
ANALYZING AND COMPARING DIFFERENT
SELF-SUPERVISED LEARNING SPEECH

PRE-TRAINED MODELS IN THE VIEW OF PHONETICS

ANALYZING AND COMPARING DIFFERENT
SELF-SUPERVISED LEARNING SPEECH

PRE-TRAINED MODELS IN THE VIEW OF PHONETICS

Thesis

to obtain the degree of Master of Science at the Delft University of Technology, to be
defended publicly on June 28th, 2022.

by

Hang JI (4759745)

Embedded Systems (Software & Networking),
Delft University of Technology, Delft, Netherlands,

born in China.

This thesis project is supervised by

Dr. Odette Scharenborg

Thesis committee:

Dr. Odette Scharenborg (Chair)
Organisation: Delft University of Technology
Faculty: Electrical Engineering, Mathematics and Computer Science
Section: Multimedia Computing

Dr. Fernando A. Kuipers
Organisation: Delft University of Technology
Faculty: Electrical Engineering, Mathematics and Computer Science
Section: Embedded and Networked Systems

Copyright © 2022 by Hang Ji

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

怕什么真理无穷，进一寸有一寸的欢喜。
pà shén mè zhēn lı̌ wú qiǒng，jìn yı̄ cùn yǒu jìn yı̄ cùn dè huān xı̄。

胡适
hú shì

CONTENTS

Preface ix

1 Introduction 1
1.1 Motivation . 2
1.2 Research questions . 3
1.3 Thesis outline . 4

2 Background 5
2.1 ASR . 6

2.1.1 An overview of the process and history of ASR 6
2.1.2 CTC-based end-to-end ASR . 10
2.1.3 Attention-based end-to-end ASR. 11
2.1.4 Hybrid CTC/attention end-to-end ASR 13

2.2 Neural networks used in ASR . 15
2.3 SSL speech pre-trained models . 17

2.3.1 An overview of SSL speech pre-trained models. 17
2.3.2 Contrastive predictive coding . 17
2.3.3 wav2vec 2.0 . 18
2.3.4 HuBert . 19
2.3.5 Comparison between SSL speech pre-trained models and MFCC . . 20

2.4 Articulatory features . 23
2.5 Support vector machine . 23

2.5.1 Linear SVM with soft-margin. 24
2.5.2 Multiclass SVM. 25

2.6 Related works . 26

3 Methodology 27
3.1 An overview of methods implemented in this work 28
3.2 Datasets. 28

3.2.1 LibriSpeech . 28
3.2.2 TIMIT . 29
3.2.3 Mboshi dataset . 30

3.3 Frame-level AF probing tasks . 30
3.4 Phoneme recognition tasks . 31
3.5 Implementations . 32

3.5.1 SSL speech pre-trained models 32
3.5.2 Implementations in within-language scenario 32
3.5.3 Implementations in cross-language scenario 34

vii

viii CONTENTS

3.6 Evaluation metrics . 36
3.6.1 Frame-level AF probing task: Macro-averaged F1 score 36
3.6.2 Phoneme recognition task: Phone error rate 38
3.6.3 Pearson’s correlation coefficient 38

4 Results 39
4.1 RQ 1: Within-language scenario. 40
4.2 RQ 2: Cross-language scenario . 43

5 Discussion 47
5.1 RQ 1: Within-language scenario. 48
5.2 RQ 2: Cross-language scenario . 49
5.3 Comparisons with other works . 51

6 Conclusions and future works 53
6.1 Conclusions. 54
6.2 Future works . 54

Bibliography 57

PREFACE

This thesis is an original work conducted during my study in the SpeechLab led by Odette
Scharenborg. This work implemented a series of experiments, such as articulatory fea-
ture probing tasks and phoneme recognition tasks, and quantitatively compared and
analyzed self-supervised learning speech pre-trained models. The idea of this thesis
work was inspired by the benchmark for comparing self-supervised learning speech pre-
trained models proposed by Yang et al. in 2021. My work aimed to bridge the gap be-
tween the new technology in the field of speech and the expertise in the field of phonet-
ics. I hope that readers could gain the knowledge of how to utilize these self-supervised
learning speech pre-trained models from this thesis work.

During my study in Delft, many things have occurred. The coronavirus and the
war have changed the world beyond our expectations. I feel fortunate that I have gone
through this dark time with my continuous effort and help from other people. I would
like to express my sincere gratitude to my supervisor Dr. Odette Scharenborg who guided
me in this thesis work and provided her expertise in phonetics. Meanwhile, I would like
to thank Dr. Tanvina Patel for her technical support on my thesis work. Moreover, I
would like to thank Odette and Tanvina again for revising my Interspeech paper and my
thesis. Besides, It’s a pleasure for me that I could participate in the SALT group meeting
organized by Bence. These meetings make me jump out of the box and catch up with the
latest techniques and topics in speech technology, for example, the work of Yuanyuan
Zhang and Yixuan Zhang for mitigating the bias in Dutch ASR. Thanks to all who shared
their ideas on these meetings. I also would like to thank Dr. Fernando A. Kuipers for ac-
cepting my invitation to be my thesis committee member. Last but not least, I’m grateful
for my family. They provide me with their unconditional love and support.

The journey in Delft has come to an end. I believe that these experiences gained in
this journey make me a better and braver person. I Wish everyone all the best.

Hang Ji
Delft, June 2022

ix

1
INTRODUCTION

In this chapter, Section 1.1 gives a brief overview of the background knowledge, includ-
ing ASR and self-supervised speech pre-trained models. It also includes the motivation
behind this thesis work. Section 1.2 puts forward the research questions. And Section
1.3 presents an overview of the following chapters.

1

1

2 1. INTRODUCTION

1.1. MOTIVATION
Automatic speech recognition (ASR) is to transform speech audio data into a sequence of
modeling units. These modeling units could be phonemes, words, etc. The technology
of ASR has a giant leap forward due to the application of deep learning techniques [1].
ASR has been widely used in many aspects of our daily life, for example, voice assistants
in banking, healthcare, and marketing, etc.

However, there still exist many challenges unresolved in the field of ASR. For exam-
ple, traditional ASR systems rely on a large volume of paired transcriptions and speech
audio data; however, most languages even lack standard orthography [2]. Therefore,
many techniques have been put forward to tackle this challenge. These techniques could
be broadly classified into three directions, data augmentation, new architectures, and
training strategies [3, 4, 5, 6]. In particular, this thesis work focuses on specific new ar-
chitectures, which are different self-supervised learning (SSL) speech pre-trained mod-
els [7, 5, 8].

Inspired by pre-trained text-based language models which do not require labeled
data from the field of natural language processing (NLP)[9], various SSL speech pre-
trained models have been put forward recently and shown great potential in the field of
ASR [10]. Generally, a speech pre-trained model is a model trained by a large amount of
speech audio data before solving a particular ASR task, for example, a phoneme recog-
nition task. Meanwhile, compared to supervised learning, which can only learn infor-
mation from speech audio data with transcriptions, the self-supervised learning (SSL)
technique enables the pre-trained model to learn information from speech audio data
without transcriptions. With the low demand for labeled training speech audio data, SSL
speech pre-trained models have been regarded as a potential solution for tackling var-
ious challenges in ASR, for instance, building ASR systems for low-resource languages
which lack standard orthography and transcriptions [11].

SSL speech pre-trained models could be used to extract speech representations from
the speech audio data. These speech representations are similar to standard acoustic
feature vectors, which are the input of an ASR system. The standard acoustic feature
vectors are extracted by feature extraction methods based on signal processing, such as
MFCC and PLP, etc [12]. Similar to the standard acoustic feature vectors, speech repre-
sentations also contain useful linguistic information and discard redundant information
for ASR tasks. Thus, speech representations could replace these standard acoustic fea-
ture vectors and be utilized as the input of an ASR system.

Moreover, many works have investigated the utilization of these speech representa-
tions extracted by SSL speech pre-trained models in ASR and related tasks [5, 13, 14, 15,
16, 17]. These works have shown that these speech representations could improve the
performance of an ASR system. For example, Poncelet et al. showed that the speech rep-
resentations extracted from an SSL speech pre-trained model could improve the perfor-
mance of a Dutch ASR system [13]. Specifically, their dutch ASR system adopted speech
representations instead of standard acoustic feature vector as input and achieved better
recognition results.

Despite the good recognition performance achieved by SSL pre-trained models, why
these SSL pre-trained models could improve the ASR performance remain obscured to
us. Several works have been put forward to answer this question [10, 18, 19, 15, 16]. For

1.2. RESEARCH QUESTIONS

1

3

example, Pasad et al. implemented a suite of analysis tools based on non-parametric
methods to uncover the information encoded by speech representations extracted by an
SSL speech pre-trained model, wav2vec 2.0 [18]. Their experiments showed that these
speech representations could encode acoustic and linguistic information. Riviere et al.
analyzed the phoneme separability of SSL speech pre-trained models by a distance-
based metric, ABX score [19]. The ABX score indicated how phones are separated into
different phonemes by speech representations generated by the SSL speech pre-trained
model.

Although these works have demonstrated why and how these SSL pre-trained mod-
els work well for ASR tasks, the articulatory feature (AF) information captured by differ-
ent SSL pre-trained models has not been analyzed and compared yet. Articulatory fea-
tures interpret how different vocal organs are involved in producing different phones.
These articulatory features could also be regarded as the building blocks of different
phones. In addition, the relationship between the articulatory feature information cap-
tured by SSL speech pre-trained models and the performance of phoneme recognition
task which utilizes these SSL speech pre-trained models are interesting to investigate.
The amount of AF information captured by SSL speech pre-trained models could indi-
cate the performance of phoneme recognition. Meanwhile, the transferability of SSL
speech pre-trained models is also interesting to investigate. The transferability means
that SSL speech pre-trained models trained on one language could also perform well
in capturing AF information and phoneme recognition tasks on other languages. The
transferability could improve the ASR performance for low-resource languages by utiliz-
ing SSL speech pre-trained models which are trained on high-resource languages.

1.2. RESEARCH QUESTIONS
Research questions driven by the motivation of this work are proposed as follows:

• RQ1, within-language scenario

– RQ1.1 What articulatory feature information is modeled by different SSL speech
pre-trained models?

– RQ1.2 How does the articulatory feature information correlate to phoneme
recognition performance in the same language, i.e., English?

• RQ2, cross-language scenario

– RQ2.1 To what extent is the articulatory feature information from a different
language modelled by different SSL speech pre-trained models

– RQ2.2 How does the articulatory feature information captured above correlate
to phoneme recognition in this different language?

In order to uncover what articulatory feature information is modeled by SSL speech
pre-trained models for RQ1.1 and RQ2.1, frame-level articulatory feature (AF) probing
tasks based on support vector machines (SVMs) are implemented in this work. Since
the work aims to understand what AF information is captured by SSL speech pre-trained
models, classifiers adopted in these frame-level AF probing tasks are not required to have

1

4 1. INTRODUCTION

a strong ability of classifying non-linearly separable data. If the classifier have strong
nonlinear separability, the results of the probing tasks of different SSL speech pre-trained
models would be too close to discriminate.

Moreover, phone-level ASR systems are implemented to demonstrate the perfor-
mance of SSL speech pre-trained models on phoneme recognition tasks for RQ1.2 and
RQ2.2. The input of these phone-level ASR systems are speech representations extracted
by SSL speech pre-trained models. They are compared with a baseline system which
adopts the standard input, MFCC acoustic feature vectors, for the ASR systems. To un-
derstand the relationship between the amount of AF information and the performance
of phoneme recognition, Pearson’s correlation coefficient between the performances of
frame-level AF probing tasks and the performance of phone recognition tasks are com-
puted. If the coefficient is greater than zero and closer to "1.0", it indicates a positive
relationship between the amount of AF information and the phoneme recognition per-
formance. More AF information captured by SSL speech pre-trained models could have
high performance of phoneme recognition tasks.

Lastly, three state-of-the-art SSL speech pre-trained models, CPC [7], wav2vec 2.0 [5],
and HuBert [8] are compared and analyzed by frame-level probing tasks and phoneme
recognition tasks for our research objectives. Wav2vec 2.0 and HuBert are derived from
CPC. The three SSL speech pre-trained models are different in their architectures and ob-
jective functions. These differences might lead to a different performance in capturing
AF information and phoneme recognition tasks. While this thesis work is not limited to
these three SSL speech pre-trained models. Other SSL speech pre-trained models, such
as APC [20], could also be studied by methods proposed in this thesis work. Due to the
limitation of time and computation resources, this work firstly focuses on CPC, wav2vec
2.0 and HuBert, and other SSL speech pre-trained models could be added in the future.

1.3. THESIS OUTLINE
In this thesis, Chapter 2 introduces the requisite knowledge of this work. Chapter 3 ex-
plains methods and implementations for tackling these research questions. Chapter 4
presents the experiment results. Chapter 5 gives findings from these results and answers
to the research questions. Chapter 6 gives conclusions and an outlook of this work.

2
BACKGROUND

In this chapter, the required background knowledge for this thesis work is explained. In
Section 2.1, an overview of ASR is briefly introduced. The introduction of MFCC feature
extraction method, which is the baseline feature extraction method used in this thesis
work, is also explained. The explanation of ASR systems used in phoneme recognition
tasks for RQ1.2 and RQ2.2 are included as well. In Section 2.2, neural networks used
in ASR are introduced. In Section 2.3, SSL speech pre-trained models analyzed in this
work are explained. In Section 2.4, articulatory features which are researched in RQ1.1
and RQ2.1 are introduced. In Section 2.5, support vector machines which are adopted
in frame-level probing tasks for RQ1.1 and RQ2.1 are explained. In Section 2.6, related
works of this thesis work are introduced.

5

2

6 2. BACKGROUND

2.1. ASR
This section briefly introduces feature extraction, conventional ASR systems and end-
to-end ASR systems. It also compares the two ASR systems and clarifies why the end-to-
end ASR system for phoneme recognition tasks is adopted in this thesis work. The neural
networks used in ASR are also introduced in this section.

