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SUMMARY
Microbial communities are resident tomultiple niches of the human body and are importantmodulators of the
host immune system and responses to anticancer therapies. Recent studies have shown that complexmicro-
bial communities are present within primary tumors. To investigate the presence and relevance of the micro-
biome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptom-
ics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes,
enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-
infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint
blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of
the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer
resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies.
INTRODUCTION

An intricate and dynamic crosstalk exists between the host im-

mune system and the commensal microbiota comprising bacte-

ria, viruses, fungi, and archaea. Microbes assist in the education

of the developing immune system, maintain mucosal barrier

integrity, and produce short-chain fatty acids (SCFAs) through

gut microbial fermentation. As such, recent studies have begun

to deconvolve the composition and function of themicrobiome in

relation to cancer initiation and response to therapy.1–4 The gut

microbiome, which harbors the largest diversity of microbial spe-

cies, is able to modulate responses to immune checkpoint

blockade (ICB) and traditional chemotherapies5–8 and have

been implicated in instances of molecular mimicry with tumor
2324 Cell 187, 2324–2335, April 25, 2024 ª 2024 The Authors. Publis
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neoantigens.9 Furthermore, early evidence has indicated that

fecal microbiota transplants (FMTs) may enhance clinical re-

sponses to ICB.10,11

Microbial populations in primary tumors have been demon-

strated to be distinct from those in non-malignant tissue,12 can

reside intracellularly,12,13 are capable of tumor microenvironment

(TME) reprogramming14 and canbe successfully presented onhu-

man leukocyte antigen (HLA)-I and HLA-II complexes.13 However,

the biological and clinical relevance of themicrobiome inmetasta-

ses is still unclear. As metastases are responsible for the majority

of solid cancer deaths15 and are key targets for systemic anti-can-

cer therapies, there is an urgent need to understand how tumor-

resident bacteria can reshape tumor biology, immune infiltration,

and responsiveness to treatment.
hed by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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Bacteria can induce both an immunosuppressed or inflamed

microenvironment, and understanding these processes in tu-

mors may help explain the heterogeneity of response to ICB.

Yet, several questions still need to be addressed: is themicrobial

community in the primary tumor different from those in metasta-

ses? Are bacteria preferentially localized in specific tumor types

or rather in specific organs? How resilient is the microbial popu-

lation during therapeutic interventions?

Given the complexity of identifying intracellular bacteria and

the highly complex structure of the microbiome, we used a bio-

informatics approach to investigate characteristics, evolution,

and relevance of the metastatic cancer microbiome in patients.

We analyzed biopsies from 4,160 metastatic tumors across

various cancers originating from 26 tissues with matched geno-

mics and transcriptomic profiling. Moreover, we assessed the

persistence of the metastatic microbiome over time and under

therapeutic pressure in a unique cohort of 185 paired biopsies

of metastatic cancers.

RESULTS

Mining the microbiome of metastases
In a range of metastatic cancer types, we first characterized the

tumor-resident microbiome communities at the genus level by

extracting unmapped reads and applying two independent

computational methods, Kraken2 and PathSeq. We further

characterized these communities at the species level by employ-

ing a metagenomic assembly-based approach. We explored

4,164 whole-genome sequencing (WGS), pre-treatment tumor

biopsies from the Hartwig Medical Foundation (Hartwig)

cohort16 that included 26 cancer types. Using a mapping-based

approach and filtering genera for technical contaminants (as pre-

viously described17) and infrequently observed genera (STAR

Methods), we cataloged 165 genera among 3,526 samples

of which 49% (81/165) were gram-negative and 68% (112/

165) were anaerobic/facultative-anaerobes (Figure 1A; STAR

Methods). Amplicon sequencing (16S rRNA) on a subset of

matched tumor tissue correlated withWGS-based bacterial pro-

files (Figure S2A). Furthermore, we were able to assemble 514

near-high-quality and medium-quality metagenomic-assembled

genomes (MAGs, as defined by others18,19) from tumor-derived

bacterial reads (Figures 1B and S3A–S3G; Table S2). The most

prevalent cancer types were breast, colorectal, lung, prostate,

and melanoma, while liver, lymph node, and lung were the

most frequent metastatic sites from which the tumor biopsies

were obtained (Figures 1B and S2B). The predominant treatment

class directly following tumor biopsy was chemotherapy (28%),

followed by immunotherapy (12%) and targeted therapy (12%).

In total, 9.5 3 1010 unmapped sequences were processed

at an average of 2.3 3 107 reads per sample with 4.7 3 104

genus-level resolved reads (Figure S2C).

Our analysis revealed differences in the number of bacterial-

derived reads as a fraction of human-mapped reads (fractional

reads) among cancer types and detected a higher fraction in

uterine and renal cancers and a lower load in primary central ner-

vous system (CNS)-derived cancers (Figure 1C). Moreover, we

found higher fractional reads in colorectal and renal metastases

(Figure S2D). Biodiversity metrics, including the total number of
genera per sample (richness) and relative differences in abun-

dance within a community (evenness), revealed a generally rich

and balanced community across multiple cancer types, (Fig-

ure S2E), with the exception of CNS cancers, which had a

less-rich community. Moreover, colorectal metastases had the

richest diversity, while head and neck metastases had more

dominant genera.

Shaping the metastatic tumor microbiome
We first sought to determine which factors shaped metastatic

tumor microbiome composition. Interestingly, we found that

the microbial community composition was more strongly

impacted by the anatomical site of the biopsied lesion as

compared with the primary tumor tissue of origin (Figure 2A).

This may suggest a permissiveness of bacteria to organ-spe-

cific niches. As our metastatic tumor cohort provides the op-

portunity to deconvolve the impact of cancer type versus

metastatic localization, we next sought to assess cancer-

type-specific microbial populations. To do this, we computed

pairwise microbial community similarities between all cancer

types and determined community-level differences while ac-

counting for localization site and other potential confounders

(Figure 2B; Table S3). Specifically, we observed primary CNS

cancers, mesothelial cancers, and head and neck cancers to

differ strongly in their microbial compositions compared with

other cancer types. Between metastatic localizations (Fig-

ure S4A), we found colorectal biopsies to have the strongest

deviance between localizations.

To further interrogate potential factors that could shape the

metastatic microbiome, we hypothesized that hypoxic tumors

may harbor more anaerobic bacteria as these bacteria are

well adapted for low-oxygen environments. To test this, we

measured the degree of hypoxia using the hallmark hypoxia

gene signature in a set of metastatic tumors with matched

RNA sequencing (RNA-seq) data (n = 2,358, Figures S4B and

S4C; Table S4) and performed gene set enrichment analysis

(GSEA). For anaerobic bacteria, we found a significant positive

enrichment for hypoxia (normalized enrichment score [NES] =

1.72, p < 0.001) and a negative enrichment for response to oxy-

gen (NES = �1.76, p < 0.001), while we observed the opposite

effect for aerobic bacteria (Figure 2C). As an independent valida-

tion of our findings, we analyzed an external cohort of human

papillomavirus (HPV)-negative head and neck tumors (n = 31 pa-

tients20) and found an enrichment of anaerobic bacteria in more

hypoxic tumors, as determined by hypoxia-inducible factor-1

alpha (HIF-1a) staining (Figures 2D and 2E). Furthermore, we

were able to confirm this association using our assembly-based

MAG catalog (Figure S3H).

We next hypothesized that distinct cancer phenotypes

driven by genomic alterations have21 preferred community

compositions; therefore, we performed community detection

analysis21,22 (Figure S4E) on a pan-cancer set of microsatellite

instability (MSI) or stable (MSS) tumors (n = 191). Our analysis re-

vealed two discrete clusters that significantly separated accord-

ing to MSI status (logit model adjusted for cancer type and met-

astatic localization, p = 0.03, Figure 2F), whereby cluster A was

composed mainly of MSI patients and cluster B of MSS. Further-

more, we found that MSS patients with a cluster A-type
Cell 187, 2324–2335, April 25, 2024 2325
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Figure 1. Computationally profiling the tumor microbiome of 4,160 metastatic cancer samples

(A) Phylogenetic tree of genera detected frommetastatic tumors usingwhole-genome sequencing (WGS) data annotated by aerophilicity (inner ring, aerobic [red],

anaerobic [green], facultative anaerobic [yellow], or microaerophilic [orange]) and Gram staining status (outer ring, gram positive [purple] or gram negative [pink]).

(B) Overview of cancer types and treatments within the cohort. The bar plot indicates the number of samples per primary tumor location, whereas colors denote

the class of treatment given right after the biopsy.

(C) Overview of the metagenomic-assembled genome (MAG) completeness and contamination after assembly and bin splitting (STAR Methods). Colors

correspond to MAG’s annotated as near-high quality (green, n = 242), quality score > 50 (blue, n = 248), and quality score < 50 (red, n = 24).

