
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

Analyzing the Impact of
Earth-Sun Distance Varia-
tions on Global Tempera-
ture
A Comparison of Simplified Solar System Models

Geert van den Dungen

Analyzing the Impact of
Earth-Sun Distance
Variations on Global

Temperature
A Comparison of Simplified Solar System Models

by

Geert van den Dungen

In partial fulfillment for the degree of Master of Science
at the Delft University of Technology.

Student number: 4554566

Supervisor: Marc Naeije

Cover: The sun shines above the Earth’s horizon by NASA
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

mvanadrichem
Doorhalen

Preface
After a long period at the TU Delft, this thesis paper concludes my time at the university — an end
to an important period in my life. I want to thank all the professors who taught there. Furthermore,
my student society ”De Delftsche Zwervers” obviously does need to be mentioned here. Without the
developments I’ve gone through, there would not be the current me.

Some people need to be specifically mentioned for their help. Professionally, Professor Marc Naeije
and Professor Emeritus Ir. R. Noomen. for being very helpful supervisors during my literature study
and thesis work. Besides that, Kevin, without you, I wouldn’t have passed my Masters. Johan, for
keeping me sane throughout not only my university but also before that, and definitely after too. And
of course the Blub group, for all the support they are.

Geert van den Dungen
Delft, November 2024

i

Abstract
This thesis investigates how variations in the Earth-Sun distance influence global temperatures, by com-
paring a simplified model of the solar system with an existing paper from V.V. Zharkova, claiming that
increasing temperatures can be explained naturally. Over a 5000-year period, numerical simulations in-
cluding planetary gravitational influences, solar inertial motion, andMilankovitch cycles, this study looks
at distance variations and Earth hemispheric differences in solar intensity due to albedo differences, to
asses this statement. The result shows that while orbital mechanics influence the global temperature,
Their role is minimal. It should see a slight decrease in temperature, and thus V.V. Zharkova’s research
does not represent the actual situation. This offers valuable insight into the relationship between the
Earth’s orbital mechanics and climate. However, further research into the accuracy of the model is
required.

ii

Contents

Preface i

Abstract ii

List of Figures v

List of Tables vi

Nomenclature vii

1 Introduction 1

2 Background 3
2.1 Solar Irradiance . 3
2.2 Earth and Sun orbit Variations . 4

2.2.1 Solar Inertial Motion . 4
2.2.2 Earth-Sun Orbital cycles . 6
2.2.3 Conclusion . 8

2.3 Planet orbit Variations . 8
2.3.1 Mercury . 8
2.3.2 Venus . 9
2.3.3 Mars . 9
2.3.4 Jupiter . 9
2.3.5 Saturn . 10
2.3.6 Uranus . 11
2.3.7 Neptune . 11
2.3.8 Planet X . 12
2.3.9 Planet detail table . 13
2.3.10 Conclusion . 13

3 Methodology 15
3.1 Model basis, time period and bodies used . 15
3.2 Periodic averaging function . 16
3.3 Integrator and Propagator Selection . 17
3.4 Spherical harmonics . 19
3.5 Result calculation . 21
3.6 Hemisphere model . 22
3.7 Conclusion . 23

4 Sensitivity, Verification & Validation 24
4.1 Verification and Validation . 24
4.2 Sensitivity . 28

5 Results 30
5.1 Distance Model Results . 30
5.2 Hemisphere Model Results . 30
5.3 Combined Model Results . 33
5.4 Zharkova Comparison Results . 34
5.5 Result Conclusion . 36

6 Conclusion 39
6.1 Conclusion . 39
6.2 Recommendations . 40

iii

Contents iv

References 42

A code files 45

List of Figures

1.1 The close-up view of the oscillations of the baseline magnetic field 2

2.1 Effect of the Sun-Earth distance on the Solar Irradiance and the black-body temperature
of the Earth . 4

2.2 The orbit of the Sun around the barycenter of the solar system 5
2.3 The 23-year variation around the sun approximated by a rose around the barycenter . . 5
2.4 Orbital effects of the Milankovitch cycles and the Chandler Wobble 7
2.5 Mercury (NASA image database) . 9
2.6 Venus (NASA image database) . 9
2.7 Mars (NASA image database) . 9
2.8 Jupiter (NASA image database) . 10
2.9 Io (NASA image database) . 10
2.10 Europa (NASA image database) . 10
2.11 Ganymede (NASA image database) . 10
2.12 Callisto (NASA image database) . 10
2.13 Saturn (NASA image database) . 11
2.14 Titan (NASA image database) . 11
2.15 Uranus (NASA image database) . 11
2.16 Neptune (NASA image database) . 11
2.17 Gravitational acceleration of the planets in our solar system on Earth 12

3.1 First step in integrator selection . 18
3.2 Second step in integrator selection . 18
3.3 Last step in integrator selection . 19
3.4 Spherical Harmonics selection step 1 . 20
3.5 Spherical Harmonics selection step 2 . 21
3.6 Circular section diagram . 23

4.1 Failed fun example caught by verification . 25
4.2 JPL data plotted for 20,000 years . 25
4.3 5000-year run result, used to determine the effect of starting the run in the middle . . . 26
4.4 Initial state difference between SPICE and JPL . 27
4.5 JPL and model difference with equal initial states . 27
4.6 Sensitivity analysis of the forward runs . 28
4.7 Sensitivity analysis of the backward runs . 29

5.1 Distance model result . 31
5.2 Change of sunlight for the Northern Hemisphere, shown per month 32
5.3 Change of sunlight for the Northern Hemisphere, shown per season 32
5.4 Change of sunlight for the Northern Hemisphere, shown per year 33
5.5 Change of solar intensity for both Hemispheres, shown per month 34
5.6 Change of solar intensity for both Hemispheres, shown per season 35
5.7 Change of solar intensity for both Hemispheres, shown per year 35
5.8 Figure from Zharkova, V. V. et al (2019)[43], showing the changing distance between the

Earth and the Sun . 37
5.9 Recreated Figure 5.8 using model data, showing the changing distance between the

Earth and the Sun . 38

v

List of Tables

2.1 Planet data sheet . 13

3.1 Available Spherical Harmonics parameters in the SPICE module 20

vi

Nomenclature

Abbreviations

Abbreviation Definition

AU Astronomical Unit
BS Bulirsch-Stoer
CPU Central Processing Unit
CW Chandler Wobble
JPL Jet Propulsion Laboratory
MM Maunder Minimum
NASA National Aeronautics and Space Administration
txt text (file saving denotation)
RK Runge-Kutta(-Fehlberg)
RKDP Runge-Kutta Dormand-Prince
SPICE Spacecraft, Planet, Instrument, C-matrix, Events - system
SSB Solar System Barycenter
TUDAT TU Delft Astrodynamics Toolbox
UN United Nations

Symbols

Symbol Definition Unit

C̄lm Normalized coefficient of the Legendre func-
tion

-

Dr Local distance to the Sun m
DEarth Average distance between the Earth and the

Sun
m

d Apothem m
HEarth Average solar intensity of the Earth W/m2

G Universal gravity constant 6.6743E-11 m3kg−1s−2

Hlocal Local solar intensity W/m2

l Degree; used in Spherical Harmonics -
Ma Mass of planetary body a kg
m Order; used in Spherical Harmonics -
µa Gravitational constant of planetary body a ms−2

P̄lm Associated Legendre function of the first kind -
Ra Radius of planetary body a m
ra,b Position vector from planetary body b to plan-

etary body a
m

(rEarth,SSB)model Position vector from Earth to the SSB, taken
from the model

m

(rEarth,SSB)JPL Position vector from Earth to the SSB, taken
from JPL

m

r̈a,b Acceleration vector of mass a due to mass b ms−2

vii

List of Tables viii

Symbol Definition Unit

S̄lm Normalized coefficients of the Legendre func-
tion

-

Tbb Black body temperature K or C
Ua Spherical harmonic potential of Body a -

α Albedo -
α Angle between the incoming solar rays and

the Earth’s rotation axis
rad

∆rnorm Difference calculated as a norm m
∆rmagn Difference calculated as a magnitude m
∇Ua Inertial Potential Gradients for Ua -
ϵmodel Magnitude of the model error -
θ angle used by apothem calculations (Equa-

tion 3.8)
rad

σ Stefan–Boltzmann constant 5.67E8 Wm−2K−4

à Vernal equinox
◦ Degree (temperature or angle)
″ Arc-seconds (used for angles
Number

1
Introduction

In recent decades, the issue of global warming has become increasingly evident and concerning. While
the primary cause of this warming is widely debated, most agree that human activities are largely re-
sponsible. However, not all scientists share this view. In recent years, differing reasoning has been
proposed: variations in the Sun’s activity or the Earth-Sun distance [43]. This thesis will focus specifi-
cally on the Earth-Sun distance and the effect this has on our climate.

One of the most interesting and prevalent articles is from V.V. Zharkova [43], who claims that there
is an increase in the total solar irradiance closely related to the solar inertial motion and the terrestrial
temperature, indicating a further natural increase of 2.5 degrees Celsius by 2600 [43]. However, this
claim is highly contested and should be extensively reviewed, since other peer reviews [37] seem to
disagree on this topic highly. As such, it is important to critically examine these claims to either validate
or refute them.

In the previously mentioned article, a 1,950-year (± 75 years) period is identified as correlating with
several solar irradiance minima and maxima in the past [43], which in turn are linked to the current
increase in Earth’s temperature. Figure 1.1 presents the baseline magnetic field, represented by the
magenta irradiance curve, which is used to support the argument for increased solar activity. However,
this report will focus on the distance between the Earth and the Sun, using a model that also accounts
for the influence of other astronomical bodies, such as planets and major moons. With that model, it
is possible to either prove or reject the notion that solar motion has anything to do with the climate on
Earth.

Another argument presented [43] suggests that it is not the overall change in solar intensity on Earth
that affects the climate, but rather the variation in solar intensity between the Northern and Southern
Hemispheres. Due to the higher reflectivity of water and ice compared to most land surfaces, land ab-
sorbs more solar radiation than water, especially when land is compared to snow and ice [16][17][33].
Since the Northern Hemisphere contains significantly more landmass than the Southern Hemisphere,
seasonal changes in solar intensity could theoretically have a more pronounced warming effect. How-
ever, this hypothesis will need to be tested through modeling.

To answer all the unknowns previously mentioned, the following research question was proposed
in my research plan:

How does the current perceived change in the distance between Earth and the Sun affect
the global temperature?

To better answer this question, the following subquestions are presented:

1. Can the results as seen in V.V. Zharkova [43]1 be reproduced without changing the parameters
of the solar system, with only a simplified model of solar variation?

1This article has been redacted, but is still contested by most authors and defended in further works. Therefore it is deemed
relevant and still included in this report.

1

2

Figure 1.1: The close-up view of the oscillations of the baseline magnetic field (dark blue curve) from year 0 - 3000, with a
minimum occurring during Maunder Minimum (MM). The irradiance curve (magenta line) is overplotted on the summary curve

of the magnetic field (light blue curve). source: V.V. Zharkova [43].

2. What is the difference between themodel used by this report and themodel used by V.V. Zharkova?
3. Can the hemispheric effects (as described by V.V. Zharkova) be quantified in a simplified Earth

hemispheric model?

In this report, Chapter 2, provides background information to contextualize the research within ex-
isting scientific knowledge. This includes a discussion of solar irradiance, the Earth-Sun orbital cycles
(such as the Milankovitch cycles), and other planetary orbital variations. Subsequently, the method-
ology for the model and algorithm are discussed in Chapter 3, which outlines the methodology used
to develop both the Earth-Sun distance model and the hemisphere model, along with the associated
algorithms. Chapter 4 follows with a sensitivity analysis, as well as the verification and validation proce-
dures. In Chapter 5, the results from the model are presented and discussed. After that, in Chapter 6,
offers a conclusion based on the research findings, and finally, in Section 6.2, recommendations for
future improvements and further research are provided.

2
Background

In this chapter, background information relevant to the analysis is provided. This information has been
researched before the analysis and is presented here to contextualize the current research within the
existing knowledge.

First, the distance between the Earth and the Sun concerning solar irradiance will be discussed in
Section 2.1. Following that, the orbital variations between the Earth and the Sun will be analyzed in
Section 2.2. Finally, variations in the orbits of other planets will be addressed in Section 2.3.

2.1. Solar Irradiance

The primary consequence discussed in this report regarding variations in orbital distance is their effect
on solar irradiance and the temperature of the Earth. For this simplified analysis, the Earth’s average
temperature is calculated using a basic black body model. In this model, the Earth is represented as
a ”black body,” a uniform object characterized by only a few parameters related to reflection, such as
albedo. Additionally, this model does not account for any internal mechanisms or effects that influence
temperature. This body simulation is done to simplify the calculations at this stage. Notably, the model
omits surface irregularities — such as the differing reflectivity of water compared to land — and the
natural greenhouse effects of the atmosphere. These effects have a very significant impact on the
temperature model, since without these effects, the average temperature of the Earth is calculated to
be -19.12 ◦C, while in actuality it is 15 ◦C globally [5].

In Figure 2.1, the relation between distance, solar irradiance, and black-body temperature can be
observed. It can be seen that a small change in distance has a larger increase in both solar irradiance
and temperature. This is due to the inverse square law of the solar irradiance and the black-body
temperature formula used for the temperature. The equations used for the graph can be found in
Equation 2.1 [31].

Hlocal =
D2

Earth

D2
r

·HEarth Tbb = (
Hlocal · (1− α)

4σ
)

1
4 (2.1)

Here, Hlocal is the local solar intensity, HEarth is the average solar intensity of the Earth, Dr is the
local distance to the Sun, DEarth is the average distance between the Earth and the Sun, Tbb is the
black body temperature, α is the albedo of the planet, and σ is the Stefan–Boltzmann constant. The
observed annual variance in the orbit of Earth (due to the eccentricity) is 5.0 · 106 km (147.10 · 106 and
152.10·106 km)[5], which already translates to an almost 6% difference in solar irradiation and 4 degrees
in temperature. Those degrees might seem unimportant, however, currently, the UN is stating that a
2-degree global temperature rise is catastrophic for the Earth [26]. Therefore, a distance variation in
the order of a million kilometer could already be significant for the solar energy received on Earth and
the corresponding black-body temperature.

3

2.2. Earth and Sun orbit Variations 4

Figure 2.1: Effect of the Sun-Earth distance on the Solar Irradiance and the black-body temperature of the Earth, where the
red area is the variance that occurs due to the eccentricity, the black line is the calculated data, and the blue line is the average

position of Earth.

2.2. Earth and Sun orbit Variations

The Earth and the Sun are both attracting each other with gravitational forces and thus rotate around
a shared center: the barycenter. The distance between the Earth and the Sun is therefore divided into
two movements around this barycenter: the Sun’s movement, the Solar inertial motion, and the Earth’s
rotation. In this section, first, the solar inertial motion will be discussed. Subsequently, the Earth’s
motion cycles will be described, going in order of their period from short to long periods. Finally, a
conclusion for this section will be made.

2.2.1. Solar Inertial Motion

Due to the gravitational pull of the planets in the solar system, the center of the Sun is moving around
the barycenter of the solar system. This movement, called solar inertial motion, means the distance
between the Earth and the Sun also changes. The measured solar inertial motion can be found in
Figure 2.2. Here, a 23-year variation is shown, between 1990 and 2013. It is an almost closing cycle
around the barycenter of the solar system. However, if the actual percentage variance is calculated,
it is as far as about a 13 · 10−3AU difference across from the barycenter, or a 1.3 % difference of the
distance Earth-Sun. It is often approximated by a rose around the barycenter, where the cycle closes
in this period [34], as can be seen in Figure 2.3.

However, the thermal inertia of Earth is very low [19], which means that Earth will react very slowly
to changeable conditions, e.g. a change in the solar irradiance [34]. Moreover, this inertia is difficult
to measure and will constantly change slightly due to changing conditions, such as atmospheric con-
ditions, cloud coverage, ice coverage, water coverage, etc. Estimations of the effective heat capacity,
which is the global heat capacity that sees an effect due to a perturbation of the climate with the length
of the perturbation. This estimation is widely different in literature, from the 5-year time constant [34]
to at least a factor of 3 more [15].

2.2. Earth and Sun orbit Variations 5

Figure 2.2: The orbit of the Sun around the barycenter of the solar system during the period 1990 to 2013. The barycenter of
the solar system is at the origin and the points on the curve give the position of the center of the Sun at 200-day intervals. The
plane of the figure parallels the equatorial plane of the Earth and the vernal equinox, defined as when the plane of the Earth’s
equator passes through the center of the Sun, is indicated on the abscissa. The units on the axes are AU x 10−3 or 1.496 x

10−8 m. Both figure and caption from Marsh 2020 [34].

Figure 2.3: The 23-year variation around the sun (red) approximated by a rose around the barycenter (blue). The biggest error
occurs around the endpoints of the measured Solar inertial motion. Figure from Marsh 2020 [34].

2.2. Earth and Sun orbit Variations 6

2.2.2. Earth-Sun Orbital cycles

By most predictions, Earth’s orbit will be relatively stable over long periods [18]. However, that does not
mean there are no variations in the orbit. The cycles of the Earth’s and Sun’s interactions have many
differing lengths, from twice per day (such as tides) to a galactic year (smallest cycle (daily cycles) to
the largest (Galactic year, 220-250 million years). Not all of these will be useful for the analysis. All
cycles that are equal to or longer than a year will be discussed in this section, in order of their period,
starting with the smallest. Furthermore, the relevant cycles for the analysis will be determined and
discussed.

The cycles of the interactions between the Sun and Earth are divided into four categories: Calender
cycles (less than a year), the Mid-range cycles (1 to 10,000 years), the Milankovitch Cycles (10,000
- 1,000,000 years), and the Galactic time cycles (more than 1,000,000 years) [23]. As mentioned
previously, cycles less than a year will not be discussed. This is done because these cycles do not have
any influences on the orbital motion, but are cycles of phenomena seen on Earth (such as (spring)tides,
day/nighttime cycle, lunar month, and more.) Therefore, the Calender cycles will not be discussed.

Mid-range cycles cycles
Annual cycle
The Annual cycle has seen the most research out of all cycles since it is also very easily observable: it
is responsible for the seasonal changes on Earth and by definition equal to exactly a year on Earth. The
analysis of its amplitude can be found in Section 2.1, which comes to a 5% solar irradiance difference.
Although this cycle is responsible for the most easily observable climate and temperature effects on
Earth, it is too short of a cycle to be relevant for long-term climatic effects. It can, however, influence
the global long-term climate due to the combination of the axial tilt of the Earth, and the difference
in reflectivity of the Earth, as suggested by V.V. Zharkova [43]. This difference in reflectivity can be
easily spotted on a globe or map. The surface of the Earth in the Southern Hemisphere has more
ocean compared to the Northern Hemisphere. The difference in the surface has also a difference in
reflectivity.

Chandler Wobble
The Chandler Wobble (CW) is one of the main components of motion of the Earth’s rotation axis relative
to the Earth’s surface, also called Polar motion. It was discovered by Seth Carlo Chandler in 1891 [32].
The CW is one of the main eigenmodes of the Earth’s rotation, related to the movement of the Earth’s
surface, with two periodic cycles of 428 days and 365 days, respectively [32]. It has no component
related to the Sun or the Earth’s orbital movement, and therefore should not be included in the analysis.

Solar Year
The solar year refers to the period in which Sunspot activity varies, which has a cycle of around 22
years [23][43]. The cycle is caused by a flip of the magnetic field of the Sun, creating a peak in solar
activity, such as sun spots and coronal mass ejections. These spots change the luminosity of the sun,
and therefore the intensity of the solar irradiance. This simplified model for the solar cycle will be used
in the analysis. However, it will only be used in the second phase of the model, since it is not the focus
of the research. The next solar maximum is predicted to occur in July 2025 [40]. However, the activity
of the sun during the solar maxima is not very predictable: some cycles have a lower activity during
their maxima than other cycles. The reason for this variability in maxima is currently unknown [35]. It
is sometimes also known as the Hale cycle of 22 years, since after two maxima the magnetic field has
flipped again and returned to the previous state of 22 years [23].

Milankovitch cycles
The Milankovitch cycles are changes in the orbital elements of the Earth orbit first found by M. Mi-
lankovitch [23]. They describe the long-term, 15,000 - 1,000,000 year, changes of several different
factors, described in the sections below. In Figure 2.4, the Milankovitch cycle orbital effects are shown.
It has been extensively researched previously that the Milankovitch cycles both on their own and all
three together do not explain the current global warming [1][2][20][38].

2.2. Earth and Sun orbit Variations 7

Figure 2.4: Orbital effects of the Milankovitch cycles and the Chandler Wobble. Figure from House (1995) [23].

Precession
Precession is a rotation of the Earth’s axis, with a period of 25,771.5 years [1]. It is caused by the
gravitational attraction of the Sun and Moon, and a very limited amount by the attraction of other planets
[23]. It does not influence the distance between Earth and the Sun, however, due to the changing of
the angle of the axis at certain points of the (slightly eccentric) orbit of Earth, it has an influence on the
hemispheres where the solar intensity occurs and therefore should be included in the same manner as
the annual cycle should be included for climate change when looking at which hemisphere of the planet
is receiving the most solar radiation. Currently, perihelion (when the distance between Earth and the
Sun is the lowest) is during winter in the Northern Hemisphere.

Obliquity
Obliquity is the tilt of the Earth’s rotational axis. With a current tilt angle of 23.4◦, but fluctuating between
22.1◦ and 24.5◦. It has a period of about 41,000 years. It is confirmed to influence the climate, by
changing the intensity of the solar irradiance by about 5% [23]. Currently, the tilt is decreasing slowly.
It should result in warmer winters and cooler summers, therefore increasing the ice sheets at high
latitudes and with the high reflectivity, decrease global temperatures [1]. Since it is only related to the
Earth’s rotational axis and not to the orbital path, it should be included in the same method and location
as precession will be included.

