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Fig. 1. Results in the real world. The desired scene has a mirror-like cube. This is then replaced with a black fabric cube. A calibration is done. Then an initial
guess for a projection gets optimized by minimizing the difference between the desired scene and the prediction of the outcome. This projection is then
projected onto the cube.

The appearance of an object or scene is determined by factors like the
material, the lights, the geometry, the position of the observer, and the
surroundings. Changes in these factors can be simulated using a projector-
camera setup. Other research focuses on changing the appearance from
the perspective of the projector, or on projector compensation for slightly
warped planar surfaces. This paper aims to simulate changes in the scene’s
appearance by actively manipulating the lighting using a projector-camera
setup. It works on not only planar surfaces, but also on more complex
geometries. This is achieved by first doing a calibration, and then using
this to optimize a projection. This projection is optimized to minimize the
difference between how the scene looks when the projection is projected
and the desired scene. For low-resolution projectors, it can do this in a few
seconds to half a minute. For higher resolutions, the calibration time and
file size get quite big. This can be solved in future work using different
calibration methods.

1 INTRODUCTION
The appearance of an object or scene is determined by factors like
the material, the lights, the geometry, the position of the observer,
and the surroundings. This paper aims to simulate changes in the
scene’s appearance by actively manipulating the lighting using a
projector-camera setup. This technique can be used for a multitude
of projection mapping applications, like Augmented Reality experi-
ences in theme parks [12], or advertisements on buildings and other
objects [9].
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Changing the appearance of an object or scene is already possible
using approaches like the one in the work by Amano [1] or Fujii
et al. [4], where they used a coaxial projector-camera system to
change certain material properties. Another approach to change the
appearance is by creating a desired scene, and then warping and
transforming this by hand until the desired projection is reached,
which is then projected onto the object.

Current research either focuses on changing the material from
the perspective of the projector, or doing projection mapping of
another image, but not much research on the combination of this
has been conducted. This paper proposes a technique to give an
arbitrary object a different appearance, from a perspective different
that can be different from the position of the projector. An example
is shown in Figure 1. Here, a projection is projected onto a diffuse
black cube, to make it look like a mirror-like cube.

Section 3.1 shows a first initial prototype. This prototype is used
to identify limitations, and is improved upon in Sections 3.2-3.4.
After that, the results and performance of these methods are shown
in Section 5. These are discussed in Section 6.

2 RELATED WORK
Amano [1], and Fujii et al. [4] change the appearance of certain
material properties by using a coaxial projector-camera system.
This way it is scene-independent, but as observer position, they
only considered the perspective of the projector. The approach in
this paper considers a perspective different from the projector’s
position.

Huang and Ling [7] presents an end-to-end solution for projector
compensation. Here they compensate for the color and warping of
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the observed image. But this technique is developed only for planar
surfaces. Our approach is not limited to planar surfaces, but also
allows projections on general geometry.

The work by Huang and Ling [6] is an extension to the previously
mentioned paper. They introduce a geometric correction subnet that
compensates for a more deformed projection surface. But in their
paper, they fail to show the performance on a surface that is more
irregular than a slightly deformed planar surface.

The research by Anrys et al. [2] changes lighting to make a scene
appear to the observer in a particular way. This is done by first
recording basis images for every light source, and then optimizing
the intensity of the light source to get the desired view. This is
similar to what is presented in this paper, but a major difference
is that instead of lamps as light sources, we use a projector for
manipulating the lighting in the scene. Then, every pixel can be
considered a light source, which is often more light sources than
the 40 lamps from the research by Anrys et al..

3 METHOD
To manipulate an object’s or scene’s appearance, we use a projector-
camera setup, of which an example is shown in Figure 2. The camera
is placed at a different angle than the projector. By doing this, the
projector-camera setup can be used as a stereoscopic setup. This
way more data about geometry can be gathered, if necessary. This
setup can be built in the real world, or virtually for testing.

In the scope of this work, we tested multiple approaches to chang-
ing an object’s, or scene’s, appearance. Each approach had its own
limitations, and the next approaches tried to improve on that.
First, in Section 3.1, a naive prototype is made to show some

limitations. Then, the limitation of having to know the geometry of
the object to project on will be investigated. This will be tackled by
using an optimizer in Section 3.2. To speed this up, calibration will
be performed in Section 3.3. A calibration comes with the advantage
of knowing the gradient, which is used in Section 3.4.