(D) Boxplots of the fraction of bacterial-derived reads from the total number of human-mapped reads (fractional bacterial reads), stratified by primary tumor

location (top) and the phylum-level average relative composition of the bacterial community within a primary tumor location (bottom). The red line indicates

median for each group.

See Figures S1–S3.
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composition had a significant increase in interferon (IFN)g

signaling (p = 0.003), resembling an MSI phenotype and points

to a potential association between distinctive tumor phenotypes
2326 Cell 187, 2324–2335, April 25, 2024
and microbiome community structure in a pan-cancer setting. In

summary, these results reveal biological elements driving micro-

bial compositions of tumor metastases.
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Figure 2. Characteristics of the tumor microbiome in metastatic cancer
(A) Bar plots of the proportion of bacterial abundance variance explained by patient characteristics. Bar size represents the mean variance per genus and error

bars show standard deviation.

(B) Pairwise cancer-type-specific community Aitchison dissimilarities. p values were generated using the permutational multivariate ANOVA (PERMANOVA)

adonis test adjusted for biopsy site, sequencing platform, and hospital of origin.

(C) Normalized enrichment scores (NESs) derived fromGSEA analysis relating bacteria and tumor scores of hypoxia or response to oxygen in aerobic, anaerobic,

or facultative anaerobic (F. anaerobic) bacteria. p values were generated using fgsea.

(D and E) (D) Same as (C) but represented by GSEA running enrichment scores (ESs) of anaerobic (top) or aerobic (bottom) bacteria on an independent validation

cohort, with hypoxia determined by HIF-1a staining as depicted in (E).

(F) Community typing of microsatellite-stable (MSS, n = 94) or microsatellite-instable (MSI, n = 97) tumors, assigned into two groups (cluster A [gray] and cluster B

[black]) using graph-based clustering (bluster) on center log ratios (clr). Significance was determined using a logit model of cluster groupings by MSI status after

correction by primary tumor location, biopsy site, and hospital of origin.

See Figure S4.
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Tumor-resident microbial communities are associated
with tumor biology
After establishing a link between general tumor characteristics

and the tumor microbiome, we next investigated whether mi-

crobial communities can influence host immunity and hence

the TME. We first investigated if the presence of gram-negative

bacteria in metastases was correlated with expression of the

family of Toll-like receptors (TLRs). Lipopolysaccharides

(LPSs), a major component of the cell wall in gram-negative

bacteria, are potent ligands for TLR4 and lead to activation of

the TLR4/MD2 complex, thereby inducing the production of

proinflammatory cytokines, such as interleukin (IL)-6, tumor ne-

crosis factor alpha (TNF-a), and type-I IFNs.23 We hypothesized
that LPS, derived from dead or living bacteria, may be an

important factor of TLR4 signaling in metastases. To test this,

we defined an LPS load and found a significant association

between LPS load and TLR4 signaling (linear mixed effect

[LME]-p = 0.02) but not gram-positive lipoteichoic acid (LTA)

load (LME-p = 0.18) (Figure S5A). Conversely, we found an as-

sociation between LTA load and TLR2 signaling (LME-p = 0.04,

Figure S5B).

Furthermore, we hypothesized that bacterial compositions

would be broadly correlated with tumor gene expression. In

linewith this, we found a significant correspondence between tu-

mor microbiome composition and several MSigDB hallmark sig-

natures (Mantel’s test p = 0.05) and immune marker gene
Cell 187, 2324–2335, April 25, 2024 2327
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Figure 3. Associations of the microbiome with tumor physiology

(A) Shannon diversity estimates of mapping-based (genus) (x axis) and assembly-based (MAG) (y axis) approaches in a set of tumor microbiomes (n = 500).

p value was computed using Spearman correlation.

(B) Bar plot of adaptive microbiome a-diversity-based association analysis (aMiAD) scores associating tumor community diversity and pathway responsive gene

activity inference (PROGENy) pathway quantifications. The shade of the bar indicates the aMiAD scores for each feature. Positive associations are colored red,

and negative associations are colored blue. Asterisks correspond to p values < 0.05. p values were generated with aMiAD after correcting for primary tumor

location, metastatic localization site, sequencing platform, and hospital of origin with 5,000 permutations.

(C) Dot plot showing the top Reactome pathways significantly enriched (red) or depleted (blue) in tumors by community diversity, using GSEA on Reactome

pathways (STAR Methods). Dot size represent false discovery rate (FDR)-corrected p values (q value).

(D and E) (D) Associations between community diversity and tumor immune dysfunction and exclusion (TIDE) signatures or (E) CIBERSORT deconvolved immune

cell types as described in (B).

See Figures S5 and S6.
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expression (Mantel’s test p = 0.002) variation. Given this inter-

section and our observation that MAG-based diversity estimates

correlated with mapping-based estimates (Figure 3A), we then

proceeded to associate bacterial diversity with the expression

of curated tumor-specific responsive pathways to determine

pan-cancer characteristics correlated with the presence and

abundance of bacteria. We observed an activation of epidermal

growth factor receptor (EGFR), transforming growth factor b

(TGF-b), and TNF-a signaling in tumors with a high-diversity mi-

crobiome (Figures 3B and S5C). We then performed an unbiased

gene expression comparison to determine which processes

were activated or inhibited with increased bacterial diversity.
2328 Cell 187, 2324–2335, April 25, 2024
Interestingly, we found a strong enrichment of multiple pathways

involved in extracellular matrix (ECM) organization and antimi-

crobial peptides (AMPs) in tumors with a higher bacterial diver-

sity (Figures 3C and S5D).

Bacteria and their byproducts can influence innate and adap-

tive immune cell populations, yet it remains unclear which mi-

crobes can reshape immune cell context and alter immune

signaling in tumor metastases. Therefore, we first associated tu-

mor immune evasion mechanisms with bacterial diversity. We

found a positive association of bacterial diversity with expression

of signatures for cancer-associated fibroblast (CAF) infiltration

and immune exclusion (Figures 3D and S5E). Following this,
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See also Figure S7.
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we next examined deconvolved tumor-infiltrating immune cell

compositions and found an extensive enrichment of innate im-

mune cells driven by neutrophils, natural killer (NK) cells, and

macrophages, as well as regulatory T cells (Tregs), in tumors

with high microbial diversity (Figures 3E and S5F), highlighting

a potential innate immune conditioning. Importantly, there is

emerging evidence showing the functional importance of

neutrophils in tumor immunity, progression, and response to

immunotherapy.24,25

Lastly, we sought to identify individual bacteria-immune cell

associations. To do this, we correlated bacteria abundance

with immune cell functional states26 (Figure S6) and found

multiple bacteria associated with cellular states of fibroblasts,

endothelial cells, macrophages, and CD4 T cells. Specifically,

we found Bifidobacterium to be positively associated with NK

cells (state S2), which has been previous shown to enhanced

NK cell function in the TME.27

In summary, our data revealed strong associations between

the microbiome and immune system but also reveal a deeper

biological understanding of host-microbe interactions in meta-

static tumors.
Temporal evolution of microbial communities in
metastases
We next sought to better understand the impact of metastatic

heterogeneity and the persistence of tumor-resident microbes

over time. Therefore, we investigated a set of 185 pairs (370 re-

petitive tumor biopsies obtained from 173 individual patients)

with a median time between biopsies of 7.5 months28 and com-

parable tumor purities (R = 0.41, p < 0.001, Figure S7A). Quanti-

tatively, bacterial abundances were generally well-correlated

between paired biopsies (Figures 4A and S7B) (median

Spearman R = 0.52, interquartile range [IQR], 0.45–0.61). We

then investigated community similarity between pairs derived

from the same (n = 61 pairs) or random (n = 250 pairs) and

observed a significantly higher similarity of tumor pairs derived

from the same lesion (Figures 4B and S7C), highlighting statisti-

cally significant community preservation. Furthermore, we pro-

filed strain-level diversity of tumor microbiomes and subse-

quently assessed the degree of shared similarity for each

tumor pair. In doing so, we found a significant increase in the de-

gree of similarity in paired biopsies compared with random pairs

(Figure S3I).
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Figure 5. Fusobacterium presence is nega-

tively associated with response to ICB in

NSCLC

(A) Differential abundant genera in NSCLC patients

experiencing a durable clinical benefit (DCB, n = 23)

or not (NCB, n = 37) after treatment with ICB.

p values were generated using ANCOMBC, with

biopsy site as fixed effects and sequencing platform

and hospital of origin as random effects. Significant

bacteria (p < 0.05) are colored red.

(B) Multivariate Cox proportional-hazards model

of overall survival (OS) modeling the abundance

of Fusobacterium, genome-wide mutational load,

lymph node metastatic location status, and pres-

ence of resistance genes, STK11 and KEAP1.

