ or ‘1’. <duration>: time in us. <freq>: frequency in KHz, <phase>: phase in radians
(02𝜋), <amplitude>: amplitude in mV

Example: Example: excite_mw 0, 100, 200, 0, 60, q0

qnop
Operation: qnop
Description: The quantum nooperation. Useful when the system needs to do nothing for a cycle. Is
equivalent to waiting one cycle. The instruction is hardly used.

Example: qnop

A.2.2. Timing
wait
Operation: wait <value>
Description: Waits for <value> cycles. Can be used to stall the system or to wait between operations.

Example: wait 5

60 A. Microarchitecture Documentation

A.2.3. Additional Instructions
switchOn
Operation: switchOn qRd, [<duration>]
Description: Switch on the optical path for color center with electron qubit qRd using the MEMS
switches. Optional: specify how long the optical path should be active with the duration parameter.

Example: switchOn q0

switchOff
Operation: switchOff qRd
Description: Switch off the optical path for color center with electron qubit qRd using the MEMS
switches.

Example: switchOn q0

A.2.4. Standard (Classical) Instructions
AND/OR/XOR/NOT
Operation: AND/OR/XOR/NOT Rs, Rd
Description: Applies the classical bitwise operation on registers Rs and Rd. Stores the result in reg
ister Rd. For NOT, Rs is not used.

Example: AND/OR/XOR r0, r1 ; NOT r2

ADD(i)/SUB(i)
Operation: ADD(i)/SUB(i) Rs, Rt, Rd
Description: Add Rs with Rt and store in Rd. For immediate, Rs can be a integer.

Example: ADD/SUB r0, r1, r0 ; ADDi/SUBi 5, r0, r0

MUL/DIV
Operation: MUL/DIV Rs, Rt, Rd
Description: Multiply Rs with Rt and store in Rd or divide Rs by Rt and store in Rd.

Example: MUL r0, r1, r0

MOV
Operation: MOV Rs, Rd
Description: Move (copy) the contents from register Rs to register Rd.

Example: MOV r0, r1

LD(i)/ST(i)
Operation: LD(i)/ST(i) Rs, Rd($i)
Description: Load or store data from or to memory.

Example: LD/ST r0, r1($0) ; LDi/STi 0, r0

BR
Operation: BR <comp>, <register/address>
Description: Branch operation that, if the comparison flag is true, sets the output register to a value
of ‘1’, or jumps to a defined label address.

Example: BR r0>r1, LAB1

A.2. microarchitecture Instructions 61

jump
Operation: jump <address>
Description: Unconditional jump to the specified address.

Example: jump LAB1

B
Decomposition Microcode

B.1. Measurement
Input: measure q0

switchOn q0
LDi 0, photonReg0
excite_MW 1, 100, 200, 0, 60, q0
mov photonReg0, R0
switchOff q0
BR R0<R33, ResultReg0

B.2. Initialization
Input: initialize q0

LABEL LAB0
switchOn q0
LDi 0, photonReg0
excite_MW 1, 100, 200, 0, 60, q0
mov photonReg0, R0
switchOff q0
BR R0>0, LAB0

B.3. qentangle
Input: qentangle q0, nuq15

qgate MX90, q0
qgate2 PMX90, q0, nuq15
qgate X90, q0

B.4. NVentangle
Input: NVentangle q0 q1

LDi 0, R2
LABEL LAB0
switchOn q0
switchOn q1
excite_MW 1, 100, 200, 0, 60, q0
excite_MW 1, 100, 200, 0, 60, q1
wait 100

62

B.5. memswap 63

mov R0, photonReg01
switchOff q0
switchOff q1
ADDi R2, 1
wait 50
BR R1>1, LAB1
qgate X, q0
qgate X, q1
mov R0, R1
JUMP LAB0
LABEL LAB1