2.1.1. AN OVERVIEW OF THE PROCESS AND HISTORY OF ASR

Figure 2.1: The pipeline of ASR

Automatic speech recognition (ASR) is to map a waveform of speech audio data into a
sequence of target modeling units. These modeling units could be phonemes, graphemes,
or words, etc. Figure 2.1 demonstrates the general pipeline of ASR, and a brief explana-
tion of it is given in the following part.

Firstly, input speech audio data is transformed into a sequence of feature vectors in
feature extraction. Feature extraction aims to generate acoustic feature vectors with de-
sirable characteristics for ASR tasks: these acoustic feature vectors should 1. contain suf-
ficient information to distinguish different modelling units, such as different phonemes;
2. robust against speaker variations; 3. robust against noise and channel distortions
[21]. Feature extraction methods include traditional methods based on signal process-
ing, such as MFCC and PLP [21], and data-driven methods such as SSL speech pre-
trained models. In addition, this thesis work compares different SSL speech pre-trained
models as feature extraction methods, with MFCC as the baseline method.

Secondly, the ASR system models the posterior probability P (W |X), where W repre-
sents the predicted sequence of modeling units, X represents the sequence of acoustic
feature vectors X . The ASR system aims to find the most likely sequence of modeling
units W ∗ given the observed acoustic feature vectors, and W ∗ is given by

W ∗ = argmax
W

P (W |X) (2.1)

With the development of deep learning, conventional ASR systems which model the pos-
terior probability based on Bayes’ theorem has been gradually replaced by end-to-end
ASR systems, which directly model the posterior probability [22].

FEATURE EXTRACTION

Feature extraction aims to generate acoustic feature vectors from input speech audio
data and remove redundant information such as noise. This part introduces the feature
extraction method of Mel-frequency cepstral coefficients (MFCC), which is the baseline
feature extraction method used in this thesis work.

2.1. ASR

2

7

The feature extraction method of MFCC extracts acoustic feature vectors by exploit-
ing signal processing methods, and it aims to mimic how humans perceive speech audio
data in their ears. The process of MFCC is shown in Figure 2.2

Figure 2.2: The process of MFCC

As Figure 2.2 illustrates, firstly, the windowing operation is applied to the input speech
signal. The input speech signal is constantly changing over time. The window operation
aims to obtain short segments known as frames. These frames are short-time stationary
and contain information of a particular phoneme. Typically, the window length is 25ms,
and the shift length is 10ms [12]. It is presented in Figure 2.3.

Figure 2.3: The window operation

Secondly, the discrete Fourier transform (DFT) operation is applied to the frame
xt [n]. It aims to extract the frame’s power spectral information |xt [k]2|. The power spec-
tral information |xt [k]2| presents the frequency components and their amplitude of the
frame xt [n]. This process is inspired by human ears, which distinguish different speech
signals by their different frequencies. For example, the DFT operation of vowel /iy/ is
shown in Figure 2.4.

2

8 2. BACKGROUND

Figure 2.4: The DFT operation of vowel /iy/, the left is /iy/ in time domain, the right is /iy/ in frequency
domain, from [21]

Thirdly, the mel filterbank is applied to the power spectrum |xt [k]2|. The mel filter-
bank consists of a series of filters, and these filters are applied to the power spectrum
to extract different amounts of information given different frequencies. This is also in-
spired by human ears, which have different sensibilities of speech signals at different
frequencies. Human ears are more sensitive to low frequencies and less sensitive to high
frequencies.

Afterwards, the log operation is applied to the filtered power spectrum Yt [m]. This
aims to mimic how human ears perceive speech signals with different power, which
means the loudness. Finally, the operation of inverse discrete Fourier transform (IDFT)
is applied on the processed power spectrum log(Yt [m]) to obtain cepstral coefficients.
These cepstral coefficients together with their first order derivatives, second order deriva-
tives, and the energy compose the acoustic feature vector of the input frame.

CONVENTIONAL ASR SYSTEMS

Figure 2.5: The framework of conventional ASR systems

Conventional ASR systems factorize the posterior probability by Bayes’ theorem, which
is given as follows:

P (W |X) = P (X |W)P (W)

P (X)
(2.2)

where P (X |W) is computed by the acoustic model. The acoustic model maps the input
sequence of acoustic feature vectors to their matched phonemes. Phonemes are ab-
stract units defined by linguists based on contrastive role in word meanings [21]. P (W)
is computed by the language model. The language model is a probability distribution
over sequences of words.

In Figure 2.5, the features of recorded speech are extracted at first. Secondly, the
acoustic model is trained on the recorded speech with its corresponded phoneme labels,

2.1. ASR

2

9

and the language model is trained on the text data. Typically, the language model utilizes
far more training text data. The lexicon, which is usually a handcrafted pronunciation
dictionary, maps words to phonemes [22]. The most likely transcriptions are searched
by the multiplication of the output probabilities computed from the acoustic model and
the language model.

END-TO-END ASR SYSTEMS

Figure 2.6: The framework of end-to-end ASR systems

Compared with conventional ASR systems, end-to-end ASR systems do not factorize
the posterior probability. End-to-end ASR systems directly model the posterior proba-
bility by leveraging the deep learning architectures for sequence processing [23, 24].

In Figure 2.6, similar as conventional ASR systems, acoustic feature vectors from
recorded speech X are extracted first. Secondly, the end-to-end ASR model is trained
with these feature vectors and their paired text data. In general, these end-to-end ASR
systems are composed of two modules, an encoder and a decoder. The encoder extracts
hidden representations from the input sequence. The decoder tackles the alignment be-
tween the hidden representations and the output sequence [22].

COMPARISON BETWEEN CONVENTIONAL ASR SYSTEMS AND END-TO-END ASR SYSTEMS

The key difference between conventional ASR systems and end-to-end ASR systems is
whether they factorize the posterior probability P (W |X). Compared with conventional
ASR systems, end-to-end ASR systems circumvent the following problems by modeling
the acoustic model and the language model together:

• Complex decoding: In the decoding process of conventional ASR systems, differ-
ent models including acoustic model, language model, and lexicon require to be
integrated together. Unlike conventional ASR systems, the decoder in the end-to-
end systems directly search for the target output sequence, and do not need to
integrate the acoustic model, the language model and the lexicon.

• Incoherence in optimization: For conventional ASR systems, different models in-
cluding the acoustic model and the language model are trained separately with
different training objective functions. Thus, it could result in incoherence in the
training process. While the end-to-end systems eliminate the incoherence due to
the utilization for only one model in the system.

Since end-to-end ASR systems mitigate the problems of conventional ASR systems,
this thesis work adopts the end-to-end ASR system in phoneme recognition tasks to un-

2

10 2. BACKGROUND

cover the relationship between articulatory feature information and phoneme recog-
nition performance. Specifically, hybrid CTC/attention end-to-end ASR system [22] is
utilized. The following sections give a brief introduction of detailed explanations of
CTC-based end-to-end ASR system and attention end-to-end ASR system. They also
point out the advantages and disadvantages of these two systems. Lastly, the hybrid
CTC/attention end-to-end ASR system is explained.

2.1.2. CTC-BASED END-TO-END ASR
The CTC-based end-to-end ASR systems adopt the connectionist temporal classifica-
tion (CTC) loss with an encoder. Graves et al. put forward the CTC loss for labelling
unsegmented sequence data, such as speech signals [25]. The encoder extracts hidden
representations of the sequence of speech signals. It utilizes different deep learning ar-
chitectures (They are introduced in Section 2.2) for sequence processing. For example,
Deep Speech, which is a CTC-based end-to-end ASR systems, adopts multiple layers of
recurrent neural networks (RNN, and it’s introduced in Section 2.2) in its encoder [23].
The following part presents more detailed explanations of CTC and the ASR systems.

CONNECTIONIST TEMPORAL CLASSIFICATION

Connectionist temporal classification is a decoding method for sequence modeling, such
as speech recognition, handwriting recognition, etc. Specifically, it eliminates the issue
of lacking forced alignments, which are the time-aligned transcriptions of the speech
audio data. CTC solves this issue by introducing a new token, which is a blank token, in
the output modeling units.

More detailed, in the decoding process, CTC outputs frame-wise labels for the input
sequence. For some frames, they do not represent solid modeling tokens, for example,
an actual phoneme. Thus, CTC labels these frames with the blank token ϵ. Afterwards,
possible sequences with valid alignments are kept, and the conditional probability of
these possible sequences is computed as follows:

P (Y |X) = ∑
A∈AX ,Y

T∏
t=1

Pt (at |X) (2.3)

where AX ,Y represents the set of all valid alignments, Pt (at |X) represents the probability
for the single alignment of a frame. The valid alignment means the output sequence with
the merged frame-wise labels is in accordance with the ground truth output sequence.
CTC complies the following rules to merge frame-wise labels:

• If a frame-wise label is followed by the same label, the two labels are merged into
one label. For example, "ll" is converted to "l".

• If the blank token ϵ is inserted into two labels which could be different or the same,
the blank token is removed. For example, "lϵl" is converted to "ll", "eϵl" is con-
verted to "el".

• If the blank token appears at the beginning or the end of the output sequence, it is
removed.

2.1. ASR

2

11

Figure 2.7: The process of CTC alignments

For example, Figure 2.7 presents CTC alignments of the input sequence with the
ground truth label “hello”. In Figure 2.7, the input sequence, such as a spectrogram of the
audio is fed to an encoder, such as an RNN at Stage 0. At Stage 1, the encoder generates
probability distribution Pt (at |X) over output tokens {h, e, l, o, ϵ} for each input step. For
example, the probability distribution of the first input step over different output tokens
are shown in 1 , and the darker color represents the higher probability distribution. At
Stage 2, the probabilities of different output sequences are computed. These output se-
quences are combinations of output tokens of each step. At Stage 3, output sequences
are merged by the rule mentioned above, and the distributions over valid sequences are
added together for further optimization. For example, the output sequences of 2 and
3 are valid after merging, and they represents "hello", the ground truth transcription.

While, the output sequence of 4 is not valid after merging, and it represents "ello".

In order to improve the computing efficiency of CTC, the technique of dynamic pro-
gramming is applied in the training process, and the technique of beam search is applied
in the inference process [26].

2.1.3. ATTENTION-BASED END-TO-END ASR
The attention-based end-to-end ASR adopts attention mechanism in its decoder. Like
CTC, the attention mechanism also eliminates the issue of lacking forced alignments.

2

12 2. BACKGROUND

The attention mechanism was first put forward in the field of machine translation in
2015 [27]. The idea aims to generate the output sequence from an input sequence, and
do not need to provide exact output labels for each frame of the input sequence. Typ-
ically, the lengths of the input sequence and the output sequence are different and not
fixed. The problem of speech recognition also suits this paradigm. Thus, the attention
mechanism has been widely used in the field speech recognition [24]. For example, the
end-to-end ASR systems Listen, Attend, and Spell (LAS) adopts the attention mechanism
in its structure [24]. The following part presents a more detailed explanation of attention
mechanism.

Figure 2.8: The structure of LAS, from [24]

ATTENTION MECHANISM

The attention mechanism performs soft alignments between the input sequence and the
output sequence. The soft alignment means that each character output yi is conditional
dependent on the previous output characters y<i and the entire sequence of the input
signal. They are achieved by the architectures utilized in the system. For example, in the
structure of LAS as shown in Figure 2.8, the encoder (Listener) extracts hidden represen-
tations h from the input sequence x, the decoder (Speller) performs further attending
and decoding processes on these hidden representations h for soft alignments.

To be specific, the probability distribution of each output character is the function of
the decoder state si and the context ci , which is shown as follows:

P (yi |x, y<i) = CharacterDistribution(si ,ci) (2.4)

2.1. ASR

2

13

The decoder state si depends on the previous decoder state si−1, the previous output
character yi−1 and the previous context ci−1, which is shown as follows:

si = RNN(si−1, yi−1,ci−1) (2.5)

The context ci is computed by attending hidden representations h by current decoder
state si , which is shown as follows:

ci = AttentionContext(si ,h) (2.6)

The context ci can be regarded as a weighted sum of hidden representations hu ∈ h,
which is shown as follows:

ei ,u =<φ(si),ψ(hu) > (2.7)

αi ,u = exp(ei ,u)∑
u exp(ei ,u)

(2.8)

ci =
∑
u
αi ,uhu (2.9)

The weight parameter αi ,u is computed by the softmax function of the scalar energy pa-
rameters ei ,u over the whole input sequence. The scalar energy parameter ei ,u is com-
puted by the multiplication of the linear transformed decoder state si and the hidden
representation hu . φ and ψ are MLP networks.

In the training process, LAS adopts the ground truth label as the previous output
character yi−1. In the inference process, the most likely character sequence given the
input speech signals ŷ = ar g maxy l og P (y |x) is to be found.

2.1.4. HYBRID CTC/ATTENTION END-TO-END ASR
From previous sections, CTC-based end-to-end systems and Attention-based end-to-
end systems solve the lack of forced alignments in the training data by different meth-
ods. Thus, these two systems have different characteristics. These characteristics lead
to different advantages and shortcomings between the two systems. The following parts
present more detailed explanations of the characteristics of CTC and attention mecha-
nism, and demonstrate the structure of hybrid CTC/Attention end-to-end ASR system.

As concluded from section 2.1.2, the CTC-based end-to-end system has the following
characteristics:

• The relationship between the input sequence and the output sequence is mono-
tonic, which means that the output sequence is generated by the input sequence
from left to right.

• The relationship between the input sequence and the output sequence is many-
to-one, which means that many frames from the input sequence are mapped into
one output units in the output sequence.

• It makes several conditional independence assumptions (Markov assumptions).

As concluded from section 2.1.3, the Attention-based end-to-end system has the fol-
lowing characteristics:

2

14 2. BACKGROUND

• The relationship between the input sequence and the output sequence is not mono-
tonic.

• It makes no Markov assumptions.

Figure 2.9: The structure of hybrid CTC/Attention end-to-end systems from [22]

By integrating CTC and attention-mechanism, the ASR system could output more
rigorous alignments with the monotonic characteristic in CTC, and it could also do not
need to rely on the conditional independence assumption, which does not occur the
real-life scenario of speech recognition. The structure of the hybrid CTC/Attention ASR
system is shown in Figure 2.9. It takes full advantage of CTC and attention mechanism
by adopting the multiobjective learning based on the two decoding methods.

