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Abstract
The significant advancements in large language
models have enabled their use in various appli-
cations, such as in code auto-completion. How-
ever, the deployment of such models often encoun-
ters challenges due to their large size and pro-
hibitive running costs. In this research, we inves-
tigate the effectiveness of post-training quantiza-
tion techniques in compressing a CodeGPT model,
specifically using the ”Per-embedding-group” and
”Mixed precision” post-training quantization meth-
ods. Our evaluation is done on the code comple-
tion task of the CodeXGLUE benchmark using the
Edit Similarity and Exact Match metrics, offering
a comprehensive understanding of the impact of
post-training quantization on the accuracy of the
model. We also compare our results with three
other compression approaches for the same model.
From our analysis, we find that CodeGPT is very
resilient to quantization noise, allowing the model
to be compressed by 4 times its size with negligible
accuracy loss. Furthermore, post-training quantiza-
tion seems to be the best option for compressing the
CodeGPT model when accuracy is a priority. Our
work only simulates post-training quantization to
draw conclusions on its performance on accuracy,
future work should analyze the inference speed and
memory use at runtime on such a post-trained quan-
tized model.

1 Introduction
Large Language Models (LLMs) have emerged as a pivotal
advancement in the field of machine learning due to their
superior ability to understand and generate natural language
content [2]. One of the most notable applications of LLMs
lies in the realm of software engineering, where they are used
for code auto-completion [9]. Code auto-completion tools
provide context-aware suggestions to developers to help them
code more efficiently by providing relevant suggestions based
on their coding context.

Despite their many capabilities, the deployment of LLMs
is often hindered by their large size, which has been steadily
growing [21]. This large size brings several obstacles. The
models have prohibitive running costs which limit their ap-
plication in resource-constrained devices. Additionally, ac-
cessing these models via online services poses both practical
and ethical challenges. For instance, users will need a WiFi
connection with low latency to ensure an enjoyable user ex-
perience, and there is also the threat of sensitive queries be-
ing stored by the service provider. These challenges show
the need for efficient model compression techniques to op-
timize the deployment of LLMs, particularly for code auto-
completion.

In this research, we strive to investigate the question, ”How
effective are post-training quantization techniques (PTQ) for
compressing a CodeGPT generation model?”. This ques-
tion is of considerable importance, given that this compres-
sion technique family is the least reliant on the training data

of the original model and requires little re-training time. In
particular, we focus on replicating mixed-precision and per-
embedding-group PTQ techniques [1], given their promising
results on a different LLM architecture.

The effectiveness of these techniques is evaluated based
on the code completion task of the CodeXGLUE benchmark
[6], using the edit similarity and exact match metrics. We also
compare the accuracy and compression rate of our techniques
to the findings of de Moor [3], Malmsten [7], and Sochirca
[15], which apply different compression approaches to the
same model we are analyzing.

The main contributions of our study can thus be summa-
rized as follows:

• An investigation on how naive quantization of
CodeGPT’s weights and activations affect its accu-
racy on the code completion task.

• An analysis of the performance of different PTQ
Range Estimators on the code completion task of
CodeXGLUE.

• An adaptation of the ”Per-embedding-group Post Train-
ing Quantization” and ”Mixed precision Post Training
Quantization” [1], to work with CodeGPT and an analy-
sis of their performance.

• A comparison of the compression rate and accuracy of
our most promising results with other viable compres-
sion techniques.

Ultimately, our research contributes to the broader aim of
enhancing the accessibility and efficiency of LLMs, espe-
cially for code auto-completion tasks, thereby increasing de-
veloper productivity and improving software quality.

2 Background
In this section, we give some entry knowledge on how
LLMs work, their challenges, and some possible solutions.
Most LLMs are equipped with ”transformers”, attention-
based models that weigh the significance of different words in
a text while handling a task [16]. Unlike traditional sequen-
tial models, transformers can process all words or symbols in
the sentence at once, making them highly effective for many
language tasks [16].

Distinctive functionalities characterize various LLMs. For
instance, Bidirectional Encoder Representations from Trans-
formers (BERT) employs a bidirectional transformer archi-
tecture, capturing context from both the left and right sides
of a sentence [4]. On the other hand, Generative Pre-trained
Transformer 2 (GPT-2), a unidirectional LLM, learns by
scanning the input from left to right and trying to predict the
rest. Thanks to this architecture, GPT models can generate
coherent text based on a given prompt [8].