(C) Relative abundance distribution of Fusobacte-

rium across the metastatic pan-cancer cohort

(n = 3,576) and assigned into either a high (>75th

percentile relative abundance [Fuso-high, red]) or

low (<75th percentile [Fuso-low, blue]) degree of

Fusobacterium. Dotted line corresponds to the 75th

percentile cutoff.

(D) Overall survival (OS) of NSCLC patients treated

with immunotherapy assigned to Fuso-high (red) or

Fuso-low (blue) groups. p value, adjusted hazard

ratio (HR), and 95% confidence interval (CI) were

generated using a multivariate Cox proportional-

hazards model as described in (B).

(E) Bar plot representing the degree of cytolytic

activity,30 IFNG signatures,31 and MHC class I/II32

and TIDE immune expression in all metastatic lung

tumors (n = 231) harboring a high or low degree

of Fusobacterium. Signed p values shown were

generated using an LME model correcting for

genome-wide mutation burden, tumor subtype,

biopsy site, sequencing platform, and hospital

origin.

See also Figure S8.
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Immunotherapy can reshape tumor microbial
populations
We then wanted to explore the impact of therapeutic pressures

on the bacterial community. Therefore, we compared changes

in bacterial richness before (first biopsy) and after (second bi-

opsy) tumors were exposed to either immunotherapy (n = 33),

targeted therapy (n = 34), or hormonal therapy (n = 19) (Fig-

ure S7D). We found a significant decrease in bacterial richness

exclusively in patients treated with ICB. This was seen by both

mapping and assembly-based diversity estimates (Figures 4C

and S3J). Moreover, we found that chemotherapies with known

antibiotic mode of actions (such as, doxorubicin/epirubicin and

bleomycin) trended toward a decrease in bacterial richness after

treatment (Figures S7E–S7G).

Furthermore, in a small subset, we found a significant

decrease in richness associated with a favorable response

(best overall response [BOR], partial response [PR]/stable dis-

ease [SD], n = 14) compared with non-responsive patients (pro-

gressive disease [PD], n = 9) (Figure 4D). Based on these obser-

vations, we next analyzed (1) which bacteria were recurrently

depleted after ICB in responsive patients and (2) whether these

bacteria had a lower prevalence in non-responsive patients at

pre-treatment. In this with this, we found several bacteria,
2330 Cell 187, 2324–2335, April 25, 2024
including Actinomyces, Bacteroidetes, Bifidobacterium, and

Prevotella to be frequently depleted (Figures S7H and S7I).

Moreover, it has been demonstrated that bacterial peptides

derived from these genera were presented on tumor HLA ma-

chinery.13 Taken together, our analyses showed an immuno-

therapy-directed effect on the metastatic tumor microbiome

that remodels community structure and is more pronounced in

responsive patients.

Fusobacterium is associated with a poor response to
ICB in NSCLC
Finally, we next sought to determine pre-treatment bacterial

populations affiliated with a lack of response to ICB given the ca-

pacity of some microbes to shape an immunosuppressive

microenvironment.14 To do this, we performed an unbiased anal-

ysis testing whether bacteria were differentially abundant be-

tween patients with and without durable clinical benefit (DCB,

progression-free survival [PFS] > 6 months) in an ICB-monother-

apy cohort of NSCLC patients (n = 63).29 After adjustment for po-

tential confounders, we found that the abundance of Fusobacte-

riumwas negatively associated with DCB (ANCOMBC p = 0.045)

(Figure 5A). A multivariate Cox proportional-hazards model

showed that reduced overall survival (OS) and PFS was



ll
OPEN ACCESSResource
significantly associated to the continuous abundance of Fuso-

bacterium after correcting from genome-widemutational burden

(Figures 5B and S8A). Using our pan-cancer resource, we then

designated all tumors into Fuso-high or Fuso-low groups based

on an upper quartile relative abundance cutoff comparable to

previously defined thresholds3 (Figure 5C). Using these designa-

tions, we were able to corroborate a worse OS and PFS in

Fuso-high ICB-treated NSCLC tumors (Figures 5D, S8B, and

S8C). Species-level quantification of Fusobacterium nucleatum

(F. nucleatum) recapitulated genus-level designations (Fig-

ure S3K). Furthermore, we found that Fuso-high tumors had

significantly lower cytotoxic, IFNG, and major histocompatibility

complex (MHC) class II gene expression signatures (Figure 5E).

Taken together, our analyses revealed clear effects of immu-

notherapy treatment and efficacy on the composition of the met-

astatic tumor microbiome and demonstrate that the presence of

F. nucleatum is associated with reduced effectiveness of ICB in

metastatic NSCLC.

DISCUSSION

In this study, we integrated metagenomics, genomics, and tran-

scriptomics to profile the metastatic tumor microbiome and—at

the same time—resolve physiological characteristics of the tu-

mor and its TME to provide biological insight and guide the

development of bacteria-oriented strategies to complement

and enhance cancer (immuno)therapy.

Our study shows that the composition of the tumor-resident

microbiome is associated with cancer hallmarks such as hypoxia

and inflammation and may influence immune cell infiltration and

immunotherapy efficacy. We obtained insights showing that the

metastatic microbiome is (1) to an important extent composed

by anaerobic bacteria, (2) influenced by anatomical site, (3) partly

maintained between metastatic lesions over time, (4) can be re-

shaped after treatment with immunotherapy, (5) and could pre-

dict ICB treatment efficacy. This pan-cancer metastatic cancer

cohort provides a resource to study bacterial communities and

their potential to modulate anti-tumor immunity, extending previ-

ous findings to the metastatic setting and across multiple cancer

types.12,17

We determined an association between a low-oxygen TME

and the abundance of anaerobic bacteria in tumors. Our data

do not establish whether tumor-resident anerobic bacteria play

a causal role in the development of a hypoxic TME or whether

their presence simply reflects suitable conditions for anaerobic

colonization. However, hypoxia has been shown to be a

common feature of bacterial-infected microenvironments as

an innate defense mechanism to regulate pathogen-specific re-

sponses.33,34 Moreover, it has been suggested that metastatic

organ sites may be more permissible to microbial colonization,

as shown in the context of colorectal cancer liver metastases.35

Furthermore, we found preferred community compositions be-

tween MSS and MSI patients and highlight the potential for met-

astatic tumor-derived community clusters, analogous to entero-

types in the gut, that may further stratify patients.

Our integration with matched transcriptomics allowed us to

determine how resident bacteria are associated with tumor

physiology. We observed associations between intratumoral
microbes and the activation of innate immune sensing pathways,

suggestive of TME changes through direct recognition of

bacterial ligands. TLR-specific therapies are increasingly recog-

nized in drug development due to their ability to act as immuno-

modulators,36,37 and locally induced LPS/TLR4 activation may

resemble the effects of existing TLR-agonist therapies and

contribute to changes in the TME.

We also found that tumors with a high microbial diversity were

characterized by an activation of TGF-b and TNF-a signaling,

which are well conserved cytokines that are induced by microbi-

al-derived products38,39 and play central roles at the interface of

host-microbe interactions in the intestine. Although we were not

able to interrogate the causality of these associations, the impli-

cations of the findings are important for our understanding of

host-microbe interactions in the tumor and warrant further

research. Moreover, we found an enrichment of gene sets

related to ECM remodeling, suggestive of a potential functional

role of microbial-ECM interactions in metastases. These results

are in line with previous studies showing bacterial-induced ECM

modifications through changes in the expression of matrix met-

alloproteinases and actin cytoskeleton remodeling factors to

promote survival in metastases.40,41

Furthermore, we found how the presence of specific bacteria

was associatedwith the tumor-infiltrating immune compartment.

Broadly, we found signatures of tumor immune evasion medi-

ated by CAF infiltration and immune exclusion in tumors with

higher microbial diversity. In line with this, we found a potent as-

sociation between tumor microbial diversity and infiltrating neu-

trophils and macrophages, shown by two independent cell-type

quantification methods.42,43 This is in line with the primary func-

tion of neutrophils to clear pathogenic infections, in part due to

the release of neutrophil extracellular traps (NETs), which in

turn have recently been implicated in response to ICB via NET-

based shielding of tumor cells from cytotoxic killing.24 Therefore,

bacterial colonization may induce neutrophil infiltration and

thereby contribute to an immunosuppressive TME.

Our findings also show that immunotherapy augments the

metastatic tumor microbiome and reduces bacterial diversity,

which was even more pronounced in responsive patients.

