
 
 

Delft University of Technology

Data-driven time series forecasting of offshore wind turbine loads

Muhammad Amri, Hafiz Ghazali Bin; Marramiero, Daniela; Singh, Deepali; Van Wingerden, Jan Willem;
Viré, Axelle
DOI
10.1088/1742-6596/2767/5/052060
Publication date
2024
Document Version
Final published version
Published in
Journal of Physics: Conference Series

Citation (APA)
Muhammad Amri, H. G. B., Marramiero, D., Singh, D., Van Wingerden, J. W., & Viré, A. (2024). Data-driven
time series forecasting of offshore wind turbine loads. Journal of Physics: Conference Series, 2767(5),
Article 052060. https://doi.org/10.1088/1742-6596/2767/5/052060

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1742-6596/2767/5/052060
https://doi.org/10.1088/1742-6596/2767/5/052060


Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Data-driven time series forecasting of offshore
wind turbine loads
To cite this article: Hafiz Ghazali Bin Muhammad Amri et al 2024 J. Phys.: Conf. Ser. 2767 052060

 

View the article online for updates and enhancements.

You may also like
Interpretable surrogate models to
approximate the predictions of
convolutional neural networks in glaucoma
diagnosis
Jose Sigut, Francisco Fumero, Rafael
Arnay et al.

-

Neural networks as effective surrogate
models of radio-frequency quadrupole
particle accelerator simulations
Joshua Villarreal, Daniel Winklehner,
Daniel Koser et al.

-

Finite element model correction method
based on surrogate model with multiple
working conditions and multiple
measurement points
Mingchang Song, Quan Shi, Zhifeng You
et al.

-

This content was downloaded from IP address 154.59.124.113 on 02/07/2024 at 10:47

https://doi.org/10.1088/1742-6596/2767/5/052060
/article/10.1088/2632-2153/ad0798
/article/10.1088/2632-2153/ad0798
/article/10.1088/2632-2153/ad0798
/article/10.1088/2632-2153/ad0798
/article/10.1088/2632-2153/ad3a30
/article/10.1088/2632-2153/ad3a30
/article/10.1088/2632-2153/ad3a30
/article/10.1088/1361-6501/ad0257
/article/10.1088/1361-6501/ad0257
/article/10.1088/1361-6501/ad0257
/article/10.1088/1361-6501/ad0257
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvhoXJioZA8F9flQDD21RpvKE4sM4eWdttEYOHd_YARlfdIcY8KrL6klYNGzyfjvdl7qvDK3vGU9PzSe4uX8r6h_4Hnnz-SfTGwH-UcvI4JEAsxcJOcPEO0jwyeDmIlsahPDOjModxbT2woYg7hJ2ANhUTtxXCiPPLPQotIkD0XsEyBSPQaoV9_7abKVrWpdcJDcuXKCy_kiQ72Qm-xHmgoMeDb45MPPIR0x3qe2fiNIsXVMJb9NfdCWqHWtBWXaaCH2SFCcD3Jxev4_2w4Z8qauoV_ca-CXPlasUfNnaWeX2Vw8KqPb3GXV18H1uYDUCXw6IgdRZvCVzDExHMCUlHikR_mAddC&sig=Cg0ArKJSzNBCiKSclRh4&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.electrochem.org/prime2024/registration/%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3DIOP_prime_early_reg%26utm_id%3DIOP%2BPRiME%2BEarly%2BRegistration


Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 052060

IOP Publishing
doi:10.1088/1742-6596/2767/5/052060

1

Data-driven time series forecasting of offshore wind

turbine loads

Hafiz Ghazali bin Muhammad Amri1, Daniela Marramiero2, Deepali
Singh1, Jan-Willem Van Wingerden3, Axelle Viré1
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Abstract. Long Short-Term Memory Recurrent Neural Networks (LSTM) are used to build
surrogate models to forecast time-series blade loads for both fixed and floating offshore wind
turbines. In this paper, we train surrogate models on datasets generated with OpenFAST
on the IEA-15MW-RWT under a range of metocean conditions. The aim of the surrogate
models is to generate load forecasts inexpensively and accurately such that they can be used
in a model predictive controller. Two cases are investigated with different model inputs: one
with only measurements available to typical PI controllers and another one with additional
wave elevation and deflection measurements (alongside the endogenous variable). The model
performances are evaluated and compared. It was found that for the fixed turbine, the models
predicted all three blade loads to a high degree of accuracy. The floating turbine surrogate
models performed relatively worse, but edgewise and pitching moments are still reasonably
accurate. The surrogate model forecasts the flapwise moment to a satisfactory accuracy only in
58% out of 400 test cases. The addition of wave elevation and blade deflection features did not
significantly improve the prediction performance of the surrogate, demonstrating that just the
information used by current PI controllers may be sufficient for forecasting blade loads.

