
Efficiency of an analytical
propagator with collision

detection for Keplerian systems

Dylan Aliberti
To obtain the degree of Bachelor of Science at the Delft University of Technology.

To be defended on Friday 2 september 2022.

Bachelor Thesis
Technical University of Delft
Student number: 5170036

Delft, 29 August 2022
Supervisors: Dr. P.M. Visser

Prof. dr. J.M. Thijssen

This thesis is also available digitally at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Abstract

The aim of this thesis was to test the efficiency in practice of an analytical propagator with collision
detection for N -body Keplerian systems. This can be used to simulate the evolution of a protoplanetary
disk, which gives insight into how planetary systems form. The analytic propagator calculates collisions
one by one, while a numerical propagator would compute each time step. The idea of using the analytic
propagator is that collisions are rare in astronomical scales, such that jumping from collision to collision
and calculating it, is more efficient than calculating all the time steps that are between collisions. Sim-
plifying the orbits of the planetesimals into perfect Keplerian orbits, analytical solutions exist which are
used by the analytic propagator.

In this thesis, the runtimes of simulations were measured as well as other properties directly related
to the runtime. The overall efficiency of the algorithm with respect to N seemed to be O(N3), which is
one power less than previously predicted. The prediction was that the runtime of the full simulation is
O(N2ϵ + N4s3

Ia3 ). Here ϵ is the maximum eccentricity, s/a is the ratio of a planetesimal’s radius to the
semi-major axis of its orbit, and I is the maximum inclination. This was calculated by estimating the
total number of collisions to be O(N2s2/Ia2) and the runtime for each collision to be O(N2s/a). But
the number of collisions turns from quadratic to linear in N , implying that above a certain N almost
all planetesimals collide, which reduces the power of N by one. For comparison, the octree code has an
algorithmic efficiency of O(N logN) per time step, and the number of steps for a fixed integration time
grows as O(N4/3 logN).

ii



Table of contents

Abstract ii

List of all symbols and units iv

1 Introduction 1
1.1 Numerical efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Theory 3
2.1 Kepler orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Summary of the analytical propagator for a Keplerian system . . . . . . . . . . . . . . . . 6

2.2.1 The main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Main loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Calculating the collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Experimental Method 11
3.1 Creating a random disk of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Random rotations for the orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Radial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Approximation for small eccentricities . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Generalization for large eccentricities . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Pair test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Full run test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Results and discussion 17
4.1 Pair test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Full run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Additional comments from development of the code . . . . . . . . . . . . . . . . . . . . . . 35

5 Conclusion 36

References 38

A Appendix 39
A.1 Visualization of the planetary disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.1.1 Orthonormal basis of the orbital plane . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.1.2 Position from true anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.1.3 True anomaly from position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.1.4 Position from eccentric anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.1.5 Eccentric anomaly from position . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.1.6 Eccentric anomaly from time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.2 Technical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



List of all symbols and units

See table 1 for units/constants, and table 2 for symbols. In this report a set of astronomical units is
used (table 1) rather than SI units. This way the accuracy of floating point numbers can be improved.
Floating point numbers lose accuracy in some cases when working with very large or very small numbers,
especially with both of them at the same time.

Notation conventions
Vectors will be typed in bold letters.
For a vector v, v̂ = v

|v| denotes the normalized vector.
v ·w denotes the dot product.
v ×w denotes the cross product.

symbol meaning value in SI units value in astronomical unit system

AU astronomical unit 1.49598 ·1011 m 1 AU
M⊙ mass of the Sun 1.9884 ·1030 kg 1 M⊙
y year 31536000 s 1 y

G gravitational constant 6.67384 ·10−11 m3kg−1s−2 39.42 AU3M−1
⊙ y−2

S⊙ radius of the Sun 6.963 ·108 m 0.00465 AU

Table 1: Used units and constants. All SI values and conversion factors except for year are taken from Binas [2] and
manually converted.

iv



symbol quantity unit

a semi-major axis AU
b semi-minor axis AU

c = aϵ semi-focal separation AU
l semi-latus rectum AU
L angular momentum M⊙AU2y−1

ϵ eccentricity vector -
µ̂ L̂× ϵ̂ -
� ascending node rad
I inclination rad
ϖ argument of periapsis rad
ν true anomaly rad
E eccentric anomaly rad
R rotation matrix -

t time y
runtime s

Tsim maximum simulation time y
V volume AU3

r position vector AU (three numbers)
r radial distance AU
⟨r⟩ time-average radial distance AU

S radius of central body AU
M mass of central body M⊙
N number of particles -
m mass of planetesimal M⊙
s radius of planetesimal AU

Table 2: All symbols used. The units are included in the astronomically defined system

v





1
Introduction

Thanks to modern technology, we know a lot about the Solar system, and a lot of objects are tracked
continuously. To give an idea, over a million objects are known orbiting the Sun [4]. However, the way
the Solar system was formed is still a big topic of debate. To gain insight in formation of solar systems,
simulating the formation may help. Such a simulation would start with a protoplanetary disk orbiting
the central body, with a lot of planetesimals colliding and merging into bigger objects.

Including collision detection in a simulation increases the time needed to compute it. Even just
simulating different objects attracting each other already gets computationally expensive quite fast,
because for N bodies attracting each other, the number of pairs for which the forces need to be calculated
scale with N2. Some clever algorithms exist that group objects together in bigger chunks and calculate
gravity between chunks, for example the Octree code [5]. This greatly reduces the number of pairs that
need to be calculated, while still maintaining a reasonable accuracy. The algorithmic efficiency per time
step of this code is O(N logN). Collision detection makes the computation harder, since all objects need
to be checked with the nearest neighbours for any collisions. For a fixed integration time, the number of
steps grows as O(N4/3 logN) when including collision detection [9].

In this thesis, an analytic propagator is used instead of a numerical one. In this thesis, Visser’s algo-
rithm for collision detection in N -body Kepler systems [9] is tested. The analytic propagator calculates
all collisions and jumps through these collisions one by one. In order to do this, the algorithm first goes
through all pairs of planetesimals and makes a list of all possible collisions between them. For a proto-
planetary disk orbiting a central body, this initialization process is estimated to be of order O(N2ϵ) with
ϵ being the maximum eccentricity. In the second phase, the algorithm jumps from collision to collision,
applying them and updating the rest of the list with any changes caused by the collision. Because plan-
etesimals generally have a very small radius compared to the semi-major axis of their orbits (we call this
ratio s/a), collisions are very rare. On the contrary, the efficiency of the octree code is independent from
s/a, since checking nearest neighbours happens independently from the radii of the planetesimals. The
algorithmic efficiency of the analytical propagator is O(N2ϵ+ N4s3

Ia3 ), where I is the maximum inclination
in the protoplanetary disk. The order of N is higher than that of the octree code, but by s/a being
small, the analytic propagator is still more efficient when the population of planetesimals is relatively
sparse.

In the chapter 2, a summary of the analytical algorithm is given, as well as some properties of Kepler
orbits necessary to understand it. In this paper this algorithm is tested in the context of a protoplanetary
disk. The way this disk is randomly generated for the simulation is described in chapter 3. The runtime
of the simulations is recorded, as well as other properties directly related to it. In the first part of chapter
4 part of the initialization is tested. In the second part, full simulations are experimented on. For the
interested reader, the appendix includes methods for visualizing what is happening inside a simulation,
which proved very useful for debugging and for presentation purposes.

1.1. Numerical efficiency
We are interested in the efficiency of Visser’s algorithm. The main goal is therefore validating the order of
efficiency of the whole algorithm. In order to get the big picture, we test different parts of the algorithm.

1



See table 1.1 for an overview of order estimations, copied from Visser’s paper, including the notes.