Eccentricity
Due to the small eccentricity that the Earth currently has (0.0167 [5]), the distance between the Earth
and the Sun changes during a year between 147.1 and 152.1 million km, a variation of 3.4%. This
means that during perihelion, the Earth receives about 6.7% more solar energy than during aphelion
[1]. However, this eccentricity is not constant over time, it changes with several cycles that combine in
a cycle of around 100.000 years [28]. It varies between 0.0034 and 0.0580. The current eccentricity
is slowly decreasing and approaching its most circular phase of the cycle. It is caused by the pull of
mainly the two largest gas giants, Saturn and Jupiter. Perihelion occurs around the 3rd of January
each year and aphelion around the 4th of July [1]. Since eccentricity is a critical element of the orbital
parameters, it needs to be included in every analysis and model about the distance between Earth and

2.3. Planet orbit Variations 8

the Sun. Subsequently, the difference in eccentricity should be included in the model, although due to
the time scales, there should not be a large effect on the global temperature.

Galactic time cycles
Galactic Year
The period to rotate around the center of the Milky Way is around 220-250 million years. It is thought
to influence major glaciation cycles, but periods do not match the timings found. There is no influence
currently found between the galactic year and either the climate on Earth or the orbit of Earth [36].
Additionally, the period of the galactic year is so large that it can not have such an influence that is
being analyzed here. Therefore, the effect of the galactic year will be fully ignored in the proposed
analysis.

2.2.3. Conclusion

In Section 2.2.1, the solar inertial motion was discussed. Here, it was seen that the Sun moves around
the barycenter of the solar system. This movement can be approximated by a rose, with a maximum
orbital distance change to the Earth of 1.3%. However, the assumption will introduce an error in the
movement, and will therefore need to be studied, therefore this assumption will not be made in the
model used for this analysis. Subsequently, there are numerous Earth-Sun cycles discussed in Sec-
tion 2.2.2. Of the discussed cycles, the annual cycle and the eccentricity Milankovitch cycle will need
to be included in the base model. Furthermore, the precession and obliquity Milankovitch cycles have
to be included in the hemisphere model. Finally, in the simple Sun model, the solar year cycle must be
included. The Chandler wobble and the galactic year will not be included in any model performed by
the analysis performed in this report.

2.3. Planet orbit Variations

In this section, the movement of each of the 7 planets other than Earth will be briefly described in
sections 2.3.1-2.3.7. Although Pluto, the Asteroid, and the Kuiper belts all have a gravitational attraction
to all objects in the solar system, their influence is assumed to be negligible. For each planet, only the
important parameters related to its orbit and the attraction forces to Earth will be discussed, including
the forces of their moons (if they exist). The order of the planets will be from closest to furthest from
the Sun. The ephemeris and other planetary data can be easily found in several databases, such as
JPL1 and TUDAT2. Therefore, only the most important data parameters will be mentioned here. After
each planet is discussed, the possibility of a planet X will be investigated. Subsequently, a table with
standard parameters for all (found) planets is presented in Section 2.3.9, as well as a graph of orbital
accelerations on Earth. Finally, a conclusion is given in Section 2.3.10.

2.3.1. Mercury

Mercury has the most eccentric orbit of all planets in the solar system, with an eccentricity of 0.2056.
Furthermore, It has an orbital period (year) of 87.969 Earth days [8], and it has no moons. Due to
this high eccentricity, the distance to the Sun will differ between 0.3075 and 0.4667 AU (46-70 million
km). Furthermore, it has an orbital resonance with the Sun, such that a day on mercury lasts exactly
2 mercury years. Its orbit is inclined by 7◦ from the solar system plane, the largest of all in the solar
system [8]. Simulations have shown that Mercury has a possibility (1%) to have an unstable long-term
orbit due to the influence of the perihelion of Jupiter. This unstable orbit can, according to the performed
situation, result in situations, where in 5 billion years, Mercury falls into the Sun. Another possibility
is that it can disrupt the inner solar system and Mercury, Venus, Earth, or Mars could collide [27][30].

1https://ssd.jpl.nasa.gov/horizons/
2https://docs.tudat.space/en/latest/index.html

2.3. Planet orbit Variations 9

Figure 2.5: Mercury (NASA image
database)

Figure 2.6: Venus (NASA image
database)

Figure 2.7: Mars (NASA image
database)

Mercury also has a precession. It was proposed by Einstein as a test of general relativity [13]. It is now
observed to be 574.10″±0.65 (arcseconds) per century [3] by the MESSENGER spacecraft.

2.3.2. Venus

Venus has an extremely stable and circular orbit compared to other natural bodies. It has an eccentricity
of 0.0068 and a distance to the Sun of 0.7184-0.7282 AU (108.21-108.94 million km). It also has an
orbital period of 224.70 Earth days [11]. It has no moons, theorized to be because of either the strong
solar tides [39] or tidal deceleration caused by Venus itself [42]. It has an inclination to the solar plane
of 3.395◦. The precession is measured to be 8.6247″±0.0005 per century [3]. It has no other orbital
parameters or significant influences not previously mentioned.

2.3.3. Mars

Mars has a similarly stable orbit to Venus, however, the influence of Jupiter and the asteroid belt are
significantly more predominant. Due to the complexity of the asteroid belt modeling, this will not be
included in the analysis. It has a rather large eccentricity of 0.0934 and a distance to the Sun of 1.405
to 1.639 AU (206.65-249.26 million km) [7]. The orbital period is 686.98 Earth days and an inclination to
the solar plane of 1.848◦ [7]. Mars has similar cyclic variations as Earth. However, the period for most
of these variations is millions of years, so these effects can be assumed to be negligible [29]. The orbital
eccentricity cycle of Mars is 96,000 Earth years, very similar to Earth. The precession is measured to
be 1.351″±0.001 per century [3]. Finally, Mars has two moons: Phobos and Deimos. However, these
moons are extremely small and insignificant for gravitational influences [7].

2.3.4. Jupiter

Jupiter is one of the most interesting planets for the analysis. It has relatively one of the biggest impacts
on Earth’s orbit due to its mass. It has a distance from the Sun of 5.2 AU (778 million km) and an orbital
period of 4332.589 Earth days (11.86 years). The eccentricity is 0.0487◦ [6]. The inclination to the
solar plane is 1.304◦. Jupiter has 95 confirmed moons, of which 4 are massive enough to include in
the analysis given in this report [6]: Io, Europa, Ganymede, and Callisto. Their masses are prevalent
enough to include in a more detailed analysis model if time permits.

Jupiter has been known to clean the solar system of debris [21]. It has such a large influence on
the orbits of the solar system that most planets are closer to Jupiter’s orbital plane than that of the
sun, except for Mercury. Jupiter is responsible for astronomic phenomena such as the Kirkwood gaps
[21]. These Kirkwood gaps are regularly spaced voids in the asteroid belt, where significantly fewer
asteroids are present. These asteroids are, over a long period, removed by Jupiter’s gravitational

2.3. Planet orbit Variations 10

Figure 2.8: Jupiter (NASA image
database)

Figure 2.9: Io (NASA image database) Figure 2.10: Europa (NASA image
database)

Figure 2.11: Ganymede (NASA image
database) Figure 2.12: Callisto (NASA image

database)

attraction. Furthermore, Jupiter is responsible for the asteroid belt that exists in the first place: due to
its gravity, any significantly larger object that currently exists will be either fragmented or attracted by
Jupiter and removed from the solar system. Finally, Jupiter has created two swarms in its orbit: the
Trojan asteroids. These are asteroid swarms that are either in front of or behind Jupiter’s orbit. Whether
Jupiter protects the inner solar system or creates more asteroids or meteorites is not yet definitively
known [21]. It is known that Jupiter’s obliquity is not caused by Uranus [12].

2.3.5. Saturn

Saturn is the second largest planet in the solar system, thus having a large influence on planetary orbits
in the solar system. It has an eccentricity of 0.052 and a period of 10,759.22 Earth days (about 29.5
years). The distance to the Sun is 9.195 and 9.957 AU (1.3-1.5 Billion km). Its inclination to the solar
plane is 2.48◦ [10].

Saturn has 146 confirmed moons and of course the well-known rings. Although other planets also
have rings, Saturn has the most pronounced. However, all but one of them are too small to have an
orbital influence on any object in this analysis. The only exception is Titan, which could be included
together with the 4 Galilean moons of Jupiter. Saturn has an interesting rotation, comprised of separate
3 periods. This report will not go into detail about these rotations, because these rotations do not
influence the orbital parameters of the solar system. Also interesting is that Saturn does not have any
Trojan asteroids, while Mars, Jupiter, Uranus, and Neptune all have confirmed Trojan asteroids. Orbital
resonance is believed to be the cause of their absence [22]. Finally, There is some evidence that leans
towards Saturn being in a spin-orbit resonance with Neptune, where the axial precession of Saturn
matches Neptune’s orbit [4].

2.3. Planet orbit Variations 11

Figure 2.13: Saturn (NASA image database)
Figure 2.14: Titan (NASA image

database)

Figure 2.15: Uranus (NASA image
database)

Figure 2.16: Neptune (NASA image
database)

2.3.6. Uranus

Uranus has a relatively stable orbit. The period is 30,685.4 days (84 years) and has an eccentricity
of 0.0469. Due to the fact it only has done around 2.9 orbits since its discovery, a lot of the orbit is
still unknown with observations, although a lot of simulations have revealed details of the orbit. The
distance to the Sun is 18.2-20.0 AU (2,732.696 - 3,001.390 million km), and the orbital inclination to the
solar plane is 1.770◦. Uranus has 27 confirmed moons, none of which are large enough to influence
the solar system. The orbital discrepancies of the observed orbit of Uranus have been modeled and
later led to the discovery of Neptune.

2.3.7. Neptune

Neptune has a very low eccentricity of only 0.00867. However, due to its large distance to the Sun, this
still means that the distance to the sun varies between 29.81 and 30.33 AU (about 4.5 billion km). It
has an orbital period of 164.79±0.1 years and thus has only completed its first orbit since its discovery
in 2011. The orbital inclination between the orbit of Neptune and the solar plane is 1.77◦ [9]. Neptune
has a large influence on the region behind it in the solar system, such as the Kuiper belt. Due to both
the difficulty in modeling such a belt, and the negligible effect this belt will have, it will not be modeled
in the analysis. Neptune has a total of 14 moons, and similar to Uranus, they are all so small that there
will be no gravitational effects from them [9].

2.3. Planet orbit Variations 12

Figure 2.17: Gravitational acceleration of the planets in our solar system on Earth, including Pluto and the three options for
Planet X, discussed in this chapter. Shown here are the gravitational accelerations on Earth by each object in their most
remote state (on opposite sites of the Sun), their closest state (aligned with the Sun), and when there is a 90◦ difference

between the locations in the respective orbit (the dot). This last situation is also the numerical value shown. For this calculation,
all orbits are assumed circular and completely aligned in the same solar plane.

2.3.8. Planet X

One of the questions at the beginning of the investigation was the influence of planet X on the orbits of
our solar system. Although this topic has been extensively researched in the past, several options for
a planet X are still open and theoretically possible, especially when looking at a very large semi-major
axis. For this subsection, only L. Iorio (2011) [25] will be used since this paper is a comprehensive
summary of the search for Planet X.

Constraints for the search for the planet are taken by only using simulatedmasses of Mars or greater.
Doing such research, there are three possibilities found for the combination of mass and distance to
the Sun: a Mars-massed planet at 150-200 AU, a 70% of Earth’s mass planet at 250-450 AU, and a 4
Jupiter masses planet at 3500-4500 AU. The possibilities of the presence of planet X are low, but not
impossible.

In Figure 2.17, the gravitational acceleration of Earth due to the gravitational forces of the planets
was calculated. Here, all 7 planets are included, together with Pluto and the three possibilities of Planet
X found in Iorio (2011) [25]. Shown are the gravitational accelerations on Earth by each object in their
most remote state (on opposite sites of the Sun), their closest state (aligned with the Sun), and when
there is a 90◦ difference between the locations in the respective orbit (the dot). This last situation is
also the numerical value shown. For this calculation, all orbits are assumed circular and completely
aligned in the same solar plane. As can be seen, the gravitational acceleration is very small compared
to the other planets, however, it is larger than Pluto. Therefore, for the analysis performed, it could
be an interesting factor to be included. However, the stability of the solar system as a whole could be
impacted by such a choice, so implementation should be done carefully and with proper verification and
validation. This means that the model after inclusion needs to be thoroughly checked for instabilities
and other discrepancies that prove that Planet X is implemented correctly. If the solar system model
including Planet X is distinctly further from validated data due to this inclusion, then Planet X is not
implemented correctly. However, it was decided that planet X is not included into the model, due to
time constraints.

2.3. Planet orbit Variations 13

2.3.9. Planet detail table

Metric [Unit] Mercury Venus Earth Mars
Mass [10^24 kg] 0.33 4.87 5.97 0.642
Average distance to Sun [AU] 0.3871 0.7233 1.000 1.522
Orbital Period [Earth days] 87.969 224.70 365.256 686.98
Eccentricity [-] 0.2056 0.0068 0.017 0.0934
Inclination to Solar plane [°] 7.0 3.395 0.000 1.848
Precession [′′ per century] 574.10±0.65 8.6247±0.0005 - 1.351±0.001
Gravitationally interesting
Moons (total moons) [#] 0 (0) 0 (0) 1 (1) 0 (2)

Jupiter Saturn Uranus Neptune
Mass [10^24 kg] 1898 568 86.8 102
Average distance to Sun [AU] 5.2 9.576 19.1 30.07
Orbital Period [Earth days] 4,332.589 10,759.22 30,685.4 60,189±36
Eccentricity [-] 0.0487 0.052 0.047 0.00867
Inclination to Solar plane [°] 1.304 2.48 0.770 1.770
Precession [′′ per century] - - - -
Gravitationally interesting
Moons (total moons) [#] 4 (95) 1 (146) 0 (27) 0 (14)

Io Europa Ganymede Callisto
Parent body Jupiter Jupiter Jupiter Jupiter
Mass [10^21 kg] 89.3 48.0 148.2 107.6
Average distance to parent
body [10^6 km] 422 671 1070 1883

Orbital Period [Earth days] 1.8 3.6 7.2 16.7
Eccentricity [-] 0.004 0.009 0.001 0.007
Inclination to Solar plane [°] 0.04 0.47 0.18 0.19

Moon Titan
Parent body Earth Saturn
Mass [10^21 kg] 73.5 134.6
Average distance to parent
body [10^6 km] 384 1222

Orbital Period [Earth days] 27.3 15.9
Eccentricity [-] 0.055 0.029
Inclination to ecliptic[°] 5.1 0.33

Table 2.1: Planet data sheet

2.3.10. Conclusion

All planets are important for the solar system model, however, the orbits still need to be known. The
more in-depth variables (such as the ephemeris) of each planet can be easily found in databases such
as TUDAT (SPICE) and JPL, so they are not included in this chapter. Several planets have moons
that are massive enough to be able to influence the solar system, which should be included in a more
in-depth model. The inclusion is decribed in Section 3.1. For the simple model, including all the planets
and having a stable system is already a significant task. Their orbital plane is mostly aligned, with only
Mercury as an outlier. Jupiter and Saturn are the most influential planets to be modeled for the solar
system dynamics. In regards to the asteroid belt, the Kuiper belt, and the Oort cloud, these should
not be modeled in the analysis performed due to both difficulty in easy modeling, and their negligible
influence on the outcome. Finally, Planet X could theoretically be included in a very detailed step of the

2.3. Planet orbit Variations 14

model. It is bordering on the influence it has on the solar system dynamics if it even exists. Therefore,
It will be not in the analysis performed in this report.

3
Methodology

In this chapter, the methodology of the research is discussed. At first, a basic model of point masses is
proposed in Section 3.1, which will be further developed in subsequent sections. This section will also
discuss the period to be analyzed by the model and the bodies to be used in the model. In Section 3.2, a
new function for periodic averaging will be introduced, the aim of which is to decrease the computational
time to run the model. Due to the inclusion of this to-be-created function, the specific type of propagator
and integrator for the model cannot be determined in advance. Therefore, the analysis of the integrator
and propagator combinations to be used will be addressed later in Section 3.3, along with their settings.
However, the third major component typically used in TUDAT analysis software, the optimizer, will not
be necessary, as there will be no orbit that requires optimization; it only needs to approximate as closely
as possible the actual configuration of the solar system. There are more perturbation forces (such as
solar radiation pressure) acting in the solar system, but these are not taken into account.

In Section 3.4, the more complex calculation formulas for spherical harmonics will be analyzed to
determine whether they are necessary for the desired level of detail or simply an unnecessary increase
in computational resources. Subsequently, in Section 3.6, an additional model analyzing the differences
in Sunlight intensity between the northern and Southern Hemispheres will be discussed. Finally, in
Section 3.7, a conclusion for this chapter will be presented.

3.1. Model basis, time period and bodies used

As a starting point for the model, the TUDAT1 software package will be utilized to simulate the orbits.
This package is specially designed and maintained to help TU Delft students model solar system ac-
tivities, such as planetary movement, but also spacecraft orbits. TUDAT allows us to leverage the
foundational components provided by itself, rather than developing them from scratch. The software
includes features like the ephemerides of the planets sourced from the SPICE database2, which can
also be cross-referenced to the database of JPL [14]. The use of the JPL database will be further
discussed in Chapter 4.

The TUDAT package will model the solar system based on accelerations, where all astronomical
bodies will rotate around the solar system barycenter. The formula for simple point mass accelerations
is provided in Equation 3.1.

r̈a,b = − GMa

r3a,b
· ra,b = − µa

r3a,b
· ra,b (3.1)

Here, the acceleration performed by mass b onto mass a is shown. In this equation, r̈a,b represents
the acceleration vector, G is the universal gravity constant, Ma is the mass of planetary body a, µa is
the gravitational constant of planetary body a, and ra,b is the distance between planetary bodies a and

1https://docs.tudat.space/en/latest/index.html
2https://naif.jpl.nasa.gov/naif/data.html

15

3.2. Periodic averaging function 16

b. More complex formulas, such as those involving spherical harmonics, can also be applied for cases
requiring greater accuracy. This will be discussed further in Section 3.4.

A 5000-year period has been selected for my analysis, as a shorter duration would diminish ob-
servable effects and may not reveal a cycle, potentially resulting in an unstable system. A significantly
longer period would include the same results as the 5000-year analysis (since it would still include the
same 5000 years); however, if certain effects weren’t shown in the 5000-year model, then these effects
should not be a result of the natural causes analyzed by this research, since their period an amplitude
combination would not be able to explain the effects. Moreover, extending the analysis period would
considerably increase the model’s computational time, requiring more resources (e.g., time) without
necessarily yielding additional insights. Therefore, the model will analyze a period of 2500 years both
into the future and the past. To simplify the dates used, the midpoint of the analysis is set to January
1, 2000, at 00:00. Since this represents only a 25-year difference, it is not expected to significantly
affect the outcomes, as this is a negligible time frame compared to the overall 5000 years of analysis.
Additionally, climatic and temperature changes occur gradually, making it highly unlikely that 25 years
would produce a noticeable impact.

In Section 2.3, the orbital variations of the planets have been discussed. Here, the decision needs
to be made whether to include which moons of the solar system. For this, a simple analysis is run.
Due to this analysis, a 50% decrease of error was observed when included all six moons chosen in the
background analysis, on an analysis period of 100 years. Therefore, the six moons will all be included
in the final model. The results were 1.45 · 107km without moons and 6.5 · 106km including moons.

3.2. Periodic averaging function

Since the model will analyze 2500 years into both the future and the past, with 2000 as center point, it
should not propagate the entire orbits of all celestial bodies. A new function was proposed to quicken
the analysis and reduce the computational time for the full 5000-year period. This function takes the ef-
fects of a single orbit and uses that outcome to simulate several subsequent orbits, thereby decreasing
the simulation time needed by eliminating the time-consuming time steps necessary for these following
orbits. However, due to the absence of resonance in the dynamics of the solar system, the application
of this orbit has to be done with caution, and of course should be verified and validated before the inclu-
sion into the model. This function is therefore difficult to predict on its detailed method since extensive
testing is necessary before it can be used with any confidence in the result. This was therefore an
important part of the model proposed at the start.

During the initial implementation of the described function, a significant challenge arose, which was
spotted in advance: the periods of the planets do not align, caused by a lack of resonance. This ab-
sence of resonance complicates the correct averaging for all planets. After numerous tests of different
methods, each focused on 1 year - a baseline year - to estimate a following 1-year period - the result-
ing year. The results for the Earth were within a reasonable boundary since the difference could be
simply added; the Earth was in the same spot in its orbit. For the other planets, a Keplerian approach
was employed to project the position of the planets further along their current trajectory based on the
baseline year. This method proved effective for both planets and moons with shorter orbital periods
than a year and planets with a longer period than a year, although it yielded greater errors for those
with longer orbital periods.

However, both methods proved insufficient when estimating the Solar Inertial Motion, as discussed
in Section 2.2.1. Although the Sun’s motion around the solar system’s barycenter is semi-regular and
could potentially be estimated using a rose model, it was decided not to employ this approach. Signif-
icant discussions have arisen regarding the assumptions made by Zharkova in her work, and it was
decided to fully simulate the motion of the Sun, using TUDAT software and the function described here.
Unfortunately, it was found that the Solar Inertial Motion cannot be accurately estimated for a year
without complete simulation, which undermines the purpose of the proposed function.

As a result, the model must fully simulate the Solar Inertial Motion, the model also has to fully sim-

3.3. Integrator and Propagator Selection 17

ulate the accelerations acting on the Sun, due to which all planets also need to be fully simulated.
Preliminary calculations using the time taken by the model, established with an initial integrator and
propagator (classical Runge-Kutta method with 4th order coefficients and Cowell, respectively), sug-
gested that based on a simulation run spanning only 25 years, a full simulation run of 2500 years - one
side of the analysis period - would take approximately 10 to 15 minutes. This runtime estimation for the
full model, along with the anticipated challenges and time required to develop a function for simulating
the Solar Inertial Motion, was sufficient to decide to not work further on the function and to fully simulate
the solar system for the 5000 years of the analysis in the model.