1. Introduction
Reducing the levelised cost of electricity of offshore wind farms is important to further incentivize
their installation and help us fulfill our renewable energy targets. For this purpose, it is important
that the power output and operational life of offshore wind turbines is improved, which can
be achieved through the use of data-driven model predictive control (MPC) over proportional
integral controllers (PI). This can be a significant advantage especially for floating offshore wind
turbines, where platform motion can cause unsteady aerodynamics, resulting in losses in energy
production and overall turbine lifetime [1, 2].

MPC involves the use of a fast model predicting the future behaviour of a system. For
wind turbines, the model used is typically a linearised representation of a physics-based model
about an operating point [3, 4]. However, when the dominant dynamics is highly nonlinear, this
can result in an oversimplification. Data-driven surrogate models (SMs) present an interesting
alternative for this purpose: once trained, they are computationally inexpensive and so can
quickly generate finite time-horizon predictions of the variables required by the controller. These
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models also require less domain knowledge, and the framework for producing the models is easily
transferable between turbines, given that data is available or easily generated.

The ability of data-driven surrogate models to accurately emulate physics-based models
while having a greatly reduced computational cost has seen them used in various ways in
wind energy. This includes speeding up wind turbine modelling through reducing the expense
of computational fluid dynamics for wake modelling [5, 6] and characterizing hydrodynamic
response [7], bypassing blade element momentum theory for aerodynamic load estimation [8],
and to predict the load statistics on wind turbines [9, 10, 11]. For this reason, there has been
significant work in producing SMs for wind farm design and planning, fatigue monitoring and
design load assessment.

However, there has been very limited work in data-driven time series forecasting of loads,
as the majority of work in time series forecasting has been focused on producing forecasts of
wind power and speed [12, 13, 14]. Dimitrov and Göçmen [15] used LSTMs as a virtual sensor
for predicting blade root flapwise bending moment estimation, blade tip deflection forecasting,
and wake center position detection. In this study, the SM inputs are obtained from Supervisory
Control and Data Acquisition (SCADA), lidars, and met-mast measurements, whilst in the
aforementioned studies, the SMs take SCADA measurements or metocean conditions as input.
To be implemented in a model predictive control strategy, the SM would have to be trained on
measurement data available during turbine operation as inputs, which is the goal of this work.

In this paper, we present a methodology to produce surrogate models that generate time
series forecasts of edgewise, flapwise and pitching moments for both fixed and floating offshore
wind turbines with long short-term memory networks (LSTM). The SMs are trained from data
generated by the aero-hydro-servo-elastic code, OpenFAST [16, 17], with turbine measurement
data as inputs and finite time horizon predictions of the blade root moments as outputs.

The paper is structured as follows. Section 2 describes the overall methodology in producing
the SMs, with section 2.1 explaining the generation of the training dataset and section 2.2 going
over the SM structure, inputs and outputs, and training. The performance of the SMs for the
different cases is discussed in section 3. The main findings are summarised in the conclusions in
section 4.

2. Methodology
2.1. Dataset generation
2.1.1. Simulation setup The training datasets are generated by performing OpenFAST
simulations on the IEA-15MW offshore reference wind turbine with frozen turbulence field
generated by TurbSim as input [18]. For the fixed cases, the turbine is fixed on a monopile
support structure, whilst for the floating cases, the semisubmersible UMaine VolturnUS-S
reference platform is used [19]. The aerodynamics calculations are performed using Blade
Element Momentum Theory (BEM). First-order waves are modelled with the JONSWAP
Spectrum in HydroDyn. All simulations are run for 900s each, with the first 300s removed
to avoid initial transient. A total of 500 cases are simulated for the fixed case and 2048 for the
floating case.

2.1.2. Metocean conditions The OpenFAST inputs varied in the simulations are:

• 3 wind variables (2 for fixed case):

– Wind speed u
– Turbulence intensity TI
– Wind shear exponent α (only for the floating case)

• 3 wave variables:

– Significant wave height Hs
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– Wave direction Wdir

– Peak spectral wave period Tp

• 3 random seeds (2 wave seeds and 1 turbulence seed)

In the fixed case, the variable bounds are defined through site-specific data located 30km
off the west coast of Ireland, obtained from [20]. In the floating case, the bounds are given in
Table 1, and are referenced from [9, 10]. The inputs are generated within the bounds through
quasi-random low discrepancy sequencing.