In recent years, the application of LLMs has extended into
the realm of code generation. CodeGPT, for example, is a
GPT-2 style model pre-trained on programming language, to
support code-completion and text-to-code generation tasks
[6].

However, the broad range of capabilities offered by LLMs
is accompanied by substantial challenges. Their size and
consequential computational demands limit their application,



particularly when deployed on resource-restricted devices
[21]. To navigate this challenge, research is being focused on
the development of efficient compression techniques. These
techniques are designed to shrink the size of LLMs by prun-
ing redundant or less important parameters without under-
mining their performance.

A substantial body of work has been carried out to com-
press BERT models [1; 10; 13; 14; 18; 20; 22]. However,
when it comes to code-oriented LLMs like CodeGPT, explo-
ration has been limited. This opens a crucial research gap that
calls for investigating the efficacy of compression techniques
on CodeGPT models.

2.1 Transformers
At the heart of several LLMs lies the ”transformer”, a novel
type of neural network architecture which is highly paralleliz-
able [16]. The power of transformers lies in their ability to
capture the complexity and nuances of sequential data, like
natural or programming language, making them integral to
the success of LLMs.

2.2 Embeddings
Embeddings map discrete categorical values (like words) to
vectors of continuous numbers [5]. These vectors are de-
signed to capture semantic relationships between the input
values. For example, words with similar meanings should be
close to each other in the embedding space. They are used at
the start of the transformer pipeline to convert the input data
to meaningfully represent categories in the transformed space
[5].

2.3 Weights
Weights are used to represent the strength or influence that
one node in the network has over another. During training,
these weights are iteratively adjusted based on the error the
model makes in its predictions. These adjusted weights en-
capsulate what the model has ”learned” about the task it is
performing.

2.4 Activations
Activation functions are mathematical equations that help de-
termine the output of a neural network. They decide whether
a given neuron should be activated or not based on the
weighted sum of its input.

2.5 Attention mechanisms
The attention mechanism is central to the transformer archi-
tecture. It allows the model to focus on different parts of
the input sequence when producing an output sequence. At-
tention scores determine the weight or significance that the
model assigns to different parts of the input. This mechanism
enables the model to capture long-range dependencies in the
data, a feature particularly beneficial for natural language pro-
cessing tasks.

2.6 Attention scores
In a transformer, each layer computes a set of query, key, and
value vectors from the input data. Attention scores are com-
puted by taking the dot product of the query and key vectors,

followed by a softmax activation to obtain probabilities [16].
These scores are then used to weight the value vectors, result-
ing in the output of the attention layer [16].

3 Related Work
There are several techniques for compressing LLMs, but the
three primary approaches are knowledge distillation, pruning,
and quantization:

• Knowledge distillation involves training a smaller
model to emulate the larger one. These models are re-
ferred to as student and teacher respectively [11; 12; 20;
22].

• Pruning involves removing unimportant parameters
from the model based on some criterion, such as their
magnitude or contribution to the overall loss [12; 18;
20]. This can be done during or after training.

• Quantization involves reducing the precision of the
model’s weights and activations, typically from 32-bit
floating-point values to 8-bit integers, thereby diminish-
ing the memory footprint and enhancing inference speed
[1; 12; 14; 19; 20; 22].

3.1 The potential of quantization
While all three techniques have shown promising results for
compressing LLMs, quantization has some advantages over
knowledge distillation and pruning. Knowledge distillation
requires training a new model from scratch, which can be
computationally expensive and requires access to the origi-
nal training data. Similarly, pruning requires either retraining
the model or fine-tuning the pruned model, which can also
be computationally expensive. In contrast, quantization can
be applied to a pre-trained model without the need for addi-
tional training, making it a faster and more resource-efficient
approach. Additionally, quantization can reduce the memory
footprint of the model by a larger factor compared to pruning,
which only removes a subset of parameters [19].