Recent studies have demonstrated that various bacteria are

capable of invading tumor cells and that their peptides can be

presented on the tumor cells’ HLA machinery,12,13 making it

conceivable that these bacteria are a potential source of immu-

nogenic peptides hence a substrate of cytotoxic immune re-

sponses. Indeed, we determined genera including Actinomyces,

Bacteroidetes, and Prevotella to recurrently dropout in respon-

sive patients, whereas these genera have been previously

shown to produce HLA-presented peptides.13 Conversely, bac-

teria may also stimulate a tolerogenic response14 that can be

co-opted by the tumor as an immune escape mechanism,

further highlighting the importance of characterizing the local

tumor microbiome. Indeed, we found that the presence of

Fusobacterium was negatively associated with responsiveness

to ICB treatment in NSCLC. This gram-negative anaerobic oral

commensal has been associated with the progression and

initiation of colorectal cancers3 and can directly interact with

tumor-infiltrating lymphocytes to suppress their activities.44,45

Moreover, indirect interactions mediated by the secretion of
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bacterial-derived metabolites or outer membrane vesicles46

may also contribute to an immunosuppressive phenotype.

Therefore, it would be of interest to further investigate the poten-

tial targetable role of F. nucleatum in suppressing antitumor im-

munity beyond colorectal cancers.

In conclusion, we present the first large-scale, pan-cancer

atlas of intratumor microbiomes in metastatic cancers with

matchedWGS, transcriptomics, clinical, and treatment outcome

data. Our analyses show how intratumoral communities vary

among anatomical sites, depend on the primary tumor type,

associate with immune cell infiltration, and correlate with treat-

ment responses, especially in the context of immunotherapy.

We expect that our data will serve as an important community

resource to enable future studies on the complex, potentially

targetable roles of the intratumor microbiome in metastatic

cancers.

Limitations of the study
Our study also has limitations: (1) where previous studies have

repeatedly shown a compelling difference between matched

healthy vs. primary tumor communities,12,17 our cohort is

comprised exclusively of metastatic lesions and hence cannot

directly assess potential differences with healthy communities.

(2) Despite our high sequencing depth (>1003 coverage), the

possibility exists of under sampling lowly abundant bacteria

given the low biomass. (3) Although we have provided examples

of the utility of our resource, our findings are at this stage strictly

correlative but can help to inform hypothesis-driven experiments

and subsequently dissect causality, potentially in tumor or im-

mune cell co-cultures. (4) Our bioinformatics approach allowed

us to perform high-dimensional analyses of the established bac-

terial genera in the context of tumor biology on a vast scale, but

in-depth follow-up studies using orthogonal imaging-based ap-

proaches may shed more light on the biomass due to the limita-

tions in computing bacterial load. Moreover, spatial localization

and cellular interactions of the many microbes residing in meta-

static cancers can provide key insights into these host-microbe

interactions. (5) Despite our ability to reconstruct high-quality

metagenomes from tumors, this approach will inevitably under-

sample the diversity of microbes. Nonetheless, it can provide

a detailed and high-confidence taxonomic and functional

characterization of resident bacteria beyond existing reference

databases.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-human HIF-1a (54/ HIF-1a) BD Transduction Laboratories Cat#610959; RRID: AB_398272

Biological samples

Human HNSCC tumor material Vos et al.20 https://clinicaltrials.gov/study/NCT03003637

Human NSCLC tumor material This paper Netherlands Cancer Institute

Chemicals, peptides, and recombinant proteins

10mM dNTPs Roche Cat#11969064001

Q5� Reaction Buffer Pack New England Biolabs (NEB) Cat#B9027S

Q5� Hot Start High-Fidelity DNA Polymerase New England Biolabs (NEB) Cat#M0493L

Critical commercial assays

AllPrep DNA/RNA FFPE Kit Qiagen Cat#80234

AMPure XP Reagent Beckman Coulter Cat#A63881

Deposited data

Mapping-based metagenomics phyloseq object This paper https://github.com/twbattaglia/MicrobeDS

Mapping and assembly-based metagenomics This paper Zenodo: https://doi.org/10.5281/zenodo.10777510

Microbe reference genomes PathSeq customized bundle Zenodo: https://doi.org/10.5281/zenodo.10777510

Human and microbe reference genomes Kraken2 bundle (RefSeq) https://www.ncbi.nlm.nih.gov/refseq/

T2T-CHM13v2.0 NCBI GenBank: GCF_009914755.1

Hartwig WGS data Priestley et al.16 https://www.hartwigmedicalfoundation.nl/en/data/

data-access-request/

Hartwig RNA-seq data Priestley et al.16 https://www.hartwigmedicalfoundation.nl/en/data/

data-access-request/

Hartwig clinical metadata Priestley et al.16 https://www.hartwigmedicalfoundation.nl/en/data/

data-access-request/

Human Microbiome Project WGS raw data NCBI dbGaP: phs000228

IMCISION Vos et al.20 https://clinicaltrials.gov/study/NCT03003637

Oligonucleotides

16S 515F: GTGYCAGCMGCCGCGGTAA Caporaso et al.47 Integrated DNA Technologies; IDT

16S 806R: GTGYCAGCMGCCGCGGTAA Caporaso et al.47 Integrated DNA Technologies; IDT

Software and algorithms

Python version 3.8 Python Software Foundation https://www.python.org/

R version 4.1.3 R Core Team https://www.R-project.org/

Hartwig - Pipeline5 Priestley et al.16 https://github.com/hartwigmedical/pipeline5

Nextflow (v22.04.4) https://www.nextflow.io/

MutationalPatterns (v3.4.1) Manders et al.48 https://bioconductor.org/packages/release/bioc/

html/MutationalPatterns.html

Cutadapt (v2.10) Martin et al.49 https://pypi.org/project/cutadapt/

STAR (v 2.7.10a) Dobin et al.50 https://github.com/alexdobin/STAR

Subread (v 2.0.1) Liao et al.51 https://subread.sourceforge.net/

Limma (v3.50.3) Ritchie et al.52 https://bioconductor.org/packages/release/bioc/

html/limma.html

PROGENy (v1.16) Schubert et al.53 https://bioconductor.org/packages/release/bioc/

html/progeny.html

clusterProfiler (v4.2.2) Wu et al.54 https://bioconductor.org/packages/release/bioc/

html/clusterProfiler.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Immunedeconv (v2.10) Sturm et al.55 https://github.com/omnideconv/immunedeconv

TIDEpy (v1.3.8) Jiang et al.56 https://pypi.org/project/tidepy/

EcoTyper Luca et al.26 https://github.com/digitalcytometry/ecotyper

Samtools (v1.10) https://github.com/samtools/samtools

Kraken2 (v2.0.8) Wood et al.57 https://github.com/DerrickWood/kraken2

Bracken (v2.5.3) Wood et al.57 https://github.com/jenniferlu717/Bracken

PathSeq (v4.1.4.1) Walker et al.58 https://software.broadinstitute.org/pathseq/

metaSPAdes (v3.15.5) Nurk et al.59 https://github.com/ablab/spades

VAMB (v3.0.2) Nissen et al.60 https://pypi.org/project/vamb/

MetaBAT2 (v2.15) Kang et al.61 https://bitbucket.org/berkeleylab/metabat/src/master/

MAGpurify (v2.1.2) Nayfach et al.18 https://pypi.org/project/magpurify/

CheckM2 (v1.0.1) Chklovski et al.62 https://pypi.org/project/CheckM2/

GTDB-TK (v2.3.0) Chaumeil et al.63 https://pypi.org/project/gtdbtk/

PhyloPhlAn (v3.0.3) Asnicar et al.64 https://pypi.org/project/PhyloPhlAn/

CoverM (v0.6.1) https://github.com/wwood/CoverM

inStrain (v1.8.0) Olm et al.65 https://pypi.org/project/inStrain/

NetCoMi (v.1.1.0) Peschel et al.66 https://github.com/stefpeschel/NetCoMi

aMiAD (v2.0) Koh et al.67 https://github.com/hk1785/aMiAD

MaAsLin2 (v1.8.0) Mallick et al.68 https://www.bioconductor.org/packages/release/

bioc/html/Maaslin2.html

HAllA (v0.8.2.0) Ghazi et al.69 https://pypi.org/project/HAllA/

breakaway (v4.8.4) Willis et al.70 https://cran.r-project.org/web/packages/breakaway/

index.html

ANCOMBC (v2.1.1) Lin et al.71 https://www.bioconductor.org/packages/release/

bioc/html/ANCOMBC.html

QIIME2 (v2023.2) Bolyen et al.72 https://qiime2.org/

phyloseq (v1.38.0) McMurdie et al.73 https://bioconductor.org/packages/release/bioc/

html/phyloseq.html

tidyverse (v1.3.1) Wickham et al.74 https://cran.r-project.org/web/packages/tidyverse/

index.html

microViz (0.10.7) Barnett et al.75 https://david-barnett.github.io/microViz/

Biorender Biorender https://www.biorender.com

Other

Analysis code This paper https://github.com/twbattaglia/tumor-microbiome

Somatic variant calling Priestley et al.16 https://github.com/hartwigmedical/hmftools

Curated bacterial genomes This paper Table S1

Bacteria composition of Hartwig samples This paper Table S2
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Emile Voest (e.voest@

nki.nl).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d De-identified patient whole genome sequencing (WGS), clinical metadata, and transcriptomics data from the Hartwig

Medical Foundation are freely available for academic use through standardized procedures. Request forms can be found at
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Resource
https://www.hartwigmedicalfoundation.nl/en/data/data-acces-request/. Data are publicly available as of the date of publica-

tion. DOIs are listed in the key resources table.

d All original code has been deposited at: https://github.com/twbattaglia/tumor-microbiome and is publicly available as of the

date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Within the HartwigMedical Foundation cohort, patients with advanced cancer without any further treatment optionswere included as

part of the CPCT-02 (NCT01855477) and DRUP (NCT02925234) clinical studies, which were approved by the medical ethical com-

mittees (METC) of the University Medical Center Utrecht and the Netherlands Cancer Institute, respectively. Informed consent was

given for WGS as well as data sharing for research purposes. Detailed patient information was collected by the Hartwig Medical

Foundation. Patient characteristics, including primary tumor location, biopsy site, age group and sex are detailed in Table S4.

