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Abstract

In the past decade, the wind energy subsidies provided by the Dutch government is declining.
In order to adopt wind energy as a well-established source of renewable energy, the costs of
(offshore) wind energy should be lowered. This can be achieved by increasing the energy pro-
duction or by lowering the maintenance and initial costs. In search of lowering the costs, the
wind industry is pushing towards the boundary limits of design. The use of multi-objective
design is needed for exploring those limits, for which the field of control and structural en-
gineering get together. Currently, little research is conducted of combining controller and
structural design in the wind turbine industry.

The goal of this thesis is to investigate the possibility of optimizing the support structure
design and the controller design into one single optimization routine. The method describes
the use of nonsmooth H∞-synthesis. The modelling principles of the turbine makes use of
different approaches. A simple finite element model of the wind turbine tower is constructed.
The wall thickness of the tower sections is extracted as a tunable parameter, through an affine
representation of the Ordinary Differential Equation (ODE).

In this thesis, the Controller Structure Optimization (CSO) for the offshore wind turbine
combines the design of a load reducing Rotor Speed Controller (RSC) and wall thickness
reduction. In theory, the bandwidth of the RSC is limited by the first tower bending mode.
Therefore, the bandwidth of the designed controller is chosen well below the first eigenfre-
quency. It was found that the limitations do not influence the solution. The limitations of the
proposed method are bounded by the weight functions, which impose a limit on the perfor-
mance. Furthermore, it was found that the CSO framework can minimize the wall thickness of
the tower elements, and simultaneously design a suitable RSC for tracking a rotor speed. The
results are verified in high-fidelity wind turbine model, where the control-relevant subjects
are addressed and specified. It was found that by addressing multi-objectives, we can design
a controller with rotor tracking abilities and load reducing properties. Hence, the proposed
CSO framework, can simultaneously design controllers and alter the structure and thereby
increase the overall performance of the system.
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Chapter 1

Introduction

In this chapter, the topics related to the integral support structure and controller design are
introduced. First, the motivation for doing this study is presented in Section 1-1, followed
by the related research, which provides a first introduction to integral controller and struc-
ture optimization, in Section 1-2. Section 1-3 presents the research objectives. Finally, the
structure of this report is presented in Section 1-4.

1-1 Motivation

On the 10th of July 2019, the second unsubsidized offshore wind farm, Hollandse Kust Zuid
III-IV, located in the North Sea was permitted by the Dutch government. This wind farm
will be the first operating wind farm in the North Sea, which will stop receiving subsidies
and start paying ground rent instead (Rijksoverheid, 2019). Figure 1-1 depicts the trend of
granting subsidies throughout the years for offshore wind farm projects in the Netherlands.
It is interesting to see that this trend starts with a modest increase for the first realised wind
farms followed by a spectacular dive in subsidy expenses. The main reason for this trend
is that wind farms are becoming increasingly cheaper to exploit due to the higher efficiency
of the wind turbines, making the realization less dependent on granted subsidies (Algemene
Rekenkamer, 2018). A good part of costs is still being covered by the Dutch government,
for example by providing site assessments of the location and connecting the wind farm to
the national grid. For wind turbine manufacturers, the exponential decrease in subsidies
should strongly motivate the production of even more efficient and long-lasting wind turbines
compared to current standards. This will lead to wind turbine designs, which are genuinely
competitive to the traditional oil-based power production. This in turn adds additional pres-
sure to the improvement of the design cycle, the overall performance and the durability.

Therefore, this research aims to seek methods to further lower the Levelized Costs of En-
ergy (LCoE) for wind turbines (Mone et al., 2015). There are several ways of lowering the
LCoE, either in reducing the initial costs, or extending the lifetime of the turbine. Alterna-
tively, the LCoE can be lowered by increasing the energy production over the wind turbine’s
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lifetime. Both the initial costs and the costs over the lifetime can be decreased by optimizing
the design of the turbine.
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Figure 1-1: Estimated subsidy prices of offshore wind energy in cents per kWh over the years.
The asterisk at Hollandse-Kust III-IV represents the only wind farm paying ground rent (Algemene
Rekenkamer, 2018; Rijksoverheid, 2019).

Currently, offshore wind turbines are designed conservatively in order to be certain they can
withstand the rough conditions at sea. By optimizing the design of the support structure,
it is possible to reduce the mass or increase the lifetime of the turbine and, subsequently,
reduce the LCoE. The performance of the turbine design can be increased by implementing
control systems. Therefore, the overall performance of a wind turbine is determined by both
the controller and the structural parameters. The global optimum in lowering the LCoE will
neither be achieved by only looking at the design of the support structure, nor by only looking
at the control systems. Because of this, it is proposed to simultaneously consider the support
structure and the controller design in order achieve the global optimum.

Note that this integrated design is already applied in the world of precision systems in e.g.
Van der Veen et al. (2017) and has been applied to a wind turbine in Shirazi et al. (2012).
Therefore, in this thesis, it will be investigated whether the same sort of integrated design
principles can be applied to an Offshore Wind Turbine (OWT) model. This research combines
the objectives such as mass reduction of the tower with industry-standard low order control
strategies.

Wind turbine design cycle

Within this work, the design cycle of the wind turbine combines the structural design and
the controller design. This proposed design cycle simultaneously optimizes the controller and
structure directly. The conventional design process of a wind turbine is as follows: firstly, the
support structure is optimized through imposing mechanical objectives. The most mentioned
objectives in literature are designing the first eigenfrequency in a certain range with respect
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1-1 Motivation 3

to the environment, and reducing the stresses. Such that the outcome satisfies the criteria of
the designer. Afterwards, the active controller elements are optimized concerning the control
objective (e.g., reducing disturbance, maximizing the bandwidth) leading to a re-evaluation
of the structural design (Fischer et al., 2012). In practice, these teams of experts on one or
several disciplines in a company finalize their design and hand it over to the next team. Such
a multi-disciplinary design process will result in a time-consuming iterative process. In order
to tackle this multi-disciplinary challenge, the approach of controller structure optimization
is proposed. This implies coupling the controller and the structure design in one single
optimization routine. The simultaneous redesign allows changes of the overall system, without
iterating the structural and controller parts between different departments.

Control of wind turbines

In order to simultaneously alter the structure with the controller, the control system of the
turbine should be explained. The control systems are one of the leading research areas of
making wind turbine designs more efficient. The aim of the control system is to optimize
the performance of the turbine design. This increase of the performance can be achieved
through power maximization and (fatigue) load mitigation (Pao and Johnson, 2011). The
controller objectives of a variable-speed variable-pitch wind turbine are different depending
on the wind speeds. The objectives are related to the power versus wind speed curve, as
shown in Figure 1-2, which consists out of the following four regions:

• Region I is when the wind speed is below the cut-in wind speed, Vwind < Vcut−in. In this
case, the power available in the wind does not outweigh losses in the turbine system.
Therefore, the wind turbine is kept at an idle or standstill operation by supervisory
control (Bianchi et al., 2006).

• Region II is a partial load operation. The region comprises wind speeds between
the cut-in an the rated wind speed Vcut,in < Vwind < Vrated. In this region, the turbine
should extract as much power as possible from the wind. This extraction is done through
operating the rotor at the maximum power coefficient while keeping the pitch angle
constant. For variable-speed turbines, this is done through torque control (Bianchi
et al., 2006).

• Region III comprises wind speeds such that the rated power can be extracted, which
is given by Vrated < Vwind < Vcut−out. For the above-rated regime, the rated rotor
speed and power output are maintained. By maintaining the rated rotor speed, no
excessive mechanical loads occur on the wind turbine. Generally, for a variable-pitch
wind turbine, this is achieved through Collective Pitch Controller (CPC), which alters
the aerodynamic torque acting on the rotor.

• Region IV is when the wind speed exceeds the contains of region III, Vwind > Vcut−out.
In this case, the wind turbine is shut down by supervisory control. This protects the
system from high aerodynamic loading.
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Figure 1-2: The ideal power curve with characteristic operating regions (Bianchi et al., 2006).

In region III, the controller aims to reduce the rotor speed fluctuations while limiting the loads
on the turbine. This implies that the controller has multiple primary objectives. Therefore,
this research focuses on the design of controllers applicable for region III. The foremost reason
is that the two goals, of power maximization and a load mitigation, are addressed. Then, the
resulting controller contributes to further LCoE reduction.

1-2 Related research

The field of coupling the controller and the structure in one single optimization routine is
adopted in the field of high precision industry (Silva, 2009). Strict demands on the speed,
weight and scale have made this multi-objective approach a necessity. For these motion sys-
tems, the interaction between the structural dynamics and the control system is crucial for
achieving performance. However, the coupling between structural and controller parameters
is not always known a priori, which makes it hard to assume that an optimal design can be
obtained by dividing the original problem into sub-problems (Fathy et al., 2001).

Within the world of controller structure optimization, there are four different approaches
to solving this problem of multi-objective design. These approaches are sequential design,
iteratively, nested design or simultaneous (direct) design (Fathy et al., 2001). However, ac-
cording to Silva (2009), there are two effective numerical strategies, namely the nested design
and direct design. These methods are successfully applied in the work of Vandyshev et al.
(2012) and Van der Veen et al. (2017) in order to optimize the closed-loop performance for
simplified motion systems, where Vandyshev et al. (2012) compare the sequential design with
the nested design approach, while Van der Veen et al. (2017) compare the sequential design
with the direct design. Both the authors find slightly improved closed-loop performance for
the nested and direct design approach with respect to the sequential design. Furthermore,
the direct design method can be extended for the positioning of actuators and sensors as well
by Van Herpen et al. (2014). Therefore, the method of direct design and nested design will
be further investigated for application on an OWT .
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1-3 Research objectives 5

Related research on the application of controller structure optimization on wind turbines
is founded in the work of Shirazi et al. (2012) and Adegas (2013). Both the authors make
use of solving Linear Matrix Inequalities (LMIs) in order to change the structure and con-
troller simultaneously. Another method based on a robust based technique is proposed in
Van Solingen et al. (2014) and Perez et al. (2016). This method involves fixed-structured ro-
bust techniques which are based on H∞-controller synthesis algorithms (Apkarian and Noll,
2017). This approach allows for simultaneously designing the controller and the structure in
one single optimization routine. Both the citations address that the difficulty of the method
lies in how to impose the correct requirements on the H∞ minimization. The benefit of using
the method is that all the objectives are addressed in frequency-domain specifications. The
most profound reason for preferring the frequency-domain is because it has got insightful
design tools like loop-shaping and Nyquist diagrams (Aström and Murray, 2010). Therefore,
the framework directly provides an assessment of the closed-loop system performance.

Before one of these above mentioned controller-structure optimization methods can be ap-
plied, a suitable OWT model should be derived. Regarding the model, this work is done in
cooperation with Siemens Gamesa Renewable Energy (SGRE), which provided the structural
design of a full-scale 8.0MW offshore wind turbine. The design is recast into a usable me-
chanical model for controller design purposes. There are different kind of modelling concepts
to model the mechanical structure of wind turbines. For an extensive overview of different
methodologies, see Molenaar (2003). The mechanical model is based on principles of using
finite element principles of creating a highly-detailed support structure design. Through the
support structure model, the structural parameters related to the geometry can be extracted,
e.g. the wall thickness. The principle of using a finite element based mechanical model intro-
duces high order models, which are not directly suitable for control design (Arany et al., 2015).

A reduction method is needed to tackle the complexity of the high order model. The reduc-
tion method should preserve the most dominate dynamics of the wind turbine. Several ways
of reducing high order mechanical models are presented in Cook et al. (2007) and Géradin
and Rixen (2014). The reduced mechanical model can then be coupled with the aerodynamic
model to obtain a controllable wind turbine system, as described in Bianchi et al. (2006).
However, the aerodynamic model introduces non-linear behaviour. Therefore, for simplicity,
the coupled wind turbine system is linearized for controller purposes.

1-3 Research objectives

This thesis explores the principles of multi-objective design by combining the controller and
structure in one single optimization routine. The apparent benefit of using the integrated
design routine becomes evident for the current time-consuming design cycle. The integrated
design routine makes the iterative switching between design disciplines unnecessary. There-
fore, the proposed framework should be considered for designing a full-scale wind turbine at
SGRE. Based on this goal, the following main research objective is formulated:

"The main objective is to simultaneously optimize the integral support structure design and
controller design for large scale offshore wind turbines."
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The research objective can be divided into two sub-problems to create a guideline for the to-be
performed activities and derivations throughout this thesis. The first challenge is to provide
a suitable approach for simultaneous controller-structure optimization. It is still preferred
to work with low order controllers as preferred in industry. Therefore, the chosen controller
structure is fixed beforehand. Moreover, the evaluation of the overall system should be done
in the frequency domain, as well. Performing the evaluation in frequency domain is preferred,
because of the insightful tools (e.g. Bode plots, Nyquist), which is a direct measure of the
closed-loop stability and performance of the overall system. The first sub-problem can be
formulated as follows:

"Provide a framework for simultaneous structured controller design and tunable plant
optimization through frequency-based optimization"

In line with the reduction of LCoE, the goal is to satisfy the controller objectives and at the
same time, the structural objectives. The former is formulated by ensuring that the controller
objectives (load mitigation and rotor speed tracking) are guaranteed. The latter is formulated
by minimizing the wall thickness of the support structure. It is known that the structural
deformations will influence the closed-loop performance of the system. Therefore, the second
sub-problem will be the following:

"Apply the controller-structure optimization to prove its effectiveness on the linear 8.0MW
SGRE wind turbine model, while achieving wall thickness reduction and rotor tracking

performance."

It is chosen to use the 8.0MW SGRE wind turbine model to represent a large scale turbine.
The main reason for this is that the full design of the support-structure can be used for
publication with fewer confidentially issues. In the next section, it will be discussed how
these problems are to be tackled through this thesis.

1-4 Structure of the thesis

This thesis is structured in the following way. This first chapter introduces the research goal of
this work. Chapter 2 starts by presenting an OWT that will be used for the integrated design.
Furthermore, the basic concepts for an OWT and controller-structure optimization methods
are discussed. The chapter finishes with formalizing the integrated design problem. Since the
structure of the system should be sensitive to structural perturbations, the system description
is extended with additional inputs in Chapter 3. In addition, model reduction methods are
applied to reduce the complexity of the system while preserving the most dominant dynamics.
The chapter concludes with a showcase example of controller-structure optimization of a two
Degrees of Freedom (DoF) mass-spring-damper system.

The next chapters are dedicated to the application of the integrated design framework to
the 8.0MW SGRE wind turbine. In Chapter 4 a linearized wind turbine model is derived
from the provided specifications of the 8.0MW SGRE wind turbine. It should be mentioned
that the derived linear model uses a highly-detailed support structure model, where the wall
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thickness is extracted as a tunable parameter. Before the controller structure optimization
can be applied, some preliminaries are needed in Chapter 5. From these preliminaries differ-
ent design cases are defined. These cases are simulated and will be presented in Chapter 6.
The goal is to seek the effectiveness of the proposed integral method. The redesigned con-
troller and structure are verified in a high-fidelity model of the wind turbine called Bonus
Horizontal Axis Wind turbine Code (BHAWC). The thesis ends with the conclusions and
recommendations for further studies in Chapter 7.

At the end of the thesis, appendices are included. The appendices provide relevant back-
ground information for respectively, the structural sensitivity analysis, the 8.0MW SGRE
wind turbine specifications and the fatigue assessment. Note, it should be mentioned due to
the use of confidential data some of the figures or tables are given without labels.
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Chapter 2

Theoretical background

The analysis of multi-objective design involving a combination of structural and controller op-
timization is well-known in the world of precision systems, see Vandyshev et al. (2012), Silva
(2009). However, for larger mechanical systems, solving this integrated Controller Structure
Optimization (CSO) problem is not common practice. Only a few applications can be found
of integrated design for wind turbine design, an example being the work of Shirazi et al.
(2012). From these current applications for both the precision systems and wind turbines
is the increase of closed-loop performance by coupling the controller and the structure. The
reason for increase of performance is mainly the physical interaction between the dynamics
of the controller and the structure.

The aim of this chapter is to provide a single optimization routine for solving the multi-
objective problem for an Offshore Wind Turbine (OWT). The chapter begins in Section 2-1
with presenting the lay-out of the 8.0MW Siemens Gamesa Renewable Energy (SGRE) off-
shore wind turbine and some explanatory information. Furthermore, it highlights the addi-
tional control objective for mitigating the movement in the fore-aft direction. Section 2-2
provides a brief overview of different methods for CSO and concludes with the chosen simul-
taneous CSO method. Thereafter, Section 2-3 and Section 2-4 introduce the preliminaries to
enable the optimization, extracting the physical parameters of the system and the controller
design framework, respectively.
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10 Theoretical background

2-1 The Offshore Wind Turbine

The OWT consists of multiple large components which are depicted in Figure 2-1. The
components which are used throughout this thesis are briefly discussed. First of all, the
foundation is used to embed the wind turbine into the seabed. The Transition Piece (TP) is
placed on top of the tower. Subsequently, the Rotor Nacelle Assembly (RNA) is mounted on
top of the tower. The RNA can be directly rotated towards the incoming wind. Furthermore,
the blades of the turbine can pitch in and out of the wind. Through pitching, the rotor speed
can be altered, and subsequently, the turbine is able to generate power at even higher wind
speeds. The TP, the foundation and the tower altogether are called the support structure
and this term will be used throughout this work.

Figure 2-1: Schematic overview of a monopile foundation based Offshore Wind Turbine.

An OWT is continually subjected to wind and wave loading during its lifetime. By knowing
the wind and wave conditions of a particular site, it is possible to design turbines that are able
to withstand these loads. Moreover, an OWT is currently designed to withstand maximum
loads at a given time, as well as suppressing cyclic loads during its entire lifetime. The former
is addressed as Ultimate Limit State (ULS) and the latter as Fatigue Limit State (FLS).
The fatigue loads are the main design driver for determining the structural integrity of the
wind turbine components. Therefore, the amount of fatigue provides a good indication of the
estimated lifetime of the turbine (Hendriks and Bulder, 1995).

Most wind turbines have an estimated lifetime of 25 years (Jensen, 2019). The fatigue dam-
age is the predominant factor for the design of the support structure. Fatigue damage is the
result of cyclic loading of a structure, resulting in microscopic fractures in the structure which
grow over time. One can imagine that the lifetime is heavily influenced by the amplitude of
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2-1 The Offshore Wind Turbine 11

these loads. In order to mitigate the fatigue loads, the classical design approach is to avoid
interference of the first eigenfrequency and the dynamics acting on the turbine (Damgaard
et al., 2014). The so-called interference regions are visualized in Figure 2-2. The frequency
ranges result from the excitation of wind and waves with the structure. The corresponding
rotational frequency of the rotor (f1P ) , the blade passing frequency (f3P ) and first natural
frequency (f0) are visualized in Figure 2-2, as well. The industry trend is developing bigger
wind turbines in order to lower the costs (Wiser et al., 2016). By doing so, the tower length
increases, which results in that the RNA is installed at a higher height. The higher top
mass results in a lower first natural frequency. By itself, lowering the natural frequency is no
problem. However, the wave spectra are located close to this frequency (Passon et al., 2015).
This can be seen in Figure 2-2: if f0 moves to the left, it coincides with the wave related
frequencies. Hence, by lowering the eigenfrequency into the interference range higher loads
are inevitable.

Figure 2-2: Frequency design diagram of an OWT incorporating the wave and wind spectra.
The different operating regions are the rotational frequency (f1P ), the blade passing frequency
(f3P ) and the first natural frequency (f0).

By only describing the involved features of designing an OWT do not solve the load mitigation
problem. Even if the turbine is not operating in the resonance regions, the turbine is still
influenced by the wind and wave loading. The loading causes the turbine to move in different
directions. The largest contribution of movement arises from the first bending modes of the
structure. These modes move in the Fore-Aft (FA) and the Side-Side (SS) direction. To
illustrate these directions of movement, the modes are depicted in Figure 2-3.

Figure 2-3: Principal bending modes of an OWT at the left the FA direction and at the right
SS direction.
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12 Theoretical background

These movements can be actively influenced and suppressed by using different control meth-
ods. In this particular case, the movement is suppressed by pitching the rotor blades in and
out of the wind. This results in alternating the aerodynamic forces, which results, when
properly executed, in mitigation of these movements. Due to the fact wind turbines operate
in stochastically varying wind fields, the effective wind speed acting on the rotor can have
large sudden variations. As a consequence, there is a possibility that the relevant operational
limits of the signals and loads are violated. Therefore, the primary objective of the designed
controller is summarized as the suppression of external disturbances such that the limits of
the operational signals are not exceeded. An overview of relevant operational signals and
their corresponding limits for this work is given in Table 2-1, for a more extensive overview
see Shan (2018).

Table 2-1: Relevant operational signals and belongings for this work (Shan, 2018).

Operational Signal Physicals Limits

Rotor Speed Ωr

Mechanical loads in rotor and drive-train
Limitation of the rotational speed with respect to the
induced voltage in the generator

Tower top acceleration ÿt
Mechanical loads in tower and rotor blades
Mechanical stresses in the components of the RNA

In general, the wind turbine control objectives and operational signals can be depicted as
Figure 2-4. The figure shows the general structure of the control problem for wind turbines.
The most profound external disturbance is the incoming turbulent wind field. The wind
interacts with the aerodynamics of the turbine, resulting in fluctuations of the aerodynamic
forces acting on the rotor. It can be seen that the generator torque is included in Figure 2-4
as well. However, the dynamics of the generator system is not included in this work. The
reason for this is further explained in Chapter 4.

Aerodynamics Structural
Dynamics

Controller

Performance Output
Signals e.g.: 

Rotor Speed
Structural Loads
Vibrations
Generator Power

Controller Input Signals
e.g.

Rotor Speed
Tower Top Accelerations

Structural Velocities 

Disturbance 
Wind Field

Dynamics Pitch
System

Aerodynamic
Forces

OWT

Dynamics Generator
System

Reference Pitch Angle

Reference Generator Torque

Disturbance 
Grid Voltage

Torque Generator

Figure 2-4: General structure of the control problem for wind turbines. Flowchart is adopted
from Shan (2018).
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Moreover, the trend of the control strategies for wind turbines is going towards multi-variable
and multi-objective design. In this work, the multi-objective design originates from the oper-
ating region of the turbine, namely region III. The main objective of the pitch control design
is the limitation on the rotor speed. As mentioned in Chapter 1, the controller has a major
influence on the mechanical loads, especially for the tower and the blades. Therefore, another
objective for control design is to keep the fatigue loads for the structural components below
specified limits. These two objectives may conflict with one another. An example, that a
more aggressive Rotor Speed Controller (RSC) tends to increase the fatigue loading of the
tower Tony (2001). This results in conflicts between different controller objectives. As a
consequence, modern multi-variable approaches are needed for finding an optimum between
these control-objectives. The developed RSC in this thesis is based on those multi-variable
approaches. These approaches guarantee closed-loop stability while minimizing the H∞ sys-
tem norm of the plant. The interpretation of this system norm is shortly summarized, more
details can be found in Skogestad and Postlethwaite (2007).

The H∞-norm of a scalar transfer function is defined as the maximum value of the magnitude
of the transfer function over all frequencies. For multi-variable plants, this is determined
through the maximum of the largest singular value σ̄ of the transfer function matrix N(ω)
over all frequencies: ∥∥N(ω)

∥∥
∞ = max

ω
σ̄(N(ω)) (2-1)

The maximum singular value is an induced norm of the vector magnitude. It can be inter-
preted as maximum gain of the plant over all possible directions of the input vector v:

σ̄(N) = max
v, |v|=1

|Nv| (2-2)

The H∞-norm is resembled as the worst case gain of a transfer function matrix over all
directions and over all frequencies of the input vector. By using this for application of control
design methods, a upper bound on the H∞ is placed:∥∥N(ω)

∥∥
∞ ≤ γ (2-3)

Through doing so, the closed-loop system can be shaped in such a way that for example peaks
are suppressed (increase the damping of certain modes). In this particular case, the H∞-norm
is minimized to mitigate the loads of the tower in the FA direction while regulating the rotor
speed at a nominal value for high wind speeds. The SS suppression through active control
methods is outside the scope of this work. Now that the main objective of the designed
controller has been discussed. The next step is to combine this with the structural design of
the wind turbine. In the upcoming section, a suitable method is chosen for combining the
controller design with the structural design in one single optimization routine.
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2-2 Controller Structure Optimization

As mentioned in Chapter 1, it is a well-known fact that the structure and controller are
coupled (Vandyshev et al., 2012). To tackle the controller objectives of the wind turbine
and allow the structure to alter, the overall system performance should be increased. The
reason for the performance increase is investigated by Fathy et al. (2001) and it can be
seen that the different strategies of combining the structure with controller design results
in different optima. The additional objective of changing the structural design implies a
multi-objective design approach. This will be referred to as integrated design or Controller
Structure Optimization (Silva, 2009). Integrated design implies simultaneous controller and
structure optimization. In literature, there are four different approaches to solve the involved
multi-objective non-convex optimization. These approaches are sequential design, iteratively
design, nested design and direct design (Fathy et al., 2001). However, according to Silva
(2009), there are two effective numerical strategies, namely the nested design and direct
design. In the following sections, nested design and direct design are briefly discussed.