3.2 Quantization basics
As explained by Bodarenko et al. [1]: asymmetric quanti-
zation is a method of quantization that is frequently applied
due to its ability to efficiently implement fixed-point arith-
metic. This process is characterized by three parameters: bit-
width, scale factor, and zero point. The quantization pro-
cess transforms a real-valued tensor into an unsigned integer
grid, which can then be approximated back to its original real
value through a process known as de-quantization. In sym-
metric quantization, the quantization grid is adjusted to be
symmetric around the zero point.

Quantization, however, can lead to the model performing
worse due to noise being added to the network [1]. One way
to mitigate this noise is by performing a process called cal-
ibration [19]. In this process, we use range estimators to
determine the scale factor and zero point of the quantizer so
that we can get a result as close as possible to the original
non-quantized model [1; 19]. There are several range estima-
tors, but in this work, we will only look at current min-max,
running min-max, and mean squared error (MSE), which
are further explained in the literature [1].



The quantization parameters are typically set for each ten-
sor individually, a strategy called per-tensor quantization. Al-
ternatively, you could enhance the quantization granularity by
designating separate quantizers for different parts of a tensor.
This approach could improve the accuracy of the network, but
would also require additional computational resources and
memory [1].

3.3 The different quantization approaches
Quantization techniques can be broadly classified into two
categories, quantization-aware training (QAT) and post-
training quantization (PTQ):

• QAT involves training the model with quantization in
mind, which means that the model is trained to be more
robust to quantization noise. This is because the learned
parameters are already compatible with quantized val-
ues. QAT can be achieved by introducing noise into
the weights and activations during training or by using
a modified loss function that considers the quantization
error. The advantage of QAT is that it can achieve higher
accuracy compared to PTQ since the model is trained to
be more quantization friendly. However, QAT requires
retraining or fine-tuning the model, which can be com-
putationally expensive and time-consuming. Addition-
ally, QAT may require labeled data for the noise injec-
tion process, which may not be available in all cases [19;
22].

• PTQ, on the other hand, involves quantizing a pre-
trained model without any additional training. This is
done by applying quantization to the model’s weights
and activations after training. The advantage of PTQ
is that it is a fast and efficient way to compress a pre-
trained model. PTQ also does not require additional
training or fine-tuning, making it easier to apply to pre-
trained models. However, PTQ may not achieve the
same level of accuracy as QAT since the model was not
trained with quantization in mind. Additionally, PTQ
may require calibration to adjust the quantization param-
eters for optimal accuracy, which can be challenging to
do in practice [19; 22].

3.4 The challenges of post-training quantization
In LLMs, weights and activations are the key components
that determine the model’s behavior. When applying PTQ
to LLMs, the accuracy loss can be analyzed by looking at
the effects of quantization on both activations and weights.
For both the BERT and GPT-3 models, research papers have
shown that the worse performance with PTQ is due to differ-
ent tokens having dramatically different activation ranges [1;
22]. Specifically, for BERT models, some tensors are more
susceptible to quantization than others, especially for deeper
encoder layers [1]. Similarly, for GPT-3 models, there is a
10x difference between the largest magnitudes of different
rows, leading to a worse generation performance of the INT8
weight PTQ [22].

3.5 Solving PTQ issues
To solve the accuracy issues of PTQ, several methods have
been proposed:

• Per-embedding-group quantization: the activation
tensors are split into evenly sized groups based on their
activation ranges. Quantization is then applied with dif-
ferent parameters for each group, thus improving accu-
racy [1].

• Mixed precision PTQ: a combination of low-precision
and high-precision data types is used to represent
weights and activations during quantization. This
method can reduce the accuracy loss while still achiev-
ing high compression rates [1].

• Group-wise quantization for weights: addresses the
accuracy issue by grouping the weight matrices into
smaller groups and applying quantization to each group
separately. This allows for more fine-grained control
over the quantization process and can improve accuracy
[22].

• Token-wise quantization for activations: Similar to
per-embedding-group quantization, token-wise quanti-
zation improves accuracy by applying quantization with
different parameters. It differs however by applying dif-
ferent quantizations for each singular token, rather than
for groups [22].

Overall, these techniques show promising results for com-
pressing LLMs while mitigating accuracy loss.