Fig. 2. Projector-Camera setup. Here the camera is off-axis from the projec-
tor.

3.1 Naive prototype
The naive prototype works as follows (see the diagram in Figure 3).

First, one creates a ‘desired scene‘. In this scene, one places some
geometry and gives it a material of their choice. One could also add
virtual lights to the scene in different colors.

If the projection should look natural in the real-world scene, the
real geometry, textures, materials, and lights of the surroundings
also have to be modeled. This way metallic and specular reflections
end up in the correct place.
This desired scene is observed by a virtual camera. This virtual

camera needs to be positioned in the same place the observer in
the real world would be. The output of this virtual camera is then
re-rendered to generate the image that can be projected using the
real-world projector. This is done by first projecting the image from
the virtual camera on the geometry of the real-world object from the
perspective of the observer. This geometry is then rendered from
the perspective of the projector with another virtual camera.
The final image from the second virtual camera is sent to the

real-world projector and projected onto the real-world object.

Desired Scene

Virtual 
Camera

Virtual 
Camera

Virtual Projector

Virtual Lights

Real-world Object Real-world Projector

Fig. 3. Pipeline of the naive prototype. A virtual desired scene is created. This
is captured by a virtual camera and projected from a different perspective
back on the object. This is again captured by a virtual camera, and that is
projected on the real-world object.

3.1.1 Limitations. Results can be seen in Figure 4. In Figure 4a, the
desired scene from the observer’s perspective is shown. This is a
cube, with a light pink metallic surface. In this scene, there are also
two virtual lights, one red and one green.
In Figure 4b, the result of the whole pipeline and simulation is

shown. In this scene, the object that is projected on is a cube, with
a white diffuse material. This scene also has no additional lights
besides the projector. It can be observed, that the green reflection
is not as bright as the green reflection in the desired scene. Next
to this, the red reflection appears way brighter than the one in the
desired scene. This can be explained by the fact that for the green
spot, the angle of incidence of the projector’s light is big, so less
light is reflected. The light for the red spot is projected with a low
angle of incidence, so it appears brighter.
In Figure 4c, the same projection is shown, but this time it is

projected on a green surface. Here, the red is almost not visible, and
the gray parts also appear green.
In Figure 4d, the same projection is shown again but now pro-

jected on a very reflective surface. This surface almost behaves like
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a mirror. Here, the reflection almost does not appear, since the light
rays from the projector are perfectly reflected. Another problem is
that the observer sees the rest of the room in the cube.
Lastly, Figure 4e shows the same projection on a white diffuse

object, but in a bright room. Here, there are also other light sources
that illuminate the object. The darker parts of the projection appear
brighter since those parts are also illuminated by the ambient light.

(a) Desired Scene

(b) Perfect condi-
tions

(c) Green surface (d) Reflective sur-
face

(e) Bright room

Fig. 4. Limitations of the naive prototype. The desired scene goes through
the pipeline of the naive prototype and is then projected onto cubes of
different materials or in different lighting.

3.2 Using an optimizer to obtain the projection
To overcome the limitations of having to know the geometry of the
object, we incorporated an optimizer to optimize the to-be-projected
image, to minimize the difference between the desired scene and
actual scene. This approach, as can be seen in Figure 5, is an iterative
process.

In the first step, an initial guess is done to what the projection is
supposed to be. This could be random, or an optimized guess. Then,
this initial guess is projected onto the object and observed by the
camera. This happens in the real world using a real projector, or
in a simulation using a virtual projector. Now the mean squared
error (MSE) is computed between the image observed by the camera
and the desired appearance. The projection is then updated and the
cycle starts again.

By updating the projection, the MSE should be minimized. More
formally, we want to minimize 𝑂 (𝑃) in the following equation:

𝑂 (𝑃) = 1
𝑛

𝑛∑︁
𝑖=1

(𝑓 (𝑃)𝑖 − 𝐷𝑖 )2 (1)

Where 𝑃 denotes the projected image, 𝑓 (𝑃) denotes how the
projection appears to the observer, 𝐷 denotes the desired view from
the observer and 𝑛 denotes the number of pixels in the camera. In
this second prototype, 𝑓 (𝑃) is acquired by projecting the projection
on the object and capturing it with a camera.