Nested design

The nested design approach is a combination of nonlinear optimization methods and model-
based control design techniques involving Riccati or Linear Matrix Inequalities (LMIs) ap-
proaches (Fathy et al., 2001). The procedure of this strategy is based on two different design
loops. There is an inner loop which is responsible for the control derivation, enclosed by an
outer loop which is responsible for changing the structural parameters and the closed-loop
evaluation. The controller design can be done by using convex optimization. However, the
outer-loop yields a non-convex optimization, which requires a nonlinear optimization method
(e.g., genetic algorithms) Vandyshev et al. (2012). The final design is obtained when the
outer loops converge to the constraints defined by the designer.

Direct Design

The direct design strategy involves a nonlinear optimization or genetic algorithm in order to
simultaneously adjust the control and structural parameters to one another. Through this, the
structural and controller parameters should always be accessible for the designer, leading to
the condition that the controller structure is fixed beforehand. This condition implies that the
system must be well understood in order to design a controller that meets the requirements.
The driving factor of the direct design approach is that the dynamic response is evaluated
through an objective function defined by the designer. There are two main different kinds of
direct design found in literature, which are the following:

• Gradient-based optimization: Gradient-based optimization addresses the sensitivity
of changing design parameters for the optimization of an objective function. These
sensitivities provide insight into the magnitude and direction of changing parameters,
as shown in Van der Veen et al. (2017). The main advantage of using this method is
the evaluation of parameters in the frequency domain, for example, changing the overall
system performance is directly noticeable through frequency response functions.
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• Non-smooth H∞ synthesis: The idea of using non-smooth H∞ optimization is to
simultaneously design the controller and the plant by looking at the frequency response.
The method is successfully used in Van Solingen et al. (2014), where an example of a
2-DoF mass spring damper is presented. It makes use of an adjusted generalized plant
which tolerates parameter changes while simultaneously adjusting the controller param-
eters. The system is extended in order to allow for parametric changes, as explained
later in this work. The method makes use of non-smooth optimization for the integrated
design problem. The gradient information is neither needed to change free parameters
and nor convexity properties are required for the objective function (Apkarian and Noll,
2017).

Comparison of the different methods

The preferred method of CSO is the direct design method. The main reason for this originates
from the fact of the simplicity of only having one design loop. Furthermore, a combination
of gradient based and H∞ synthesis will be used. The structural parameters of the system
will be altered by using the sensitivity of the system to perturbations in the structure. This
works in the same manner as the gradient-based approach. These perturbations are included
in the controller block of H∞ synthesis. The H∞ synthesis will include the use of fixed-
structured controllers (Apkarian et al., 2014), which is preferred due to the fact the controller
order can be assigned by the designer. Another possibility is using a series of LMIs for the
H∞ synthesis. This approach is already applied on a wind turbine in the work of Shirazi
et al. (2012). However, according to Paijmans et al. (2008) the integrated design problem
can become infeasible for higher order models. Therefore, it is chosen to continue with the
fixed-structured controller framework in combination with the gradient-based approach. The
proposed framework allows for simultaneous redesign through frequency-domain evaluations
of the system and provides an assessment of the closed-loop system performance.

The CSO routine combines the controller and the structure in one optimization routine.
Therefore, the system description should be described by its structural parameters, which
can then be extracted for the structural redesign. In the next section, the parameterization of
the structure will be presented. Thereafter, the controller design framework will be discussed.

2-3 Parameter Dependent State-Space models

In order to execute the proposed CSO, the first step of the design approach is to parameterize
the structure. This implies characterizing the structure through a few physical parameters
such as tower length, wall thickness and diameter. These structural parameters are free for
optimization and are admissible for changes. The structural dependencies of a model are
represented through the scheduling parameter p. In the end, the optimization is performed
in order to find the optimal values for this scheduling parameter p ∈ Rnp .

The parameter dependencies can easily be visualized by using linear Ordinary Differential
Equation (ODE), which describe the dynamics of a mechanical system as follows:

M(p)ẍ+D(p)ẋ+K(p)x = bF (t) (2-4)
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with M ∈ Rn×n is a real symmetric positive definite mass matrix. Moreover, the damping
matrix D ∈ Rn×n contains the amount of energy dissipated by the system and the stiffness
matrix K ∈ Rn×n describes the elastic energy. The nodes of the model are given by x, which
can be in transnational or rotational (uy, uz, uθ). For example, for one single beam element
the nodes are defined as x =

[
uz1 uy1 uθ1 uz2 uy2 uθ2

]T
, where the subscript 1 and 2

stands for the outermost points of the beam. With the parameter dependency, the ODE can
be rewritten into a state-space model as follows:[

ẍ
ẋ

]
=
[
−M(p)−1D(p) −M(p)−1K(p)

I 0

]
︸ ︷︷ ︸

A(p)

[
ẋ
x

]
+
[
M(p)−1b

0

]
︸ ︷︷ ︸

B(p)

u (2-5)

This modelling principle will be used for the parameterization of the wind turbine model
in Chapter 4. The wind turbine model will be derived from multiple Ordinary Differential
Equations (ODEs), which are parameterized through the wall thickness t of the tower section
(p = ti). The tower consist out of multiple sections with varying wall thickness. For example,
the tower consist out of 3 sections with varying wall thickness constant over each section,
then the scheduling parameter is given by:

p = {t1, t2, t3} (2-6)

Subsequently, the ODEs are recasted in the parameter dependent state-space form as in
Equation (2-5). The structural parameterization discussed here will be combined with the
controller design framework in the next section.

2-4 Controller design framework

With the system description now being parameter dependent, the next step is to set up a
framework for which the controller can be designed simultaneously. One of the main challenges
arises from the fact that control objectives must be transformed into frequency domain terms.
Furthermore, the system must be extended in order to tolerate structural deformations. These
structural deformations are addressed in frequency domain terms as well. This involves some
necessary principles from multi-variable design as described in Skogestad and Postlethwaite
(2007).

Generalized plant description

Figure 2-5 shows the necessary generalized plant description for the controller design frame-
work and can be defined as follows:[

z
y

]
=
[
P11(s) P12(s)
P21(s) P22(s)

]
︸ ︷︷ ︸

P (s)

[
w
u

]
(2-7)

with the following definitions: the performance channel z, the exogenous inputs w, the mea-
sured output y and the controller input u. The partitioning of the generalized plant P is

D.T.B. Stinenbosch Master of Science Thesis



2-4 Controller design framework 17

obtained by looking at the input-output transfer relations from
[
w u

]T
to
[
z y

]T
exclud-

ing the controller block K. The transfer functions of the partitioning of P (s) are assumed
to be stable. The next step is to find controllers, which guarantee closed-loop stability and
nominal performance. The former can be achieved by incorporating output feedback to the
generalized plant P with a stabilizing controller, as u = Ky. The latter can be achieve by
looking at the following description of the closed-loop system, which is as follows:

Fl(P,K) = P11 + P12K(I − P22K)−1P21 (2-8)

By definition, the obtained closed-loop transfer function is also known as the lower Linear
Fractional Transformation (LFT). Closed-loop performance is determined by calculating the
system norm. The goal is to find a suitable K that ensures

∥∥Fl(P,K)
∥∥
∞ < 1. By minimizing

this H∞ norm, a controller K which is based on the information in y, generates an input u
which counteracts the influence of w on z, thereby minimizing the norm from w to z. The
outcome of this H∞-norm is called the performance index and will be referred to as γ.

FΔ η

K

P

Δp

Controller

Model update

yu

zw

Generalized Plant

Figure 2-5: Generalized plant P with controller blockK and model update block ∆p which allows
for parametric changes of the system. The signals of the plant are given by: the performance
channel z, the disturbance channel w, the measured output y, the controller input u, the modal
displacement vectors η and the perturbation input F∆.
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Integral design framework

In the integral design framework the three main items of the CSO come together, namely,
the controller, the structure and the optimization requirements. One can imagine that the
optimization results from the specifications on the requirements on the controlled structure.
Several examples can be given for these requirements, as an imposed bandwidth for the con-
troller or a hard constraint on the structural deformation. Recall from the beginning of the
section that the proposed problem is multi-objective.

These multi-objective approaches are normally specified by weighting functions. Each weight
corresponds to one of the objectives. Therefore, the specifications or performance of the
system can be enforced in terms of weighting functions. By means of suitable weighting func-
tions, it is possible to define an upper bound of the closed-loop system transfer functions.
Furthermore, the proposed CSO uses fixed-structured controllers, which is already applied by
Van Solingen et al. (2014) for simultaneously varying the controller and structural parame-
ters. By using the knowledge obtained from the work of Van Solingen an integrated design
approach can be formulated with the following reasoning:

• In industry, low order controllers are still preferred to high order controllers. The main
reason is that there are practical restrictions regarding the implementation. Therefore,
the obtained controller K can be expressed through linear parameterized gains, an
example of a parameterization of a simple PID controller is given by:

KPID(s) = Kp + Ki

s
+ Kds

Tfs+ 1 (2-9)

The gains of the controller are stacked in a vector φPID =
[
Kp Ki Kd

]T
. There-

after, the vector φPID is used to obtain a diagonal controller as depicted in Figure 2-6.
Notice that the integrator and time delay term are merged into the generalized plant
description.

• The simultaneous CSO is made available by extending the system in order to alter the
structure as well. This is made available though a diagonal gain matrix ∆p. Through
this gain matrix, the tunable parameters of the system are accessible and tuned in
the same manner as the controller gains. The method of extending the system will be
presented in Chapter 3. Furthermore, the controller block K is diagonally structured
as well as the aforementioned example of the PID controller.

The extended generalized plant for the simultaneous controller and structural redesign is
shown in Figure 2-7. The proposed problem makes use of the control related sensitivity
functions, which will be presented in the next section.
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Figure 2-6: Linear parameterization of a PID controller. The generalized plant is represented by
the yellow box. (Van Solingen et al., 2014)
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Figure 2-7: Simplified diagram of the generalized plant P , the weighting filters Wu ,WP and
W∆. The controller diagonal K and the ∆p are included, for which the latter allows for the
structural perturbations.
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20 Theoretical background

Sensitivity analysis

The basic formulation of the integrated design problem was discussed in the previous section.
It is stated that the H∞ norm should be minimized to a certain performance index γ. Keep
in mind that closed-loop stability and desired performance of the controller is guaranteed
when

∥∥Fl(P,K)
∥∥
∞ < 1. From classical control theory, the performance of the controller is

analysed through the sensitivity function S. This shows whether the closed-loop system is
able to attenuate disturbances (Skogestad and Postlethwaite, 2007).

The classical negative feedback control loop model is shown in Figure 2-8. The aim for
the control loop is to track the reference signal r with the output y. The relative error be-
tween these two e = r − y is fed into the controller K. The controller gives an input signal
u. Thereafter, a disturbance signal d1 is added to the input signal u, the addition v = u+ d1
is fed into the plant G. The outcome is disturbed by an additional noise signal (measure-
ment noise), which results in output signal h of the plant, resulting in the measured output
y = d2 + h.

K(s) G(s)
yer

d1 d2

u+ + v h +

+ +-

Figure 2-8: Block diagram of a basic feedback loop. The controller is given by K. The external
signals are the reference signal r, the load disturbance d1 and the measurement noise d2. The
process output and controller signal are given by respectively: h and u. Furthermore, there is the
error signal e and measured output y.

Then, as described in Aström and Murray (2010), the linear behaviour of the system is
determined through the following four transfer functions presented in Equation (2-10).

S = y
d2

= 1
1+GK GS = y

d1
= G

1+GK

T = y
r = GK

1+GK KS = u
r = K

1+GK

(2-10)

It is assumed that the system has pure error feedback. These transfer functions are also
known as the "Gang of Four". From these four, the example is made with the sensitivity
function S, which is naturally related to the disturbance rejection of the system. It is a direct
measure of how the error relates to the reference signal, or how much influence the disturbance
will have on the tracking abilities of the system. These properties hold for both Single-Input
Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) systems.

Considering a MIMO system, the effectiveness of the designed controller can be determined
by the ratio of ‖e‖2‖r‖2

. The following relation is given for this ratio:

σ(S(jω)) ≤
∥∥e(ω)

∥∥
2∥∥r(ω)
∥∥

2
≤ σ̄(S(jω)) (2-11)
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where σ̄(S(jω)) indicates the largest singular value of S(jω) and σ(S(jω)) the lowest singu-
lar value. The singular values correspond to the directions of the smallest and the biggest
gains of S(jω). The bandwidth of the system is related to those singular values. For SISO
systems, the bandwidth of the system is given by the frequency where the sensitivity function
S(jω) crosses the -3 [dB]-line from underneath in a bode diagram. For MIMO systems, the
bandwidth is given by a region. This region is indicated by the frequencies between where
σ(S) and σ̄(S) crosses the -3 [dB], where the former is the best-case scenario and the latter
the worst-case scenario.

These requirements can be combined in the following stacked problem:

min
K,∆p

γ

∥∥∥∥∥∥∥
WpS
W∆T
WuKS

∥∥∥∥∥∥∥
∞

< γ

(2-12)

where K and ∆p should stabilize the system. The proposed problem of Equation (5-18)
makes use of multiple performance channels (z1, z2, z3), each with their corresponding weight
function (Wp,Wu,W∆). These weights will be explained in consecutive order, the weight Wp

bounds the sensitivity function S in order to achieve the desired bandwidth of the designed
controller K. In order to prevent too large inputs to the system G(s), a bound is placed
on KS. To make sure that the system has a structural deformation, a bound is placed by
W∆ on the extended system description as explained in Chapter 3. Notice, that the weight
W∆ bounds the complementary sensitivity T of the extended system description and enforces
structural perturbations.

Furthermore, the considered H∞ problem is formed by the maximum singular value for each
individual weight with corresponding transfer function. The largest singular value of σ̄(S)
bounds the performance, σ̄(T ) for the structural deformations, and σ̄(KS) penalizes large
inputs to the plant. These values can be determined by analyzing the matrices obtained from
a Singular Value Decomposition (SVD). Now that we have discussed all the relevant theories,
it can be applied to the OWT model in Chapter 5.

Optimization solver

The proposed direct design framework is non-convex and nonlinear. In order to obtain fixed-
structured controllers and optimize the structural parameters a solver is needed. The pro-
posed H∞ controller synthesis is implemented in MATLAB in the work of Apkarian and Noll
(2017). The toolbox is used to solve the H∞ controller design problem of Equation (5-18)
and is discussed next. The proposed toolbox is already implemented in the Robust Control
Toolbox of MATLAB. The choice for using the Robust Control Toolbox over the LMIs solvers,
especially with the former being a black-box optimization routine, is mainly based on the
aforementioned numerical problems in which the LMIs routine of higher order models can
run into.
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Moreover, the main benefits of using this fixed-structured controllers through the Robust
Control Toolbox are the following:

• When a suitable controller structure is defined for the system, simultaneous design of
decentralized controllers is possible. This implies the applicability of the structural
optimization, which are simultaneously determined in an overall design/optimization
process.

• Relating this to standard robust control design of wind turbines, the fixed and decen-
tralized controller structure is well suited for gain scheduling or controller switching
between different operation regions of the turbine.

• The computed controllers are always internally stable.

However, one certain drawback arises from the non-smooth behavior of the Hinfstruct algo-
rithm. Namely, small changes in the weighting function parameters can result in completely
different controller transfer function. This results in different performance magnitudes. This
behavior makes it more difficult to apply this fixed structured control design in a higher level
controller tuning approach. This will not throw a spanner in the works, because the proposed
controller design has to be of a low order.

2-5 Summary

A general overview is presented of different methods for controller and structure design. The
chosen method combines the work of Van der Veen et al. (2017) and Van Solingen et al. (2014)
into one single optimization routine. The assumption is made that structure of the controller
is simple and sufficient for industry purposes The involved multi-objective design is captured
by using a stacked (mixed-) sensitivity framework, which is solved by using the H∞ method
of Apkarian and Noll (2017). Then the controller and structure are evaluated in frequency
domain terms. However, the method of extending the system with additional inputs, which
allows for structural alterations has not been investigated yet. Therefore, Chapter 3 will
present this structural framework.
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Chapter 3

Structural sensitivity analysis

In the previous chapter, the fixed-structured control problem is defined which allows for per-
turbations of tunable elements in the plant description. In order to address or influence these
tunable elements, it is still needed to extent the system description.

The integrated design method combines the work of Van der Veen et al. (2017) and Van Solin-
gen et al. (2014), which results in a different framework as presented Chapter 2. The integral
method of simultaneously varying the controller and structural parameters makes use of
gradient-based principles. These principles involve the analysis of the eigenfrequency sensi-
tivity. The goal of this chapter is to recast this sensitivity principle into a usable parameter
for extending the system description. Subsequently, the structure is able to alter through the
extension, given the fact that the eigenmodes do not change shape. Therefore, the influence
of changing structural parameters on the eigenmodes is included in the analysis.

The structural sensitivity analysis should be applicable for the support structure of the wind
turbine. In this thesis, a detailed support structure model are used. As a result, the dy-
namics of support structure is described by a high ordered model, which is not suitable for
control design or time-domain simulations. Therefore, this chapter starts with the principle
of modal reduction in Section 3-1. Thereafter, in Section 3-2 two methods of extending the
system description are presented and concludes on a chosen extension method. Then the
structural parameters are accessible for optimization. Finally, the technique of extending the
system description, and subsequently, Controller Structure Optimization (CSO) is applied on
a two degrees of freedom mass-spring-damper system. Specifically the eigenfrequency and
eigenmodes sensitivity analysis is needed for mapping the boundaries of the applied CSO
method.
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3-1 Modal Reduction

For simple mechanical systems with just a few Degrees of Freedom (DoF), the structural mass
M , damping D and stiffness K matrices can by used directly for control design, analyses and
time-domain simulations. However, the derived model of the Offshore Wind Turbine (OWT)
is described by higher order matrices. Therefore, model reduction methods are needed in
order to make the model suitable for analysis (Molenaar, 2003). The quality of the model
reduction method arises from the capability of capturing the important dynamics. In the
end, the predominant dynamics of the original system should be preserved. Additionally,
most systems operate at low frequencies making the higher-order modes (high frequencies)
less valuable for incorporating in the analysis. Therefore, these high-order modes can be
discarded. In this thesis, modal truncation is used, because it is relatively easy from the
truncation to obtain reduced state-space models. The method is adopted from the work of
Cook et al. (2007). Starting with the general expression of the aforementioned Ordinary
Differential Equation (ODE) by describing an arbitrary mechanical system:

Mẍ+Dẋ+Kx = bF (t) (3-1)

The reduction method uses the modal displacement and starts with solving the generalized
eigenvalue problem of Equation (3-1). The generalized eigenvalue problem is the same as a
free vibration problem and is explained in Appendix A. The result of the derivation is adopted
from Appendix A and is as follows:

(K − ω2
jM)φj = 0 (3-2)

where the φj is the mode shape corresponding to the eigenfrequency ωj of the system with
modes j ∈ {1, . . . , n}. The next step is assuming that the ODE of Equation (3-1) can be
described by the system response:

x(t) =
n∑
j=1

φjηj(t)

=
[
φ1 φ2 . . . φn

]

η1(t)
η2(t)
...

ηn(t)


= Ṽ η(t)

(3-3)

where Ṽ ∈ Rn×k is a matrix containing all the eigenmodes of the original system. Fur-
thermore, the η is defined as the modal displacement, which a set of modal coordinates
corresponding to the coordinates of the modeshape φj . Notice that each element of ηj is
multiplied with one corresponding eigenmode φj . Furthermore, each eigenmode has its own
corresponding eigenfrequency ωr. These are sorted on the diagonal matrix Ũ ∈ Rk×k. It can
be seen that the elements of η(t) represents the number of Degrees of Freedom participating
in describing the dynamics of the total system. Equation (3-3) describes the full dynamics
over the whole frequency range of the system. In order to obtain a reduced order model, a
number of modes is selected. By doing so, the modes of interest are selected and induce the
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dynamical behavior of the reduced system. The number of modes contributing to the reduced
system description is denoted by m. Subsequently, the system response of Equation (3-3) is
reduced according to Equation (3-4):

x(t) =
m∑
j=1

φjηj

= Ṽrη(t)
(3-4)

The ODE of Equation (3-1) can now be rewritten by multiplying each element with the
selected eigenmodes, which is represented by the reduced matrix Ṽr as follows:

Ṽ T
r MṼr︸ ︷︷ ︸
:=M̃r

η̈(t) + Ṽ T
r DṼr︸ ︷︷ ︸
:=D̃r

η̇(t) + Ṽ T
r KṼr︸ ︷︷ ︸
:=K̃r

η(t) = Ṽ T
r b︸︷︷︸

:=F̃r

F (t)
(3-5)

The principles of model reduction are discussed above and will be used in the extending
system description in Section 3-2. Furthermore, the method of model reduction will be used
for the mechanical model of the derived wind turbine model in Chapter 4 as well.

3-2 The extended system description

In order to allow for simultaneous controller and structure redesign, the system must be
extended. The structural dependencies are extracted from the system description. This can
be achieved through different methods, namely through extension using internal forces or
an affinely-dependent system description. The two methods are discussed with the use of
the double mass-spring-damper system of Figure 3-1. The following differential equation of
Equation (3-6) describes the double mass-spring-damper system.[

m1 0
0 m2

]
︸ ︷︷ ︸

M

[
ẍ1
ẍ2

]
+
[
d −d
−d d

]
︸ ︷︷ ︸

D

[
ẋ1
ẋ2

]
+
[
k −k
−k k

]
︸ ︷︷ ︸

K

[
x1
x2

]
=
[
1
0

]
︸︷︷︸
b

F (t); (3-6)

m1 m2

k

d

F

x1
x2

Figure 3-1: Double mass-spring-damper system interconnected through a spring k and vicious
damper d.
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The state-space representation is obtained by recasting the structural matrices and defining
the states of the system as

[
ẋ1 ẋ2 x1 x2

]T
. Furthermore, the outputs of the systems are

the position of the masses, which are respectively x1 and x2. Notice, that from the input F to
x1 the input is directly applied to the output y1 (collocated) and from F to x2 the input works
not directly on the output y2 (non-collocated). The full description of state-space realization
is as follows:


ẍ1

ẍ2

ẋ1

ẋ2

 =


−d/m1 d −k/m1 k

d −d/m2 k −k/m2

1 0 0 0
0 1 0 0




ẋ1

ẋ2

x1

x2

+


1
0
0
0

F (t)

y1

y2

 =

0 0 1 0
0 0 0 1



ẋ1

ẋ2

x1

x2



(3-7)

For a more brief approach of recasting Equation (3-6) into a state-space form is given by
Equation (3-8), and will be used in the upcoming sections.[

ẍ
ẋ

]
=
[
−M−1D −M−1K

I 0

]
︸ ︷︷ ︸

A

[
ẋ
x

]
+
[
M−1b

0

]
︸ ︷︷ ︸

B

F (t) (3-8)

Extending with forces

This extension method is adopted from the work of Van Solingen et al. (2014). By using the
extension through forces, then the structural parameters can be extracted by introducing an
external force Fext. For the mass-spring damper system, an external force replaces the actual
spring stiffness by working on both the masses, as Fk = k(x2 − x1). This reasoning can be
applied for the damping constant, Fd = d(ẋ2 − ẋ1) as well. The state-space representation of
Equation (3-8) can be extended. By adding the internal forces of the spring and damper as
function of respectively the position and velocity to the original input force F (t).