3.3. Integrator and Propagator Selection

After it was decided to not implement the periodic averaging function, discussed in the previous section,
the selection for integrator and propagator could be done. The function could impact the workings of the
integrator and the propagator, so the selection was delayed until the function was completed. However,
now that the function is deprecated, the selection can be performed.

TUDAT solves the formulas for planetarymovement with the help of a propagator and integrator com-
bination. The integrator solves the differential equation formulas, and then the propagator advances
them to the next step. The size of the steps depends on the settings.

Integrator

The methods used by the integrators can be divided into two methods: fixed time step or variable time
step with tolerances. The fixed-time step only needs the step size as a variable, while the variable
step size includes both minimum and maximum step sizes, with tolerances determining the actual step
size. The integrator uses these tolerances to adjust the step size, which is particularly beneficial for
spacecraft approaching planetary objects. These variable step sizes allow for the algorithm to better
make use of the resources and time of the computer.

To compare the available integrators, a baseline must be established. For this, the JPL Horizons
database has been used. Further discussion about this database can be found in Chapter 4. Specifi-
cally, the value measured for error is the magnitude of the error in the Earth’s position vector relative
to the solar system barycenter, as defined in Equation 3.2.

ϵmodel = ||(rEarth,SSB)model − (rEarth,SSB)JPL|| (3.2)

In this equation, rEarth,SSB represents the position vector of Earth from the solar system barycenter
(SSB). The term (rEarth,SSB)model refers to the position vector calculated by themodel, and (rEarth,SSB)JPL

refers to the position vector received from the JPL database. Finally, ϵmodel represents the magnitude
of the model error.

The integrators are evaluated based on two metrics: accuracy and CPU time, which is the time
required to complete the analysis. Three types of integrators are considered: the Runge-Kutta method,
the Bulirsch-Stoer method, and the Adams-Bashforth-Moulton method. Since the results will be com-
pared to the JPL database, it was chosen to only use the fixed time step functions, as these align
with the JPL database. If variable time steps would be used, the JPL time step could fall in between
the variable time steps, leading to an interpolated comparison and thus introducing additional errors.
Consequently, the variable time step functions are not assessed. This excludes the Adams-Bashforth-
Moulton method, as well as the variable time step versions of the Runge-Kutta and Bulirsch-Stoer
methods. Therefore, the analysis focuses solely on the fixed-time step variants of the Runge-Kutta
and Bulirsch-Stoer methods. The specific variants chosen for analysis include the 4th order Runge-
Kutta (RK4), the 5th order Runge-Kutta-Fehlberg with an embedded 4th order (RK45), the 6th order
Runge-Kutta-Fehlberg with an embedded 5th order (RK56), the 8th order Runge-Kutta-Fehlberg with
an embedded 7th order (RK78), the 7th order Runge-Kutta Dormand-Prince with an embedded 8th
order (RKDP87), and three Bulirsch-Stoer methods with 4, 6, and 8 substeps (BS4, BS6, and BS8).

3.3. Integrator and Propagator Selection 18

Figure 3.1: First step in integrator selection. Shown here are
8 integrators, compared in error with relation to the JPL

database and in CPU time taken.

Figure 3.2: Second step in integrator selection. Shown here
are 5 integrators, compared in error with relation to the JPL

database and in CPU time taken.

Running a full 2,500-year simulation for all integrators would be too time-consuming; therefore,
the selected integrators are evaluated over a shorter 100-year run, for only two step sizes. After this
analysis, more detailed step sizes will be examined for the remaining integrators. The chosen step sizes
are designed to be divisible by a Julian year (365.25 days), which simplifies calculations by eliminating
the need to account for leap days. The applicable step sizes are 1 hour, 2 hours, 3 hours, 6 hours,
9 hours, and 18 hours. For the initial analysis, 9-hour and 18-hour steps are selected. Figure 3.1
presents the results of this first analysis. Here, it is clear that for the time taken, the three Bulirsch-
Stoer methods all require significantly more time than the Runge-Kutta methods, without achieving
a substantial reduction in error. Therefore, in the next step of the integrator selection, only the six
Runge-Kutta methods remain.

In the second step of integrator selection, all the time step settings are considered and simulated
with a 100-year-long simulation. These results can be found in Figure 3.2. This graph shows that
all methods converge to a ’line of error convergence’ in the model as the time step decreases. This
indicates that the error is driven by one of the other components and not the integrator under these
settings. Since the goal is to pick the integrator with the best combination of the lowest CPU time and
minimal error, initially it would seem that the RK4 method would be ideal, since it has by far the lowest
error and at the same settings very low CPU time. However, with a lower degree of step size, the error
increases to the same error as other integrators.

This increase in error for lower step sizes can be explained by an inaccurate modeling error that
coincidentally creates a positive effect on the error, thereby reducing it. With this in mind, the RK4
method only has a comparable error as the other methods with a step size that is 2 degrees smaller,
which also results in significantly increased CPU time. Taking this analysis in mind, Based on this
analysis, two integrators — RK78 and RKDP87 — are nearly indistinguishable from one another, both
lying on or very close to the previously mentioned ’line of error convergence’. For these two methods,
a new graph (Figure 3.3) is created to highlight their differences. In this analysis, the 6 previously
discussed moons (Section 3.1) are included as point masses, in addition to the settings used in the
previous step. Here, the same effect is seen as in Figure 3.2; the integrators converge to a ’line of
error convergence’. However, it can be observed that the RKDP87 converges more slowly to this line,
requiring a smaller step size and consequently higher CPU time. Therefore, the RK78 is selected as
the integrator for the model. In Figure 3.3, this integrator and step size combination is indicated by a
red point.

3.4. Spherical harmonics 19

Figure 3.3: Last step in integrator selection. Shown here are the last 2 integrators, compared in error with relation to the JPL
database and in CPU time taken. The moons are influencing the result, the period is 100 years. The blue star indicates the

integrator and setting combination chosen.

Propagator

The same method as the integrator was planned for selecting the propagator. However, due to the use
of the solar system barycenter, the Encke and Gauss Modified Equinoctial propagators do not work,
since no central body was used in the algorithm. Subsequently, when using the Gauss Keplerian
or one of the three Unified state model propagators (quaternions, modified Rodrigues parameters,
and exponential map), the algorithm also failed, because the algorithm ’couldn’t remove the central
point gravity’. Therefore, only the Cowell propagator worked within the algorithm, and therefore, this
propagator was chosen as the propagator to be used by the model.

3.4. Spherical harmonics

As mentioned in Section 3.1, to improve the accuracy of the model of the solar system, the point mass
acceleration formula can be replaced by spherical harmonic formulas. These equations can be found
in Equation 3.3 and Equation 3.4. The spherical harmonics are a more detailed modeling of the gravity
of a planetary body. Since the mass of a planet is not uniformly distributed on most astronomical bodies
- exceptions are for example stars, which are so massive that their gravitational pull more effectively
distributes themass evenly - their gravity field is also not uniform. With the use of the spherical harmonic
formulas, you can model these discrepancies in the gravitational field of any given astronomical body
with the use of constants.

r̈a,b = aa,b = ∇Ua(ra,b) (3.3)

Uâ(ra,b) =
µa

ra,b

∞∑
l=1

l∑
m=0

(
Ra

ra,b
)lP̄lm(sinϕa,b)((C̄lm)acos(mθa,b) + (S̄lm)asin(mθa,b)) (3.4)

Here, the symbols used are: ∇Ua are the inertial potential gradients at position ra,b for spherical
harmonic potential Ua of Body a, P̄lm is the associated Legendre function of the first kind, C̄lm, and
S̄lm are normalized coefficients of the Legendre function, related to degree l & order m, and Ra is the
radius of planetary body a.

Not all planets have a high level of detail in their known spherical harmonic constants. What is
known and included in the TUDAT software is shown in Table 3.1. However, the detail required for

3.4. Spherical harmonics 20

Planetary Body Available Parameters Source
Earth Full gravity field, up to degree and order 200 GOCO05c via GFZ
Moon Full gravity field, up to degree and order 200 gggrx1200 via PDS
Mars Full gravity field, up to degree and order 120 jgmro120d via PDS
Venus Full gravity field, up to degree and order 180 shgj180u via PDS
Mercury Full gravity field, up to degree and order 160 jgmess160a via PDS
Jupiter Zonal coefficients up to degree 8 Nature paper [24]
Galilean Moons
(Io, Europa, Ganymede, Callisto) µ,C20, C22 IMCCE ephemerides

Table 3.1: Available Spherical Harmonics parameters in the SPICE module. Source: [41]

Figure 3.4: Spherical Harmonics selection step 1. base time was 14.6s

3.5. Result calculation 21

Figure 3.5: Spherical Harmonics selection step 2. base time was 665.5s

spherical harmonics decreases quickly with distance. Therefore, the current level of known spherical
harmonic constants should be sufficient for the analysis. Although the formulas above are essential for
the calculations, the TUDAT software only needs to be configured as a spherical harmonics model. If
the correct constants are provided, it will automatically handle the formulas presented.

To decide whether spherical harmonics were necessary for the model, an analysis was run. In this
analysis, the available spherical harmonics were activated one at a time to determine their influence on
both time and accuracy. For this analysis, the time simulated was again 100 years, and the value for
error is the maximum error concerning the JPL database, similar to the method for integrator selection.
The result can be seen in Figure 3.4. Here, it can be observed that for the majority of planets or moons,
the spherical harmonics do not have a significantly different influence over the point mass, however,
as can be seen in the labels below, the time taken does increase significantly. The only significant
difference can be spotted when the spherical harmonics are used for the Earth and Jupiter. It can also
be seen that increasing the order and degree of the Spherical harmonic does not result in a significantly
different error above the degree and order of 2, while still significantly increasing CPU time taken.

For a more detailed analysis, a 2500-year run was performed with the spherical harmonics of Earth
and Jupiter; a run without any spherical harmonics, a run with only Earth’s spherical harmonics up to
degree and order 2, a run with only Jupiter’s spherical harmonics up to degree and order 2, and a run
with both Earth and Jupiter spherical harmonics up to degree and order 2. The result of this analysis can
be found in Figure 3.5. Here, the error does change significantly, but it never decreases significantly.
However, the CPU time taken does increase more than two for the cases where 1 Spherical harmonic
is used, and for the case where both are used, the CPU time has more than tripled. Due to this large
increase in CPU time, while not offering a significant decrease in positional error, it was chosen to not
include any spherical harmonics in the model.

3.5. Result calculation

The magnitude of the changing distance between the Earth and the Sun can be calculated in two differ-
ent methods: the norm and the magnitude difference. These equations can be found in Equation 3.5
for the norm and Equation 3.6 for the magnitude.

∆rnorm = ||rEarth − rSun|| (3.5)

3.6. Hemisphere model 22

∆rmagn = ||rEarth|| − ||rSun|| (3.6)

The parameters used are the difference calculated as a norm (∆rnorm), the distance calculated as
a magnitude (∆rmagn), the distance between Earth and the Solar System Barycenter (rEarth), and the
distance between the Sun and the Solar System Barycenter (rSun). The norm gives a better image
of the absolute distance between the Sun and the Earth, while the magnitude is mostly important for
comparison regarding validation. There, the magnitude will give a better representation of a changing
distance between objects, while the norm will give a better positional error.

3.6. Hemisphere model

After the initial research question has been answered by themethod described earlier, another research
question remains: 3. Can the hemispheric effects (as described by V.V. Zharkova et al.) be quantified
in a simplified Earth hemispheric model? To answer this question, the solar intensity on both Earth
Hemispheres has to be modeled. The reason this can affect climate is the albedo or reflectivity of both
Hemispheres. The Northern Hemisphere has comparatively less land area compared to the Southern
Hemisphere, while the Southern Hemisphere has much more sea area. Additionally, the ice sheet
distribution - on land and sea combined - is also not evenly distributed. The areas - land, sea, and
ice - all have a different reflectivity. Ice and snow have a much higher reflectivity than land, and will
therefore reflect much of the energy of the Sun back to space, instead of absorbing it and warming the
Earth. So, if the Northern Hemisphere sees an increase in solar intensity during the northern summer
months, this could have the potential to increase the global temperature. Since modeling the albedo
or reflectivity itself has a large component of uncertainty, since it involves estimating land, sea, and ice
coverage, it was decided to not estimate the albedo of the Hemispheres, however, to only model the
solar intensity on the Hemispheres throughout the period analyzed.

To model the Hemispheres, the percentage area of the Hemispheres in Sunlight is not really rele-
vant. What is relevant, is the percentage of Sunlight that falls on each Hemisphere. The difference is
observed from the angle of incidence. If the angle is 90◦, then the solar intensity per square meter is
the highest. Since the solar intensity per meter is not important, but the solar intensity per Hemisphere
is, the percentage of Sunlight per Hemisphere is more useful.

For this, the three-dimensional case can be simplified to a two-dimensional problem; The Sunlight
that falls on the Earth is in the shape of a disk. Therefore, the formula just needs to calculate the area of
the circle that corresponds to the Southern Hemisphere, and the inversion (100%−Southern%) is then
the Northern Hemisphere. This is known as the formula for a circular segment, shown in Equation 3.7
and with Figure 3.6.

A =
R2

2
(θ − sinθ) (3.7)

d = Rcos(
θ

2
) → θ = 2cos−1(

d

R
) (3.8)

d = Rcosα (3.9)

θ = 2cos−1(
Rcosα

R
) → θ = 2cos−1(cosα) → θ = 2α (3.10)

Since the southern area is calculated from the angle between the incoming solar rays and the
Earth’s rotation axis, denoted as α, then θ can be determined with geometry and Equation 3.8, where
the equation for d, the apothem, is shown. α can be determined with right angles - since the Sun rays
are always perpendicular to the disk, representing the Earth - and is shown in Equation 3.9, also linked
to the apothem. Then, both formulas for apothem (Equation 3.8 and Equation 3.9) are combined in
Equation 3.10, such that a link between the green area in Figure 3.6 and α has been found. These for-
mulas can then be used to calculate the percentage of Sunlight that falls on the southern and Northern
Hemispheres.

3.7. Conclusion 23

Figure 3.6: Circular section diagram, used for calculating the Hemisphere percentage. Marked in green is the area which is to
be calculated. It corresponds to the Sunlight that falls on the Southern Hemisphere. The entire disk represents the Sunlight

falling on the Earth.

After the percentage of Sunlight that falls on the Southern and Northern Hemispheres has been
calculated, the solar intensity for each Hemisphere can be calculated. This is done by using the inverse
square law, using the distances calculated described in the previous sections. With this distance, the
changing solar intensity can be obtained, and together with the percentages calculated as described
above, the solar intensity change can be found. Then, the statements of V.V. Zharkova [43] can be
tested using this solar intensity change.

3.7. Conclusion

In this chapter, the methodology for the algorithm and model were discussed. First, the period was set
at 2500 Julian years (365.25 days each) in the future and past, centered around the 1st of January 2000.
The Sun and all 8 planets are included, rotating around the solar system barycenter, such that the solar
inertial motion can be observed, together with our Moon, the 4 Galilean moons (Io, Europa, Callisto,
Ganymede), and Saturn’s moon Titan. Then, the averaging function was found to be ineffective and
thus scrapped. Subsequently, the integrator and propagator could be decided as the RK7(8) integrator
and Cowell propagator. When testing for Spherical Harmonics, the very slight error decrease in one of
the models did not hold up against the more than twofold increase in CPU time, so only point masses
are included in my model. Finally, a hemispheric model was discussed, where the solar intensity per
Hemisphere on Earth can be calculated and, together with the distance calculated before, the influence
of the Hemispheres in combination with solar intensity will be tested against the statements of V.V.
Zharkova, which will be done in the next chapter.

As a final note regarding the methodology, the most important code files are available in Appendix A.
Due to size limitations, the rest of the code files (verification, validation, plotting) used for this algorithm
are available to be analyzed and reused by request.

4
Sensitivity, Verification & Validation

In this chapter, Section 4.1 covers the verification and validation processes. This section outlines the
steps taken to ensure the accuracy and reliability of the model, comparing its outputs against estab-
lished benchmarks and real-world data to confirm its validity. Following this, the sensitivity analysis is
conducted and discussed. This is presented in Section 4.2, where we explore how variations in input
parameters affect the model’s results and assess the model’s robustness to different initial states.

4.1. Verification and Validation

During the algorithm’s implementation, verification and validation methods were applied from the outset
to ensure the reliability of the model. Every time a new function was implemented that influenced the
data handling of the model - such as the splitting of the runs into multiple parts due to memory issues,
or the saving of data to a txt file between runs, such that plotting becomes more time-efficient - it was
verified that these changes did not affect the results. Additionally, the Python ’assert’ function was
used in several code segments to halt the analysis if certain conditions were not met. For example,
after reading and processing data from the model and the JPL database, the epoch of the runs was
compared to the epochs of the JPL database to ensure that the data remained consistent with the
original epoch. This check ensured that no unintended changes occurred during processing.

Plots were also generated to verify that the planets behaved as expected. One example of this was
when an error was detected in the velocity of Mars. The velocity was incorrectly passed through the
code and was found to be 1000 times higher than the actual value, resulting in an escape trajectory.
This error was identified early through the plot shown in Figure 4.1

As mentioned earlier, the JPL Horizons database served as both a baseline for selecting the inte-
grator, propagator, and spherical harmonics, and as a validation tool for the model. The uncertainties
in the JPL database vary by planet, typically ranging from 0.5 to 30 km for terrestrial planets, and up to
4000 km for gas giants [14]. The period for which this uncertainty is given is between the years 1800 -
2200. While the 4000 km margin for the gas giants might seem large, it is a small fraction of the total
distance, which spans millions of kilometers. As such, these uncertainties do not significantly impact
the accuracy of the model’s validation.

In addition to its role in selecting model parameters, the JPL Horizons database was also used to
assess any significant differences between the model and the database. Figure 4.2 presents an anal-
ysis where the JPL database was extended beyond the scope of this study, allowing for a comparison
of the overall shape and the identification of any cycles. Early indications of periodicity can be seen,
particularly in the norm plot, which seems to approach the midpoint of an upward curve, and in the
Z-coordinate, which clearly shows the changing acceleration in the position curve.

Another question raised was whether the results would differ significantly when starting the model
from the middle in both directions. To address this, the conditions from the backward run (at -500 years,
or 500 BC) were used to initialize the model, and the simulation was run for a full 5000 years. The dif-
ference between the two runs is shown in Figure 4.3. While the results do change, the magnitude of

24

4.1. Verification and Validation 25

Figure 4.1: Failed fun example caught by verification. As shown here, Mars did not want to remain in the solar system. The
error was found to be a multiplication of the velocity to 1000 times the actual value.

Figure 4.2: JPL data plotted for 20,000 years

4.1. Verification and Validation 26

Figure 4.3: 5000-year run result, used to determine the effect of starting the run in the middle

the difference is still significantly smaller than that observed in the sensitivity analysis, by a factor of ap-
proximately 1000. This suggests that the starting point does not have the most substantial contribution
to the overall error in the model.

Subsequently, the difference between starting with the JPL Horizons state at the starting point, or
starting with the SPICE initial state was investigated. Since SPICE uses a slightly different initial state
compared to JPL, the effect of this difference was examined to determine if it could be a dominant factor.
The results are presented in Figure 4.4. Further discussion of these findings will be provided after the
final figure is introduced.

Finally Figure 4.5 shows the difference between the JPL Horizons database and the model. To
ensure a fair comparison, the model’s initial state was adjusted to match the JPL state, changing the
model’s initial state from SPICE to JPL. The magnitude of the changing distance between the Earth and
the Sun was calculated using two methods: the norm and the magnitude difference. The equations for
these calculations are presented in Equation 4.1 for the norm and Equation 4.2 for the magnitude.

∆rnorm = ||rEarth − rSun|| (4.1) ∆rmagn = ||rEarth|| − ||rSun|| (4.2)

The parameters used in these calculations include the difference calculated as a norm (∆rnorm),
the distance calculated as a magnitude (∆rmagn), the distance between Earth and the Solar System
Barycenter (rEarth), and the distance between the Sun and the Solar System Barycenter (rSun). The
norm provides a better understanding of the absolute distance between the Earth and the Sun, while
the magnitude is more useful for comparison in validation, as it offers a clearer representation of the
changing distance between objects. The norm, on the other hand, is more appropriate for assessing
positional error.

In Figure 4.4, it can be seen that the order of difference - whether measured by norm, magnitude, or
individual coordinates - is several orders of magnitude smaller than the difference between JPL and the
model with the same initial state, as shown in Figure 4.5. This suggests that the initial state is unlikely
to be the primary contributor to the discrepancy between the JPL database and the model. However,

4.1. Verification and Validation 27

Figure 4.4: Initial state difference between SPICE and JPL. Orange shows the backward run, and blue represents the forward
run. It is split in the norm (positional error), the magnitude (magnitude error), and in each coordinate.

Figure 4.5: JPL and model difference with equal initial states. Orange shows the backward run, and blue represents the
forward run. It is split in the norm (positional error), the magnitude (magnitude error), and in each coordinate.

4.2. Sensitivity 28

Figure 4.6: Sensitivity analysis of the forward runs. The red dot represents the baseline model without changes, and the 100
blue dots represent the 100 Monte-Carlo runs performed to determine the sensitivity. Shown are the X, Y, and Z-coordinates,

and the norm of the differences.

the exact cause of the difference remains undetermined, as the methodology behind the JPL Horizons
database was not found.