Using an optimizer, with a variable for every projector pixel, a
new projection can be calculated. L-BFGS-B can be used for this
since it is suited for problems where the gradient is hard to find
[14].
Using the projector-camera pipeline is very slow since in every

iteration an image has to be sent to the projector, and the projector
has to project that image. Then the manipulated scene has to be
observed by the camera and captured on the computer. There had to
be a 0.1-second delay between sending the projection and capturing
the image. This can be overcome by making a virtual model of the
scene and projector, using a calibration.

Initial Guess

Final Outcome

Project

Observe

Update 
Projection

Compute 
Loss

Desired View

-

Fig. 5. Pipeline of the iterative prototype. An initial guess is projected and
observed. The loss is computed, and an optimizer updates the projection.
The cycle repeats until some stop condition is reached.

3.3 Measuring the per-pixel influence of the projector
To speed up the projection mapping pipeline, a model of the scene
and projector can be built using an initial calibration. This calibra-
tion can be used to estimate what the scene would look like if a
projection would be projected onto the scene.

The calibration starts with capturing the scene with all projector
pixels off. This image shows the scene with just the ambient lighting.
After that, it lights up all the pixels one by one and captures the
images. It subtracts the image with all the pixels off from the images
with one pixel on. This can be seen in Figure 6.

- =

Fig. 6. The calibration step for 3 of the projector’s pixels. For every pixel in
the projector, a picture is taken. The picture where all projector pixels are off
is subtracted from these pictures. The results are stored in the calibration
matrix.
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When calibration is done, the calibration matrices are stored
according to

𝐴 =


𝑎11 . . . 𝑎1𝑛
.
.
.

. . .
.
.
.

𝑎𝑚1 . . . 𝑎𝑚𝑛

 𝐵 =
[
𝑏1 . . . 𝑏𝑛

]
(2)

Here 𝐴 represents the images taken for every projector pixel,
where every row is one camera image with 𝑛 pixels. There are𝑚
pixels in the projector, and in every row, a different pixel was lit up.
𝐵 denotes the picture with all pixels off and is just one image with
𝑛 pixels.

Using matrices 𝐴 and 𝐵, one can calculate how the projection
would look without projecting it. Let this function be denoted by 𝑔.
Then 𝑔(𝑃) would be defined according to:

𝑔(𝑃) = 𝑃 · 𝐴 + 𝐵 (3)
Using this model drastically speeds up the optimization since we

can compute Equation 4 without waiting for the projector-camera
pipeline:

𝑂 (𝑃) = 1
𝑛

𝑛∑︁
𝑖=1

((𝑃 · 𝐴 + 𝐵)𝑖 − 𝐷𝑖 )2 (4)

3.4 Using the gradient
In the prototype from the previous section, the optimizer still com-
putes the gradient by doing a numerical approximation of the Jaco-
bian matrix. When supplying the gradient to the optimizer, it can
speed up drastically, like Anrys et al. found in their paper [2]. Since
there is now a simple equation for finding the projection, we can
calculate the gradient for the optimizer. This is done automatically
by a library like PyTorch [13]. The respective pipeline is illustrated
in Figure 7.

Initial Guess

Final Outcome
Update 

Projection

Compute 
Loss

Compute 
Gradient

Compute 
Projection

Desired View

-

· +

Fig. 7. Pipeline of the gradient prototype. An initial guess is multiplied
by the calibration matrix. The loss and the gradient are computed. An
optimizer updates the projection. The cycle repeats until some stop condition
is reached.

Now an optimizer that needs the gradient can be used. Here we
used the Adam optimizer. This optimizer is suited for problems with

many parameters, and noisy or sparse gradients [8]. This is useful
in our situation since an image can be very big, and not all pixels
have a good gradient since some pixels fall outside of view.

4 IMPLEMENTATION
This section highlights the different technologies used to implement
the simulation and the prototypes. The simulation was built in
Unity, because of the wide range of libraries and documentation
for real-time visualizations. Python was used for calibration and
optimization, because of the wide range of data processing and
machine learning libraries.