Fext =
[
1 −1 −1
0 1 1

]F (t)
Fk(t)
Fd(t)

 (3-9)

Notice that the input of the system is extended from one to three and the original b is included
as well. The expression of Equation (3-9) is substituted in Equation (3-8) and the following
extended state-space relation is derived:[

ẍ
ẋ

]
=
[
02×2 02×2
I2×2 02×2

] [
ẋ
x

]
+
[
M−1Fext

02×1

]
(3-10)
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This method works as long as the structural dependencies can be made explicit through
forces. By using this method, the spring and damper are replaced by forces acting on the
system. However, instead of replacing the structural parameters with forces, they could be
an addition to the system, like in the work of Van Herpen et al. (2014). The additional spring
or damper correlates with the nominal value instead of a complete replacement. This could
be beneficial for the design freedom of the structural parameters. However, for complicated
physical systems it is rather difficult to extend the system through forces. Therefore, a
different method is proposed using linear perturbations of the system parameters in the
following section.

Affinely-dependent parameters

Due to the fact that the support structure of the wind turbine consists of multiple nodes,
the approach of extracting the structural parameter through forces is time-consuming and
not that straightforward. Therefore, the approach of extending the system through affinely-
dependent parameters is proposed. This approach makes use of the original structural ma-
trices (M,D,K) and split them in a summation of each structural matrix through a linear
dependent parameter, for example a wall thickness parameter in Chapter 4. The extraction
of the linear parameter makes it available for optimization. This approach originates from
integrated design applications using Linear Matrix Inequalities (LMIs), as in the work of
(Grigoriadis and Skelton, 1998). The structure is allowed to change by linearly varying the
matrices in the description of Equation (2-4). This statement holds: first of all, when the
structural parameters are linear terms in the system description (Grigoriadis and Skelton,
1998). Secondly, the structural perturbations are enforced by inputs to the actual system
(Apkarian and Noll, 2017), like explained in Chapter 2.

The perturbations are formulated by looking at the work of Van der Veen et al. (2017),
in which sensitivities of changing the mass and stiffness matrices are considered. Using this
approach, the underlying sensitivities of parameters are mapped (Géradin and Rixen, 2014).
The parameter for which the sensitivity is computed is a property of the mass and stiffness
matrix. In this thesis, the sensitivity assessment for mass and stiffness matrix is done for
the wall thickness of the support structure. Furthermore, for most physical systems chang-
ing physical properties influences the mass and stiffness matrix in a coupled manner. The
sensitivity matrices for the mass and stiffness matrices are as follows:

M(∆pi) = ∂M
∂pi

∆pi K(∆pi) = ∂K
∂pi

∆pi (3-11)

The next step is to use the expression of Equation (3-11) and convert it to an affine property
of the system. This is achieved by computing for each structural perturbation ∆pi, the
corresponding sensitivity of the mass and the stiffness matrices (Gu et al., 2005). The overall
structural change of the mass and stiffness matrix can be resembled by a summation along
the total number of perturbations n. The expression using the total number of perturbations
is as follows:

M = M0 +
n∑
i=1

∂M
∂pi

∆pi K = K0 +
n∑
i=1

∂K
∂pi

∆pi (3-12)

where the subscript 0 at the structural matrices (M,D,K) stands for the initial unperturbed
matrices, which are constant regardless of the change of the parameters in pi. Subsequently,
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Equation (3-12) is substituted in the following parameter dependent ODE resulting in an
extended system description:

M(p)ẍ+D(p)ẋ+K(p)x = bF (t) (3-13)

where the structural parameters p can be varied as inputs for the system as Equation (3-15).
Hence, it is now possible to incorporate this procedure on the integral controller and support
structure design of a wind turbine in Chapter 5.

M0ẍ+D0ẋ+K0x =
[
−

n∑
i=1

∂M
∂pi

∆pi −
n∑
i=1

∂K
∂pi

∆pi b

] ẍ
x

F (t)

 (3-14)

Furthermore, the representation of Equation (3-15) for integrated design can still be reduced
with the method explained in the previous section. The above relation is reduced by still
using the structural perturbation as an input of the system.

M̃0,rη̈ + D̃r,0η̇ + K̃r,0η =
[
−Ṽ T

r

n∑
i=1

∂M
∂pi

Ṽr∆pi −Ṽ T
r

n∑
i=1

∂K
∂pi
Ṽr∆pi Ṽ T

r b

] η̈
η

F (t)

 (3-15)

However, linear varying the structural perturbations will influence the eigenfrequencies and
modeshapes of the system. This influence will be discussed in the next section. Therefore,
the needed definitions of eigenfrequency and eigenmode sensitivity are explained in Appendix
A.

3-3 Showcase example: mass-spring-damper system

In order to clarify the steps taken for extending a system and to perform structural redesign,
a showcase example is given of a mass-spring-damper system. Both Van Solingen et al. (2014)
and Van Herpen et al. (2014) give an example of a 2-DoF system in order to explain and verify
their extending method. The double mass-spring-damper system is displayed in Figure 3-1
and with the corresponding ODE of Equation (3-6). In this example, it is assumed that
the damping can be represented by a viscous damper d, which is a constant value. For the
structural model of the OWT a more practical expression for the damping is used, namely the
Rayleigh damping. This makes use of a linear combination of the mass and stiffness matrix
namely, D = αK + βM . The advantage of using Rayleigh damping over other methods,
is that is has no influence on the modeshapes and the eigensolutions. The eigenfrequencies
with corresponding eigenmodes (Figure 3-2) are calculated by solving the eigenvalue problem
(Appendix A) and are as follows:

ωr,i =


ωr,1 = 0, with φ1 =

[
1 1

]T
ωr,2 =

√
k

m1m2/(m1+m2) , with φ2 =
[
1 −1

]T (3-16)

From the system description of Equation (3-7), a frequency response of the open-loop system
can be made. The bode plot is shown in Figure 3-3 for both the mass positions. However, due
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to relative ease of controlling the position of the first mass x1, only the second mass position
x2 is considered in this simulation example.

�1 �2

�

�

����1
��

(a) First eigenmode (rigid mode)

�1 �2

�

�

����2
��

(b) Second eigenmode (flexible mode)

Figure 3-2: Eigenmodes of the double mass-spring-damper system.

It can be seen that changing structural parameters directly influence the eigenfrequency of
the system. From a control perspective, the bandwidth ωb of the system is bounded by the
resonance frequency ωr,2 of the system. Implying that the eigenfrequency is high, then the
bandwidth of the system is high, as well. This behavior originates from the fact that at the
resonance frequency ωr,2 the phase of the open-loop drops −180◦, which negatively influences
the closed-loop behavior. Thus, the controller structure optimization heavily depends on the
change of the eigenfrequency and the corresponding eigenmodes. Therefore, the sensitivities
of perturbing a structural parameter on the eigenfrequencies and eigenmodes are determined.
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Figure 3-3: Open-loop bode plot for the transfer relation of the position for x1 and x2 with as
input the applied force F . For m1 = m2 = 1 and k = 1; d = 0.05.
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Eigenfrequency sensitivity

The method of calculating the eigenfrequency sensitivity is presented in Appendix A and is
obtained from the work of Géradin and Rixen (2014). Due to the simplicity of the double
mass-spring-damper system the structural parameters are independently varied. The analysis
provides insight in the direction and magnitude regarding the system’s eigenfrequency will
change due to structural adjustments. In this case, there is no physical coupling between mass
and stiffness of the system. In contrast to the coupled wind turbine structure in Chapter 4,
both the mass and stiffness matrices are characterized by the same structural terms. In
Table 3-1, the resulting sensitivities are shown. By looking at the table, the results are the
same as the calculated eigenfrequencies of Equation (3-16). Hence, by increasing the stiffness
k a higher eigenfrequency will be obtained while increasing the mass the eigenfrequency will
drop. Moreover, this inverse behavior can lead to trivial solutions. Due to the infeasibility
of the problem and the coupled wind turbine matrices, a coupling for the mass and stiffness
parameters should be considered for CSO.

Table 3-1: Sensitivity analysis (k,m1,m2) for the first and second eigenfrequency of the double
mass spring damper system

Mode i ∂ω2
i /∂k ∂ω2

i /∂m1 ∂ω2
i /∂m2

φ1 =
[
0 0

]T
0 0 0

φ2 =
[
1 −1

]T
2 -1 -1

Eigenmode sensitivity

One can imagine that when the eigenfrequencies change due to a structural perturbation, the
corresponding eigenmodes will change as well. It should be avoided that the fundamental
modeshapes change shape, because this violates the assumption of linearly varying structural
parameters (Van der Veen et al., 2017). In order to determine, whether the updated mode-
shape shows a significant similarity with the original modeshape, a measure of comparison is
introduced.

First, the sensitivity of the modeshape to a structural change is determined with the work
of Géradin and Rixen (2014). The derivation of the method is presented in Appendix A.
Secondly, the similarity between the perturbed modeshape and original is checked by using
the Modal Assurance Criterion (MAC) of Pastor et al. (2012).

By definition the outcome of the MAC value can only vary between 0 and 1, where q implies
that updated mode-shape and the initial modeshape are completely similar. In order to per-
form the assessment, the structural parameter is varied by a coefficient µ with respect to the
modeshape sensitivity. The resulting modeshape is added to original modeshape φc, which
gives a new updated modeshape φnew using Equation (3-17):

φnew = µ
∂φ

∂pi
+ φc (3-17)
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The resulting modeshape φnew is compared with the original modeshape φc by using the MAC
value for several magnitudes of µ. The results are shown in Figure 3-4. From this figure,
several things can be concluded. Firstly, only changing the stiffness k will not influence the
modeshape. Secondly, solely changing the mass of the system results in slightly different mode-
shapes. Furthermore, due to the nonlinear relation between changing structural parameters
and mode-shapes, it is stated that for high perturbations the original modes are not suitable
for approximations (Allemang, 2003). As shown in Figure 3-4, the MAC value of the new
modeshapes should stay in a bound of 5% with respect to the original modeshape. In order
to avoid modes switching or nonlinear behavior. Hence, based on the results the perturbation
in masses should be kept within 40% of the initial mass value.
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Figure 3-4: Model assurance criterion along linear varying a structural parameter (k, m1, m2)
by a coefficient µ.

Final routine: Controller-Structure Optimization

The outcome of the structural analysis can be used for the final routine. The system de-
scription of Equation (3-6) is extended by using the affinely-dependent parameter framework
of Equation (3-15). By using the outcome of the sensitivities of changing parameters the
following extended system description is obtained:

Mẍ+Dẋ+Kx =
[
∂M
∂m1

∆m1
∂M
∂m2

∆m2
∂K
∂k ∆k b

]

ẍ
ẍ
x

F (t)

 (3-18)

where the masses (m1,m2) and the stiffness (k) are made available for optimization. It can
be noticed that the system description is extended from one to four different inputs. From
Chapter 2, it is known that the goal is to optimize both the structural and controller param-
eters in order to obtain better closed-loop performance. The integrated design is based on
fixed-structured controller design. Therefore, the controller framework is chosen beforehand
and is directly obtained from the work of Van Solingen et al. (2014). The weight function is
directly adopted as well and is shown in Equation (3-22). The controller is a PD-controller
including a time-delay as:

KPD(s) = Kp +Kds

0.01s+ 1 (3-19)
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The generalized plant is constructed and described in Chapter 2. Since the controller gains
are defined on the controller block diagonal K, the time-delayed integrator is absorbed in
the generalized plant. This is shown in Figure 3-5. The structural perturbations are made
available through the ∆p block, which is diagonal as well. Simultaneous design is available
through the following definition of the diagonal matrices:

K =
[
Kp

Kd

]
, ∆p =

∆m1
∆m2

∆k

 (3-20)

Then, through the extended system description, the structural perturbations to the system
are available through control gains. The following input signals are defined which use the
sensitivity of changing the parameters:

F∆m1 = ∆m1ẍ

F∆m2 = ∆m2ẍ

F∆k = ∆kx
(3-21)

⎡

⎣
⎢
FΔm1

FΔm2

FΔk

⎤

⎦
⎥

G(s)

Kp

Kd

Δp

⎡

⎣
⎢
ẍ

ẍ

x

⎤

⎦
⎥

Wp

s

0.01s+ 1

1

0.01s+ 1

−

u2u1

+−x2

P
z1

v1

v2

ω = x2,ref

Figure 3-5: Configuration of the plant and the controller for simultaneous design of plant and
controller for the double mass-spring-damper system given by G(s). The PD-controller derivative
and time-delay are absorbed in the generalized plant. The controller is given byK = diag(Kp,Kd)
and plant perturbations are given by ∆p = diag(∆m1,∆m2,∆k)
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Furthermore, what is shown in Figure 3-5 is that the input of the controller is the measured
position x2. The controller output is used as negative feedback relative to the input force
F acting on x1. In order to show that including the structural parameters is beneficial, two
cases are defined with their corresponding weight function Wp:

• Nominal case: in this case no structural alterations are implemented. The case will
serve as a benchmark. The perturbations of the plant are excluded by introducing a
hard constraint on the perturbation block, namely ∆p = 0. The closed-loop system
performance is enforced by a bound on the sensitivity function S by a second-order
performance weight where βp = 0.3, Mp = 2, Ap = 1 · 10−3 and ωB = 0.1.

Wp(s) =
s2/M2

p + 2βpωBs+ ω2
B

s2 + 2βpApωBs+ (ApωB)2 (3-22)

• Controller structure case: the case allows for structural perturbations. Therefore, the
performance weight is slightly adjusted for this case. The adjustment of the performance
weight enforces the eigenfrequency to shift. Additionally, the weight is constructed in
such a way, that infeasible result are prevented (e.g. parameters going to infinity),
adopted from Van Solingen et al. (2014)

Wp,1 = Wp(s)×
s2 + 2β∗pA∗pω∗Bs+ (A∗pω∗B)2

s2/(M∗p )2 + 2β∗pω∗Bs+ (ω∗B)2 (3-23)

where β∗p = 0.9,M∗p = 1.9, A∗p = 1.1 and ω∗B = 1. These parameters are slightly changed
with respect to the work of Van Solingen et al. (2014). The modification can be seen
as putting a constraint on the peak of the resonance frequency forcing the system to be
altered. Additionally, the value for β∗p can be iteratively adjusted in order to explore
the boundaries of changing the resonance frequency.

Case 1: Nominal case

The nominal case is performed by taking the same routine as Van Solingen et al. (2014). The
nominal case gives a good starting point for comparing the results obtained from the CSO
case. Furthermore, the system GF→x2(s) is used, implying that the structural properties are
not altered. The performance weight Wp is placed as a bound on the sensitivity function in
order to impose closed-loop performance. Then, the following norm

∥∥WpS
∥∥
∞ is minimized by

changing the controller parameters Kp and Kd. For the nominal case, reduction methods are
not included, due to the simplicity of the problem.

Figure 3-6 shows the open-loop frequency response and the sensitivity function of the system
The resonance peak is clearly visible in both graphs and cannot be shifted by only implement-
ing a controller. The proposed norm reduction gives a satisfactory result of

∥∥WpS
∥∥
∞ = 0.873

with the founded controller parameters Kp = 0.073 and Kd = 0.136. It is expected that for
the next case by including the structural properties, e.g. the masses (m1,m2) and stiffness
(k), the open-loop frequency response will change.
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Figure 3-6: The open-loop frequency response of the original system G(s)F→x2 (left). The
sensitivity function (right) of the optimized controller and the initial sensitivity function (without
control). The inverse of the performance weight Wp is shown, as well .

Case 2: Controller structure optimization case

The system is extended by using the description of Equation (3-15) by including the sensi-
tivities for both the masses and stiffness. In order look to enforce the resonance peak to shift
the performance weight of Wp is slightly modified into Wp,1. This results in a more desired
response in frequency domain terms. The design freedom of the structural parameters is de-
termined from the modeshape sensitivity of previous section in order to avoid nonlinear mode
switching. The design boundaries are given by −0.4 ≤ ∆p ≤ 0.4, where p =

[
m1 m2 k

]
.
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Figure 3-7: The original open-loop frequency response and the updated system (left). The
sensitivity function of the controller-structure optimization case and the nominal case (right).
The adjusted inverse of the performance weight Wp,1 is included as well.

The results are shown in Figure 3-7, including the open-loop frequency response of the nominal
system and the updated system. Furthermore, from the updated sensitivity function it can be
noticed that the frequency peak shifts, from 1.428 [rad/s] to 1.525 [rad/s]. The resonance peak
is lowered when the structural parameters are available for optimization as well. This implies
that the damping ratio of the system is influenced by changing both the stiffness and mass.
Moreover, changing the resonance frequency to more favourable values introduces a problem
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3-3 Showcase example: mass-spring-damper system 35

on its own. Now, the vicious damping is just a constant and cannot be influenced by control
methods. The influence of changing modal damping should be considered when the method
is applied on the wind turbine model. By including the structural perturbations the updated
system has a closed-loop performance of

∥∥WpS
∥∥
∞ = 0.902. The updated controller parameters

are given by Kp = 0.0613 and Kd = 0.1384. The updated system has the following structural
parameters: m∗1 = 0.64, m∗2 = 1.11 and k∗ = 0.95. The step response of the implemented
controllers for the updated system and the nominal system are shown in Figure 3-8. It can
be observed that the CSO case have slightly improved settling time and peak response. The
difference is marginal, however it should be noticed that the overall masses are reduced, which
is of special interest for the mass minimization of the support structure in Chapter 5.

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

2

Figure 3-8: Step response of both the nominal case and the CSO case. A slight improvement
of the CSO case with respect to the nominal case is noticed.

Hence, the structure and controller can be simultaneously varied, and subsequently, nominal
performance is still guaranteed.
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Chapter 4

Modelling of the OWT

This chapter is dedicated to the modelling of an offshore wind turbine model and will be used
for the application of the proposed integral design framework. The developed wind turbine
model is based on the work of Bianchi et al. (2006) and the Simplified Low Order Wind
turbine (SLOW) of Sandner et al. (2012). A simplified linear wind turbine model is derived
and is compared to the more detailed nonlinear model from the in-house aeroelastic code
of Siemens Gamesa Renewable Energy (SGRE) called Bonus Horizontal Axis Wind turbine
Code (BHAWC).

The model combines an aerodynamic model with a more detailed support structure. The
importance for incorporating the aerodynamic model is mainly for the following two reasons.
Firstly, the relation between wind and resulting forces and torque on the turbine is captured.
This relation allows the implementation of control inputs to alter these parameters. Secondly,
additional damping is introduced to the system, which is referred to as aerodynamic damping.
The support structure consists of a foundation, tower and soil dynamics, which is coupled
with a concentrated mass representing the Rotor Nacelle Assembly (RNA).

A schematic representation of the proposed Offshore Wind Turbine (OWT) model is depicted
in Figure 4-1. In this figure, the inputs of the OWT are given by the reference rotor speed
Ω̂ref , the wind speed V̂wind and pitch angle β̂, where the hat "(̂·)" relates to the variations
around the steady-state values. The outputs are the rotor speed Ω̂r and the Fore-Aft (FA)
acceleration ÿt at tower top. These outputs are deliberately selected in this way in order to
obtain a load reducing controller for above-rated conditions. Furthermore, the aerodynamic
model and mechanical model are coupled by the aerodynamic torque T̂r and thrust F̂T . The
two negative feedback loops, from Ω̂r to Ω̂ref and from ÿt to V̂wind, are incorporated to cap-
ture the nonlinear interaction between the two submodels.
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Aerodynamic
Model 

Mechanical
Model

∫

F̂ T

T̂ r Ω̂r

ÿ t

Ω̂ref

β̂

V̂ wind

-

- V̂ e

Ω̂r,in

Figure 4-1: A schematic representation of the closed-loop wind turbine model based on Bianchi
et al. (2006).

In the following sections, the OWT model of Figure 4-1 is broken up into two sub-models.
Section 4-1 covers the aerodynamic model and highlights the interaction between the rotor
and the wind. Then, in Section 4-2 the mechanical model is presented. Here, the support
structure is described as a parameter dependent state-space model, addressing properties as
wall thickness, length and diameter. In Section 4-3 the sub-models will be interconnected and
linearized around wind speeds. Finally, the resulting wind turbine model is verified against
the high-fidelity non-linear wind turbine model of BHAWC.

4-1 Aerodynamic model

The aerodynamic model is based on the interaction of the wind and the turbine, which
results in a rotating rotor. Likewise, the produced torque introduces a thrust force exerted on
the Rotor-Nacelle-Assembly (RNA). The input-output behavior of the aerodynamic model is
summarized by the schematic representation in Figure 4-2. In this figure, the effective wind
speed Ve accounts for the counteracting movement of the tower top velocity with respect to
the incoming wind speed as Ve = Vwind− ẏt, where ẏt is the tower top velocity in FA direction.
Furthermore, the use of Ω̂in is the subtraction of Ω̂r,in = Ω̂ref−Ω̂r as already explained in the
introduction. In the following paragraphs these relations are discussed and linearized around
different operating points.

Aerodynamic
Model F̂ T

T̂ rΩ̂r,in

β̂

V̂ e

Figure 4-2: A schematic representation of the aerodynamic model inputs and outputs.

Aerodynamic relations and linearization

Usually the aerodynamic relations are expressed in terms of an effective wind speed Ve, the
air density ρ, the rotor radius R and the aerodynamic properties of the rotor. The latter
is normally described in terms of non-dimensional torque (CQ) and thrust (CT ) coefficients.
These coefficients depend on the tip-speed ratio λ = ΩrR

Ve
and the pitch angle β. Equivalently,
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4-1 Aerodynamic model 39

the aerodynamics thrust force and torque are described by Equation (4-1) according to Bianchi
et al. (2006):

FT = 1
2ρπR

2CT (λ, β)V 2
e

Tr = 1
2ρπR

3CQ (λ, β)V 2
e

(4-1)

There is assumed that the aerodynamic efficiency along each turbine blade is rigid. Addition-
ally, the wind along the blade is distributed equally over the entire swept area of the rotor.
Due to the nonlinear behavior of the thrust and torque coefficients and the use effective wind
speed, direct implementation unnecessarily complicates the system model. Therefore, a lin-
earization is performed around the operating points of the wind turbine.

The linearization of the above stated aerodynamic equations can be done by a first order
Taylor approximation. The aerodynamic thrust and torque are approximated by following
expressions:

F̂T = −BT (Ω̄r, V̄e, β̄) · Ω̂r + kT,Ve(Ω̄r, V̄e, β̄) · V̂e +KT,β(Ω̄r, V̄e, β̄) · β̂
T̂r = −Br(Ω̄r, V̄e, β̄) · Ω̂r + kr,Ve(Ω̄r, V̄e, β̄) · V̂e +Kr,β(Ω̄r, V̄e, β̄) · β̂

(4-2)

Where the bar (̄·) sign and the hat (̂·) sign over the variables, respectively denotes the steady-
state (equilibrium) value and the variation around that steady-state value. From the above
expression the aerodynamic partial derivatives also referred as sensitivity coefficients are given
by:

BT (Ω̄r, V̄e, β̄) = ∂FT
∂Ωr

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

Br(Ω̄r, V̄e, β̄) = ∂Tr
∂Ωr

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

kT,Ve(Ω̄r, V̄e, β̄) = ∂FT
∂Ve

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

kr,Ve(Ω̄r, V̄e, β̄) = ∂Tr
∂Ve

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

kT,β(Ω̄r, V̄e, β̄) = ∂FT
∂β

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

kr,β(Ω̄r, V̄e, β̄) = ∂Tr
∂β

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

(4-3)

The turbine is operating according the operating curve, which is specified in Figure 4-3. The
equilibrium values for the pitch angle and rotor speed can be addressed through only the wind
speed. This implies that the linearization of the aerodynamic model is described by scheduling
around the V̄e, e.g. Ω̄r(V̄e) and β̄(V̄e) (Mohammadpour and Scherer, 2012). The scheduling
around a wind speed will be used in Section 4-3 for obtaining multiple linear models.
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0 5 10 15 20 25 30

Figure 4-3: Nominal operating trajectory of the 8MW turbine obtained from BHAWC simulations.
With the mean rotor speed (+) and the collective pitch angles (◦) over increasing wind speeds
[m/s]. By the courtesy of SGRE.