In Figure 2.9, an encoder for generating hidden representations h is shared between
the CTC decoder and the attention decoder. The system is optimized by minimizing the
multiobjective learning loss which is shown as follows:

LMOL =λlogPctc (y |x)+ (1−λ)logP∗
at t (y |x) (2.10)

where λ (0 ≤λ≤ 1) is a tunable parameter.

2.2. NEURAL NETWORKS USED IN ASR

2

15

2.2. NEURAL NETWORKS USED IN ASR
Neural networks originated from the idea of neurons, which was proposed by McCul-
loch et al. in 1943 [28]. Neural networks leverage multiple layers of neurons to solve the
classification or regression problems. These neurons have high non-linear separability.
For example, in ASR, neurons could covert the input acoustic feature vectors to hidden
representations that are easier to make classifications.

In general, neural networks contain multiple layers of neurons. Many problems in re-
ality cannot be modeled linearly. For example, the relationship between the input acous-
tic feature vectors and their related phonemes is not linear. Neurons can convert these
input acoustic feature vectors to representations in a subspace. In this subspace, the
converted representations and their related phonemes could be modeled linearly. The
mechanism behind the neurons is called non-linear separability. Moreover, the neurons
have parameters to set for non-linear separability. The optimal parameters are found
in the training process of the neural network. In the training process, the neural net-
work generates the predicted values of the input acoustic feature vectors. This process is
called forward propagation. Subsequently, the predicted values are compared with the
ground truth value. The difference between predicted values and ground truth values is
called loss. The parameters of the neurons are found by minimizing the loss. The mini-
mum loss is optimized by gradient descent of the neural networks. The gradient descent
updates the parameters and computes the loss in each iteration. This process is called
backward propagation. When the loss does not change or the steps of iteration arrives at
a specific number, the back propagation stops with the optimal parameters. Then, the
neural network with the found parameters could be used on the test data.

Typically, the convolutional neural network (CNN), the recurrent neural network (RNN)
are adopted in the end-to-end ASR systems [22, 29, 23]. The following part gives expla-
nations for these neural networks.

CNN
Convolutional neural networks (CNNs) were firstly forward by LeCun et al. in 1995 [30].
Convolutional neural networks are simply neural networks that use convolution instead
of general matrix multiplication on its input. In the end-to-end ASR system, 1-D CNNs
are usually used for downsampling [29]. Downsampling could convert the sequence of
input acoustic feature vectors to a shorter sequence, which could reduce the space com-
plexity and the time complexity in further computation.

RNN
The idea of recurrent neural networks (RNNs) was firstly put forward by Elman in 1990
[31]. In end-to-end ASR systems, RNN could be used in the encoder to generate hidden
representations from input speech audio sequence. RNN is unrolled in time to process
the input speech audio sequence with different lengths. The output of current time step
depends on the input of current time step and the hidden representation of previous
time step. The computation of RNN for each time step is shown as follows:

ht = g (Uht−1 +W xt) (2.11)

yt = f (V ht) (2.12)

2

16 2. BACKGROUND

ht is the hidden representation at time step t , xt is the input at time step t , and ht−1

is the hidden representation at previous time step. U ∈ Rdh×di n , W ∈ Rdh×di n , and V ∈
Rdout×dh are weight matrices for ht−1, xt , and ht respectively. In addition, the weight
matrix (U , W , or V) is shared in the unrolling process in different time steps. g is an
activation function. f could be a softmax function to provide probability distribution
over the possible output classes.

However, there exist several limitations in RNN: 1. the output of a time step only
conditionally depends on a context with very limited history information; 2. Weight ma-
trices W and U are responsible for capturing useful history information for the current
output and providing useful information for future outputs; 3. During the training pro-
cess, the gradient descent would occur due to multiplication of W or U following the
chain rule in the backpropagation. Thus, the varieties of RNN, the long short-term mem-
ory (LSTM) networks and gated recurrent units (GRU) networks have been put forward
to solve these limitations [32, 33].

2.3. SSL SPEECH PRE-TRAINED MODELS

2

17

2.3. SSL SPEECH PRE-TRAINED MODELS
Self-supervised learning (SSL) speech pre-trained models are models trained on huge
amounts of unlabeled speech audio data [5]. These SSL speech pre-trained models could
be used in two ways: 1. Use these SSL speech pre-trained models to extract feature vec-
tors, which are called speech representations, from speech audio data, and apply these
speech representations as the input of ASR systems. In addition, these speech represen-
tations contain more linguistic information, and are more robust to unrelated informa-
tion of ASR tasks, such as noise [17, 34]; 2. Fine-tune SSL speech pre-trained models with
labeled speech audio data for ASR tasks [35]. The first way of utilizing SSL speech pre-
trained models is researched in this thesis work. Specifically, speech representations ex-
tracted by different SSL speech pre-trained models, CPC[7], wav2vec 2.0 [5] and HuBert
[8] are analyzed and compared in this thesis work. Meanwhile, these speech represen-
tations are also compared with the traditional speech feature extraction method, MFCC.
Thus, this section gives introduction of SSL speech pre-trained models researched in this
work, and compares these SSL speech pre-trained models. It also compares SSL speech
pre-trained models with MFCC as feature extraction methods.

2.3.1. AN OVERVIEW OF SSL SPEECH PRE-TRAINED MODELS
SSL speech pre-trained models adopt the self-supervised learning strategy. Compared
with supervised learning which learns from labeled data, the paradigm of self-supervised
learning learns from unlabeled training data, for example, speech audio data without
transcriptions. Self-supervised learning is able to leverage the huge amount of unlabeled
speech audio data without extra human labour for annotations. Speech pre-trained
models based on self-supervised learning enable themselves to learn from the unla-
belled training data in two ways: 1. distinguishing the target data from a set of nega-
tive samples, namely the contrastive predictive loss; 2. or reconstructing the target data,
namely, the reconstruction loss [35]. SSL speech pre-trained models which learn by con-
trastive predictive loss are compared and analyzed in this thesis work.

2.3.2. CONTRASTIVE PREDICTIVE CODING

Figure 2.10: The structure of CPC, from [7]

Contrastive Predictive Coding (CPC) [7] includes an encoder module and a context
module. In Figure 2.10, the encoder module generates a latent representation zt = genc (xt)

2

18 2. BACKGROUND

from a frame xt of the raw speech audio data sequence. Afterwards, the context module
generates the context representation ct = gar (zt). The context representation ct is condi-
tionally dependent on the context representations of previous time steps, which means
the history context representations also have influences on the context representations
of current time step.

Typically, the encoder consists of a multi-layer convolutional neural network, and the
context module consists of recurrent neural networks (RNNs) or variants of RNN such as
LSTMs and GRUs [12].

The training objective is to minimize the contrastive loss, which aims to maximize
the mutual information between the future latent representation zt+k in k time steps
ahead and the prediction value Wk ct , and minimize the mutual information between the
latent representation z j from negative samples Z = {z1, ...zN } and the prediction Wk ct .
Wk performs linear transformation of ct . The training objective is optimized by mini-
mizing the sum of the loss for different time step k, k ∈ {1, ...K }, following:

LC PC =− 1

K

K∑
k=1

[
l og

exp(zT
t+kWk ct)∑

z j ∈Z exp(zT
j Wk ct)

]
(2.13)

2.3.3. WAV2VEC 2.0

Figure 2.11: The structure of wav2vec 2.0, from [5]

Wav2vec 2.0 [5] has an encoder module, a context module, and a quantization mod-
ule. In Figure 2.11, the encoder module generates latent representations zt = genc (xt)
from a frame xt of the raw speech audio data sequence. Afterwards, the context mod-
ule generates the context representation ct = gcon(zt). Meanwhile, the quantization
module converts the continuous latent representations zt to a discrete representation
qt = gquan(zt).

Typically, the encoder consists of a multi-layer convolutional neural network. The
context module consists of a Transformer network, which is different from the context
module of CPC. The quantization module utilizes product quantization [36], which con-
verts latent representations to discrete representations by concatenating entries sam-
pled from different codebooks. For example, the quantization module has G codebooks,

2.3. SSL SPEECH PRE-TRAINED MODELS

2

19

and each codebook has V entries of vectors in them. Then, we choose one entry from
each codebook and concatenate the resulting vectors e1, ...,eG .

Similar to CPC, the training objective of wav2vec2.0 is to minimize the contrastive
loss. Specifically, a portion latent representations zt generated by the encoder mod-
ule from input time steps are masked before fed to the context module. Afterwards,
wav2vec2.0 aims to identify the true quantized latent speech representation qt instead
of the true latent speech representation as in CPC for the input of a masked time step.
It is also known as the masked prediction loss, Lm . Moreover, the training objective is
augmented by a code diversity loss Ld , which ensures the equal use of codebook entries
from different codebooks. The training objective is as follows:

Lw av2vec2.0 =Lm +αLd (2.14)

Lm =−log
exp(si m(ct , qt))∑

q̃∈Qt exp(si m(ct , q̃))
(2.15)

Ld = 1

GV

G∑
g=1

V∑
v=1

pg ,v log pg ,v (2.16)

whereα is a tuned hyperparameter, Qt is the set of quantized candidate representations,
which consist of the true sample and negative samples from other masked time steps. G
is the number of codebooks. V is the number of entries that we want to equally use
in each codebooks. pg ,v is the probability distribution of an entry in a batch of input
sequences.

2.3.4. HUBERT

Figure 2.12: The structure of HuBert, from [8]

In Figure 2.12, HuBert [8] also consists of an encoder zt = genc (xt) and a context
module ct = gcon(zt), which is identical to wav2vec 2.0. However, instead of the quan-
tization module used in wav2vec 2.0, HuBert utilizes an offline acoustic unit discovery

2

20 2. BACKGROUND

(AUD) module which is a clustering module such as k-means. Before training HuBert,
the AUD module assigns the related cluster to each frame xt of the input raw audio data
as its pseudo label ut ∈ [C]. Typically, the encoder consists of a multi-layer convolu-
tional neural network. The context module consists of a Transformer network, which is
the same as wav2vec 2.0.

Similar to wav2vec 2.0, HuBert adopts the contrastive loss. Specifically, HuBert aims
to identify the true embedding ec of the pseudo label instead of the quantized latent
speech representations in wav2vec 2.0. In addition, the unmasked time steps are in-
cluded in computing the contrastive loss. The training objective is as follows:

LHuBer t =αLm + (1−α)Lu (2.17)

where α is a tuned hyperparameter, and α ∈ [0,1]. Lm or Lu is similar to Equation 2.15,
with qt replaced by the embedding ec of the pseudo label ut ∈ [C].

2.3.5. COMPARISON BETWEEN SSL SPEECH PRE-TRAINED MODELS AND MFCC
In this section, we firstly compare different SSL speech pre-trained models including
CPC, wav2vec 2.0 and HuBert. Then, we compare SSL speech pre-trained models with
the traditional feature extraction method, MFCC.

CPC, WAV2VEC 2.0 AND HUBERT

Table 2.1: Overview of different SSL speech pre-trained methods

Method Architecture Objective function Dimension

CPC encoder + context module contrastive prediction loss 256
wav2vec 2.0 encoder + quantization + context module contrastive prediction + diversity loss 768

HuBert encoder + context + AUD modules contrastive prediction loss 768

As shown above, these SSL speech pre-trained models are different in architectures
and their actual computation of contrastive loss. Table 2.1 gives an overview of the three
SSL speech pre-trained models. The following part demonstrates their differences.

Compared with CPC, wav2vec 2.0 and HuBert utilize the Transformer network in
their context modules. While, CPC utilize the RNN network or its variations including
GRU and LSTM in its context module. In a nutshell, Transformer, RNN and its varia-
tions are all deep learning architectures for sequence processing. They process input
sequences with variable lengths and capture information at different time steps in the
input sequence.

Figure 2.13: The example of RNN for sequence processing

2.3. SSL SPEECH PRE-TRAINED MODELS

2

21

In Figure 2.13, the input of the RNN in CPC is the sequence of hidden representations
X generated by the encoder module. The RNN moves along the input sequence X to
generate output representations O sequentially. It generates the output representation
ot of the input xt frame by frame. The computation of the output representation Ot is
shown as follows:

ot = RNN(ht−1, xt) (2.18)

where ht−1 is the hidden state of the previous frame xt−1.

Figure 2.14: The example of Transformer for sequence processing

In Figure 2.14, the input of the Transformer in wav2vec 2.0 or HuBert is also the se-
quence of hidden representations X generated by the encoder module. Transformer
generates output representations o0, ...ot−1, ot , ot+1... oT of all frames of the input se-
quence X at once. The output representation Ot is the weighted sum of all frames from
the input sequence X , which is shown as follows:

ot = Transformer(x0, ...xt−1, xt , xt+1, ...xT) (2.19)

As a conclusion, the RNN adopted in CPC and the Transformer adopted in wav2vec2.0
and HuBert resulted in the following differences:

• Sequential or parallel: The RNN implemented by CPC could only generate output
speech representations of frames from the input sequence sequentially. While, the
Transformer utilized in wav2vec 2.0 and HuBert could generate output speech rep-
resentations of frames from the input sequence in parallel. This characteristic of
Transformer enable itself to fully utilize the modern computer architecture, GPU,
which has the inherent attribute of parallel computing.

• Dependencies: The output speech representation of the RNN utilized in CPC is
only dependent on the history frames and the current frame. While, the output
speech representation of the Transformer utilized in wav2vec 2.0 and HuBert is
dependent on the whole input sequence, including the history frames, the current
frame, and the future frames. Although, a variation of RNN, the bidirectional RNN
[37] could make the output representation depended on future frames, CPC in this
thesis work doesn’t adopt this architecture.