4.1 Simulation
In Unity, a simulation of the real-world part of the project has been
developed. This was helpful since here we can control all variables
like material and ambient lighting. It also provides cameras with no
noise, that stand perfectly still during the experiment. This reduces
errors in the calibrations, which is useful for early experiments.

A scene with a room and possible ceiling lights was modeled. In
this scene, a virtual projector, and a virtual camera were placed. For
this part, the Projector Simulator1 by White Games was used.

To pipe the video streams from Python to the simulation, and back,
Syphon2 was used. In Unity, the KlakSyphon3 library by GitHub
user keijiro was used. And in Python, the syphonpy4 wrapper by
GitHub user njazz was used.

4.2 Naive prototype
This prototype was fully built in Unity. For the step where the per-
spective of the image is changed from the observer to the projector,
the unity-camera-projection5 library by GitHub user komietty was
used.

4.3 Iterative prototype
The iterative prototype uses the SciPy implementation of L-BFGS-
B6. When not using the simulation, it uses OpenCV to capture an
image from the camera. It uses NumPy to calculate the MSE between
the image received from the camera or simulation, and the desired
view.

4.4 Calibration
The calibration uses Syphon in the simulation, or OpenCV to capture
the images. The captured frames are stored in NumPy arrays. The
NumPy arrays are subtracted and clamped between 0 and 255. These
arrays are then stored in the NumPy format on the disk.

4.5 Gradient prototype
The gradient prototype uses PyTorch to optimize the image. The
PyTorch model has a parameter for every pixel in the projected
image. Then, on the forward call, it uses the calibration matrices as

1https://assetstore.unity.com/packages/tools/particles-effects/projector-simulator-
86123
2http://syphon.v002.info
3https://github.com/keijiro/KlakSyphon
4https://github.com/njazz/syphonpy
5https://github.com/komietty/unity-camera-projection
6https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html

https://assetstore.unity.com/packages/tools/particles-effects/projector-simulator-86123
https://assetstore.unity.com/publishers/28014
http://syphon.v002.info
https://github.com/keijiro/KlakSyphon
https://github.com/keijiro
https://github.com/njazz/syphonpy
https://github.com/njazz
https://github.com/komietty/unity-camera-projection
https://github.com/komietty
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
https://assetstore.unity.com/packages/tools/particles-effects/projector-simulator-86123
https://assetstore.unity.com/packages/tools/particles-effects/projector-simulator-86123
http://syphon.v002.info
https://github.com/keijiro/KlakSyphon
https://github.com/njazz/syphonpy
https://github.com/komietty/unity-camera-projection
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
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PyTorch Tensors to calculate the predicted projection. It does that
using PyTorch’s implementation of the dot product, addition, and
clamping.
By using PyTorch’s functions and Tensors, PyTorch remembers

exactly what calculations were done in the forward step and can
automatically calculate the gradient using PyTorch’s automatic dif-
ferentiation [13].

5 RESULTS
This section shows the results of different prototypes. All results
were achieved on a 2,3 GHz 8-Core laptop, with 16 GB of memory.
The GPU in this laptop is a Radeon Pro 560X with 4 GB of memory.
When there was a simulation used, this simulation simultaneously
ran on the same machine.

5.1 Duration of the calibration
The calibration can be really slow since there is a delay between
sending the image to the projector and being able to capture that
projection using the camera. Therefore, it is interesting to measure
how long the calibration takes.
This experiment measured the time it took from the start to the

end of the calibration, not counting the time it took to write the
calibration file to the disk. The experiment was conducted using the
simulation. The results for different projector and camera sizes are
shown in Table 1. In Table 1, there are also some results by linearly
extrapolating results with a lower projector resolution. These are
highlighted in grey.

Table 1. The time it took for the calibration to run for different projector and
camera resolutions. Grey results are linearly extrapolated from the results
with a lower projector resolution and the same camera resolution. Note the
changing units.

Camera resolution
Projector
resolution

16 × 9 640 × 360 854 × 480 1920 × 1080

4 × 3 3 s 3 s 3 s 4 s
40 × 30 268 s 273 s 282 s 365 s
80 × 60 1085 s 1123 s 1127 s 1447 s
1920 × 1080 127 h 135 h 135 h 173 h

5.2 Size of the calibration
Since the calibration stores a full image of the scene for every pixel
in the projector, the calibration file could get very large. Especially
since the current implementation stores uncompressed images in
the form of NumPy arrays on the disk.
Table 2 shows the same setups as in the previous section, but

now shows the size of the calibration files. In Table 2, there are also
some results by linearly extrapolating results with a lower projector
resolution. These are highlighted in grey.
These calibration files could be compressed when stored on the

disk. When compressing the 10 GB file from Table 2 using zip, the
resulting file is only 14.2 MB.