From Figure 4-3 the control strategy with respect to the trajectory of rotor speed and pitch
angle can be determined. The wind turbine starts operating at the cut-in wind speed of 3
[m/s]. The turbine is shut down a the cut-out wind speed of 28 [m/s] protecting the turbine
for high induced aerodynamic loading. The rated wind speed is 12 [m/s]. The cut-in and
cut-out wind speeds provide the boundaries of the normal operational region. Between this
regions, different control methods are used for increasing the power production and at the
same time reducing the loads exerted on the turbine. These so-called control regions are
already explained in Chapter 1, but for ease will be repeated with the use of Figure 4-3:

• The region between cut-in and the rated speed. In this region, the turbine is operating
in partial-load condition. In order to extract maximum power from the wind, the pitch
angle is kept constant at its optimum as shown in Figure 4-3. because of the low wind
speeds the rotor speed is below the rated value. Furthermore, the generator torque Tg
is used as a control input. By using the generator torque as input, the fluctuations
in the drive-train can be mitigated. As a consequence the loads on the drive-train are
reduced.

• The region between rated and the cut-out speed. In this region, the turbine uses the
pitch angle as control input: by pitching in and out of the wind, the rotor speed is held
at the rated level. Furthermore, the turbine operates with a direct-drive configuration,
implying that the rotor torque equals the generator torque.

The operating points of the 8.0MW wind turbine are now explained. From the expressions for
the aerodynamic model of Equation (4-2), the use of the torque CQ and force coefficients CT
are mentioned. These analytical expressions are not available for the 8.0MW wind turbine
model. Therefore, the thrust and torque magnitude are approximated directly from thrust
and torque curves in the following section.
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Thrust and torque curves

The aerodynamic model for the 8MW turbine is determined with the help of the in-house aero-
elastic code BHAWC, provided by SGRE. From a control perspective, it is preferred to have
a linearized state-space model of the wind turbine, where the mechanical and aerodynamic
model of the turbine are combined. However, these linearized state-space models cannot be
obtained directly from BHAWC. Fortunately, the thrust and torque curves as a function of
pitch, rotor speed and wind are available through look-up tables. The dependence on three
variables makes visualization of these curves difficult. Therefore, the thrust and torque is
linearized around a wind speed of 18 [m/s] and a rotor speed of 1.1 [rad/s]. The resulting
curves are shown in Figure 4-4.

(a) (b)

(c) (d)

Figure 4-4: Aerodynamic thrust FT and torque Tr curves of 8.0MW SGRE wind turbine depend-
ing on pitch angle, rotor speed and wind speed. The curves are linearized around a wind speed
or a rotor speed. The data is obtained from BHAWC. By courtesy of SGRE.

From an analytical point of view, obtaining the CQ and CT coefficients for the linearization of
Equation (4-2) is preferred. However, these coefficients are only directly usable for torsional-
rigid blades. For the 8.0MW SGRE turbine the blades are flap-wise and twist coupled.
Therefore, the coefficients become a function of wind speed, pitch and rotor speed. Hence, the
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aerodynamic thrust and torque are used directly from simulations. Since these are available in
a discrete manner, the aerodynamic gains are determined numerically, using finite difference
principles as follows:

BT (Ω̄r, V̄e, β̄) = ∆FT
∆Ωr

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

Br(Ω̄r, V̄e, β̄) = ∆Tr
∆Ωr

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

kT,Ve(Ω̄r, V̄e, β̄) = ∆FT
∆Ve

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

kr,Ve(Ω̄r, V̄e, β̄) = ∆Tr
∆Ve

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

kT,β(Ω̄r, V̄e, β̄) = ∆FT
∆β

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

kr,β(Ω̄r, V̄e, β̄) = ∆Tr
∆β

∣∣∣∣∣
(Ω̄r,V̄e,β̄)

(4-4)

The linearization of the aerodynamic model is performed by using the expression of Equa-
tion (4-4). This expression is assumed to be valid when the curves show linear behavior in
the applied operating region. The validity is checked by plotting the derived aerodynamic
gains with respect to increasing wind speed. The results are shown in Figure 4-5. From these
results, it is shown in the region of the above rated wind speeds the aerodynamic gains show
no abrupt changes in sign or magnitude. Therefore, it can be concluded that the linearization
of the aerodynamic model is valid and, therefore can be used for the wind turbine model.
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Figure 4-5: Aerodynamic gains of the 8.0MW SGRE turbine. (a) from rotor speed to thrust.
(b) from effective wind speed to thrust. (c) from pitch angle to thrust. (d) from rotor speed to
torque. (e) from effective wind speed to torque. (f) from pitch angle to torque. The sensitivities
of interest are given in the above rated region ( ).
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4-2 Mechanical model

In this section, the mechanical model will be discussed. The mechanical model consists of
the rotor and the support structure. First, the rotor model and the pitch model will be
explained, which translates the aerodynamic torque T̂r to a rotor speed. Thereafter, the
support structure is discussed. The support structure is excited by the aerodynamic thrust
force F̂T which causes a Fore-Aft acceleration. Furthermore, the support structure involves
coupling of foundation, tower and Rotor Nacelle Assembly. The aerodynamic inputs and
resulting output relations for the mechanical model are depicted in Figure 4-6.

Mechanical
ModelF̂ T

T̂ r Ω̂r

ÿ t

Figure 4-6: A schematic representation of the mechancial model inputs and outputs.

Rotor Model

First of all, it should be mentioned that the physical coupling of the structure and the aero-
dynamic model is based on the Simplified Low Order Wind turbine model of Sandner et al.
(2012). This model introduces the interaction between the wind and the structure. The
structure can be described by mass, stiffness and damping terms, which is excited by the
aerodynamic thrust force FT . Furthermore, the aerodynamic torque Tr is working on the ro-
tor of the turbine. These relations can be expressed with the following Ordinary Differential
Equations (ODEs):

T̂r − T̂gen = JrΩ̇r

Mcẍc +Dcẋc +Kcxc = bF̂T
(4-5)

where xc stand for the nodes of the support structure, which will be explained in the upcoming
sections. The T̂gen stands for the variation of generator torque. In order to prevent the rotor
from abrupt speed changes, the inertia of the rotor Jr is included. The subscript c represents
the structural matrices (Mc,Dc, Kc) for the whole support structure, which is assembled in
the upcoming sections. Section 4-2 describes a linear mechanical model of the wind turbine
and only operates in above-rated wind speeds. In that particular case, it can be assumed that
the variation of the generator T̂gen equals zero. Therefore, results in the following expression:

T̂r = JrΩ̇r

Mcẍc +Dcẋc +Kcxc = bF̂T
(4-6)
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Pitch mechanism model

When the 8.0MW wind turbine is operating in above rated conditions, only the pitch angle
is used as control input. It is chosen to incorporate a pitch actuator model into the wind
turbine model. The pitch actuator can be modelled as a first-order time delayed dynamical
system (Bianchi et al., 2006). The pitch model is assumed to operate linearly and is expressed
as follows:

β̇ = −1
τ
β + 1

τ
βd (4-7)

where β is the pitch angle, βd the demanded or desired pitch angle and τ is the time delay. The
time delay is parameterized as τ = 0.3 [s], which is adopted from 8.0MW BHAWC model of
SGRE. For this work, the pitch model of Equation (4-7) is used for control design. However,
in reality, the pitch actuation is constrained by saturation levels, maximum pitch angles and
rates. For the controller synthesis in Chapter 5, these saturation levels are taken into account
through the weight design of the rotor speed controller. For future work, it is interesting
to investigate the possibilities of including these dynamic constraints into the control design
framework of Chapter 5.

Tower model

The tower section of the 8.0MW turbine is modelled by SGRE using finite element modelling
approaches. The elements are connected to form the overall tower structure. These elements
can be represented by a thin walled cylinders (t << r) corresponding to a tower section,
where t stands for the wall thickness and r for the radius of an element. From now on the
elements are referred as shells. The used tower model of the 8.0MW turbine consists of a
total of 40 shells each with varying wall thickness ti, diameter Di, as shown in Figure 4-7.
The subscript i stands for the position of the shell. The different properties for normal and
thin walled cylinders are given in Table 4-1. The structural properties and specifications, e.g.
radius and length per shell, are presented in Appendix B.

Table 4-1: Physical properties cylinders and thin walled cylinders (t << r)

Symbolic expression Cylinder Thin walled cylinder

A cross sectional area π(r2
o − r2

i ) 2πrt
Iz Second moment of inertia π

4 (r4
o − r4

i ) πr3t

ro, ri Outer and inner radius ro,ri ro ≈ ri

These shell elements are based on general beam theories like Euler-Bernoulli and Timoshenko,
which are widely used by the industry for support structure design (Arany et al., 2015). The
main difference between the two theories originates from when the beam is bent by a applied
force. When a Timoshenko beam is bent, it allows for a rotation between the cross section and
the bending line, which is not the case for the Euler-Bernoulli beam theory. This inclusion
of rotation is illustrated in Figure 4-8. It can be seen that the Euler-Bernoulli beam is
perpendicular to the bending line.
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Figure 4-7: The tower consists of a finite number of shells. Each shell can be described by
corresponding diameter Di, length Li and wall thickness ti. Where i stands for the number of
shells.
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Figure 4-8: Deformation of a Timoshenko beam (blue) compared with an Euler-Bernoulli beam
(red) under an applied shear force F and moment M . The total displacement is given by δ.

Therefore, the Euler-Bernoulli beam shows less flexible behavior than the Timoshenko beam.
It is chosen to model the tower of the support structure as Euler-Bernoulli beams with 3
Degrees of Freedom (DoF) per node (uy,z, θy). Thus a beam can move in the y- and z-direction
and rotate around the y-axis. The reason for modeling the tower with Euler-Bernoulli beams
is because the differences between the beam theories are negligible for representing a wind
turbine tower (less than 0.1%) (Arany et al., 2016). This can be explained by looking at the
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related shear deformation:

φy = 12EIzky
AGL2 (4-8)

This shear component is included for Timoshenko beams and for Euler-Bernoulli beams it is
assumed to be zero. As long as the surface area A over length L is large enough, the shear
deformation is approximately zero. Furthermore, this can be specified more in the case of
the used thin walled cylinders. Namely, using Table 4-1 the expression of Equation (4-8) can
be reduced to the ratio of (r2/L2). This ratio implies that for larger length over radius r
(L >> r) the use of Euler-Bernoulli over Timoshenko beams is justified. However, this is not
the case for each individually element of the tower of the 8.0MW turbine. The main reason
that Euler-Bernoulli beams are still used is due to the linearly dependency through the wall
thickness as shown in Appendix B. This cannot be done for the Timoshenko beams, and
therefore is not applicable for the proposed framework of extending the system description as
in Chapter 3. The resulting less flexible behavior of the tower model is noticed in Section 4-3,
as well. The Euler-Bernoulli beam and the coupling of the elements is briefly discussed below.
The theory is obtained by using the notes and work of Panzer et al. (2009); Gavin (2014).
Only the resulting structural matrices will be presented. For an extensive overview of the
first principles of Euler-Bernoulli beam theory, the work of the aforementioned authors is
recommended.

Tower

TP

Foundation

y

z
θ

RNA

Figure 4-9: Schematic representation of a lumped mass model of the 8.0MW SGRE wind turbine
with corresponding coordinates.

The tower model is represented by Figure 4-9, which consists out of a total of 40 shell elements.
The total number of elements is provided by the dimension of the tower model, which consisted
out of 40 evenly distributed elements. For each single beam element the nodes are defined
as x =

[
uz1 uy1 θ1 uz2 uy2 θ2

]T
. These coordinated are related to the transnational

directions in z and y of the turbine model, as shown in Figure 4-9. The formulation of mass
and stiffness matrices are presented in Appendix B for Euler-Bernoulli beams. Furthermore,
it is shown in Appendix B that for thin walled cylinders, the structural matrices are linearly
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dependent on the wall thickness parameter. For ease of notation, the simplified form of the
structural matrices are as follows:

M =
[
M e

11 M e
12

M e
21 M e

22

]
K =

[
Ke

11 Ke
12

Ke
21 Ke

22

]
(4-9)

The notation and partitioning of matrices in elements as M e
ij and Ke

ij is used for stacking the
shell together. Furthermore, the superscript e stands for the number of shell element used in
the overall tower structure. The i, and j corresponds to the node positions within each shell
element. To be more precise, each shell element is formed by two consecutive nodes within
the overall tower structure.

The principle of stacking the multiple shell elements in order to obtain the tower model
of the 8.0MW turbine is obtained from Panzer et al. (2009). The primal formulation is given
for the sub-structuring technique of coupling structural elements (Klerk et al., 2008). It makes
use of so-called interface nodes and unique nodes. The former are present in both the yet
to be coupled element dynamics and the latter as singularities between the coupled element
dynamics. In order to explain the coupling of the shell elements, an example of stacking three
shell elements is presented. The same partitioning of Equation (B-1) is used. The resulting
assembly of the stiffness and mass matrix for three elements is given by:

M =


M1

11 M1
12 0 0

M1
21 M1

22 +M2
11 M2

12 0
0 M2

21 M2
22 +M3

11 M3
12

0 0 M3
21 M3

22

 K =


K1

11 K1
12 0 0

K1
21 K1

22 +K2
11 K2

12 0
0 K2

21 K2
22 +K3

11 K3
12

0 0 K3
21 K3

22


This stacking principle is executed for the whole tower structure by assembling all 40 elements
parameterized for the initial 8.0MW SGRE tower design. For the initial design, the shells are
characterized by a different thickness, diameter and length. Furthermore, the parameteriza-
tion of different beam elements is provided by SGRE. Hence, the resulting mass and stiffness
matrices for the tower are given by Mt and Kt.

The Rotor Nacelle Assembly

The RNA of the 8.0MW SGRE turbine is modelled as an equivalent mass with corresponding
rotational inertia terms. The properties of the turbine model are stated in Appendix C. The
blades are not explicitly taken into account. This work focuses on the first bending modes of
the turbine model and the blade dynamics only appear at high frequencies (Osgood, 2001).
The RNA is coupled with the top node of the tower model by adding the RNA mass to
the transnational nodes (uy, uz) and the parallel axis theorem is needed for describing the
rotational node (θy). The assumption is made that adding the RNA does not influence the
stiffness of the total system. The corresponding mass matrix of the RNA is described as
follows:

MRNA =

mRNA 0 0
0 mRNA 0
0 0 Iyy + z2

∆cogmRNA


uzuy
θy

 (4-10)

where the Iyy is the inertial term of the RNA and the z∆cog is the offset in center of gravity
between the tower and the RNA.
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Rayleigh damping

In order to finalize the expression of describing the dynamic behavior of the tower, the struc-
tural damping is still missing. The most effective way is to treat the damping as Rayleigh
damping for large structural systems:

Dt = αtMt + βtKt (4-11)

where αt and βt are arbitrary constant coefficients. These coefficients weight the tower mass
matrix Mt and the tower stiffness matrix Kt, which each contribute to the overall structural
damping Dt. The advantage of using Rayleigh damping over other methods, is that it has no
influence on the modeshapes and the eigensolutions. By using Rayleigh damping, the calcu-
lated response of the structure is greatly simplified (Liu and Gorman, 1995). Furthermore,
the derived damping matrix is only applicable for the tower. The resulting damping ratio of
the tower is validated against the BHAWC model in the Section 4-3 and it will be concluded
that the overall damping of the structure is approximately the same. Since the tower and
RNA are discussed, the overall Ordinary Differential Equation (ODE) of the tower is:

Mtẍt +Dtẋt +Ktxt = bFT (4-12)

whereMt, Dt and Kt are respectively the resulting tower mass, damping and stiffness matrix.
The dimensions of these matrices follow from the total number of coupled shells and the
number of DOFs. Therefore, the dimensions of each matrix are given by NDOF (NShells+1)×
NDOF (NShells + 1).

Foundation model

The foundation model for the 8.0MW turbine is provided by SGRE. The model consists of
a monopile and a Transition Piece (TP). The assembly of these two is called the foundation
structure. The foundation structure is modelled using the same principles as the tower. In
addition to the normal structural dynamics, a linear soil model is added, such that soil and
structural dynamics are coupled. The linear soil is modelled using linear springs and leads
to a contribution of stiffness Gsoil in the differential equation. The foundation model can be
described by the following ODE:

Mf ẍ+Df ẋ+ (Kf +Gsoil)x = bfFext(t) (4-13)

In order to couple the foundation with the tower, the aforementioned primal principle of sub-
structuring is used from Klerk et al. (2008). Hence, the coupling of the tower and foundation
is done as follows:[

Mt 0
0 Mf

]
︸ ︷︷ ︸

:=Mc

[
ẍt
ẍf

]
︸ ︷︷ ︸
ẍc

+
[
Dt 0
0 Df

]
︸ ︷︷ ︸

:=Dc

[
ẋt
ẋf

]
︸ ︷︷ ︸
ẋc

+
[
Kt 0
0 Kf

]
︸ ︷︷ ︸

:=Kc

[
xt
xf

]
︸ ︷︷ ︸
xc

=
[
btF̂T
bfFext

]
︸ ︷︷ ︸

:=bF̂t

(4-14)

where the subscripts t, f , c stand for respectively the structural matrices of the tower,foundation
and coupled model. All the individual parts of the structure are discussed and the structure
is only excited by the thrust force of the aerodynamic model. Additionally, the rotor starts
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rotating due to applied aerodynamic torque. Hence, by coupling the interface nodes of the
tower and foundation, the final ODE of the OWT structure is obtained:

Mcẍc +Dcẋc +Kcxc = bF̂T (4-15)

Due to the coupling of the different finite element based structural matrices, the resulting
support structure model is described by high-order matrices. These matrices are not preferred
in the case of computation time or simulations. Therefore, the resulting structural model is
reduced in the following section.

Reduced mechanical model

The modal reduction method presented in Chapter 3 is used for the model reduction of the
wind turbine model. The full system model of Equation (4-15) can be reduced by computing
the eigenfrequencies and corresponding modeshapes. The frequency response from thrust
force FT to nacelle acceleration ÿt is depicted in Figure 4-10. From the frequency response,
it is deduced that the first two eigenfrequencies are the most dominate due to the high peak
gains and are less damped then the other modes. Therefore, the reduction is done by only
selecting the first two eigenmodes of the support structure. The first mode φ1 causes the FA
bending motion and the second mode φ2 the is second tower bending mode. The corresponding
frequencies are given in Table 4-2. The reduced system is determined by approximating the
reduced system response, which is as follows

xc(t) =
[
φ1 φ2

]
η(t)

xc(t) ≈ Ṽrη(t)
(4-16)

By using the reduced system response of the tower, the system description of Equation (4-15)
is expressed as:

Ṽ T
r McṼr︸ ︷︷ ︸
:=M̃r

η̈(t) + Ṽ T
r DcṼr︸ ︷︷ ︸
:=D̃r

η̇(t) + Ṽ T
r KcṼr︸ ︷︷ ︸
:=K̃r

η(t) = Ṽ T
r b︸︷︷︸

:=b̃r

F̂T (t)
(4-17)

The resulting reduced system of the support structure is depicted in Figure 4-10 as well.
What can be noticed is that for the frequencies below the chosen two resonance frequencies
the curves overlap perfectly. The resonances occurring at higher frequencies at the full scale
model do not significantly influence the behavior of the original system response. Hence, the
assumption can be made that the reduced model preserves the most predominant dynamics.
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Figure 4-10: Frequency response from thrust force at tower top tower FT to acceleration ÿt for
the structural model of the wind turbine. Both the reduced and full model description is depicted.

Since the reduced structural model represents the original structural model reasonably well.
Therefore, it is chosen to interconnect the reduced structural model with the linearized aero-
dynamic model in the next section.

4-3 The complete OWT model

In the introduction of this chapter, the schematic representation of wind turbine model has
been discussed shortly. In this section, the aerodynamic model of Section 4-1 and the me-
chanical model of Section 4-2 are interconnected as depicted Figure 4-1. First, the resulting
wind turbine is linearized around the different operating conditions obtaining multiple linear
models. These models are evaluated and analysed in the frequency domain. Thereafter, one
model of interest is chosen and the resulting behavior is analysed for the aerodynamics and
structural dynamics. The latter is done by comparing time domain simulations executed with
the BHAWC model and the derived wind turbine model.

Multiple linearized wind turbine models

It is assumed that the turbine is operating in above rated conditions, multiple linear models
can be determined by using the steady-state values as depicted in Figure 4-3. As mentioned,
the Controller Structure Optimization (CSO) application on the wind turbine will be per-
formed for above rated wind speed as well. Therefore, the aerodynamic model is linearized in
a range from the rated wind speed at 16 [m/s] until the cut-out wind speed at 28 [m/s]. In
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order to assess the control design from pitch actuation and small deviations of rotor speed, the
wind speeds of interest are defined as Vwind ∈

[
16 28

]
[m/s]. The linearized aerodynamic

model is coupled with the mechanical model of the wind turbine according to Figure 4-1.
Figure 4-11 shows the frequency response of multiple linearized wind turbine systems for two
different inputs. The response for each sub-figure will be analysed in more detail next.

(a) (b)

Figure 4-11: Frequency response of multiple wind turbine models linearized around above-rated
wind speeds ( ). The indicated linear model of interest at 18 [m/s] ( ). (a) shows the
response from wind Ve to tower top acceleration ÿt. (b) shows from pitch angle β̂ to tower top
acceleration ÿt

Figure 4-11a depicts the transfer function from wind speed Ve to tower top acceleration ÿt.
Notice that for low frequencies (<0.1 [rad/s]) small deviations in both magnitude and phase
are visible. For higher wind speeds, the magnitude at lower frequencies get higher. As a
consequence, the phase at lower frequencies drops for higher wind speeds. Furthermore, the
first and second resonance peak do not differ for the different wind speeds. Therefore, it can
be concluded that one single linear model is sufficient for describing the entire cut-in and
cut-out region from wind speed to rotor speed.

Figure 4-11b shows the transfer function from pitch angle β̂ to tower top acceleration ÿt.
Looking at graphs, the opposite behavior with respect to Figure 4-11a is noticed. For higher
wind speeds, the magnitude drops at low frequencies while the phase increases. Moreover,
the height of the resonance peaks fluctuate over different linearized points, where the first
resonance peak is of interest for obtaining a load reducing controller. This resonance peak is
responsible for the amplification of the FA tower motion. Therefore, the aim is to attenuate
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this peak in the transfer function and the procedure achieving this will be presented in Chap-
ter 5. Furthermore, due the slight variation in magnitude for the first resonance peak, the
lowest and highest peak should be analysed. Then it can be determined whether the variation
significantly influences the magnitude of the tuned controller parameters.

Table 4-2: Damping of the first two modes of the 8.0MW SGRE wind turbine model. For only
the mechanical model and for the overall model including the aerodynamic damping.

Frequency ω [rad/s]
Mechanical model Overall model
Pole Damping ζ Pole Damping ζ

1.32 −0.00461± 1.319i 0.0035 −0.0277± 1.32i 0.021
5.55 −0.0733± 5.5459i 0.0132 −0.0741± 5.5458i 0.0134

Note that, due to the coupling of the structural model with the aerodynamic models ad-
ditional damping is added to the modeshapes of the wind turbine system. This additional
damping is referred as the aerodynamic damping and originates directly from the interaction
of the wind flow with the wind turbine structure. Since, the wind turbine of Figure 4-1 uses
the effective wind speed Ve = Vwind − ẏt, the aerodynamic damping is taken into account.
The ratio between the structural and aerodynamic damping is determined by comparing the
frequency response of only the structural model (Figure 4-10) with the overall model (Fig-
ure 4-11). When only the structural model is taken into account, the first FA tower mode has
a damping ratio of ζ1 = 3.5 × 10−3 at the eigenfrequency of ω1 = 1.32 [rad/s]. The second
tower mode has a eigenfrequency of ω2 = 5.55 [rad/s] and corresponding damping ratio of
ζ2 = 1.32× 10−2. The resulting overall model including the additional aerodynamic damping
is presented in Table 4-2.

