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ABSTRACT

Atrtificial Intelligence (Al) is increasingly affecting people’s lives. Al is even employed in fields
where human lives depend on the AI’s decisions. However, these algorithms lack transparency, i.e.
it is unclear how they determine the outcome. If, for instance, the AI’s purpose is to classify an
image, the Al will learn this from examples provided to it (e.g. an image of a cow in a meadow). The
algorithm can focus on the wrong part of the image. Instead of focusing on the foreground (cow),
it could focus on the background (meadow). This way, by focusing on the background, it could
produce a false output (e.g. a horse instead of a cow). To show this, an explanation is needed. For
this reason, a variety of methods have been created to explain the reasoning behind these algorithms,
called explainability methods. In this paper, six local explainability methods are discussed and
compared. These methods were chosen as they were the most prominently used approaches for
explainability methods for Convolutional Neural Networks (CNN). By comparing methods with
analogous characteristics, this paper is going to show what methods exceed others in terms of
performance. Furthermore, their advantages and limitations are being discussed. The comparison
shows that Local Interpretable Model-agnostic Explanations, Layer-wise Relevance Propagation and
Gradient-weighted Class Activation Mapping perform better than Sensitivity Analysis, Deep Taylor
Decomposition and Deconvolutional Network, respectively.

Keywords Explainability - Al - Interpretability - CNN - Convolutional Neural Networks - Sensitivity Analysis - LIME -
Deep Taylor Decomposition - LRP - DeconvNet - Grad-CAM



1 Introduction

Artificial Intelligence (Al) is an ever growing field of Computer Science and is widely applied in fields ranging from
speech recognition [27] to recruiting tools [9]. Although for some tasks Al systems have achieved accuracies on par
with humans [|10], their decisions can lead to life or death situations when applied in military [[14]] or medical fields [22].
Since AI’s decisions influence people’s life more and more, ethical concerns and a need for an explanation on how
these algorithms make their decisions arise. Furthermore with the introduction of General Data Protection Regulation
(GDPR), people in the EU have the right to "obtain an explanation of the decision" made by an Al system [29]. Due
to deep learning model’s nested non-linear structure, it is unclear what information the input data makes them arrive
at their decision. Today’s Al systems are trained with many examples, which may cause them to observe patterns
in the data which are not directly visible to the person analyzing the data. This can make it impossible for humans
to understand their reasoning [2]. A new field has emerged which attempts to explain these AI’s called Explainable
Artificial Intelligence (XAI). By using XAl people can try to extract explanations of Al systems and gain new insights
[32] in deep neural networks.

An artificial neural network (ANN) is a branch of Al which is used to recognise patterns in data. An ANN consists of
many neurons which are grouped together in layers as shown in Neurons have an activation function and a
bias. Neurons are connected to each other via edges which have weights. When an input = (e.g. an image) is given
to the ANN, it first enters the so called input layer. The signal is now propagated to the next layer using the edges’
weights and the neurons’ activation functions and biases to compute an output which in turn is propagated to the next
layer. This process continues until the final layer, the so called output layer, is reached. The output layer now contains
the prediction f(x) (the probability of the input containing the target class) of the ANN. This prediction can be made
for a single class ¢, but typically this prediction is made for multiple classes [40].
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Figure 1: Overview of the layout of a simple neural network. Adapted from [|12].

All layers between the input and output layer are called hidden layers. When an ANN consists of multiple hidden
layers, it is called a deep neural network (DNN). A convolutional neural network (CNN), is a class of DNN, designed
for image analysis. The distinctive property of CNNSs is that a CNN uses the mathematical operation convolution in
its layers. During the convolution operation, filters are used to extract features which are relevant for certain classes.
Nearly all CNNs use pooling which summarizes statistics of nearby outputs, reducing the size and complexity of the
neural network [15]].

This paper discusses several explainability methods which are used to explain CNNs. These methods are either
model-agnostic or model-specific. The latter can only be applied to specific model classes, while model-agnostic
methods can be applied to any machine learning algorithm [2]. Furthermore, explainability methods can be either
global or local. Local interpretations mean that the results of a trained model on a specific input can be understood,
while global interpretability is about understanding the entirety of a trained model [13]]. This paper only discusses local
methods.