3.6 Competing Approaches

The results of our compression methods will be compared
with those of three other papers [3; 7; 15], which also adapted
existing BERT compression techniques to codeGPT:

• De Moor [3] utilizes techniques from Wu et al. [20] to
evaluate hybrid in-training knowledge distillation, layer
reduction, and quantization techniques. They accom-
plish this by retraining the baseline CodeGPT teacher
and a compressed student model for the Code Comple-
tion fine-tuning assignment. The resulting 6-layer model
has a 15x compression thanks to its 1-bit weight and 8-
bit activation quantization.

• Malmsten [7] utilizes techniques from Sanh et al.
[11] to evaluate in-training knowledge distillation tech-
niques. The model applies a three-part loss function, to
draw knowledge from the teacher model. The most sig-
nificant outcomes involved two models, one with one-
third of the layers of the standard model, and another
retaining two-thirds.

• Sochirca [15] utilizes techniques from Shen et al. [13]
to evaluate hybrid post-training pruning and quanti-
zation techniques on CPUs. Sochirca’s research uti-
lizes the Intel-extension-for-transformers toolkit to trim
and quantize the CodeGPT model after training. Their
method consists of applying group lasso structured prun-
ing at 60% sparsity. This means that instead of individ-
ual nodes, whole groups of neurons with unimportant
weights are pruned together. Their best model is half the
size of the original.



4 Methodology

Our methodology consists of implementing, comparing, and
evaluating different PTQ methods. The results will help us
determine if CodeGPT is a good candidate for quantization
and give us a broader understanding of GPT architectures’
ability to be compressed.

4.1 Baseline model

Our quantization methods are applied to a CodeGPT model
finetuned on an auto-completion task. CodeGPT is part of
the GPT family and is optimized for understanding and gen-
erating code.

4.2 Naive PTQ

To evaluate the resilience of CodeGPT to the performance
degradation due to PTQ, we implement naive quantization on
both weights and activations. Naive means that no optimiza-
tion methods are used, but only simple per-tensor symmetric
or asymmetric quantization on every weight and activation.
Naive PTQ is the easiest to implement and is supported by
most hardware.

4.3 Optimized quantization methods

Adapting from the techniques developed by Bondarenko et al.
[1], we implemented the proposed solutions for a GPT-like
model as opposed to the original BERT-based approach. In
particular, we focused on two main methods: mixed-precision
and per-embedding-group PTQ.

Mixed-precision (MP) PTQ utilizes a blend of low-
precision and high-precision data types for representing
weights and activations during quantization, which aids in
reducing accuracy loss while maintaining high compression
rates. Unfortunately, MP PTQ is not supported by all hard-
ware.

Per-embedding-group (PEG) PTQ instead applies quanti-
zation to separate groups of embeddings based on their usage
patterns, thereby acknowledging and accounting for the dis-
parate activation ranges of different tokens: the activation ten-
sor is split into K evenly-sized groups that share quantization
parameters among elements in the same group. Tensors can
be permuted along the embedding dimension so that outliers
can end up in the same embedding dimension. This comes at
the cost of d + 2 · 3 · K extra parameters per attention layer
where d is the number of embedding dimensions [1]. This
cost is however negligible for CodeGPT given that d = 1024,
it has 12 attention layers and 124.24 Million total parame-
ters, meaning that for K = 10 the model increases its size
by 0.01%. PEG is not natively supported by all hardware but
can be simulated on those that support per-tensor operation
following the procedure suggested in the literature [1].

Because we could not find a replication package we do not
analyze the group-wise quantization for weight and token-
wise quantization for activations techniques of Yao et al. [22].
However, we do test the performance of the PTQ per-token
offered in the Bondarenko et al. replication package [1].

4.4 Comparison with other compression
techniques

Finally, our methodology also encompasses a comparative
study in which the performance of the implemented methods
(PEG and MP PTQ) is benchmarked against other prevail-
ing compression techniques. This comparison serves to high-
light the relative strengths and weaknesses of each technique,
thereby providing a comprehensive understanding of their ap-
plicability to LLMs and the benefits they offer in terms of
model compression and accuracy.

5 Experimental setup
This section outlines our experimental setup and provides de-
tails on replicability, our computational infrastructure, model
training, experimental approach, and quantization techniques.

5.1 Replicability
All tests conducted in our experiments can be replicated using
the code provided at our GitHub repository1. This repository
contains all necessary information and commands to rerun
our experiments, including seeds for our samples and an en-
vironment file specifying all versioned libraries used.