METHOD DETAILS

Data accession
The Hartwig Medical Foundation (Hartwig) is a spin out of a study by the Center for Personalized Cancer Treatment (CPCT). The goal

of this study was to systemically collect clinical data on the treatment of patients with metastatic cancer and simultaneously biopsy a

metastatic lesion for whole genome sequencing. Together this has created the current valuable cohort of the Hartwig Medical Foun-

dation. Both initiatives (Hartwig Medical Foundation and CPCT) were founded by the senior author of this manuscript. All Hartwig

Medical Foundation data were accessed and processed using the Google Cloud Platform (GCP). Collectively, we gathered 4,160

tumor-derived whole genome sequencing CRAM files, sequenced at a median sequencing depth of 106x, from the Hartwig’s Google

Cloud bucket under the data request DR-043. Clinical data was annotated to ensure metastatic samples fell into the appropriate

biopsy site categories outlined in previous research.16

To maintain reproducibility and more rapidly gather results, files were batched processed using a Nextflow pipeline connected to

the Google Cloud Platform using the Cloud Life Sciences API. Each CRAM file was processed on an independent Docker contain-

erized Compute Instance with 8-16 vCPU’s and 30-100 GB of memory for pre-processing and profiling, respectively, using pre-emp-

tible instances and local solid-state drives. The computational wall time for processing all samples was approximately 4 months.

Library preparation and sequencing
Sampleswerepreparedaspreviouslydescribed inauniformandcentralized location.16Briefly,DNAwas isolated frombiopsyandblood

onanautomated setup (QiaSymphony) according to supplier’s protocols (Qiagen). Bloodwas extractedusing theDSPDNAMidi kit and

QIAsymphony DSP DNA Mini kit for tissue. Before starting DNA isolation from tissue, the biopsy was dissolved in 100 microliter

Nuclease-free water by using the Qiagen TissueLyzer and split in two equal fractions for parallel automated DNA and RNA isolation

(QiaSymphony). RNA was extracted using the QIAGEN QIAsymphony RNA kit, prepared with the KAPA RNA Hyper + RiboErase

HMRandunderwentpairedendsequencedon the IlluminaNextSeq550platform (2x75bp)or IlluminaNovaSeq6000platform(2x150bp).

Bioinformatics: Host analysis
Whole genome profiling

Whole genome sequencing and analysis was performed by the Hartwig Medical Foundation as previously described,16 whereby

reads were mapped to the reference genome GRCh37, somatic single nucleotide variants and insertions and deletions were called

using Strelka, and purity, ploidy, structural variant (SV) and copy number somatic analysis was performed using the Hartwig’s in-

house tools GRIDSS, PURPLE and LINX, respectively. Samples with <20% tumor purity were removed before analysis. Mutational

signatures were determined using MutationalPatterns with strict refitting and a max delta of 0.004.

Transcriptome profiling

RNA-seq data was filtered using Cutadapt for reads > 35nt and depletion of TruSeq adapters. Subsequent reads were aligned to

GRCh38 (Gencode v35) using STAR (2-pass mode) and quantified using featureCounts within the Subread package. Reads counts

were then normalized to transcripts-per-million (TPM) before use with downstream pathway activity tools, or were normalized using

Limma-Voom for before differential abundance testing.

Tumor-derived gene set variation analysis (GSVA) pathway activities were computed using edgeR normalized gene expression

profiles. The pathways were derived from MSigDB as follows: Hallmark Hypoxia (M5891), Cellular response to increased oxygen

levels (M23439), TLR4 signaling (M13874) and TLR2 signaling (M23239). The activity of 14 distinct signaling pathways were

computed using Pathway RespOnsive GENe activity inference (PROGENy) using the tool, EaSIeR, on raw gene expression counts.

And gene set enrichment analysis (GSEA) was performed on log2 fold-changes derived from Limma Voom differential abundance

testing using, clusterProfiler.
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Tumor immune infiltration

Immune cell deconvolution was performed on TPM-normalized counts by CIBERSORT (absolute) using the immunedeconv frame-

work.76 Tumor ImmuneDysfunction and Exclusion (TIDE) signatures77 were computed using the tool, tidepy on TPMnormalized gene

counts. Immune cell states were deconvolved using EcoTyper26 using default settings on TPM normalized counts. Significant cor-

relations were found between expression-based PD-L1 TIDE scores and IHC staining on matched tumor tissue (Figure S5G).

Microbial profiling pipeline
Aggregating non-microbial sequences for analysis

We gathered all sequencing pairs that did not successfully align to the human genome (build hg19) from the Hartwig’s bioinformatic

pipeline. To do this we used samtools to filter CRAM files for reads in which both read pairs did not map sufficiently (SAM flag 12) and

produced a BAM file for downstream analyses. Unmapped read quality profiles were analyzed using FastQC.

Kraken2 microbial profiling pipeline

Unmapped BAM files were converted into FASTQ format using Picard and quality filtering using Cutadapt with a Phred quality

score > 15, minimum length > 50nt and a depletion of Illumina TruSeq Index adapters. Unmapped, quality filtered sequences

were then profiled with the fast k-mer based metagenomic taxonomic classification tool, Kraken2 (v2.0.8-beta). Briefly, Kraken257

uses a database of short genomic substrings (k-mers) labelled with their lowest common ancestor (LCA). Each read’s set of 31nt

k-mers are rapidly mapped to this database to determine the appropriate taxonomic lineage, most reliably at the Genus level.

A Kraken2 reference database was created from >23,000 human, bacterial, archaeal and viral NCBI RefSeq genomes and was ac-

cess on 03 May 2020 (RefSeq release 99). Previous analyses found this method performed as well as alignment-based approaches

against endogenous tumor microbiome data.17 Following Kraken2 profiling, genus-level abundances were re-estimated with

Bracken2 (v2.5.3) which recomputes read assignments using a Bayesian model.

PathSeq microbial profiling pipeline

To increase the sensitivity of our approach and systemically remove potential false positives generated by Kraken2, we also pro-

cessed the unmapped reads with the pathogen discovery tool, PathSeq.58 Unlike Kraken2, PathSeq relies on a computational sub-

traction approach in which unmapped reads undergo successive steps of host removal, quality filtering and sequence complexity

filtering before aligning reads against a large reference database of viral, bacterial and archaeal RefSeq genomes using BWA. We

chose to create our own custom database of RefSeq genomes derived from human-associated microbial catalogues to (1) decrease

overall computational time and remove database-associated false positives. The human-associated database contained 6,328 ge-

nomes and was composed of bacterial and viral genomes that were outlined in 5 human-associated microbial surveys (Table S1).

Metagenomic assembly of unmapped reads

We employed a multi-sample, bin-splitting approach for metagenomic assembly of bacterial genomes.60 Unmapped, quality filtered

reads were first individually assembled with metaSPAdes (v3.15.5) and contigs were concatenated using VAMB (v3.0.2) with a min-

imum length of 2,000 bp resulting in a catalog of 2.27 million contigs. Depth of coverage was calculated by mapping reads back to

contig catalog using minimap2 (v2.24) and applying the function jgi_summarize_bam_contig_depths from MetaBAT2 (v2.15). There-

after, assemblies were binned using VAMB (v3.0.2) using recommended settings resulting in 1205 metagenomic assembled ge-

nomes (MAG) > 200Kbp using an NVIDIA T4 GPU. Bins were further refined using MAGpurify18 to remove contigs with outlier GC,

tetra-nucleotide content and taxonomic discordant contigs, as well as human contamination. Completeness and contamination

were computed using CheckM2 (v1.0.1). Quality score (QS) of each metagenome-assembled genome (MAG was estimates as fol-

lows: completeness – (5 3 contamination). Bins were classified into high and medium quality MAG based on standards set by min-

imum information about a metagenome-assembled genome (MIMAG)19: near-high quality high: >90% completeness and <5%

contamination; medium (QS>50):R 50%completeness and <10%contamination andQS > 50, medium (QS<50):R 50% complete-

ness and <10% contamination and QS<50. MAGs were assigned taxonomy using the classifywfmodule of GTDB-TK (v2.3.0, R214)

and PhyloPhlAn (v3.0.3) using the phylophlan_metagenomicmodule against the SGB.Jul20 database. Readswere remapped against

the near-high quality and medium quality assemblies using the genome module of CoverM (v0.6.1). Coverage statistics were then

computed using inStrain (v1.8.0). For the set of paired biopsies, the comparemodule was used and genome wide consensus-based

ANI (conANI) scores were computed for each sample pair.