The question this paper will answer is: what frequently used explainability methods exist for CNNs? In addition, the
advantages and limitations of these methods will be explored and compared. Finally, the explainability methods will be
distinguished into model-specific and model-agnostic.



In section two of this paper, six explainability methods are described. Features of each method are discussed, followed
by their advantages and limitations. By knowing the advantages and the limitations, this paper will compare the six
different explainability methods in section four. At the end a discussion and a conclusion are provided.

2 Explainability Methods

When using a CNN to search for some class c (e.g. a dog/cat) in an image, a frequently used way to explain the CNN'’s
prediction f.(z), is to highlight areas of the input which significantly influenced the CNN’s prediction. This can be
done by using a heatmap (see [Figure 2). The heatmap is built up from relevance scores R for each pixel i. A high
R¢$ means that the pixel contributed significantly to identifying the class c. Typically areas with high relevance scores
are located at key characteristics of c. For example, in[Figure 9|the CNN has determined that the face of the dog is
an important feature of the image. This section will give a short description of how different explainability methods
construct a heatmap.

2.1 Sensitivity Analysis (SA)

One classic method for explaining predictions is Sensitivity Analysis (SA) [23}32]. SA explains a prediction based on
the model’s locally evaluated gradient. The relevance score R is defined as:

Ri(x )—II fe()]| (D)

This measure assumes that the most relevant input features are those to which the output is most sensitive. The result
of the explanation process is a heatmap, which indicates which pixels need to be changed to make the image look
more/less like the predicted class.
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Figure 2: Sensitivity Analysis applied to a convolutional deep neural network trained on handwritten digit database, and the resulting
explanations (heatmaps) for selected digits. Red color indicates positive relevance scores. Taken from [23].
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Examples of explainability methods produced by SA is given in[Figure 2] Each heatmap has a scattered outcome and
does not focus on the actual class-relevant features. This can be blamed on the nature of SA: it is not only sensitive to
pixels of the object of the class, but it could also be sensitive to objects of other classes. The heatmap indicates what
pixels make the digit belong more/less to the target class rather than which pixels are actually pivotal for that class [23|
2.

Performing SA can have different purposes. One purpose for using SA is to use it as a tool to find and remove
unimportant input attributes. SA is mostly used as a starting point for some more powerful explainability method [2]].
Five more methods that are known as an improvement on SA will be discussed next.

2.2 Local Interpretable Model-agnostic Explanations (LIME)

Local Interpretable Model-agnostic Explanations (LIME) [30]], is a model-agnostic method which produces explanations
that are simple and clear so that it is easy for a human to understand the underlying functioning of the models at hand.
LIME approximates the black box locally in the neighborhood of the prediction being explained. The top three ways
LIME showed in experiments carried out by Ribeiro et al. [30]] to have helped users are: choosing between competing
models, detecting and improving untrustworthy models and lastly, getting insights into the models [30].

&(z) = argminl (f, g, 7)) + Q(g) )
geqd

The explanation of LIME is produced by optimizing [Equation 2] This explanation is defined as a model g € G with
G being a class of potentially interpretable models and ¢ is either O or 1 which means g shows whether or not an



interpretable component exist and §2(g) is the measure of complexity (as opposed to interpretability) of the explanation
of that model. In the model that is being explained, 7, (z) is a proximity measure between an instance z to x to define
the locality around x. Lastly, fidelity function L (f, g, 7,) is to measure how unfaithful g is in approximating f in the
locality defined by ... Fidelity in this mathematical context refers to "the faithfulness of technology-based behavior and
properties of virtual objects to the mathematical behavior and properties of the objects they are intended to represent”
. To make sure both interpretability and local fidelity are ensured, we should aim to minimize £ (f, g, 7, ) while
trying to have 2(g) as low as possible enough to be still interpretable.

Since in the formulation can be used with different explanation and interpretability families of G and
different fidelity functions £ or complexity measures of €2, LIME can be used for any sort of classifier or regressor, and
image processing is one of the cases where it is used the most in the field nowadays [19].