Table 1.1: Algorithmic efficiency

algorithmic step runtime memory
∝ O(·) ∝ O(·)

create particle list N N
sort particle list N logN 1

create collision list N2ϵ
N2s

a

sort collision list
N2s

a
log

N2s

a
1

reduce particle list logN 0
create κ fragments κ κ
sort κ fragments κ log κ 1
merge particle lists N + κ 1

reduce collision list
Ns

a
log

N2s

a
0

create new collision list κN
κNs

a

merge collision lists
N2s

a
+

κNs

a
1

total simulation N2ϵ+
N4s3

Ia3
N2s

a
+

N4s3

Ia3

Order estimations, in big O, of the time and memory requirement in Keplerian collision detection. The
top shows the initialisation (N is initial particle count), the middle rows managing one collision, the
bottom is for the full simulation (N is final particle count). This total is found because there are an
expected O(N2s2/Ia2) collisions in any fixed simulation time. For comparison the time complexity for
tree codes scales as O(N4/3I−1/3 logN). The number of fragments κ produced in a collision may be set
to κ = 1 if collisions only result in mergers and/or scattering. The particle list and the collision list
have respective lengths O(N) and O(N2s/a). This results in the estimates for the given running times
for the reductions of the particle list and the collision list.

2



2
Theory

2.1. Kepler orbits
In this section some properties of Keplerian orbits are listed that will be used later on in this report.

Kepler coordinates
An elliptical orbit can be described by a set of six Kepler coordinates: The semi-major axis a, eccentricity
ϵ, argument of periapsis ϖ, inclination I, ascending node � and the true anomaly ν [6]. The semi-major
axis and eccentricity define the size and shape of the orbit. For an ellipse, the semi-major axis is half its
length, and the eccentricity is a number indicating how stretched the ellipse is, or more specifically, the
focal distance divided by the semi-major axis. ϵ ≥ 1 results in escape orbits (parabolas and hyperbolas).
The meaning of the first three angles is illustrated in figure 2.1. The true anomaly is the angle between
the periapsis and where the object currently is.

Eccentricity vector
An alternative way of describing the rotation of an orbit is by a vector instead of three angles. To do
this, we can use the so-called Laplace-Runge-Lenz vector A, defined by

A = mv ×L−GMmr̂. (2.1)

This vector is a conserved quantity for any central force following the inverse square law [3], which is
the case for gravity. This vector points from the central body in the direction of the periapsis. Instead
of the Laplace-Runge-Lenz vector, in this thesis we work with the eccentricity vector. This points in
the same direction, but its length is defined to be the eccentricity of the orbit. This is useful for certain
calculations. Along with the orbital angular momentum vector L, this vector fully defines the orbit [3].
The vectors even have one number more than is strictly necessary to define an orbit, but using these
vectors is useful for calculations.

Rotation Matrix for Kepler orbits
A Keplerian orbit can be expressed as a rotation matrix acting on an orbit in the reference plane, with
it’s periapsis on the positive x-axis. The rotation matrix is expressed by the following three standard
rotation matrices [6]

R =

cos� − sin� 0
sin� cos� 0
0 0 1

1 0 0
0 cos I − sin I
0 sin I cos I

cosϖ − sinϖ 0
sinϖ cosϖ 0
0 0 1

 . (2.2)

Polar formula for conics
Let r and θ be the polar distance and angle respectively, l the semi-latus rectum and ϵ the eccentricity.
Then conics (circles, ellipses, parabolas and hyperbolas) can be expressed using the formula [1]

r =
l

1 + ϵ cos θ
(2.3)

3



Figure 2.1: Illustration of the meaning of the orbital angles.
Source: Solar System Dynamics [6]

For parabolas this equation has an asymptote at θ = π, and hyperbolas have two asymptotes at
± arccos −1

ϵ . The branch physically corresponding to actual hyperbolic orbits of particles lies within
− arccos −1

ϵ < θ < arccos −1
ϵ . See figure 2.2 for a visualization.

Keplerian orbits have the shape of such conics, and the semi-latus rectum l for such orbits corresponds
physically with orbital angular momentum [1]. Let L2 be the square magnitude of the orbital angular
momentum, G the gravitational constant, M the mass of the central body and m the mass of the particle.
Then the semi-latus rectum is calculated by

l =
L2

GMm2
. (2.4)

4



y

xϵ = 0
ϵ = 1

2

ϵ = 1

ϵ = 3
2

Figure 2.2: Plot showing four different Kelperian orbits, each with the same orbital momentum, and increasing eccentricities
from 0 to 1.5 in steps of 0.5. This results in respectively a circle, ellipse, parabola and hyperbola. The blue dot represents
the central body. This plot was made using the procedures described in chapter A.1, as a (successful) test. The central
body is not to scale.

5



2.2. Summary of the analytical propagator for a Keplerian system
This report contains experiments done on Visser’s algorithm for collision detection for N -body Kepler
systems. In this section we summarize the key points of the algorithm. Please see Visser’s paper [9] for
the full details.

2.2.1. The main idea
Contrary to numerically integrating a set of equations of motion with a fixed time step, this algorithm
solves the (unperturbed) motion of the planetesimals analytically. In order to do that, the assumption
is made that all planetesimals follow a perfect Kepler orbit around the central body. Sorted lists of all
planetesimals and potential collisions are maintained. The main loop of the algorithm applies the earliest
collision in the list and updates the planetesimal and collision list accordingly. This way in each step,
the algorithm jumps to the next collision. Collisions between planetesimals are very rare since the ratio
of their radius to the semi-major axis of their orbit, which we refer to as s

a , is very small. This way, this
analytic propagator can have larger time steps compared to numerical ones. In the limiting case where
the planetesimal radius goes to zero, the algorithm stops after initialization.

2.2.2. Initialization
We have a list of planetesimals indexed j ∈ {1, ..., N}, of which we store the following variables:

{t0j , aj , cj , sj , mj , r0j , Lj , ϵj , ωj}. (2.5)

Here, t0 is the time of creation, a and c are the orbital radius and focal distance, s is the planetesimal
radius, m is the planetesimal mass, r0 its position at t0, L the orbital angular momentum vector, ϵ the
eccentricity vector, ω the orbital frequency.

The planetesimals are randomly generated within parameters in order to form an astrophysical disk
of near-circular orbits. More on that in the chapter 3, experimental method. After that, the planetesimal
list is sorted by increasing value of periapsis, so that we can use sweep and prune. That means that,
when considering pairs of planetesimals for a possible collision, we only look at pairs whose orbits overlap,
in the sense that the apoapsis + radius of the inner planetesimal exceeds the periapsis − radius of the
outer one, because else the planetesimals will trivially never collide. Now, using the sweep and prune,
we consider all overlapping pairs of planetesimals and compute a list of all possible collisions, which is
sorted, so that the earliest collision is always on top. The way possible collisions are computed will be
explained in its own subsection 2.2.4.

2.2.3. Main loop
For the main loop I will quote the steps from Visser’s method and add comments to explain the steps:

1. If the collision list is empty, end the simulation.

2. Take the pair (i, j) with the soonest collision: the first in the list.
A pair of particles i and j is meant. The collision list contains pairs that are on collision course
and the time at which they would collide.

3. Update the time t to the time t1(i,j) of the collision.

4. Remove from the pairs list any pair containing i and any pair containing j.
Since the particles collide, they don’t exist anymore afterwards (they are replaced with a larger
particle that is the result of them merging). Hence, any future collisions involving those 2 particles
will not happen anymore.

5. remove from the particle list the particles i and j.

6. If the orbit of the new particle intersects the central mass or is unbound, go to the next collision
on the list.
In other words, if the new particle does not get a stable orbit, no further calculations are needed
since the new particle is not staying, and we move on to the next collision (next iteration of

6



the main loop). Note that the approximation is made that a particle with an orbit escaping or
intersecting the central body would not collide with other particles. Although in theory it can
collide, such collisions are extremely rare to the point that the statistics are not influenced by this
approximation. If such precision is needed, the algorithm can be extended with analytic solutions
for hyperbolic orbits intersecting either other hyperbolic orbits or elliptical ones.

7. Create new particle(s) defined by {t1(i,j), a, c, s,m, r0,L, ϵ, ω}.
Note that the particles possibly being multiple ones is only for models that consider the particles
breaking up in fragments or when considering gravitational scattering. For this report we simply
merge the particles, always resulting in 1 particle. The values of the new particle are calculated by
applying conservation principles.

8. For any new particle, consider the other particles and decide if the pair is on collision course. If
this is the case, calculate the time of the earliest collision. This step is further broken down in its
own subsection 2.2.4.