4.2. Sensitivity

The sensitivity analysis is a crucial aspect of model evaluation, as it helps assess the reliability of the
results by examining how small variations in the initial conditions affect the overall outcome. The Monte
Carlo method is used for the sensitivity analysis. In this approach, the initial state is randomly varied
within defined limits, with separate independent adjustments made for the X, Y, and Z coordinates. This
process is repeated multiple times, allowing for the creation of a scatterplot to identify any potential
correlations. For this model, the sensitivity analysis was conducted 100 times, and the results can be
found in Figure 4.6 for the forward run and Figure 4.7 for the backward run.

In both Figure 4.6 and Figure 4.7, it is observed that the X and Z coordinates show no correlation
with the results. However, the Y coordinate exhibits a strong correlation, likely due to the fact that
the Y coordinate reaches a maximum at the beginning of the analysis in terms of distance, as seen
in Figure 5.1. Another important factor to address is the magnitude of the resulting difference, which
reaches a maximum of around 1E9 meters - approximately 1% of the total distance between the Earth
and the Sun. This indicates that the model is highly sensitive to changes in the initial state.

Given the uncertainty associated with this sensitivity, it is unlikely that a precise temperature value
can be calculated, as the uncertainty would be too high to yield a reliable figure. However, it is essential
to note that, despite this uncertainty, the overall trend observed in the model’s results remains valid.
Whatever initial state was used, the trend observed remained the same. Therefore, the conclusions
drawn in Chapter 5 still hold, as confirmed by the sensitivity analysis.

More uncertainties could also be run through a sensitivity analysis, such as the masses of the
astronomical bodies. This is, however, much more closely measured and observed, so the sensitivities
would also be small. This analysis was however not performed, due to an expected small deviation
from the result with the existing known margins and the time associated with preforming this analysis.

4.2. Sensitivity 29

Figure 4.7: Sensitivity analysis of the forward runs. The red dot represents the baseline model without changes, and the 100
blue dots represent the 100 Monte-Carlo runs performed to determine the sensitivity. Shown are the X, Y, and Z-coordinates,

and the norm of the differences.

5
Results

In this chapter, the results of the analysis performed by the algorithm and model are presented and
discussed. First, Section 5.1 will focus on the results from the distance model, followed by an explo-
ration of the hemispheric model results in Section 5.2. The findings from both models will then be
combined and analyzed in Section 5.3. Finally, a direct comparison will be made with the result from
V.V. Zharkova [43] in Section 5.4, and a conclusion will be drawn based on the results in Section 5.5.

5.1. Distance Model Results

In Figure 5.1, the result from the distance model are shown. Here, the orange line is the backward
run (past), and the blue line is the forward run (future). The top two figures display the norm and the
magnitude of the difference, while the bottom three show the results in X, Y, and Z coordinates.

First, the top left figure will be discussed, which shows the norm of the distance. It is apparent
that there is a minimum present in the graph, corresponding to around the year 900. This minimum
distance would translate to a maximum in temperature, instead of a decrease in temperature, as would
be expected from V.V. Zharkova’s research paper. A similar minimum is also observed in the top-right
graph, which shows the magnitude of the difference. However, this minimum does not appear in any
individual coordinate, indicating that it is not associated with any particular axis.

The relative thickness of the line in the norm-plot can be explained by the Solar Inertial Motion,
where the sun rotates around the barycenter, as discussed in Section 2.2.1. The data in this plot is
presented with a 1 Julian year interval, recorded on January 1st, and therefore, the result could also
show the Milankovitch cycle relating to the eccentricity, where the perihelion and aphelion shift over
time around the sun. However, this effect is expected to be minimal, as explained in Section 2.2.2. The
effect should be particularly small at this point in the orbit, as it is close to perihelion.

However, it is also possible that the perihelion occurred around the year 900, which could explain the
observed minimum in the graph. This graph thus does not completely disprove the statement from the
V.V. Zharkova paper, stating that the distance between the Earth and the Sun is decreasing. However,
subsequent results will provide further evidence against the paper’s hypothesis.

5.2. Hemisphere Model Results

The results for the Hemisphere model discussed in Section 3.6 are presented in three figures: Fig-
ure 5.2 (by month), Figure 5.3 (by season), and Figure 5.4 (by year). The values for season and year
are created by obtaining the value for each month and then averaging these out for the season and the
year in total. These values therefore do not have the same pitfall as Figure 5.1, where only the data
for the 1st of January was shown. It only shows the change of sunlight for the Northern Hemisphere,
as discussed in Section 3.6.

30

5.2. Hemisphere Model Results 31

Figure 5.1: The result from the distance model. The orange line is the backward run (in the past), and the blue line is the
forward run (to the future). The top two figures show the norm and the magnitude of the difference, while the bottom three show

the results in X, Y, and Z-coordinates.

5.2. Hemisphere Model Results 32

Figure 5.2: Change of sunlight for the Northern Hemisphere, shown per month. The blue line is the forward (future) run, and
the orange line is the backward (past) run. Only the Northern Hemisphere data is shown, since the Southern Hemisphere is the
opposite of that, and therefore does not add new insight. The seasons are defined by three moths: January, February, March

for winter, April, May, June for spring, etc.

Figure 5.3: Change of sunlight for the Northern Hemisphere, shown per season. The blue line is the forward (future) run, and
the orange line is the backward (past) run. Only the Northern Hemisphere data is shown, since the Southern Hemisphere is the

opposite of that, and therefore does not add value.

5.3. Combined Model Results 33

Figure 5.4: Change of sunlight for the Northern Hemisphere, shown per year. The blue line is the forward (future) run, and the
orange line is the backward (past) run. Only the Northern Hemisphere data is shown, since the Southern Hemisphere is the

opposite of that, and therefore does not add value.

First, Figure 5.2 will be discussed. It shows that sunlight levels in the Northern Hemisphere change
over the course of the year. From January to June, the percentage of sunlight increases, while from
July to December, it decreases in the Northern Hemisphere. This pattern only partially supports V.V.
Zharkova’s claim that sunlight increases during the summer months, resulting in more energy being
absorbed by Earth.

Next, in Figure 5.3, a similar trend is observed: In winter and spring, the percentage of sunlight in
the Northern Hemisphere is increasing, while for summer and autumn, the percentage of sunlight in the
Northern Hemisphere is decreasing. However, this contradicts the statements of V.V. Zharkova, which
states that the Northern Hemisphere experiences an increase in sunlight during its warmer months.
Instead, we observe the opposite: the Northern Hemisphere experiences a decrease in sunlight during
its warmer season. Similarly, the Southern Hemisphere sees a decrease in the percentage of sunlight
in its warmer period, which corresponds to winter in the Northern Hemisphere. While this is not directly
shown in the graph, it can be inferred since when the percentage of sunlight increases in the Northern
Hemisphere, it decreases in the Southern Hemisphere, and vice versa.

Finally, in Figure 5.4 which presents the yearly averages, the same conclusion is drawn from the sea-
sonal data: the percentage of sunlight in the Northern Hemisphere is decreasing, rather than increasing.
This decrease in sunlight results in higher reflectivity of the Earth, which would have a cooling effect on
global temperatures. Therefore, according to these patterns, the temperature should be decreasing,
which contradicts the observed increase in temperature today, so these are not related.

5.3. Combined Model Results
In this section, the combined model result will be discussed. The combination process involves us-
ing the distance calculated by the distance model to determine the solar intensity on Earth, applying
the inverse square law (Equation 2.1). This allows for the calculation of sunlight that falls on each
Hemisphere, producing an average sunlight intensity per Hemisphere, including areas experiencing

5.4. Zharkova Comparison Results 34

Figure 5.5: Change of solar intensity for both Hemispheres, shown per month. The orange/blue line is the Northern
Hemisphere, while the green/red line is the Southern Hemisphere. It is split into the backward (past) run (orange for the

Northern Hemisphere and red for the Southern Hemisphere) and the forward (future) run (blue for the Northern Hemisphere
and green for the Southern Hemisphere).

nighttime. These results, like those in Section 5.2, are presented for each month, as season averages,
and as yearly averages in Figure 5.5, Figure 5.6, and Figure 5.7, respectively.

First, the focus is on Figure 5.5, which shows themonthly changes in solar intensity. The orange and
blue lines represent the Northern Hemisphere, while the red and green lines represent the Southern
Hemisphere. Since solar intensity is factored into the model at this step, the two Hemispheres are
not necessarily perfect opposites of each other. However, the general trends observed are similar to
those in Figure 5.2. From January to June, the Northern Hemisphere experiences an increase in solar
intensity, while from July to December, it experiences a decrease. In contrast, the Southern Hemisphere
follows the opposite pattern: a decrease in sunlight intensity from January to June, and an increase
from July to December.

Moving on to Figure 5.6, the same trend is observed again: for both Hemispheres, in their respec-
tive summer period, the solar intensity decreases. This contradicts the conclusions presented by V.V.
Zharkova. Furthermore, when observing Figure 5.7, the yearly averages strengthen this observation.
The solar intensity for both Hemispheres is slowly decreasing over the course of the year, which runs
counter to Zharkova’s findings.

Based on the results obtained from the algorithm, both the distance model and the hemispheric
model suggest that Earth’s temperature should be decreasing, rather than increasing, due to the ob-
served changes in solar intensity and the Earth-Sun distance.

5.4. Zharkova Comparison Results
Finally, to better compare the model and algorithm used in this study with the model employed in V.V.
Zharkova’s research [43], a graph directly taken from that paper is reproduced, or the way they are
presented. This allows us to determine whether the difference lies in the models themselves or merely
in the results produced. The graph taken from V.V. Zharkova is Figure 5.8, which illustrates the distance
between the Earth and the Sun over the first six months, spanning a period of six years from 600 to

5.4. Zharkova Comparison Results 35

Figure 5.6: Change of solar intensity for both Hemispheres, shown per season. The orange/blue line is the Northern
Hemisphere, while the green/red line is the Southern Hemisphere. It is split into the backward (past) run (orange for the

Northern Hemisphere and red for the Southern Hemisphere) and the forward (future) run (blue for the Northern Hemisphere
and green for the Southern Hemisphere).

Figure 5.7: Change of solar intensity for both Hemispheres, shown per year. The orange/blue line is the Northern Hemisphere,
while the green/red line is the Southern Hemisphere. It is split into the backward (past) run (orange for the Northern

Hemisphere and red for the Southern Hemisphere) and the forward (future) run (blue for the Northern Hemisphere and green
for the Southern Hemisphere).

5.5. Result Conclusion 36

2600. It is evident that the distance decreases over time during thesemonths, as shown by the changes
between the different lines, each representing a different year. This decrease in distance potentially
signals an increase in solar intensity, leading to higher temperatures due to increased solar irradiance.

This graph is reproduced in Figure 5.9, using data from our model. It was expected to not follow
Zharkova’s graph closely, however, as can be observed, it is clear that they are very similar. This
suggests that Zharkova’s model closely matches the outcomes of the model used in this report during
the time period depicted in the graphs. This similarity appears to contradict earlier results, but it can still
be explained. The graph here focuses only on the first six months, during which the Earth-Sun distance
decreases. However, when linked to the other results shown here, even if the distance decreases in
these months, the total solar irradiance over the entire year still shows a decreasing trend.

The close similarity between the models only strengthens the conclusion that Zharkova’s hypothesis
is flawed, as the two models — despite being based on entirely independent methods (likely, since
Zharkova did not share model specifics) — still yield consistent results. However, this similarity does
weaken the claim regarding the minimum at the specified location in the model’s graph. It is likely that
this minimum would occur on different dates depending on the specific time period shown in such a
distance graph.

5.5. Result Conclusion

In Section 5.1, the results from the distance model were discussed, revealing that the Earth-Sun dis-
tance increases rather than decreases. However, as later analysis showed, this local minimum dis-
tance is likely to shift depending on the specific date considered. In Section 5.2, the results from the
Hemisphere model were examined. Both Hemispheres experience a decrease in sunlight during their
respective summer months, which would be expected to lead to lower temperatures.

Further, when combining the results in Section 5.3, it was observed that the average solar intensity
for both Hemispheres is actually decreasing, which contradicts the findings of V.V. Zharkova. Direct
comparisons of graphs from the two models in Section 5.4 show a close correlation, leading to the
conclusion that Zharkova’s model closely matches the model used here. This suggests that the inter-
pretation of results can be highly dependent on how the data is presented.

However, from Figure 5.7 leaves no room for doubt: according to the model used in this paper, solar
intensity is decreasing.

5.5. Result Conclusion 37

Figure 5.8: Figure from V.V. Zharkova [43], showing the changing distance between the Earth and the Sun. It has the caption:
”Variations of the sun-earth distances (in astronomical units, au) versus days of the month (X-axis) in January–June for three
sample years in the millennium M1 (600–1600) (left) and M2 (1600–2600) (right). Left column: Blue - year 600, red - 1100 and

green - 1600; right column: Blue - year 1700, red - 2020 and grey - 2600.”

5.5. Result Conclusion 38

Figure 5.9: Recreated Figure 5.8 using model data, showing the changing distance between the Earth and the Sun. The years
are in; the left column: blue - 600, red - 1100, and green - 1600; the right column: blue - 1700, red - 2020, and grey - 2600

6
Conclusion

In this chapter, a conclusion will be made in Section 6.1. After that, recommendations will be provided
for both improvements to the results shown and further research additional to the analysis performed
in this report.

6.1. Conclusion

At the beginning of this report, in Chapter 1, several research questions were introduced. After providing
background information in Chapter 2 and describing themethodology in Chapter 3, a sensitivity analysis
was performed, along with a detailed discussion of the verification and validation methods used in this
report in Chapter 4. Following that, the results were presented and discussed in Chapter 5. Now, based
on all the data presented, a conclusion can be drawn, and the research questions can be answered.

To answer the first subquestion - ”Can the results as seen in V.V. Zharkova [43] be reproduced
without changing the parameters of the solar system, with only a simplified model of solar variation?”
- the model described in Chapter 3 was used. As shown in the comparison between Figure 5.8 and
Figure 5.9, the results were successfully reproduced.

The second subquestion - ”What is the difference between the model used by this paper and the
model used by V.V. Zharkova?” - can be addressed with Figure 5.1. It is evident from the figure that
the model used in this study predicts an increase in the distance between the Earth and the Sun, in
contrast to the results observed from V.V. Zharkova’s study.

For the final subquestion - ”Can the hemispheric effects (as described by V.V. Zharkova [43]) be
quantified in a simplified Earth hemispheric model?” - the answer is provided by Figure 5.4. While it is
possible to quantify the hemispheric effects in a simplified model, the results contradict those reported
by Zharkova. Rather than observing the predicted warming effects, the model shows a cooling effect
in the Northern Hemisphere during the summer months, opposing the conclusions drawn by Zharkova
and colleagues.

These answers to the subquestions lead to the main research question — ”How does the current
perceived change in the distance between Earth and the Sun affect the global temperature?” - which
can be addressed by referring to the previous subquestion answers as well as Figure 5.7. The findings
indicate that the Earth is experiencing a natural cooling effect due to a decrease in solar intensity, rather
than the warming predicted by V.V. Zharkova’s research and observed in current trends. However, the
exact difference with V.V. Zharkova’s paper [43] can not be precisely found, since Zhakova also includes
other factors, such as the magnetic field activity of the Sun. The statements that either the Earth-Sun
distance or Earth’s Hemispheres are (partly) responsible have however been rejected.

In conclusion, the results of this study do not support Zharkova’s conclusions. Based on the evi-
dence presented, it is clear that the model used in this paper predicts a cooling trend, rather than the
warming trend suggested by V.V. Zharkova [43].

This cooling trend means that the human factor in the warming of the Earth observed today is
even greater than currently understood since the cooling effect also needs to be negated by human

39

6.2. Recommendations 40

influences. The magnitude of the negated cooling effect and thus the increased influence of humankind
depends on the actual cooling effect, which unfortunately could not be established by this report.

6.2. Recommendations
The most critical recommendation is to address the uncertainty highlighted throughout the analysis.
Due to the high uncertainty observed in both the sensitivity analysis and the comparison with the JPL
Horizons database, it is not possible to reliably calculate a specific temperature value. This uncertainty
limits the conclusions that can be drawn from the model’s results. By improving the model’s accuracy, it
would be possible to calculate amore precise estimate of the cooling effects identified in this study. Such
an improvement would enhance our understanding of the potential impact of natural solar variations
on climate and enable more accurate assessments of human-induced climate change.

After reducing uncertainty, a further important step would be to estimate the albedo value for each
hemisphere and calculate its effect on temperature. A more precise albedo estimate would provide
additional insight into the factors influencing Earth’s climate and could help clarify the role of human
activities in altering climate patterns.

Another area for improvement lies in the selection of integrators and propagators. Although the se-
lection process was conducted adequately, there is room for refinement, particularly with the choice of
propagator. One potential improvement would be to allow multiple integrators to perform the analysis
over the entire timespan of the model, rather than just for a limited timeframe. By examining the maxi-
mum error across the full period, this approach could confirm the correctness of the integrator selection
process and potentially reduce errors, while also improving CPU efficiency.

Regarding the spherical harmonics used in themodel, the current approach applies them universally
to all bodies in the solar system. However, it may be more efficient to use a selective approach—
applying spherical harmonics only to the bodies that are most affected by them. For instance, instead
of applying Jupiter’s spherical harmonics to all objects in the solar system, it could be limited to the
Galilean moons, which are much more directly influenced by Jupiter’s gravity. This selective application
of spherical harmonics could significantly optimize performance. By only including the harmonics for
bodies that are substantially affected by their gravitational fields, the model could avoid unnecessary
computational overhead for distant bodies like Neptune or Titan. This approach would likely improve
model accuracy, as it would focus computational resources where they are most needed, while still
maintaining the overall integrity of the results without introducing excessive computational cost. This
selective use could improve the model’s accuracy without significantly increasing CPU time, as seen
in the current implementation.

Further research into the discrepancy between the model used in this paper and the JPL Horizons
database is also highly recommended. At the time of writing, the specific methodology behind the JPL
Horizons database was not found. Understanding the sources of the observed differences—particularly
why the discrepancy is so significant—could reduce the error margin and lead to more precise model
results. More importantly, such research would increase confidence in the model’s accuracy, which
would, in turn, strengthen the conclusions drawn in this paper. Investigating the methodology behind
the JPL Horizons database would provide a deeper understanding of its data sources, assumptions,
and potential limitations. By comparing these with the assumptions made in this model, it would be
possible to identify the root causes of discrepancies and determine whether they are due to differences
in model assumptions, data accuracy, or other factors.

In addition, further exploration of other factors suggested by V.V. Zharkova, such as solar activity
and the solar magnetic field, would be beneficial. These effects, which were excluded for simplicity
in the current model, could potentially have a significant impact on the model’s results. Solar activity,
such as sunspots and solar flares, affects the amount of solar radiation reaching the Earth. Similarly,
the solar magnetic field can influence space weather, affecting the Earth’s atmosphere and possibly
altering the energy balance. By including these factors, the model would be able to better account for
short- and long-term variations in solar energy and their potential impact on Earth’s climate.

Finally, additional research into the presentation of results, particularly concerning the Earth-Sun
distance, could help clarify how the way data is displayed influences themodel’s conclusions. While this
may be a less pressing concern compared to the other recommendations, it could still provide valuable

6.2. Recommendations 41

insights into the presentation of scientific data. For example, comparing different visual representations
of the Earth-Sun distance could help determine which format best communicates the underlying trends
in the data, and whether certain presentations might inadvertently obscure or misrepresent important
details.

References
[1] NASA’s Jet Propulsion Laboratory Alan Buis. Milankovitch (Orbital) Cycles and Their Role in

Earth’s Climate. 2020. URL: https://climate.nasa.gov/news/2948/milankovitch-orbital-
cycles-and-their-role-in-earths-climate/ (visited on 02/20/2024).

[2] A. Berger. “Milankovitch Theory and climate”. In: Reviews of Geophysics 26.4 (1988), pp. 624–
657. DOI: https://doi.org/10.1029/RG026i004p00624.

[3] Gerald Maurice Clemence. “The Relativity Effect in Planetary Motions”. In: Reviews of Modern
Physics 19 (1947), pp. 361–364.

[4] Matija Ćuk et al. “Long-Term Evolution of the Saturnian System”. In: Space Science Reviews
220.2 (2024). DOI: 10.1007/s11214-024-01049-2.

[5] NASA; by D.R. Williams. Earth Fact Sheet. 2021. URL: https : / / nssdc . gsfc . nasa . gov /
planetary/factsheet/earthfact.html (visited on 08/24/2022).

[6] NASA; by D.R. Williams. Jupiter Fact Sheet. 2024. URL: https://nssdc.gsfc.nasa.gov/
planetary/factsheet/jupiterfact.html (visited on 02/24/2024).

[7] NASA; by D.R. Williams. Mars Fact Sheet. 2024. URL: https://nssdc.gsfc.nasa.gov/planet
ary/factsheet/marsfact.html (visited on 02/25/2024).

[8] NASA; by D.R. Williams. Mercury Fact Sheet. 2024. URL: https://nssdc.gsfc.nasa.gov/
planetary/factsheet/mercuryfact.html (visited on 02/22/2024).

[9] NASA; by D.R. Williams. Neptune Fact Sheet. 2024. URL: https://nssdc.gsfc.nasa.gov/
planetary/factsheet/neptunefact.html (visited on 02/29/2024).

[10] NASA; by D.R. Williams. Saturn Fact Sheet. 2024. URL: https://nssdc.gsfc.nasa.gov/
planetary/factsheet/saturnfact.html (visited on 02/26/2024).

[11] NASA; by D.R. Williams. Venus Fact Sheet. 2024. URL: https://nssdc.gsfc.nasa.gov/
planetary/factsheet/venusfact.html (visited on 02/22/2024).

[12] Rola Dbouk and Jack Wisdom. “The Origin of Jupiter’s Obliquity”. In: Planetary Science Journal
4.10 (2023). DOI: 10.3847/PSJ/acf9f8.

[13] A. Einstein. “The Foundation of the General Theory of Relativity”. In: Annalen der Physik (1916).
translated by: Satyendra Nath Bose.