Compared with CPC, apart from the difference in architectures of the context mod-
ule, wav2vec 2.0 and HuBert also have additional modules (quantization module for

2

22 2. BACKGROUND

Figure 2.15: The example of K-means clustering algorithm, centroids are marked with white cross, from [38]

wav2vec 2.0, AUD moduel for HuBert) to transform the continuous hidden represen-
tations to a fixed set of different discrete hidden representations. For example, in Fig-
ure 2.15, the K-means algorithm used in the AUD module of HuBert maps continuous
hidden representations (black dots) to their nearest centroids (white crosses). Previous
study [39] showed that this implementation could lead to good results for generating
context representations . By utilizing these context representations in ASR systems, per-
formances could be improved [39].

Moreover, compared with wav2vec 2.0, HuBert also takes unmasked frames into
account for computing contrastive preditive loss. Thus, HuBert are more likely to learn
both acoustic and language models by intuition [8].

SSL SPEECH PRE-TRAINED MODELS AND MFCC
As presented above, SSL speech pre-trained models and MFCC introduced in Section
2.1.1 have the following differences for feature extraction:

• Data driven or human inspired: Before extracting speech representations from
input speech audio data, SSL speech pre-trained models are trained with huge
amount of speech audio data without annotations, and learn how to extract speech
representations from these unlabeled speech audio data. On the contrary, MFCC
are inspired by human ears, the design of MFCC aims to mimic the structure of
human ears as a series of filters.

• Dependencies: Speech representations generated by SSL speech pre-trained mod-
els depend on speech representations of history frames, or even speech represen-
tations from future frames. While, acoustic feature vectors generated by MFCC are
independent of acoustic feature vectors of other frames.

2.4. ARTICULATORY FEATURES

2

23

2.4. ARTICULATORY FEATURES
Phones are speech sounds which could represent the basic sound unit in a pronunci-
ation of a word [12]. For example, the word "tea" is composed of two phones, [t] and
[iy]. When producing different phones, organs in our mouth, throat, and nose modify
the airflow from the lungs differently. Articulatory features describe how different vocal
organs are involved in for producing different phones. Seven articulatory features (AFs)
and their quantized classes are shown in Table 2.2.

Table 2.2: Articulatory features and their quantized classes [40]

AF Values

‘manner’ approximate, retroflex, fricative, nasal, stop, vowel, nil
‘place’ bilabial, labiodental, dental, alveolar, velar, nil
‘voice’ +voice, -voice

‘high-low’ high, mid, low, nil
‘fr-back’ front, central, back, nil
‘round’ +round, -round, nil
‘static’ static, dynamic

Figure 2.16: Major English places of articulation, from [12]

2.5. SUPPORT VECTOR MACHINE
Support vector machine (SVM) is a supervised machine learning model that solve the
problems of classification or regression. In this thesis work, SVM is utilized in the frame-
level probing task for classify the right class of an articulatory feature. A brief introduc-
tion of SVM is given in the following section.

In order to solve the classification problem, SVMs utilize decision boundaries to sep-
arate samples from different classes. The decision boundaries are hyperplanes which
separate samples from different classes into different subspaces. For example, Figure
2.17 shows the decision boundary y = w x+b of a binary classification problem. The blue
points and the red points belong to two classes. And the decision boundary y = w x +b
separates samples from two classes into two subspaces.

The decision boundary of the SVM is obtained by separating samples of different
classes from the training dataset. As for the binary classification problem, given a train-

2

24 2. BACKGROUND

Figure 2.17: The decision boundary of SVM

ing dataset of n points of the form (x1, y1), ..., (xn , yn), where yi are either 1 or −1, each
indicating the class to which the sample xi belongs. The decision boundary is the hyper-
plane which divides these samples into different groups by their classes, and also ensures
that the distance between the nearest point xi from either group and itself is maximized
[41]. Thus, the decision boundary y = w x +b is found by solving

argmax
w,b

{
1

||w || min
n

[tn(wT xn +b)]

}
(2.20)

where tn is the ground truth class of the point xn . After obtaining the decision boundary
by the training dataset, the class of a sample from the test dataset could be recognized
by its belonging subspace.

2.5.1. LINEAR SVM WITH SOFT-MARGIN

Figure 2.18: The decision boundary which could not separate samples from different classes

In practice, samples from different classes are not always linearly separable. In fig-
ure 2.18, the decision boundary could not separate samples from different classes into

2.5. SUPPORT VECTOR MACHINE

2

25

different subspaces. For example, the sample A is assigned to the wrong subspace by the
decision boundary. Thus, the linear SVM with soft-margin aims to solve this problem.
The decision boundary is found by minimizing

λ||w ||2 +
[

1

n

n∑
i

max(0,1− yi (wT xi +b))

]
(2.21)

where max(0,1− yi (wT xi −b) is the hinge loss function, yi is the ground truth class of
sample xi , and wT xi +b is the output of sample xi . The hinge loss function equals zero
when the decision boundary could determine the right class of the sample xi , in other
words, xi lies on the correct side of the decision boundary. While, for the sample on the
wrong side of the decision boundary, the value of the hinge loss function is the distance
between the sample and the decision boundary. The parameter λ > 0 determines the
trade-off between the margin size and ensures that samples lie on the correct side of the
decision boundary. The margin size is the distance between the nearest point xi from
either group and decision boundary.

2.5.2. MULTICLASS SVM
As mentioned above, the binary classification solved by SVM is explained. In this thesis
work, the SVM classifier is aim to classify different class from an articulatory feature.
The articulatory feature could have two classes and more. For example, the articulatory
feature ‘fr-back’ has four classes. Thus, the SVM classifier for multiclass classification
problem is required.

The one-versus-the-rest multiclass strategy [41] is one of the methods for solving
multiclass classification problem. In this strategy, K separate SVMs are constructed for
solving the multiclass classification problem for K classes. The Kth SVM is trained using
the samples from class Ck as the positive examples and the samples from the remaining
K −1 as the negative examples.

2

26 2. BACKGROUND

2.6. RELATED WORKS
In this section, related works of comparing and analyzing different SSL speech pre-trained
models are given. Besides, related works how to analyzing phonetics information in
speech representations are also briefly introduced.

With the development of SSL speech pre-trained models, many works have been pro-
posed to compare and analyze different SSL speech pre-trained models. For example,
Yang et al. proposed a benchmark for comparing different SSL speech pre-trained mod-
els [10]. They aimed to explore whether speech representations extracted by SSL speech
pre-trained models could be adopted in different speech downstream tasks and lead to
good performance. These speech downstream downstream tasks were not only limited
to tasks of automatic speech recognition, but also covered tasks from the following four
aspects, content, speaker, semantics and paralinguistics. They adopted a series of light
weighted linear classifiers for these downstream tasks. A classifier was applied on top of
the speech representations extracted from a SSL speech pre-trained model for its related
downstream task. Afterwards, performances of the downstream task which utilized dif-
ferent SSL speech pre-trained models were evaluated and compared. They also found
that SSL speech pre-trained models showed great results on different downstream tasks
compared with standard representations, such as MFCC. Riviere et analyzed and com-
pared the phoneme discriminability of CPC and its variety [19]. Their SSL speech pre-
trained model were trained on English data. They applied their SSL speech pre-trained
model to discriminate phonemes in another language other than English. The phoneme
discriminability was evaluated by ABX score. ABX score measures the discriminability
between phonemes by probability of speech segments, and lower ABX score indicates a
high discriminability. Their results showed that their modified CPC had higher discrim-
inability.

Moreover, there also have been some works which analyzed phonetics information
in speech representations. For example, Scharenborg et al. adopted a series of automatic
feature classifiers base on support vector machines to analyze how articulatory feature
information encode in MFCC acoustic feature vectors [40]. Ma et al. analyzed and com-
pared phonetic properties of speech representations extracted by different SSL speech
pre-trained models [16]. In their work, different classifiers based on different methods
for analyze phonetic properties were compared. These methods included support vector
machines, linear regression models and neural networks models.

3
METHODOLOGY

In this chapter, the methods and implementations for answering research questions are
explained. In Section 3.1, a brief overview of methods is presented. In Section 3.2,
datasets used in this thesis work including LibriSpeech, TIMIT, and Mboshi are intro-
duced. In Section 3.3, frame-level probing tasks for answering RQ1.1 and RQ2.1 are ex-
plained. In Section 3.4, phoneme recognition tasks for answering RQ1.2 and RQ2.2 are
explained. In Section 3.6, the evaluation metrics of previous tasks are introduced and
explained.

27

3

28 3. METHODOLOGY

3.1. AN OVERVIEW OF METHODS IMPLEMENTED IN THIS WORK

Figure 3.1 gives an overview of our experimental set-up1. In step 1, the three SSL speech
pre-trained models studied in this work, CPC, wav2vec2.0 and HuBert, are firstly trained
on a large amount of unlabeled English speech audio data. In step 2, these SSL speech
pre-trained models are used to extract speech representations for English or another lan-
guage, Mboshi. Afterwards, frame-level probing tasks based on SVMs investigate what
articulatory feature information is captured in these speech representations. In step 3,
speech representations extracted by these SSL speech pre-trained models are used as in-
put for an English phone-level ASR system and an Mboshi phone-level ASR system for
phoneme recognition tasks. For the baseline, the same tasks in Step 2 and Step 3 also
utilize MFCC acoustic feature vectors as input. Finally, the Pearson’s correlation coeffi-
cients between the results of frame-level probing tasks in Step 2 and the results of phone
recognition tasks in Step 3 of each language are computed respectively. The Pearson’s
correlation coefficient could investigate whether the amount of articulatory feature in-
formation is strongly correlated with the performance of phoneme recognition tasks.

Figure 3.1: Overview of the experimental set-up of this work.

3.2. DATASETS
In this section, all datasets used in this thesis work are introduced. Firstly, LibriSpeech
[42] is used to train all SSL speech pre-trained models. Secondly, TIMIT [43] are used to
answer RQ1, and Mboshi [44] are used to answer RQ2.

3.2.1. LIBRISPEECH
LibriSpeech is a read English speech corpus derived from audiobooks [42]. This thesis
work only utilizes the training subsets in LibriSpeech to train SSL speech pre-trained
models. Table 3.1 presents these subsets used in this work.

In Table 3.1, the three training subsets with approximate size of 960 hours are used
to train SSL speech pre-trained models. Moreover, the subsets of train-clean-100 and
train-clean-360 are collected from lower-WER speakers, the subset of train-other-500 are
collected from higher-WER speakers. There are 2338 speakers involved in these subsets.
For each speaker in these subsets the amount of speech was limited to 25 minutes or 30
minutes, it aims to avoid imbalances in per-speaker audio duration [42].

1Implementation: https://github.com/KarenMars/IS22Code

3.2. DATASETS

3

29

Table 3.1: Subsets of LibriSpeech used in this thesis work

subsets hours
per-spk
minutes

female
spkrs

male
spkrs

total
spkrs

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

3.2.2. TIMIT
TIMIT is used in the within-language scenario. By using TIMIT, we aim to investigate
what articulatory feature (AF) information is captured by SSL speech pre-trained mod-
els in the within-language scenario. We also aim to reveal the relationship between the
amount of AF information and the performance of the phoneme recognition task. TIMIT
is a read English speech corpus which contains a total of 6300 utterances, 10 sentences
spoken by each of 630 speakers [43]. The approximate size of TIMIT is 5.4 hours. In ad-
dition, TIMIT contains the time-aligned phonetic transcription for each utterance, and
it uses a set of 64 phone symbols for transcription. Table 3.2 presents part of the time-
aligned phonetic transcription for the utterance "Don’t ask me to carry an oily rag like
that." For example, the phone symbol "d" starts at 0.2260s and ends at 0.2730s. In gen-
eral, the set of 64 phone symbols is usually mapped to a set of 39 phonemes in research
[45]. Thus, this thesis work also use the mapped set of 39 phone symbols.

Table 3.2: part the phonetic transcription for the utterance "Don’t ask me to carry an oily rag like that."

start end phone symbol

0 2260 h#
2260 2730 d
2730 4120 uh
4120 4600 n

Moreover, TIMIT [43] contains three kinds of sentences, the dialect sentences (1260
sentences), the phonemically-compact sentences (3150 sentences), and the phonemica-
lly-diverse sentences (1890 sentences). Phones in the dialect sentences may have pro-
nunciations that differ from the standard pronunciation, which would result in a differ-
ence in articulatory features. Thus, these dialect sentences are not used in this thesis
work. The train-test split of follows the suggested split provided by TIMIT2, with remov-
ing dialect sentences. Table 3.3 presents the detailed information for the training dataset
and the test dataset. There are 3696 sentences and 462 speakers in the training dataset,
and 1344 sentences and 168 speakers in the test dataset.

Table 3.3: The detailed information of the TIMIT training dataset and test dataset used in this work

#sentences #male speakers #female speakers #total speakers

training dataset 3696 326 136 462
test dataset 1344 112 56 168

2The suggested split provided by TIMIT: https://catalog.ldc.upenn.edu/docs/LDC93S1/TESTSET.TXT

3

30 3. METHODOLOGY

3.2.3. MBOSHI DATASET
Mboshi dataset [44] is used in the cross-language scenario. By using the Mboshi data-
set, we aim to investigate what AF information is captured by SSL speech pre-trained
models in the cross-language scenario. We also aim to reveal the relationship between
the amount of AF information and the performance of the phoneme recognition task. In
addition, the transferability of SSL speech pre-trained models could be investigated by
using Mboshi. Transferability means that SSL speech pre-trained models trained on one
language could also have good performances on frame-level probing tasks and phoneme
recognition tasks of other languages. Mboshi is a Bantu language of Congo Brazzaville,
Africa [44]. Mboshi database is a read Mboshi speech corpus which contains a total of
5130 sentences, and read by 3 speakers. The approximate size of Mboshi database is 4.9
hours. In addition, this thesis work utilizes the time-aligned phonetic transcriptions3 of
Mboshi from the work by Ondel et al [46]. The number of phonemes in Mboshi is 68.
Phonemes in Mboshi and phonemes in English have differences in articulatory features,
Mboshi is suitable for the cross-language scenario, in order to reveal the transferability
of SSL speech pre-trained models.

Moreover, Table 3.4 presents the detailed information of Mboshi dataset. It only con-
tains three speakers, ‘abiayi’, ‘kouarata’, and ‘martial’. 3681 sentences spoken by ‘abiayi’
are used as training data. 1449 sentences spoken by ‘kouarata’ and ‘martial’ are used as
test data.