B.5. memswap
Input: memswap q0, nuq1

qgate2 PMY90, q0, nuq1
qgate X90, q0
qgate2 PMX90, q0, nuq1
qgate MY90, q0

B.6. sweep_bias
Input: sweep_bias 10, 0, 0, 10, 100, 0

LDi 10, dacReg0
LDi 0, sweepStartReg0
LDi 10, sweepStepReg0
LDi 100, sweepStopReg0
LDi 0, memAddr0
LABEL LAB0
switchOn q0
excite_MW 1, 100, sweepStartReg0, 0, 60, q0
switchOff q0
mov photonReg0, R0
ST R0, memAddr0($0)
ST sweepStartReg0, memAddr0($0)
ADD sweepStartReg0, sweepStartReg0, sweepStepReg0
ADDi memAddr0, 4
BR sweepStartReg0<sweepStopReg0, LAB0

B.7. decouple
Input: decouple q0

excite_MW 0, 500, 200, 1.57, 60, q0
wait 50
excite_MW 0, 1000, 200, 1.57, 60, q0
wait 100
excite_MW 0, 1000, 200, 3.14, 60, q0
wait 100
excite_MW 0, 1000, 200, 1.57, 60, q0
wait 100
excite_MW 0, 1000, 200, 3.14, 60, q0
wait 100
excite_MW 0, 1000, 200, 3.14, 60, q0
wait 100
excite_MW 0, 1000, 200, 1.57, 60, q0

64 B. Decomposition Microcode

wait 100
excite_MW 0, 1000, 200, 3.14, 60, q0
wait 100
excite_MW 0, 1000, 200, 1.57, 60, q0
wait 50
excite_MW 0, 500, 200, 1.57, 60, q0

B.8. calculate_bias
Input: calculate_bias R0, R1, R0

calculate_current()

B.9. calculate_voltage
Input: calculate_voltage R0, R1, R0

calculate_voltage()

B.10. cal_meas
Input: cal_meas q0

LABEL LAB0
switchOn q0
LDi 0, photonReg0
excite_MW 1, 100, 200, 0, 60, q0
mov photonReg0, R0
switchOff q0
BR R0>0, LAB0
LDi 0, photonReg0
LDi 1, R30
LABEL LAB1
switchOn q0
excite_MW 0, 1, 200, 0, 60, q0
switchOff q0
ST photonReg0, R1($0)
ST R30, R1($0)
ADDi R30, 1
BR R30<40, LAB1
LABEL LAB2
switchOn q0
LDi 0, photonReg0
excite_MW 1, 100, 200, 0, 60, q0
mov photonReg0, R0
switchOff q0
BR R0>0, LAB2
qgate X, q0
LDi 0, photonReg0
LDi 1, R30
LABEL LAB3
switchOn q0
excite_MW 0, 1, 200, 0, 60, q0
switchOff q0
ST photonReg0, R2($0)
ST R30, R3($0)
ADDi R30, 1
BR R30<40, LAB3

B.11. cal_pi 65

calculate_readouttime(R0, R1, R2, R3)

B.11. cal_pi
Input: cal_pi q0

LABEL LAB0
switchOn q0
LDi 0, photonReg0
excite_MW 1, 100, 200, 0, 60, q0
mov photonReg0, R0
switchOff q0
BR R0>0, LAB0
LDi 0, R0
LDi 0, R1
LDi 0, R2
LABEL LAB1
LABEL LAB2
switchOn q0
excite_MW 0, 1000, 200, 0, R0, q0
switchOff q0
ADDi R1, 1
BR R1<12, LAB1
measure_fidelity(R0)
ADDi R0, 0.1
ADDi R2, 1
BR R2>10, LAB2
calculate_minimum_fidelity()

B.12. cal_halfpi
Input: cal_halfpi q0

LABEL LAB0
switchOn q0
LDi 0, photonReg0
excite_MW 1, 100, 200, 0, 60, q0
mov photonReg0, R0
switchOff q0
BR R0>0, LAB0
LDi 0, R0
LDi 0, R1
LDi 0, R2
LABEL LAB1
switchOn q0
excite_MW 0, 500, 200, 0, R0, q0
switchOff q0
ADDi R1, 1
BR R1<7, LAB1
measure_fidelity(R0)
LABEL LAB0
switchOn q0
LDi 0, photonReg0
excite_MW 1, 100, 200, 0, 60, q0
mov photonReg0, R0
switchOff q0
BR R0>0, LAB0

66 B. Decomposition Microcode

LDi 0, R0
LDi 0, R1
LDi 0, R2
LABEL LAB2
switchOn q0
excite_MW 0, 500, 200, 0, R0, q0
excite_MW 0, 1000, 200, 0, 60, q0
switchOff q0
ADDi R1, 1
BR R1<7, LAB2
measure_fidelity(R0)

C
List of Supported Functions and Gates

of the Compiler

Below follows the documentation for the compiler part. It will go over every instruction that is found in
OpenQL/examples/diamond/test.py found on GitHub [34].