5.2 Computational infrastructure
We conduct our experiments on the Google Colab platform2,
using a CUDA-enabled V100 graphic card and the ”Runtime
Shape” option set to ”High-RAM”.

De Moor [3], Malmsten [7], and Sochirca [15] perform
their experiments on the DelftBlue supercomputer, which is
also equipped with a CUDA-enabled V100 graphic card, thus
the results are comparable.

5.3 Model training
We train the CodeGPT model3 on the PY150 code completion
task of the CodeXGLUE benchmark4. PY150 is a Python lan-
guage dataset, using the CodeGPT framework. The model is
trained for only one epoch and is available on HuggingFace5.
We use this model as our baseline for our tests, as well as for
quantization.

De Moor [3], Malmsten [7], and Sochirca [15] use a dif-
ferent baseline model, also available on Hugging Face6. We
choose not to use this model because of the lack of a tok-
enizer, which is necessary for our quantization. The model
they use is trained identically to ours, but has slightly lower
baseline scores, probably due to training on different ma-
chines. We make our comparisons with this difference in
mind.

1https://github.com/AISE-TUDelft/LLM4CodeCompression
2https://colab.research.google.com/
3https://huggingface.co/microsoft/CodeGPT-small-py
4https://huggingface.co/datasets/0n1xus/codexglue
5https://huggingface.co/AISE-TUDelft/

BRP-Storti-CodeGPT-Py150
6https://huggingface.co/AISE-TUDelft/CodeGPT-Py150

https://github.com/AISE-TUDelft/LLM4CodeCompression
https://colab.research.google.com/
https://huggingface.co/microsoft/CodeGPT-small-py
https://huggingface.co/datasets/0n1xus/codexglue
https://huggingface.co/AISE-TUDelft/BRP-Storti-CodeGPT-Py150
https://huggingface.co/AISE-TUDelft/BRP-Storti-CodeGPT-Py150
https://huggingface.co/AISE-TUDelft/CodeGPT-Py150


5.4 Evaluation metrics
For the evaluation phase, we utilize the CodeXGLUE code
benchmark. The effectiveness of our model and the quantiza-
tion methods implemented are measured using two key met-
rics: Exact Match (EM) and Edit Similarity (ES). The Exact
Match metric measures the number of times the model’s out-
put matches the expected output exactly, while the Edit Sim-
ilarity metric quantifies the structural and semantic similarity
between the model’s output and the expected output.

5.5 Experimental Approach
Our experimental methodology closely aligns with the pro-
cedures laid out by Bondarenko et al. [1]. We incorporate
uniform affine quantization which means using symmetric
weights and asymmetric activations, coupled with a static ac-
tivation range configuration. Quantization is applied identi-
cally to the weights and activations across all layers of the
model.

For the Range Estimators investigation we use the fol-
lowing options: mean squared error (MSE), current min-max
(CMM), and running min-max (RMM). We conduct an 8-bit
post-training quantization on both weights and activations, as
outlined in our methodology. We then use the best combina-
tion of range estimators to understand the effect of using dif-
ferent bit-widths for all weights and all activations in Naive
quantization.

For the MP PTQ approach, we start with 8 bits for all acti-
vations, except for one which we kept to 16 bits. This strategy
allowed us to examine which activation in the layers’ block is
the most susceptible to quantization. We also explore the ef-
fect of keeping multiple parts of the feed-forward network
(FFN) to 16 bits, as suggested in the literature [1] for BERT.

We also evaluate the efficacy of PEG PTQ, which hinges
on the number of groups K. We perform these tests with both
permutation and no permutation of the columns. We also test
if accuracy is regained on 4 bits weights using PEG. Finally,
we test the per-tensor quantization method.

6 Results
In this section, we present the results of our research. In all
tables, the nomenclature WxAy is used, where W stands for
weights and A stands for activations, while x and y are inte-
gers representing the respective number of bits used for their
quantization. For example, W8A16 means we are using 8 bits
for the quantization of all the weights and 16 for the quanti-
zation of all the activations. Furthermore, we bold the rows
in the table, outside of the baselines, that show the best ac-
curacy results. We do so to increase the readability of the
experiments.