Table 3.4: The detailed information of Mboshi dataset

abiayi kouarata martial

#sentences 3681 1234 215

3.3. FRAME-LEVEL AF PROBING TASKS
A frame-level articulatory feature (AF) probing task for each SSL speech pre-trained mod-
els or MFCC consists of seven SVM classifiers. There are four frame-level AF probing
tasks for different feature extraction methods in the within-language scenario or the
cross-language scenario. These feature extraction methods include three SSL speech
pre-trained models compared in this work and the baseline MFCC. The seven SVM clas-
sifiers correspond to the seven articulatory features, which are ‘voice’, ‘place’, ‘manner’,
‘high-low’, ‘fr-back’, ‘round’, and ‘static’ mentioned in Section 2.4. The input of the SVM
classifier is the speech representation or the MFCC acoustic feature vector of a frame.
Each SVM classifier aims to classify the class of the articulatory feature from the input.
For example, the SVM classifier of ‘voice’ determine whether an input frame belongs
to class ‘+voice’ or class ‘-voice’. In the frame-level AF probing task of an SSL speech
pre-trained model, if a SVM classifier could distinguish classes of an articulatory feature
more correctly, the SSL speech pre-trained model is able to capture more AF information
of the articulatory feature than other SSL speech pre-trained models.

Specifically, the SVM classifier of articulatory features with more than two classes is
a multi-class SVM classifier. The SVM classifier of the articulatory feature ‘voice’ which

3https://github.com/beer-asr/beer/blob/master/recipes/aud/local/mboshi/mboshi.ali

3.4. PHONEME RECOGNITION TASKS

3

31

has only two classes is a binary SVM classifier. In addition, the one-versus-the-rest multi-
classification strategy [41] explained in Section 2.5.2 is adopted in the multi-class SVM
classifiers. Moreover, the linear SVMs with soft-margin are adopted in these SVM clas-
sifiers. These SVM classifiers are not required to have high non-linear separability. The
classification accuracy of a SVM classifier is determined by the non-linear separability
of the SVM classifier itself and the AF information captured by SSL speech pre-trained
models or the baseline MFCC. If these SVM classifiers have high non-linear separability,
the AF information would have a minor influence on the classification accuracy. Thus,
the different between AF information captured by different methods would be difficult
to observed. Therefore, these SVM classifiers do not utilize non-linear kernels.

3.4. PHONEME RECOGNITION TASKS

Figure 3.2: Phone-level hybrid CTC/attention end-to-end ASR system implemented in this work

The phoneme recognition task aims to reveal the performances of phone-level ASR
systems which utilize speech representations extracted by SSL speech pre-trained mod-
els as the systems’ input. The performances of phone-level ASR systems could reveal the
relationship between the amount of AF information and the performance of phoneme
recognition tasks. Like frame-level AF probing tasks, four phoneme recognition tasks
are carried out for different feature extraction methods in each scenario. The phoneme
recognition task utilizes the phone-level hybrid CTC/attention end-to-end ASR system
given in Section 2.1.4. The phone-level hybrid CTC/attention end-to-end ASR system is
implemented by toolkit ESPnet4 [47]. To be detailed, it has an encoder of one GRU layer
and the hybrid CTC/attention decoder with one LSTM layer shown in Figure 3.2.

4https://github.com/espnet/espnet

3

32 3. METHODOLOGY

3.5. IMPLEMENTATIONS

3.5.1. SSL SPEECH PRE-TRAINED MODELS
Before the frame-level probing tasks and the phoneme recognition tasks in the within-
language scenario and the cross-language scenario, three SSL speech pre-trained mod-
els, which include CPC, wav2vec 2.0 and HuBert, are firstly trained on an English dataset.
CPC is trained on 960 hours LibriSpeech by ourselves in this thesis work. Due to the lim-
itation of computing resources, the checkpoints of wav2vec 2.05 and HuBert6 trained on
960 hours LibriSpeech are used in this work.

To be detailed, the setup of CPC follows the implementation7 in [19]. The encoder
of CPC is a 5-layer convolutional network with kernel sizes (10,8,4,4,4) and stride sizes
(5,4,2,2,2). The context module of CPC is a 1-layer GRU. It is trained on the 960 hours
LibriSpeech for 15 epochs by the Adam [48] optimizer, with an initial learning rate of
0.0002 and a batch size of 8.

Moreover, setups of wav2vec 2.0 and HuBert follow implementations in [5] and [8].
The encoder of wav2vec 2.0 contains 7 blocks of convolutional networks. The convolu-
tional network has 512 channels with kernel sizes (10,3,3,3,3,2,2) and stride sizes (5,2,2,
2,2,2,2). The context module of wav2vec 2.0 contains 12 transformer blocks with a model
dimension of 768, inner dimension of 3072 and 8 attention heads. For HuBert, the set-
tings of its encoder and context module are the same as those for wav2vec 2.0.

3.5.2. IMPLEMENTATIONS IN WITHIN-LANGUAGE SCENARIO
Within-language scenario means that SSL speech pre-trained models trained on an En-
glish speech corpus are used as the feature extractor for English speech audio data.
The following section presents the implementations of frame-level probing tasks and
phoneme recognition tasks in the within-language scenario.

STEP 1: MAPPING ARTICULATORY FEATURES

The first step is to map phone symbols to articulatory features for the training dataset
and test dataset of TIMIT. As mentioned in Section 3.2.2, TIMIT has the time-aligned
phonetic transcription for each utterance. Thus, the time-aligned articulatory features’
transcription could be obtained by mapping phone symbols to their articulatory fea-
tures8. Table 3.5 presents mappings between phone symbols and their articulatory fea-
tures in TIMIT. For example, /aa/ is mapped to the articulatory features of {manner:vowel,
place:nil, voice:voiced, high-low:low, fr-back:back, round: round, static:static}.

5wav2vec 2.0 checkpoint: https://huggingface.co/facebook/wav2vec2-base
6HuBert checkpoint: https://huggingface.co/facebook/hubert-base-ls960
7CPC implementation: https://github.com/tuanh208/CPC_audio
8Thank Odette for providing her expertise on mapping phoneme to their related articulatory features.

3.5. IMPLEMENTATIONS

3

33

Table 3.5: mappings between articulatory features and phonemes in TIMIT

phoneme ‘manner’ ‘place’ ‘voice’ ‘high-low’ ‘fr-brack’ ‘round’ ‘static’

aa vowel nil voiced low back round static
ae vowel nil voiced low front unround static
ah vowel nil voiced mid central unround static
ao vowel nil voiced low back round static
aw vowel nil voiced low front unround dynamic
ax vowel nil voiced mid central unround static

ax-h vowel nil voiced low back unround static
axr retroflex alveolar voiced nil nil nil dynamic
ay vowel nil voiced low front unround dynamic
eh vowel nil voiced mid front unround static
el approximant alveolar voiced nil nil nil dynamic

em nasal bilabial voiced nil nil nil dynamic
en nasal alveolar voiced nil nil nil dynamic

eng nasal velar voiced nil nil nil dynamic
er retroflex nil voiced nil nil nil dynamic
ey vowel nil voiced mid front unround dynamic
ih vowel nil voiced high front unround static
ix vowel nil voiced high front unround static
iy vowel nil voiced high front unround dynamic

ow vowel nil voiced mid back unround dynamic
oy vowel nil voiced low back round dynamic
uh vowel nil voiced high back round static
uw vowel nil voiced high back round dynamic
ux vowel nil voiced high back round dynamic
p stop bilabial voiceless nil nil nil dynamic
t stop alveolar voiceless nil nil nil dynamic
k stop velar voiceless nil nil nil dynamic
b stop bilabial voiced nil nil nil dynamic
d stop alveolar voiced nil nil nil dynamic
g stop velar voiced nil nil nil dynamic

pcl closure bilabial voiceless nil nil nil dynamic
tcl closure alveolar voiceless nil nil nil dynamic
kcl closure velar voiceless nil nil nil dynamic
bcl closure bilabial voiced nil nil nil dynamic
dcl closure alveolar voiced nil nil nil dynamic
gcl closure velar voiced nil nil nil dynamic
ch fricative alveolar voiceless nil nil nil dynamic
th fricative dental voiceless nil nil nil static
f fricative labiodental voiceless nil nil nil static
s fricative alveolar voiceless nil nil nil static

sh fricative alveolar voiceless nil nil nil static
jh fricative alveolar voiced nil nil nil dynamic
dh fricative dental voiced nil nil nil dynamic
v fricative labiodental voiced nil nil nil static
z fricative alveolar voiced nil nil nil static

zh fricative alveolar voiced nil nil nil static
hh fricative velar voiceless nil nil nil static
w approximant velar voiced nil nil nil dynamic
y approximant velar voiced nil nil nil dynamic
l approximant alveolar voiced nil nil nil dynamic
r retroflex alveolar voiced nil nil nil dynamic

m nasal bilabial voiced nil nil nil static
n nasal alveolar voiced nil nil nil static

ng nasal velar voiced nil nil nil static
nx nasal alveolar voiced nil nil nil static
dx stop alveolar voiced nil nil nil dynamic
hv fricative velar voiceless nil nil nil static
q stop alveolar voiceless nil nil nil dynamic
sil silence silence slience silence silence silence silence

3

34 3. METHODOLOGY

STEP 2: FEATURE EXTRACTION

The second step is to extract frame-level speech representations by SSL speech pre-
trained models from TIMIT. Frame-level MFCC acoustic feature vectors are extracted as
baseline. To be detailed, frame-level MFCC acoustic vectors are generated by the toolkit
librosa9, with the context size of 5 windows, window size of 25ms, step size of 10ms.
Frame-level speech representations are generated by SSL speech pre-trained models
given in Section 3.5.1.

STEP 3: FRAME-LEVEL AF PROBING TASKS

The third step is to carry out frame-level AF probing tasks on different frame-level speech
representations and the baseline MFCC acoustic feature vectors. As we know, the ground
truth of time-aligned articulatory features’ transcription is created in Step 1. The frame-
level AF probing tasks are carried out on each type of speech representations or MFCC
acoustic feature vectors respectively. For one frame-level AF probing task, firstly, the
SVM classifiers of different articulatory features are trained on speech representations
(or MFCC acoustic feature vectors) of the TIMIT training dataset with the ground truth.
These SVM classifiers are implemented by sklearn’s SGDClassifier [38]. After training,
these SVM classifers are applied on speech representations (or MFCC acoustic feature
vectors) of the TIMIT test dataset, and classify classes of articulatory features from an
input frame’s speech representation. Thirdly, the classification results are compared
with the ground truth articulatory features’ transcriptions. Finally, the results of different
probing tasks including CPC,wav2vec 2.0, HuBert and MFCC are compared.

STEP 4: PHONEME RECOGNITION TASKS

The phone-level ASR systems use speech representations extracted by different SSL speech
pre-trained models or MFCC acoustic feature vectors as input respectively. These speech
representations or MFCC acoustic feature vectors are generated in Step 2. Each phone-
level ASR system is trained with the input of speech representations or acoustic feature
vectors and the target of phoneme transcriptions. In addition, each phone-level ASR
system is trained on the TIMIT training dataset and tested on the TIMIT test dataset.
Finally, the performances of the phoneme recognition tasks are compared.

3.5.3. IMPLEMENTATIONS IN CROSS-LANGUAGE SCENARIO
Cross-language scenario means that SSL speech pre-trained models trained on an En-
glish speech corpus are used as the feature extractor for Mboshi speech audio data.
The following section presents the implementations of frame-level probing tasks and
phoneme recognition tasks in the cross-language scenario.

STEP 1: MAPPING ARTICULATORY FEATURES

The same as Step 1 in the within-language scenario, phone symbols are mapped to ar-
ticulatory features for the training dataset and the test dataset of Mboshi. Table 3.6
presents mappings between phone symbols and their articulatory features. For exam-
ple, a is mapped to the articulatory features of manner:vowel, place:nil, voice:voiced,
high-low:low, fr-back:front, round: unround, static:static.

9https://librosa.org/doc/latest/index.html

3.5. IMPLEMENTATIONS

3

35

Table 3.6: mappings between articulatory features and phonemes in Mboshi

phoneme ‘manner’ ‘place’ ‘voice’ ‘high-low’ ‘fr-back’ ‘round’ ‘static’

á vowel nil voiced low front unround static
a vowel nil voiced low front unround static
l approximant alveolar voiced nil nil nil dynamic
i vowel nil voiced high front unround dynamic
í vowel nil voiced high front unround dynamic
o vowel nil voiced mid back round static
m nasal bilabial voiced nil nil nil static
s fricative alveolar voiceless nil nil nil static
j approximant velar voiced nil nil nil dynamic
b stop bilabial voiced nil nil nil dynamic
k stop velar voiceless nil nil nil dynamic
ŋg stop velar voiced nil nil nil dynamic
ó vowel nil voiced mid back round static
w approximant labiodental voiced nil nil nil static
e vowel nil voiced mid front unround static
é vowel nil voiced mid front unround static
n nasal alveolar voiced nil nil nil static
O vowel nil voiced low back round static
d stop alveolar voiced nil nil nil dynamic
r retroflex alveolar voiced nil nil nil dynamic
ú vowel nil voiced high back round dynamic
áa vowel nil voiced low front unround static
B fricative bilabial voiced nil nil nil static
u vowel nil voiced high back round dynamic

mb stop bilabial voiced nil nil nil dynamic
nd stop alveolar voiced nil nil nil dynamic
p stop bilabial voiceless nil nil nil dynamic
t stop alveolar voiceless nil nil nil dynamic
É vowel nil voiced mid front unround static
E vowel nil voiced mid front unround static

áá vowel nil voiced low front unround static
dz_1 stop alveolar voiced nil nil nil dynamic
dz_2 fricative alveolar voiced nil nil nil dynamic

Ó vowel nil voiced low back round static
bv stop bilabial voiced nil nil nil dynamic

ndz stop alveolar voiced nil nil nil dynamic
ţ_1 stop alveolar voiceless nil nil nil dynamic
ţ_2 fricative alveolar voiceless nil nil nil dynamic
aá vowel nil voiced low front unround static

mw approximant labiodental voiced nil nil nil static
aa vowel nil voiced low front unround static
ñ nasal alveolar voiced nil nil nil static
ée vowel nil voiced mid front unround static
íi vowel nil voiced high front unround dynamic

óo vowel nil voiced mid back round static
íí vowel nil voiced high front unround dynamic

oo vowel nil voiced mid back round static
éé vowel nil voiced mid front unround static
f fricative labiodental voiceless nil nil nil static

mbv stop bilabial voiced nil nil nil dynamic
pf stop bilabial voiceless nil nil nil dynamic
ii vowel nil voiced high front unround dynamic
ÓÓ vowel nil voiced low back round static
OO vowel nil voiced low back round static
ÓO vowel nil voiced low back round static
ee vowel nil voiced mid front unround static
ÉÉ vowel nil voiced mid front unround static
oó vowel nil voiced mid back round static
úu vowel nil voiced high back round dynamic
óó vowel nil voiced mid back round static
úú vowel nil voiced high back round dynamic
ÉE vowel nil voiced mid front unround static
uu vowel nil voiced high back round dynamic
OÓ vowel nil voiced low back round static
ií vowel nil voiced high front unround dynamic
G fricative velar voiced nil nil nil static
EE vowel nil voiced mid front unround static
EÉ vowel nil voiced mid front unround static
eé vowel nil voiced mid front unround static
uú vowel nil voiced high back round dynamic

3

36 3. METHODOLOGY

STEP 2: FEATURE EXTRACTION

The same as Step 2 in the within-language scenario, frame-level speech representations
of Mboshi are extracted by three SSL speech pre-trained models, CPC, wav2vec 2.0, and
HuBert. In addition, MFCC acoustic features vectors are also extracted as baseline.