(a) Original Image (b) Explaining Electric guitar (c¢) Explaining Acoustic guitar  (d) Explaining Labrador

Figure 3: Explaining an image classification prediction made by Google’s Inception Neural Network. The top three classes predicted
are "Electric Guitar" (output q = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (output q = 0.21). Taken from [[3;0]]

One example of the applications of LIME is explaining the prediction of Google’s pre-trained Inception Neural Network
[38] on an arbitrary but absurd photo of a Labrador playing guitar (Figure 3p). In[3p, Bk and Bd we can see the
explanations that are given for the top three predicted classes. Such explanations help humans in increasing trust in the
classifiers.

Since the introduction of LIME in 2016 [39], different variations of LIME have been introduced for various use cases.
To recap, the original version is an algorithm that can explain the predictions of any classifier or regressor in a faithful
way, by approximating it locally with an interpretable model. Besides that, some of the other most commonly used
variations are: @ SP-LIME, a method that selects a set of representative and non-redundant predictions with explanations
to address the problem of “trusting the model", via sub-modular optimization [30]]. ¢ LIME-SUP, a locally interpretable
model based on supervised partitioning of input based on fitting trees to the fitted response [17]]. ¢ KLIME, an approach
in contrast with LIME-SUP that is based on clustering the predictor space [17]].

2.3 Deep Taylor Decomposition (DTD)

The Deep Taylor Decomposition (DTD) [6] is a method that explains a model’s decision, specifically a DNN by
decomposing the function value f(z) as a sum of relevance scores . The relevance redistribution onto a neuron
becomes the following equation [23]:

2
wi n
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In this formula, w is defined as the weights connected between node ¢ and node k, n is an index for some layer in the

neural network, and RJrl (z) > 0. Such that its nearest root point is the intersection of the plane equation and the line
of maximum descent. is also known more commonly as the “w?-rule” [24]. The propagation rule simply
consists of redistributing the relevance score based on the square magnitude of the weight, and pooling relevance across
all neurons j [25]. This relevance score approach was described by Bazen and Joutard [6] as a non-linear generalization
of the Oaxaca method in econometrics [28]]. A visual representation can be seen for the search direction where the

gradient is the largest in|[Figure 4

Knowing this, it is now possible to find the dominant (a class with the maximum output that describes the image),
and non-dominant classes in an image [31]]. As an example, a prediction for the class “cat” is obtained by forward-
propagation of the pixel values x;, and is encoded in f(z). The output neuron is assigned a relevance score R;(z) = f(x)
representing the total evidence for the class “cat”. Relevance is then backpropagated from the top layer (layers closer to
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Figure 4: Illustration of a root point search in the two-dimensional input space. The data point (z;); is represented as a black dot,
and the possible root points are depicted as circles. Taken from [24].

the output) down to the input, where R; denotes the pixel-wise relevance score, that can be visualized as a heatmap [25].
It is also easier in the lower layers where the relevance score has been redistributed to the relevant neurons, and where
the final redistribution step only pertains to adding the neighboring pixels together [25]]. A visual example can be seen

in[Figure 5]
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Figure 5: On the left: the forward pass. On the right: the relevance propagation. Adapted from [25]].

2.4 Layer-wise Relevance Propagation (LRP)

Layer-wise relevance propagation (LRP) was first introduced by Bach et al. [5] as a concept defined by a set of
constraints. There is one main constraint from which more constraints can be derived. This constraint is that the
relevance conservation property (no relevance score is created or lost) is ensured, thus:

v
SR ==Y R =Y R = f(@) @
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Here V is defined as the size of the input. This implies that the prediction f(z) can be decomposed into a sum of the
relevance scores of all the input pixels. The relevance scores are then visualized in a heatmap.

LRP uses backpropagation to calculate its result. This means that LRP starts from the output layer and layer-wise
calculates how the previous layer influenced the next layer. How exactly the relevance is propagated is determined by
the propagation rule. Several approaches are possible as long as the aforementioned constraint is preserved. As the
af-rule has been shown to work well, this paper will focus on this particular propagation rule [23]:

a;wh a;w,,
R:;l _ Z (O{ J ]k+ _ J ]ki )R'Z,J,-l (5)
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In this formula, a; is the activation function of neuron j in layer n, w;rk and w;, are the positive and negative weights
respectively of the edges in between neurons j and k£ which are in layers n and n + 1, a and /3 are parameters which can
be chosen. An interesting property of LRP is thus that there is not only positive relevance, but also negative relevance.
« and B, must be chosen such that: « — 3 = 1and 3 > 0.