9. Make a sorted list of the new collision possibilities with a record of the collision time and the pair,
soonest collision first.
With new particles come new possible collisions which need to be calculated, and are included into
the collision list in the next step.

10. Merge this sorted list with existing sorted list of collision possibilities into a full list of pairs, sorted
by time of the collision event, soonest collision first.
Contrary to sorting an arbitrary list, merging 2 sorted lists is a linear operation with respect to
number of items, and since the new collision list is a small list, sorting it is also a small operation.

2.2.4. Calculating the collisions
Before proceeding, recall that this calculation only has to be done on the pairs that come through the
sweep-and-prune, which makes a lot of difference for small eccentricities.

1. The Minimum Orbit Intersection Distance (MOID) is calculated. In order to do this, the two nodes
are computed where the orbital planes intersect each other, see figure 2.3. The movement at the
planetesimals is then linearized at those nodes, allowing us to compute the closest distance. Since
this uses an linearization, it is an approximation of the MOID. This approximation fails when the
difference in inclination of the orbits is very small. More specifically, this inclination needs to be
larger than (s1 + s2)/(a1 + a2) in order for the approximation to work. Since s/a is typically very
small for planetesimals in an astrophysical disk (e.g. 10−5 for objects like Earth), we are safe. If
this MOID is smaller than the sum of radii of the two planetesimals, they come close enough to be
able to collide, so we need to perform the next step.

2. The collision time is calculated. In order to do this, first Calculate the earliest passage times. Both
planetesimals will be exactly at the potential collision position at a certain time, modulo the orbital
period. From both planetesimals the earliest such time is calculated. This still has to be done at
both nodes. Now, we need to find the smallest integers k and l such that if planetesimal 1 completes
k orbits and planetesimal 2 l orbits, that they are at the collision place simultaneously. This can
be done efficiently making use of continued fractions. It is a bit complicated, but I encourage you
to read the thesis of Aron Schouten [8]. It contains a good explanation of it, backed up by test
results.

7



x

y

z

Figure 2.3: Two circular orbits with inclinations of 0 and 10 degrees. The nodal line is the line where the orbital planes
intersect each other, which is in this case the y-axis. For nonzero difference in inclination, the nodal line is well-defined.
Since planetesimals are small compared to their orbit, collisions must happen close to the nodal line, because the orbital
planes are too far separated far from the nodal line.

8



Figure 2.4: Image obtained using the visualization methods from the appendix A.1. This is a test with two very eccentric
orbits, that have a MOID close enough for collision on the right. Note that the simulations in the experiments done in this
thesis do not have such high eccentricities. This is solely for demonstration. The purple sections represent orbital sections
going from the planetesimals initial position to the place of possible collision. Small green arrows are visible near the place
of collision. Figure 2.5 zooms in on the place of collision.

9



Figure 2.5: The place of collision between two very eccentric orbits in a test simulation. This is a zoomed in version of
figure 2.4. Here, the green arrows can be clearly seen. They point from the orbital nodes to the place of collision. It can
be seen that in this case the nodal linearization works well.

10



3
Experimental Method

3.1. Creating a random disk of particles
In order to test the algorithm, we want to create a random disk of particles orbiting the central body,
resembling a proto-planetary disk. Before moving on, we note that the computer can generate random
numbers uniformly distributed between 0 and 1. Let’s call this random variable ξ. ξ can be generated by
built-in pseudo-random number generators. We generate a seed for the pseudo-random number generator
based on the current system time, so that each time a seed is generated the results are different from
last time. We also include this seed when saving data from the simulation, so that the simulation can
be reproduced if further inspection is needed.

3.1.1. Random rotations for the orbit
We choose the argument of periapsis ϖ and the ascending node � uniformly between 0 and 2π. That
is, their values are calculated with 2πξ so that ϖ ∈ [0, 2π). If the cosine of the inclination I is chosen
uniformly between 0 and 1, the distribution of all angles together form a uniform sphere [7]. However, in
this case we are making a disk, so let Imax be the maximum inclination in the disk. Then the minimum
value for cos I is cos Imax, and maximum value is 1. Hence, cos I = cos Imax +(1− cos Imax)ξ. By taking
the arccosine we finally get an explicit formula for randomly generating I:

I = arccos
(
cos Imax + (1− cos Imax)ξ

)
. (3.1)

3.1.2. Radial distribution
We want to make a uniform disk with a constant particle number density. Earlier (subsection 3.1.1) we
have determined a way to choose random angles within a disk. Now let r be the distance between the
particle and the central body. For circular orbits r is the radius of the orbit, but I will link r to elliptical
orbits in subsections 3.1.3 and 3.1.4. Since we are applying the algorithm in 3D space, the volume of
a sphere scales with a power of 3 with respect to its radius. Hence, we expect to find a cumulative
distribution function for r that follows a power of 3.

Let’s calculate the volume of a uniform disk, with as boundaries Imax and certain rmin and rmin.
This is a kind of torus with a circularly bent trapezium as its base shape, shown in figure 3.1. This is a
crude model for real planetary disks, but the way we defined it allows us to compute the volume using
spherical coordinates. Let r̂ ∈ [0,∞) be the distance to the origin, θ ∈ [0, 2π) be the azimuthal angle and
ϕ ∈ [0, π] the altitude angle. For an inclination of zero, the vector pointing to the position is horizontal,
meaning that ϕ = 1

2π. The lower and upper bounds of ϕ are then 1
2π ± Imax. We compute the volume

V of the disk in the same way we would for a sphere, but restricting ϕ:

V =

∫ 1
2π+Imax

1
2π−Imax

∫ 2π

0

∫ rmax

rmin

r̂2 sinϕdr̂dθdϕ. (3.2)

Computing the inner two integrals we get

11



V =
2π

3
(r3max − r3min)

∫ 1
2π+Imax

1
2π−Imax

sinϕdϕ, (3.3)

where we can already see the cubical dependency of V on r.
Also evaluating the ϕ part, we finally get

V =
4π

3
(r3max − r3min) sin Imax. (3.4)

Note that, as a quick validation, substituting Imax = 1
2π and rmin = 0, returns the volume of a sphere.

We will now compute the cumulative distribution of r such that the distribution is uniform along the
whole disk. In the case of uniformity, the chance of finding the random particle closer to the origin than
r equals the ratio of the volumes:

P (r < R) =
4π
3 (R3 − r3min) sin Imax

4π
3 (r3max − r3min) sin Imax

=
R3 − r3min
r3max − r3min

, R ∈ [rmin, rmax]. (3.5)

In order to randomly pick r, we write

R3 − r3min
r3max − r3min

= ξ, (3.6)

which, by inverting, results in the following formula

r =
(
(r3max − r3min)ξ + r3min

) 1
3

. (3.7)

12



x

y

z

Figure 3.1: The disk. It is a kind of torus, with a circularly bent trapezium as its base shape. An intersection through the
middle of the disk is shown in green, where we can see the bent trapezium. The inner part is thinner than the outer part,
due to the boundary being an angle, namely the maximum inclination.

13



3.1.3. Approximation for small eccentricities
For small eccentricities, the orbits are nearly circular. Hence, the semi-major axis can be treated as if
it is a radius of a circular orbit. We proceed by picking a random radius using equation (3.7), which we
set as the semi-major axis. We also pick a random eccentricity ϵ ∈ [0, ϵmax] uniformly. Because the orbit
is nearly circular, the true anomaly is approximately equal to the mean anomaly. Thus we can pick a
true anomaly uniformly between [0, 2π], resulting in the particle having approximately uniform chance
of appearing anywhere on the orbit.