STEP 3: FRAME-LEVEL AF PROBING TASKS

The third step is to carry out frame-level AF probing tasks on different frame-level speech
representations and the baseline acoustic feature vectors from Mboshi. The ground
truth of time-aligned articulatory features’ transcription on Mboshi is created in Step
1 of the cross-language scenario. The frame-level AF probing tasks are carried out on
each type of speech representations of MFCC acoustic feature vectors respectively. For
one frame-level AF probing task, the SVM classifiers of different articulatory features are
trained with the input of speech representations (or MFCC acoustic feature vectors) in
the Mboshi training dataset and the target of the their ground truth. The implementa-
tion of these SVM classifiers are also implemented by sklearn’s SDGClassifier [38], which
is the same with the implementation in the within-language scenario. After training,
these SVM classifiers are applied on speech representations (or MFCC acoustic feature
vectors) of the Mboshi test dataset, and determine classes of articulatory features from
an input speech representation (or MFCC acoustic feature vector).

PHONEME RECOGNITION TASKS

The phone-level ASR systems use speech representations or MFCC acoustic feature vec-
tors generated in Step 2 in the cross-language scenario as input respectively. Each phone-
level ASR system is trained with the speech representations (or MFCC acoustic feature
vectors) and their paired ground truth phoneme transcriptions from the Mboshi train-
ing dataset. Afterwards, the phone-level ASR system is tested with the speech represen-
tations (or MFCC acoustic feature vectors) from the Mboshi test dataset to predict their
phoneme transcriptions.

3.6. EVALUATION METRICS
In this section, the evaluation metrics for frame-level AF probing tasks and phoneme
recognition tasks are introduced.

3.6.1. FRAME-LEVEL AF PROBING TASK: MACRO-AVERAGED F1 SCORE

The frame-level AF probing task of a specific articulatory feature is evaluated by Macro-
averaged F1 score, which is the average of F1 score of all classes in an articulatory feature.
The explanations and computations of F1 score and Macro-averaged F1 score are pre-
sented as follows:

F1 SCORE

F1 score is the harmonic mean of of Precision and Recall. The computation of Precision
is given as follows:

Precision = T P

T P +F P
(3.1)

3.6. EVALUATION METRICS

3

37

Table 3.7: Precision and recall confusion matrix

Predicted condition
Positive Negative

Actual condition
Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

Precision is the value of True positive (TP) divided by the sum of True positive (TP) and
False positive (FP) shown in Table 3.7. For a classification task of class x, TP represents
the number of samples from class x which are correctly classified into class x. FP repre-
sents the number of samples from other classes which are misclassified into class x. For
example, for the classification task of class +voice from articulatory feature ‘voice’, TP
represents the number of inputs from +voice which are correctly classified into +voice,
FP represents the number of inputs from -voice which are misclassified into +voice.

The computation of Recall is given as follows:

Recall = T P

T P +F N
(3.2)

Recall is the value of TP divided the sum of TP and False negative (FN) shown in Table
3.7. FN represents the number of samples from class x which are misclassified into other
classes. For example, for the classification task of class +voice from articulatory feature
‘voice’, FN represents the number of samples from +voice which are misclassified into
-voice.

The computation of F1 score is given as follows:

F 1 = 2×Precision×Recall

Precision+Recall
(3.3)

F1 score is the harmonic mean of Precision and Recall. Compared with Accuracy, F1
score could demonstrate how well a classifier could recognize a specific class from other
classes. The computation of Accuracy is given as follows:

Accuracy = T P +T N

T P +F P +T N +F N
(3.4)

Accuracy is the value of the sum of TP and True negative (TN) divided by the sum of all
tested samples. For example, for the accuracy of the articulatory feature ‘voice’, it is the
result of the number of right classified samples divided by the number of all samples.
The right classified samples include samples which belong to class +voice and samples
which belong to class -voice. The Accuracy couldn’t present how well samples from class
+voice or -voice are correctly classified. While F1 score of class +voice or -voice could
present how well samples from different classes are correctly classified. Thus, F1 score is
used to evaluation each class of an articulatory feature.

MACRO-AVERAGED F1 SCORE

Macro-averaged F1 score is the average of F1 score of all classes in an articulatory feature,
which is shown as follows:

macro-averaged F1 score = 1

|C |
∑
i∈C

F 1i (3.5)

3

38 3. METHODOLOGY

where C is the set of classes of an articulatory feature. For example, the macro-averaged
F1 score of the frame-level probing task for the articulatory feature ‘voice’ is computed
as follows:

macro-averaged F1 score for ‘voice’ = 1

2
(F 1+voice +F 1-voice) (3.6)

3.6.2. PHONEME RECOGNITION TASK: PHONE ERROR RATE
The phoneme recognition task is evaluated by phone error rate (PER). It is computed as
follows:

PER = S +D + I

N
(3.7)

where S is the number of substitutions, D is the number of deletions, I is the number of
insertions, and N is the number of phones in the ground truth transcription.

3.6.3. PEARSON’S CORRELATION COEFFICIENT
Pearson’s correlation coefficient is used to reveal the relationship between the articu-
latory feature information and the performance of the phoneme recognition task. The
computation of Pearson’s correlation coefficient is given as follows:

ρX ,Y = cov(X ,Y)

σXσY
(3.8)

Pearson’s correlation coefficient is a measure of linear correlation between two sets of
data X , and Y . It is the covariance of the two variables (cov(X ,Y)) divided by the prod-
uct of their standard deviations (σXσY). For example, Pearson’s correlation coefficient
in the within-language scenario is computed between the set of performances of frame-
level probing tasks by different SSL speech pre-trained models and the set of perfor-
mances of phoneme recognition tasks on TIMIT. Pearson’s correlation coefficient in the
cross-language scenario is computed between the set of performances of frame-level
probing tasks by different SSL speech pre-trained models and the set of performances of
phoneme recognition tasks on Mboshi.

4
RESULTS

In this Chapter, Section 4.1 presents the results of RQ1, and Section 4.2 presents the
results of RQ2.

39

4

40 4. RESULTS

4.1. RQ 1: WITHIN-LANGUAGE SCENARIO
Table 4.1 presents the macro-averaged F1 scores of frame-level AF probing tasks on TIMIT.
Meanwhile, it also shows the average and the standard deviation of these macro-averaged
F1 scores for each speech pre-trained model. The columns of #classes present the num-
ber of classes in each articulatory feature. Figure 4.1 presents the relative change of
macro-averaged F1 score for each articulatory feature. The relative change shows how
each speech pre-trained model improves the performances of frame-level AF probing
tasks, and the baseline is MFCC. For example, the relative change of the macro-averaged
F1 score by CPC is computed by the difference between the macro-averaged F1 score of
CPC and the macro-averaged F1 score of MFCC divided by the macro-averaged F1 score
of MFCC.

Table 4.1: Macro-averaged F1 scores of frame-level AF probing tasks carried out on MFCC, CPC, wav2vec 2.0
and HuBert respectively

TIMIT MFCC CPC wav2vec 2.0 HuBert #classes

voice 0.870 0.866 0.891 0.921 2
static 0.669 0.773 0.786 0.887 2

manner 0.666 0.733 0.782 0.842 7
round 0.661 0.722 0.763 0.866 3

high-low 0.633 0.685 0.747 0.850 4
fr-back 0.581 0.635 0.699 0.789 4
place 0.376 0.621 0.715 0.840 6

Avg 0.637 0.719 0.769 0.856
Std 0.146 0.084 0.063 0.041

Figure 4.1: Relative change of the results of frame-level AF probing tasks carried out on CPC, wav2vec 2.0 and
HuBert, with the reference value of the results of frame-level AF probing tasks on MFCC

4.1. RQ 1: WITHIN-LANGUAGE SCENARIO

4

41

From Table 4.1, we have the following findings:

• For frame-level AF probing tasks carried out on baseline MFCC, the average for
the results of frame-level probing tasks is 0.637, with the standard deviation of
0.146. The frame-level AF probing task of the articulatory feature ‘voice’ has the
best performance, with the result of 0.870. The frame-level AF probing task of the
articulatory feature ‘place’ has the worst performance, with the result of 0.376.

• For frame-level AF probing tasks carried out on CPC, the average for the results
of frame-level probing tasks is 0.719, with the standard deviation of 0.084. The
frame-level AF probing task of the articulatory feature ‘voice’ has the best perfor-
mance, with the result of 0.866. The frame-level AF probing task of the articulatory
feature ‘place’ has the worst performance, with the result of 0.621.

• For frame-level AF probing tasks carried out on wav2vec 2.0, the average for the
results of frame-level probing tasks is 0.769, with the standard deviation of 0.063.
The frame-level AF probing task of the articulatory feature ‘voice’ has the best per-
formance, with the result of 0.891. The frame-level AF probing task of the artic-
ulatory feature ‘fr-back’ has the worst performance, with the result of 0.669. The
frame-level AF probing task of the articulatory feature ‘place’ has the second worst
performance, with the result of 0.715.

• For frame-level AF probing tasks carried out on HuBert, the average for the re-
sults of frame-level probing tasks is 0.856, with the standard deviation of 0.041.
The frame-level AF probing task of the articulatory feature ‘voice’ has the best per-
formance, with the result of 0.921. The frame-level AF probing task of the artic-
ulatory feature ‘fr-back’ has the worst performance, the the result of 0.789. The
frame-level AF probing task of the articulatory feature ‘place’ has the second worst
performance, with the result of 0.789.

• Compared with the average performance of baseline MFCC, the performance of
CPC increases 12.9% relatively, that of wav2vec 2.0 increases 20.7% relatively, and
that of HuBert increases 34.4% relatively.

In Figure 4.1, we have the following finding:

• For all articulatory features, the improvement of the articulatory feature ‘place’ is
the largest. While improvement of the articulatory feature ‘voice’ is the smallest.

Table 4.2: PER on the phoneme recognition tasks on TIMIT

TIMIT MFCC CPC wav2vec 2.0 HuBert

%PER 24.9 22.3 13.4 10.2
%substitution 14.8 13.3 7.8 5.5

%deletion 6.3 5.6 3.6 2.6
%insertion 3.8 3.5 2 2

4

42 4. RESULTS

Table 4.2 shows the results of phoneme recognition tasks on TIMIT. The performance
of the phoneme recognition task is evaluated by PER. In Table 4.2, we have the following
findings:

• The performance of MFCC on phoneme recognition is the worst, with the PER
of 24.9%. The performance of Hubert on phoneme recognition is the best, with
the PER of 10.2%. The performance of wav2vec 2.0 on phoneme recognition is
the second-best, with the PER of 13.4%. The performance of CPC on phoneme
recognition is the third-best, with the PER of 22.3%.

• Compared with the baseline MFCC, the PER of CPC decreases 10.4% relatively,
that of wav2vec 2.0 decreases 46.1% relatively, and that of HuBert decreases 59.0%
relatively.

• Compared with the %substitution of the baseline MFCC, the %substitution of CPC
decreases 10% relatively, the %substitution of wav2vec 2.0 decreases 47% rela-
tively, and the %substitution of HuBert decreases 62% relatively.

• Compared with the %deletion of the baseline MFCC, the %deletion of CPC de-
creases 11% relatively, the %deletion of wav2vec 2.0 decreases 42% relatively, and
the %substitution of HuBert decreases 58% relatively.

• Compared with the %insertion of the baseline MFCC, the %substitution of CPC
decreases 7% relatively, the %insertion of wav2vec 2.0 decreases 47% relatively,
and the %insertion of HuBert decreases 47% relatively.

Table 4.3: Performances of phoneme recognition tasks and performances of frame-level probing tasks on
TIMIT

TIMIT MFCC CPC wav2vec 2.0 HuBert

averaged Macro-averaged F1 score 0.637 0.719 0.769 0.856
Accuracy 0.751 0.777 0.866 0.898

Pearson’s correlation coefficient 0.949

Table 4.3 shows the performances of frame-level AF probing tasks and the perfor-
mances of phoneme recognition tasks. The performance of frame-level AF probing task
is evaluated by the averaged Macro-averaged F1 score, which is the average of macro-
averaged F1 scores on different articulatory features. The performance of phoneme
recognition tasks is evaluated by the accuracy, which is 1−PER. The correlation of the
performances on the two tasks is evaluated by the Pearson’s correlation coefficient. In
Table 4.3, we have the following findings:

• The order of the averaged Macro-averaged F1 score of different feature extraction
methods is consistent with the accuracy. For example, HuBert has the highest av-
eraged Macro-averaged F1 score and the highest accuracy. MFCC has the lowest
averaged Macro-averaged F1 score and the lowest accuracy.