When the system is operating in normal conditions and remains stable, the damping in-
creases on both tower modes. Subsequently, by using the RNA velocity as feedback to the
effective wind speed, the damping on both modes increases. It can be seen that the effect of
aerodynamic damping is more significant on the first mode then on the second. The damping
for the first tower mode increases to ζ1 = 2.1 × 10−2, making the overall damping ratio for
including the aero-elasticity ζstructural/ζincl.Aero. ≈ 6.

Behavior of the derived wind turbine

The wind turbine is modelled using in-house specifications of the 8MW SGRE turbine re-
sulting in the derived low-fidelity model. The behavior of the resulting linearized models
are evaluated whether the behavior represents the physical turbine. Firstly, the structural
behavior of the wind turbine is validated against the high-fidelity 8MW turbine of BHAWC.
Thereafter, the system is excited by a step in the pitch angle and the resulting behavior of
the rotor speed is analysed.
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Resulting structural behavior

To confirm the correctness of the coupled support structure, two verification studies are per-
formed. The verification focuses on exerting the tower top in FA direction with a force FT .
For the validation, the tower is assumed to be clamped. The reason for clamping the tower
instead of the foundation originates from the fact that the foundation model is directly ob-
tained from SGRE. By clamping the tower, the structural behavior originates only from the
tower model.

For the first analysis, the natural frequency and damping of the tower is obtained from a
decay test. The location of the first natural frequency should, at least for the linear model,
fit with the nonlinear BHAWC model. The analysis is performed by exerting the tower top
with a ramp input FT , with an amplitude of 1200 [kN] and slope of 12 [kN/s]. After 100 [s]
the excitation force is released. This results in a vibration of the support structure in its first
eigenmode as visualized in Figure 4-12 for the nonlinear BHAWC model and linear model.
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Figure 4-12: Time domain simulation of the tower acceleration (above) excited by temporarily
thrust force FT (below). Response is shown for the high-fidelity BHAWC model ( ) and the
derived linear wind turbine model ( ).

Master of Science Thesis D.T.B. Stinenbosch



54 Modelling of the OWT

From this figure, the natural frequency and damping is determined by using logarithmic
decrements method for free vibrations according to Inman (2017). Using this method for the
nonlinear model a damping ratio of ζBHAWC = 0.0081 is found. For the linear, model a damp-
ing of ζlin = 0.0092 is founded. Furthermore, the first natural frequency is approximately 0.28
[Hz] for the nonlinear model and for the linear model 0.31 [Hz]. The difference is caused by
the thin-walled cylinder approach for the Euler-Bernoulli beams making the structure stiffer.
Resulting in a slightly higher first natural frequency, this should be taken into account for the
controller design whether the first-eigenfrequency forms a driving factor, and subsequently be
adjusted for that.

For the second analysis, the tower top is excited to a sinusoidal harmonic force in FA di-
rection. In this case, the force FT is expressed as:

FT (t) = A · sin(f(t) · t) (4-18)

where A is the amplitude of the periodic force, with a value of 1200 [kN ]. Furthermore, the
f(t) is a function of varying frequency over time. The varying frequency goes through a region
around the first eigenfrequency (f0) of the turbine. Figure 4-13 depicts the function f(t). It
depicts the variation of the frequency between 0.18 [Hz] and 0.22 [Hz] over the total time
interval.
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0.2
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Figure 4-13: Varying frequency f(t) over time for Equation (4-18).

Furthermore, the periodic excitation sweep is applied on the tower top and the resulting
response in terms of tower top acceleration is depicted in Figure 4-14. From this figure, it can
be deduced that for the first 30 seconds the models differ quite substantially. This originates
from the initialization time and the BHAWC model moves in multiple directions (FA and
Side-Side (SS)). However, the linear model does not capture this multiaxial movement. After
100 seconds, it can be seen that the behavior of the linear model resembles the response of
the BHAWC. This is due to, the most predominant movement becomes then in FA direction.
In order to validate the linear model with respect to the high-fidelity BHAWC model, the
response of both systems are compared in terms of Variance Accounted For (VAF) (Verhaegen
and Verdult, 2007). The VAF is often used to verify the correctness of the model by comparing
the real output (BHAWC) and the estimated output (linear model). In this particular case,
the calculated VAF is 61.9%. This is mainly due to the highly nonlinear behavior, which
is not captured in the linear model. Hence, the structural behavior of the derived linear
model resembles the high-fidelity BHAWC model. As already mentioned the models do not
fit perfectly, this originates from the difference in tower eigenfrequency. Furthermore, for the
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high-fidelity BHAWC, model gravitational and inertial loadings are take into account, which
results in nonlinear behavior and, subsequently, not a perfect fit in terms of VAF. However,
the derived linear wind turbine model shows satisfactory behavior and therefore is suitable
for performing a wall thickness reduction.
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Figure 4-14: Time domain simulation of the tower acceleration (above) excited by a periodic
force FT (below). The periodic force has a frequency of 0.2 [Hz] and variation of 10% over the
total duration. Response is shown for the high-fidelity BHAWC model ( ) and the derived
linear wind turbine model ( ).

Resulting rotor behavior

For the following analysis, the derived wind turbine model is subjected to a step in the pitch
angle under constant operation of V = 18 [m/s]. By suddenly changing the pitch angle, the
rotor speed will be influenced. Due to the operating conditions, the wind turbine model is
linearized around a wind speed of V̄ = 18 [m/s]. Subsequently, the states of the linear model
are in terms of variations around the steady-state operating points. Therefore, for simulation
purposes the actual input and output are compensated for in the following manner:

βactual = β̂ + β̄(V̄ )
Ωr,actual = Ω̂r + Ω̄r(V̄ )

(4-19)

Furthermore, the resulting response is obtained by only looking at the open-loop transfer
function from pitch angle β to rotor speed Ωr. The reason for only looking at the open-loop
response is based on excluding the feedback loops of controllers. Therefore, solely verifying the
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rotor dynamics. The resulting behavior of the rotor for a pitch input is shown in Figure 4-15
for the high-fidelity BHAWC model and the derived wind turbine model.
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Figure 4-15: Open-loop step response for the pitch angle β as applied input (below). The
resulting rotor speed response of the high-fidelity BHAWC model ( ) and the derived linear
wind turbine model ( ) are shown (above).

What can be noticed is the critical damped response for both models. This implies that
control methods are needed for mitigating the over-damped rotor deviations. Figure 4-16
shows the relative error between the two simulated models. The trajectory of the error shows
a steady-state offset. This is due to the linearization of the linear model in steps of 1 [m/s]
and the high-fidelity model has more steady-state operating points. Moreover, it should be
mentioned that this validation only works in the above rated regime, due to the fact that the
variation of generator torque is assumed to be equal to zero.
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Figure 4-16: Relative error between the response of BHAWC model and the derived linear model
for rotor speed
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4-4 Summary

The goal of this chapter was to derive a suitable wind turbine model for integral support
structure and controller design. Therefore, the goal is twofold. Firstly, the most important
dynamics of the 8.0MW SGRE offshore wind turbine should be captured by the derived linear
model. Secondly, the possibility of extracting structural parameters for the support struc-
ture should be included. Therefore, the modelling approach makes use of characteristics of
the real 8.0MW SGRE turbine. This is done by using the aerodynamic thrust and torque
curves of the real turbine. Further, the mechanical model is modeled by using a finite ele-
ment based approach. Thereby, the real dimensions of the support structure are implemented

After coupling the overall structure, the resulting matrices are of high order. Therefore,
the original derived model is reduced by only selecting the most dominant modes. In the case
of this thesis, the first two modes are selected.The reason for this is that they cause the FA
motion, which is to be suppressed in the following chapter. It is shown that the structure is
well described by the reduced model approach presented in this chapter.

Referring to the support structure, it is shown that the wall thickness can describe the mass
and stiffness matrix linearly for the tower section. By doing so, the wall thickness can be avail-
able as structural perturbation. In the next chapter, it is shown that the wall thickness can be
changed by using the aforementioned eigenfrequency and eigenmode of Chapter 3 sensitivities.

The resulting wind turbine model represents the 8.0MW SGRE turbine by combining the
aerodynamic and mechanical model. The resulting behavior of the derived model is verified
by performing time domain simulation. The model shows similar behavior as the high-fidelity
BHAWC model. Therefore, the derived model is well-suited for control design purposes.
Moreover, due to the linear structural dependency, the model is applicable for the CSO in
the next chapter.
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Chapter 5

Preliminaries for the CSO

Everything up to this point has focused on analysing and obtaining a suitable wind turbine
model for the integral support structure and controller design framework. The next step is
to formalize the different H∞ control design problems. The formalization heavily dependents
on the subjection of the different controller or structural objectives. Therefore, the main goal
of this chapter is:

"Provide a framework for simultaneous structured controller design and tunable plant
optimization through frequency-based optimization"

For the attentive reader, this goal is adopted from one of the subgoals stated in Chapter 1.
The 8.0MW wind turbine model presented in the previous chapter is used to formalize the
framework for Controller Structure Optimization (CSO). The framework makes use of the
frequency-domain optimization, which involves the multi-variable H∞ control design frame-
work as presented in Chapter 2 and Chapter 3. In order to map the design space of simul-
taneous controller structure optimization different design cases are presented in this chapter.
The complete overview of the structure of this chapter is given by the flowchart of Figure 5-1.
It provides an insight in the controller design scheme. The actual controller calculations are
done in Chapter 6.

The chapter is built up according to the flowchart. Firstly, the controller design objectives are
presented in Section 5-1. Furthermore, it tackles the objectives with an initial control design
for the Rotor Speed Controller (RSC) and Active Tower Damper (ATD). Subsequently, in
Section 5-2, the wind turbine model is extended with additional inputs to the system descrip-
tion involving the eigenfrequency sensitivity of different tower sections. From the controller
and structural objectives, different design cases are formalized, which in consecutive order is
subjected to one additional formulated objective. In Section 5-3, these different design cases
are presented, where three different generalized plant are formulated with the corresponding
derivation of the weighting functions. Finally, the chapter is summarized in Section 5-4.
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Case 3a
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(controller design)
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Section 5-3
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γ ≰ 1

Figure 5-1: Flowchart of the structure of Chapter 5. The yellow boxes are the controller design
involving the design of the RSC and ATD. In blue the CSO including the wall thickness pertur-
bations. The resulting design cases are depicted as well. Furthermore, the resulting performance
index γ is a measure for ensuring nominal performance γ < 1.

5-1 Controller design

In this section, the control design is presented by designing an RSC that provides rotor
speed control while the Fore-Aft (FA) tower oscillations are mitigated. First, the controller
objectives are itemized. Then, an initial controller design is presented in order to meet these
requirements.

D.T.B. Stinenbosch Master of Science Thesis



5-1 Controller design 61

The controller objectives

As stated in Chapter 2, the goal of the designed controller is to have adequate fast response of
minimizing the rotor deviations. Therefore, the designed controller should have the capability
of tracking the reference rotor speed. Due to the fact that the turbine is operating in above-
rated conditions, the reference rotor speed equals the rated speed. This makes the objective a
speed tracking problem for which regular PI-controllers are suitable according to Shan (2018).
The 8.0MW turbine allows for quick adjustments of the pitch angle of the rotor blades. The
possibility to quickly influence the aerodynamic thrust force acting on the blades allows for
additional pitch control objectives concerning fatigue load reduction. In this case, this can
be achieved through active damping of the FA tower top accelerations. Since the fatigue
of the tower is driving for above-rated wind speeds. As a consequence, it is interesting to
incorporate this as an objective for the designed controller Leithead and Dominguez (2006).
The designed controller is designed for the full-load region. The control problem regards a
disturbance rejection problem. The controller objectives can be summarized in the following
general way:

• Rotor speed error: the designed controller should minimize the rotor speed error ∆Ωr

between the reference rotor speed Ωr,ref and the output rotor speed Ω̂r This implies
that the ∆Ωr should be as small as possible. Furthermore, the bandwidth of the RSC
is in principle limited to frequencies well below the first eigenfrequency of the turbine.
Additionally, the maximum achievable bandwidth is restricted by the pitch system lim-
itations and time-delay.

• Active tower damping: in order to reduce the tower fatigue loads, the FA tower top
acceleration ÿt should be minimized by actively increasing the damping at the first
tower bending mode. The active tower damping should only be active in the region of
the first tower bending mode, otherwise it influences the performance of the rotor speed
controller.

• Limited conditions: the limits of the pitch actuators should be taken into account, e.g.
maximum pitch speed and accelerations, when applicable.

With the controller objectives mentioned, an initial control design framework can be proposed.
In the next section, this initial control design is presented, which takes the aforementioned
objectives into account.

Initial controller design

The initial control design is based on the work of Perrone and Kühn (2015). The controller
framework is represented by Figure 5-2, which addresses the controller objectives. From Fig-
ure 5-2, it can be seen that the centralized feedback is responsible for the rotor speed control,
which uses the collective pitch angle β. The output is the measured rotor speed variation Ω̂r

which is fed through and subtracted by the reference rotor speed Ωr,ref . For this case, the
reference rotor speed equals zero, due to the use of the variation around the steady-state value.

Furthermore, the controller combines a decentralized feedback loop, employing the tower top
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accelerations ÿt as a measured signal. The output of this feedback loop will be represented
as an additional collective pitch angle input δβ in order to mitigate the ÿt. The actuation
is additional to the standard collective pitch action of the rotor speed controller (Bossanyi,
2000). First, the initial controller design for the rotor speed controller is discussed. After
that, the tower control loop is presented.

β̂d Turbine modelRSC
-+ +

Ω̂r

βΩr,ref ΔΩr

Tower
Control

ÿ t
+

Figure 5-2: Rotor Speed Controller combined with Active Tower Damping. The inner-loop is
responsible for the cancellation of the first tower bending mode. The outer-loop is responsible for
the rotor tracking of the reference rotor speed Ωr,ref , which is, in this case, equals to zero.

Initial Rotor Speed Controller

The goal of the controller is to guarantee adequate rotor speed track performance and have
a fast response. In order to track the rotor speed, the frequency response of the desired pitch
angle β of the rotor speed variations Ω̂r, as shown in Figure 5-3, is of interest. The shape
of the frequency response can be explained from the Open-Loop (OL) poles and zeros stated
in Table 5-1. First, the phase drop of -90 [degrees] is caused by the first pole. After that an
additional -180 [degrees] drop due to the pole pair at the first eigenfrequency of the structure
(Ω1 = 1.33 [rad/s]). Normally, this pole pair will result in a resonance peak, which limits
the controller design. However, a zero pair is located near the first eigenfrequency, the -180
[degrees] is counter-effected by the 180 [degrees] introduced by this zero pair. This explains
the small sudden peak behavior in the maginutde plot at 1.33 [rad/s] as shown in Figure 5-3.
Still, it should be mentioned that, for the real system the distance between these poles and ze-
ros can be larger. Resulting in a frequency response which is restricted by the first tower mode.

Furthermore, it can be noticed that the Closed-Loop (CL) system remains stable due to
the phase not crossing the -180 [degrees] and there is a phase margin of 92.6 [degrees] at the
crossover frequency of ωc = 0.64 [rad/s]. The controller chosen for achieving higher perfor-
mance and tackles the objective is a PI-controller as Equation (5-1). The PI-controller is
capable of a fast response to a disturbance on the system response. It corrects the trajectory
when it wants to drift off due to an applied disturbance. The controller design is performed
by applying a step response on the reference signal and looking at the CL response. Fig-
ure 5-4 shows the resulting step response for which the PI-controller is parameterized with
Kp,in = 0.67 and the Ki,in = 0.19, which originates from the original Bonus Horizontal Axis
Wind turbine Code (BHAWC) rotor speed controller.

KCPC(s) = Kp,ins+Ki,in

s
(5-1)
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Table 5-1: Locations of the OL poles and zeros for the subsystem Gβ̂→Ω̂r
.

OL poles Frequency [rad/s] OL zeros Frequency [rad/s]

-0.153 0.153
-0.0271 ± 1.32i 1.33-0.0274 ± 1.31i 1.33

-3.33 3.33
-0.0741 ± 5.55i 5.55-0.0741 ± 5.55i 5.55
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Figure 5-3: Open-loop frequency response of subsystem Gβ̂→Ω̂r
from the variation in pitch angle

β̂ as input to the variation of the rotor speed Ω̂r as output.
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Figure 5-4: Time domain simulation of applying a step input on the CL subsystem GCL,β̂→Ω̂r

without control ( ) and with control ( ).
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Initial Active Tower Damper

The proposed tower control algorithm arises from the dynamic behavior of the support struc-
ture. For simplicity the model be recasted to a single Degrees of Freedom (DoF) system. The
dynamics in FA direction of the tower top can be approximated by:

Mÿt +Dẏt +Kyt = FT + δFT (5-2)

where yt represents the displacement in the longitudinal direction, FT is the thrust force
exerted by the wind and δFT stands for an additional thrust action caused by the pitch
actuation. In principle, the additional thrust action is proportional to the first time derivative
of the tower top. Therefore, it is possible to magnify the damping of the overall system by
introducing an additional driven pitch action as follows:

δFT = −Dpẏt =
(
δFT
δβ

)
δβ (5-3)

δβ = − Dp

δFT /δβ︸ ︷︷ ︸
=KDp

ẏt (5-4)

where δβ is the additional pitch actuator and Dp is the additional damping. The additional
damping can be included by using the velocity of the tower top ẏt as measurement. Due to
the interaction with the RSC and preventing unwanted feedback of other terms, a band-pass
filter Gbf centered at the first natural frequency is included in the feedback loop.

Gbf (s) = 2ζωns
s2 + 2ζωns+ ω2

n

(5-5)

where ζ = 0.8 and ωn is set on the first tower bending frequency. In practice, there is an
uncertainty of the first tower frequency of ± 10% making the use of a band-filter not that
attractive. However, from online tower accelerations measurements, the natural frequency
can be estimated, and subsequently, the band-pass filter can be adapted for that measured
frequency as in the work of Pascu et al. (2017). The frequency response of the OL subsystem
Gβ̂→ÿt

is depicted in Figure 5-5. Moreover, the CL subsystem is shown as well for KDp =
−0.25. What is noticed is that the introduction of a control function considerably dampens
the peak relative to the first tower bending mode in FA direction.
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Figure 5-5: Frequency response of both the magnitude and phase for the initial tower control
loop: Open-loop ( ) versus the closed-loop ( ).

Figure 5-6 demonstrates how the initial tower feedback control performs under excitement
by a step response. This technique dampens the tower accelerations for the initial open-loop
response, which leads to reducing the loads on the structure. Furthermore, the CL system
has a settling time of 16.5 [s] and initially, the OL system has a settling time of 143 [s]. The
only drawback of this method is the additional pitch activity according to Bossanyi (2000).
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Figure 5-6: Step response of an additional pitch actuation to tower acceleration. The open-loop
( ) and the effect of including tower feedback control ( ).

With the initial control design and the controller objectives explained, the next step is to
evaluate the structural design and extend the system description of the wind turbine model.
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5-2 Structural design

The controller objectives are summed up in the previous section. The next step is to tackle
the main objective of this thesis, namely the CSO application on the wind turbine model. The
goal of including the structural part is to reduce the wall thickness of the support structure.
Therefore, the structural objective can be seen as a mass minimization by reducing the wall
thickness. The proposed integral support structure and controller procedure makes use of an
extended wind turbine model, which is presented in the next section. By doing so, the RSC
can be adjusted with the wall thickness of the support structure simultaneously. After that,
the eigenfrequency and sensitivity are determined, which form the basis for the structural
design part.

Extending the system description

The extension method is based on the sensitivity of perturbing structural parameters, result-
ing in a change of the eigenfrequency of the system. The extension is done through the same
working principles, as the method explained in Chapter 3. Therefore, the mechanical model
of the wind turbine model can be extended as follows:

Mẍ+Dẋ+Kx =
[
−

tN∑
n=1

∂M
∂tn

∆tn −
tN∑
n=1

∂K
∂tn

∆tn Ṽrb

] ẍ
x

FT (t)

 (5-6)

Recall, that for the overall mechanical model a reduced description is used, as presented in
Chapter 4, and for ease is repeated here below:

Ṽ T
r McṼr︸ ︷︷ ︸
:=M̃r

η̈(t) + Ṽ T
r DcṼr︸ ︷︷ ︸
:=D̃r

η̇(t) + Ṽ T
r KcṼr︸ ︷︷ ︸
:=K̃r

η(t) = Ṽ T
r b︸︷︷︸

:=b̃r

F̂T (t)
(5-7)

Therefore, the expression of Equation (5-6) is recasted into:

M̃rη̈ + D̃rη̇ + K̃rη =
[
−

tN∑
n=1

Ṽ T
r
∂M
∂tn

Ṽr∆tn −
tN∑
n=1

Ṽ T
r
∂K
∂tn

Ṽr∆tn b

] η̈
η

FT (t)

 (5-8)

Through the above expression, the elements of the tower section are individually accessible for
the structural optimization. However, it is desired to have an overall wall thickness reduction.
Therefore, the tower elements are bundled together. By reducing the wall thickness the overall
pole and zero locations of the system will change. In order to bundle the correct number
or positions of the tower elements, the eigenfrequency sensitivity of all tower elements is
determined in the next section.
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Eigenfrequency sensitivity for different tower sections

The wall thickness perturbation of the tower section is performed by using the preceding
eigenvalue sensitivity. The theory is presented in Appendix A. Through this method, the
sensitivity of changing the wall thickness for the first two eigenvalues of the support structure
are determined. These eigenvalues correspond to the structural modes, which are present
in the reduced model as well. Recall from the mechanical model in Section 4-2, that the
eigenvalues of interest are given by s ∈

[
ω1st ω2nd

]T
. Subsequently, the tower model con-

sist out of a total of 40 elements and corresponding wall thickness per element is given by
tn =

[
1, 2, . . . , NTower

]
where NTower = 40.

For every tower element, the corresponding mass and stiffness matrices are differentiated
from the wall thickness parameter tn. The derivatives are computed element-wise for each
element n. These matrices are given by M∆t and K∆t. The elements are expressed linearly
through the wall thickness as Equation (B-1) and Equation (B-2). As a consequence, the
derivatives can be reduced as follows:

M∆t = ∂M

∂tn
= M

tn
K∆t = ∂K

∂tn
= K

tn
(5-9)

The next step is to compute the sensitivity of changing the wall thickness tn per tower element
for the two eigenvalues. The expression for the eigenfrequency sensitivity is given by:

∂ω2
s

∂tn
= φTs (K∆t − ω2

sM∆t)φs
φTsMφs

, with s = 1, 2 (5-10)

where the sensitivity of the eigenvalue for the thickness is denoted as ∂ω2
s

∂tn
and φs is the

corresponding eigenmode. The resulting sensitivities are shown in Figure 5-7 for respectively
the first (a) and the second (b) eigenvalues of the tower structure. The number of tower
elements is shown on the vertical axis, starting with zero representing the tower top and
goes down to -40 which represents the tower bottom. The wall thickness perturbation can
be seen as an absolute quantity. Therefore, by comparing Figure 5-7(a) and Figure 5-7(b)
with one and other. It can be seen that the second eigenvalue is far more susceptible for a
wall thickness perturbation than the first eigenvalue, due to higher order of magnitude. By
further studying, the figure, it is noticed that between some positions (e.g. -30 and -31) the
sensitivity suddenly goes to zero. This implies that the support structure is not sensitive to
changes in wall thickness. This insensitivity is due to the installed flanges at those tower
elements. Moreover, the length of these elements are smaller concerning the rest of the tower
elements. As a consequence, these flange elements have higher stiffness values resulting in
the insensitive response for wall thickness perturbations. The resulting higher stiffness can
be deducted from the Euler-Bernoulli matrices stated in Equation (B-1).
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Figure 5-7: Eigenfrequency sensitivity for the two tower modes with respect to the vertical tower
element number. (a) shows for the eigenvalue ω2

1st (b) shows for the eigenvalue ω2
2nd .