C.1. Initialization
C.1.1. prep_z
Description: prepare the qubit in |0⟩.
Syntax: k.gate(’prep_z’, [qubit])
cQASM syntax: prep_z qubit

Example: k.gate(’prep_z’, [0])

C.1.2. prep_x
Description: prepare the qubit in |+⟩
Syntax: k.gate(’prep_x’, [qubit])
cQASM syntax: prep_x qubit

Example: k.gate(’prep_x’, [0])

C.1.3. prep_y
Description: prepare the qubit in |+𝑖⟩
Syntax: k.gate(’prep_y’, [qubit])
cQASM syntax: prep_y qubit

Example: k.gate(’prep_y’, [0])

C.1.4. initialize
Description: prepare the qubit in |0⟩.
Syntax: k.gate(’initialize’, [qubit])
cQASM syntax: prep_z qubit

Example: k.gate(’initialize’, [0])

67

68 C. List of Supported Functions and Gates of the Compiler

C.2. Measurement
C.2.1. measure
Description: measure a qubit in the zbasis and store the result in the corresponding classical register,
breg.
Syntax: k.gate(’measure’, [qubit])
cQASM syntax: measure_z qubit

Example: k.gate(’measure’, [0])

C.2.2. measure_z
Description: measure a qubit in the zbasis and store the result in the corresponding classical register,
breg.
Syntax: k.gate(’measure_z’, [qubit])
cQASM syntax: measure_z qubit

Example: k.gate(’measure_z’, [0])

C.2.3. measure_x
Description: measure a qubit in the xbasis and store the result in the corresponding classical register,
breg.
Syntax: k.gate(’measure_x’, [qubit])
cQASM syntax: measure_x qubit

Example: k.gate(’measure_x’, [0])

C.2.4. measure_y
Description: measure a qubit in the zbasis and store the result in the corresponding classical register,
breg.
Syntax: k.gate(’measure_y’, [qubit])
cQASM syntax: measure_y qubit

Example: k.gate(’measure_y’, [0])

C.3. Single Qubit Gates
Description: single qubit gates such as x, y, z, s, t, sdag, tdag, h, +/ x90, +/y90,
Syntax: k.gate(’gatename’, [qubit]) or k.gatename(qubit)
cQASM syntax: gatename qubit

Example: k.x(0)

C.4. Two Qubit Gates
Description: two qubit gates such as cnot, cz, swap, pmx90, pmy90, pmx180 and pmy180.
Syntax: k.gate(’gatename’, [qubit1, qubit2])
cQASM syntax: gatename qubit1, qubit2

Example: k.gate(’cnot’, [0 1])

C.5. Three Qubit Gate
Description: three qubit gate, such as toffili.
Syntax: k.gate(’gatename’, [qubit1, qubit2, qubit3])
cQASM syntax: gatename qubit1, qubit2, qubit3

Example: k.gate(’toffoli’, [0, 1, 2])

C.6. Diamond Calibration 69

C.6. Diamond Calibration
C.6.1. cal_measure
Description: calibrate the readout time for readout with maximum fidelity on a qubit.
Syntax: k.gate(’cal_measure’, [qubit])
cQASM syntax:

Example: k.gate(’cal_measure’, [0])

C.6.2. cal_pi
Description: calibrate the signal amplitude for pi rotation with maximum fidelity on a qubit.
Syntax: k.gate(’cal_pi’, [qubit])
cQASM syntax:

Example: k.gate(’cal_pi’, [0])

C.6.3. cal_halfpi
Description: calibrate the signal amplitude for half pi rotation with maximum fidelity on a qubit.
Syntax: k.gate(’cal_halfpi’, [qubit])
cQASM syntax:

Example: k.gate(’cal_halfpi’, [0])

C.6.4. decouple
Description: execute the xy8decoupling protocol on a qubit.
Syntax: k.gate(’decouple’, [qubit])
cQASM syntax:

Example: k.gate(’decouple’, [0])

C.6.5. Custom Rotations
C.6.6. rz
Description: rotate the qubit along the x axis with a specified angle.
Syntax: k.gate(’rz’, [qubit], 0, angle
cQASM syntax: Rz qubit, angle

Example: k.gate(’rz’, [0], 0, 1.57

C.6.7. rx
Description: rotate the qubit along the x axis with a specified angle.
Syntax: k.gate(’rx’, [qubit], 0, angle
cQASM syntax: Rx qubit, angle

Example: k.gate(’rx’, [0], 0, 1.57

C.6.8. ry
Description: rotate the qubit along the y axis with a specified angle.
Syntax: k.gate(’ry’, [qubit], 0, angle
cQASM syntax: Ry qubit, angle

Example: k.gate(’ry’, [0], 0, 1.57

C.6.9. cr
Description: rotate the target qubit along the z axis with a specified angle, based on the state of the
control qubit.

70 C. List of Supported Functions and Gates of the Compiler

Syntax: k.gate(’cr’, [qubit1 qubit2], 0, angle
cQASM syntax: CR qubit1, qubit2, angle

Example: k.gate(’cr’, [0 1], 0, 1.57

C.6.10. crk
Description: rotate the target qubit along the z axis with a specified angle, calculated as the angle
= 𝜋

2𝑘 , based on the state of the control qubit.
Syntax: k.gate(’crk’, [qubit1 qubit2], 0, k
cQASM syntax: CRK qubit1, qubit2, k

Example: k.gate(’crk’, [0 1], 0, 1

C.7. Diamond Protocols and Sequences
C.7.1. crc
Description: charge resonance check (crc) for a qubit. Take three arguments, qubit, a threshold value
and a starting value for the voltage.
Syntax: k.diamond_crc(qubit, threshold, value)
cQASM syntax:

Example: k.diamond_crc(0,30,5)

C.7.2. rabi_check
Description: determines the rabi frequency for a qubit. Takes as input the qubit, the duration of the
signal, the amount of measurements and the end value for the duration.
Syntax: k.diamond_rabi_check(qubit, duration, measurements, t_max)
cQASM syntax:

Example: k.diamond_rabi_check(0, 100, 2, 3)

C.7.3. excite_mw
Description: Excites the electron qubit of a color center with a custom laser pulse. The user can
specify the envelope, duration, frequency, phase and amplitude of the signal.
Syntax: k.diamond_excite_mw(envelope, duration, frequency, phase, amplitude,
qubit)
cQASM syntax:

Example: k.diamond_excite_mw(1, 100, 200, 0, 60, 0)

C.7.4. qentangle
Description: Entangles a electron qubit with a nuclear spin qubit.
Syntax: k.diamond_qentangle(qubit,nuqbit
cQASM syntax:

Example: k.diamond_qentangle(0,15)

C.7.5. nventangle
Description: Entangles two color centers according to a protocol.
Syntax: k.gate(’nventangle’, [qubit1, qubit2])
cQASM syntax:

Example: k.gate(’nventangle’, [0, 1])

C.8. Timing 71

C.7.6. memswap
Description: Swaps the state between a electron spin qubit and a nuclear spin qubit of the same color
center.
Syntax: k.diamond_memswap(qubit,nuqubit)
cQASM syntax:

Example: k.diamond_memswap(0,1)

C.7.7. sweep_bias
Description: sweeps the frequency of the laser over a qubit, storing the data pair of detected photons
and frequency. Is used for magnetic biasing, in combination with calculate_current.
Syntax: k.diamond_sweep_bias(qubit, value, dacreg, start, step, max, memad
dress)
cQASM syntax:

Example: k.diamond_sweep_bias(0, 10, 0, 0, 10, 100, 0)

C.8. Timing
C.8.1. wait
Description: wait for x amount of cycles.
Syntax: k.gate(’wait’, [], value)
cQASM syntax: wait value

Example: k.gate(’wait’, [], 200)

C.8.2. qnop
Description: the quantum nooperation. Equivalent to waiting 1 cycle.
Syntax: k.gate(’qnop’, [0])
cQASM syntax: wait 1