6.1 Range estimators
Referring to Table 1, it is evident that the activation range
does not significantly influence the Code Completion task.
A noticeable performance improvement was only recorded
when MSE was used for weight range estimation. Thus,
for all subsequent experiments, we utilized MSE for weight
range estimation and the current min-max method as range
estimators.

Weights Activations ES EM

None None 41 17

MSE CMM 38 16
MSE RMM 38 16
CMM CMM 38 14
RMM CMM 38 14

Table 1: Range estimation experiments

Method ES EM Compression

Baseline 41 17 1x

W8A8 38 16 4x
W8A32 40 17 4x
W8A16 40 17 4x
W4A32 36 14 8x
W4A16 36 14 8x

Table 2: Naive PTQ experiments

6.2 Naive quantization
For naive quantization, we investigate the effect of using dif-
ferent bit-widths for the weights and activations. As we can
see in Table 2, we have a high drop in accuracy when we
quantize the activations to less than 16 bits or the weights to
less than 8 bits.

6.3 Mixed precision quantization
In Table 3 we can see that by far the biggest performance
increase occurs when we allow the activation of the residual
sum of the block to be 16 bits. Keeping multiple parts of
the FFN to 16 bits does not lead to significant performance
increases compared to keeping only the residual sum. The
nomenclature used is explained in Appendix A.

6.4 Per-embedding-group quantization
We can see in Table 4 that the best performance is achieved
with K = 8 if we do not permute the groups or K = 4 if we
do. There is no performance increase on the quantization of
4 bits with the PEG permute technique. We also see that, as
expected, the per-tensor quantization performs really well.

6.5 Other approaches results
In Table 5 we can see that up to 4x compression, our meth-
ods have greater compression while also having the smallest
accuracy loss compared to the baseline. De Moor achieves a
compression of 16x for an ES loss of 5.18 and EM loss of 3.6,
which we can compare only to our 4-bit weight quantization
as we did not test for 1-bit weight quantization.

7 Discussion of the Results
PTQ has proven to be very suited to be used on CodeGPT,
achieving compression rates of up to 4 times with a loss of
accuracy of only 3 points for the ES and 1 on the EM met-
rics with 8-bit quantizations and activations. In particular,
CodeGPT loses most of its accuracy once the weights are



Method ES EM

Baseline 41 17
Naive W8A8 38 16
Naive W8A16 40 17

First Layer Normalization (Input FFN) 37 15
Second Layer Normalization 37 16
Residual Sum of attn 38 16
Residual Sum of block 40 17
Query × Key 37 16
Softmax 37 15
weights output × value 38 16
Attention projection layer 37 16
MLP fully connected layer 37 16
MLP projection layer (Output FFN) 38 17
Input and Output of FFN 37 17
Input and Residual Sum of FFN 39 16
Output and Residual Sum of FFN 39 17

Table 3: Mixed precision PTQ experiments

Method ES EM

Baseline 41 17
Naive W8A8 38 16
Naive W4A32 38 16

W8A8 K = 2 38 16
W8A8 K = 4 38 17
W8A8 K = 8 40 17
W8A8 K = 2 permuted 39 17
W8A8 K = 4 permuted 40 17
W4A32 K = 8 permuted 36 14

W8A8 per-tensor 40 17

Table 4: Per-embedding-group PTQ experiments

Method Compression ES EM

Our Baseline - 41.0 17.0
MP PTQ 4x 40.0 17.0
PEG PTQ 4x 40.0 17.0
Naive W4A32 8x 38.0 16.0

Their Baseline - 39.1 14.5
de Moor 15.8x 33.92 10.9
Malmsten 4 layers 1.8x 27.6 5.9
Malmsten 8 layers 1.3x 29.5 6.1
Sochirca 1.9x 30.5 9.0

Table 5: Comparison of our method to competing approaches

quantized to less than 8 bits or the activations to less than
16 bits. This property is shared with the BERT and GPT-3
models [1; 22].

The choice of range estimator for the quantization of the
activations does not seem to influence the performance. It
does seem instead that the best performances are achieved
using MSE for weight quantization.