• The Pearson’s correlation coefficient between the results of frame-level AF probing
tasks and the results of phoneme recognition tasks is 0.949.

4.2. RQ 2: CROSS-LANGUAGE SCENARIO

4

43

4.2. RQ 2: CROSS-LANGUAGE SCENARIO
Table 4.4 presents the macro-averaged F1 scores of frame-level AF probing tasks on Mboshi.
Figure 4.2 presents relative change of macro-averaged F1 score for each articulatory fea-
ture. The baseline is MFCC.

Table 4.4: Macro-averaged F1 scores of frame-level AF probing tasks carried out on MFCC, CPC, wav2vec 2.0
and HuBert respectively

Mboshi MFCC CPC wav2vec 2.0 HuBert #classes

voice 0.736 0.791 0.887 0.923 2
fr-back 0.741 0.761 0.806 0.861 3
round 0.738 0.766 0.806 0.861 3
static 0.732 0.769 0.814 0.858 2

high-low 0.682 0.697 0.741 0.812 4
place 0.496 0.545 0.682 0.786 5

manner 0.466 0.517 0.598 0.713 6

Avg 0.656 0.692 0.762 0.831
Std 0.121 0.114 0.097 0.067

Figure 4.2: Relative change of the results of frame-level AF probing tasks carried out CPC, wav2vec 2.0 and
HuBert, with the reference value of the results of frame-level AF probing tasks on MFCC

4

44 4. RESULTS

In Table 4.2, we have the following findings:

• For frame-level AF probing tasks carried out on baseline MFCC, the average value
for the results of frame-level probing tasks is 0.656, with the standard deviation of
0.121. The frame-level AF probing task of the articulatory feature ‘voice’ has the
best performance, with the result of 0.736. The frame-level AF probing task of the
articulatory feature ‘manner’ has the worst performance, with the result of 0.466.

• For frame-level AF probing tasks carried out on CPC, the average value for the
results of frame-level probing tasks is 0.692, with the standard deviation of 0.114.
The frame-level AF probing task of the articulatory feature ‘voice’ has the best per-
formance, with the result of 0.791. The frame-level AF probing task of the articu-
latory feature ‘manner’ has the worst performance, with the result of 0.517.

• For frame-level AF probing tasks carried out on wav2vec 2.0, the average value
for the results of frame-level probing tasks is 0.762, with the standard deviation of
0.598. The frame-level AF probing task of the articulatory feature ‘voice’ has the
best performance, with the result of 0.887. The frame-level AF probing task of the
articulatory feature ‘manner’ has the worst performance, with the result of 0.598.

• For frame-level AF probing tasks carried out on HuBert, the average value for
the results of frame-level probing tasks is 0.831, with the standard deviation of
0.067. The frame-level AF probing task of the articulatory feature ‘voice’ has the
best performance, with the result of 0.923. The frame-level AF probing task of the
articulatory feature ‘fr-back’ has the worst performance, the the result of 0.713.

• Compared with the average performance of baseline MFCC, the performance of
CPC increases 5% relatively, that of wav2vec 2.0 increases 16.1% relatively, and
that of HuBert increases 26.7% relatively.

• Comparing Table 4.4 and Table 4.1, the performances of SSL speech pre-trained
models and the baseline MFCC are similar. For example, HuBert performs the best
in both scenarios. MFCC performs the worst in both scenario. In addition, the
performances in cross-language scenario are degraded a little. Some articulatory
features are easy to discriminate in within-language scenario, while they are not
easy to discriminate in the cross-language scenario, for example, the articulatory
feature ‘manner’.

In Figure 4.2, we have the following finding:

• For all articulatory features, the performances of frame-level AF probing tasks
for the articulatory features ‘place’ and ‘manner’ are largely improved. Improve-
ments for other articulatory features, which include ‘fr-back’, ‘round’, ‘static’ and
‘high_low’, do not have significant differences.

Table 4.5 shows the results of phoneme recognition tasks on Mboshi. The perfor-
mance of the phoneme recognition is evaluated by PER. In Table 4.5, we have the follow-
ing findings:

4.2. RQ 2: CROSS-LANGUAGE SCENARIO

4

45

Table 4.5: PER on the phoneme recognition tasks on Mboshi

Mboshi MFCC CPC wav2vec 2.0 HuBert

%PER 56.3 45.9 32.6 23.0
%substitution 34.0 33.7 23.3 16.9

%deletion 19.6 9.1 5.0 3.3
%insertion 2.7 3.2 4.3 2.9

• The performance of MFCC on phoneme recognition is the worst, with the PER
of 56.3%. The performance of HuBert on phoneme recognition is the best, with
the PER of 23.0%. The performance of wav2vec 2.0 on phoneme recognition is
the second-best, with the PER of 32.6%. The performance of CPC on phoneme
recognition is the third-best, with the PER of 45.9%.

• Compared with the baseline MFCC, the PER of CPC decreases 18.4% relatively,
that of wav2vec 2.0 decreases 42.1% relatively, and that of HuBert decreases 59.1%
relatively.

• Compared with the %substitution of the baseline MFCC, the %substitution of CPC
decreases 0.01% relatively, the %substitution of wav2vec 2.0 decreases 31% rela-
tively, and the %substitution of HuBert decreases 50% relatively.

• Compared with the %deletion of the baseline MFCC, the %substitution of CPC de-
creases 53% relatively, the %substitution of wav2vec 2.0 decreases 74% relatively,
and the %substitution of HuBert decreases 83% relatively.

• Compared with the %insertion of the baseline MFCC, the %substitution of CPC
increases 18% relatively, the %substitution of wav2vec 2.0 increases 59% relatively,
and the %substitution of HuBert increases 7% relatively.

Table 4.6: Performances of phoneme recognition tasks and performances of frame-level probing tasks on
Mboshi

Mboshi MFCC CPC wav2vec 2.0 HuBert

averaged Macro-averaged F1 score 0.656 0.692 0.762 0.831
Accuracy 0.437 0.541 0.674 0.770

Pearson’s correlation coefficient 0.990

Table 4.6 shows the performances of frame-level probing tasks and the performances of
phoneme recognition tasks on Mboshi. In Table 4.6, we have the following findings:

• The order of the averaged Marco-averaged F1 score of different feature extraction
methods is consistent with the accuracy.

• The Pearson’s correlation coefficient between the results of frame-level AF probing
tasks by different speech representations in Table 4.4 and the four phoneme error
rates is 0.990.

5
DISCUSSION

In this chapter, research questions are solved by the results given in the previous chap-
ter. Other findings and explanations of these results are also included. In Section 5.1,
answers to RQ1 are given. Moreover, explanations of results related to RQ1 are included
as well. In Section 5.2, answers to RQ2 are given. In Section 5.3, the comparison between
our results and other works is presented.

47

5

48 5. DISCUSSION

5.1. RQ 1: WITHIN-LANGUAGE SCENARIO
We could derive these answers to RQ1 as shown follows:

• RQ1.1 What articulatory feature (AF) information is modeled by different SSL speech
pre-trained models?

Answer:

Compared with the baseline MFCC, all SSL speech pre-trained models are able to
capture more AF information. In capturing the AF information, HuBert ranks first,
wav2vec 2.0 ranks second place, and CPC ranks third.

The order of AF information of different articulatory features captured in CPC is
the same as MFCC. For the baseline MFCC and CPC, the AF information of ‘voice’
is captured in the first place. The AF information of ‘static’ is captured in the sec-
ond place. The AF information of ‘manner’ is captured in the third place. The
AF information of ‘round’ is captured in the fourth place. The AF information of
‘high-low’ is captured in the fifth place. The AF information of ‘fr-back’ is captured
in the sixth place. The AF information of ‘place’ is captured in the seventh place.
Compared with MFCC, CPC captures more AF information for all articulatory fea-
tures except ‘voice’. The AF information of ‘voice’ captured by CPC is close to it
captured by MFCC with a minor degradation.

In wav2vec 2.0, the order of AF information of all articulatory features except ‘fr-
back’ and ‘place’ is the same as MFCC and CPC. The AF information of ‘place’ is
captured in the sixth place. The AF information of ‘fr-back’ is captured in the sev-
enth place. Compared with MFCC and CPC, the AF information of all articulatory
features captured by wav2vec 2.0 is improved.

In HuBert, the order of AF information of ‘voice’ and ‘static’ is the same as MFCC,
CPC and wav2vec 2.0. The AF information of ‘round’ is captured in the third place.
The AF information of ‘high-low’ is captured in the fourth place. The AF infor-
mation of ‘manner’ is captured in the fifth place. The AF information of ‘place’ is
captured in the sixth place. The AF information of ‘fr-back’ is captured in the sev-
enth place. Compared with MFCC, CPC, and wav2vec 2.0, the AF information of
all articulatory features captured by HuBert is significantly improved.

• RQ1.2 How does articulatory feature information modeled by SSL speech pre-trained
models correlate to phoneme recognition performance in the same language, i.e.,
English?

Answer:

The Pearson’s correlation coefficient between the results of frame-level probing
tasks and phoneme recognition tasks is 0.949. Frame-level AF probing tasks indi-
cate the amount of AF information modelled in speech representations extracted
by different SSL speech pre-trained models. Thus, the amount of AF information
is strongly correlated with the performance of the phoneme recognition tasks in
the same languages.

5.2. RQ 2: CROSS-LANGUAGE SCENARIO

5

49

As shown above, SSL speech pre-trained models capture more AF information than
MFCC. The excellent performance of SSL speech pre-trained models in capturing AF
information could be attributed to two reasons. The first reason is that SSL speech pre-
trained models are data-driven models. As mentioned in Section 3, these SSL speech
pre-trained models are trained on 960 hours LibirSpeech. On the contrary, MFCC is a
feature extraction method based on signal processing. The computation and the set-
tings of parameters in MFCC are inspired by humans’ ears. Thus, MFCC has limitations
in capturing AF information due to the limitation of humans’ cognition. While the data-
driven SSL speech pre-trained models learn AF information from a vast amount of data.
The second reason is that SSL speech pre-trained models are built with deep learning ar-
chitectures. SSL speech pre-trained models leverage the non-linear separability of deep
learning architectures to uncover the AF information.

Compared with CPC, HuBert and wav2vec 2.0 capture more AF information. The
good performance of HuBert and wav2vec 2.0 is attributed to the utilization of different
architectures for sequence processing. As mentioned in Section 2.3.5, CPC utilizes RNN
and its varieties as the architectures for sequence processing. Wav2vec 2.0 and HuBert
utilize the Transformer as the architecture for sequence processing. The dependencies
of the RNN and the Transformer are different. For CPC, which utilizes the RNN, the cap-
tured AF information of the current frame is dependent on this current frame and history
frames. For wav2vec 2.0 and HuBert, the captured AF information of the current frame is
also dependent on future frames except for this current frame and history frames. There-
fore, wav2vec 2.0 and HuBert could capture more AF information with extra knowledge
introduced by future frames.

In addition, HuBert performs better than wav2vec 2.0 in capturing AF information.
The better performance of HuBert could be attributed to the utilization of the acoustic
unit discovery (AUD) module of HuBert. As mentioned in Section 2.3.3 and Section 2.3.4,
HuBert adopts the AUD module in its training stage. The AUD module assigns pseudo
labels to input frames. Input frames with similar linguistic information are likely to have
the same pseudo label. Afterward, the HuBert is trained with the targets of these pseudo
labels. Therefore, the AUD module performs as a teacher to HuBert. Thus, Hubert could
capture more AF information.

5.2. RQ 2: CROSS-LANGUAGE SCENARIO
From results given in Section 4.2, we could derive these answers to RQ2 as shown follows:

• RQ2.1 To what extent is the articulatory feature information from a different lan-
guage modeled by different SSL speech pre-trained models

Answer:

Compared with the baseline MFCC, all SSL speech pre-trained models are able to
capture more AF information. The performances of these SSL speech pre-trained
models in the cross-language scenario are similar to the performances in the within-
language scenario. Besides, the performances in the cross-language scenario have
minor degradation. In capturing the AF information, HuBert ranks first, wav2vec
2.0 ranks second, and CPC ranks third. This order in the cross-language scenario
is the same as the within-language scenario.

5

50 5. DISCUSSION

Compared with MFCC, the AF information of all articulatory features captured
by CPC is improved. The order of AF information of articulatory features except
‘high-low’, ‘place’, and ‘manner’ is also changed. In MFCC, the AF information of
‘fr-back’ ranks first. The AF information of ‘round’ ranks second. The AF informa-
tion of ‘voice’ ranks third. The AF information of ‘static’ ranks fourth. In CPC, the
AF information of ‘voice’ ranks first. The AF information of ‘static’ ranks second.
The AF information of ‘round’ ranks third. The AF information of ‘fr-back’ ranks
fourth. Other articulatory features have the same order in both CPC and MFCC.
The AF information of ‘high-low’ ranks fifth. The AF information of ‘place’ ranks
sixth. The AF information of ‘manner’ ranks seventh.

In wav2vec 2.0, the AF information of all articulatory features is improved com-
pared with the baseline MFCC and CPC. The AF information of ‘voice’ is captured
the most. The AF information of ‘manner’ is captured the least. The AF informa-
tion of ‘place’ is captured the second-least. The AF information of these articula-
tory features is captured the same as CPC. While the captured AF information of
other articulatory features is slightly different from CPC. The AF information of ‘fr-
back’ and ‘round’ is captured in the third place. The AF information of ‘high-low’
is captured in the fourth place.

In HuBert, the AF information of all articulatory features is significantly improved
compared with the baseline MFCC and other SSL speech pre-trained models. Like
CPC and wav2vec 2.0, the AF information of ‘voice’ is captured the most. The AF
information of ‘manner’ is captured the least. The order of AF information cap-
tured by HuBert is almost the same as wav2vec 2.0.

In both scenarios, the AF information of ‘voice’ is captured the most by different
SSL speech pre-trained models. The AF information of other articulatory features
is captured differently by different SSL speech pre-trained models.