When setting o = 1 and 5 = 0 (also denoted as LRP-« 5y) an approximation of the Deep Taylor Decomposition is
obtained, meaning there is no negative relevance. Increasing o and § results in more negative relevance in the final
heatmap. What value of « should be used depends on the application, i.e. on GoogleNet LRP-«; 3 is stable while for
image recognition LRP-ax 31 works well [23] 25]].



2.5 Deconvolutional Network (DeconvNet)

The Deconvolutional Network (DeconvNet) method [1}/16] was proposed for unsupervised feature learning, however, it
is currently applied to visualization. This means that similar to the other mentioned methods, it reveals which pixels
of the input image are responsible for its visualization. The more one pixel contributes to the visualization, the more
important that specific pixel becomes. This computation is done by using backpropagation.

The importance of pixels can be shown by using the prediction of classes, the class score, which originally is a highly
non-linear function. Since the non-linear function is too difficult to work with, it is simplified to a linear function by
using the first-order Taylor expansion, the Linear Class Score:

fe(z) = R°x + b, (6)
where b is the bias of the model and R¢ the heatmap. Pixels which have to change the least (change of pixels can be
computed with to change the class score model the most are the more important pixels [16}
371

DeconvNet also constructs a Class Activation Map (CAM). This reveals the discriminative image regions which are
relevant to a particular category identified by the CNN [[7, |16]. CAM requires a special network architecture (see
IFigure 6) similar to Network in Network [21] and GoogLeNet [|38]] in which the network consists of convolutional
layers and the network performs a global average pooling on the convolutional features before the final output layer
(e.g. softmax layer in the case of classification).
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Figure 6: Class Activation Mapping highlights the regions related to a particular class. Taken from [[7]].
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For a given image z, let A, ’; represent the feature map of unit £ in the last convolutional layer at spatial location (4, 9).
For each unit k, the result of global avarage pooling is P* = > Z A . The final class score f. can be written as:

=> wiP* (7)
k

In [Equation 7| wj indicates the importance of class ¢ for unit k by training a linear classifier for each class c using

activation maps of the last convolutional layer generated for the given image z [8]. By plugging P* into the class score
fc the heatmap can be obtained [7]:

Roans = Y wict ®
k
This class activation heatmap R, 4 ,, is shown for the example class *dog’ at the bottom row of

2.6 Gradient-weighted Class Activation Mapping (Grad-CAM)

Gradient-weighted Class Activation Mapping (Grad-CAM) [34] is a strict generalization of CAM. CAM is limited to a
special network architecture and requires to retrain the network. Grad-CAM has been proposed to address these issues.
It is applicable to any CNN-based model without architectural change or retraining.

In Grad-CAM the weights wj, can be obtained without retraining the network by first computing the gradient of class
score f., or any other differential activation, with respect to the feature maps A. Then a global average pool of these



gradients will be taken and normalized using the number of pixels in the activation map Z, as a measure of scale [35]):

global average pooling

o LIyy 6.
F 7 = £ SAF
[ 7 J

gradients via backprop

As in[Equation §|the Grad-CAM heatmap is a weighted combination of feature maps:
Réraa—cam = ReLU (Z w,‘;Ak>
k
linear combination

&)

(10)

where the ReLU (Rectified Linear Unit) activation function is applied to select features with a positive influence on the
class of interest as Grad-CAM may have negative values that likely belong to other categories in the image rather than

the class of interest [34].

Grad-CAM obtains class-discriminative and localization map by producing only a coarse heatmap which does not give
a detailed explanation of why a network predicts a particular class of interest. For example if the classifier predicts a cat
in the image as a tiger cat, the heatmap does not give a clear visualization of important features such as stripes, pointy

ears and eyes (Figure 7).