Contamination assessment
Discussions surrounding the computational methodology of preceding cancer microbiome studies,17 centered around a substantial

degree of human-derived false positives and insufficient normalization techniques,78–80 have been raised. Therefore, we will specif-

ically highlight how our computational work distinguishes from those previously described and how it addresses these concerns.

Integration of two microbial profiling bioinformatics methods

We first evaluated the possibility of false positives derived from computational methodologies. In our testing, we found that both

Kraken2 and PathSeq each had their respective disadvantages when it came to accurately identifying simulated microbial compo-

sitions. More specifically, we found that while Kraken2 would overestimate the diversity of a small simulated community (Figure S1A),

PathSeq would underestimate (Figure S1B) given its strict quality and mapping cutoff’s. This was evident in simulated analysis by

which the strain-level genomes of the simulated bacteria were removed from both reference databases as an attempt to mimic

the potential community in vivo. We found that intersection of the two methods, by which Kraken2 profiles were filtered given
Cell 187, 2324–2335.e1–e7, April 25, 2024 e4
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PathSeq’s detected bacteria, had the best accuracy of recapitulating the simulated community (Figure S1C). Therefore, we found

that the combination of the two methods reduced the possibility of false positive bacterial presence.

Moreover, we wanted to confirm that our methodology was not specifically optimized for tumor-derived low biomass samples, but

can also be generalized to existing fecal gut microbiome datasets. Therefore, we applied our pipeline to a subset of 200 samples

derived from the skin, urogenital or gut within the Human Microbiome Project cohort (Figure S1D). A compositional overview of

the microbial communities showed a similar structural difference as compared to existing metagenomic methodologies, by which

the gut-derived microbial communities clusters apart from both skin and urogenital communities, thus showing the robustness of

our approach.

Curated human-associated bacterial reference database

Next, we sought to remove false positives derived from the reference databases. To do this, wemade use of twomethodologies. The

first includes the strict inclusion of human-associated bacteria reference genomes in the PathSeq reference database. To this endwe

made use of 6,328 genomes from 5 studies of who bacterial species had been deposited in the RefSeq database. Moreover, these

studies include metagenomic-assembled genomes (MAG), which have been shown to increase the characterization of the human

microbiome. Secondly, we included the human-reference genomewithin our Kraken2 reference database given the unmapped reads

of the tumor microbiome are potentially human-derived but with insufficient mapping quality. Experiments with simulated reads

derived from the human genome against the Kraken2 standard database without the human reference genome included had a

high degree of false mappings to multiple bacteria, while this effect was completely removed with the Kraken2 standard dataset

that included the human genome (data not shown). We found a substantial percent of human-associated reads after Kraken2 map-

ping, suggesting that the lack of correction of this artefact may potentially bias the microbial composition results. Additionally, we

found Kraken2 to detected a higher degree of community richness compared to PathSeq (Figure S1E), but we found a majority of

these bacteria to be sourced from non-human habitats as annotated by Genomes Online Database (GOLD) (Figure S1F).

Furthermore, we re-ran our pipeline on a subset of samples (n=20), with an additional T2T-CHM13 decontamination step. As ex-

pected, we find fewer microbial reads in the samples decontaminated using the T2T-CHM13 genome (Figure S1L), however, we still

find a strong correlation of the bacterial abundances between the two methods (Figure S1M). We hypothesize that this can be attrib-

uted to (1) the additional depletion step of low-quality readswe performwhich removesmany of the poorly mapped human reads and

(2) that our dual-approach computational profiling method removes Kraken2 mappings that may otherwise inflate microbial read

count. Additionally, we simulated reads (n=1,000,000) from the T2T-CHM13 (v2.0) genome and determined read count and coverage

against our MAG catalog. We found a very low mapping rate of 0.24% (2433/1000000) highlighting a lack of human-derived overlap

with our MAG catalog. Moreover, we found that less than 0.20% of reads mapped to any MAG species (Figure S1N).

Depletion of known contaminants

The third step was to correct for false detection of bacteria by removing genera that were detected but have been determined to be

potential laboratory-derived contaminants derived from DNA extraction kits and laboratory reagents. To do this, we made use of the

published list of genera81 and removed both Likely contaminants and Mixed Evidence contaminants. Furthermore, we found that

these contaminants made up a large portion of the abundance and prevalence across our cohort (Figure S1G), suggesting their in-

clusion would bias total community levels.

Modeling batch effects

Next, we sought to account for false associations derived from technical confounders. To do this wemade use of linear mixed effects

models (LME) by which we account for sequencer type and hospital location as random effects. The assessment of variance ex-

plained by hospital location and sequencer showed a high degree of proportional variance (Figure S1H). Specifically for the hospital

location, this can be in part related to the fact that some subsets of cancer were received from a few hospital locations due to their

specialization. These effects could be reduced after applying batch correctionmethods from Limma (removeBatchEffect). Moreover,

we found that using an LME with the confounder accounted for as random effects on uncorrected counts achieved similar model

performance as a linear model on batch-corrected counts (Figure S1I). Therefore, by making use of linear mixed effects models,

we were able to reduce the number of false associations attributed to technical variance.

Assessment of matched blood-derived microbial communities

Finally, we investigated the potential for our pipeline and methodologies to determine microbial compositions on matched blood-

based sequencing data, which serve as a negative control. To do this, we applied our pipeline to a subset of 255 blood-derived

WGS data with matched tumor microbial profiles. We found that the richness of the blood-derived microbial community was signif-

icantly lower compared to that of the tissue-based community (Figure S1J). We found that the bacteria that had a high prevalence in

the blood-based communities were generally found to be laboratory-derived contaminants that would be depleted during our pre-

processing steps (Figure S1K). Moreover, we found that bacteria that had high prevalence generally were classified as pathogenic

and who contain species that are involved in blood-born infections.

Bioinformatics: Microbial analysis
Sample and bacterial filtering

Unmapped whole genome sequencing (WGS) samples from 4,164 underwent microbial profiling using the methods described in

detail above, and of these, 4,115 (98%) had a successful microbial community profile generated. Next, samples without sufficient

clinical information, such as a lack of metastatic localization site or primary tumor site of origin were removed. Following this, we
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preserved only metastatic localization sites or primary tumor site of origin in which at least 25 samples were available to retain suf-

ficient power for linear modeling. Next, we retained samples in which a library of >500 reads were achieved (n=3576).

Bacterial physiologies

Bacterial physiologies, including Gram staining status and aerophilicity taxonomic annotations were generated using bugphyzz

(v0.0.1.3) (Table S1). Briefly the Gram staining and aerophilicity annotations were extracted propagated at the genus-level using

taxPPro (v0.1.0). Only annotations with a score > 0.5 were retained. Those with a score <0.5 were classified as ‘Not available’.

Alpha and beta diversity estimations

The Shannon diversity index (alpha diversity) estimates, were computed using mia (v1.2.7) on a rarefied table (n=1500, seed=918).

Beta-diversity estimates was computed using NetCoMi (v1.1.0) using themodified central log ratio transformation (mclr) in Euclidean

space to generate Aitchison distances. To compute pairwise cancer-type dissimilarities, a distance matrix was used as an input for

betadisper to compute difference inmedians. Marginal pairwise P-values were generated using a PERMANOVA adonis test (adonis2)

from vegan (v2.6-2) to account for cancer type, biopsy site, hospital location and sequencer type.

Integration between bacterial profiles and Hallmarks or Ecotype expression was performed using Procrustes analysis using the

function protest within the vegan package (2.6-2) on a random selection of 1000 samples. Bacterial profiles were first filtered for

1% prevalence and subsequently clr-transformed. Next Bray-Curtis and Jaccard dissimilarities were computed from Hallmark

zscore and Ecotype state abundance quantifications, respectively. A Mantel test with 9999 permutations was used to estimate sig-

nificance between distance matrices.

Alpha diversity associations with tumor immune and pathway features were performed with Adaptive Microbiome a-diversity-

based Association Analysis (aMiAD) (v2.0). Briefly, rarefied diversity estimates of Shannon, Richness and Gini Simpson were used

as an input. TIDE or PROGENy residuals after correcting for cancer type, biopsy location or CD45 expression (as in the case with

TIDE to account for total immune infiltration), was set as the variable of interest with 5000 permutations.