3.1.4. Generalization for large eccentricities
For high eccentricities, the circular approximation does not work anymore. Instead, we make an extra
requirement that the disk should be uniform regardless of time. We define the time-averaged radius ⟨r⟩
as

⟨r⟩ = 1

T

∫ T

0

r(t)dt, (3.8)

where T denotes the orbital period and t the time. Now we use Kepler’s equation [6]

t =
E − ϵ sinE

ω
(3.9)

for making a variable substitution of t by E, resulting in

⟨r⟩ = 1

2π

∫ 2π

0

r(E)
1− ϵ cosE

ω
dE. (3.10)

For the next step we use the eccentric formula for r [6]

r(E) = a− aϵ cosE, (3.11)

where a is the semi-major axis. Substituting this into the integral yields

⟨r⟩ = a

2π

∫ 2π

0

(1− ϵ cosE)2dE, (3.12)

which evaluates to

⟨r⟩ = a
(
1 +

1

2
ϵ2
)
. (3.13)

Having obtained a formula for the average radius ⟨r⟩, we can now pick our random orbital elements. We
choose ⟨r⟩ randomly according to equation (3.7). We then pick ϵ ∈ [0, ϵmax] uniformly. We then calculate
a using a rewritten form of equation (3.13)

a =
⟨r⟩

1 + 1
2ϵ

2
. (3.14)

Furthermore, instead of randomly picking the true anomaly uniformly, we pick the mean anomaly uni-
formly between 0 and 2π, since we want the initial distribution to not have any time-dependency. In
fact, if the true anomaly is chosen uniformly for elliptical orbits, particles are biased to be more in the
parts of their orbits closer to the central body. The result is that, in the first few years, a lot of particles
come from their periapsis outwards, creating a visible explosion-like effect if visualized. That is why we
now uniformly pick the mean anomaly instead of the true anomaly. Using the fixed point iteration given
by equations (A.12) and (A.13), we can then calculate the eccentric anomaly, through which a particle
can be positioned. The fixed point iteration is a numerical approximation, but because it is used to
randomly place particles, small errors do not make noticeable differences.

14



−2 −1 0 1 2

−2

−1

0

1

2

x (AU)

y
(A

U
)

−2 −1 0 1 2

−2

−1

0

1

2

x (AU)

√
2(
y
+
z
)

(A
U

)

−2 −1 0 1 2

−2

−1

0

1

2

x (AU)

z
(A

U
)

Figure 3.2: Orthogonal projections of a planetary disk randomly generated using the procedures described in section 3.1.
From top to bottom: top side, diagonal view, and side view. The blue dot is the central body, and the red dots are the
1000 planetesimals orbiting the central body. The size of the planetesimals is not to scale (they would be invisibly small
otherwise).

15



3.2. Simulation parameters
3.2.1. Pair test
One thing we are interested in is how many pairs of particles the algorithm has to check. In an N -body
simulation, the number of all possible pairs is

(
N
2

)
= N2−N

2 . Each pair of particles has 2 intersection
nodes, so the maximum possible number of nodes that the algorithm has to consider is N2 − N . For
testing the number of pairs, we omit the calculation of what time the calculations actually happen. This
is because we are only testing the number of pairs that the algorithm has to consider, which makes
calculating the time unnecessary. This way more data can be collected in the same time. The run time
is still measured, but instead of the full initialization, it is the time it takes to calculate the pair nodes
without the time at which collisions take place. We will refer to this procedure as the pair test. We are
interested in the impact of N , max I, max ϵ and s/a, since they can directly impact the run time. We
generate 4 sequences of 100 simulations (so 400 in total), one sequence for each variable. That variable
is then randomized each of the 100 simulations. See table 3.1 for all parameters.

Parameter Value Value when randomized

S 0.00465 AU
M 1 M⊙
N 104 106ξ (pair test)

105ξ (full run test)
104ξ (full run increased s)

max I 10−3 rad π
2 10

−7ξ rad
min a 1 AU
max a 2 AU
max ϵ 10−3 10−5ξ

m 10−6 M⊙
s 2 · 10−5 AU 10−1−5ξ AU

2 · 10−3 AU (full run increased s)
Tsim 106 years

Table 3.1: Simulation parameters for all experiments. One variable is changed at a time, which gets a random value as
shown in the right column, while all other variables are set to the value in the middle column.

3.2.2. Full run test
We want to know how long it takes for a full simulation to finish. The simulation first has an initialization
phase where the initial collision list is calculated. After that the main loop starts running, where in each
step a collision is applied and collisions with the new planetesimal are calculated. Hence we are interested
in the run time for the initialization and for each step. The runtimes of the initialization and the steps
in the second phase are recorded. We take 100 simulations where we take a random N each time, and
run it fully. This will be referred to as the standard simulations. Besides the standard simulations we
also compute another set of 100 simulations, this time with increased s = 10−3 · amax. This idea came
after looking at the standard simulations, because the results implied there is more to see on another
scale. See chapter 4 for explanation.

For both sets of simulations, the following graphs are tracked:

• Runtime (initialization and phase 2) vs N

• Runtime per frame vs N

• Length of collision list throughout the simulation vs N

• Initial length of collision list vs N

• Number of collisions vs N

• Remaining number of planetesimals vs N

16



4
Results and discussion

4.1. Pair test
A total of four variables have been varied, which are the number of particles N , the maximum eccentricity
ϵmax, the maximum inclination Imax and the planetesimal radius s. For each of those, the number of
checks, pair nodes and runtime have been measured, shown in figures 4.1 to 4.8. The label "checks"
indicates the number of planetesimal pairs that got through the sweep-and-prune as a possible collision
pair, hence the number of pairs that need to be checked by the algorithm. "pair nodes" indicates the
number of nodes where the orbits of a pair of planetesimals gets close enough to collide, which are a
maximum of 2 for each pair. Not all such nodes result in a collision, because the planetesimals might
collide with other planetesimals sooner, or their orbital frequencies might have a ratio such that the
collision time is outside the simulation time. Note that many of the figures contain dashed lines, which
correspond to integer powers of the variable on the x-axis, in order to get a better picture of the shape
of the graph.

17



Figure 4.1: Checks and pairs vs number of particles N on a double log plot. The dashed lines have a slope of 2, matching
the measurements. This indicates a quadratic dependency on N . This is the expected result, since the maximum possible
number of pairs is also quadratic in N . Note that the sweep-and-prune does a great job. The maximum number of pairs
is, in the double log plot, almost the line N2, but the number of checks (the blue line) is a lot lower. For example at
N = 106, the number of checks is 109, while the maximum would be almost 1012. We also see that the number of pairs is
less than the number of checks, even though its maximum value is double the number of checks (two nodes for each pair of
planetesimals). This is expected, because the fact that two orbits overlap in the radial part does not mean that the orbits
actually come close enough for collision.

18



Figure 4.2: Pair test runtime vs number of particles N on a double log plot. The runtime shown here is the time it took
for the computer to perform the pair test (initialization without calculating collision time). For low N the relationship is
linear, but as N gets higher the graph becomes quadratic. This is illustrated by the dashed lines. The result is expected.
That is because creating the particle list is O(N) and sorting the particle list is O(N logN) which is almost linear in the
scope of this graph. The number of pairs scales with N2( s

a
+ ϵ), which starts becoming dominant in the region N > 1

s
a
+ϵ

.

In this experiment ϵ = 10−3 and s
a
≪ ϵ, so we expect the quadratic dominance to start from order of magnitude 103. And

in fact, this nicely agrees with the graph.

19



Figure 4.3: Checks and pairs vs maximum eccentricity on a double log plot. The number of checks scales linearly with ϵ,
which is expected form the theory for s

a
≪ ϵ, which is the case here. It does show a tendency to flatten out at the sides of

the graph. On the right side, the graph stops at ϵ = 1. For eccentricities equal or greater than 1, the orbits are not closed
anymore. Simulation of escape orbits were omitted because they would make negligible difference in the statistics. And in
fact the maximum number of checks is N2 = 108, which is nearly reached for ϵ close to 1, confirming that continuing with
eccentricities > 1 cannot make significant difference. Indeed, with such high eccentricities actually all orbits overlap with
each other and the sweep-and-prune becomes useless at decreasing the number of checks. For the lower end of the graph,
we recall that the number of checks scales with N2( s

a
+ ϵ), and as ϵ goes below 10−5 actually the s

a
becomes dominant,

which was constant when varying ϵ, hence the curve flattens out below ϵ = 10−5.
For the number of pair nodes, a clear turning point is visible at ϵ = 10−3. The graph starts constant, and switches to an
almost linear relation. The dashed line shows a constant and linear relation, and as we can see, the slope of the number of
pair nodes is slightly less than 1. Note that at the left of the graph, the number of checks is slightly lower than the number
of pair nodes, which is because each check results in a pair that can have up to two pair nodes. For ϵ to become dominant,
we need N2ϵ > N2 s

a
+N , thus ϵ > s

a
+ 1

N
, which is at approximately 10−4. This is one order of magnitude lower, which

might be due to a different constant factor, although the turning point seems too high.