It is shown that the wall thickness influences the eigenfrequency of the support structure.
Furthermore, it can be seen that the sensitivities are positively or negatively correlated for
different tower elements. By partitioning the elements with similar magnitude in sensitivity,
it can be assumed that the sum over these partitioned elements times the amplitude of
the sensitivity will result in changing the overall eigenfrequency. Therefore, the tower is
partitioned in two sections taking the transitions between positive and negative correlations
into account.

• The tower elements n ∈ [1, . . . , 9] are stacked together. Due to the negative correlation
for the first eigenfrequency (Figure 5-7a) and the positive correlation for the second
eigenfrequency (Figure 5-7b).

• The tower elements n ∈ [10, . . . , 30] are partitioned, namely there are for both the first
and second eigenfrequency positively correlated.

The tower is divided into two sections and, subsequently, the perturbations per partitioning
are defined as ∆t1 and ∆t2, for respectively the first and second tower section. This par-
titioning with corresponding perturbations is substituted in Equation (5-8) resulting in the
following extended system description of the wind turbine model.

M̃rη̈+D̃rη̇+K̃rη =
[
−Ṽ T

r M∆t1 Ṽr∆t1 −Ṽ T
r M∆t2 Ṽr∆t2 −Ṽ T

r K∆t1 Ṽr∆t1 −Ṽ T
r K∆t2 Ṽr∆t2 Ṽrb

]

η̈1(t)
η̈2(t)
η1(t)
η2(t)
FT (t)


(5-11)
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where M∆t1 = ∂M
∂t1

(K∆t1 = ∂K
∂t1

) integrate the derivative mass and stiffness matrices of the
first partitioning n = [1, . . . , 9]. The same reasoning is followed forM∆t2 = ∂M

∂t2
(K∆t2 = ∂K

∂t2
),

where the second partitioning n = [10, . . . , 30] is integrated. In order to make the wall
thickness perturbation available for the optimization, they are recasted into controllable inputs
as follows:

FM∆t1
= ∆t1η̈1(t)

FM∆t2
= ∆t2η̈2(t)

FK∆t1
= ∆t1η1(t)

FK∆t2
= ∆t2η2(t)

(5-12)

The above stated input definitions FM∆t1
, FM∆t2

, FK∆t1
and FK∆t2

are substituted in Equa-
tion (5-11). The final extended form for the controller synthesis is obtained. The extended
form is coupled with the aerodynamic model, as explained in Chapter 4. The final extended
turbine description is as follows:

T̂r = JrΩ̇r

M̃rη̈(t) + D̃rη̇(t) + K̃rη(t) = ...

[
−Ṽ T

r M∆t1 Ṽr −Ṽ T
r M∆t2 Ṽr −Ṽ T

r K∆t1 Ṽr −Ṽ T
r K∆t2 Ṽr Ṽrb

]

FM∆t1
FM∆t2
FK∆t1
FK∆t2
FT (t)


(5-13)

Equation (5-13) is then recasted into state-space formulation and coupled with the aerody-
namic model. The difference between the original and extended wind turbine model is that
the latter has four more inputs then the original system. One can imagine when the eigen-
frequencies change due to a wall thickness perturbation, the corresponding eigenmodes will
change as well. The eigenmode sensitivity will be analysed in the next section, in order to
see whether the new perturbed modeshape is significantly different.

Eigenmode sensitivity

In order to be sure that the wall thickness stays in the bound of changing the fundamental
eigenmodes of the structure, the eigenmode sensitivity is consulted (Géradin and Rixen, 2014).
The modeshape sensitivity is calculated by using the method presented in Appendix A. There-
fore, it follows the same procedure as in Chapter 3 for the mass-spring-damper system. The
first step is to compute the perturbed modeshape which is added to the original modeshape
φc, which provides a updated modeshape φnew using:

φnew = µ
∂φ

∂ti
+ φc (5-14)

The computed sensitivities are used to give an absolute change in the wall thickness over a
selected number of elements. Recall the assembled mass and stiffness matrices of Section 5-2.
Thus the matrices are differentiated per element. After that, the derivatives of the mass and
stiffness of every element are stacked in the overall derivative matrices. The matricesMn∗ and
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Kn∗, corresponds to the element n, for which Mn∗ = Kn∗ = 0 corresponds to no adjustments
in wall thickness. The derivative matrices follow the same coupling principles, as explained
in Chapter 4 (Panzer et al., 2009). The following example illustrates how the differentiation
of the mass matrix per element is executed (K∗ follows the same principle):

M∗ =



M1∗
11 M1∗

12 0 · · · 0
M1∗

21 M1∗
22 +M2∗

11 M2∗
12 · · · 0

0 M2∗
21 M2∗

22 +M3∗
11 · · · 0

...
...

... . . . ...
0 0 0 MNtower∗

22


The change of wall thickness to the elements are varied with the same constant value of ∆t.
It is interesting to see what the influence is of different wall thickness perturbations on every
tower element. Therefore, the influence of an additional thickness of 1 [mm] and 10 [mm]
to every tower element is computed in Equation (5-14) by using respectively µ = 1 · 10−3

and µ = 10 · 10−3. The resulting modeshape of the perturbed system is compared to the
nominal case is depicted in Figure 5-8. It can be seen that by changing the wall thickness by
∆t ∈ [−10, 10] [mm] will influence the modeshapes. For the case of changing the wall thickness
by ∆t ∈ [−1, 1] [mm], for the modeshapes, a significant difference is not noticed. The Modal
Assurance Criterion (MAC) values are stated in Table 5-2 for both cases. By consulting
the MAC values of the original and perturbed mode-shapes for both cases no remarkable
difference is noticed for the most two dominant mode-shapes. Therefore, nonlinear behavior
is not expected. However, by changing the wall thickness by 10 [mm], the second tower
bending will increase in response when exited, due to the higher normalized deflection for the
tower top.

Table 5-2: MAC values for different wall thickness perturbations.

MAC value φ1
tn

φ2
tn

∆t = [−1, 1] 1.00 1.00
∆t = [−10, 10] 0.9984 0.9997

Given the result that the eigenmodes are not strongly influenced by a perturbation of the
structural parameter of interest, the reduction method is assumed to be valid when changing
the structural parameters. Therefore, the method of extending the system with tunable
elements seems a logical approach. The CSO can use this extension method and now with
the preliminaries discussed, the weighting functions and general plants can be formulated. In
the next section, the different design case are formulated, where each individual design case
will address different objectives in order to make a fair comparison.
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Figure 5-8: Modeshape sensitivity of different perturbations of wall thickness namely ∆t =
[−1, 1] [mm] (a) and ∆t = [−10, 10] [mm] (b) for the first and second tower bending mode. The
original modeshapes are shown in black. The updated modeshapes are shown in red.

5-3 The resulting design cases

In the previous sections, the controller and structural objectives are mentioned. The main
goal of this section is to recast these objectives into frequency domain specifications. This
is done through shaping the closed-loop functions of the turbine model in the desired shape
through weighting functions. By means of suitable weight functions and generalized plant
configurations, it is possible to define an upper bound on the closed-loop transfer functions
as shown in Chapter 2. The complete scheme of defining the cases is shown in Figure 5-1.
Therefore, three general design cases are defined to show the influence of addressing several
objectives in the multi-variable design approach, which are as follows:

• Case 1: the rotor speed controller with nominal performance and will serve as a bench-
mark. For this control loop the measured rotor speed should track the reference rotor
speed of 10.8 [rpm] while repressing the disturbance introduced by the wind.

• Case 2: the derived rotor speed controller including the fatigue load reduction. This is
achieved by bounding the tower top accelerations ÿt with a weight. For this case, three
different sub-cases are defined, one to show the use of a separate control-loop including
the active tower damper approach of Section 5-1 (case 2a) and one where the tower top
accelerations are induced by the rotor speed disturbance (case 2b/c).

• Case 3: the controller structure optimization for the extended wind turbine system.
For this case, the structural objective of minimizing the wall thickness is included. Two
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different sub-cases are defined, for which the rotor speed controller design is combined
with the wall thickness perturbations (case 3a) and one with an additional constraint
on the tower top accelerations (case 3b).

The three design cases will be defined in consecutive order. The generalized plants and corre-
sponding weight functions are presented as well. Each case concludes with the corresponding
optimization, which is the formalization of the H∞-norm minimization.

Case 1: Rotor Speed Controller design

With the basic initial control design discussed in Section 5-1, it is time to use these principles
in the H∞-control design framework as presented in Chapter 2. For the reference tracking
capability of the rotor speed, the sensitivity function is of interest, S(s) = 1

1+L(s) , where the
loop-gain is given by L(s) = Krsc(s)Gβ̂d→Ω̂r(s). Therefore, analyzing the sensitivity of the
rotor error ∆Ωr to disturbances w1 on the signal will be of special interest for obtaining a
controller with adequate reference tracking capabilities. By introducing a suitable weighting
function on this sensitivity function, it possible to shape the closed-loop transfer function in
the desired shape.

Weight design for rotor speed

The design of the weight function is based on the step response with corresponding control
gains for the RSC obtained from Section 5-1. The weight functions makes use of two first order
functions, where the parameterization is given in Table 5-3. The resulting weight function is
given by Equation (5-15).

Table 5-3: Parameters for the weight design of Wp,rsc = series(Wp,1,Wp.2)

Mp,i Ap,i ωB,i

Wp,1(s) 8 1 · 10−5 0.15
Wp,2(s) 0.15 0.5 5

Wp,i(s) = s/Mp.i + ωB,i
s+Ap,iωB,i

Wp,rsc(s) = series(Wp,1,Wp,2)
(5-15)

The parameters are selected by knowing the limitations of the real pitch system of the 8.0MW
turbine system. Figure 5-9 depicts the performance weight design by combining the initial
first-order weights. In general, maximizing the ωB,i yields a small rise time which is useful in
terms of performance. However, one drawback of a high bandwidth is that it could result in
a system which is sensitive to noise.

D.T.B. Stinenbosch Master of Science Thesis



5-3 The resulting design cases 73

10
-2

10
-1

10
0

10
1

10
2

-30

-20

-10

0

10

20

Figure 5-9: Inverse weight design ofWp,1 andWp,2. which in series forms the final weight design
Wp,rsc.

The weight is placed on the sensitivity function and is defined as the transfer function
Tw1→∆Ωr (s) between the disturbance w1 to the rotor speed error ∆Ωr. The effect of vary-
ing the control gains Kp and Ki on the sensitivity function is shown in Figure 5-10. It is
shown that for higher Kp values, the cross-over at -3 line [dB] is increased. This results in
a higher bandwidth for the system. Furthermore, the increase in control gains shows that
the peak gain of the sensitivity function increases and, therefore, violates the bound of the
performance weight. The weight involves a trade-off between the fast response and does not
allow for obtaining too aggressive control gains, which are within the provided limits of the
controller gains in BHAWC.
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Figure 5-10: Sensitivity plot of different CL system using different controller parameters for the
RSC. It is shown that for multiple setting the bound on the sensitivity is violated. The settings
are given by (a) Kp ∈ [0, 1, 1] and Ki = 0.15 and (b) Kp = 0.5 and Ki ∈ [0.1, 1].

Generalized plant configuration

The schematic representation of the control design combined with the weighting function is
shown in Figure 5-11. The chosen weighting function is Wp,rsc, which imposes the sensitivity
function of the rotor speed. This weight is needed to address the controller objective for
adequate rotor speed tracking. The corresponding sensitivity of the closed-loop system is
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bound by the inverse of this weight 1/Wp,rsc. From the generalized plant configuration in
Figure 5-11, it is noticed that the inputs wind speed V̂wind and rotor speed Ω̂ref to the wind
turbine model. These inputs were introduced in Figure 4-1 and are from now on seen as
redundant inputs. Therefore, these inputs are not included for controller design.

V̂ wind

z1

Ω̂r

(s)Wp,rsc

1

s

Performance 
Weighting 
Functions

-

+

+

β

w1

β̂d

ΔΩr

Kp

Ki

Ω̂ref

G(s)

ÿ t

Figure 5-11: Generalized plant description (yellow area) of the proposed H∞ problem for case
1. The wind turbine system is given by G(s). The disturbance is given by w1 on the rotor speed
introduced by the wind. The performance channel is given by z1. The weighting function is given
by Wp,rsc for rotor tracking. The controller is a fixed-structured controller as K = diag(Kp,Ki).
The controller output provides the desired pitch actuation β̂d.

Now with the weighting functions and generalized plant discussed, the resulting optimization
for case 1 is shown in Equation (5-16) and will be used in Chapter 6.

min
s.t.

γ∥∥∥Wp,rscS
∥∥∥
∞
< γ

(5-16)

where γ is the performance index and it should satisfy γ < 1 in order to guarantee closed-loop
performance of the designed H∞ rotor speed controller. Furthermore, it is clear that for case
1 only the rotor speed error objective is taken into account. Therefore, the upcoming case will
incoorperate the active tower damping by using the tower top acceleration ÿt as a controllable
input.

Case 2: The Rotor Speed Controller and Active Tower Damper

For the second case, an additional objective of active tower damping is added to the H∞-
control design problem. Therefore, the case will address both the controller objectives, namely
reducing the rotor speed error and mitigating the tower top accelerations. The generalized
plant description of Figure 5-11 will be altered by including the tower top accelerations
as a controllable input, as explained in Section 5-1. Subsequently, the band-pass filter of
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Equation (5-5) is used, where ζ = 0.8 and ωn equals the first tower bending frequency at
1.33 [rad/s]. Furthermore, it is interesting to see how the outcome of the previous section
is influenced by addressing this multi-variable design. It is expected that the attenuation
of the first tower bending mode will interact with the parameters and performance of the
RSC. The RSC is designed with the same second order weight Wp,rsc in Equation (5-15)
with the corresponding parameters stated in Table 5-3. In order to attenuate the peak of the
subsystem Gβ→ÿt , for ease the notation of G2 is used, the following weight function will be
introduced.

Weight design for tower top acceleration

For tower top acceleration, a simple constant gain kÿt is used as inverse weighting function
1/Wp,ÿt . The aim of using only a simple gain is to attenuate the peak in the subsystem from
pitch angle β̂d to tower top acceleration ÿt, which then corresponds to active damping of the
first tower bending mode. The working principle is illustrated in Figure 5-12. It can be seen
that by using a simple constant gain, the peak of the closed-loop transfer function should be
lowered, this principle is shown in the work of Shan (2018) as well. Furthermore, it is noticed
that the proposed method follows the same reasoning as the control design of the initial tower
feedback loop in Section 5-1.
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Figure 5-12: Weight design of 1/Wp,ÿt
, the OL system and CL subsystem for the initial control

design is shown as well.

For this case, the same weighting function on the sensitivity function of the rotor speed is used.
Therefore, two weighting function parameters have been presented, which are related to the
control objectives. These weighting functions represents a problem specific parameterization
of the control design. Due to the conflicting nature of the control objectives, the overall
problem is dependent on several parameters. The weight functions are included in a new
generalized plant configuration, which will be presented in the next section.

Generalized plant configuration

The schematic representation of Figure 5-11 is modified to include the ATD control-loop.
In this problem, the following controller parameters (Kp,Ki,KDp) are sought, such that the
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required performance criteria are satisfied. The chosen weighting functions are Wp,rsc and
Wp,ÿt , which are respectively the weight function for the rotor speed sensitivity and the tower
top accelerations. These weight are needed to address the controller objectives as mentioned
earlier in control design. The resulting generalized plant used for the design case 2 is depicted
in Figure 5-13.

V̂ wind

z2

z1

Ω̂r

G(s)

(s)Wk,ÿ t

(s)Wp,rsc

1

s

Performance 
Weighting 
Functions

+

-

(s)Gbf

+

+
+

β

w1

δβ

β̂d

w2

ΔΩr

Kp

Ki

KDp

ÿ t

Ω̂ref

Figure 5-13: Generalized plant description (yellow area) of the proposed multi-objective problem
of case 2. The wind turbine system is given by G(s) and the band-pass filter is given by Gbf (s).
The disturbances are given by w1 on the rotor speed, and w2 on the tower top accelerations ÿt.
The corresponding performance channels are z1 and z2. The weighting functions are given by
Wp,rsc and Wk,ÿt

. The controller is a fixed structure controller as K = diag(Kp,Ki,KDp
). The

controller output is the pitch actuation β provided by the RSC and the additional pitch actuation
δβ by the ATD.

The resulting optimization for case 2 can be formalized as follows:

min
s.t.

γ∥∥∥∥∥ Wp,rscS
Wk,ÿtGw2→ÿt

∥∥∥∥∥
∞
< γ

(5-17)

The proposed method is applied to find the controller parameters for Kp, Ki and KDp such
that the performance condition of Equation (5-17) (γ < 1) is satisfied. It is found in Chapter 6
that using the separate ATD control-loop in combination with the proposed band-pass filter
and fixed gain resulted in unstable simulations for the verification part. This is due to
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the underestimated aerodynamic damping in the linear derived wind turbine model. This
underestimation causes a higher obtained damping value for KDp . Therefore, two sub-cases
are proposed, where the RSC is derived by taken a different approach. The rotor speed
disturbance w1 induces the tower top accelerations as well. As a consequence, the a load
reducing RSC can be derived by placing a fixed gain on the tower top acceleration and
removing the applied disturbance w2, resulting in different control gains (Kp,Ki) for the
RSC. It should be mentioned for those sub-cases no separate ATD control-loop is included.
For these particular cases, Equation (5-17) is rewritten into the following optimization:

min
s.t.

γ∥∥∥∥∥ Wp,rscS
Wk,ÿtGw1→ÿt

∥∥∥∥∥
∞
< γ

(5-18)

The weight selection for all the second subcases are defined in Table 5-4.

Table 5-4: Weight selection for case 2.

Weight function Case 2a Case 2b Case 2c

Applied channel Gw2→ÿt Gw1→ÿt Gw1→ÿt

Wk,ÿt 0.18 0.01 0.05

Case 3: Controller Structure Optimization

In this section, the CSO case will be defined for the extended wind turbine system. The
first generalized plant of Figure 5-11 is not suitable anymore and modified for including
the weights for the structural perturbations. Therefore, the section starts with the weight
functions followed by the adjusted generalized plant description. The case is divided into two
subcases, where one subcase takes the tower top accelerations into account whether the other
not.

Weight design for the CSO

The weights for the controller structure optimization are defined as follows:

• Wp,rsc is the weight design for the rotor speed and is for the CSO case the same as
Equation (5-15) in the previous section.

• Wk,ÿt is a simple constant gain and is placed on the tower top accelerations, which are
caused by the disturbance on the rotor speed leading to a tower top motion. Therefore,
no additional loop is needed for the active tower damper.

• Wp,∆t1 is a weight for imposing the wall thickness to change for the tower top section.
By enforcing the wall thickness to minimize, a new signal is created, by summation of
the signal η1 before and after the multiplication with the perturbation ∆t1 as shown in
Figure 5-14. By doing so, a new signal is created (η1 + ∆t1η1). Minimizing this signal
with the weight will result in a minimization of the wall thickness.
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• Wp,∆t2 follows the same reasoning as the previous item. The weight imposes a bound
on the wall thickness of the bottom tower section. The summation is applied as well as
enforcing the minimization. The new signal is defined by the summation of the signals
( η2 + ∆t2η2).

Generalized plant configuration

The generalized plant configuration of Figure 2-7 is modified to include the wall thickness
perturbations ∆t1 and ∆t2. Thus, in this problem, the following controller parameters (Kp,
Ki, ∆t1, ∆t2) are sought, such that required performance criteria are satisfied. Note that, for
the controller structure design case no separate tower control-loop is included. This exclusion
is because the number of control parameters heavily influence the minimization of the non-
smooth optimization method. Additionally, by taking the tower accelerations into account
for the RSC design, the tower accelerations can also be reduced according to Shan (2018).
There will be a total of four weight placed on different signals. These weights should per-
form a wall thickness reduction and at the same time, capture the performance criteria on the
RSC design. The generalized plant description used for the CSO case is shown in Figure 5-14.

The weighting functions are applied on the signals as described in the generalized plant
configuration. The input to the system is the disturbance channel w1 acting on the rotor
speed. The performance channels are z1, z2, z3, z4 for respectively, the rotor speed, tower
accelerations, wall thickness tower top and wall thickness tower bottom. What is already
mentioned is that this case is divided into two subcases. Firstly, no weight will be placed
on the tower top accelerations. After that, for the second case, this weight will be included.
Therefore, the resulting optimization for case 3 can be formalized as follows:

min
s.t.

γ

|∆t1| < 1 · 10−2, |∆t2| < 1 · 10−2∥∥∥∥∥∥∥∥∥∥
Wp,rscSw1→∆Ωr

Wk,ÿtGw1→ÿt

Wp,∆t1Gw1→η1+∆t1η1

Wp,∆t2Gw1→η2+∆t2η2

∥∥∥∥∥∥∥∥∥∥
∞

< γ

(5-19)
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Figure 5-14: Generalized plant configuration of the proposed CSO problem. The extended wind
turbine system is given by Gext(s). The disturbance signal w1 is acting on the rotor speed. The
performance channels are given by z1 and z2 for the controller design part. The performance
channels of the plant alterations are given by z3 and z4.

The weight selection for the cases is stated in Table 5-5, which are manually tuned to perform
a wall thickness minimization. This manual tuning process is the same as for the Wk,ÿt . The
weight is increased up to the point that it does not provide different results. The influences
W∆t1 and W∆t2 are weighted simultaneously, to lower the sum of the wall thickness change
∆t1 + ∆t2. Furthermore, by including weight on the tower top accelerations, the rotor speed
disturbance forces a tower top acceleration, and therefore the controller is obliged to change
the gains. In comparison to case 3a, the additional weight to the H∞-norm reduction will
narrow the solution space. It is expected that the controller gains of the designed RSC for
case 3b will differ from case 3a. The results of the two subcases will be presented in the next
chapter.

Table 5-5: Weight function design input values for the static constants.

Weight function Case 3a Case 3b

Wk,ÿt 0 0.01
Wp,∆t1 0.01 0.01
Wp,∆t2 0.015 0.015
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5-4 Summary

The main goal of this chapter is as follows:

"Provide a framework for simultaneous structured controller design and tunable plant
optimization through frequency-based optimization"

The wind turbine model, as presented in Chapter 4, is extended by using the sensitivity of
changing the eigenfrequencies by a wall thickness perturbations. It was seen that changing
the wall thickness along the tower length, influences the eigenfrequencies to shift negatively
or positively. Therefore, these positive and negative correlated tower sections are partitioned
together with the corresponding sign. Therefore, allowing to alter an entire tower section.
The rotor speed controller is designed by using a simple PI-controller. The RSC controller is
extended with an active tower control-loop, this resulted in the mitigation of the FA acceler-
ation of the tower top for the initial controller design case.

For proving the effectiveness of the proposed framework, four different cases are defined in this
chapter, which addresses different controller or structure design scenarios. For each design
case, a H∞-norm minimization was formulated while using weights on different performance
channels. The following general design cases are defined in this chapter:

• Case 0: rotor speed controller and an active tower damper control-loop through loop-
shaping principles. The control gains of the rotor speed controller correspond with the
initial controller used in BHAWC.

• Case 1: rotor speed controller through fixed-structured H∞ control design

• Case 2: rotor speed controller and active tower damper through fixed-structured H∞
control design.

• Case 3: the CSO of the extended wind turbine description involving wall thickness
perturbations and rotor speed control.

In the next chapter, the different cases will be simulated and the results will be presented.
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Chapter 6

Simulation Results

In this chapter, the results of the defined cases of the multi-objective controllers discussed
in Chapter 5 will be presented. The following design cases are simulated and presented in
consecutive order:

• Case 1: the Rotor Speed Controller (RSC) with nominal performance. For this control
case the measured rotor speed should track the reference rotor speed.

• Case 2: the RSC combined with load reducing properties.

• Case 3: the controller structure optimization of the extended wind turbine description.