2. Grad-CAM for 'Cat’ k. Original Image

Figure 7: Grad-CAM visualization is class-discriminative but lacks details of visualization. Adapted from .

c. Grad-CAaM for 'Dog’

To work around this issue Grad-CAM is fused with an existing high-resolution visualization method namely Guided
Backpropagation which produces the fine-grained importance of an image (Figure 8)). This new approach of visualization,
called Guided Grad-CAM, performs a point-wise multiplication between the scores obtained from Grad-CAM and the

scores obtained from Guided Backpropagation [34] (Figure 9).

z. Guided Backpropagation 'Cat’ b Criginal Image c. Guided Backpropagation 'Dog’

Figure 8: Guided Backpropagation is unable to distinguish the features of dog and cat but can show a high-resolution visualization.

Adapted from [34].
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a. Guided Grad-CAM for 'Cat’ k. Original Image c. Guided Grad-CAM for 'Dog’

Figure 9: The result of combining the best aspects of Guided Backpropagation and Grad-CAM into a method called Guided
Grad-CAM. Adapted from [34].

The result will be a high-resolution class-discriminative visualization [[34] where the classes ‘cat’ and ‘dog’ are now
clearly discriminated.

3 Advantages and Limitations

In this section the advantages and limitations of each method mentioned in this paper will be discussed. Before delving
into the details, it should be noted that there is one common advantage between all methods, namely visualization.
Visualization helps to identify dataset bias and lends insight into failures of CNNs. This is why it is important to have
fair and ethical outcomes in real world applications [34].

3.1 Sensitivity Analysis (SA)

SA is a classical method and is commonly used as a starting point for some more powerful explanation method, or as a
tool to find and remove unimportant attributes [2]. However, SA does not produce an explanation of the function value
itself. The produced heatmaps therefore do not focus on the actual class-relevant features [2, [23].

3.2 Local Interpretable Model-agnostic Explanations (LIME)

The strongest points of LIME fall in two folds, local interpretability and human readability. When applying LIME, the
final output is a list of explanations which reflects the contribution of each interpretable feature to what is predicted on
the data sample, this helps to interpret the output locally. Additionally, to make the results more readable for humans,
the way LIME explains the results is in line with what people are interested in when looking at the output of a model. It
modifies a single sample data by making changes to the feature values and then looking out for the effects that this
specific feature has on the final output [2}19].

However, LIME falls short in two areas, namely, linear models exclusivity and use case specificity. The original LIME
implementation only focuses on linear models that can approximate the local behaviour. Especially, for the case of
complex datasets, non-linearity is a likely case for local regions and LIME is not able to give good explanations for such
cases [ 18]]. Moreover, the tweaks and modifications that are applied on the datasets in order to obtain the explanations
needed, are vastly specifically use case based. That means in many situations, simple perturbations are not enough
while in the best case scenario, these perturbations should be in effect through the differences that are seen in the dataset.
But also, intentionally and manually tweaking the perturbations is not ideal either, since it could potentially add bias to
the model explanations [19].

3.3 Deep Taylor Decomposition (DTD)

DTD efficiently utilizes the structure of the network by backpropagating the explanations from the output to the input
layer [31]]. When applying this method to classes other than the dominant class, the explanation does not precisely
describe the features of the non-dominant class(es). This effect is known as diffusion, as the explanation for non-
dominant classes is diffused by the explanation for the dominant class. For this situation, DTD tends to fail drastically
when trying to explain multiple classes in a single image.



3.4 Layer-wise Relevance Propagation (LRP)

The first advantage of LRP is that it uses a continuous function, which means that nearly identical inputs will output
nearly identical explanations [23]. Furthermore LRP has a high selectivity, meaning that the average value of f(x)
decreases steeply when the most relevant patches of pixels are removed. This in turn means that it is good at selecting
what part of the input is relevant for classification [23[]. Finally LRP is applicable on any neural network with
monotonous activations [33]].

However, since LRP is using layer-wise backpropagation, it is possible for some of the relevance score to reach a
"dead-end" in the lower layers which results in the relevance score being distributed randomly [5].

