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the retrieval depends on how accurately the final feature vectors rep-
resent the meaning expressed by the target image. Therefore various
CNN network structures, pooling methods and whitening methods
are proposed to get more concrete feature vectors. In this thesis,
our study (1) fine tunes the pre-trained CNNs, (2) optimizes the ap-
plication of second order attention information in feature map, (3)
applies and compares popular feature enhancement methods in both
aggregating and whitening, (4) explores how to combine all strengths,
and (5) propose a new model ResNet-SOI, which achieves 53.4(M)
and 59.2(M) mAP on the challenging benchmark ROxford5k+1M
and RParis6k+1M, and outperforms the state-of-art methods. Our
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Abstract

In recent years, the expansion of the Internet has brought an explosion of visual
information, including social media, medical photographs, and digital history. This
massive amount of visual content generation and sharing presents new challenges,
especially when searching for similar information in databases —— Content-Based
Image Retrieval (CBIR). Feature extraction is the foundation of image retrieval,
making research into obtaining concrete features and representations of image content
a vital concern.

In feature extraction module, We first pre-process the target image and input it
into a CNN to obtain feature maps for different channels. These feature maps can
be aggregated into compact and global uniform descriptors by pooling. Then these
global descriptors are further dimensionalised and normalised by whitening methods
to obtain image feature vectors that are easy to compute and compare. In this process,
the accuracy of the retrieval depends on how accurately the final feature vectors
represent the meaning expressed by the target image. Therefore various CNN network
structures, pooling methods and whitening methods are proposed to get more concrete
feature vectors.

In this thesis, our study (1) fine tunes the pre-trained CNNs, (2) optimizes the
application of second order attention information in feature map, (3) applies and
compares popular feature enhancement methods in both aggregating and whiten-
ing, (4) explores how to combine all strengths, and (5) propose a new model
ResNet-SOI, which achieves 53.4(M) and 59.2(M) mAP on the challenging bench-
mark ROxford5k+1M and RParis6k+1M, and outperforms the state-of-art methods.
Our prototype with GUI is available on GitHub(https://github.com/yanan-huu/
Image-Search-Engine-for-Historical-Research).
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Introduction 1
This chapter presents an overview of the deep learning-based image search engine. We
first present the project’s rationale and objectives, followed by a discussion of the overall
pipeline. Further, the feature extraction module in the pipeline, for which this paper
is responsible, is explained. The final section outlines the thesis structure.

1.1 Image Retrieval

1.1.1 Problem Statement

In recent years, the expansion of the Internet has brought an explosion of visual infor-
mation, including social media, medical photographs, and digital history. This massive
amount of visual content generation and sharing presents new challenges, especially
when searching for similar information in databases. Image retrieval approaches can
substantially assist researchers with this endeavour by swiftly searching through thou-
sands of images in milliseconds and locating a match for the object. Therefore, this
deep learning-based work attempts to focus on feature extraction and optimization and
collaborate on an image search system.

A typical approach for image search relies on annotated text retrieval. This method
requires a textual annotation of the image, followed by a match under the annotated
textual information. For instance, when searching for Eiffel Tower images, the user
would enter ”Eiffel Tower” as a query. The system would search the database for pho-
tographs with this text tag and deliver them to the user. Such methods incorporate
the subjective opinion of the annotator and frequently accompany a biased interpre-
tation of the image, which influences the search results. Additionally, there are also
linguistic restrictions for text retrieval. Users may overlook results annotated in other
languages if they type keywords in a specific language. Similarly, viewers do not know
what keywords to choose if one image only contains an obscure landmark. The seman-
tic difference between textual and image representations is the underlying source of all
these issues.

For large-scale image retrieval, it is evident that text-based search is insufficient and
that image-based search is the optimal strategy. This insight prompted us to create a
content-based image search engine, in which the user may search for relevant photos
with a single image.

1.1.2 Objectives

Inspired by numerous use cases, we will propose and validate our image retrieval tech-
nique, which satisfies the following objectives:
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1) The representation of image features is abstract and global, enabling accurate rep-
resentation of image content feature vectors, resulting in high accuracy of similar
results for image search.