[14] W.M. Folkner. Uncertainties in the JPL planetary ephemeris. 2010.
[15] Grant Foster et al. “Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate

system” by S. E. Schwartz”. In: Journal of Geophysical Research: Atmospheres 113.D15 (2008).
DOI: https://doi.org/10.1029/2007JD009373.

[16] P. R. Goode et al. “Earth’s Albedo 1998–2017 as Measured From Earthshine”. In: Geophysical
Research Letters 48.17 (2021), e2021GL094888. DOI: https://doi.org/10.1029/2021GL094
888.

[17] P. R. Goode et al. “Earthshine observations of the Earth’s reflectance”. In:Geophysical Research
Letters 28.9 (2001), pp. 1671–1674. DOI: https://doi.org/10.1029/2000GL012580.

[18] John R. Gribbin. Deep Simplicity Chaos, Complexity and the Emergence of Life. 2004.
[19] James Hansen et al. “Earth’s Energy Imbalance: Confirmation and Implications”. In: Science

308.5727 (2005), pp. 1431–1435. DOI: 10.1126/science.1110252.
[20] Stuart A. Harris. “Comparison of Recently Proposed Causes of Climate Change”. In: Atmosphere

14.8 (2023). ISSN: 2073-4433. DOI: 10.3390/atmos14081244.
[21] J. Horner and B.W. Jones. “Jupiter – friend or foe? I: The asteroids”. In: International Journal of

Astrobiology 7.3–4 (July 2008), pp. 251–261. ISSN: 1475-3006. DOI: 10.1017/s1473550408004
187.

42

https://climate.nasa.gov/news/2948/milankovitch-orbital-cycles-and-their-role-in-earths-climate/
https://climate.nasa.gov/news/2948/milankovitch-orbital-cycles-and-their-role-in-earths-climate/
https://doi.org/https://doi.org/10.1029/RG026i004p00624
https://doi.org/10.1007/s11214-024-01049-2
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html
https://doi.org/10.3847/PSJ/acf9f8
https://doi.org/https://doi.org/10.1029/2007JD009373
https://doi.org/https://doi.org/10.1029/2021GL094888
https://doi.org/https://doi.org/10.1029/2021GL094888
https://doi.org/https://doi.org/10.1029/2000GL012580
https://doi.org/10.1126/science.1110252
https://doi.org/10.3390/atmos14081244
https://doi.org/10.1017/s1473550408004187
https://doi.org/10.1017/s1473550408004187

References 43

[22] X. Y. Hou, D. J. Scheeres, and L. Liu. “Saturn Trojans: a dynamical point of view”. In: Monthly
Notices of the Royal Astronomical Society 437.2 (Nov. 2013), pp. 1420–1433. ISSN: 0035-8711.
DOI: 10.1093/mnras/stt1974.

[23] Michael R. House. “Orbital forcing timescales: an introduction”. In: Geological Society, London,
Special Publications 85.1 (1995), pp. 1–18. DOI: 10.1144/GSL.SP.1995.085.01.01.

[24] L. Iess et al. “Measurement of Jupiter’s asymmetric gravity field”. In: Nature 555 (2018), pp. 220–
222. DOI: 10.1038/nature25776.

[25] Lorenzo Iorio. “Constraints on the location of a putative distant massive body in the Solar System
and on the External Field Effect of MOND from recent planetary data”. In: Celestial Mechanics
and Dynamical Astronomy 112 (Feb. 2011). DOI: 10.1007/s10569-011-9386-7.

[26] IPCC et al. “Climate change 2023: Synthesis report.” In: IPCC, Geneva, Switzerland (July 2023).
DOI: 10.59327/ipcc/ar6-9789291691647.

[27] J. Laskar and M. Gastineau. “Existence of collisional trajectories of Mercury, Mars and Venus
with the Earth”. In: Nature 459.7248 (June 2009), pp. 817–819. DOI: 10.1038/nature08096.

[28] J. Laskar et al. “La2010: a new orbital solution for the long-term motion of the Earth”. In: Astron-
omy & Astrophysicss 532 (July 2011), A89. DOI: 10.1051/0004-6361/201116836.

[29] J. Laskar et al. “Long term evolution and chaotic diffusion of the insolation quantities of Mars”.
In: Icarus 170.2 (2004), pp. 343–364. ISSN: 0019-1035. DOI: https://doi.org/10.1016/j.
icarus.2004.04.005.

[30] Jacques Laskar. “A numerical experiment on the chaotic behaviour of the Solar System”. In:
Nature 338 (1989), pp. 237–238.

[31] Jack Jonathan Lissauer and Imke De Pater. Fundamental Planetary Sciences: Physics, Chem-
istry and Habitability. Cambridge University Press, 2019.

[32] Zinovy Malkin and Natalia Miller. “Chandler wobble: Two more large phase jumps revealed”. In:
Earth Planets and Space 62 (Aug. 2009). DOI: 10.5047/eps.2010.11.002.

[33] T. Markvart and Luis Castañer. Practical Handbook of Photovoltaics: Fundamentals and Applica-
tions. Elsevier Advanced Technology, 2003.

[34] Gerald E. Marsh. Irradiance Variations due to Orbital and Solar Inertial Motion: The Effect on
Earth’s Surface Temperature. 2020. arXiv: 2003.01374 [astro-ph.EP].

[35] NASA. What Is the Solar Cycle? 2021. URL: https://spaceplace.nasa.gov/solar-cycles/
en / # : ~ : text = The % 20Short % 20Answer % 3A , generating % 20a % 20powerful % 20magnetic %
20field. (visited on 02/19/2024).

[36] AndrewC. Overholt, Adrian L. Melott, andMartin Pohl. “Testing the link between terrestrial climate
change and galactic spiral arm transit”. In: The Astrophysical Journal 705.2 (Oct. 2009), pp. L101–
L103. ISSN: 1538-4357. DOI: 10.1088/0004-637x/705/2/l101.

[37] Nicola Scafetta. “Solar Oscillations and the Orbital Invariant Inequalities of the Solar System”. In:
Solar Physics 295 (2020). URL: https://api.semanticscholar.org/CorpusID:255065994.

[38] Ernst Schrama. Dynamics part 1. Lecture material, Satellite Orbit Determination (AE4872). 2023.
[39] Scott S. Sheppard and Chadwick A. Trujillo. “A survey for satellites of Venus”. In: Icarus 202.1

(July 2009), pp. 12–16. ISSN: 0019-1035. DOI: 10.1016/j.icarus.2009.02.008.
[40] NOAA; by Space Weather Prediction Center. Solar cycle progression. 2024. URL: https://www.

swpc.noaa.gov/products/solar-cycle-progression#:~:text=The%20Prediction%20Panel%
20predicted%20Cycle, November%202024%20and%20March%202026.&text=SWPC%20Space%
20Weather%20Operations%20(SWO)%2C%20Daily%20Observations. (visited on 02/19/2024).

[41] TUDAT development Team. Default environment models - Gravity field. 2024. URL: https://
docs.tudat.space/en/latest/_src_user_guide/state_propagation/environment_setup/
default_env_models.html (visited on 11/04/2024).

[42] David Tytell. Why doesn’t Venus have a moon? 2006. URL: https://skyandtelescope.org/
astronomy-news/why-doesnt-venus-have-a-moon/ (visited on 02/22/2024).

https://doi.org/10.1093/mnras/stt1974
https://doi.org/10.1144/GSL.SP.1995.085.01.01
https://doi.org/10.1038/nature25776
https://doi.org/10.1007/s10569-011-9386-7
https://doi.org/10.59327/ipcc/ar6-9789291691647
https://doi.org/10.1038/nature08096
https://doi.org/10.1051/0004-6361/201116836
https://doi.org/https://doi.org/10.1016/j.icarus.2004.04.005
https://doi.org/https://doi.org/10.1016/j.icarus.2004.04.005
https://doi.org/10.5047/eps.2010.11.002
https://arxiv.org/abs/2003.01374
https://spaceplace.nasa.gov/solar-cycles/en/#:~:text=The%20Short%20Answer%3A,generating%20a%20powerful%20magnetic%20field.
https://spaceplace.nasa.gov/solar-cycles/en/#:~:text=The%20Short%20Answer%3A,generating%20a%20powerful%20magnetic%20field.
https://spaceplace.nasa.gov/solar-cycles/en/#:~:text=The%20Short%20Answer%3A,generating%20a%20powerful%20magnetic%20field.
https://doi.org/10.1088/0004-637x/705/2/l101
https://api.semanticscholar.org/CorpusID:255065994
https://doi.org/10.1016/j.icarus.2009.02.008
https://www.swpc.noaa.gov/products/solar-cycle-progression#:~:text=The%20Prediction%20Panel%20predicted%20Cycle,November%202024%20and%20March%202026.&text=SWPC%20Space%20Weather%20Operations%20(SWO)%2C%20Daily%20Observations.
https://www.swpc.noaa.gov/products/solar-cycle-progression#:~:text=The%20Prediction%20Panel%20predicted%20Cycle,November%202024%20and%20March%202026.&text=SWPC%20Space%20Weather%20Operations%20(SWO)%2C%20Daily%20Observations.
https://www.swpc.noaa.gov/products/solar-cycle-progression#:~:text=The%20Prediction%20Panel%20predicted%20Cycle,November%202024%20and%20March%202026.&text=SWPC%20Space%20Weather%20Operations%20(SWO)%2C%20Daily%20Observations.
https://www.swpc.noaa.gov/products/solar-cycle-progression#:~:text=The%20Prediction%20Panel%20predicted%20Cycle,November%202024%20and%20March%202026.&text=SWPC%20Space%20Weather%20Operations%20(SWO)%2C%20Daily%20Observations.
https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/environment_setup/default_env_models.html
https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/environment_setup/default_env_models.html
https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/environment_setup/default_env_models.html
https://skyandtelescope.org/astronomy-news/why-doesnt-venus-have-a-moon/
https://skyandtelescope.org/astronomy-news/why-doesnt-venus-have-a-moon/

References 44

[43] V.V. Zharkova et al. “Oscillations of the baseline of solar magnetic field and solar irradiance on a
millennial timescale”. In: Scientific Reports 9.1 (2019). note: this article has been redacted, but
is still contested by most authors and defended in further works. Therefore it is deemed relevant
and included in this report.

A
code files

main.py

1 # Load files
2 from settings import *
3 import utilities
4 import model as model
5 import verification
6 import validation
7 import plot
8

9 # Load modules
10 import time
11

12 time_start = time.time()
13 time_struct = time.localtime()
14 print(f"run␣starting␣at␣{time_struct[3]}:{time_struct[4]}:{time_struct[5]}\n")
15

16 # get JPL Earth data
17 JPL_state_Earth = utilities.get_JPL_Earth_Data()
18

19 def long_run(backward=False):
20 system_state_array_forward = model.subsequent_runs()
21

22 model_error_dict_forward = validation.get_accuracy(system_state_array_forward ,
JPL_state_Earth, types=['last', 'max'])

23 for i in model_error_dict_forward:
24 print(f"distance␣forward␣{i}:␣{np.round(model_error_dict_forward[i],␣3)}␣m␣({np.round

(model_error_dict_forward[i]/(1000),␣2)}␣km,␣{np.round(model_error_dict_forward[i
]/(0.01*constants.ASTRONOMICAL_UNIT),␣8)}%)")

25

26 if backward:
27 system_state_array_backward = model.subsequent_runs(direction='backward')
28 model_error_dict_backward = validation.get_accuracy(system_state_array_backward ,

JPL_state_Earth, types=['last', 'max'])
29 for i in model_error_dict_backward:
30 print(f"distance␣backward␣{i}:␣{np.round(model_error_dict_backward[i],␣3)}␣m␣({np

.round(model_error_dict_backward[i]/(1000),␣2)}␣km,␣{np.round(
model_error_dict_backward[i]/(0.01*constants.ASTRONOMICAL_UNIT),␣8)}%)")

31

32 def run_once():
33 print('model␣start')
34 # validation.JPL_Sun_Earth(JPL_state_Earth)
35

36 system_state_array = model.run()
37 print('Model␣done\n')
38 model_error_dict = validation.get_accuracy(system_state_array, JPL_state_Earth, types=['

last', 'max'])
39 for i in model_error_dict:

45

46

40 print(f"distance␣{i}:␣{np.round(model_error_dict[i],␣3)}␣m␣({np.round(
model_error_dict[i]/(1000),␣2)}␣km,␣{np.round(model_error_dict[i]/(0.01*constants
.ASTRONOMICAL_UNIT),␣8)}%)")

41

42 validation.JPL(system_state_array, JPL_state_Earth)
43

44 def check_integrators():
45 # code for running multiple integrators
46

47 # start lists for plotting
48 integrator_index_range = 2 # 8
49 settings_index_range = 6 # 6
50 results_arr = np.zeros((integrator_index_range , settings_index_range , 2))
51

52 print('models␣start')
53 for integrator_index in range(integrator_index_range):
54 integrator_index_USED = integrator_index + 3
55 for settings_index in range(settings_index_range):
56 # integrator_index = integrator_index
57 settings_index_USED = settings_index
58 stepsize = stepsizes[settings_index_USED]
59 print(f"{integrator_name_lst[integrator_index_USED]},␣step␣{stepsize}s")
60 model_start = time.time()
61 system_state_array, dep_vars_array = model.run(integrator_index=

integrator_index_USED , settings_index=settings_index_USED)
62 model_end = time.time()
63

64 model_time = model_end - model_start
65 model_error = validation.get_accuracy(system_state_array, JPL_state_Earth)
66 results_arr[integrator_index, settings_index, 0] = model_time
67 results_arr[integrator_index, settings_index, 1] = model_error
68

69 plot.integrators(results_arr)
70

71 def check_propagators():
72 # code for running multiple propagators
73

74 # start lists for plotting
75 propagator_index_range = 2 # 7
76 settings_index_range = 1 # 2
77 results_arr = np.zeros((propagator_index_range , settings_index_range , 2))
78

79 print('models␣start')
80 for propagator_index in range(propagator_index_range):
81 propagator_index_USED = propagator_index
82 for settings_index in range(settings_index_range):
83 settings_index_USED = settings_index
84 stepsize = stepsizes[settings_index_USED]
85 print(f"{propagator_name_lst[propagator_index_USED]},␣step␣{stepsize}s")
86

87 system_state_array, model_time = model.run(propagator_index=propagator_index_USED
,

88 settings_index=settings_index_USED,
89 timer=True)
90

91 model_error = validation.get_accuracy(system_state_array, JPL_state_Earth)
92 results_arr[propagator_index, settings_index, 0] = model_time
93 results_arr[propagator_index, settings_index, 1] = model_error
94

95 plot.integrators(results_arr)
96

97 def check_Spherical_Harmonics():
98 # code for checking the influence of the spherical harmonics on the model
99 print('models␣start')

100 models_analyzed = [0, 3, 10, 16]
101 # models_analyzed = np.linspace(0, 2, num=3, dtype=int)
102 results = dict()
103

104 for model_number in models_analyzed:
105 time_begin = time.time()
106 system_state_array = model.subsequent_runs(model_number=model_number)

47

107 CPU_time = time.time() - time_begin
108 model_error_dict = validation.get_accuracy(system_state_array, JPL_state_Earth, types

=['last', 'max'])
109 results[model_number] = model_error_dict['last'], model_error_dict['max'], CPU_time
110 plot.SH(results)
111

112 def processing_to_graph():
113 model_chosen = 'model0_2500y'
114 filename_forward = f'{model_chosen}_forward_lim'
115 filename_backward = f'{model_chosen}_backward_lim'
116 data_array_forward = utilities.read_file(filename_forward)
117 data_array_backward = utilities.read_file(filename_backward)
118 print("finished␣reading,␣start␣processing")
119

120 # ||Earth - Sun||
121 diff_forward = np.zeros((np.shape(data_array_forward[:, :5])))
122 diff_forward[:, 1:4] = data_array_forward[:, 1:4] - data_array_forward[:, 13:16]
123 diff_forward[:, 0] = data_array_forward[:, 0]
124

125 diff_backward = np.zeros((np.shape(data_array_backward[:, :5])))
126 diff_backward[:, 1:4] = data_array_backward[:, 1:4] - data_array_backward[:, 13:16]
127 diff_backward[:, 0] = data_array_backward[:, 0]
128

129 # ||Earth|| - ||Sun||
130 diff_forward[:, 4] = np.linalg.norm(data_array_forward[:, 1:4], axis=1) - np.linalg.norm(

data_array_forward[:, 13:16], axis=1)
131 diff_backward[:, 4] = np.linalg.norm(data_array_backward[:, 1:4], axis=1) - np.linalg.

norm(data_array_backward[:, 13:16], axis=1)
132

133 diff_forward = diff_forward[:-1,:]
134 diff_backward = diff_backward[:-1,:]
135

136 # ||Model - JPL|| of Earth wrt SSB
137 JPL_forward, JPL_backward = validation.JPL_Sun_Earth(no_plot_return=True)
138 JPL_backward = np.flip(JPL_backward, axis=0)
139

140 diff_JPL_forward = np.zeros((np.shape(diff_forward[:, :5])))
141 diff_JPL_forward[:, 1:4] = diff_forward[:, 1:4] - JPL_forward[:, 1:]
142 diff_JPL_forward[:, 0] = diff_forward[:, 0]
143 diff_JPL_forward[:, 4] = np.linalg.norm(diff_forward[:, 1:4], axis=1) - np.linalg.norm(

JPL_forward[:, 1:], axis=1)
144 assert np.linalg.norm(diff_forward[:, 0] - JPL_forward[:, 0]) == 0
145

146 diff_JPL_backward = np.zeros((np.shape(diff_backward[:, :5])))
147 diff_JPL_backward[:, 1:4] = diff_backward[:, 1:4] - JPL_backward[:, 1:]
148 diff_JPL_backward[:, 0] = diff_backward[:, 0]
149 diff_JPL_backward[:, 4] = np.linalg.norm(diff_backward[:, 1:4], axis=1) - np.linalg.norm(

JPL_backward[:, 1:], axis=1)
150 assert np.linalg.norm(diff_backward[:, 0] - JPL_backward[:, 0]) == 0
151

152 print("finished␣processing,␣start␣plotting")
153

154 plot.Earth_Sun_Distance(diff_forward, diff_backward, dim3=False)
155 # plot.Earth_Sun_Distance(diff_JPL_forward, diff_JPL_backward, alt_title='Earth/SSB

distance difference between model and JPL')
156

157 def temp_run():
158 filename = 'model0_2500y_backward_lim'
159 system_state_array_backward = utilities.read_file(filename)
160 model_error_dict_backward = validation.get_accuracy(system_state_array_backward ,

JPL_state_Earth, types=['last', 'max'], mode='backward')
161 for i in model_error_dict_backward:
162 print(f"distance␣backward␣{i}:␣{np.round(model_error_dict_backward[i],␣3)}␣m␣({np.

round(model_error_dict_backward[i]/(1000),␣2)}␣km,␣{np.round(
model_error_dict_backward[i]/(0.01*constants.ASTRONOMICAL_UNIT),␣8)}%)")

163

164 def generate_sensitivity_models(number_of_runs, margin=20, start=81):
165 # margin in km
166 # np.random.seed(420)
167 import matplotlib.pyplot as plt
168 fig = plt.figure()

48

169 ax = fig.add_subplot(projection='3d')
170 margin = [margin, margin, margin/1000]
171

172 for i in range(number_of_runs):
173 print(f"---------\n␣starting␣run␣{start␣+␣i}␣\n---------")
174 sample = np.random.random(3)
175 sample = (sample - 0.5) * 2 * margin * 1000
176 ax.scatter(sample[0], sample[1], sample[2], c='c')
177 # print(start+i)
178

179 model.subsequent_runs(sensitivity = start+i,
180 pertubation = sample)
181

182 model.subsequent_runs(direction = 'backward',
183 sensitivity = start+i,
184 pertubation = sample)
185

186 # plt.show()
187

188 def analyize_sensitivity_models(filename, number_of_files):
189 # read original model
190 baseline_forward = utilities.read_file(filename+'_forward_lim')
191 baseline_backward = utilities.read_file(filename+'_backward_lim')
192 baseline_0 = baseline_forward[0, 1:4] - baseline_forward[0, 13:16]
193 baseline_f = baseline_forward[-1, 1:4] - baseline_forward[-1, 13:16]
194 baseline_b = baseline_backward[-1, 1:4] - baseline_backward[-1, 13:16]
195

196 # read sensitivity
197 result = dict()
198 for run in range(1, number_of_files+1):
199 print(f"loading␣run␣{run}")
200 run_forward = utilities.read_file_sensitivity(filename+'_forward_lim', run)
201 run_backward = utilities.read_file_sensitivity(filename+'_backward_lim', run)
202

203 # get init diff km wrt end diff km (scatter), total and x,y,z
204 run_0 = run_forward[0, 1:4] - run_forward[0, 4:7]
205 run_f = run_forward[-1, 1:4] - run_forward[-1, 4:7]
206 run_b = run_backward[-1, 1:4] - run_backward[-1, 4:7]
207

208

209 x = run_0[0] - baseline_0[0], run_f[0] - baseline_f[0], run_b[0] - baseline_b[0]
210 y = run_0[1] - baseline_0[1], run_f[1] - baseline_f[1], run_b[1] - baseline_b[1]
211 z = run_0[2] - baseline_0[2], run_f[2] - baseline_f[2], run_b[2] - baseline_b[2]
212 norm = np.linalg.norm(run_0 - baseline_0), np.linalg.norm(run_f - baseline_f), np.

linalg.norm(run_b - baseline_b)
213 result[run] = x, y, z, norm
214 print(f"plotting␣results")
215 plot.sensitivity(result)
216 # add hemisphere
217

218 def init_state_JPL():
219 system_state_array_forward = model.subsequent_runs_JPL_state()
220 system_state_array_backward = model.subsequent_runs_JPL_state(direction='backward')
221