Example: k.gate(’qnop’, [0])

C.9. Classical Support Functions
C.9.1. calculate_current
Description: calculates the new value for the current. To be used in combination with sweep_bias for
magnetic biasing.
Syntax: k.gate(’calculate_current’, [0]
cQASM syntax:

Example: k.gate(’calculate_current’, [0])

C.9.2. calculate_voltage
Description: calculates the new value for the voltage. Is used in the charge resonance check.
Syntax: k.gate(’calculate_voltage’, [0]
cQASM syntax:

Example: k.gate(’calculate_voltage’, [0])

Bibliography
[1] C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopoulos, C. Eichler,

A. Wallraff, L. Geck, A. Kruth, J. Knoch, H. Bluhm, and K. Bertels, “The engineering challenges
in quantum computing,” in Design, Automation Test in Europe Conference & Exhibition (DATE),
2017, 2017, pp. 836–845.

[2] P. W. Shor, “Polynomialtime algorithms for prime factorization and discrete logarithms on a quan
tum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332, 1999.

[3] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of
the TwentyEighth Annual ACM Symposium on Theory of Computing, ser. STOC ’96. New
York, NY, USA: Association for Computing Machinery, 1996, p. 212–219. [Online]. Available:
https://doi.org/10.1145/237814.237866

[4] DWave, “DWave Systems.” [Online]. Available: https://www.dwavesys.com/

[5] Google, “Quantum Supremacy Using a Programmable Superconducting Proces
sor,” 23rd of October 2019. [Online]. Available: https://ai.googleblog.com/2019/10/
quantumsupremacyusingprogrammable.html

[6] QuTech, “Quantum inspire,” accessed 2932021. [Online]. Available: https://www.
quantuminspire.com/

[7] DelftX, “DelftX: QTM2x The Hardware of a Quantum Computer.” [Online]. Available:
https://courses.edx.org/courses/coursev1:DelftX+QTM2x+3T2020/course/

[8] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniver
sary Edition, 10th ed. USA: Cambridge University Press, 2011.

[9] S.M. Wikipedia, “Bloch sphere,” accessed 2932021. [Online]. Available: https://en.wikipedia.
org/wiki/Bloch_sphere#/media/File:Bloch_sphere.svg

[10] V. Acosta and P. Hemmer, “Nitrogenvacancy centers: Physics and applications,” MRS Bulletin,
vol. 38, no. 2, p. 127–130, 2013.

[11] S. Prawer and A. D. Greentree, “Diamond for quantum computing,” Science, vol. 320, no. 5883,
pp. 1601–1602, 2008. [Online]. Available: https://science.sciencemag.org/content/320/5883/1601

[12] M. S. Blok, N. Kalb, A. Reiserer, T. H. Taminiau, and R. Hanson, “Towards quantum networks
of single spins: analysis of a quantum memory with an optical interface in diamond,” Faraday
Discuss., vol. 184, pp. 173–182, 2015. [Online]. Available: http://dx.doi.org/10.1039/C5FD00113G

[13] T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control
and error correction in multiqubit spin registers in diamond,” Nature Nanotechnology, vol. 9,
no. 3, pp. 171–176, Mar 2014. [Online]. Available: https://doi.org/10.1038/nnano.2014.2

[14] A. Mohtashami, M. Frimmer, and A. F. Koenderink, “Quantum efficiency of single nv centers in nan
odiamonds,” in 2013 Conference on Lasers ElectroOptics Europe International Quantum Elec
tronics Conference CLEO EUROPE/IQEC, 2013, pp. 1–1.

[15] B. C. Rose, D. Huang, A. M. Tyryshkin, S. Sangtawesin, S. Srinivasan, D. J. Twitchen, M. L.
Markham, A. M. Edmonds, A. Gali, A. Stacey, W. Wang, U. D. Johansson, A. Zaitsev, S. A. Lyon,
and N. P. de Leon, “New color centers in diamond for long distance quantum communication,” in
2017 Conference on Lasers and ElectroOptics (CLEO), 2017, pp. 1–1.