Table 1: Input variable ranges for the floating turbine dataset

Variable Lower Bound Upper Bound

Wind speed u (ms−1) 3 25

Turbulence Intensity TI (%) 2.5 18
u

(
6.8 + 0.75u+ 3(10u

2
)
)

Wind shear exponent α (-)
0.15− 0.23

(
umax
u

)(
1−

(
0.4logR

z

)2) 0.22 + 0.4
(
R
z

) (
umax
u

)
Significant wave height Hs (m) 0 6
Wave direction Wdir (deg) -180 180
Peak spectral wave period Tp (s) 1 21
Turbulence seed (—) -50000 50000
Wave seed 1 (—) -50000 50000
Wave seed 2 (—) -50000 50000

2.2. Surrogate Model Training
2.2.1. Model Inputs To investigate the impact of the SM inputs on the prediction accuracy,
two cases are considered:

• Case 1, with as SM inputs: (1) the TurbSim reference wind speed URef, (2) the estimated
wind speed time series WindVel, (3) the wave elevation time series WaveElev, (4) the in-
plane deflection IPDefl (for Edgewise and Pitching Moments), (5) the out of plane deflection
OoPDefl (for Flapwise Moment) and (6) the endogenous feature (the forecasted blade load).

• Case 2, with as SM inputs: (1) the estimated wind speed time series WindVel, (2) the rotor
speed RotSpeed and (6) the endogenous feature (the forecasted blade load).

These two cases are considered to investigate the differences made by the additional available
inputs to those used by typical PI controllers to the SM predictions. Figure 1 shows a heatmap of
the mean cross-correlation coefficients between the loads and the exogenous input features (other
than reference wind speed, which is constant over a simulation). It is clear that the in-plane and
out-of-plane deflections have the highest cross-correlation with the blade loads; however, the
cross-correlation coefficient does not tell the full story as it only identifies linear relationships.
For example, we know that the value of the rotor speed determines the 1P frequency, which
impacts the frequency of oscillation of the blade loads. As such, they are still included as input
features.

2.2.2. Surrogate Model structure Long short-term memory networks (LSTMs) are a type of
Recurrent neural network (RNN) designed to solve the vanishing/exploding gradient problem
encountered in training traditional RNNs [21]. As opposed to more typical feedforward neural
networks, RNNs are bi-directional, thus resulting in a form of memory of the previous process,



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 052060

IOP Publishing
doi:10.1088/1742-6596/2767/5/052060

4

Rotor Speed

Est. 
Wind Speed

In Plane Defl.

Out of P
lane Defl.

Wave Elev.

Edgewise

Flapwise

Pitching

0.052 0.068 0.94 0.69 0.11

0.3 0.28 0.78 0.95 0.13

0.2 0.14 0.81 0.64 0.12

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Heatmap of mean cross-correlation coefficients between loads and exogenous features.

which can be used for subsequent predictions. This characteristic makes RNNs a popular choice
for time-series data. Due to the vanishing/exploding gradient problem, traditional RNNs can
typically only look back in time for about 10 timesteps, whilst LSTMs can learn from more than
1000 timesteps [21], which makes them a suitable choice of surrogate model for the purposes of
this work.

The SMs used in this work use an encoder-decoder architecture. This model consists of an
encoder layer which maps the input sequence into a fixed-length internal representation that
captures the sequential dependencies [22], and an output layer which maps this to the output
sequence recurrently.

The general structure of all SMs in this work are the same, consisting of an encoder layer and
a decoder layer with 30 nodes each, chosen as a compromise between training time and model
accuracy after a trial-and-error tuning process. For the fixed cases, 20 previous timesteps are
used as inputs to the SM, whilst for the floating cases, this is increased to 40 (corresponding
to 30 s). This is to account for the lower frequency dynamics present in floating wind turbines;
the longest peak spectral wave period in the dataset being 21 s and the natural period of the
floater in pitch being 27.8 s [19]. Finally, the output of the SMs consists of a one-dimensional
vector made of 40 values (representing the 40 forecasted timesteps). The SM input and output
sequences are illustrated in Figure 2.
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Figure 2: Illustration of model input and output, where t=0 is the current time, the actual value
of the blade load is in blue and the surrogate forecast is in orange.
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2.2.3. Model Training The OpenFAST simulations generated results with a time–step of 0.005s,
corresponding to a frequency of 200Hz. Averages over every 150 values are performed, resulting
in a time-step of 0.75 s, which is sufficient to capture the frequency of blade loads. Out of the
500 simulations for the fixed case, the 200 most significant are deemed sufficient to represent
the sampled area . For the floating case, all 2048 simulations in the dataset are used. For both
cases, the data is split into two subsets: 80% for training and 20 % for validation.