Table 2. The size of the calibration files for different projector and camera
resolutions. Grey results are linearly extrapolated from the results with
a lower projector resolution and the same camera resolution. Note the
changing units.

Camera resolution
Projector
resolution

16 × 9 640 × 360 854 × 480 1920 × 1080

4 × 3 2 KB 3 MB 5 MB 27 MB
40 × 30 173 KB 276 MB 492 MB 2.5 GB
80 × 60 692 KB 1.1 GB 1.9 GB 10 GB
1920 × 1080 30 MB 476 GB 818 GB 4.3 TB

5.3 Performance without gradient
Here, the prototype using the L-BFGS-B algorithm was run to create
the projection for the desired image in Figure 8a. This desired image
was generated by projecting a checkered image onto the scene so
that the desired scene was actually achievable.
This experiment was conducted using the calibration model of

an 8 × 6 px projector, and a 640 × 480 px camera. It uses the default
stopping conditions of the SciPy implementation of L-BFGS-B7. It
used an absolute step size of 0.1 to numerically approximate the
gradient. The algorithm was run 10 times, and the average run times
and iterations were recorded.

Every instance started with a random initial guess for the projec-
tion, one of which is shown in Figures 8b. Then, after an average
of 12 seconds and 1225 iterations, one of the stop conditions was
reached. The resulting image of one of the runs is shown in Figure 8c.

(a) Desired scene gen-
erated using the pro-
jection above

(b) Scene with the ini-
tial projection

(c) Scene with the re-
sulting projection

Fig. 8. Results of the iterative prototype. An 8 × 6 px projector was used.
The prototype started with a random initial guess, and after an average of
1225 iterations, ended up with a picture that resembles the desired scene.

The same experimentwas conducted at a higher resolution, namely
a projector resolution of 80 × 60 px. The optimizer stopped after
15613 iterations, which took 46.5 minutes because the number of
function evaluations reached its limit. The resulting images can be
seen in Figure 9b.

7https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
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(a) Desired scene gen-
erated using the pro-
jection above

(b) Scene with the
resulting projection
without using the
gradient

(c) Scene with the re-
sulting projection us-
ing the gradient

Fig. 9. Results of the iterative prototype, and the gradient prototype on
higher resolution. A 80 × 60 px projector was used. The iterative prototype
produced this in 46.5 minutes, and the gradient prototype in 18 seconds.

5.4 Performance using the gradient
In this experiment, the prototype using PyTorch was run. Here, the
Adam optimizer was used with a learning rate of 0.05. It uses the
same calibration model as the experiment from Section 5.3. The
results look indistinguishable from Figure 8.

The run time, however, is drastically lower. It took, on an average
of 10 runs, in 0.30 s and 34 iterations.

It took for the higher resolution version, from Figure 9, on average,
18 seconds and 114 iterations.

5.5 A video as the desired image
Here, a video was used as the desired images. This experiment
used the prototype using PyTorch. It used a calibration with an
854 × 480 px camera, and a 40 × 30 px projector.

The 10:35 min video, Big Buck Bunny8 was converted to an 854×
480 px resolution, and 1 fps frame rate. This was then played back
where each frame was a new model that needed to be optimized.
As an initial guess, the result of the last frame was used. This is a
good initial guess, as most videos have high temporal continuity [5],
which means that only a few pixels have to be changed between
frames. A few frames are shown in Figure 10.
With the stopping condition of the loss decreasing by less than

1 · 10−5, the video played in 46 minutes, which is 4.4 seconds per
frame. In contrast, when using a random initial image for each frame,
the video played in 82 minutes, which is 7.8 seconds per frame.