MSI vs. MSS community cluster detection

Microbial samples derived from the DRUP study (n=191) were used as an input. DRUP-specific samples were included as there is an

enrichment of dMMR/MSI-H tumors derived from cohorts of patients treated with ICB. Cancer types were only included if there ex-

isted a corresponding set of MSI and MSS samples. Bacterial profiles were then centered-log ratio transformed with a pseudocount

andmultiple graphswere create running the short randomwalks algorithm frombluster (v1.4.0) with varying NNGraphParam (k=2, 10,

25, 50). After running purity estimations, a NNGraphParam of k=20 was selected and samples were classified as Cluster A (n=109) or

Cluster B (n=82). A logit model predicting MSI status from cluster group after correcting for cancer type, biopsy site, and hospital

location was used.

Hypoxia enrichment analysis

To determine an enrichment of anaerobic bacteria in hypoxia tumors, we first generated pvalues and ranking metrics for each indi-

vidual bacteria and tumor hypoxia quantification using GSVA quantifications. To do this, we first performed differential expression

analysis using Microbiome Multivariate Association with Linear Models (MaAsLin2) (v1.8.0) on GSVA pathway quantifications. Our

model was constructed with hypoxia, cancer type and biopsy location as fixed effects and hospital location and sequencer type

as random effects. MaAsLin2 parameters were set to a linear modeling with a clr-transformation. Then, we extracted the t-statistic

derived from each bacterial-specific linear model and applied GSEA with 9999 permutations from clusterProfiler (v4.2.2) using an-

notations as described above (bacterial physiologies). For the IMCISION validation cohort, HIF-1a was modelled for each bacteria

with fixed effects set as timepoint (Week 0 or Week 4), tumor localization, and major pathological response, while random effects

were set to patient ID.

Host-microbe data integration

To determine associations between bacterial populations and high dimensional datasets, we made use of the Hierarchical All-

against-All Association Testing (HAllA) (v0.8.2.0). Briefly, bacterial profiles were filtered for 5% prevalence and subsequently trans-

formed to relative compositions. Next a general linearize model with Gaussian was fit with cancer type, biopsy site hospital location

and sequencer type set as covariates to generate covariate-independent residuals. The same procedure was performed for

EcoTyper state abundances, but included cancer type, biopsy site, and CD45 infiltration. Next HAllA was performed using all-

against-all parameters, with default parameters.

Longitudinal samplings analysis

To assess the longitudinal presence of microbial populations within a patient’, between metastases, we made use of a cohort of

paired biopsies includedwithin our resource (n=250). Of these pairs, 199 had sufficientmicrobial profiling information for downstream

analysis. To ensure differences we not driven by technical artefacts, we removed pairs in which biopsies were sequenced on differing

sequencing technologies.

Beta diversity estimates were generated by NetCoMi using the mclr transformation in Euclidean space to generate Aitchison dis-

tances and binary Jaccard dissimilarities were computed using vegdist from the vegan package. Genus-level richness estimates

were computed using breakaway (v4.8.4) using a cutoff of 50. Statistical modelling of the observed and unobserved total diversity

was performed using the bettamodel with random effects. Fixed effects include lesion status, weeks between biopsies andmatched

biopsy site location and random effects was patient pairing ID.
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Differential abundance testing

ANCOMBC (v2.1.1) was used determine differentially abundant genera between responsive and non-responsive NSCLC patients

treated with ICB, using the ANCOMBC2 function. Fixed parameters included durable clinical benefit (PFS>6 months) and lymph

node biopsy localization status, and random effects were set to sequencing platform and hospital origin. Structural zero detection

and pseudo-counts sensitivity analysis was included and a sample prevalence cutoff of 20% was used.

IMCISION hypoxia validation cohort
An external cohort of 31 HPV-negative stage II-IVB HNSCC patients treated with ICB (NCT03003637)20 were used to validate the

presence of hypoxia and anaerobic bacteria infiltration. Briefly, transcriptomics data from 31 patients across 2 timepoints (Baseline

and Week 4, n=62) underwent microbial profiling as described above. Hypoxia quantification was computed by immunohistochem-

istry staining of HIF-1a on FFPE primary tumor samples on a BenchMark Ultra autostainer (Ventana Medical Systems). Briefly, the

HIF-1a was scored by determining the percentage of tumor cells that express HIF-1a. Transcriptomic-derived hypoxia signatures

correlated well with HIF-1a staining’s (Figure S4D).

16S rRNA amplification and sequencing
DNAwas isolated from FFPE tumor slides (10 mm) with the AllPrep DNA/RNA FFPE Kit (Qiagen, 80234) using the QIAcube, according

manufacturer’s instructions. Prior to isolation, tumor percentages were scored by a pathologist to indicate the most tumor-dense

regions for isolation on H&E slides using Slidescore (www.slidescore.com).

A detailed protocol for performing 16S rRNA amplification and sequencing has previously been described.47 Briefly, extracted DNA

was used for 16S amplification of the V3-V4 region using the primers 515F (5’-GTGYCAGCMGCCGCGGTAA-3’) and 806R

(5’-GGACTACNVGGGTWTCTAAT-3’) adapted to incorporate the Illumina adapters and a sample barcode sequence. The amplifica-

tion mix contained 1X Q5 Buffer (NEB, B9027S), 200mM dNTP (Roche, 11969064001), 0.5 mM forward and reverse primers, 0.5 units

Q5 (NEB, M0493L) and 3ml of template DNA (30ng) in a 25ml reaction using the following cycling conditions: denaturation 3 min at

98�C, followed by a set of 30 cycles (98�C for 50 s, 55�C for 30 s and 72�C for 90 s) and final elongation (5 min 72�C). Constructed
libraries were purified using 60ml of magnetic beads (AMPure XP Reagent; Beckman Coulter, A63881) per 75ml PCR reaction.

Amplicons were pooled in equimolar concentrations and checked for quality prior to sequencing and sequenced using the MiSeq

Nano (2x150 bp) platform. Amplicon sequencing data was processed and analyzed using QIIME272 (v2023.2). Briefly, forward reads

were denoised with DADA2 (q2-dada2) for quality filtering and the depletion of chimeric, and erroneous reads using default param-

eters. Reads were subsequently assigned taxonomic annotations (q2-feature-classifier) using a naive Bayes classification method

against the Greengenes2 database.82

QUANTIFICATION AND STATISTICAL ANALYSIS

Downstream analysis and plots were performed with R version v4.1.3. Packages used in analysis include phyloseq 1.38.0, ggplot2

3.4.2, patchwork 1.1.1, taxPPro 0.1.0, ggthemes 4.2.4, NetCoMi 1.1.0, breakaway 4.8.4, bluster 1.4.0, microViz 0.10.7, mia 1.2.7,

clusterProfiler 4.2.2, miaViz 1.2.1, survminer 0.4.9, microbiome 1.19.1, survival 3.2-13, tidyverse 1.3.1, ReactomePA 1.38.0, scater

1.22, bugphyzz 0.0.1.3, ggpubr 0.4.0, RColorBrewer 1.1-3, ggsci 3.0.0.
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Supplemental figures

Figure S1. Mapping-based computational methods for bacterial detection, related to Figure 1

(A–C) Intersection betweenKraken2 and PathSeq profiles on a simulated bacterial community (n = 14). Microbial profiles derived from a simulated set of 14 strains

profiled against Kraken2 (A) or PathSeq (B) and whose strains were depleted from the reference database and the intersection between the two methods (C).

Colors represent bacteria within (orange) or outside (black) the simulated community.

(legend continued on next page)
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(D) Principal-component analysis (PCA) of the healthy microbiome communities derived from the Human Microbiome Project (HMP) (N = 200) after being

processed with our standardized microbial profiling tool and filtering methodology. Colors represent samples derived from different source locations (skin [blue],

urogenital [orange], and gut [green]).

(E) Richness estimates as determined by Kraken2’s standard databases (red) or curated PathSeq database (blue). p values shown were determined using a

Wilcoxon rank-sum test.

(F) Genomes Online Database (GOLD) annotation of Kraken2-specific genera detected.

(G) Abundance (x axis) and prevalence (y axis) of contaminant bacteria within the metastatic tumor microbiome cohort (n = 4,115) across detected genera

(n = 220). Colors indicate the annotation of the genera as a likely contaminant (blue), potential commensal (yellow), or mixed evidence (orange).

(H) Variance explained of bacterial communities by patient and sample covariates on uncorrected (red) or batch-corrected (blue) microbial counts. Error bars

represent std.

(I) Correlation of model coefficients between a mixed-effects model account for technical confounders (sequencer type and hospital location) and a fixed linear

model with batch-corrected counts. p value was calculated using a Spearman rank correlation.