The training input-output pairs are formed using a sliding window process — for each 10
minute (800 timesteps) simulation, 19 overlapping sub-sequences are obtained, containing the
input-output sequences (20 or 40 timesteps as input and 40 timesteps as output), as illustrated in
Figure 3. The use of this sliding window augments the dataset, increasing its size and diversity.

…159…120119…8079…4039…0

…159…120119…8079…4039…0

…159…120119…8079…4039…0

Sequence 1

Sequence 2

Sequence 3

Time Steps

Input sequence Output sequence

Figure 3: Diagram illustrating the sliding window of the floating case. with the blue boxes
representing the input sequence and the orange boxes representing the output sequence

Taking into account training time and model accuracy, the training hyper-parameters selected
are summarised in Table 2.

Table 2: Summary of hyper-parameters used for training the LSTMs of both the fixed and
floating cases

Hyper-parameter Fixed Case Floating Case

Batch size 16 32
Number of epochs 120 60
Learning rate 0.0005 0.0001
Number of nodes per layer 30 30
Number of input timesteps 20 40
Number of output timesteps 40 40

3. Results and Discussion
The results from testing the SMs for the different cases are summarised in Figure 4, which depicts
the Root Mean Squared Error (RMSE) of each respective blade load against the forecasted
timestep. The RMSE is given by:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (1)
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Figure 4: RMSE against forecasted time-steps for different cases

where N is the number of considered data points, yi is the actual value of the data point and
ŷi is the predicted value.

For the fixed turbine, both Case 1 and Case 2 SMs performed well, generating accurate
forecasts of the blade loads. The average range in blade load over 40 timesteps is about 380000
kNm for the edgewise and flapwise moments, and 330 kNm for the pitching moment. From
Figure 4, it is evident that the RMSE values are a small fraction of this, demonstrating the
accuracy of the SMs for the fixed cases. It is also evident that SMs in both cases performed
very similarly, which is a very promising result as it demonstrates that including time histories
of the endogenous feature with the information used by current PI controllers is sufficient for
accurate forecasting of blade loads. Due to the model structure, there is no significant difference
in forecasting CPU time between the two input cases — Case 1 takes an average of 88.2ms per
forecast while Case 2 takes an average of 83.3ms. However, a lower number of input features
means reduced uncertainty (due to uncertainty in measurements), which means that there is
greater confidence in SM predictions.

For the floating turbine, the RMSE values are significantly higher than the fixed cases. While
the errors are still reasonable when compared to the typical load ranges, it is clear that the SMs
do not perform as well as the fixed cases. Looking at the example forecasts in Figure 5, it can be
seen that there are several ways in which the SMs can lead to larger values of RMSE. In Figure
5, three examples of poor predictions are shown — in the case of edgewise moment, it is due to
the SM forecasting a different frequency to the actual signal. In the case of the pitching moment,
it is due to the forecast signal having a different amplitude to the actual signal. In the case
of the flapwise moment, the SM fails to capture the high frequency variations in the reference
signal. Despite the relatively inaccurate predictions, the SM output in those cases would still
be useful for control purposes. We can observe that the SMs struggle the most when the actual
signals do not have any apparent seasonality — this can be due to the environmental conditions
(highly turbulent, wind-dominant dynamics) or limited information in the input features.

Figure 5 also reveals the limitations of using RMSE as a performance metric for our purposes.
Cases with mismatched frequencies or amplitudes may result in very high RMSE despite being
comparatively good forecasts. For this reason, to evaluate the performance of the floating case
and the reason behind the higher errors, the Variance Accounted For (VAF) is used. The VAF
is a performance metric which measures the percentage of the total variance in the actual signal
that is accounted for by the variance in the forecast signal. VAF values range from 0 to 100%,
with larger values signifying better performance. It is expressed as
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Figure 5: Examples of time series forecasts of blade loads for the floating turbine (case 2). Plots
on the left show examples of cases with good predictions (low RMSE values), while plots on the
right show examples of cases with poor predictions (high RMSE values).