222 def run_5000y():
223 # system_state_array = model.subsequent_runs_5000()
224

225 filename_forward = 'model0_2500y_forward_lim'
226 filename_backward = 'model0_2500y_backward_lim'
227 data_array_forward = utilities.read_file(filename_forward)
228 data_array_backward = utilities.read_file(filename_backward)
229 system_state_array = utilities.read_file('model0_2500y_forward_lim', extra=True)
230 data_array_backward = data_array_backward[::-1]
231 data_array_forward = data_array_forward[1:]
232 data_array = np.concatenate((data_array_backward , data_array_forward), axis=0)
233

234 diff = system_state_array - data_array
235 plot.plot5000y(system_state_array[:, 0], diff[:, 1:4])
236

237 def JPL_init_state_to_graph():
238 model_chosen = 'model0_2500y'

49

239 filename_forward = f'{model_chosen}_forward_lim'
240 filename_backward = f'{model_chosen}_backward_lim'
241 data_model_forward = utilities.read_file(filename_forward)
242 data_model_backward = utilities.read_file(filename_backward)
243 data_JPL_forward = utilities.read_file_JPL(filename_forward)
244 data_JPL_backward = utilities.read_file_JPL(filename_backward)
245 print("finished␣reading,␣start␣processing")
246

247 model_forward, model_backward = utilities.get_diffs(data_model_forward,
data_model_backward)

248 JPL_state_forward, JPL_state_backward = utilities.get_diffs(data_JPL_forward,
data_JPL_backward)

249

250 # ||JPL state - JPL|| of Earth wrt SSB
251 JPL_forward, JPL_backward = validation.JPL_Sun_Earth(no_plot_return=True)
252 JPL_backward = np.flip(JPL_backward, axis=0)
253

254 diff_JPL_forward = np.zeros((np.shape(JPL_state_forward[:, :5])))
255 diff_JPL_forward[:, 1:4] = JPL_state_forward[:, 1:4] - JPL_forward[:, 1:]
256 diff_JPL_forward[:, 0] = JPL_state_forward[:, 0]
257 diff_JPL_forward[:, 4] = np.linalg.norm(JPL_state_forward[:, 1:4], axis=1) - np.linalg.

norm(JPL_forward[:, 1:], axis=1)
258 assert np.linalg.norm(JPL_state_forward[:, 0] - JPL_forward[:, 0]) == 0
259

260 diff_JPL_backward = np.zeros((np.shape(JPL_state_backward[:, :5])))
261 diff_JPL_backward[:, 1:4] = JPL_state_backward[:, 1:4] - JPL_backward[:, 1:]
262 diff_JPL_backward[:, 0] = JPL_state_backward[:, 0]
263 diff_JPL_backward[:, 4] = np.linalg.norm(JPL_state_backward[:, 1:4], axis=1) - np.linalg.

norm(JPL_backward[:, 1:], axis=1)
264 assert np.linalg.norm(JPL_state_backward[:, 0] - JPL_backward[:, 0]) == 0
265

266 diff_model_forward = np.zeros((np.shape(JPL_state_forward[:, :5])))
267 diff_model_forward[:, 1:4] = JPL_state_forward[:, 1:4] - model_forward[:, 1:4]
268 diff_model_forward[:, 0] = JPL_state_forward[:, 0]
269 diff_model_forward[:, 4] = np.linalg.norm(JPL_state_forward[:, 1:4], axis=1) - np.linalg.

norm(model_forward[:, 1:4], axis=1)
270 assert np.linalg.norm(JPL_state_forward[:, 0] - model_forward[:, 0]) == 0
271

272 diff_model_backward = np.zeros((np.shape(JPL_state_backward[:, :5])))
273 diff_model_backward[:, 1:4] = JPL_state_backward[:, 1:4] - model_backward[:, 1:4]
274 diff_model_backward[:, 0] = JPL_state_backward[:, 0]
275 diff_model_backward[:, 4] = np.linalg.norm(JPL_state_backward[:, 1:4], axis=1) - np.

linalg.norm(model_backward[:, 1:4], axis=1)
276 assert np.linalg.norm(JPL_state_backward[:, 0] - model_backward[:, 0]) == 0
277

278 print("finished␣processing,␣start␣plotting")
279

280 # plot.JPL_state(diff_JPL_forward, diff_JPL_backward, diff_model_forward ,
diff_model_backward)

281 plot.Earth_Sun_Distance(diff_model_forward, diff_model_backward, alt_title='Earth/SSB␣
distance␣difference␣between␣model␣(JPL␣state)␣and␣model␣(SPICE␣state)')

282 plot.Earth_Sun_Distance(diff_JPL_forward, diff_JPL_backward, alt_title='Earth/SSB␣
distance␣difference␣between␣model␣(JPL␣state)␣and␣JPL')

283

284 def funrun():
285 system_state_array, dep_var = model.funrun()
286 plot.results(system_state_array)
287

288 if __name__ == "__main__":
289 # check_Spherical_Harmonics()
290 # run_once()
291 # long_run(backward=True)
292 # long_run(backward=False)
293 # processing_to_graph()
294 # check_propagators()
295 # temp_run()
296 # generate_sensitivity_models(20)
297 # analyize_sensitivity_models('model0_2500y', 100)
298 # run_5000y()
299 # init_state_JPL()
300 # JPL_init_state_to_graph()

50

301 # check_integrators()
302 funrun()
303 print("\nDone\n")

model.py

1 # Load settings
2 from settings import *
3 import utilities
4

5 # Load tudatpy modules
6 from tudatpy.interface import spice
7 from tudatpy import numerical_simulation
8 from tudatpy.numerical_simulation import estimation_setup, environment_setup,

propagation_setup, propagation
9 from tudatpy import constants

10 from tudatpy.util import result2array
11 from tudatpy.astro.time_conversion import DateTime
12

13 import time
14

15 def run(integrator_index = integrator_setting,
16 propagator_index = propagator_setting,
17 settings_index = time_step_setting,
18 model_number = model_setting,
19 system_initial_state = utilities.initial_state(),
20 simulation_start = simulation_start_epoch ,
21 simulation_end = simulation_end_epoch ,
22 timer = False,
23 mod = 1):
24

25 model_start = time.time()
26 stepsize = stepsizes[settings_index] * mod
27 print(f"{integrator_name_lst[integrator_index]},␣step␣{stepsize}s,␣model␣number␣{

model_number}")
28

29 # # Load spice kernels
30 # spice.load_standard_kernels()
31

32 # Create bodies in simulation.
33 bodies_to_propagate = bodies_to_create
34 body_settings = environment_setup.get_default_body_settings(bodies_to_create)
35 body_system = environment_setup.create_system_of_bodies(body_settings)
36

37 # Central bodies for propagation
38 central_bodies = ["SSB"] * len(bodies_to_create)
39

40 # Define the accelerations acting on each body
41 acceleration_dict = utilities.get_accelerations(model_number)
42

43 acceleration_models = propagation_setup.create_acceleration_models(
44 body_system=body_system,
45 selected_acceleration_per_body=acceleration_dict,
46 bodies_to_propagate=bodies_to_propagate ,
47 central_bodies=central_bodies
48)
49

50 # Create termination settings
51 termination_settings = propagation_setup.propagator.time_termination(simulation_end)
52

53 # Create numerical integrator settings
54 integrator_settings = utilities.get_integrator_settings(integrator_index,
55 settings_index,
56 simulation_start,
57 mod=mod)
58

59 # Create propagation settings
60 # dependent_variables_to_save = [estimation_setup.parameter.rotation_pole_position("

Earth")]

51

61 dependent_variables_to_save = [propagation_setup.dependent_variable.relative_distance('
Earth', 'Sun')]

62

63 propagator_settings = utilities.get_propagator_settings(propagator_index,
64 central_bodies,
65 acceleration_models ,
66 bodies_to_propagate ,
67 system_initial_state,
68 simulation_start,
69 integrator_settings ,
70 termination_settings,
71 dependent_variables_to_save)
72

73 # Propagate the system of bodies and save the state history (all in one step)
74 dynamics_simulator = numerical_simulation.create_dynamics_simulator(
75 body_system, propagator_settings)
76 results_dep_vars = dynamics_simulator.dependent_variable_history
77 results_state = dynamics_simulator.state_history
78

79 # Convert the state dictionnary to a multi-dimensional array
80 system_state_array = result2array(results_state)
81 dep_vars_array = result2array(results_dep_vars)
82

83 time_taken = time.time() - model_start
84 print(f"Model␣finished;␣time␣=␣{np.round(time_taken,␣3)}␣s")
85 if timer:
86 return system_state_array, dep_vars_array, time_taken
87 return system_state_array, dep_vars_array
88

89 def subsequent_runs(save = True,
90 model_number = model_setting,
91 direction = 'forward',
92 sensitivity = 0,
93 pertubation = [0, 0, 0]):
94

95 simulation_steps = 5
96 simulation_span = simulation_time/simulation_steps * constants.JULIAN_YEAR
97

98 state_array_mid = utilities.initial_state()
99 if sensitivity != 0:

100 state_array_mid[0:3] = state_array_mid[0:3] + pertubation
101

102 if direction == 'forward':
103 mod = 1
104 elif direction == 'backward':
105 mod = -1
106

107 first = True
108 for i in range(simulation_steps):
109 simulation_start = simulation_start_epoch + simulation_span * mod * (i)
110 simulation_end = simulation_start_epoch + simulation_span * mod * (i+1)
111

112 system_state_array, dep_vars_array = run(simulation_start = simulation_start,
113 simulation_end = simulation_end,
114 model_number = model_number,
115 system_initial_state = state_array_mid,
116 mod = mod)
117

118 if direction == 'backward':
119 system_state_array = np.flip(system_state_array, axis=0)
120

121 state_array_mid = system_state_array[-1, 1:]
122

123 system_state_array_lim = system_state_array[::974, :]
124 if save:
125 if sensitivity != 0:
126 utilities.save_to_file_sensitivity(system_state_array, name_add=f'p{i}_model{

model_number}_{direction}', run=sensitivity)
127 else:
128 utilities.save_to_file(system_state_array, name_add=f'p{i}_model{model_number

}_{direction}')

52

129 del system_state_array
130 if first:
131 system_state_array_limited = system_state_array_lim
132 first = False
133 else:
134 system_state_array_limited = np.concatenate((system_state_array_limited ,

system_state_array_lim[1:, :]), axis=0)
135

136 if save:
137 if sensitivity != 0:
138 utilities.save_to_file_sensitivity(system_state_array_limited , name_add=f'

lim_model{model_number}_{direction}', run=sensitivity)
139 else:
140 utilities.save_to_file(system_state_array_limited , name_add=f'lim_model{

model_number}_{direction}')
141 return system_state_array_limited
142

143 def subsequent_runs_5000(save = True,
144 model_number = model_setting,
145 direction = 'forward',
146 sensitivity = 0,
147 pertubation = [0, 0, 0]):
148

149 simulation_steps = 10
150 simulation_time = 5000.
151 simulation_start_epoch = -7.889404320000000000e+10
152 simulation_span = simulation_time/simulation_steps * constants.JULIAN_YEAR
153

154 state_array_mid = utilities.initial_state(y500run=True)
155

156 if sensitivity != 0:
157 state_array_mid[0:3] = state_array_mid[0:3] + pertubation
158

159 if direction == 'forward':
160 mod = 1
161 elif direction == 'backward':
162 mod = -1
163

164 first = True
165 for i in range(simulation_steps):
166 simulation_start = simulation_start_epoch + simulation_span * mod * (i)
167 simulation_end = simulation_start_epoch + simulation_span * mod * (i+1)
168

169 system_state_array, dep_vars_array = run(simulation_start = simulation_start,
170 simulation_end = simulation_end,
171 model_number = model_number,
172 system_initial_state = state_array_mid,
173 mod = mod)
174

175 if direction == 'backward':
176 system_state_array = np.flip(system_state_array, axis=0)
177

178 state_array_mid = system_state_array[-1, 1:]
179

180 system_state_array_lim = system_state_array[::974, :]
181 # if save:
182 # utilities.save_to_file(system_state_array , name_add=f'p{i}_model{model_number}_

{direction}', folder_add='500y')
183 del system_state_array
184 if first:
185 system_state_array_limited = system_state_array_lim
186 first = False
187 else:
188 system_state_array_limited = np.concatenate((system_state_array_limited ,

system_state_array_lim[1:, :]), axis=0)
189

190 if save:
191 utilities.save_to_file(system_state_array_limited , name_add=f'lim_model{model_number}

_{direction}', folder_add='500y')
192 return system_state_array_limited
193

53

194 def subsequent_runs_JPL_state(save = True,
195 model_number = model_setting,
196 direction = 'forward',
197 sensitivity = 0,
198 pertubation = [0, 0, 0]):
199

200 simulation_steps = 5
201 simulation_span = simulation_time/simulation_steps * constants.JULIAN_YEAR
202

203 state_array_mid = utilities.initial_state_JPL()
204 # TO DO: get initial states for all bodies with JPL data!
205 if sensitivity != 0:
206 state_array_mid[0:3] = state_array_mid[0:3] + pertubation
207

208 if direction == 'forward':
209 mod = 1
210 elif direction == 'backward':
211 mod = -1
212

213 first = True
214 for i in range(simulation_steps):
215 simulation_start = simulation_start_epoch + simulation_span * mod * (i)
216 simulation_end = simulation_start_epoch + simulation_span * mod * (i+1)
217

218 system_state_array, dep_vars_array = run(simulation_start = simulation_start,
219 simulation_end = simulation_end,
220 model_number = model_number,
221 system_initial_state = state_array_mid,
222 mod = mod)
223

224 if direction == 'backward':
225 system_state_array = np.flip(system_state_array, axis=0)
226

227 state_array_mid = system_state_array[-1, 1:]
228

229 system_state_array_lim = system_state_array[::974, :]
230 if save:
231 if sensitivity != 0:
232 utilities.save_to_file_sensitivity(system_state_array, name_add=f'p{i}_model{

model_number}_{direction}_JPL', run=sensitivity)
233 else:
234 utilities.save_to_file_JPL(system_state_array, name_add=f'p{i}_model{

model_number}_{direction}')
235 del system_state_array
236 if first:
237 system_state_array_limited = system_state_array_lim
238 first = False
239 else:
240 system_state_array_limited = np.concatenate((system_state_array_limited ,

system_state_array_lim[1:, :]), axis=0)
241

242 if save:
243 if sensitivity != 0:
244 utilities.save_to_file_sensitivity(system_state_array_limited , name_add=f'

lim_model{model_number}_{direction}', run=sensitivity)
245 else:
246 utilities.save_to_file_JPL(system_state_array_limited , name_add=f'lim_model{

model_number}_{direction}')
247 return system_state_array_limited
248

249 def funrun(integrator_index = integrator_setting,
250 propagator_index = propagator_setting,
251 settings_index = time_step_setting,
252 model_number = model_setting,
253 system_initial_state = utilities.initial_state(),
254 simulation_start = simulation_start_epoch ,
255 simulation_end = simulation_end_epoch ,
256 timer = False,
257 mod = 1):
258

259 model_start = time.time()

54

260 simulation_end_epoch = simulation_start_epoch + 1. * constants.JULIAN_YEAR
261 stepsize = stepsizes[settings_index] * mod
262 print(f"{integrator_name_lst[integrator_index]},␣step␣{stepsize}s,␣model␣number␣{

model_number}")
263

264 # # Load spice kernels
265 # spice.load_standard_kernels()
266

267 # Create bodies in simulation.
268 bodies_to_propagate = bodies_to_create
269 body_settings = environment_setup.get_default_body_settings(bodies_to_create)
270 body_system = environment_setup.create_system_of_bodies(body_settings)
271

272 # Central bodies for propagation
273 central_bodies = ["SSB"] * len(bodies_to_create)
274

275 # Define the accelerations acting on each body
276 acceleration_dict = utilities.get_accelerations(model_number)
277

278 acceleration_models = propagation_setup.create_acceleration_models(
279 body_system=body_system,
280 selected_acceleration_per_body=acceleration_dict,
281 bodies_to_propagate=bodies_to_propagate ,
282 central_bodies=central_bodies
283)
284

285 # Create termination settings
286 termination_settings = propagation_setup.propagator.time_termination(simulation_end)
287

288 # Create numerical integrator settings
289 integrator_settings = utilities.get_integrator_settings(integrator_index,
290 settings_index,
291 simulation_start,
292 mod=mod)
293

294 # Create propagation settings
295 # dependent_variables_to_save = [estimation_setup.parameter.rotation_pole_position("

Earth")]
296 dependent_variables_to_save = [propagation_setup.dependent_variable.relative_distance('

Earth', 'Sun')]
297 system_initial_state[35] = system_initial_state[35]*1000
298

299 propagator_settings = utilities.get_propagator_settings(propagator_index,
300 central_bodies,
301 acceleration_models ,
302 bodies_to_propagate ,
303 system_initial_state,
304 simulation_start,
305 integrator_settings ,
306 termination_settings,
307 dependent_variables_to_save)
308

309 # Propagate the system of bodies and save the state history (all in one step)
310 dynamics_simulator = numerical_simulation.create_dynamics_simulator(
311 body_system, propagator_settings)
312 results_dep_vars = dynamics_simulator.dependent_variable_history
313 results_state = dynamics_simulator.state_history
314

315 # Convert the state dictionnary to a multi-dimensional array
316 system_state_array = result2array(results_state)
317 dep_vars_array = result2array(results_dep_vars)
318

319 time_taken = time.time() - model_start
320 print(f"Model␣finished;␣time␣=␣{np.round(time_taken,␣3)}␣s")
321 if timer:
322 return system_state_array, dep_vars_array, time_taken
323 return system_state_array, dep_vars_array
324

325 if __name__ == "__main__":
326 # run()
327 print("Done;␣Run␣Model")

55

rotation.py

1 # from tudatpy.interface import spice
2 # from tudatpy.numerical_simulation import environment_setup
3 # from tudatpy import constants
4

5 import utilities
6 import plot
7 from settings import *
8

9 import time
10 # import numpy as np
11

12 spice.load_standard_kernels()
13 bodies_to_create = ["Earth"]
14 body_settings = environment_setup.get_default_body_settings(bodies_to_create)
15 body_system = environment_setup.create_system_of_bodies(body_settings)
16

17 # body_fixed_frame_name
18 body_Earth = body_system.get("Earth")
19 Earth_rotation_model = body_Earth.rotation_model
20 earth_rotation_at_epoch = Earth_rotation_model.inertial_to_body_fixed_rotation
21

22 def get_rotation_axis(epoch):
23 rotation_matrix = earth_rotation_at_epoch(epoch)
24 rotation_axis = [0, 0, 1] @ rotation_matrix
25 return rotation_axis
26

27 def angle_between(v1, v2):
28 def unit_vector(vector):
29 return vector / np.linalg.norm(vector)
30

31 v1_u = unit_vector(v1)
32 v2_u = unit_vector(v2)
33 return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
34

35 def validate_Earth_rotation_angle():
36 RM0 = earth_rotation_at_epoch(0)
37

38 Vx = [1, 0, 0] @ RM0
39 Vy = [0, 1, 0] @ RM0
40 Vz = [0, 0, 1] @ RM0
41

42 Vsun = [0, 0, 1]
43

44 print(f"expect:␣{23.4}␣degrees")
45 print(f"x␣{np.rad2deg(angle_between(Vx,␣Vsun))}")
46 print(f"y␣{np.rad2deg(angle_between(Vy,␣Vsun))}")
47 print(f"z␣{np.rad2deg(angle_between(Vz,␣Vsun))}")
48

49 def validate_percentage_formula():
50 print(f"deg␣0␣,␣percentage␣{calculate_north_percentage(np.deg2rad(0))},␣=?␣100")
51 print(f"deg␣90␣,␣percentage␣{calculate_north_percentage(np.deg2rad(90))},␣=?␣50")
52 print(f"deg␣180␣,␣percentage␣{calculate_north_percentage(np.deg2rad(180))},␣=?␣0")
53 print(f"deg␣45␣,␣percentage␣{calculate_north_percentage(np.deg2rad(45))},␣=?␣75")
54 print(f"deg␣135␣,␣percentage␣{calculate_north_percentage(np.deg2rad(135))},␣=?␣25")
55

56 def calculate_north_percentage(theta):
57 return (1 - (theta/np.pi)) * 100
58

59 def get_Earth_Sun_vector(state):
60 Pos_Earth = state[1:4] # get position Earth
61 Pos_Sun = state[13:16] # get position Sun
62 vector = Pos_Sun - Pos_Earth # get Earth-Sun vector
63 return vector
64

65 def calc_percentage_north_sun(theta):
66 alpha = 2*theta
67 R = 6371000

56

68 area_south = ((R*R)/2) * (alpha - np.sin(alpha))
69 area_total = np.pi*R*R
70 percentage_south = (area_south/area_total) * 100
71 percentage_north = 100 - percentage_south
72 return percentage_north
73

74 def get_sun_percentage_north(state):
75 rotation_axis = get_rotation_axis(state[0])
76 Earth_Sun_vector = get_Earth_Sun_vector(state)
77 angle = angle_between(rotation_axis, Earth_Sun_vector)
78 percentage = calc_percentage_north_sun(angle)
79 return percentage
80

81 def get_SI(state):
82 rotation_axis = get_rotation_axis(state[0])
83 Earth_Sun_vector = get_Earth_Sun_vector(state)
84 angle = angle_between(rotation_axis, Earth_Sun_vector)
85 percentage = calc_percentage_north_sun(angle)
86 distance = np.linalg.norm(Earth_Sun_vector)
87 SI = 1360
88 AU = 149598000000
89 SI_scaled = (AU/distance)*(AU/distance)*SI
90 SI_north = SI_scaled*(percentage/100)
91 SI_south = SI_scaled*((100 - percentage)/100)
92 return SI_north, SI_south
93