3.5 Deconvolutional network (DeconvNet)

DeconvNet is designed to find which visual patterns cause deep neurons to fire strongly. This should characterize
the selectivity of neurons. However, it fails to produce selective signals from deep neurons, which as a consequence,
generates a rather uniform response. The uniform response shows that DeconvNet is not selective for foreground
information. What is does well is that it accurately reproduces the object shapes as well as the image boundaries for
visualization of images [/1]]. However, it seems to perform partial input recovery, which is a consequence of DeconvNet
being invariant to network reparamaterizations under certain conditions [/1} |3]].

3.6 Gradient-weighted Class Activation Mapping (Grad-CAM)

The main advantage of Grad-CAM is that it can be applied to the existing CNN classifications without requiring
architectural changes. Another strong point of Grad-CAM is being robust against adversarial noises. In an experiment
done by Selvaraju et al. [[34] the network was fooled into thinking that the result of an image classifier belongs to
a wrong class with high confidence but in spite of that the Grad-CAM could still localize the original categories
successfully [34].

However, there are also drawbacks. In the case of an image with multiple occurrences of the same class, Grad-CAM
fails to properly localize all of them in the image. In addition, Grad-CAM often fails to localize the entire object. As a
result, only a part of the object is visible in the visualization [].

4 Comparison

As SA and LIME are the only model-agnostic methods discussed in this paper, they will be compared. The other four
methods are considered model-specific. DTD and LRP are methods which can both be applied to DNNs and CNNs, see
while DeconvNet and Grad-CAM can only be applied to CNNs. Therefore, these methods will be pair-wise
compared.

Any model DNN CNN
SA v v
LIME v v
DTD v
LRP v
DeconvNet v
Grad-CAM v

Table 1: Overview of the applicability of the explainability methods.

4.1 SA vs. LIME

When looking at it is quite easy to make the mistake of believing that SA and LIME are similar methods.
Although both methods are designed to be applicable to any machine learning model [23}30], in the way each algorithm
works there are fundamental differences. SA is one of the first and simplest approaches attempting to explain the results
of machine learning models [32]. This level of simplicity is a downfall of SA as it is one of the least accurate and least
efficient models among those that have been covered in this paper [2]. LIME however was designed relatively recent
and with the goal of addressing shortcomings of SA in mind [17]]. The designers of LIME took a different approach and
came up with a more robust way of explaining machine learning models. Currently LIME and its latest variations are
among the most popular explainability methods in this field [11}(19].



4.2 DTD vs. LRP

DTD is known to be motivated by a linear Taylor decomposition for every individual neuron and excitation back-
propagation by a probabilisitic "Winner-Take-All" approach [4]. When working with LRP it is crucial to use various
propagation rules for every single layer, since it has been shown to be empirically useful to apply different rules on
different parts of the network [4]. DTD requires different propagation rules on the input data range [25]. LRP has been
shown to be stable and was able to quickly explain the predictions on a broad range of classifiers [20]].

4.3 DeconvNet vs. Grad-CAM

One of the approaches of DeconvNet is CAM [7]. Grad-CAM and CAM can only be applied to CNNs. CAM however
requires a special CNN architecture with a global average pooling layer after the last convolutional layer and before
the final output layer [34] (see[Figure 6). It also requires retraining of multiple linear classifiers (one for each class)
[8]. The change of architecture in tasks like image classification limits the network model and may results in inferior
accuracies [34]]. On the other hand Grad-CAM does not suffer from those limitations and can be applied to any CNN.

4.4 Performance graphs

Determining objectively whether an explainability method works well or not, can be difficult. A systematical approach
to compare heatmaps would give a quantitative measure of which explainability method is better. A method to test an
explainability method’s selectivity is proposed by Samek et al. [32] and Bach et al. [5] and is called pixel flipping. The

pixel flipping method removes patches of 4x4 pixels starting with the patch of pixels with the highest relevance score. If
the average function f(x) drops steeply, the explainability method has a high selectivity for relevant areas in the image.

0 patches removed

et | ’ f‘— R — 'sensit'lvity R L
P -- LRP—(}]ﬁd (deep Taylor)
: m ¢ == guided backprop
: - —LRPaf

8 patches remcéved

32 pafches removed

avearge function value flz)

# patches removed

Figure 10: "[llustration of the “pixel-flipping” procedure. At each step, the next most relevant region according to the heatmap is
removed (by setting it to black), and the function value f(z) is recorded". Taken from [23].