VAF(y, ŷ) = 100%×max

(∑n
i=1(yi − ȳ)(ŷi − ¯̂y)∑n

i=1(yi − ȳ)2
, 0

)
(2)

where y is the actual signal and ŷ is the forecast signal. Since it is found that the SM performance
does not vary significantly over time (i.e. SM forecast performance is similar over the 20 sub-
sequences within each 10 minute simulation), the mean VAF is taken, resulting in one value for
each set of input conditions in the test data. To look at the impact of floating platform motion
on SM performance, we take the approximate average absolute speed of the hub s in the surge
direction, given by

s = mean

(∣∣∣∣ ddt (Hhubsin(θ) + x)

∣∣∣∣) (3)

where Hhub is the hub height, θ is the platform pitch and x is the platform surge. Figure 6
shows scatter plots of the mean VAF against s for each of the three blade loads.
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Figure 6: Mean VAF (over 19 sub-sequences within a simulation) against Mean Absolute Hub
Surge Speed for all 3 blade loads for the floating turbine (case 2).

It is clear that there is a negative correlation between the VAF and the rotor hub motion.
When values of s tend to zero, the values of VAF are close to 100%, while variation in VAF
increases with s. This corresponds to the low RMSE values of the fixed cases shown in Figure 4,
as stationary (or very slow moving) floating turbines would behave similarly to a fixed turbine.
Out of the three loads shown here, the SM for flapwise moment has the greatest sensitivity to
blade loads, having cases with low VAF even at small values of hub speeds which is not the case
for the edgewise or pitching moments. This is expected, as the turbine motion is in the same
direction as the flapwise moment.

Figure 7 shows the cumulative distribution of Mean VAF for the 3 blade loads. Values of VAF
> 60% indicates that the model performs reasonably well for the given signal. From Figure 7, it
can be concluded that the SMs for edgewise and pitching moments perform well. For edgewise
moment, 99.75% of the test data has a VAF > 60%, while for the pitching moment, 82.5% lies
above this threshold. For flapwise moment, however, the SM did not perform satisfactorily, with
only 58% of its forecasts having VAF > 60%.

There are several options to improve the modelling performance of flapwise moment for
floating wind turbines. Further tuning (i.e. increasing number of epochs, nodes or layers at the
expense of training time) may yield higher accuracy, although this is unlikely to work for the
cases with no apparent trend or seasonality, such as that shown in Figure 5. It is possible that
the reason behind this signal behaviour is due to the presence of high frequency dynamics not
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Figure 7: Cumulative distribution of Mean VAF for all 3 blade loads for the floating turbine
(case 2).

captured by the sampling rate. If this is the case, it would add an additional complexity to the
SM, as the number of input timesteps would need to be higher leading to higher computational
costs during training, which might make it impractical.

4. Conclusions
This paper presented the use of LSTMs for the time series forecasting of edgewise moment,
flapwise moment and pitching moment on fixed and floating offshore wind turbines. The
surrogate models were trained on datasets generated with OpenFAST on the IEA-15MW offshore
reference wind turbine (with the UMaine VolturnUS-S semisubmersible for the floating case).
Two cases were investigated: Case 1 where the SM receives as inputs the reference wind speed,
the estimated wind speed, the wave elevation, the in-plane deflection, the out of plane deflection
and the respective blade load history (the endogenous feature), and Case 2 where the SM receives
only inputs used by typical PI controllers: the estimated wind speed and the rotor speed and
the respective blade load history.

The RMSE results show that LSTM-based SMs can accurately forecast time series of all 3
loads for the fixed turbine. Both Case 1 and Case 2 SMs demonstrate similarly low RMSE,
revealing that LSTMs can model fixed turbine blade loads by including the load histories with
the limited information available to current PI controllers. For the floating turbine, both Case
1 and Case 2 show similar RMSE, however, they are significantly higher than those of the fixed
turbine. As both Case 1 and Case 2 SMs demonstrate similar RMSE and similar forecasting
time, future work should build on Case 2 as it has the advantage of lower input uncertainties
(due to having less features) and requiring a smaller dataset.

From the time series forecasts of the loads, it was determined that there are 3 main patterns
behind cases with high RMSE: (1) Frequency mismatch, (2) amplitude mismatch and (3) lack
of seasonality in actual signal. By looking at the Mean VAF of the blade load forecasts, it was
found that there is a negative correlation between the rotor motion due to platform pitch and
surge, and the SM performance. This explains why the floating cases had higher RMSE than
the fixed ones. It was found that while the SMs for forecasting edgewise and pitching moments
had good performance, flapwise moment was not modelled sufficiently well, with only 58% of
test cases above the 60% VAF threshold. Future work will focus on further investigating how
the predictions of the flapwise moment can be improved for the floating turbine. The training
dataset will also be enriched with higher-fidelity models, which can increase the accuracy of the
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dataset if the floating turbine experiences large unsteady aerodynamics.
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