2) The feature representation is efficient and adaptable enough to support many
types of digital historical photographs and large-scale database feature extraction
projects.

3) The search performance of the semantic features of image material is effective and
can reply fast and precisely to user search query requests.

4) To establish an image search system for digital historical materials and construct
an open-source retrieval platform with improved model algorithm and scheme.

1.1.3 The Whole Picture

To achieve the digital historical search engine, we combine deep learning methods and
propose a prototype including feature extraction, approximate nearest-neighbour search
and re-ranking modules. Figure 1.1 shows the structure of this prototype.

Figure 1.1: The whole pipeline.

In this prototype, we firstly extracted features from the query image online. Sim-
ilarly, such features are also extracted from all images in the database offline. These
features are extracted only once and then stored to process the image-based queries.
The feature extractor comprises a CNN, followed by an aggregation layer, a whiten-
ing layer and an L2 normalization layer, which can be trained end-to-end with various
loss functions. The extracted features are then forwarded to an approximate nearest-
neighbour search module to produce the initial ranking results, refined by a re-ranking
module, generating the final results.

2



This prototype was co-developed by Yuanyuan Yao, Qi Zhang and myself. I was
responsible for the CNN-based feature extraction and enhancement module and jointly
build the final retrieval system. The following section will provide an expanded intro-
duction to this module.

1.2 Feature Extraction: From Image to descriptors

Imagine a user wants to search for an image, any relevant tag descriptions are missing,
and this image is the only information provided. What can the retrieval system do
now? How should this image be transformed into computer-intelligible data? These
are tasks of the feature extraction module: efficiently converting a picture into a
feature vector that can be readily processed and computed.

Good image features should possess the following three qualities.

Distinguishability
The retrieved image features must be easily distinguishable—the more considerable the
variation in feature values between categories, the better. There should be significant
disparities between the feature values of different categories.

Reliability:
Objects belonging to the same category should have comparable feature values. For
instance, apples with varying degrees of ripeness typically have distinct hues. Green
and red apples are both apples, but their colours are very different. Therefore using
colour to identify apples is not a smart idea.

Independence
Individual characteristics should be independent of one another and unrelated to one
another. Suppose two feature values represent the same attribute of an object. In
that case, they will lead to data redundancy and a substantial increase in computing
complexity.

1.3 Outline

Chapter 1 begins with an introduction to digital historical image retrieval systems,
followed by the inspiration for the issue, the intended objectives, and the entire pipeline.
The crux of this thesis, the objectives and implications of the image retrieval module,
are then introduced, followed by a summary of the technique employed in this paper.
Finally, the thesis’s main structure is provided.

Chapter 2 examines the research on content-based image retrieval (CBIR) systems,
focusing on CNN networks and CNN-based feature aggregation algorithms.

Chapter 3 described methodologies in depth. It begins with the design and applica-
tion of CNN networks, followed by integrating related feature aggregation algorithms

3



and feature post-processing via whitening and dimensionality reduction. Finally, a
combination of these strategies, the feature extraction pipeline proposed in this thesis,
is given.

Chapters 4 demonstrate in detail, from an implementation standpoint, how the
baseline and fine-tuned models are developed and trained. Also provided are experi-
mental setups such as datasets and evaluation metrics. Finally, we present the results
of the test experiments and the overall retrieval system.

Chapter 5 summarises the entire work’s contributions and recommendations for
further research.
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Related Work 2
This chapter examines the research on image feature extraction, beginning with a
discussion of content-based image retrieval systems (Section 2.1). Within the scope
of this thesis, we focus on techniques employing deep learning and convolutional neural
networks (CNNs). In Section 2.2, we provide a summary of off-the-shelf and fine-
tuned CNN feature extraction models. And in Section 2.3, I discusses studies aimed at
enhancing the feature quality from both the aggregation and embedding[6] viewpoints.