72

https://doi.org/10.1145/237814.237866
https://www.dwavesys.com/
https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
https://www.quantum-inspire.com/
https://www.quantum-inspire.com/
https://courses.edx.org/courses/course-v1:DelftX+QTM2x+3T2020/course/
https://en.wikipedia.org/wiki/Bloch_sphere#/media/File:Bloch_sphere.svg
https://en.wikipedia.org/wiki/Bloch_sphere#/media/File:Bloch_sphere.svg
https://science.sciencemag.org/content/320/5883/1601
http://dx.doi.org/10.1039/C5FD00113G
https://doi.org/10.1038/nnano.2014.2

Bibliography 73

[16] J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, A. Laing,
J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “Learning nitrogenvacancy electron spin dynam
ics on a silicon quantum photonic simulator,” in 2017 Conference on Lasers and ElectroOptics
(CLEO), 2017, pp. 1–1.

[17] X. Fu, “Quantum Control Architecture: Bridging the Gap between Quantum Software and Hard
ware,” Ph.D. dissertation, TU Delft, 2018.

[18] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L.
Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Al
mudever, L. DiCarlo, and K. Bertels, “eqasm: An executable quantum instruction set architecture,”
2019.

[19] M. Serrao Morato Moreira, “QuTech Central Controller: A Quantum Control Architecture for a
Surface17 Logical Qubit,” Master’s thesis, TU Delft, 2019.

[20] A. Yadav, “CCSpin: A Microarchitecture design for scalable control of SpinQubit Quantum Pro
cessor,” Master’s thesis, TU Delft, 2019.

[21] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. Oliveira, M. Papendrecht, J. Rab
bie, F. Rozpedek, M. Skrzypczyk, L. Wubben, W. de Jong, D. Podareanu, A. T. Knoop, D. Elkouss,
and S. Wehner, “Netsquid, a discreteevent simulation platform for quantum networks,” 2020.

[22] W. Kozlowski, A. Dahlberg, and S. Wehner, “Designing a quantum network protocol,” Proceedings
of the 16th International Conference on emerging Networking EXperiments and Technologies,
Nov 2020. [Online]. Available: http://dx.doi.org/10.1145/3386367.3431293

[23] A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A. Stolk,
P. Pawełczak, R. Knegjens, J. de Oliveira Filho, and et al., “A link layer protocol for quantum
networks,” Proceedings of the ACM Special Interest Group on Data Communication, Aug 2019.
[Online]. Available: http://dx.doi.org/10.1145/3341302.3342070

[24] K. Azuma, S. Bäuml, T. Coopmans, D. Elkouss, and B. Li, “Tools for quantum network design,”
2020.

[25] A. Dahlberg and S. Wehner, “Simulaqron—a simulator for developing quantum internet software,”
Quantum Science and Technology, vol. 4, no. 1, p. 015001, Sep 2018. [Online]. Available:
http://dx.doi.org/10.1088/20589565/aad56e

[26] S. DiAdamo, J. Nötzel, B. Zanger, and M. M. Beşe, “Qunetsim: A software framework for quantum
networks,” 2020.

[27] B. Bartlett, “A distributed simulation framework for quantum networks and channels,” 2018.

[28] T. Matsuo, “Simulation of a dynamic, rulesetbased quantum network,” 2019.

[29] X. Wu, A. Kolar, J. Chung, D. Jin, T. Zhong, R. Kettimuthu, and M. Suchara, “Sequence: A cus
tomizable discreteevent simulator of quantum networks,” 2020.

[30] QuTech, “OpenQL Documentation,” accessed 25032021. [Online]. Available: https://openql.
readthedocs.io/en/latest/

[31] B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M. Blok, J. Ruitenberg, R. Vermeulen,
R. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. Mitchell, M. Markham, D. Twitchen, D. Elkouss,
S. Wehner, T. Taminiau, and R. Hanson, “Loopholefree bell inequality violation using electron
spins separated by 1.3 kilometres,” Nature, vol. 526, 10 2015.