20



Figure 4.4: Pair test runtime vs maximum eccentricity ϵmax on a double log plot. The graph is roughly linear, illustrated
by the dashed line, but flattens at the edges. This corresponds with figure 4.3, which showed a similar curve for the number
of checks. For high eccentricities, the algorithm needs to do a lot of checks, even though only a small part ends up us a
pair. Since most of the time is spent doing the checks, the graph of the runtime has approximately the same shape. Note
however, that this curve seems more smooth than the checks curve in figure 4.3, which must be due to the part of the
algorithm outside the loop that is taking up a small part of the runtime.

21



Figure 4.5: Checks and pairs vs maximum inclination on a double log plot. The number of checks is independent of
inclination. The sweep-and-prune checks if 2 orbits overlap radially by comparing periapses, apoapses and radii of the
planetesimals. The inclination is independent of those variables, as shown by the graph. For the number of pair nodes,
2 turning points are visible in the graph: 2 constant parts with a linearly decreasing part in the middle. An inclination
below s/a = 10−5 implies that the orbital planes are aligned so close, that the planetesimals may collide anywhere on the
orbit. It follows that making the inclination any smaller would not add extra pairs anymore. Again, on the left of the
graph the number of pair nodes is higher than the number of checks, because each checks results in up to two pair nodes.
In the middle part of the graph, as I gets bigger than s/a, the number of pair nodes become less and less. The collisions
can only happen closer and closer to the orbital nodes, reducing the probability of two planetesimals forming a pair. This
goes on until the right turning point is reached around 103. The radius around the node at which the collisions can happen
has a nonzero minimum, namely s1 + s2. Having such a minimum implies that the graph needs to flatten above a certain
I, which is the case here, although it is not clear why that turning point is at 103.

22



Figure 4.6: Runtime vs maximum inclination on a double log plot. The inclination does not seem to have any significant
influence on the runtime. Since the number of checks is constant with respect to inclination, the only difference it makes
is in the number of pairs. That explains why the impact of inclination on runtime is a lot smaller than the impact of the
other tested variables since they also affect the number of checks.

Figure 4.7: Checks and pairs vs radius of planetesimals on a double log plot. Note that amax stays constant at 2 AU, while s
is changed. The number of checks starts significantly and linearly depending on s from about 2·10−3 AU, which is indicated
by the dashed line. For smaller s the radii of the planetesimals do not dominate the sweep-and-prune comparisons, but
when s gets bigger than ϵa, the radii of the planetesimals start making a difference in the sweep-and-prune. The actual
pairs however still depend linear on s, since small planetesimals in general lead to fewer collisions. Once again, the number
of pair nodes is slightly more than the number of checks, because each check results in up to two pair nodes.

23



Figure 4.8: Runtime vs radius of planetesimals on a double log plot. For s > 10−5 AU the graph resembles the number
of checks from figure 4.7, which makes sense since much time of the algorithm initialization is spent in doing the checks.
For lower s the runtime does not get lower anymore, indicating that some minimum time has been reached, which depends
on other variables. The graph has a negative slope at low s. However, the expectation was that the slope would be
non-negative everywhere. In a full initialization this could be due to the calculation of the collision time taking longer
because of the low radii, but that cannot be it, since in the pair test the initialization is not fully done. The dashed line
illustrates the linear part and a constant line for comparison.

24



4.2. Full run
The experiments in this section are about simulations running fully. The simulation has an initialization
phase, and a second part which we will call "phase 2" here. Dashed lines of integer power relationships
are included in some graphs for comparison. Simulations with two sets of parameters were tested, with
the only difference being that s was increased to 10−3 in order to observe what happens in the region
N > a/s. We will call the first simulations the standard ones, and refer to the other simulations as the
ones with increased s.

25



Figure 4.9: Runtime vs N for s = 10−5 · amax on a double log plot. Up to about N = 3 · 102 the initialization dominates
the total time, and then phase 2 takes over before the initialization gets to the quadratic region. As shown by the dashed
line, this first part is linear in N . Once phase 2 becomes dominant, the total runtime depends on N with a power of 3. In
figures 4.13 and 4.11 we see that the number of collisions grows quadratically in this region, and the runtime per frame is
linear, so together it becomes a power of 3. The graph does seem to be slightly less steep at the end, suggesting that there
is more to see. Increasing N was not an option due to very high runtimes, so this was the motivation to run the simulation
with increased s.

26



Figure 4.10: Runtime vs N for s = 10−3 · amax on a double log plot. The graph starts with the same shape as in figure
4.9, but scaled differently due to the larger s. Again, the initialization runtime dominates the first part, in this case until
halfway between N = 10 and N = 100. From that point, phase 2 is dominant. The graph increases with a power of 3,
until the next turning point above N = 100. From that point it temporarily increases quadratically, until halfway between
N = 103 and N = 104, from which the runtime again increases with a power of 3. The dashed line illustrates this rational
relationship.
Contrary to the standard simulations, the runtime of the frames in this set of simulations has an almost quadratic rela-
tionship with N (see figure 4.12.
The turning point after 102 can be explained by figure 4.14, where we see that the number of collisions, and hence the
number of frames, turns linear instead of quadratic, hence the total runtime loses one power of N .

27



Figure 4.11: The runtime of all frames vs N for s = 10−5 · amax on a double log plot. A frame represents one loop in
the algorithm, thus one collision being applied. Each color represents another simulation, although the dots in the graph
overlap a lot. The dashed line shows a linear function for comparison. The runtime seems to be linear at first, although
it appears to get slightly steeper at the far right of the graph. This is the expected result. From table 1.1, the most
dominant parts of the frame runtime are N2s/a and N . Hence, the runtime should be linear at first, and turn to quadratic
for a sufficiently large N , which can be expected at N > a/s. Note that some points lie between 10−7 and 10−6 seconds.
These must be the cases where the new merged planetesimal collided with the central body. In that case nothing has to be
calculated anymore and the algorithm jumps to the next collision. While testing, 10−7 seemed to be around the resolution
of the clock used, so it is unclear if those cases take up the full 10−7 seconds or if they get computed even faster.

28



Figure 4.12: The runtime of all frames vs N for s = 10−3 · amax on a double log plot. A frame represents one loop in
the algorithm, thus one collision being applied. Each color represents another simulation, although the dots overlap a lot.
Contrary to figure 4.11, here the dashed line shows a quadratic function for comparison. The actual relationship is almost
quadratic, but definitely more than linear. Although the dominant parts of the frame runtime are decided by integer powers
of N , there are still a lot of other nonlinear parts that can cause the graph to not follow the shape of an integer-power
function. Since s/a is increased to 10−3 in these simulations, all the terms in table 1.1 that contain s/a get more dominant,
so in this case the N from "merge particles lists" is not dominant anymore, and hence the graph looks more quadratic than
linear.

Figure 4.13: Total number of collisions vs N for s = 10−5 · amax (each dot represents one simulation) on a double log plot.
As is mentioned in the caption of table 1.1, the number of collisions is expected to increase quadratically. At the right side
of the graph, however, the slope seems to get lower. The dashed line shows quadratic and linear slopes. Figure 4.14 looks
at a broader range of this graph, giving more insight.

29



Figure 4.14: Total number of collisions vs N for s = 10−3 · amax on a double log plot. Just as in figure 4.13, the graph
starts quadratically. As N gets larger, the graph turns linear. The dashed line shows a quadratic and linear slope for
comparison. This makes sense, because the number of collisions cannot grow quadratically forever, since that would mean
there are more collisions than planetesimals, while in each collision at least one planetesimal disappears. In other words,
for sufficiently large N , almost all planetesimals collide eventually. Note that the dashed line is slightly lower than exactly
N , but comes very close to being exactly N for high N .