2.1 Content Based Image Retrieval(CBIR) Research

With the advancement of computer vision, pattern recognition, and machine learning,
there is a requirement for efficient image management, organisation, and querying.
How to search the continuously and rapidly expanding image library for the necessary
images become a popular issue. Currently, there are three types of image retrieval: text-
based image retrieval system (TBIR), content-based image retrieval system (CBIR),
and semantic-based image retrieval system (SBIR). Figure 2.1 illustrates the various
schemes of image retrieval and their fundamental mechanisms [1].

In TBIR system, retrieval is dependent on image labels derived from manual anno-
tation. By entering keywords, the user gets matched images with related text tags in
the database. The problem with this retrieval method is the incompatibility between
human visual information comprehension and text labelling. The visual information
is fixed and consistent for the same image, however, the linguistic description varies
widely between individuals, which makes it impossible for manual annotations to ade-
quately describe all the visual information in that image, resulting in retrieval errors.
Moreover, manual tagged text is subject to language constraints, making international
cross-language searching difficult. Furthermore, manual labelling of image files is nearly
impossible when exploring large databases.

CBIR is a framework that can overcome these problems. The objective of content-
based image retrieval is to locate similar images from a large-scale dataset against
a query image. This retrieval approach employs the similarity of visual features of
images to generate a similarity feature vector of database images, and then calculates
the similarity distance between the query image and the database image to conduct
an “image search by image” By specifying the aspects of picture content itself, image
matching accuracy is enhanced. There is nearly endless potential for applications of
CBIR, such as remote sensing, face recognition, e-commerce, and medicine.

Figure 2.2 depicts the overall framework of a CBIR system. CBIR systems can be
separated into offline and online subsystems based on the stage of image information
processing. The offline subsystem extracts feature from images in the database and
stores them as descriptors, which are then encoded into indexes. The online subsystem
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Figure 2.1: Schemes of image retrieval and their fundamental mechanisms [1].

Figure 2.2: CBIR’s general framework. Above and below the dashed lines are the offline and
online subsystems, which share the identical image representation method.

employs the same Image representation process to extract features of the user-submitted
query images and obtain the query descriptors. All database descriptors are scored
according to similarity with the query descriptors, and images with a score higher
than a predefined threshold are selected as first matches. Those first matches are then
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filtered and scored again by the reranking algorithm. The final retrieval results are
achieved by outputting them in descending order based on the re-ranking scores. From
a technical viewpoint, CBIR systems are primarily dependent on image representation
and database indexing/matching. This thesis focus on image representation and their
enhancement.

2.2 CNN-based Extraction Methods

After elaborating on the research context of CBIR, we will now summarise the existing
CNN-based feature extraction approaches and their enhancement in this section.

Figure 2.3: CNN based feature learning replaces the state-of-the-art pipeline of traditional
hand-crafted feature representation[2].

Various handcrafted image representations such as SIFT [7] and Bag of visual Words
(BoW) [8] dominated the early image feature field. In 2012, AlexNet, a deep convolu-
tional neural network (DCNN), revolutionised the feature representation field with its
groundbreaking performance in the ImageNet classification competition. Since then,
deep convolutional neural network-based feature learning has replaced handcrafted lo-
cal descriptors. Figure 2.3 depicts this transition. DCNNs learn abstract features from
data through different architectural layers. In the past decade, CNN-based feature
learning has made significant strides with the power of deep learning. In the following
paragraphs, CNN-based feature extraction is further discussed in terms of the off the
shelf model and fine-tuned model.

2.2.1 Off-the-Shelf models

There are several popular off the shelf backbone architectures for CNN-based feature
extraction, including AlexNet [4], VGGNet [9], GoogleNet [10] and ResNet [5], as listed
in table 2.1. Theoretically, CNN can be viewed as a collection of nonlinear functions
composed of convolutional layers, pooling layers and nonlinear layers [11]. In a CNN,
the input image is convolved with filters of the convolutional and pooling layers to
extract features, beginning with low-level features and progressing to high-level features.
The filters in the same layer have the same size but differing parameters.