Figure 10[shows for different explainability methods how f(z) drops as patches of pixels are removed. LRP-a2/31 has
the steepest drop in average f(x) value, closely followed by Guided Backpropagation and LRP-«; 5y (DTD). The SA
method is performing rather poorly.

Another measure to compare explainability methods proposed by Samek et al. [32] is the size of the produced heatmaps.
A heatmap which contains more complexity (i.e. sparsity or randomness) cannot be compressed as much as heatmaps
which contain only relevant regions, thus increasing their size. An explainability method which produces smaller sized
heatmaps focuses better on important parts of the input.

In it is clear that LRP has the lowest average entropy in images from three separate image data-sets (SUN397,
ILSVRC2012, and MIT Places). This results in a lower heatmap size for LRP than both SA and DeconvNet. Therefore
LRP is better in identifying relevant structures in an image.
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Figure 11: "Comparison of heatmap complexity, measured in terms of file size (top) and image entropy (bottom)". A smaller
heatmap means better focus on the important features of the input. Taken from [@]

5 Discussion

This paper explains, evaluates, and compares six explainability methods for CNNs. These methods were chosen as
they are most prominent when searching for explainability methods for CNNs. However, other methods for explaining
CNNs exist, e.g. DeepLIFT [36]. Moreover, some of the discussed methods have different variations. For example,
Grad-CAM++ is a generalization of Grad-CAM and addresses the issues and limitations of Grad-CAM [8]|. Also LIME
has many variations such as SP-LIME, LIME-SUP, and KLIME 30]..

Furthermore, this paper has built up a comparison between various methods to illustrate and express their differences.
A challenge with explainability methods is to measure and compare their performance. Quantifiable tests such as
pixel flipping and size comparisons have been been created to objectively compare different explainability
methods. However, comparative data is frequently not available since the quality of an explainability method is often
assessed by manual examination of the produced heatmap.

This discussion provides motives to do more research on explainability methods for CNNs. Further research is necessary
to provide a more comprehensive overview of contemporary explainability methods for CNNs. This overview should
contain the advantages and limitations of each method to easily identify which method is favorable in different use
cases.

6 Conclusion

Als make decisions which impact people’s lives significantly. Their reasoning is often unclear, which raises a need
for methods to explain Als decisions. A frequently used method to explain Als is visualization. A good visualization
technique is a heatmap which displays which areas of the input significantly influenced the network’s prediction. Six
frequently used explainability methods for CNNs are reviewed in this paper.
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Sensitivity Analysis (SA) is a classic and relatively older explainability method which is outperformed by the other
methods [2f]. Local Interpretable Model-agnostic Explanations (LIME) gives simple and human readable explanations
on how each interpretable feature is contributing to the final regressor results. This helps in interpreting the output
locally [11}17,/30]. SA and LIME are model-agnostic whereas the other four are model-specific. From these two
methods, LIME is often chosen over SA as it provides a clearer explanation of the classification.

Deep Taylor Decomposition (DTD) efficiently utilizes the structure of the network by backpropagating the explanations
from the output to the input layer [31]]. Layer-wise Relevance Propagation (LRP) is a backpropagation method which
allows for both positive and negative relevance. LRP outperforms both SA and DeconvNet in complexity and sensitivity
[23,[33]. DTD and LRP are similar methods, however LRP has the advantage of supporting negative relevance which
makes it perform better in certain models.

Deconvolutional network (DeconvNet) looks at the pixels of an image that need to change the least to affect the
classification prediction of a class the most. Besides, it constructs a Convolutional Activation Map [16}37]. Gradient-
weighted Class Activation Mapping (Grad-CAM) is a generalization of the CAM method combined with Guided
Backpropagation which works with any CNN model and produces a high-resolution visualization [34]]. Grad-CAM is
an improved version of CAM which is used in DeconvNet. Futhermore, Grad-CAM is applicable on a wider variety of
networks.

This paper only compares six explainability methods, while in practice, more methods exist. Hence for future work, a
more exhaustive comparison would help in finding which method performs best. Moreover, having more quantifiable
comparisons of the different methods is necessary to further explore their performance.
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