Mixed-precision PTQ seems to be an effective technique
proved to regain most of the accuracy loss due to PTQ, with
the best results achieved by quantizing the residual sum of
the layers’ block. MP PTQ, however, leads to a small compu-
tational overhead compared to naive quantization and is not
natively supported by all hardware.

Per-group-embedding is the preferred technique, given that
it can be simulated on all hardware that supports per-tensor
operations and has negligible parameter increase. The best
results are achieved by using 8 groups and no permutation, or
4 with permutation. This technique however does not seem
able to recover the performance loss due to 4-bit weight quan-
tization.

Per-tensor, quantization would also be an optimal choice
if not for the overhead introduced by the additional opera-
tions between main memory and GPU [22]. Thus, not having
tested the token-wise quantization for activations proposed
by Yao et al. [22], we cannot make recommendations for or
against it.

Compared to the techniques implemented by Malmsten
[7], and Sochirca [15], our techniques seem to retain the
most accuracy while also compressing the model more. To
be noted is however the fact that Sochirca’s work focuses on
compressing the model on CPUs, while we did not have this
restriction. De Moor’s results [3] instead are promising due
to the almost 16x compression, while retaining decent perfor-
mances. Future work should test the abilities of CodeGPT to
have weights quantized to only 1 bit.

Post-training quantization is thus an optimal choice for
compressing CodeGPT on the AutoCompletion task. It
achieves good performance on accuracy and compression of
up to 4 times without the need for training data or model re-
training.

7.1 Threats to validity
To test our techniques, we adapted the Bondarenko et al. [1]
replication package, which was originally meant for BERT
models, to our CodeGPT model. This brings several chal-
lenges that might affect the validity of our results which we
will discuss. In this section, we analyze the internal, external,
and construct threats to the validity of our paper.

Internal validity
The quantization is simulated by mapping floating num-
ber tensors to their quantized values, without changing the
datatype of the tensor. For this reason, there are several pos-
sible points of failure where the values of the tensors could
be inadvertently converted back to their original bit-width.
During the testing phase, we logged the intermediate values
to manually check if they were being converted properly, but
this brings limited assurance. Still, the accuracy loss seems



to be similar to the one presented by Bondarenko et al. [1] on
the BERT models and by Yao et al. [22] on the GPT-3 model.

The activation quantization was achieved by copying the
GPT-2 code of the Hugging Face Transformers library7 and
adding quantization operations after each activation. This
brings the threat that the code might be missing some activa-
tion and thus skewing the results of our tests by keeping some
activation to 32 bits. This however seems unlikely and would
probably not skew the results majorly since all the main acti-
vations are quantized.

External validity
All of our testing was conducted only on the PY150 dataset of
CodeXGLUE. This dataset contains only Python code, mean-
ing that the ES and EM loss might be greater when quantizing
a CodeGPT model fine-tuned on code generation tasks with
other programming languages. Furthermore, the PY150 has a
training set of 100k rows for the AutoCompletion task, while
PTQ might not be as effective at compressing models fine-
tuned on smaller datasets. Dataset size and task, however,
do not seem to be relevant to the performance of quantiza-
tion since we see in Bondarenko et al. [1] that there are no
dramatic performance changes between GLUE tasks, which
have all different dataset sizes [17]. Further investigation is
however advised for future work.

Construct validity
When making comparisons with the competing approaches,
it must be noted that, unlike their models, our approach only
simulates quantization. This is done to ensure that the tech-
niques would not be influenced by the limitations of the hard-
ware. This allowed us to investigate the full potential of each
PTQ technique. Their methods instead create a new com-
pressed model, meaning that the compression might not be
as good as theoretically possible due to hardware limitations,
which might skew results in favor of our technique. Further-
more, their techniques are also evaluated on CPU and GPU
inference as well as size on GPU. Because of the limitations
of the simulation, our PTQ methods were not experimentally
evaluated on those metrics. We can, however, hypothesize
that our GPU inference might increase greatly due to the fact
that GPUs perform better with fixed point arithmetic and that
the GPU size would be compressed greatly due to activation
quantization [1].

8 Conclusion
In this paper we analyzed how effective post-training quan-
tization techniques are at compressing a CodeGPT model.
Through our analysis, we have shown that MSE is the best
range estimator for weights quantization on the code comple-
tion task of CodeXGLUE. Our experimental results demon-
strated that a naive PTQ implementation already achieves
great results, with a compression rate of 4x and negligible
accuracy loss.