The main goal of this chapter is:

"Apply the controller-structure optimization to prove its effectiveness on the linear 8.0MW
SGRE wind turbine model, while achieving wall thickness reduction and rotor tracking

performance"

The goal originates from one of the subgoals stated in Chapter 1. The chapter is built up
as follows. Firstly, the controller design cases are presented from Section 6-1 till Section 6-
3. After that, the resulting design cases are compared with one another in Section 6-4. In
Section 6-5, the found controller parameters and an updated tower of the 8.0MW turbine are
verified with the high-fidelity Bonus Horizontal Axis Wind turbine Code (BHAWC) model.
Finally, the chapter conclusions are presented in Section 6-6.
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6-1 Case 1: The Rotor Speed Controller

In the first case, the optimization framework is used for only the control design of the RSC
through H∞-norm minimization. The RSC makes use of classical PI-controller design for
tracking the rotor speeds. The controller parameters (Kp,Ki) are placed on the diagonal to
maintain the diagonal controller structure. The resulting optimization for case 1 is shown in
Equation (6-1).

min
s.t.

γ∥∥∥Wp,rscS
∥∥∥
∞
< γ

(6-1)

The optimization of Equation (6-1) is executed with the Robust Control Toolbox using the
non-smooth optimization method Hinfstruct, which allows for fixed-controller design. The
weight Wp,rsc is as presented in Section 5-3 and imposes a bound on the sensitivity function
S. The results of this optimization are shown below.

Results of case 1

The problem statement of Equation (6-1) implies a Single-Input Single-Output (SISO) prob-
lem due to the consideration of only controlling and using the rotor speed signal. The results
are shown in Figure 6-1 for both the frequency response and time-domain simulation. The
proposed norm reduction gives a satisfactory result of

∥∥Wp,rscS
∥∥
∞ = 0.833 with the found

controller parameters Kp = 0.646 and Ki = 0.275. Therefore, the desired response of the ro-
tor speed controller is obtained. Figure 6-1a shows the resulting sensitivity function of case 1
and compared to case 0. It can be seen that the resulting sensitivity function does not violate
the imposed bound. Figure 6-1b shows the step response for both case 1 and case 0 (initial
design). For the rotor speed controller through H∞ analysis, the settling time equals 11 [s],
and the peak amplitude is 1.16 [rad/s]. The resulting step response for the initial design has
a settling time of 13.35 [s]. An improvement of 2.35 [s] is noticed. Subsequently, comparing
the rise time between the two controller design cases is 2.40 [s] and 2.88 [s] for respective case
1 and case 0. Thus, the derived rotor speed controller through H∞ will have a faster response.

This case only tackles the rotor tracking control objective and will be verified in the high-
fidelity BHAWC model and compared with the control gains of the other cases in Section 6-5.
Furthermore, all the characteristics of the found parameters are summarized along with the
upcoming cases in Section 5-4.
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Figure 6-1: (a) shows the bode magnitude plots of the initial sensitivity function ( ) and the
sensitivity function obtained with the optimized controller ( ) is shown. The inverse of the
performance weight Wp,rsc ( ) is shown as well. (b) shows the step responses from the pitch
angle to the rotor speed for both the case 0 ( ) and case 1 ( ).

6-2 Case 2: The Rotor Speed Controller and Active Tower Damper

In this section, an additional objective of active tower damping is added to the H∞ control
design problem. This case will address reducing the rotor speed error and mitigating the
tower top accelerations. It is expected that the attenuation of the first tower bending mode
interacts with the parameters and performance of the RSC. The subsystem Gβ→ÿt contains
a Right-Half-Plane (RHP) zero and perhaps limits the performance of the problem. The
weights are selected as follows:

• The RSC is designed with the same second order weight Wp,rsc of Equation (5-15) with
the corresponding parameters stated in Table 5-3.

• The tower top acceleration is imposed by weight Wk,ÿt , which is a simple constant kÿt .
The gain was initialized at a value of 6 [dB], which resulted in violations of the perfor-
mance index. Therefore, the gain was slowly increased up to a point, the performance
index γ < 1 was satisfied. Additionally, it was found by only relaxing the weight for
achieving γ < 1 resulted in aggressive additional damping for the tower bending. As
a consequence, the corresponding step responses of the Closed-Loop (CL) are analyzed
even further to relax the weight Wk,ÿt

The resulting optimization for case 2a can be formalized as follows:

min
s.t.

γ∥∥∥∥∥ Wp,rscS
Wk,ÿtGw2→ÿt

∥∥∥∥∥
∞
< γ

(6-2)

Master of Science Thesis D.T.B. Stinenbosch



84 Simulation Results

The optimization for case 2b and case 2c is slightly different, namely Gw2→ÿt in Equation (6-
2) is replaced by Gw1→ÿt . The proposed method is applied to find the controller parameters
Kp, Ki and KDp such that the performance condition is satisfied. The results of case 2b and
case 2c are only for designing RSC gains (Kp,Ki) by including a weight on the tower top
acceleration, as explained in Chapter 5.

Results of case 2

The problem involves a multi-variable approach and as a consequence, it becomes harder to
tune the system weights. This results from the reduced design space, due tot the additional
constraints. The results are shown in Figure 6-2 and Figure 6-3 for respectively, the RSC
design and the Active Tower Damper (ATD) design. The solution with the lowest H∞ -norm
was found to be 0.833, which is the same as in the previous case. The controller parameters
found for the implemented controller areKp = 0.528, Ki = 0.158 andKDp = 0.159 for case 2a.

The resulting performance will be discussed in the following itemization. Firstly, analyz-
ing the resulting sensitivity function Sw1→∆Ωr . Thereafter, the influence of the active tower
damper on the closed-loop system is discussed.

• Figure 6-2a shows the resulting sensitivity functions (Case 1, 2) and the inverse of the
performance weight, from which it can be seen that the sensitivity function remains
below this weight. By comparing case 1 and case 2a with one another, the small pit at
the first eigenfrequency (1.33 [rad/s]) is striking. This pit originates from the interaction
between the tower feedback loop and the rotor speed controller. That is the reason why
the pit is centred at the first tower bending mode. Moreover, the band-pass filter
influences the size of the pit through the damping value of ζ. The damping should stay
in the bounds of 0 < ζ < 1, for which a larger damping value means a larger width of the
dip. Therefore, the active tower control-loop only operates in a region around the placed
frequency. By looking at the step response depicted in Figure 6-2b. The multi-variable
approach of case 2a has a higher settling time of 15.1 [s], but lower peak amplitude
of 1.09 [rad/s] compared to the previous case. The slightly worse reference tracking
abilities pales with respect what is gained at the mitigating of tower top accelerations,
as will be explained next. Furthermore, the lower peak responses are noticed for case
2b and 2c, respectively 1.07 [rad/s] and 1.05 [rad/s]. The settling time for both cases
(2b and 2c) are higher with 13.6 [s] and 19.2 [s] as well. This implies that these rotor
speed controllers are less aggressive then case 1. As a consequence, the induced loads
due to aggressive pitching are reduced for these cases.

• Figure 6-3a shows the inverse weight Wk,ÿt along with the open-loop system Gw2→ÿt

and the closed-loop system incorporating the proposed ATD. It can be seen, that using
a band-pass filter and a single control gain KDp does the job perfectly of increasing the
damping in the fore-aft direction. The closed-loop function remains below the inverse
weight function, and the resulting attenuation of the peak is visible. Figure 6-3b shows
the response of the tower top acceleration by a step input. It can be concluded that the
implemented technique is capable of increasing the tower damping substantially. For
the closed-loop system, the settling time equals 17.2 [s] with a maximal amplitude of
0.677 [m/s2].
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Hence, all the characteristics and values are summarized in the upcoming Section 6-4. This
controller approach is verified in the high-fidelity BHAWC model as well.
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Figure 6-2: (a) bode magnitude plots of the sensitivity function for case 1 ( ) and the
sensitivity function obtained with the multi-variable problem ( ) is shown. The inverse of the
performance weight Wp,cpc ( ) is shown as well. (b) step responses from the pitch angle to
the rotor speed for both case 1 ( ) and case 2 are depicted.

10
-2

10
-1

10
0

10
1

10
2

-80

-60

-40

-20

0

20

40

(a)

0 10 20 30 40 50

-1

-0.5

0

0.5

1

1.5

(b)

Figure 6-3: (a) bode magnitude plot of the tower control loop, the open-loop ( ) versus
closed-loop system ( ) is given. The inverse weight Wk,ÿt ( ) is shown as well. (b) step
response of an additional pitch actuation to the tower top acceleration, the initial ATD ( )
versus case 2a ( ) is depicted.

The next step is to investigate the influence of including structural optimization into the
controller design synthesis.
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6-3 Case 3: Controller Structure Optimization

In this section, the results of the controller structure optimization will be discussed. The
generalized configuration of Figure 5-14 is used for this design case. Recall from Chapter 5,
that two design cases are proposed. Case 3b includes weight on the tower top accelerations,
the rotor speed disturbance forces a tower top acceleration, and therefore the controller is
obliged to change the gains. In comparison to case 3a, the additional weight to the H∞-
norm reduction will narrow the solution space. It is expected that the controller gains of the
designed RSC for case 3b will be lower than case 3a. The resulting optimization for case 3 is
repeated below:

min
s.t.

γ

|∆t1| < 1 · 10−2, |∆t2| < 1 · 10−2∥∥∥∥∥∥∥∥∥∥
Wp,rscSw1→∆Ωr

Wk,ÿtGw1→ÿt

Wp,∆t1Gw1→η1+∆t1η1

Wp,∆t2Gw1→η2+∆t2η2

∥∥∥∥∥∥∥∥∥∥
∞

< γ

(6-3)

In the upcoming sections, the results of case 3a and case 3b are presented. Thereafter, the
grid search results are shown for varying wall thickness weights.

Results case 3a

The problem statement of Equation (6-3) allows for simultaneously changing the controller
and support structure design of the extended wind turbine system. It should be mentioned
that the weight design for the wall thickness is troublesome. The natural behavior of the
system is to decrease the wall thickness for ∆t1 and increase the ∆t2. This is due to the
eigenfrequency sensitivity correlations, for which the former is negative, and the latter is pos-
itive. Therefore, the weights are tuned in order to obtain a mass minimization. The weights
are stated in Table 5-5 At the same time, the H∞-norm should not differ from the other
design cases.

Figure 6-4 depicts the results for respective, the sensitivity function of the RSC design and the
wall thickness perturbations functions. The solution which resulted in the lowest H∞-norm
of 0.833 is provided by the controller parameters Kp = 0.649 and Ki = 0.255. Simultaneously
the structural perturbations are found to be ∆t1 = −5 · 10−4 [m] and ∆t2 = −1.7 · 10−3

[m]. The wall thickness reduction leads to a mass reduction of 12.1 · 103 [kg] of the selected
tower sections. The change of the wall thickness shift the pole-zero locations of the sys-
tem. As a consequence, the eigenfrequencies of the system change as well. This modified
eigenfrequency can be noticed in Figure 6-4b, where the resonance peak of Scase,3a is slightly
different concerning the initial system. The resulting performance will be discussed in the
following summation. Firstly, the overall performance of the sensitivity function is discussed.
Thereafter, the wall thickness perturbations are presented.

• Figure 6-4a shows the resulting sensitivity function along with the sensitivity function
from case 1. The resulting function stays below the imposed bound of the inverse
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performance weight. It can be seen that the eigenfrequency is shifted from ω1,case1 =
1.33 [rad/s] to ω1,case2 = 1.34 [rad/s]. Furthermore, due to the lower Ki gain for this
case 3a, the cross-over frequency is slightly higher and the resonance peak is lower than
for case 1. This results in a lower peak response and higher settling time, as shown in
Figure 6-4c. The closed-loop system achieves nominal performance γ = 0.833, which is
the same for the other cases. Hence, the structure and controller can be simultaneously
varied, and subsequently, nominal performance is still guaranteed.

• Figure 6-5a and Figure 6-5b show by bounding the transfer functions Gw1→η1+∆t1η1

and Gw1→η2+∆t2η2 results in a change in wall thickness. By comparing the original
extended transfer function with the perturbed function Gw1→η1+∆t1η1 , the influence of
the decrease in wall thickness ∆t1 is visualized. The same method is used for a decrease
of ∆t2. The wall thickness reduction leads to a newly updated tower section, which has
a mass reduction of 12.1 · 103 [kg]. For simplicity, the two perturbation are summed
in order to simplify the overall minimization of the wall thickness (∆t1 + ∆t2). It was
found that a larger thickness reduction was rather difficult to obtain by manually tuning
the weight. It was noticed by increasing the weights on the wall thickness channels, the
performance criteria γ < 1 was no longer guaranteed.

The next step is to investigate the behavior of the wall thickness reduction by introducing an
additional weight on the tower top accelerations.
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Figure 6-4: (a) bode magnitude plots of the sensitivity plot of case 1 ( ) and the sensitivity
obtained from the CSO ( ) is shown. The inverse of the performance weight ( ) is shown
as well. (b) the zoomed magnitude plot. (c) the step response of case 1 versus case 3a is shown.
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Figure 6-5: Bode magnitude plots for the perturbations channels are shown (a,b). The inverse
weighting function of the static gain is shown as well.

Results case 3b

In the previous case, it is shown that by including suitable weights on the wall thickness chan-
nels in the H∞-problem formulation, the CSO is able to redesign the controller and structural
parameters simultaneously. For this subcase, an additional weight is introduced on the tower
top accelerations.

The resulting behavior of this CSO case is depicted in Section 6-3 and the corresponding
wall thickness perturbations are shown in Figure 6-7. The H∞-norm is not affected by the
additional requirement, namely the lowest norm found is 0.833. Consequently, the obtained
controller and structural gains are different. For the RSC, the following control gains are
obtained, Kp = 0.567 and Ki = 0.215. These gains are lower then for case 3a, therefore
will be less aggressive in pitching. Subsequently, the obtained wall thickness reduction is
∆t1 = −2 · 10−4 [m] and ∆t2 = −1.5 · 10−3 [m]. This leads to mass reduction of 10.2 · 103 [kg]
for the selected tower elements. The resulting performance will be discussed in the following
bullet points:

• The resulting sensitivity function is affected by the additional constraint compared to
case 1 and case 3b, as shown in Section 6-3a/b. It can be seen that the updated
eigenfrequency resembles the same shift as for case 3a to the right (ω1,case3b = 1.34
[rad/s]). Furthermore, it is noticed that the crossover-frequency is a lower for case 3b.
As a consequence, the step response in Section 6-3c shows that the settling time of case
3b is higher than case 3a. Moreover, the peak response is lower as well. This implies
that the obtained controller is less aggressive then case 3a.

• The mass reduction is 1.9 · 103 [kg] less than compared to case 3a. Figure 6-7 shows
the transfer relations for the wall thickness perturbations. By taking the tower top
accelerations into account for the CSO, the wall thickness reduction is less.
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Figure 6-6: (a) bode magnitude plots of the sensitivity plot of case 1 ( ) and the sensitivity
obtained from the CSO case 3b ( ) is shown. The inverse of the performance weight ( )
is shown as well. (b) the zoomed magnitude plot. (c) the step-response of case 3b versus the
previous cases is shown.
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Figure 6-7: Bode magnitude plots for the perturbations channels are shown (a,b), the inverse
weighting function of the static gain is shown as well.
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Grid search for wall thickness weights

It was found that tuning the wall thickness weights Wp,∆1 and Wp,∆2 without affecting the
performance was somewhat troublesome. In order to show the behavior of tuning the weights
on the wall thickness parameters, a grid search is performed. The weights are varied in the
following step:

• Weight on ∆t1 is Wp,∆t1 =
[
0.01 : 0.02 : 2

]
• Weight on ∆t2 is Wp,∆t2 =

[
0.001 : 0.001 : 0.1

]
The optimization problem, as proposed in Equation (5-19), is executed by fixing the controller
gains. The results of changing the weights on the performance index γ is shown Figure 6-8a.
In Figure 6-8b, the summation of the wall thickness over the two tower sections is shown
for various weights on the perturbation channels. It can be seen that the correlations of the
different weights are of influence on the overall wall thickness reduction. When the weights on
both the function are zero, no wall thickness reduction is noticeable. Still, the performance
is below γ < 1, due to the controller gains. By increasing the weight on Wp,∆t1 , the wall
thickness is reduced. However, by increasing the weight on Wp,∆t2 results in an opposite
effect, as shown Figure 6-8c/d. Higher values increase the overall wall thickness for Wp,∆t2 .
This can be explained by the correlations of the eigenfrequencies of the tower sections, which
are opposite in magnitude. Therefore, the wall thickness perturbations interact with one
another.

(a) (b)

(c) (d)

Figure 6-8: (a) surface plot is shown of the resulting γ values for varying the weights Wp,∆t1
and Wp,∆t2 . (b) surface plot is shown for the summation of ∆t1 + ∆t2 for various weights. (c)
and (d) are the surface plots of the individual wall thickness perturbations
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6-4 Summary of the cases

In this section, the results of the different design cases are briefly summarized. All the opti-
mized parameters are presented in Table 6-1. Notice, for all these cases closed-loop perfor-
mance is guaranteed. It was found that implementing the controller of case 2 in the BHAWC
model leads to an unstable system. This is due to the fixed gain KDp , which resulted into
infeasible high pitch actuation. The reason for this is the underestimation of the aerodynamic
damping in the linear model. As a consequence, the gain KDp is overestimated. Therefore,
two different cases for incorporating the attenuation of the tower accelerations in the RSC
design are performed. This is done by using the Equation (5-19) and excluding the structural
deformations. The weight on the tower top acceleration is initialized with 0.01 and 0.05, for
respectively case 2b and case 2c.

Furthermore, looking at the values of the gains of the designed RSC for case 1 and 2. It
can be seen that by taking the tower top accelerations in account, the resulting controller
gains are relaxed. This relaxation is as expected, because more aggressive control gains are
good for fast rotor speed control. However, it increases the movement of the tower top. Com-
paring the CSO cases with the results of the nominal case 1, it can be seen that the controller
gains are not really different. This is due to the reduction of the wall thickness, which lead
to slightly different pole-zero locations of the closed-loop system. The CSO cases compensate
for this shift ,through changing the controller gains of the RSC design. Therefore, the CSO
is proven to be effective in addressing multiple design criteria. By changing the weights in
frequency domain, the criteria of the designer can be met.

Table 6-1: Summary of the different design cases throughout this chapter

Parameter Case 1 Case 2a Case 2b Case 2c Case 3a Case 3b

Kp 0.646 0.528 0.659 0.384 0.650 0.567
Ki 0.275 0.158 0.179 0.0935 0.255 0.215
KDp - 0.159 - - - -

∆t1 [m] - - - - −5 · 10−4 −2 · 10−4

∆t2 [m] - - - - −1.7 · 10−3 −1.5 · 10−3

Mass reduction [kg] - - - - 12.1 · 103 10.2 · 103

γ 0.833 0.833 0.833 0.833 0.833 0.833
ω1 [rad/s] 1.33 1.33 1.33 1.33 1.34 1.34
ω2 [rad/s] 5.55 5.55 5.55 5.55 5.58 5.59
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6-5 Verification with nonlinear simulations

For verification of the control design of the different cases in Chapter 5, nonlinear high-fidelity
have been carried out for validation purposes. The nonlinear simulations are done with in-
house wind turbine simulation tool of Siemens Gamesa Renewable Energy (SGRE) called
BHAWC. It includes a structural dynamics module based on the same finite element method
approach as explained in Chapter 4. The aerodynamics are modeled based on a state-of-the-
art Blade-Element-Momentum theory. Due to the simplicity of the linear model used for the
controller synthesis in this work, it should be mentioned that the high-fidelity model includes
additional filters in the RSC-loop. These filters are the following:

• Notch filters: one placed on the tower frequency, one on the blade passing frequency
(3P) and one placed on edgewise synchronous and drive-train frequencies of the wind
turbine.

• Low-pass filter: to remove the high frequency noise.

It is assumed that these filters do not interfere with the derived controllers from this chapter.
The filters are placed before the measured speed enter the PI-controller. Since all of the
verified cases will include these filters, they can be compared with one another. The simulation
is based on the following set-up. A mean wind speed of 18 [m/s] with a turbulence intensity
of 10%. The proposed above-rated wind speed will lead to considerable deviations from the
steady-state operating point of 18 [m/s] for the wind turbine model. A single turbulence
seed with a duration of 600 [s] is simulated. The effectiveness of the proposed controller is
measured by looking at the driving factors. Firstly, it is interesting to look at the rotor speed
deviations and the corresponding collective pitch actuation. Secondly, the bending moment
at tower bottomMfa,b and tower topMfa,t are analysed. This is done in order to see whether
the controllers are mitigating the loads of the tower. Finally, the pitch bearing damage is the
last driving factor of interest. This is a combination of the edgewise and flap-wise moment
at the blade root combined with the total pitch traveled. The following cases are simulated
and compared:

• Case 1: the rotor speed controller with nominal performance a will serve as a benchmark.
For this control-loop, the measured rotor speed should track the reference rotor speed
of 10.8 [rpm] while suppressing the disturbance introduced by the wind.

• Case 2(b/c): the derived rotor speed controller with a weight on the tower top ac-
celerations ÿt. The weight Wk,ÿt is respectively 0.01 and 0.05. Resulting in different
controller gains for the RSC. The separate ATD control-loop (case 2a) was simulated
as well. However, due to the fixed gain KDp and band-pass filter the simulations went
unstable. This is due to the underestimated aerodynamic damping in the derived wind
turbine model. This underestimation causes a higher obtained damping value for KDp .

• Case 3(a/b): the tower is updated with the proposed wall thickness reduction within
the BHAWC model. The model is simulated with the found control gains of respectively
case 3a and case 3b.

• Case 0: the initial controller design for the RSC through loop-shaping.
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The results of the time-simulation is only presented for the first 200 [s]. Figure 6-9 shows
the time-domain simulation for the RSC design in gray (Case 1) and the load reducing RSC
design from case 2b in black. What can be noticed from Figure 6-9c, that case 1 has more
oscillating pitch deflections then case 2b. This leads in less rotor speed deviations as shown in
Figure 6-9b for case 2b. As a consequence, the tower bottom moment has lower deviations due
to the slower pitch actuation for case 2b then for case 1. This is in line with the expectation,
that the control objectives of speed tracking and reducing loads conflict with one another.
By taking the tower top accelerations into account for the controller design of the RSC it
is possible to reduce the loads, and subsequently, relax the importance of the rotor speed
tracking objective.
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Figure 6-9: Time domain simulation of applying a mean wind speed of 18 m/s with a turbulence
intensity of 10%. The rated rotor speed is given by 10.8 [rpm] ( ). Controller design case 1
( ) and controller design case 2b ( ) are shown.
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Comparison of the verification

In order to compare the relevant effects on the driving factors the full 600 [s] spectrum of
the simulations are used. From these simulations, a fatigue analysis is performed by means
of rainflow counting, for respectively the support structure and the pitch bearings. The
method of calculating the fatigue from time-domain simulations is shown in Appendix C.
The resulting damage is shown in Figure 6-10 for the design cases. The overall comparison
is given by Table 6-2. It is seen that for the load reducing controllers of case 2b/c the tower
moments are lower, due to the lower pitch activity. This results in less sudden deviations of
the aerodynamic thrust exerting on the tower top, and therefore a less aggressive RSC design.
For the cases including the structural optimization (case 3a/b), it can be seen that the loads
are higher for the tower moments. This implies that for future work, it is interesting to see
whether a load analysis of the tower can be included in the optimization. The design case 1
has the best rotor speed tracking abilities. By introducing multiple objectives, this is relaxed
and it is possible to reduce the loads by introducing a weight on the tower top accelerations.
For the CSO case (3b) which includes the weight on tower top accelerations, it can be seen
that the loads for tower bottom can be reduced. However, the tower top bottom moment has
higher damage, due to the wall thickness reduction, a more flexible tower is obtained.
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Figure 6-10: Calculated damage for the tower top moment (a), the tower bottom moment (b)
and pitch bearing damage (c) for the different control designs.

Table 6-2: Comparison of the different control design cases simulated with the high-fidelity
8.0MW BHAWC model normalized with respect to case 1.