• RQ2.2 How does articulatory information modeled by SSL speech pre-trained mod-
els correlate to phoneme recognition performance in other languages, i.e., Mboshi?

Answer:

The Pearson’s correlation coefficient between the results of frame-level probing
tasks and phoneme recognition tasks is 0.990. It answers that the amount of artic-
ulatory information is strongly correlated with the performance on the phoneme
recognition tasks even in different languages, i.e., Mboshi.

As shown above, SSL speech pre-trained models could still capture more AF informa-
tion in the cross-language scenario. As articulatory features are language-independent,
SSL speech pre-trained models could perform well in both scenarios. Moreover, the PERs
on Mboshi are improved by SSL speech pre-trained models but not as good as the PERs
on TIMIT. The performance gap can partially be explained by the fact that phonemes
are language-dependent. Another explanation is that Mboshi has more phonemes than
TIMIT, which makes the phoneme recognition task more difficult in Mboshi.

5.3. COMPARISONS WITH OTHER WORKS

5

51

5.3. COMPARISONS WITH OTHER WORKS
As given in Section 4.1, the best performance of TIMIT phoneme recognition tasks in
this work is achieved by hybrid CTC/attention end-to-end ASR system, which utilizes
speech representations extracted by HuBert, with the PER of 10.2%. Compared with
the state of art results of TIMIT shown in Table 5.1, this result performs worse than the
result achieved by wav2vec 2.0 in [5], but performs better than the results achieved by
wav2vec in [49] and vq-wav2vec in [39]. Specifically, the SSL speech pre-trained model
wav2vec 2.0 in [5] was firstly trained on 960 hours LibriSpeech and then fine-tuned on
10 hours subset of Libri-light. The SSL speech pre-trained model wav2vec in [49] was
firstly trained on LirbiSpeech and WSJ (another English dataset). While, HuBert in this
work is only trained on 960 hours LibriSpeech, and achieves a relative low PER. The result
indicates that the implementation of the TIMIT phoneme recognition task in this thesis
work has the potential to achieve lower PER.

Table 5.1: TIMIT phoneme recognition accuracy in terms of phoneme error rate (PER)

trainning data fine-tuning data PER

wav2vec [49] LibriSpeech + WSJ No 14.7
vq-wav2vec [39] 960 hours LibriSpeech No 11.6
wav2vec 2.0 [5] 960 hours LibriSpeech 10 hours subset of Libri-light 8.3

This work
HuBert (base)

with a phone-level ASR system
960 hours LibriSpeech No 10.2

6
CONCLUSIONS AND FUTURE WORKS

53

6

54 6. CONCLUSIONS AND FUTURE WORKS

6.1. CONCLUSIONS
In this thesis work, we could draw the following conclusions. First, the work investigates
what articulatory feature information is captured by different SSL speech pre-trained
models. These SSL speech pre-trained models include CPC, wav2vec 2.0 and HuBert.
The results of frame-level AF probing tasks show that all SSL speech pre-trained mod-
els capture more articulatory feature information than the baseline MFCC. Hubert ranks
first in capturing the articulatory feature information, wav2vec 2.0 ranks second, and
CPC ranks third. The work also investigates whether the above-mentioned articulatory
feature information could influence the performance of the phoneme recognition tasks,
which adopt these SSL speech pre-trained models as feature extraction methods. This
thesis work shows that the performance of the phoneme recognition task is strongly cor-
related with the amount of articulatory feature information captured by the SSL speech
pre-trained models. A more significant amount of articulatory feature information could
achieve better performance on the phoneme recognition task. These conclusions are
drawn in both scenarios, which are the within-language scenario and the cross-language
scenario. In addition, SSL speech pre-trained models which are trained on an English
dataset could also perform better than the baseline MFCC in capturing articulatory fea-
ture information and phoneme recognition of an African language. This finding shows
that SSL speech pre-trained models could transfer to other languages in capturing artic-
ulatory feature information and phoneme recognition.

6.2. FUTURE WORKS
The future works of this thesis could follow the directions given below. In this the-
sis work, the context representations of SSL speech pre-trained models are used as the
speech representations in the frame-level AF probing tasks and phoneme recognition
tasks. The future work could adopt hidden representations of SSL speech pre-trained
models as the speech representations, and investigate their performance on frame-level
probing tasks and phoneme recognition tasks.

Besides, this thesis work only carried out experiments on SSL speech pre-trained
models without fine-tuning. Fine-tuning is to make small adjustments of SSL speech
pre-trained models for better performance of desired tasks. A general fine-tuning pro-
cess is: Firstly, an SSL speech pre-trained model is trained with a large amount of unla-
beled data. Secondly, this SSL speech pre-trained model is tuned with a small amount
of labeled data for a desired task. For example, for English word recognition, the SSL
speech pre-traind model is tuned with a small amount of English speech audio data and
paired transcriptions. Other works have shown that fine-tuning could significantly im-
prove the performance of desired tasks [5, 13]. Therefore, how the fine-tuning technique
would change the articulatory feature information modeled by different SSL speech pre-
trained models could be researched in the future.

Although SSL speech pre-trained models perform well in modeling articulatory fea-
ture information and phoneme recognition tasks, they have a huge amount of param-
eters. For example, Hubert studied in this thesis work contains 95 million parameters.
Compared with MFCC, these SSL speech pre-trained models have very high space com-
plexity. Thus, how to reduce the number of parameters and retain the performance of

6.2. FUTURE WORKS

6

55

the SSL speech pre-trained models could be researched in the future.

BIBLIOGRAPHY

[1] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath,
et al. Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal processing magazine, 29(6):82–
97, 2012.

[2] Ewan Dunbar, Xuan Nga Cao, Juan Benjumea, Julien Karadayi, Mathieu Bernard,
Laurent Besacier, Xavier Anguera, and Emmanuel Dupoux. The zero resource
speech challenge 2017. In 2017 IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU), pages 323–330. IEEE, 2017.

[3] S Shahnawazuddin, Nagaraj Adiga, Kunal Kumar, Aayushi Poddar, and Waquar Ah-
mad. Voice conversion based data augmentation to improve children’s speech
recognition in limited data scenario. In Interspeech, pages 4382–4386, 2020.

[4] Qiang Gao, Haiwei Wu, Yanqing Sun, and Yitao Duan. An end-to-end speech ac-
cent recognition method based on hybrid ctc/attention transformer asr. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7253–7257. IEEE, 2021.

[5] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec
2.0: A framework for self-supervised learning of speech representations. Advances
in Neural Information Processing Systems, 33:12449–12460, 2020.

[6] Sining Sun, Ching-Feng Yeh, Mei-Yuh Hwang, Mari Ostendorf, and Lei Xie. Domain
adversarial training for accented speech recognition. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4854–4858.
IEEE, 2018.

[7] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with con-
trastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[8] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan
Salakhutdinov, and Abdelrahman Mohamed. Hubert: Self-supervised speech rep-
resentation learning by masked prediction of hidden units. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 29:3451–3460, 2021.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

57

58 BIBLIOGRAPHY

[10] Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakho-
tia, Yist Y Lin, Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al.
Superb: Speech processing universal performance benchmark. arXiv preprint
arXiv:2105.01051, 2021.

[11] Siyuan Feng and Odette Scharenborg. The effectiveness of self-supervised repre-
sentation learning in zero-resource subword modeling. In 2021 55th Asilomar Con-
ference on Signals, Systems, and Computers, pages 1414–1418. IEEE, 2021.

[12] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2Nd Edi-
tion). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009.

[13] Jakob Poncelet et al. Comparison of self-supervised speech pre-training methods
on flemish dutch. arXiv preprint arXiv:2109.14357, 2021.

[14] Jialu Li, Vimal Manohar, Pooja Chitkara, Andros Tjandra, Michael Picheny, Frank
Zhang, Xiaohui Zhang, and Yatharth Saraf. Accent-robust automatic speech recog-
nition using supervised and unsupervised wav2vec embeddings. arXiv preprint
arXiv:2110.03520, 2021.

[15] Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Na-
man Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, et al. Xls-
r: Self-supervised cross-lingual speech representation learning at scale. arXiv
preprint arXiv:2111.09296, 2021.

[16] Danni Ma, Neville Ryant, and Mark Liberman. Probing acoustic representations for
phonetic properties. In ICASSP 2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 311–315. IEEE, 2021.

[17] Tu Anh Nguyen, Maureen de Seyssel, Patricia Rozé, Morgane Rivière, Evgeny
Kharitonov, Alexei Baevski, Ewan Dunbar, and Emmanuel Dupoux. The zero re-
source speech benchmark 2021: Metrics and baselines for unsupervised spoken
language modeling. arXiv preprint arXiv:2011.11588, 2020.

[18] Ankita Pasad, Ju-Chieh Chou, and Karen Livescu. Layer-wise analysis of a self-
supervised speech representation model. arXiv preprint arXiv:2107.04734, 2021.

[19] Morgane Riviere, Armand Joulin, Pierre-Emmanuel Mazaré, and Emmanuel
Dupoux. Unsupervised pretraining transfers well across languages. In ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 7414–7418. IEEE, 2020.

[20] Yu-An Chung, Wei-Ning Hsu, Hao Tang, and James R. Glass. An unsupervised
autoregressive model for speech representation learning. CoRR, abs/1904.03240,
2019.

[21] Steve Renals. Decoding, alignment, and wfsts, Feb 2019.

BIBLIOGRAPHY 59

[22] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R Hershey, and Tomoki Hayashi.
Hybrid ctc/attention architecture for end-to-end speech recognition. IEEE Journal
of Selected Topics in Signal Processing, 11(8):1240–1253, 2017.

[23] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep
speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567,
2014.

[24] William Chan, Navdeep Jaitly, Quoc V Le, and Oriol Vinyals. Listen, attend and spell.
arXiv preprint arXiv:1508.01211, 2015.

[25] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Con-
nectionist temporal classification: labelling unsegmented sequence data with re-
current neural networks. In Proceedings of the 23rd international conference on Ma-
chine learning, pages 369–376, 2006.

[26] Awni Hannun. Sequence modeling with ctc. Distill, 2017.
https://distill.pub/2017/ctc.

[27] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[28] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[29] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei
Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-
augmented transformer for speech recognition. arXiv preprint arXiv:2005.08100,
2020.

[30] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[31] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[32] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[33] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259, 2014.

[34] Yu-An Chung, Wei-Ning Hsu, Hao Tang, and James Glass. An unsupervised autore-
gressive model for speech representation learning. arXiv preprint arXiv:1904.03240,
2019.

[35] Liu Andy T. Self-supervised learning, June 2020.

60 BIBLIOGRAPHY

[36] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for near-
est neighbor search. IEEE transactions on pattern analysis and machine intelligence,
33(1):117–128, 2010.

[37] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing, 45(11):2673–2681, 1997.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[39] Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-supervised
learning of discrete speech representations. arXiv preprint arXiv:1910.05453, 2019.

[40] Odette Scharenborg, Vincent Wan, and Roger K Moore. Towards capturing fine
phonetic variation in speech using articulatory features. Speech Communication,
49(10-11):811–826, 2007.

[41] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

[42] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Lib-
rispeech: an asr corpus based on public domain audio books. In 2015 IEEE in-
ternational conference on acoustics, speech and signal processing (ICASSP), pages
5206–5210. IEEE, 2015.

[43] John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G Fiscus, and David S Pal-
lett. Darpa timit acoustic-phonetic continous speech corpus cd-rom. nist speech
disc 1-1.1. NASA STI/Recon technical report n, 93:27403, 1993.

[44] Pierre Godard, Gilles Adda, Martine Adda-Decker, Juan Benjumea, Laurent Be-
sacier, Jamison Cooper-Leavitt, Guy-No"el Kouarata, Lori Lamel, H’el‘ene May-
nard, Markus M"uller, Annie Rialland, Sebastian St"uker, François Yvon, and
Marcely Zanon Boito. A very low resource language speech corpus for computa-
tional language documentation experiments. CoRR, abs/1710.03501, 2017.

[45] K-F Lee and H-W Hon. Speaker-independent phone recognition using hidden
markov models. IEEE Transactions on Acoustics, Speech, and Signal Processing,
37(11):1641–1648, 1989.

[46] Lucas Ondel, Bolaji Yusuf, Lukas Burget, and Murat Saraçlar. Non-parametric
bayesian subspace models for acoustic unit discovery. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2022.

[47] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba,
Yuya Unno, Nelson Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin
Chen, Adithya Renduchintala, and Tsubasa Ochiai. ESPnet: End-to-end speech
processing toolkit. In Proceedings of Interspeech, pages 2207–2211, 2018.

BIBLIOGRAPHY 61

[48] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[49] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Un-
supervised pre-training for speech recognition. arXiv preprint arXiv:1904.05862,
2019.

	Preface
	Introduction
	Motivation
	Research questions
	Thesis outline

	Background
	ASR
	An overview of the process and history of ASR
	CTC-based end-to-end ASR
	Attention-based end-to-end ASR
	Hybrid CTC/attention end-to-end ASR

	Neural networks used in ASR
	SSL speech pre-trained models
	An overview of SSL speech pre-trained models
	Contrastive predictive coding
	wav2vec 2.0
	HuBert
	Comparison between SSL speech pre-trained models and MFCC

	Articulatory features
	Support vector machine
	Linear SVM with soft-margin
	Multiclass SVM

	Related works

	Methodology
	An overview of methods implemented in this work
	Datasets
	LibriSpeech
	TIMIT
	Mboshi dataset

	Frame-level AF probing tasks
	Phoneme recognition tasks
	Implementations
	SSL speech pre-trained models
	Implementations in within-language scenario
	Implementations in cross-language scenario

	Evaluation metrics
	Frame-level AF probing task: Macro-averaged F1 score
	Phoneme recognition task: Phone error rate
	Pearson's correlation coefficient

	Results
	RQ 1: Within-language scenario
	RQ 2: Cross-language scenario

	Discussion
	RQ 1: Within-language scenario
	RQ 2: Cross-language scenario
	Comparisons with other works

	Conclusions and future works
	Conclusions
	Future works

	Bibliography