94 def get_north_percentage(state):
95 rotation_axis = get_rotation_axis(state[0])
96 Earth_Sun_vector = get_Earth_Sun_vector(state)
97 angle = angle_between(rotation_axis, Earth_Sun_vector)
98 percentage = calculate_north_percentage(angle)
99 return percentage

100

101 def get_order(end, backward=False):
102 years = int(end / 974)
103 order = [0]
104 if backward:
105 mod = 1
106 else:
107 mod = 0
108 for i in range(1, (years*12)+1):
109 if i%6 != mod:
110 order.append(order[-1]+81)
111 else:
112 order.append(order[-1]+82)
113 return order
114

115 def calculate_percentages(filename, reduced=True, backward=False):
116 time_start = time.time()
117 array_lim = utilities.read_file(filename+f'_lim')
118

119 if reduced:
120 hemisphere_model_array = np.zeros((((len(array_lim)-1)*12)+1, 2))
121 arg_name = 'rotred'
122 else:
123 hemisphere_model_array = np.zeros((((len(array_lim)-1)*974)+1, 2))
124 arg_name = 'rot'
125

126

127 for p in range(5):
128 print(f"Starting␣analysis␣for␣p{p}")
129 array = utilities.read_file(filename+f'_p{p}')
130 if reduced:
131 mod = int(p*12*((len(array_lim)-1)/5)+0.1)
132 order = get_order(len(array), backward=backward)
133 for i in range(len(order)):
134 idx = order[i]
135 state = array[idx]
136 percentage = get_north_percentage(state)
137 hemisphere_model_array[i+mod,:] = state[0], percentage
138 else:

57

139 mod = int(p*974*((len(array_lim)-1)/5)+0.1)
140 for i in range(len(array)):
141 state = array[i]
142 percentage = get_north_percentage(state)
143 hemisphere_model_array[i+mod,:] = state[0], percentage
144

145 utilities.save_to_file(hemisphere_model_array , filename=filename, name_add=arg_name)
146 print(f"time␣=␣{time.time()␣-␣time_start}")
147

148 def calculate_percentages_sun(filename, reduced=True, backward=False):
149 time_start = time.time()
150 array_lim = utilities.read_file(filename+f'_lim')
151

152 if reduced:
153 hemisphere_model_array = np.zeros((((len(array_lim)-1)*12)+1, 2))
154 arg_name = 'sunrotred'
155 else:
156 hemisphere_model_array = np.zeros((((len(array_lim)-1)*974)+1, 2))
157 arg_name = 'sunrot'
158

159

160 for p in range(5):
161 print(f"Starting␣analysis␣for␣p{p}")
162 array = utilities.read_file(filename+f'_p{p}')
163 if reduced:
164 mod = int(p*12*((len(array_lim)-1)/5)+0.1)
165 order = get_order(len(array), backward=backward)
166 for i in range(len(order)):
167 idx = order[i]
168 state = array[idx]
169 percentage = get_sun_percentage_north(state)
170 hemisphere_model_array[i+mod,:] = state[0], percentage
171 else:
172 mod = int(p*974*((len(array_lim)-1)/5)+0.1)
173 for i in range(len(array)):
174 state = array[i]
175 percentage = get_sun_percentage_north(state)
176 hemisphere_model_array[i+mod,:] = state[0], percentage
177 print(arg_name)
178 utilities.save_to_file(hemisphere_model_array , filename=filename, name_add=arg_name)
179 print(f"time␣=␣{time.time()␣-␣time_start}")
180

181 def calculate_SI(filename, reduced=True, backward=False):
182 time_start = time.time()
183 array_lim = utilities.read_file(filename+f'_lim')
184

185 if reduced:
186 hemisphere_model_array = np.zeros((((len(array_lim)-1)*12)+1, 3))
187 arg_name = 'SI'
188 else:
189 hemisphere_model_array = np.zeros((((len(array_lim)-1)*974)+1, 3))
190 arg_name = 'SI'
191

192

193 for p in range(5):
194 print(f"Starting␣analysis␣for␣p{p}")
195 array = utilities.read_file(filename+f'_p{p}')
196 if reduced:
197 mod = int(p*12*((len(array_lim)-1)/5)+0.1)
198 order = get_order(len(array), backward=backward)
199 for i in range(len(order)):
200 idx = order[i]
201 state = array[idx]
202 SI_north, SI_south = get_SI(state)
203 hemisphere_model_array[i+mod,:] = state[0], SI_north, SI_south
204 else:
205 mod = int(p*974*((len(array_lim)-1)/5)+0.1)
206 for i in range(len(array)):
207 state = array[i]
208 percentage = get_SI(state)
209 hemisphere_model_array[i+mod,:] = state[0], percentage

58

210 print(arg_name)
211 utilities.save_to_file(hemisphere_model_array , filename=filename, name_add=arg_name)
212 print(f"time␣=␣{time.time()␣-␣time_start}")
213

214 def calculate_nondirectional(filename, reduced=True):
215 calculate_percentages(filename+'_forward', reduced=reduced)
216 calculate_percentages(filename+'_backward', reduced=reduced, backward=True)
217

218 def calculate_sun_nondirectional(filename, reduced=True):
219 calculate_percentages_sun(filename+'_forward', reduced=reduced)
220 calculate_percentages_sun(filename+'_backward', reduced=reduced, backward=True)
221

222 def calculate_SI_nondirectional(filename, reduced=True):
223 calculate_SI(filename+'_forward', reduced=reduced)
224 calculate_SI(filename+'_backward', reduced=reduced, backward=True)
225

226 def process_hemisphere(filename, reduced=True, sun=False):
227 if sun:
228 arg = 'sunrot'
229 else:
230 arg = 'rot'
231 if reduced:
232 array_f = utilities.read_file(filename+f'_forward_{arg}red')
233 array_b = utilities.read_file(filename+f'_backward_{arg}red')
234

235 years = int(((len(array_f)-1)/12)+0.1)
236 data = np.zeros((2, 18, years))
237 array_f = array_f[:-1]
238 array_b = array_b[::-1]
239 array_b = array_b[:-1]
240

241 for i in range(len(array_f)):
242 a = 6 + i%12
243 b = 0 + int(i/12)
244 data[0, a, b] = array_f[i][1]
245 data[1, a, b] = array_b[i][1]
246

247 for year in range(years):
248 data[0, 0, year] = int((array_f[year*12][0]-simulation_start_epoch)/constants.

JULIAN_YEAR + 2000.1)
249 data[1, 0, year] = int((array_b[year*12][0]-simulation_start_epoch)/constants.

JULIAN_YEAR + 2000.1)
250

251 data[0, 2, year] = np.average(data[0, 6:9, year])
252 data[0, 3, year] = np.average(data[0, 9:12, year])
253 data[0, 4, year] = np.average(data[0, 12:15, year])
254 data[0, 5, year] = np.average(data[0, 15:18, year])
255 data[0, 1, year] = np.average(data[0, 2:6, year])
256

257 data[1, 2, year] = np.average(data[1, 6:9, year])
258 data[1, 3, year] = np.average(data[1, 9:12, year])
259 data[1, 4, year] = np.average(data[1, 12:15, year])
260 data[1, 5, year] = np.average(data[1, 15:18, year])
261 data[1, 1, year] = np.average(data[1, 2:6, year])
262

263 plot.hemis_report(data)
264

265 def process_SI(filename):
266 arg = 'SI'
267 array_f = utilities.read_file(filename+f'_forward_{arg}')
268 array_b = utilities.read_file(filename+f'_backward_{arg}')
269

270 years = int(((len(array_f)-1)/12)+0.1)
271 data = np.zeros((2, 18, years, 2))
272 array_f = array_f[:-1]
273 array_b = array_b[::-1]
274 array_b = array_b[:-1]
275

276 for i in range(len(array_f)):
277 a = 6 + i%12
278 b = 0 + int(i/12)

59

279 data[0, a, b, :] = array_f[i][1:]
280 data[1, a, b, :] = array_b[i][1:]
281

282 for year in range(years):
283 data[0, 0, year, :] = int((array_f[year*12][0]-simulation_start_epoch)/constants.

JULIAN_YEAR + 2000.1)
284 data[1, 0, year, :] = int((array_b[year*12][0]-simulation_start_epoch)/constants.

JULIAN_YEAR + 2000.1)
285

286 data[0, 2, year, :] = np.average(data[0, 6:9, year, :], axis=0)
287 data[0, 3, year, :] = np.average(data[0, 9:12, year, :], axis=0)
288 data[0, 4, year, :] = np.average(data[0, 12:15, year, :], axis=0)
289 data[0, 5, year, :] = np.average(data[0, 15:18, year, :], axis=0)
290 data[0, 1, year, :] = np.average(data[0, 2:6, year, :], axis=0)
291

292 data[1, 2, year, :] = np.average(data[1, 6:9, year, :], axis=0)
293 data[1, 3, year, :] = np.average(data[1, 9:12, year, :], axis=0)
294 data[1, 4, year, :] = np.average(data[1, 12:15, year, :], axis=0)
295 data[1, 5, year, :] = np.average(data[1, 15:18, year, :], axis=0)
296 data[1, 1, year, :] = np.average(data[1, 2:6, year, :], axis=0)
297

298 plot.SI_report(data)
299

300 if __name__ == "__main__":
301 # validate_Earth_rotation_angle()
302 # validate_percentage_formula()
303 # get_north_percentage(0)
304 # print(get_order())
305 # calculate_nondirectional('model0_2500y')
306 # calculate_percentages('model0_25y_forward')
307 # process_hemisphere('model0_2500y', sun=True)
308 # calculate_sun_nondirectional('model0_5y')
309 # calculate_SI_nondirectional('model0_2500y')
310 process_SI('model0_2500y')
311 # print(0, calc_percentage_north_sun(np.deg2rad(0)))
312 # print(90, calc_percentage_north_sun(np.deg2rad(90)))
313 # print(180, calc_percentage_north_sun(np.deg2rad(180)))
314 # print(45, calc_percentage_north_sun(np.deg2rad(45)))
315 # print(135, calc_percentage_north_sun(np.deg2rad(135)))
316 print("Done")

settings lists.py

1 integrator_name_lst = ["RK4␣step", "RK4(5)␣step", "RK5(6)␣step", "RK7(8)␣step", "RKDP8(7)␣
step",

2 "BS4␣step", "BS6␣step", "BS8␣step",
3 "RK4␣tol.", "RK5(6)␣tol.", "RK7(8)␣tol.", "RKDP8(7)␣tol.",
4 "BS4␣tol.", "BS6␣tol.", "BS8␣tol.",
5 "ABM", "ABM", "ABM", "ABM", "ABM", "ABM"]
6

7 propagator_name_lst = ['Cowell', 'Gauss␣Kelperian', 'Gauss␣Mod.␣Eq.', 'USM␣Quat.', 'USM␣Mod.␣
Rod.', 'USM␣Exp.␣Map']

8

9 stepsizes = [3600.0, 7200.0, 10800.0, 21600.0, 32400.0, 64800.0]
10

11 bodies_to_create_nomoons = [
12 "Earth",
13 "Moon",
14 "Sun",
15 "Mercury",
16 "Venus",
17 "Mars",
18 "Jupiter",
19 "Saturn",
20 "Uranus",
21 "Neptune"
22]
23

24 bodies_to_create_moons = [

60

25 "Earth", # 1 - 6
26 "Moon", # 7 - 12
27 "Sun", # 13 - 18
28 "Mercury", # 19 - 24
29 "Venus", # 25 - 30
30 "Mars", # 31 - 36
31 "Jupiter", # 37 - 42
32 "Saturn", # 43 - 48
33 "Uranus", # 49 - 54
34 "Neptune", # 55 - 60
35 "Io", # 61 - 66
36 "Europa", # 67 - 72
37 "Ganymede", # 73 - 78
38 "Callisto", # 79 - 84
39 "Titan" # 85 - 90
40]
41

42 if __name__ == "__main__":
43 print("Done;␣Run␣Settings␣list")

settings.py

1 # Load standard modules
2 import numpy as np
3 import sys
4 from settings_lists import *
5

6 # Load tudatpy modules
7 from tudatpy.interface import spice
8 from tudatpy import numerical_simulation
9 from tudatpy.numerical_simulation import environment_setup, propagation_setup, propagation

10 from tudatpy import constants
11 from tudatpy.util import result2array
12 from tudatpy.astro.time_conversion import DateTime
13

14 spice.load_standard_kernels()
15

16 simulation_time = 1. # years
17 simulation_start_epoch_JD = 2451544.50
18 simulation_start_epoch = spice.convert_julian_date_to_ephemeris_time(

simulation_start_epoch_JD)
19 simulation_end_epoch = simulation_start_epoch + simulation_time * constants.

JULIAN_YEAR
20

21 # decided standard settings
22 model_setting = 0 # point masses
23 integrator_setting = 3 # RK7(8) step
24 time_step_setting = 4 # 32400.0 s = 9.0 h
25 propagator_setting = 0 # Cowell
26

27 # Define bodies in simulation
28 bodies_to_create = bodies_to_create_nomoons
29

30 # years define
31

32 dates = [[-44179560000.0, -44147937600.0],
33 [-28400760000.0, -28369137600.0],
34 [-12622824000.0, -12591201600.0],
35 [-9467064000.0, -9435528000.0],
36 [631108800.0, 662731200.0],
37 [18934171200.0, 18965707200.0]]
38

39 if __name__ == "__main__":
40 print("Done;␣Run␣Settings")

helper.py

61

1 from settings import *
2 import JPL_data.JPL as JPL
3

4 def get_JPL_Earth_Data():
5 JPL_dict = JPL.read_JPL(['Earth'])
6 JPL_vector_Earth = JPL_dict['Earth'].vector
7 JPL_JD = JPL_dict['Earth'].time_JD_bary
8 JPL_epoch = (JPL_JD - constants.JULIAN_DAY_ON_J2000) * constants.JULIAN_DAY
9 JPL_epoch = np.array([JPL_epoch]).T

10 JPL_state_Earth = np.concatenate((JPL_epoch, JPL_vector_Earth), axis=1)
11 return JPL_state_Earth
12

13 def find_matching_epochs(state_array_1, state_array_2):
14 idx_1 = [i for i in range(len(state_array_1[:,0])) if state_array_1[i,0] in state_array_2

[:,0]]
15 idx_2 = [i for i in range(len(state_array_2[:,0])) if state_array_2[i,0] in state_array_1

[:,0]]
16 return idx_1, idx_2
17

18 def initial_state():
19 spice.load_standard_kernels()
20 bodies_to_propagate = bodies_to_create
21 body_settings = environment_setup.get_default_body_settings(bodies_to_create)
22 body_system = environment_setup.create_system_of_bodies(body_settings)
23 central_bodies = ["SSB"] * len(bodies_to_create)
24

25 system_initial_state = propagation.get_initial_state_of_bodies(
26 bodies_to_propagate=bodies_to_propagate ,
27 central_bodies=central_bodies,
28 body_system=body_system,
29 initial_time=simulation_start_epoch
30)
31

32 return system_initial_state

utilities.py

1 from settings import *
2 import utilities
3 import JPL_data.JPL as JPL
4 from pathlib import Path
5

6 def get_JPL_Earth_Data(alt=False):
7 JPL_dict = JPL.read_JPL(['Earth'], alt=alt)
8 JPL_vector_Earth = JPL_dict['Earth'].vector
9 JPL_JD = JPL_dict['Earth'].time_JD_bary

10 JPL_epoch = (JPL_JD - constants.JULIAN_DAY_ON_J2000) * constants.JULIAN_DAY
11 JPL_epoch = np.array([JPL_epoch]).T
12 JPL_state_Earth = np.concatenate((JPL_epoch, JPL_vector_Earth), axis=1)
13 return JPL_state_Earth
14

15 def get_JPL_Data(body_name, alt=False):
16 if type(body_name) is list:
17 body_list = body_name
18 else:
19 body_list = [body_name]
20

21 for body in body_list:
22 JPL_dict = JPL.read_JPL([body], alt=alt)
23 if body_list[0] == body:
24 JPL_JD = JPL_dict[body].time_JD_bary
25 JPL_epoch = (JPL_JD - constants.JULIAN_DAY_ON_J2000) * constants.JULIAN_DAY
26 JPL_state = np.array([JPL_epoch]).T
27 JPL_vector = JPL_dict[body].vector
28 JPL_state = np.concatenate((JPL_state, JPL_vector), axis=1)
29 return JPL_state
30

31 def find_idx_epoch(JPL_state_array, epoch=simulation_start_epoch):
32 [idx] = np.where(JPL_state_array[:,0] == epoch)[0]

62

33 return idx
34

35 def find_matching_epochs(state_array_1, state_array_2):
36 idx_1 = [i for i in range(len(state_array_1[:,0])) if state_array_1[i,0] in state_array_2

[:,0]]
37 idx_2 = [i for i in range(len(state_array_2[:,0])) if state_array_2[i,0] in state_array_1

[:,0]]
38 return idx_1, idx_2
39

40 def find_matching_epochs_JPL(state_array_1, JPL_state_array, mode):
41 # JPL_state_array_orig = JPL_state_array
42 if mode == 'forward':
43 idx_start = utilities.find_idx_epoch(JPL_state_array, simulation_start_epoch)
44 JPL_state_array = JPL_state_array[idx_start:, :]
45 modifier = 0
46 elif mode == 'backward':
47 idx_start = utilities.find_idx_epoch(JPL_state_array, simulation_start_epoch)
48 JPL_state_array = JPL_state_array[:idx_start+1, :]
49 modifier = 1
50 else:
51 raise "incorrect␣input␣@find_matching_epochs_JPL"
52

53 idx_lst = []
54 idx_JPL = []
55 for i in range(len(JPL_state_array[:,0])):
56 # print(np.shape(state_array_1))
57 # print(JPL_state_array[i,0])
58 idx = np.where(state_array_1[:,0] == JPL_state_array[i,0])[0]
59 if len(idx) > 0:
60 idx_lst.append(idx)
61 idx_JPL.append(i + idx_start - modifier*(len(JPL_state_array[:,0]) - 1))
62

63 if mode == 'backward':
64 idx_lst = np.flip(idx_lst)
65 idx_JPL = np.flip(idx_JPL)
66

67 # for i in range(len(idx_lst)):
68 # print(i, idx_lst[i], idx_JPL[i])
69 # print(i, state_array_1[idx_lst[i], 0], JPL_state_array_orig[idx_JPL[i], 0])
70 return idx_lst, idx_JPL
71

72 # idx_1 = [i for i in range(len(state_array_1[:,0])) if state_array_1[i,0] in
state_array_2[:,0]]

73 # idx_2 = [i for i in range(len(state_array_2[:,0])) if state_array_2[i,0] in
state_array_1[:,0]]

74 # return idx_1, idx_2
75

76 def initial_state(y500run=False):
77 if y500run:
78 state_str_mid_2500 = '-6.470562227385867310e+10␣1.310027482415024109e+11␣

7.608546149423669577e+08␣ -2.720092960963146470e+04␣ -1.324227245512727859e+04␣
-7.352591003911769008e+01␣ -6.486121674887060547e+10␣1.313758373315393219e+11␣
7.496277058963145018e+08␣ -2.809166671665949980e+04␣ -1.363473427448780603e+04␣
-1.583862746844457376e+02␣5.335421729967144728e+08␣ -8.672159074094423056e+08␣
-8.486368156289873645e+06␣1.300396154336692511e+01␣7.232047489014981956e+00␣
-3.710268718474826755e-01␣ -3.441117190070409393e+10␣ -6.064560993250991821e+10␣
-1.259038468100996017e+09␣3.239611786292151010e+04␣ -2.163711527795833899e+04␣
-4.871661222290700607e+03␣1.223932267319582748e+10␣ -1.091500405479745483e+11␣
-1.421208496675765753e+09␣3.455809041614567832e+04␣3.607018176139844400e+03␣
-2.013111400722681083e+03␣3.992923985302412415e+10␣ -2.092586720573141174e+11␣
-5.269070456498918533e+09␣2.508408839018704020e+04␣6.328660687718056579e+03␣
-6.213493438631658137e+02␣ -4.637087509374016113e+11␣6.411027441350236816e+11␣
9.218116495443857193e+09␣ -1.067627721619303702e+04␣ -7.086044214174676199e+03␣
2.737386346564274504e+02␣ -2.687098494056245117e+11␣1.314764422913289795e+12␣
-1.764406901498619461e+10␣ -1.007123762843288387e+04␣ -1.805307647262527553e+03␣
4.021475134004135157e+02␣2.292395473419145508e+12␣1.875286986598077881e+12␣
-2.312062281263795471e+10␣ -4.350524003897318835e+03␣4.952543419808044746e+03␣
8.045428094245463058e+01␣ -2.170905792319677490e+12␣ -3.983706911111201660e+12␣
1.317386975560655975e+11␣4.733091686834714892e+03␣ -2.570216081103309079e+03␣
-5.560726238849181868e+01␣ -4.643014826422095337e+11␣6.412070313934803467e+11␣
9.260335034823532104e+09␣ -1.335151152362332505e+04␣ -2.142001934373380936e+04␣

63

4.007650100211997142e+02␣ -4.630394307882062988e+11␣6.408383359417388916e+11␣
9.161710621372217178e+09␣ -5.579605499613249776e+03␣5.310678374673068902e+03␣
-6.880027017964873437e+01␣ -4.638095220154948730e+11␣6.421657696064432373e+11␣
9.236319202002666473e+09␣ -2.150632848559605554e+04␣ -8.157269520155009559e+03␣
1.063787164693600516e+03␣ -4.650795536571047974e+11␣6.398092690352264404e+11␣
9.312740507256805420e+09␣ -5.180070288234085638e+03␣ -1.313551744352822971e+04␣
-1.501505318592949436e+02␣ -2.698488563181660156e+11␣1.314285920748873535e+12␣
-1.760226219728828430e+10␣ -7.907103930582629800e+03␣ -6.243306499910396269e+03␣
2.842703874601901589e+03'