Specification Case 1 Case 2b Case 2c Case 3a Case 3b Case 0

Max(Ωr) [rpm] 1.0 +0.30% +0.49% -0.01% +0.02% +0.28%
Standard deviation Ωr [rpm] 1.0 +14% +20% +1.0 % +2.0 % +13 %
Tower top bending along DEL [·] 1.0 -7.0% -18% +55 % +52% -25%
Tower bottom bending along DEL [·] 1.0 -60 % -54% +18% -2.1% -75%
Pitch bearing damage [·] 1.0 -31% -30% -11% -11% -30%
Pitch travel [·] 1.0 -26% -27% -8.0% -12 % -25%

D.T.B. Stinenbosch Master of Science Thesis



6-6 Conclusion 95

6-6 Conclusion

The main goal of this chapter is as follows:

"Apply the controller-structure optimization to prove its effectiveness on the linear 8.0MW
SGRE wind turbine model, while achieving wall thickness reduction and rotor tracking

performance"

For proving the effectiveness of the proposed method, three different cases were presented,
which addressed different controller or structure design scenarios. For each design case, a H∞-
norm minimization was formulated while using weights on different performance channels.
By doing so, a rotor speed controller with satisfactory behavior is derived and the structural
design of the wind turbine is altered while keeping the overall performance index γ constant.
The cases are summarized as follows:

• The designed RSC through H∞-norm reduction can meet the rotor tracking abilities.
In the verification study, the rotor tracking abilities surpass the other cases. However,
the higher loading is inevitable due to the more aggressive pitch controller gains.

• For the designed RSC with load reducing components, a decrease in the loads of the
previous item is observed. It is concluded that by implementing a weight on the tower
top accelerations, the capability of lowering the obtained controller gains. Consequently,
the fatigue of the tower is reduced over time.

• The extended system description is used for the CSO case. It used bounds on the
following transfer relations Gw1→η1+∆t1η1 and Gw2→η2+∆t2η2 by a static weight Wp,∆t1
and Wp,∆t2 , forcing the wall thickness to change. The weights are used in combination
with the performance weight on the sensitivity function. This resulted in simultaneously
varying the controller and the structural design of the wind turbine model. The weights
on the perturbation channels are tuned in such a way an effective mass reduction was
achieved of 10.2 · 103 [kg] for the best performing case.

It was found by tuning the weights of the wall thickness perturbations. Then, different values
for the wall thickness reduction were obtained. Therefore, a grid search is performed with
varying the weights on the wall thickness perturbations. It was noticed by taking high weights
the nominal performance (γ < 1) was not guaranteed anymore. Hence, this limits the design
freedom for structural optimization.
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Chapter 7

Conclusions and Recommendations

This chapter will present the conclusions on the research objectives presented in Chapter 1.
Furthermore, the recommendations for future work are provided based on the conclusions
and the assumptions made throughout this thesis.

7-1 Conclusion

In order to reduce the Levelized Costs of Energy for Offshore Wind Turbine (OWT), the
design of the offshore turbines should be further optimized. A large improvement can be
obtained by looking at the design cycle of the wind turbine. Multiple teams of different dis-
ciplines are involved by designing an OWT each having their own design criteria. This can
lead to conflicting criteria between the different teams, and therefore iteratively switching the
designs. This results in a time-consuming design cycle. Therefore, it is vital to seek other
methods of integrating the design criteria in one optimization routine.

Therefore, a framework is proposed for combining the objectives of the controller with the
structural design. The goal of this thesis is formulated by the following main objective of this
work:

"The main objective is to simultaneously optimize the integral support structure design and
controller design for large scale offshore wind turbines."

This main objective can be divided into two parts, namely finding a suitable Controller Struc-
ture Optimization (CSO) method and the modelling of a large scale offshore wind turbine
model. For the CSO, there are two effective ways of simultaneously designing the controller
and the structure. These are the nested and direct design method. In Chapter 2, the use of
direct design is suggested. The proposed CSO method makes use of nonsmooth H∞ synthesis
with fixed-structured controllers. Through this method, tunable parameters of the system can
be extracted for using them as input to the system description. The tunable parameters are
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the structural parameters of the system. As a consequence, the tunable parameters are com-
puted as perturbation and added to the controller block diagonal. The controller is designed
by using the Robust Control Toolbox of MATLAB. The method provides an insightful and
simple approach of including the structural parameters in a minimization of the closed-loop
system performance using a performance weight on the sensitivity function.

In order to extract the tunable parameters, the system description makes use of a parameter-
dependent state-space model. This is obtained by recasting the structural matrices from an
Ordinary Differential Equation (ODE) into state-space form. This extraction is illustrated in
Chapter 3. The structural parameters are extracted by making the system description linearly
dependent on these parameters. Therefore, the overall structural change can be forced by per-
turbations (additional inputs). Furthermore, it is shown that the method works with model
reduction methods. Therefore, the most dominate dynamics are preserved while reducing the
order of the system. The proposed method for CSO is verified with a simple two-Degrees of
Freedom (DoF) mass-spring-damper system. The eigenfrequencies were changed by forcing
the system’s mass and stiffness to alter. This was done by bounding the resonance peak of
the sensitivity function by a performance weight. It was assumed that the coupling of the
mass and stiffness resembles the same coupling for an OWT.

The second part of the main objective is formed by modelling a suitable OWT model for
the application of the CSO. In Chapter 4, an OWT model of the 8.0MW Siemens Gamesa
Renewable Energy (SGRE) wind turbine is derived. The possibility of extracting the struc-
tural parameters of the support structure is included. It was shown that the wall thickness
of the tower describes the structural matrices linearly, and therefore is available for the opti-
mization. The mechanical model is reduced for control purposes and coupled with a linearized
aerodynamic model. It is shown that the derived model resembles the behavior of the Bonus
Horizontal Axis Wind turbine Code (BHAWC) model for the rotor speed to pitch angle and
the structural behavior as well. The derived linear 8.0MW wind turbine model is suitable for
the CSO application.

The controller design imposed a Rotor Speed Controller (RSC), where the relation from
pitch angle to rotor speed was chosen for analysis. Furthermore, it was of interest to seek
the boundaries of conflicting objectives, e.g. a load reducing part. The RSC design is initial-
ized by looking at the current design RSC in the BHAWC model in order to avoid extensive
controller parameterization. The weight design combines the objectives of adequate rotor
tracking abilities and active tower damping. It was found that the proposed multi-objective
problem successfully obtains load-reducing controllers with adequate rotor tracking abilities
through H∞-norm reduction.

Furthermore, the wind turbine model is extended by using the linear dependency of the
wall thickness parameters in the individual elements of the tower. It was found the resulting
change in modeshapes bounds the change of the wall thickness parameter. The sensitivity of
perturbing the wall thickness per tower element for the eigenfrequencies differ in correlation.
Therefore, the tower elements with the same correlations are partitioned together. The wall
thickness parameter is used to redesign the system while optimizing the controller parameters
of the RSC. This is done by applying weight functions on the perturbation channels, and
subsequently, change the overall wall thickness of the tower. Remarkably, the performance
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index of the CSO-cases remained unchanged. This implies that for the current 8.0MW tur-
bine, the structural design and controller design can be improved to one another. However,
the difficulty of setting the right requirements for the H∞-norm is still unspoken. Finding
the correct weighting functions for the desired behavior is quite troublesome. It follows from
the grid search that it is possible to tune the weights properly to obtain the highest wall
thickness reduction. However, for this analysis, the controller parameters are fixed, and it
should be investigated whether these are influenced as well. Finally, it was shown in the
verification study, that through the H∞ controller design, multiple controllers objectives can
be met concerning the driving factors.

Hence, the CSO framework is applicable for large scale wind turbine system. Therefore,
the controller and structural can be simultaneously varied.

7-2 Recommendations

Based on the conclusions and the assumptions made in this work, recommendations for future
work are presented in this section:

• From the verification study, it is shown that the induced loads for the CSO cases where
higher than the other cases. For this design, the weights were placed on the tower
top accelerations. It should be investigated whether the weights can be placed on the
induced loading. This is to make sure the loads do not exceed critical levels.

• For the redesign of the tower only two tower sections are used. Therefore, two improve-
ments can be achieved. First, multiple tower elements should be included of which the
wall thickness is changed. Secondly, allow for more structural parameters to change
along the support structure as length and diameter.

• The foundation used for the wind turbine model is monopile based. It would be in-
teresting to look into different support structure models. For example, the design of
jackets, these have higher eigenfrequencies and this results in the possibility of achieving
a higher controller bandwidth. Therefore, the controllability of the rotor speed problem
could be improved.

• It was assumed that the influence of structural changes on the modeshape is not that
significant. This was the reason that the structural change remained linear to the
original system description. However, when large structural changes are obliged, the
updated system may no longer be a valid.

• In this work, the above-rated operating control region is investigated. The derived lin-
ear model for the controller synthesis is linearized around one operating wind speed.
To incorporate the controllability over different wind speeds, the use of a linear param-
eter varying system description can be used. Then multiple diagonal controller can be
derived simultaneously.

• The resembles between the 8.0MW wind turbine of BHAWC and the derived linear
model can be improved. It is recommended to look into the possibility of linearizing
the BHAWC model directly.
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• The wall thickness is reduced from an existing tower design, which is already optimized
for site-specific conditions. It could be interesting to test the wall thickness reduction
method for a more conservative designed tower in order to see whether the reduction
stays the same.

• The minimization of the wall thickness is done by bounding the modal amplitudes of
the wind turbine description. Therefore, the wall thickness change corresponds with
a certain structural mode. It could be interesting to look into the possibility of using
other signals for the wall thickness reduction.
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Appendix A

Preliminaries structural dynamics

This appendix provides the background principles of the structural derivations of the free
vibration problem and the sensitivity analysis for respectively the eigenfrequencies and eigen-
modes. The method is directly adopted from Géradin and Rixen (2014).

A-1 Free vibration problem

The free vibration problem is used to determine the eigensolutions and the corresponding
eigenfrequencies of the structure. For the free vibration problem it is assumed that the
damping can be neglected. Therefore, the Ordinary Differential Equation (ODE) can be
expressed as follows:

Mẍ(t) +Kx(t) = 0
x(0) = x0, ẋ(0) = ẋ0

(A-1)

where the solution of the resulting ODE of Equation (A-1) can be given by:

x(t) = φy(t) (A-2)

where φ is a free linear mode of displacement and y(t) is a function of time. Now it can be
seen, if Equation (A-2) is substituted into Equation (A-1) and rearranged:M (

ÿ(t)
y(t)

)
+K

φ = 0 (A-3)

This above expression holds only when the term ( ÿ(t)
y(t)) remains constant over time. This

is term can also be expressed or is known as the eigenvalue −ω2
s . Therefore, Equation (A-

3) is equivalent to the solution of the generalized eigenvalue problem. Furthermore, each
eigenfrequency and eigenmode can be determined as follows:

(−Mω2
s +K)xs = 0 (A-4)
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A-2 Eigenfrequency sensitivity

The eigenfrequency sensitivity provides quantitative information regarding the sensitivity of
the structural eigenfrequencies to structural perturbations. In this work, it is supposed that
the sensitivity relates to one physical design parameter denoted by p and the structural
matrices (M ,K) are a function of this parameter.

K = K(p) M = M(p) (A-5)

Then the corresponding derivatives are denoted as:

Kp = ∂K

∂p
Mp = ∂M

∂p
(A-6)

One can imagine that the eigensolutions and the eigenfrequencies will change by perturbing
the parameter. At the same time the equation of calculating the eigensolutions and corre-
sponding eigenfrequencies stays valid:

(K − ω2
sM)xs = 0 (A-7)

Therefore, Equation (A-7) is used for deriving the sensitivity with respect to parameter p as
follows: (

∂K

∂p
− ω2

s

∂M

∂p

)
xs −

∂ω2
s

∂p
Mxs + (K − ω2

sM)∂xs
∂p

= 0 (A-8)

By using the notation of Equation (A-6) and project this on the eigensolution xs. Then
Equation (A-8) can be recasted in the following form of Equation (A-9)

∂ω2
s

∂p
= xTs (Kp − ω2

sMp)xs
xTsMxs

(A-9)

From the above expression the following three things can be stated:

• The derivative of a given eigenvalue with respect to the parameter can be obtained in
terms of the corresponding elementary sensitivity matrices since the products Kpxs and
Mpxs can be performed element-wise.

• The derivative of an eigenvalue depends on the corresponding eigenvalue only.

• An increase of stiffness increases frequency, whereas an increase of mass reduces it. This
of course the case for a free vibrations problem.

A-3 Eigenmode sensitivity

The eigenmode sensitivity follows directly from the procedure of calculating the eigenfre-
quency sensitivity. The first step is to compute the eigenvalue sensitivity ∂ω2

s
∂p presented in

previous section (Equation (A-9)). The next step is to solve Equation (A-8) for the ∂xs
∂p term

as follows:
(K − ω2

sM)∂xs
∂p

=
(
−Kp + ω2

sMp + ∂ω2
s

∂p
M

)
xs (A-10)
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It can be seen that the term (K − ω2
sM) is singular and xs is the corresponding null-space.

Moreover, the ∂ω2
s

∂p can be derived with Equation (A-9) and, subsequently the right hand side
of Equation (A-10) is orthogonal to the null-space xs. Implying that a solution exist. Hence,
(K − ω2

sM) can be inverted by a pseudo inverse and it follows that Equation (A-10) can be
recasted:

∂xos
∂p

= (K − ω2
sM)+

(
−Kp + ω2

sMp + ∂ω2
s

∂p
M

)
xs (A-11)

Thereafter, the general solution for the eigenmode sensitivity is given by:

∂xs
∂p

= ∂xos
∂p

+ xsα (A-12)

where α stands for an arbitrary amplitude. Within this work the arbitrariness is fixed by
defining a unique eigenmode sensitivity analysis by linking it to keeping the modal mass
constant (xTs (p)Mxs(p) = µs). Therefore, α can be expressed as:

α = − 1
xTsMxTs

(
1
2x

T
sMpxs + xTsM

∂xos
∂p

)
(A-13)

The result shows two things:

• Unlike eigenvalue sensitivities, calculating an eigenmode sensitivity implies knowledge
of all other eigensolutions.

• The sensitivity of mode xs strongly depends on other modes having similar eigenfre-
quency, that is when ω2

r = ω2
s
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Appendix B

Definitions of the 8.0MW SGRE Wind
Turbine

.

The 8.0MW Siemens Gamesa Renewable
Energy (SGRE) is a variable-speed variable-
pitch and bottom supported monopile off-
shore wind turbine. Within this thesis, the
turbine is modelled as a lumped mass model,
for which the blades are not explicitly mod-
elled. The schematic overview of the lumped
mass wind turbine model is depicted in Fig-
ure B-1. The numerical values for the wall
thickness and radius along the tower is given
in Figure B-2a and Figure B-2b, respectively.
These parameters are used with the corre-
sponding Euler-Bernoulli beam matrices.

The following tables offers the main specifi-
cations for the 8.0MW SGRE wind turbine
subsystems in accordance with the presented
information in Chapter 4. With the use of
this information and the presented modeling
principles in Chapter 4, the same mechanical
subsystem can be derived.

Tower

TP

Foundation

y

z
θ

RNA

Figure B-1: Schematic representation
of a lumped mass model of the 8.0MW
SGRE wind turbine with corresponding
coordinates.

Euler-Bernoulli beam

The tower model is represented by a total number of 40 beam elements because the provided
specification on the dimension of the tower model consisted out 40 evenly distributed elements.
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For each single beam element the nodes are defined as x =
[
uz1 uy1 θ1 uz2 uy2 θ2

]T
.

These coordinates are related to the transnational directions in z and y of the turbine model
presented in Appendix B. The formulation for the mass and stiffness matrices are respectively:

K =



EA
Le

0 0 −EA
Le

0 0
0 12EI

L3
e

6EI
L2

e
0 −12EI

L3
e

6EI
L2

e

0 6EI
L2

e

4EI
Le

0 −6EI
L2

e

2EI
Le

−EA
Le

0 0 EA
Le

0 0
0 −12EI

L3
e
−6EI

L2
e

0 12EI
L3

e
−6EI

L2
e

0 6EI
L2

e

2EI
Le

0 −6EI
L2

e

4EI
Le


=
[
Ke

11 Ke
12

Ke
21 Ke

22

]
(B-1)

M = ρALe
420



140 0 0 70 0 0
0 156 22Le 0 54 −13Le
0 22Le 4L2

e 0 13Le −3L2
e

70 0 0 140 0 0
0 54 13Le 0 156 −22Le
0 −13Le −3L2

e 0 −22Le 4L2
e


=
[
M e

11 M e
12

M e
21 M e

22

]
(B-2)

The notation and partitioning of matrices in elements as M e
ij and Ke

ij is used for coupling the
shells together. Furthermore, the superscript e stands for the number of shell element used in
the overall tower structure. The i and j corresponds to the node positions within each shell
element. To be more precise, each shell element is formed by two consecutive nodes within
the overall tower structure.

Subsequently, the linear parameter dependency of wall thickness in both the mass and stiff-
ness matrix can be shown for the Equation (B-2), Equation (B-1). For the application of the
Controller Structure Optimization (CSO), the resulting tower model should be susceptible
for wall thickness perturbations. In order to show the principle, the thin walled cylinder
expressions as stated in Table 4-1 are substituted into the structural matrices.

• Stiffness matrix: For thin walled cylinders, the second moment of inertia Iz and cross
sectional area A are both linearly dependent on the wall thickness parameter. Looking
at the Euler-Bernoulli stiffness matrix, it can be noticed that each matrix entry is linear
in either A or Iz as well. For the Euler-Bernoulli beam, the resulting stiffness matrix of
Equation (B-1) is recasted to show the linear dependency of the wall thickness for all
matrix entries:

K(t) =



2πrE
Le

0 0 −2πrE
Le

0 0
0 12Eπr3

L3
e

6Eπr3

L2 0 −12Eπr3

L3
e

6Eπr3

L2
e

0 6Eπr3

L2
e

4Eπr3

Le
0 −6Eπr3

L2
e

2Eπr3

Le

−2πrE
Le

0 0 2πrE
Le

0 0
0 −12Eπr3

L3
e

−6Eπr3

L2
e

0 12Eπr3

L3
e

−6Eπr3

L2

0 6Eπr3

L2
e

2Eπr3

L 0 −6Eπr3

L2
e

4Eπr3

Le


t (B-3)

• Mass matrix: In this case the wall thickness dependency is only present in the cross
sectional area A the element. Following the same reasoning as for the stiffness matrix,
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Equation (B-2) is rewritten in order to visualize the linear dependency for the wall
thickness parameter.

M(t) = ρπrLt

840



140 0 0 70 0 0
0 156 22L 0 54 −13Le
0 22Le 4L2

e 0 13Le −3L2
e

70 0 0 140 0 0
0 54 13Le 0 156 −22Le
0 −13Le −3L2

e 0 −22Le 4L2
e


(B-4)

Hence, for thin walled cylinders, the structural matrices are linearly dependent on the wall
thickness parameter. Recall from Chapter 2 that with the above stated matrices, the tower
model can be parameterized through the wall thickness. Since the above matrices in only
describe a single beam element, the mass and stiffness matrices of all 40 shell elements should
be coupled in order to form the total tower structure.
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Figure B-2: The element-wise thickness along the tower length (a) and the element-wise radius
along the tower length (b).

Table B-1: Numerical values for the RNA of the 8.0MW SGRE wind turbine.

Symbolic expression Numerical Value

Rotor Inertia Jr 109687930 [kg ·m2]
Rotor-Nacelle-Assembly mass mRNA 449300 [kg]
Offset of RNA mass in z-direction z∆cog -1.89 [m]
Pitch delay τ 0.3 [s]
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Table B-2: Element values and characteristics for the Euler-Bernoulli beam theory for the 8.0MW
SGRE wind turbine.

Beam element parameters Symbolic expression Numerical Value

Density ρ 7850 [kg/m3]
Young Modulus E 210 [GPa]
Poisson ratio v 0.3
Length of element Le − [m]
Wall thickness t − [m]
Radius element r − [m]
Timoshenko shear coefficient ky 2

Table B-3: Operating characteristics for the 8.0MW SGRE wind turbine

Operation characteristics Symbolic expression Numerical Value

Rated rotor speed Ωr,rated 10.8 [rpm]
Rated wind speed Vrated 12 [m/s]
Cut-In wind speed Vcut,in 3 [m/s]
Cut-Out wind speed Vcut,out 28 [m/s]
Rated Power Prated 8.0 [MW]

D.T.B. Stinenbosch Master of Science Thesis



Appendix C

Fatigue analysis

This appendix is dedicated to the used fatigue analysis, which is performed for the verification
study within BHAWC. For the verification study of Chapter 5, two different methods of
assessing the fatigue of time-domain simulations are discussed below. The first method makes
use of rainflow counting algorithm of Niesłony (2009) in order to determine the damage done
to the support structure. The second method is calculating the pitch bearing damage over
time.

Fatigue analysis for tower bottom moment

For the tower bottom the Fore-Aft (FA) bending motion is of interest. Especially the bending
moment at the root (mudline), because there the bending moment is the largest. During
the normal operation the support structure is subjected to oscillations, which are large or
big in magnitude. These oscillations can be seen in the verification study in Chapter 5. In
order to determine the damage done to the structure over the total lifetime of the turbine
a qualitative measure should be introduced. For this qualitative measure rainflow counting
can be used (Dirlik, 1985). The method can be explained by using Figure C-1. After this
procedure all the oscillations are summed up. This summation can be compared with a so-
called S-N curve, which provides the amount of cycles N corresponding to an applied stress S
for which a material fails. By using a logarithmic scale for N , the S-N curve looks linear for
most materials. The resulting relation satisfies SNm = constant, which is called the Miner’s
rule, where m is known as the material specific Wöhler exponent. Eventually, by using this
post-processed counting method, the Damage Equivalent Loads (DEL) can be calculated. By
calculating the DEL, the fatigue can be compared for different experiment duration.
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Figure C-1: The procedure of rainflow counting for an arbitrary signal. Firstly, there is a
magnitude which fluctuates over time (a). Secondly, the minima and maxima of the graph are
extracted (b). Thereafter, the plot is turned sideways, which results in the graph (c). This graph
includes the raindrops, represented by the blue lines, which are flowing from the rightmost point
downwards. The raindrops will continue to fall along the graph down until the following conditions
are met. When the flow comes from a higher positive maximum (negative minimum) than the
maximum (minimum) it started from. Also, when two flows meet each other from a roof above, it
stops. Based on the flow lengths the graph (d) can be made with the tools provided by Niesłony
(2009), which distinguishes half an full cycles in magnitudes
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Pitch bearing fatigue estimation

The most critical part of the application of active tower damping is the insurmountable
additional pitch activity. Moreover, the pitch bearing damage is regarded as one of the main
critical design drivers for the application of this load reducing pitch control. The application
of load reducing pitch control introduces small cyclic pitch movements with sudden direction
changes. Therefore, a considerable amount of fatigue for the bearing and actuators is induced
by the extra pitch activity. For the assessment of pitch bearing a rough estimate for the
fatigue damage in the roller bearings is determined as follows:

D = 1
k

∑
i=1

(
cos(θpos) ·Mbr,x + sin(θpos) ·Mbr,y

)p
|∆θi| (C-1)

where, p = 3 for spherical roller bearing, the flap-wise and edge-wise bending moments at the
root of the blades are given by respectively, Mbr,x andMbr,y. The value of angular increments
is given by ∆θi.
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List of Acronyms

ATD Active Tower Damper

BHAWC Bonus Horizontal Axis Wind turbine Code

CL Closed-Loop

CPC Collective Pitch Controller

CSO Controller Structure Optimization

DEL Damage Equivalent Loads

DoF Degrees of Freedom

FLS Fatigue Limit State

FA Fore-Aft

LCoE Levelized Costs of Energy

LFT Linear Fractional Transformation

LMIs Linear Matrix Inequalities

MAC Modal Assurance Criterion

MIMO Multiple-Input Multiple-Output

OWT Offshore Wind Turbine

OL Open-Loop

ODE Ordinary Differential Equation

ODEs Ordinary Differential Equations

RHP Right-Half-Plane
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RNA Rotor Nacelle Assembly

RSC Rotor Speed Controller

SS Side-Side

SGRE Siemens Gamesa Renewable Energy

SLOW Simplified Low Order Wind turbine

SISO Single-Input Single-Output

SVD Singular Value Decomposition

TP Transition Piece

ULS Ultimate Limit State

VAF Variance Accounted For
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