5.6 Real-world results
To test if the technique would work in the real world, a test setup
was created as can be seen in Figure 11. For the webcam, the
Philips SPC1030NC9 was used, and for the projector, the InFocus
IN3118HD10 was used. As webcam resolution 640×480 px was used,
and as projector resolution 64 × 36 px was used, The object was a
20 × 20 cm laser-cut wooden cube, with a replaceable cover. Here
8https://peach.blender.org
9https://www.philips.nl/c-p/SPC1030NC_00/notebookwebcam
10https://tweakers.net/pricewatch/305726/infocus-in3118hd/specificaties/

(a) Frame 10 (b) Frame 11 (c) Frame 12

Fig. 10. Using a video as the desired image. The top image is the video frame,
the middle image is the generated projection, and the bottom image is the
predicted result. Since a video often has temporal continuity, the projection
between frames only has to change a bit. Therefore, the generated projection
of the previous frame is a good initial guess for the next one.

the cover was mirror-like paper, white paper, or black paper covered
in fabric.

Fig. 11. Setup of real-world experiments.

In this experiment, a cube with a mirror-like material was pho-
tographed in the scene, as the desired scene (see Figure 1). After
this, a calibration was performed on a cube with a black fabric mate-
rial. Because of the noise in the camera, the calibration had a lot of
errors. This was resolved by, in this experiment, setting every value
below 10 (out of 255) in the calibration, to 0. Some noise still made
it through, as can be seen in the predicted projection in Figure 1.

Then, using the gradient prototype with the Adam optimizer with
a learning rate of 0.05, a projection was generated. This is shown
as the resulting projection in Figure 1. This took 69 iterations in
22.9 seconds. The projection was projected on the black fabric cube,
which is also shown in Figure 1.

This experiment did not work with a white cube, since the white
cube is already brighter than the mirror cube. Adding more light

https://peach.blender.org
https://www.philips.nl/c-p/SPC1030NC_00/notebookwebcam
https://tweakers.net/pricewatch/305726/infocus-in3118hd/specificaties/
https://tweakers.net/pricewatch/305726/infocus-in3118hd/specificaties/
https://peach.blender.org
https://www.philips.nl/c-p/SPC1030NC_00/notebookwebcam
https://tweakers.net/pricewatch/305726/infocus-in3118hd/specificaties/
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would then only make it less like the mirror cube. This can be seen
in Figure 12.

(a) Desired Scene (b) The closest possible result

Fig. 12. A cube with the desired material is on the left. The closest the
prototype can get to the desired scene, with a white cube, is projecting
nothing. This is because every pixel in the white cube is already brighter
then the pixels in the mirror cube.

This prototype converged quite fast. In this experiment, there
was no major improvement after ~20 iterations, as can be seen in
Figures 13 and 14.

6 DISCUSSION
Several improvements can be made to make the pipeline faster, or
more realistic. Some are highlighted in this section.

6.1 Calibration
In a bigger scene, one may want to use a higher resolution projector.
But, as can be seen in Table 1, this could take very long, as it is
linearly correlated to the number of projector pixels. This could
be improved by using different calibration methods. In the future,
using Gray code patterns could be considered [10]. The camera pixel
to projector pixel mapping can then be acquired by a library like
OpenCV’s GrayCodePattern class11.

The size of the calibration files is also a problem as can be seen in
Table 2. On disk, this can be reduced by compressing, as can be seen
in Section 5.2. This is because the matrices mostly contain large
strings of zeros. This can be improved by using sparse matrices
and tensors in both SciPy and PyTorch. These are more efficient in
storing matrices with a large number of zeros12.

In a real-world scenario, the current way of calibrating can give
some artifacts. This is because of noise on the camera, or slightly
changing lighting. The model then thinks that a certain projector
pixel has an influence on unrelated pixels, which was just noise.
For one pixel, this is not relevant, but when adding all this noise
together for all pixels, it can break the whole calibration. This was
resolved in the real-world calibration by setting every value in the
calibration that was below 10 (out of 255) to 0.

6.2 Resolution
The resolution of the projector cannot be very large, since the opti-
mization will quickly take much longer. Especially when the gradi-
ent is not provided.

11https://docs.opencv.org/3.4/dc/da9/tutorial_decode_graycode_pattern.html
12https://pytorch.org/docs/stable/sparse.html

A possible improvement could be optimizing the projection using
a lower resolution first and then using that as an initial guess for
the next iteration with a higher resolution. This might help with not
getting stuck in local minimums, and can be researched in future
work.