30



Figure 4.15: Lengths of the collision lists vs N throughout the simulations with s = 10−5 ·amax on a double log plot. Each
color represents a different simulation. We can see that, for simulations starting with low number of planetesimals, not
many collisions happen while the length of the collision list drastically decreases to zero, ending the simulation. For the
larger simulations however, we see that the length of the collision list roughly follows the same quadratic relationship as
with the initial length. Remarkably, in the large simulations, the slope at which the length of the collision list decreases
is a lot smaller, almost flat. The dashed line shows a quadratic function for comparison. Specifically the initial lengths of
the collision lists are illustrated in figure 4.17.

31



Figure 4.16: Lengths of the collision lists vs N throughout the simulations with s = 10−3 · amax on a double log plot.
Each color represents a simulation. Just as in figure 4.15, the same quadratic line is visible for all the initial lengths. The
dashed line is a quadratic line for comparison. In figure 4.15 the collision list moves roughly along the quadratic line as it
shrinks down during the simulation, except for the two ends of the line, but in this figure the graphs deviate a lot more
from the quadratic line. The quadratic relationship with the starting number of planetesimals still holds (more on that in
figure 4.18), but for large N the list length seems to decrease linearly with each frame instead of quadratically.

Figure 4.17: Initial lengths of the collision lists vs N for s = 10−5 · amax on a double log plot. The dashed line shows a
quadratic line, illustrating that the initial length of the collision list has a quadratic relationship with n. Note that this
graph is almost the same as figure 4.1. The only difference is that that figure was from the pair test, thus calculating the
collision times and filtering out collisions outside the simulation time was omitted. This figure does does include the time
calculations. This implies that, in this case, most collisions from the initialization are within the simulation time.

32



Figure 4.18: Initial lengths of the collision lists vs N for s = 10−3 · amax on a double log plot. This graph is the same as
the graph in figure 4.17, but two orders of magnitude higher. By table 1.1, the number of pairs linearly on s/a, and s/a
was increased by two orders of magnitude for this experiment, explaining the shift.

Figure 4.19: Remaining number of planetesimals vs N for s = 10−5 · amax on a double log plot. For low N , almost no
collisions happen, hence the final N is close to the initial N . For sufficiently large N we see that the graph hits a plateau.
This makes sense, because if more planetesimals would remain, they would be likely to still have collisions until they are
back on the line. The dashed line shows a linear and constant function.

33



Figure 4.20: Remaining number of planetesimals vs N for s = 10−3 · amax on a double log plot. Just as in figure 4.19,
the graph starts linear and flattens out for large N . Contrary to the other figure, the part for large N does not get fully
constant, but still a lot less steep than a linear function.

34



4.3. Additional comments from development of the code
During development of the code, some interesting things happened that deserve to be mentioned.

• Order of planetesimals in the continued fraction module
The continued fraction algorithm, which is part of Visser’s algorithm and improved by Aron
Schouten, accepts two planetesimals as input, which are ordered by orbital period. It was written
so that one planetesimal has to close the gap such that they end up simultaneously at the right
place. In some cases, the planetesimal with the smallest orbital period was not the planetesimal
behind, and instead it was the other planetesimal that needed to close the gap. Hence, the roles
of the planetesimals needed to be switched. Getting into details of the continued fractions algo-
rithm is not in the scope of this paper, but for the interested reader, the roles of the variables k
and l from Schouten’s thesis [8] were switched. This corresponds with the line going through the
lattice starting above zero instead of below. This problem was found when checking the results
visually and seeing that it worked just half of the time before (after applying the solution it worked
consistently everytime).

• Rare illegal escape orbits
Because we are using the simple merger (inelastic collisions), and all planetesimals start with closed
orbits, no new planetesimals should be able to get in an escape orbit. However, in some rare cases
planetesimals still got escape orbits. This is due to the linearization around the orbital nodes. That
approximation only works for sufficiently large mutual I between the planetesimals. In some rare
cases, two colliding planetesimals coincidentally have almost the same inclination, which results in
the approximation over-estimating the distance of the collision point to the central body. Since the
new planetesimal still gets the same momentum, but starts farther from the central body, it might
get an escape velocity. Then the semi-major axis gets negative, because of the way the orbital
mechanics were implemented. However the program was not designed to handle escape orbits, and
this resulted in numbers getting the value NaN (Not a Number) during calculations. Ultimately
this crashes the continued fractions module into a practically infinite loop (1019 iterations. This is
the order of the numerical limit of the 64-bit integer). This has been solved by deleting any such
planetesimals, because by the algorithm escape orbits should be deleted as well as planetesimals
colliding with the central body.

• Iterative scheme at the orbital nodes
The analytical propagator uses a linearization approximation around the orbital nodes in order
to calculate where a collision would happen. In some rare cases where the orbits have a very
low mutual inclination, this approximation becomes visibly far from the real position. During a
meeting, an idea came up to make an iterative scheme that uses this linearization multiple times
in order to come to the right answer in multiple steps. Essentially it is the same linearization,
then projecting the calculated position onto the orbit, and repeat. When implemented, the results
looked very good visually. However, somewhere deeper it seemed to not always converge. It only
worked when a maximum number of iterations was given, which then consistently good results.
No further time has been spent in developing this iterative scheme, but it does have potential.
This iterative scheme has been left out of the final program, in order not to cause unforeseen
consequences.

• Low memory use
Researching the memory used by Visser’s algorithm was not the goal of the experiments. However,
memory usage was still visible in the program editor. The algorithm is very light in terms of
memory use, to the point that memory is no point of concern at all. During the experiments the
memory usage was in the order of hundreds of megabytes. Most simulations used around 100 MB.

35



5
Conclusion

The goal of this thesis was to get more insight in the efficiency of Visser’s algorithm for collision detection
in N -body Kepler systems. The runtime of simulations was tested as well as some properties related to
runtime. First, part of the initialization was tested, where the following four variables of the simulated
disk were varied: number of particles N , maximum eccentricity ϵmax, maximum inclination Imax and
planetesimal radius s. After that, two sets of full simulations were done, one with s = 10−5 · amax and
one with s = 10−3 · amax.

Checks and pairs
The number of checks and pairs in the initialization depends on the tested variables mostly in the
expected way. The number of checks and pairs depends quadratically on N , and so does the runtime
of the whole initialization. The number of checks and pairs is also affected by the other variables. The
impact of other variables is mostly linear, but only within the range where the effect of the variable is
dominant relative to the other variables. The maximum inclination does not affect the number of checks,
and does not have significant influence on the runtime of the initialization.

Initialization runtime
The runtime of the full initialization follows the same pattern as the partial initialization (without collision
time), because it still scales with the number of checks and pairs. The runtime of the initialization is
roughly a combination of the number of checks and the number of pairs, because for both checks and
pairs, computational work needs to be done. For larger N (N > 103 for s = 10−5 · amax and N > 102 for
s = 10−3 · amax), the initialization runtime is quadratic in N . For smaller N the initialization runtime is
linear, because creating a random particle list and sorting it takes the most time in that case. The value
of N at which this turning point lies is confirmed to depend on s, by the two sets of full simulations
giving different results, but it should also depend on any other variables that affect the number of checks
and/or pairs nodes, since the initialization runtime becomes quadratic in N once the number of pair
nodes is large enough.

Full runtime
The total runtime consists mostly of the initialization in the range of N for which the initialization is
linear. The runtime of the second phase (the part after initialization) seems to become dominant just
before the initialization turns quadratic in N . The behaviour of the total runtime is complicated, but
for the largest N tested (N = 105), the algorithmic efficiency of the algorithm was O(N3). The total
runtime of the simulation was predicted to be of order O(N2ϵ+N4s3

Ia3 ). In measured order of N is thus one
power less. This can be explained due to the number of collisions becoming linear in N for sufficiently
large N , while the prediction of the fourth-power region was based on a quadratic number of collisions.
This is good news, because the algorithm is thus faster than anticipated. The runtime of each frame is
somewhere between linear and quadratic in N depending on the parameters.