Furthermore, we can virtually remove all accuracy loss
with more advanced PTQ methods like mixed-precision, per-
tensor, or per-embedding-group, the latter of which is sup-
ported by all hardware that enables per-tensor operations and

7https://huggingface.co/docs/transformers/

presents minimal overhead in computation. Our findings fur-
ther emphasized that, like BERT and GPT-3, CodeGPT is
most susceptible to quantization of fewer than 8 bits for quan-
tization and less than 16 bits for activations. We could not
however recover performance loss for the 4-bit quantization
of weights with the techniques we implemented.

It is important to note that our implementation solely sim-
ulated quantization, highlighting the need for future investi-
gations to evaluate these techniques with tensor quantization
on different hardware. Such analyses could further strengthen
the claims we made on the performance of PTQ methods on
CodeGPT and provide valuable insights into how much our
methods speed up inference time and reduce GPU size dur-
ing runtime.

9 Responsible Research
This section provides a reflection on the ethical aspects and
reproducibility of our research. While this component is not
always explicitly included in published works, we believe that
it is critical to consider and report these aspects to maintain
transparency and accountability in our research.

9.1 Ethical Considerations
We acknowledge that the code utilized in our research is not
original; rather, it is an adaptation of the code provided in
the replication package of ”Understanding and Overcoming
the Challenges of Efficient Transformer Quantization”. The
original authors of the code are credited accordingly.

Our research contributes to the body of knowledge not
through the development of new techniques but rather
through the application of existing methods to a different
model and architecture. This includes an in-depth analysis
of the results, providing new insight and understanding.

9.2 Reproducibility and Transparency
We have made significant efforts to ensure the reproducibil-
ity of our experiments. The code used in our experiments,
as well as all necessary information and commands to rerun
the experiments, are publicly available in our GitHub reposi-
tory8. The repository also includes an environment file speci-
fying all versioned libraries used, ensuring a consistent envi-
ronment setup for anyone looking to replicate our work. Fur-
thermore, the model was trained and tested from scratch, ad-
hering to the same training arguments as the original model
to maintain consistency.

9.3 Use of AI tools in this paper
While writing this paper, we have utilized technologies such
as ChatGPT, Grammarly, and Writefull to assist us in the cor-
rect use of grammar, tone, and clarity. Examples of prompts
used in ChatGPT are: ”I have already used word x, can you
rephrase this sentence to use another word for x, ...” or ”Can
you rephrase this sentence to use more formal language...”.
Because we do not trust ChatGPT to make statements that
are backed by a source, ChatGPT was not used for the col-
lection of any information and each output was sanitized to

8https://github.com/AISE-TUDelft/LLM4CodeCompression/
tree/main/ETF

https://huggingface.co/docs/transformers/
https://github.com/AISE-TUDelft/LLM4CodeCompression/tree/main/ETF
https://github.com/AISE-TUDelft/LLM4CodeCompression/tree/main/ETF


make sure no new unsubstantiated claims were added to the
inputted text.

ChatGPT was also used to help with LaTeX, with queries
such as: ”Can you make me a table in Latex for a scientific
paper with the following columns: Method, Weight Range,
Activation Range, Edit Similarity, Exact Match”, and ”Can
you make a .bib reference for this paper:...”. These queries
were used to speed up the writing process but were then man-
ually checked for correctness.
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A Name of Activations
Table 6 outlines the nomenclature used to represent each ac-
tivation in the model’s blocks.

Name Activation

1st Layer Normalization (Input FFN) ln 1
2nd Layer Normalization ln 2
Residual Sum of attn res act quantizer 1
Residual Sum of block res act quantizer 2
Query ×Key attn.attn scores act quantizer
Softmax attn.attn.attn probs act quantizer
Weights output× V alue attn.context act quantizer
Attention projection layer attn.c proj
MLP fully connected layer mlp.c fc
MLP projection layer (Output FFN) mlp.c proj
Input and Output of FFN mlp.c proj + ln 2
Input and Residual Sum of FFN ln 2 + res act quantizer 2
Output and Residual Sum of FFN mlp.c proj + ln 2

Table 6: Names of activations
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