6.3 Full-colored images
To use this technique for a full-color image, the straightforward
solution would be to repeat this technique for red, green, and blue.
But this might not give the optimal results, as the Euclidean distance
between two RGB colors does not represent the same perceptional
color difference. A uniform color space, like CIELAB, would be more
suited since the Euclidean distance does represent the perceptional
color difference for human eyes [3]. This would yield amore accurate
loss and gradient for human perception.

6.4 White cube
In Section 5.6 it was shown that projecting on a white cube did
not work. This was because the projector can only add light, and
the prototype does not know how to make objects look darker by
adding lights. This is possible however since when making parts of
the scene brighter, our eyes adjust and other parts appear darker.
This can be solved by having no ambient light in the room, like

in a cinema, since then a white cube can appear black.
Another solution is to adjust the camera-projector settings, such

that the black of the projector slightly underexposes on the camera,
and the white of the projector slightly overexposes on the camera
[7]. The optimizer has more freedom to change the scene, and out
eyes adjust to that.
Another option is to add a tone-mapping function to the loss

function. This converts between the pixel value and the perceived
brightness [2].

6.5 Acquiring the desired image
Currently, the desired image was acquired by generating it using
the projector and the object, or by having an object with the desired
material. Other techniques can be considered as well.

A 3D scan could be made using the same projector-camera setup
[10]. Using this scan, a mesh can be built and a material can be
applied to that. This can then be used as the desired view.

Something similar to work by Amano [1] can also be done, where
they apply image processing to the camera image to generate the
desired image. For example, highlights can be enhanced on the
image from the camera, and that can then be used as the desired
image to make the object look more glossy.

7 RESPONSIBLE RESEARCH
During this research, we tried to adhere to the Communism ethos
as much as possible. This entails open communication of methods,
results, and knowledge [11]. This can be seen in Section 4 where was
explained exactly what kind of libraries, languages, and frameworks
were used in the prototypes. In the results section (Section 5), all
the parameters and hardware information were stated. This makes
results reproducible, transparent, and verifiable. Not only the good
but also the more disappointing results were shown. This is to share

https://docs.opencv.org/3.4/dc/da9/tutorial_decode_graycode_pattern.html
https://docs.opencv.org/3.4/dc/da9/tutorial_decode_graycode_pattern.html
https://pytorch.org/docs/stable/sparse.html
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Fig. 13. Every other projection of the first 40 iterations of the minimization. This was for the real-world scene as shown in Figure 1. It converges rather quickly
after only 20 iterations.
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Fig. 14. The Mean Squared Error for the first 40 iterations of the minimiza-
tion. There is no visible improvement after 20 iterations. This is an average
over 10 runs.

the knowledge and make sure other researchers do not have to
repeat those same steps.
Universalism partly applies in this research. This means for this

project that no personal beliefs and biases can play a role in the
evaluation of the research [11]. Some objective measures were given
in the results section, like run time, and iterations. But by giving
figures with qualitative results for the reader to judge, personal
biases are introduced. This could be reduced by doing a user study
to what images are actually ‘good’ or ‘bad’.
Disinterestedness partially applies in this research. This is be-

cause, in our personal lives, we do not directly gain something if
we succeed with these technologies, since we cannot directly apply
them in our lives. But, since we get a grade for this project, and a
positive outcome could lead to a higher grade, we might be enticed
to alter the results.
We tried to have Organized Skepticism during this project. This

was achieved by critically looking at shortcomings and limitations.
A second pair of eyes was also very useful for this since it is easy to
oversee things in your own work.

8 CONCLUSION
In this paper, we have presented a method for changing a scene’s
appearance by using a projector-camera setup. The prototype uses
the camera to measure the influence of every projector pixel in the
scene. Using this calibration, the prototype optimizes a projection,
so that when it is projected onto the scene, the scene looks as close
as possible to the desired scene from the perspective of the camera.
For this, the geometry of the object does not need to be known.

This makes it suitable for complex geometries, rather than just
plainer surfaces.

However, the calibration can take very long for higher resolution
projectors, and the calibration files can grow rather big for higher
resolution projectors and cameras. This can be solved in future work
by using different calibration methods and storage methods for the
calibration matrices.
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