Length of collision list and remaining particles
Because the possible collisions need to be memorized, we also wanted to know how long this list can

36



become. We thus also examined the length of the collision list during the simulations. This length does
not follow the initial quadratic line in N throughout the simulation. The order of the rate per collision
at which the collision list shrinks is at the start of the simulation much lower than at the end. For
large enough N , the length of the collision list is found to decrease quadratically in the middle part of
the simulation. The shrinking rate being the highest at the end of the simulation makes sense, because
the impact of one planetesimal disappearing is relatively bigger when there are less other planetesimals
around. The number of remaining planetesimals after a simulation seems to converge to a constant. This
is because the probability of more planetesimals not having collisions is unlikely.

Advantages and limitations of the method
The analytic propagator is efficient for sparsely distributed planetesimals. It takes advantage of the
planetesimal size being very small compared to the size of the orbits, and thus collisions being rare. Since
the algorithm jumps from collision to collision, it can make very big jumps through time if collisions are
rare. On the other side, if the protoplanetary disk is densely distributed (high s and/or N), collisions
happen more often, and thus the analytic propagator has to perform more computational work per
simulated time-unit, thus becoming less effective. However, the octree code remains unaffected by this
change. It has to perform nearest neighbour searches for collision detection, which is independent of the
size of the planetesimals.

Furthermore, some approximations are made that make the analytical propagator less accurate. The
orbits are treated as perfect Kepler orbits, but realistically, these orbits could be perturbed in the long
term, by secular effects such as orbital precession. Usually this takes in the order of millions of years,
so simulations within shorter time intervals are safe. The values of N and s need to be high enough to
justify neglecting precession within a fixed amount of time.

Future recommendations
The behaviour of the total runtime is complicated, and for part of it, the causes are not clear. Therefore,
measuring the runtime of each individual step in the main loop of the algorithm could provide more
insight in how different parts of the main loop become dominant in different regions. In this thesis only
the runtime of the whole loop was measured for each cycle, as well as the runtime of the initialization.

Furthermore, s has a big impact on the runtime of a simulation. In the limiting case where s goes to
zero, the runtime becomes just the initialization time, because no collisions happen and the algorithm
stops in the first iteration of the main loop. Hence, it would be useful to systematically measure the
impact of s on the total runtime by varying s while holding N (and all other variables) fixed. In this
thesis only two different values of s were considered. This had the purpose of seeing how the runtime
behaves with respect to N for N < a/s and N > a/s.

If the algorithm is to be used in a context where accuracy of individual collisions matter, it could be
expanded to be more accurate. That would involve including escape orbits for possible collisions, and
improving the calculation of the position of the collision, which is currently done by a linear approximation
around the orbital nodes. This linear approximation works well, except in rare cases were two orbits
coincidentally have an extremely low mutual inclination. Although these cases are rare, it does result in
some collisions not being accurate. An idea of an iterative scheme repeatedly using linearization has been
tested. The results looked promising visually, but on a smaller scale it seemed to not always converge.
Perhaps with more careful ending conditions that could be fixed.

37



References

[1] Robert A. Adams and Christopher Essex. Calculus. Pearson, ninth edition, 2018. ISBN 978-0-13-
415436-7.

[2] R.E.A. Bouwens, P.A.M. de Groot, W. Kranendonk, J.P. van Lune, C.M. Prop van den Berg,
J.A.M.H. van Riswick, and J.J. Westra. Binas. Noordhoff Uitgevers, sixth edition, 2013. ISBN
978-90-01-81749-7.

[3] H. Goldstein. Classical Mechanics. New York: Dover, 1964.

[4] Wm. Robert Johnston. Known populations of solar system objects: 25 july 2022. URL http:
//www.johnstonsarchive.net/astro/sslistnew.html.

[5] Donald Meagher. octree encoding: A new technique for the representation, manipulation and display
of arbitrary 3-d objects by computer. 1980.

[6] Carl D. Murray and Stanley F. Dermott. Solar System Dynamics. New York: Cambridge University
Press, 2000. ISBN 9781139174817.

[7] Dmitry Savransky, Eric Cady, and N. Jeremy Kasdin. Parameter distributions of keplerian orbits.
The Astrophysical Journal, 2011. doi: 10.1088/0004-637X/728/1/66.

[8] Aron Schouten. Collision detection using continued fractions, 2022. URL https://repository.
tudelft.nl/islandora/object/uuid:77150c61-c226-4ecb-983b-86a9a41645f4.

[9] P.M. Visser. Collisional kepler system. Submitted to Astronomy & Astrophysics, 2022.

38

http://www.johnstonsarchive.net/astro/sslistnew.html
http://www.johnstonsarchive.net/astro/sslistnew.html
https://repository.tudelft.nl/islandora/object/uuid:77150c61-c226-4ecb-983b-86a9a41645f4
https://repository.tudelft.nl/islandora/object/uuid:77150c61-c226-4ecb-983b-86a9a41645f4


A
Appendix

A.1. Visualization of the planetary disk
For debugging and presentation purposes, it is useful to visualize the simulations that we make with
Visser’s algorithm. In order to visualize the state of the simulation onto the screen at various times, we
will need some procedures capable of doing certain coordinate transformations and other calculations
that are not part of the algorithm itself. The angular momentum L and eccentricity vector ϵ completely
define an orbit [3], and all procedures in this chapter make use of that vectorial formulation of orbits.

In this chapter we will derive everything we need in order to draw planetesimals and orbits on the
screen. To do that, everything has to be expressed in Cartesian coordinates. Note that these procedures
can be done on the graphics card itself, in so-called shader programs, which does the calculations in
parallel, so that even millions of particles can be rendered at a smooth frame-rate.

A.1.1. Orthonormal basis of the orbital plane
In some cases we need a set of two orthonormal vectors that span the orbital plane of a particle inside
3D space. When we have found such a set, we can use it to transform 2D representations inside the
orbital plane, such as the polar formula (2.3), into 3D space.

Let L̂ be the normalized vector in the direction of the angular momentum, and let ϵ̂ be the normalized
vector in the direction of the eccentricity. Note that ϵ̂ and L̂ are orthogonal for all valid orbits, since the
eccentricity vector points parallel to the orbital plane, while the angular momentum is orthogonal to the
orbital plane. In order to span the orbital plane, we want to find another vector µ̂, orthogonal to ϵ̂ and
L̂, which can be found using the cross product:

µ̂ = L̂× ϵ̂. (A.1)

This results in the desired orthonormal basis of the orbital plane, depicted in figure A.1. However, we
are not able to normalize ϵ if the orbit has no eccentricity, which is the case for circular orbits. That
makes sense, because without an eccentricity, the perihelion and thus the true anomaly are not defined,
so the direction of ϵ̂ is in fact arbitrary. In order to make the procedure "water proof", we may assign a
direction for ϵ̂ ourself. Note that, when using Kepler coordinates, the direction ϵ̂ is the first column of
the rotation matrix R described in equation (2.2), since ϵ is parallel to the x-axis before rotating:

ϵ̂ =

cosϖ cos�− sinϖ sin� cos I
cosϖ sin�+ sinϖ cos� cos I

sinϖ sin I

 . (A.2)

When the eccentricity is zero, the argument of periapsis is not defined, so we choose ϖ = 0 as the default
angle, resulting in

ϵ̂ =

cos�sin�
0

 . (A.3)

39



x

y

ϵ̂

L̂

µ̂

z

Figure A.1: The orbital plane is represented by the projection of a square spanned by the basis {ϵ̂, µ̂}. This plane is
orthogonal to the angular momentum L. In this picture the plane has an inclination of 15 degrees and no other rotations.
The orbit is an ellipse with an eccentricity of 1

2

√
3 ≈ 0.866, corresponding with the semi-minor axis being half of the

semi-major axis.