[32] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N. Schouten,
R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, and et al., “Realization
of a multinode quantum network of remote solidstate qubits,” Science, vol. 372, no. 6539, p.
259–264, Apr 2021. [Online]. Available: http://dx.doi.org/10.1126/science.abg1919

http://dx.doi.org/10.1145/3386367.3431293
http://dx.doi.org/10.1145/3341302.3342070
http://dx.doi.org/10.1088/2058-9565/aad56e
https://openql.readthedocs.io/en/latest/
https://openql.readthedocs.io/en/latest/
http://dx.doi.org/10.1126/science.abg1919

74 Bibliography

[33] S. D. Barrett and P. Kok, “Efficient highfidelity quantum computation using matter qubits
and linear optics,” Physical Review A, vol. 71, no. 6, Jun 2005. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevA.71.060310

[34] QELab, “QELab/OpenQL.” [Online]. Available: https://github.com/QELab/OpenQL

[35] N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels, “Qx: A highperformance quan
tum computer simulation platform,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, 2017.

[36] M. A. Ali Ahmed, G. A. Álvarez, and D. Suter, “Robustness of dynamical decoupling
sequences,” Physical Review A, vol. 87, no. 4, Apr 2013. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevA.87.042309

http://dx.doi.org/10.1103/PhysRevA.71.060310
https://github.com/QE-Lab/OpenQL
http://dx.doi.org/10.1103/PhysRevA.87.042309
http://dx.doi.org/10.1103/PhysRevA.87.042309

	Introduction
	The Fujitsu Project
	Problem Statement
	Methodology
	Thesis Overview

	Background
	Quantum Information Theory
	Qubits
	Gates
	Quantum Circuits and Algorithms

	The QuTech Quantum Computer Stack
	Quantum Algorithm
	Programming Paradigm & Languages
	Quantum Arithmetic, Runtime and Compiler
	Quantum Instruction Set Architecture
	Microarchitecture
	Quantum to Classical
	Quantum Chip

	NV-centers in Diamond
	Other types of Qubit

	Quantum Computer Microarchitectures
	QuMA
	QuTech Central Controller
	Central Controller
	CC-Spin

	Quantum Networking
	Quantum Communication
	Entanglement and Teleportation
	Quantum Tools for Networking

	OpenQL
	Conclusion

	QISA and Microarchitecture
	Diamond Microarchitecture Requirements
	System Architecture
	Quantum Instruction Set Architecture (QISA)
	Refining of the QISA

	Finalized QISA and microachitecture
	Supported High-Level Instructions
	Example of decomposition

	Conclusion

	Tool
	OpenQL
	Compiler Design
	Compiler Requirements
	Diamond backend in OpenQL
	Microcode Translator Pass

	Using the Compiler
	Conclusion

	Verification
	QISA and microarchitecture
	Deterministic and precise control of the control electronics
	Classical instructions for flow control
	Basic quantum gate instructions (X, Y, Z, S and T)
	cQASM Gateset
	Diamond specific protocols and instructions

	Compiler Tool
	Conclusion

	Conclusion
	Summary
	Main Contributions
	Future Work
	Development of the Fujitsu Project
	Alignment with the Fujitsu Global Controller
	Design of the microarchitecture
	Improvements of the OpenQL Compiler

	Microarchitecture Documentation
	ISA Instructions
	Qubit Gate
	Qubit Rotation
	Qubit Readout
	Qubit Initialize
	nop
	Entanglement
	Nuclear Spin Operations
	Biasing and Checks
	Calibration
	Timing
	Standard (Classical) Instructions

	microarchitecture Instructions
	Quantum Operations
	Timing
	Additional Instructions
	Standard (Classical) Instructions

	Decomposition Microcode
	Measurement
	Initialization
	qentangle
	NVentangle
	memswap
	sweep_bias
	decouple
	calculate_bias
	calculate_voltage
	cal_meas
	cal_pi
	cal_halfpi

	List of Supported Functions and Gates of the Compiler
	Initialization
	prep_z
	prep_x
	prep_y
	initialize

	Measurement
	measure
	measure_z
	measure_x
	measure_y

	Single Qubit Gates
	Two Qubit Gates
	Three Qubit Gate
	Diamond Calibration
	cal_measure
	cal_pi
	cal_halfpi
	decouple
	Custom Rotations
	rz
	rx
	ry
	cr
	crk

	Diamond Protocols and Sequences
	crc
	rabi_check
	excite_mw
	qentangle
	nventangle
	memswap
	sweep_bias

	Timing
	wait
	qnop

	Classical Support Functions
	calculate_current
	calculate_voltage

	Bibliography