79 # state_str_mid_5 = '-2.545190456064811325e+10 1.460153806213573303e+11
1.866423953382877167e+06 -2.985521394114493523e+04 -5.232966840167215196e+03
-6.267535224009377348e-01 -2.545127962679296494e+10 1.456551176810104370e+11
2.523407612905007601e+07 -2.876609246282456297e+04 -5.242441148169854387e+03
6.673307745669779933e+01 -1.442548564976629913e+08 1.104860533722047806e+09
8.317804309368794784e+05 -1.151808436050178486e+01 3.112656478142366012e+00
2.909095203747575353e-01 4.359892600132970428e+10 -4.265005303920007324e+10
-7.588788801630222321e+09 2.478271216354580247e+04 3.676008165559506597e+04
7.266057346508196133e+02 -7.643140550959671021e+10 7.662048990445036316e+10
5.435827197388555527e+09 -2.477561268087668941e+04 -2.506958810635399277e+04
1.087492090142828829e+03 -1.379170670441119995e+11 2.040474817976522217e+11
7.639850361652002335e+09 -1.914073678275265047e+04 -1.154465440698802558e+04
2.288083651757158918e+02 -4.181024886034146729e+11 -6.867226326978796387e+11
1.220782932808006668e+10 1.099207467255302436e+04 -6.180866989292461767e+03
-2.204815738611930271e+02 1.384117579045961182e+12 -4.223142080745545654e+11
-4.766555335347930908e+10 2.295597938315998817e+03 9.218478728204845538e+03
-2.516125644009802045e+02 1.305081970851829346e+12 -2.639579139656285156e+12
-2.671523274377833939e+10 6.054150538519555084e+03 2.702140799906237589e+03
-6.841457871141253122e+01 1.766617730362173584e+12 -4.152436750748621094e+12
4.479726926479429626e+10 4.966299434453502727e+03 2.158418655852421580e+03
-1.588895620715615564e+02 -4.185960305037707520e+11 -6.866132667971370850e+11
1.220478695517108727e+10 7.633630547216225750e+03 -2.181185580698964986e+04
-8.235990739026721030e+02 -4.176307918522187500e+11 -6.863174651060482178e+11
1.222763832501715088e+10 1.845809420390800597e+03 5.517752019272636971e+03
-4.518049570597617048e+01 -4.189515795053150635e+11 -6.860677648125463867e+11
1.222289916453612709e+10 4.388809853828039195e+03 -1.481191344933412074e+04
-6.089035498397576021e+02 -4.179680288302916870e+11 -6.885961754358083496e+11
1.214785215705461693e+10 1.918353346250520190e+04 -5.539115482312001404e+03
-9.228747341413533434e+01 1.384712883021259033e+12 -4.232551425454268799e+11
-4.723778968187474823e+10 7.169897697027721733e+03 1.163367778127543534e+04
-1.976657107441566495e+03'

80 state_array_mid = state_str_mid_2500.split('␣')
81 # state_array_mid = state_str_mid_5.split(' ')
82

83 state_array_new = np.zeros(len(state_array_mid))
84 for i in range(len(state_array_mid)):
85 state_array_new[i] = float(state_array_mid[i])
86 system_initial_state = np.array(state_array_mid)
87

88 return system_initial_state
89

90 bodies_to_propagate = bodies_to_create
91 body_settings = environment_setup.get_default_body_settings(bodies_to_create)
92 body_system = environment_setup.create_system_of_bodies(body_settings)
93 central_bodies = ["SSB"] * len(bodies_to_create)
94

95 system_initial_state = propagation.get_initial_state_of_bodies(
96 bodies_to_propagate=bodies_to_propagate ,
97 central_bodies=central_bodies,
98 body_system=body_system,
99 initial_time=simulation_start_epoch

100)
101

102 return system_initial_state
103

104 def get_integrator_settings(integrator_index: int,
105 settings_index: int,
106 simulation_start_epoch: float,
107 mod=1):
108 """
109 Retrieves the integrator settings.
110 Function adapted from lecture Propagation and Optimisation.

64

111

112 Parameters
113 ----------
114 integrator_index : int
115 Index that selects the integrator type
116 settings_index : int
117 Index that selects the tolerance or the step size (depending on the integrator type).
118 simulation_start_epoch : float
119 Start of the simulation [s] with t=0 at J2000.
120

121 Returns
122 -------
123 integrator_settings : tudatpy.kernel.numerical_simulation.propagation_setup.integrator.

IntegratorSettings
124 Integrator settings to be provided to the dynamics simulator.
125 """
126 # Define list of multi-stage integrators
127 integrator = propagation_setup.integrator
128 multi_stage_integrators = [integrator.CoefficientSets.rkf_45,
129 integrator.CoefficientSets.rkf_56,
130 integrator.CoefficientSets.rkf_78,
131 integrator.CoefficientSets.rkdp_87]
132 fixed_step_size = stepsizes[settings_index] * mod
133 step_size_validation = integrator.step_size_validation(minimum_step=fixed_step_size,
134 maximum_step=fixed_step_size)
135 step_size_control = integrator.step_size_control_elementwise_scalar_tolerance(

relative_error_tolerance=np.inf,
136 absolute_error_tolerance

=np.inf
)

137

138 # RK4, fixed step-size
139 if integrator_index == 0:
140 # Create integrator settings
141 integrator_settings = integrator.runge_kutta_4(simulation_start_epoch ,
142 fixed_step_size)
143

144 # RK, fixed step-size
145 elif 1 <= integrator_index < 5:
146 # Select variable-step integrator
147 current_coefficient_set = multi_stage_integrators[integrator_index -1]
148 # Create integrator settings
149 integrator_settings = integrator.runge_kutta_variable_step(fixed_step_size,
150 current_coefficient_set ,
151 step_size_control,
152 step_size_validation)
153 # BS, fixed step-size
154 elif 5 <= integrator_index < 8:
155 extrapol_seq = integrator.bulirsch_stoer_sequence
156 BS_num = int(integrator_index * 2.0 - 6.0)
157 integrator_settings = integrator.bulirsch_stoer_variable_step(fixed_step_size,
158 extrapol_seq,
159 BS_num,
160 step_size_control,
161 step_size_validation)
162

163 # RK, variable step-size
164 elif 8 <= integrator_index < 12:
165 # Select variable-step integrator
166 current_coefficient_set = multi_stage_integrators[integrator_index -8]
167 # Compute current tolerance
168 current_tolerance = 10.0 ** (-15.0 + settings_index)
169 # Here (epsilon, inf) are set as respectively min and max step sizes
170 # also note that the relative and absolute tolerances are the same value
171 integrator_settings = integrator.runge_kutta_variable_step_size(

simulation_start_epoch ,
172 1.0,
173 current_coefficient_set

,
174 np.finfo(float).eps,
175 np.inf,

65

176 current_tolerance,
177 current_tolerance)
178

179 # BS, variable step-size
180 elif 12 <= integrator_index < 15:
181 current_tolerance = 10.0 ** (-15.0 + settings_index)
182 extrapol_seq = integrator.bulirsch_stoer_sequence
183 BS_num = int(integrator_index * 2.0 - 6.0)
184 integrator_settings = integrator.bulirsch_stoer_variable_step(simulation_start_epoch ,
185 1.0,
186 extrapol_seq,
187 BS_num,
188 np.finfo(float).eps,
189 np.inf,
190 current_tolerance,
191 current_tolerance)
192

193 # ABM, variable step-size
194 elif integrator_index >= 15:
195 current_tolerance = 10.0 ** (-13.0 + settings_index)
196 orders = [[6,10],[6,11],[6,12],[7,10],[7,11],[7,12]]
197 order_used = orders[integrator_index -15]
198 print(order_used)
199

200 integrator_settings = integrator.adams_bashforth_moulton(simulation_start_epoch ,
201 1.0,
202 np.finfo(float).eps,
203 np.inf,
204 current_tolerance,
205 current_tolerance,
206 order_used[0],
207 order_used[1])
208

209 return integrator_settings
210

211 def get_propagator_settings(propagator_index: int,
212 central_bodies,
213 acceleration_models ,
214 bodies_to_propagate ,
215 system_initial_state ,
216 simulation_start,
217 integrator_settings ,
218 termination_settings ,
219 output_variables):
220

221 propagators = [propagation_setup.propagator.cowell
222 # propagation_setup.propagator.encke,
223 # propagation_setup.propagator.gauss_keplerian,
224 # propagation_setup.propagator.gauss_modified_equinoctial ,
225 # propagation_setup.propagator.unified_state_model_quaternions ,
226 # propagation_setup.propagator.

unified_state_model_modified_rodrigues_parameters ,
227 # propagation_setup.propagator.unified_state_model_exponential_map
228]
229

230 current_propagator = propagators[propagator_index]
231 propagation_settings = propagation_setup.propagator.translational(
232 central_bodies,
233 acceleration_models ,
234 bodies_to_propagate ,
235 system_initial_state,
236 simulation_start,
237 integrator_settings ,
238 termination_settings,
239 propagator = current_propagator,
240 output_variables = output_variables
241)
242

243 return propagation_settings
244

245 def get_accelerations(model_choice=0):

66

246 acceleration_dict = {}
247 for body_i in bodies_to_create:
248 current_accelerations = {}
249 for body_j in bodies_to_create:
250 if body_i != body_j:
251 accel = propagation_setup.acceleration
252 if model_choice == 1 and body_j == 'Mercury':
253 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
254 elif model_choice == 2 and body_j == 'Venus':
255 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
256 elif model_choice == 3 and body_j == 'Earth':
257 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
258 elif model_choice == 4 and body_j == 'Earth':
259 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(4,4)]
260 elif model_choice == 5 and body_j == 'Earth':
261 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(8,8)]
262 elif model_choice == 6 and body_j == 'Moon':
263 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
264 elif model_choice == 7 and body_j == 'Moon':
265 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(4,4)]
266 elif model_choice == 8 and body_j == 'Moon':
267 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(8,8)]
268 elif model_choice == 9 and body_j == 'Mars':
269 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
270 elif model_choice == 10 and body_j == 'Jupiter':
271 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
272 elif model_choice == 11 and body_j == 'Jupiter':
273 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(4,4)]
274 elif model_choice == 12 and body_j == 'Io':
275 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
276 elif model_choice == 13 and body_j == 'Europa':
277 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
278 elif model_choice == 14 and body_j == 'Ganymede':
279 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
280 elif model_choice == 15 and body_j == 'Callisto':
281 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
282 elif model_choice == 16 and body_j == 'Earth':
283 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
284 elif model_choice == 16 and body_j == 'Jupiter':
285 current_accelerations[body_j] = [accel.spherical_harmonic_gravity(2,2)]
286 else:
287 current_accelerations[body_j] = [accel.point_mass_gravity()]
288 acceleration_dict[body_i] = current_accelerations
289

290 return acceleration_dict
291

292 def save_to_file(data, filename='', name_add='', folder_add=''):
293 # determine file name and folder location
294 if len(filename) == 0:
295 filename_year = f'{int(simulation_time)}y'
296

297 # split name add
298 name_given = filename + '_' + name_add
299 try:
300 name_given = name_given.strip('_')
301 test = name_given.split('_')
302 for i in test:
303 if 'model' in i:
304 j = i.strip('model')
305 dirname_model = f'model␣{j}'
306 filename_model = f'model{j}'
307 elif 'ward' in i:
308 filename_direction = i
309 elif 'p' in i or 'lim' in i or 'rot' in i or 'SI' in i or 'JPL' in i:
310 filename_part = i
311 elif 'y' in i:
312 filename_year = i
313 except:
314 print('Failed')
315

316 print(filename_part)

67

317 # create folder location
318 filename = filename_model + '_' + filename_year + '_' + filename_direction + '_' +

filename_part
319 if len(folder_add) > 0:
320 file_location = f'model_data/{folder_add}/{dirname_model}/{filename_year}/{

filename_direction}/'
321 else:
322 file_location = f'model_data/{dirname_model}/{filename_year}/{filename_direction}/'
323

324 Path(f"./{file_location}").mkdir(parents=True, exist_ok=True)
325 np.savetxt(f'{file_location}{filename}', data)
326

327 def save_to_file_JPL(data, filename='', name_add='', folder_add=''):
328 # determine file name and folder location
329 if len(filename) == 0:
330 filename_year = f'{int(simulation_time)}y'
331

332 # split name add
333 name_given = filename + '_' + name_add
334 try:
335 name_given = name_given.strip('_')
336 test = name_given.split('_')
337 for i in test:
338 if 'model' in i:
339 j = i.strip('model')
340 dirname_model = f'model␣{j}'
341 filename_model = f'model{j}'
342 elif 'ward' in i:
343 filename_direction = i
344 elif 'p' in i or 'lim' in i or 'rot' in i or 'SI' in i:
345 filename_part = i
346 elif 'y' in i:
347 filename_year = i
348 except:
349 print('Failed')
350

351 print(filename_part)
352 # create folder location
353 filename = filename_model + '_' + filename_year + '_' + filename_direction + '_' +

filename_part
354 if len(folder_add) > 0:
355 file_location = f'model_data/JPL/{folder_add}/{dirname_model}/{filename_year}/{

filename_direction}/'
356 else:
357 file_location = f'model_data/JPL/{dirname_model}/{filename_year}/{filename_direction

}/'
358

359 Path(f"./{file_location}").mkdir(parents=True, exist_ok=True)
360 np.savetxt(f'{file_location}{filename}', data)
361

362 def save_to_file_sensitivity(data, filename='', name_add='', run=0):
363 from pathlib import Path
364

365 data_save = np.zeros((len(data), 7))
366 data_save[:, :4] = data[:, :4]
367 data_save[:, 4:] = data[:, 13:16]
368

369 # determine file name and folder location
370 if len(filename) == 0:
371 filename_year = f'{int(simulation_time)}y'
372

373 # split name add
374 name_given = filename + '_' + name_add
375 try:
376 name_given = name_given.strip('_')
377 test = name_given.split('_')
378 for i in test:
379 if 'model' in i:
380 j = i.strip('model')
381 dirname_model = f'model␣{j}'
382 filename_model = f'model{j}'

68

383 elif 'ward' in i:
384 filename_direction = i
385 elif 'p' in i or 'lim' in i or 'rot' in i or 'rotred' in i:
386 filename_part = i
387 elif 'y' in i:
388 filename_year = i
389 except:
390 print('Failed')
391

392 # create folder location
393 filename = filename_model + '_' + filename_year + '_' + filename_direction + '_' +

filename_part
394 file_location = f'model_data/sensitivity/{dirname_model}/{filename_year}/run␣{run}/{

filename_direction}/'
395

396 Path(f"./{file_location}").mkdir(parents=True, exist_ok=True)
397 np.savetxt(f'{file_location}{filename}', data_save)
398

399 def read_file(filename, extra=False):
400 names = filename.split("_")
401 filename_model = names[0]
402 dirname_model = filename_model[:5] + '␣' + filename_model[5]
403 filename_year = names[1]
404 filename_direction = names[2]
405

406 if extra:
407 file_location = f'model_data/500y/{dirname_model}/{filename_year}/{filename_direction

}/'
408 else:
409 file_location = f'model_data/{dirname_model}/{filename_year}/{filename_direction}/'
410 data = np.loadtxt(f'{file_location}{filename}')
411 array = np.array(data)
412 return array
413

414 def read_file_sensitivity(filename, run):
415 names = filename.split("_")
416 filename_model = names[0]
417 dirname_model = filename_model[:5] + '␣' + filename_model[5]
418 filename_year = names[1]
419 filename_direction = names[2]
420 dirname_run = f'run␣{run}'
421

422 file_location = f'model_data/sensitivity/{dirname_model}/{filename_year}/{dirname_run}/{
filename_direction}/'

423 data = np.loadtxt(f'{file_location}{filename}')
424 array = np.array(data)
425 return array
426

427 def read_file_JPL(filename):
428 names = filename.split("_")
429 filename_model = names[0]
430 dirname_model = filename_model[:5] + '␣' + filename_model[5]
431 filename_year = names[1]
432 filename_direction = names[2]
433

434 file_location = f'model_data/JPL/{dirname_model}/{filename_year}/{filename_direction}/'
435 data = np.loadtxt(f'{file_location}{filename}')
436 array = np.array(data)
437 return array
438

439 def create_limited(filename):
440 print("start␣reading")
441 data_lst = []
442 for i in range(5):
443 data_array = utilities.read_file(filename+f'_p{i}')
444 data_array_limited = data_array[::974, :]
445 del data_array
446 data_lst.append(data_array_limited)
447 print(f"part␣{i}␣read")
448

449 data_array_lim = np.concatenate((data_lst[0], data_lst[1][1:, :]), axis=0)

69

450 data_array_lim = np.concatenate((data_array_lim, data_lst[2][1:, :]), axis=0)
451 data_array_lim = np.concatenate((data_array_lim, data_lst[3][1:, :]), axis=0)
452 data_array_lim = np.concatenate((data_array_lim, data_lst[4][1:, :]), axis=0)
453 save_to_file(data_array_lim, filename, name_add='_limb')
454

455 def initial_state_JPL():
456 data = np.loadtxt(f'model_data/JPL/init_state.txt')
457 array = np.array(data)
458 return array
459

460 def create_initial_state_JPL():
461 init_state = np.zeros((90))
462 for body_id in range(len(bodies_to_create_moons)):
463 body = bodies_to_create_moons[body_id]
464 print(body)
465 JPL_data = get_JPL_Data(body)
466 idx_start = find_idx_epoch(JPL_data)
467 i = body_id*6
468 init_state[i:i+6] = JPL_data[idx_start, 1:]
469 Path(f"./model_data/JPL").mkdir(parents=True, exist_ok=True)
470 np.savetxt(f'model_data/JPL/init_state.txt', init_state)
471

472 def get_diffs(data_array_forward, data_array_backward):
473 # ||Earth - Sun||
474 diff_forward = np.zeros((np.shape(data_array_forward[:, :5])))
475 diff_forward[:, 1:4] = data_array_forward[:, 1:4] - data_array_forward[:, 13:16]
476 diff_forward[:, 0] = data_array_forward[:, 0]
477

478 diff_backward = np.zeros((np.shape(data_array_backward[:, :5])))
479 diff_backward[:, 1:4] = data_array_backward[:, 1:4] - data_array_backward[:, 13:16]
480 diff_backward[:, 0] = data_array_backward[:, 0]
481

482 # ||Earth|| - ||Sun||
483 diff_forward[:, 4] = np.linalg.norm(data_array_forward[:, 1:4], axis=1) - np.linalg.norm(

data_array_forward[:, 13:16], axis=1)
484 diff_backward[:, 4] = np.linalg.norm(data_array_backward[:, 1:4], axis=1) - np.linalg.

norm(data_array_backward[:, 13:16], axis=1)
485

486 diff_forward = diff_forward[:-1,:]
487 diff_backward = diff_backward[:-1,:]
488 return diff_forward, diff_backward
489

490 def process_data_to_month(year_array, year):
491 from tudatpy.kernel.astro import time_conversion
492

493 data_array = np.full((6, 100, 2), np.nan)
494 if year_array[0, 0] > year_array[1, 0]:
495 year_array = year_array[::-1]
496

497 current_month = 1
498 data_month = np.full((300, 2), np.nan)
499 length = 0
500 max_length = 0
501 skip = False
502 for data_id in range(len(year_array[:, 0])):
503 datapoint = year_array[data_id, 0]
504

505 if datapoint in [-44174462400.0, -44174430000.0, -44174397600.0,
506 -28395662400.0, -28395630000.0, -28395597600.0]:
507 skip = True
508

509 else:
510 try:
511 timepoint = time_conversion.date_time_from_epoch(datapoint)
512 tp_year = timepoint.year
513 tp_month = timepoint.month
514 tp_day = timepoint.day - 1
515 tp_string = timepoint.iso_string()
516 tp_fraction = (timepoint.julian_day() - 0.5)%1
517 except:
518 print(datapoint)

70

519 timepoint = time_conversion.date_time_from_epoch(datapoint)
520

521 if tp_year != year:
522 print("Faulty␣point")
523 print(tp_string)
524 input('stopped')
525

526 elif current_month != tp_month:
527 data_array[current_month -1, :length, :] = data_month[:length, :]
528 if max_length < length:
529 max_length = length
530 del data_month
531

532 current_month = tp_month
533 if current_month > 6:
534 data_array = data_array[:, :max_length, :]
535 return data_array
536 data_month = np.zeros((300, 2))
537 length = 0
538

539 # print(f'starting month {current_month}')
540

541 if not skip:
542 data_month[length, 0] = tp_fraction + tp_day
543 data_month[length, 1] = np.linalg.norm(year_array[data_id, 1:4] - year_array[

data_id, 4:7])
544 length = length + 1
545 skip = False
546

547 # data_lst.append(
548 # counter = counter + 1
549 # input()
550

551 return data_array
552

553 if __name__ == "__main__":
554 # create_limited('model0_5y_forward')
555 # create_initial_state_JPL()
556 # print(initial_state_JPL())
557

558 # file_location = f'model_data/lastfig/'
559 # data = np.loadtxt(f'{file_location}0y')
560 # array = np.array(data)
561 # process_data_to_month(array, 600)
562

563 print("Done;␣Run␣Utilities")

	Preface
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Solar Irradiance
	Earth and Sun orbit Variations
	Solar Inertial Motion
	Earth-Sun Orbital cycles
	Conclusion

	Planet orbit Variations
	Mercury
	Venus
	Mars
	Jupiter
	Saturn
	Uranus
	Neptune
	Planet X
	Planet detail table
	Conclusion

	Methodology
	Model basis, time period and bodies used
	Periodic averaging function
	Integrator and Propagator Selection
	Spherical harmonics
	Result calculation
	Hemisphere model
	Conclusion

	Sensitivity, Verification & Validation
	Verification and Validation
	Sensitivity

	Results
	Distance Model Results
	Hemisphere Model Results
	Combined Model Results
	Zharkova Comparison Results
	Result Conclusion

	Conclusion
	Conclusion
	Recommendations

	References
	code files