We now compare ϵ̂ with L̂, which equals the third row of R, since L points in the z-direction before
applying rotation:

L̂ =

 sin� sin I
− cos� sin I

cos I

 . (A.4)

Now there are two cases:
case 1: sin I = 0.
In this case L̂ only has a non-zero component in the z-direction. That means that also the ascending
node � is not defined, which we also choose to be zero, resulting in ϵ̂ = x̂.
case 2: sin I ̸= 0. In this case we may divide by sin I. By comparing (A.3) and (A.4), we note that

ϵ̂ =

−L̂2

sin I
L̂1

sin I
0

 =


−L̂2√

1−cos2 I
L̂1√

1−cos2 I

0

 =


−L̂2√
1−L̂2

3

L̂1√
1−L̂2

3

0

 . (A.5)

Having accounted for all possible cases, we have a systematic way of defining ϵ̂, using the principle of
choosing the smallest Kepler angles. Note that if particles actually achieve these edge cases, calculating
positions using this method is problematic. This is because in the limit where the eccentricity goes to
zero, not all Kepler orbits are defined. Thus assuming the smallest angle, which defines our basis, gives
a different result depending on which way the xyz axes are defined. Therefore, using this procedure is
not fully safe. Nevertheless, in practice these edge cases will never occur, since the orbits need to be a
"perfect" orbit within floating point precision. Also, for drawing the orbits on the screen this does not
pose a problem even for edge cases. That is because an orbit with zero eccentricity is a perfect circle,
which therefore does not depend on what angle you start drawing from.

A.1.2. Position from true anomaly
We want to calculate the position of a particle, given the true anomaly ν, and the following data of the
particle: semi-latus rectum l, eccentricity vector ϵ and angular momentum vector L.
We will use the orthonormal basis {ϵ̂, µ̂} from section A.1.1. We apply the polar transformation on the
basis, so that we can use the polar formula for orbits (2.3)

40



|r| = l

1 + |ϵ| cos ν
. (A.6)

We also apply the polar transformation inside the orbital plane:

r̂ = ϵ̂ cos ν + µ̂ sin ν. (A.7)

Finally, by calculating |r|r̂ we compute the position in Cartesian coordinates.

A.1.3. True anomaly from position
In section A.1.2 we calculated the position of a particle using the true anomaly of a particle. Now we
will show that it also works backwards: Calculating the true anomaly, given the position of a particle.
We will use the orthonormal basis {ϵ̂, µ̂} from section A.1.1. Recall that, even though the true anomaly is
ill-defined in some edge cases, we still get a determinate answer by the principle of choosing the smallest
angle. In that case it does not make sense to do this calculation, but because it gives a deterministic
answer it is suitable for programming, without worrying about edge cases that could crash the program.

Let r be the given position of the particle. Note that any valid given position should be in the orbital
plane, which is spanned by µ̂ and ϵ̂. Hence we can decompose r in projections on µ̂ and ϵ̂:

r⊥ = r · µ̂,
r∥ = r · ϵ̂,

where · denotes the dot product.
After that we calculate the arc tangent of r⊥/r∥ to obtain the true anomaly. Most programming languages
have a built-in function called atan2(y, x) which also determines in which quadrant the angle is, hence
having a periodicity of 2π. Usually this returns the angle inside the domain (−π, π], but for most
calculations in this paper we are calculating in the domain [0, 2π). This can be converted by adding 2π
whenever the angle returned by atan2 is negative.
Hence, we calculate the true anomaly ν with:

ν = atan2(r⊥, r∥) ν ∈ [0, 2π). (A.8)

A.1.4. Position from eccentric anomaly
We want to calculate the position r of a particle, given its eccentric anomaly E, where we will also use
the semi-major and minor axes a and b of its orbit. Recall that b can be calculated from b2 = (1− ϵ)a2.
We will use the orthonormal basis {ϵ̂, µ̂} from section A.1.1. Per definition, the Laplace-Runge-Lenz
vector ϵ points from the center of an orbit to the focal point where the central body is located. The
distance c from center to focus is c = ϵa. Hence, the center of the orbit is located at −ϵa. Seen from the
center of the orbit, the ellipse follows the parametrisation of a "squeezed" circle, giving us the formula

r = −ϵa+ aϵ̂ cosE + bµ̂ sinE. (A.9)

A.1.5. Eccentric anomaly from position
We will perform the process in A.1.4, but backwards:
Let r̃ = r + ϵa
Here, r̃ represents the position of the particle relative to the middle of its orbit. Note that the particle
lies in its orbital plane, hence its position can be decomposed into a linear combination of two vectors,
for which we use the the orthonormal basis {ϵ̂, µ̂} from section A.1.1:

r̃∥ = r̃ · ϵ̂,
r̃⊥ = r̃ · µ̂.

By the already known parametrisation we also have

41



cosE = r̃∥/a,

sinE = r̃⊥/b.

Combining the two pairs of formulas has the following results:

cosE = r̃ · ϵ̂/a,
sinE = r̃ · µ̂/b,

E = atan2(sinE, cosE) E ∈ [0, 2π).

A.1.6. Eccentric anomaly from time
In the analytic algorithm described by Visser ([9]), we never have to calculate the eccentric anomaly of
a particle at an arbitrary given time. However, for visualization purposes we still need that calculation
so that we can view the state of the simulation at different times and check if everything works properly
(debugging).

Let t be the time since the particle last passed its periapsis and ω the angular frequency at which the
particle orbits the central body. Then for the eccentric anomaly we have the so-called Kepler’s equation

ωt = E − ϵ sinE. (A.10)

We do not have an explicit formula for calculating E, so we will rely on numerical methods. We transform
equation (A.10) into the following fixed point problem:

E = ωt+ ϵ sinE. (A.11)

We will solve this fixed point problem in an iterative way, also known as a Picard iteration:

E(0) = ωt, (A.12)

E(n) = ωt+ ϵ sinE(n−1). (A.13)

Note that we have chosen ωt as the initial guess for the solution, since that would be the exact solution
in case of a circular orbit. For ellipses we have to do more iterations in order to obtain an acceptable
accuracy. In our case we only use this for visualisation. In practice 10 iterations will be enough for
visualisation.

Using this we can update the time in order to visualize where the particles are. We first calculate the
starting eccentric anomaly of each particle (section A.1.5), where "starting eccentric anomaly" refers to
its value at the time t0 and place r0 where the particle emerged in the simulation. Using formula (A.10)
we then calculate its corresponding value of ωt. We add ω(tcurrent − t0) to "go" to the current time, and
finally we use the iteration method to obtain the eccentric anomaly at the current time.

The eccentric anomaly E is ill-defined for (near-) circular orbits. However, since we use this process
only for visualisation, we do not have to worry about errors propagating through the algorithm. In the
worst case, the specific particle will not be drawn correctly on the screen, but this requires an eccentricity
comparable to floating point precision, which practically never happens.

42



A.2. Technical specifications
CPU: AMD Ryzen 9 5900X 12-Core Processor @3.70 GHz
(The program was not programmed multi-core, so it ran on 1 CPU thread).
RAM: 16,0 GB
System type: 64-bits besturingssysteem, x64-processor
OS: Windows 11 Education, version 21H2. Build 22000.856

A.3. Code
The code for this project was written in C++, using Visual Studio 2022 as the editor. For the graphics,
OpenGL was used, along with the GLFW library (GL For Windows). Also the GLM library was used
for some mathematical functions. The simulation data was saved into text files and post-processed in a
Jupyter Notebook (Python). The ensemble of files containing the code is very big and complicated, so
putting it in the appendix is not organized. Instead, the code has been uploaded to GitHub, accesible
by the following link: https://github.com/Dylan-Aliberti/Kepler-Collisions

43

https://github.com/Dylan-Aliberti/Kepler-Collisions

	Abstract
	List of all symbols and units
	Introduction
	Numerical efficiency

	Theory
	Kepler orbits
	Summary of the analytical propagator for a Keplerian system
	The main idea
	Initialization
	Main loop
	Calculating the collisions


	Experimental Method
	Creating a random disk of particles
	Random rotations for the orbit
	Radial distribution
	Approximation for small eccentricities
	Generalization for large eccentricities

	Simulation parameters
	Pair test
	Full run test


	Results and discussion
	Pair test
	Full run
	Additional comments from development of the code

	Conclusion
	References
	Appendix
	Visualization of the planetary disk
	Orthonormal basis of the orbital plane
	Position from true anomaly
	True anomaly from position
	Position from eccentric anomaly
	Eccentric anomaly from position
	Eccentric anomaly from time

	Technical specifications
	Code