(J) Number of genera detected (richness) in blood-based (red) or tumor (blue) whole-genome sequencing (WGS) data after applying our standardized filtering

methodology. p value was computed using a paired Wilcoxon rank-sum test.

(K) Prevalence of the genera in blood-derived communities according to contamination annotations.

(L) Per-sample library sizes of microbial reads after applying the Kraken2 + PathSeq intersection profiling methodology. Boxplot of samples decontaminated with

either hg19 alignment (light blue) or with hg19 + T2T-CHM13 (dark blue).

(M) Per-genus abundance correlations between the two strategies. p value shown was calculated using a Spearman rank correlation.

(N) Percentage of reads mapped to our MAG catalog from reads simulated from the T2T-CHM13 genome (n = 1,000,000).
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Figure S2. Overview of bacterial-derived reads in metastatic tumor microbiomes, related to Figure 1

(A) Procrustes analysis of WGS-based and established 16S rRNA microbial profiles in matched tumors. Each point represents a single tumor’s microbial

composition derived from either 16S rRNA profiling (circle) or WGS-based profiling (triangle). Procrustes rotations were performed on two distance matrices of

Jaccard dissimilarities between patient’s tumor microbial profiles. The p value was generated using the protest function with 9,999 permutations.

(legend continued on next page)
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(B) Overview of metastatic localization sites and treatments within the cohort. The bar plot indicates the number of samples per localization site, where colors

denote the class of treatment given right after the biopsy.

(C) Histogram of the percent of unmapped WGS reads (top) or total number of microbial-mapped reads (bottom).

(D) Boxplots of the fraction of bacterial-derived reads from the total number of human-mapped reads (fractional bacterial reads), stratified by metastatic

localization site (top) and the phylum-level average relative composition of the bacterial community within a site (bottom). Red line indicates group median.

(E) Average rarefied estimates of community richness (x axis) and evenness (y axis) by primary tumor location of origin (left) andmetastatic localization site (right).
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Figure S3. Metagenomic-assembly of metastatic tumor microbiomes, related to Figure 1

(A) Overview of computational workflow to generate metagenomic-assembled genomes (MAGs) using a multi-sample, co-binning approach.

(B) Overview of the MAG completeness and contamination after co-assembly and binning. Colors correspond to MAGs annotated as near-high quality (green),

quality score > 50 (blue), and quality score < 50 (red).

(C and D) Distribution of genome size (C) and contig NC50 (D) determined from MAG with medium or near high-quality MAGs.

(legend continued on next page)
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(E) Phylogenetic tree of MAGs using the Genome Taxonomy Database (GTDB). Inner (orange) and outer (blue) rings correspond to MAG completeness and

contamination, respectively. Outer bar plot corresponds to MAG genome size.

(F) Per-MAG mean coverage across metastatic tumor microbiomes (n = 4,207) as computed by CoverM. Taxonomy annotations were provided by PhyloPhlAn

using the SGB.Jul20 database. Colors represent MAG phylum-level annotation.

(G) Mapping coverage across a MAG genome (S57C3033) in a single sample using a 1-kb window, with an average coverage of 193 and a breadth of 1.0.

(H) Species-level gene set enrichment analysis (GSEA) of anerobic (top) or aerobic (bottom) bacteria enrichment in hypoxic tumors, as defined through HIF-1a

staining.

(I) Consensus-based average nucleotide identity (conANI) as computed by inStrain on metagenomic-assembled genomes (MAGs) between tumors derived from

the matched tumors pairs (light green, [left]) or unmatched random pairs (dark green, [right]). p values shown are derived from Wilcoxon rank-sum test.

(J) Species-level richness estimates from our MAG catalog between matched biopsies before and after treatment. p values shown were computed using linear

effect model with repeated samplings found within the tool Breakaway.

(K) Genus-level designations of Fusobacterium high (red) or low (blue) quantified by clr transformed assembly-based counts of Fusobacterium nucleatum. p value

shown was computed using a Wilcoxon rank-sum test.
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Figure S4. Community-based bacterial similarity between cancer types, related to Figure 2

(A) Pairwisemetastatic localization site community Aitchison dissimilarities. p values were generated using the permutational multivariate ANOVA (PERMANOVA)

adonis test after adjusted for primary tumor tissue origin, sequencing platform, and hospital of origin.

(B and C) (B) Boxplot of hypoxia activity across primary tumor location origin or (C) metastatic localization derived from gene set variation analysis (GSVA) scores.

(D) Correlation between transcriptomic-derived hypoxia scores and HIF-1a staining. p value shown was derived from Spearman correlation.

(E) Uniform manifold approximation and projection (UMAP) of center log ratios (clr) of microbial communities and colored according to community typing

assignment (cluster A [gray] or a cluster B [black]).
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Figure S5. Associations between bacterial compositions and immune and tumor biology, related to Figure 3

(A) Correlation of residuals of TLR4 signaling and Gram-negative (LPS, left) or Gram-positive (LTA, right) load. p values were generated from an LME regression

model after correcting for primary tumor location, metastatic localization site, sequencing platform, and hospital of origin.

(legend continued on next page)
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(B and C) (B) Same as (A) but with TLR2 signaling; (C) heatmap of adaptivemicrobiome a-diversity-based association analysis (aMiAD) associations to PROGENy

pathway quantifications across all tumor types (pan-cancer) or in individual cancer types. The shade of the bar indicates the aMiAD scores for each feature.

Scores represent an enrichment (red) or depletion (blue) of the pathway to tumor microbiome community diversity. Associations with an FDR p < 0.05 is rep-

resented by diamonds.

(D) Running enrichment score of antimicrobial peptides gene sets in tumors with amore diverse tumormicrobiome community (Shannon diversity). p value shown

was computed using a GSEA.

(E) Same as (C) but with TIDE immune dysfunction gene signatures.

(F) Radar plot of aMiAD scores associated to the Danaher immune cell gene sets. Asterisks correspond to p values < 0.05.

(G) Correspondence of transcriptomic-derived TIDE-derived CD274 (PD-L1) score and PD-L1 immunohistochemistry (IHC) staining of low (<1% [black]), medium

(1%–50% [light purple]), or high (>50% [dark purple]). p value shown was computed using a Wilcoxon rank-sum test.
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Figure S6. Hierarchical all-against-all (HAllA) correlations between bacteria and tumor-infiltrating immune states, related to Figure 3

Pairwise correlation between bacterial abundance and EcoTyper state abundances using hierarchical all-against-all (HAllA) analysis. Distinct colors represent cell

states as previously described.26 Values are shaded according to Spearman correlation coefficients. Red indicates a positive correlation, and blue indicates a

negative correlation. q values < 0.10 are represented by solid diamonds, and circles represent q value < 0.05. q values shown were computed using HAllA with

Spearman correlations and Bonferroni correction (STAR Methods).
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Figure S7. Dynamics of bacterial compositions over time and after anti-cancer therapy, related to Figure 4

(A) Scatterplot of the inferred tumor purity between tumor pairs between the first (x axis) and second (y axis) biopsy. p value shown was determined by Spearman

correlation.

(B) Distribution of the per-tumor pair Spearman correlation.

(C) Boxplots of the Jaccard community dissimilarities between paired biopsies derived from the same lesion (within sample) and random sampling tumor pairs

(between sample). p value shown was computed with Wilcoxon rank-sum test.

(D) Ridgeline plot of the weeks between tumor pair biopsies between different mode of treatments. Kruskal-Wallis one-way analysis of variance was used to

compute the p value shown.

(E–G) (E) Boxplots of the number of observed genera between the first (light green) and second biopsy (dark green) after tumors were treated with chemo-

therapies, including classes of topoisomerases (E), alkylating agents (F), or anti-tumor antibiotics (G). The paired p value shown was determined using the

betta_random framework, with adjustment for time between biopsies, primary tumor location, and lesion status.

(H) Bar plots of the frequency of responsive (green) or non-responsive (red) patients in which a bacterium was determined to be depleted after treatment with

immunotherapy.

(I) Bar plots of the frequency of responsive (green) or non-responsive (red) patients in which a bacterium was present at pre-treatment.
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Figure S8. Fusobacterium as a biomarker for poor response to immunotherapy, related to Figure 5

(A) Multivariate Cox proportional hazard model of PFS, including Fusobacterium relative abundance, tumor mutational burden (no. of mutations per Mbp), lymph

node metastatic localization, and STK11/KEAP1 resistance mutations.

(B and C) (B) Progression-free survival (PFS) and overall survival (OS) (C) of NSCLC patients treated with immunotherapy assigned to Fuso-high (red) or Fuso-low

(blue) groups. Adjusted p values and HRs shown were computed with a multivariate Cox proportional hazard model and adjusted for confounders as described

in (A).
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