AlexNet was the first DCNN and won the ImageNet ILSVRC competition in 2012,
significantly exceeding the runner-up. AlexNet acquires features using five cascaded
convolutional layers and three fully connected (FC) layers. During training and test-
ing, input images are typically scaled to a fixed size. Inspired by AlexNet, VGGNet
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Table 2.1: Off the shelf CNN models.

Models Size Layers Models
Size Layers Training Set

OverFeat 144M 6+3 ImageNet

AlexNet [4] ImageNet
VGGNet [9] 138M 13+3 ImageNet

GoogleNet [10] 11M 22 ImageNet
ResNet [5] 44.6M 101 ImageNet

employs more parameters, deeper layers, and smaller convolution filters. It is trained
using multiple scales, with the training images cropped and rescaled to increase retrieval
feature invariance. Afterwards, GoogleNet and ResNet continue to deepen the network
and avoid fully connected layers. GoogleNet substantially reduces network parame-
ters amount, while ResNet proposes skipping connections to overcome the vanishing
gradient problem during training. They won the ILSVRC 2014 and 2015 challenges re-
spectively, indicating that the network’s depth is crucial to the algorithm’s outstanding
performance.

Depending on how the images are fed to the CNN models, the off-the-shelf CNN
models can be further divided into single-pass methods and multi-pass methods [3].

Figure 2.4: Image patch generation methods: Rigid grid, Spatial pyramid modeling (SPM),
Dense patch sampling and Region proposals (RPs).[3]

The single-pass CNN method feeds the entire image into an off-the-shelf model to
extract features. The advantage of this method is that the image is only fed once and
extraction is relatively fast and efficient. Correspondingly, however, the single input
may activate a focus on non-essential information like the background in the image, thus
affecting the accuracy of the retrieval. A reliable solution is to embed and aggregate
deep features to improve feature discriminability. Another option is to consider distinct
regions in the feature map as different subvectors and combine them to represent the
input image [12][13]. The details of those enhancement methods will be discussed in
Section 2.3.

Multi-pass CNN techniques are more time-consuming than single-pass solutions
because many patches at various scales must be created and supplied into the network.
As demonstrated in Figure 2.4, multiscale image patches are typically generated using
sliding windows [14][15] or Spatial Pyramid Model (SPM)[16].
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2.2.2 Fine-tuned models

Even though off-the-shelf CNN models have achieved exceptional retrieval accuracy
and precision, research into fine-tuned CNN models remains quite popular. Fine-tuned
networks update and complement the pre-stored parameters of the off the shelf network.
They generate image descriptors in a direct, end-to-end manner, and are quite robust
of inter-class variation. The next paragraphs will explain diverse types of fine-tuned
networks.

From the perspective of the target task, fine-tuned CNN networks can be divided
into two types architectures: classification-based networks and validation-based net-
works. Classification-based networks are trained to classify architectures into pre-
defined categories. Validation-based networks, on the other hand, are more often used
for fine-tuning. There are many representatives and outstanding studies in this area.
Radenovic et al. proposed replacing the fully connected layer with a MAC layer and
using a 3D architectural model with camera localisation for training data mining and
construction. Siamese network is also employed to compute the loss of training batches.
Gordo et al. fine-tuned ternary loss networks with regional networks to improve the
distinguishability of focused features.

Table 2.2: Configuration scheme for fine-tuning CNN networks in a supervised and unsuper-
vised manner.

Type Method Backbone Output Layer Loss Function Dimension

Supervised DELF [17] ResNet101 Conv4 Block CE Loss 2048

Fine-tuning
Faster
R-CNN

VGG16 Conv5 Regresion Loss 512

SIFT-CNN[18] VGG16 Conv5 Siamese Loss 512
NetVLAD [19] VGG16 VLAD Layer Triplet Loss 256

Deep Retrieval[20] ResNet101 Conv5 Block Triplet Loss 2048

Unsupervised GeM [21] VGG16 Conv5 Siamese Loss 512
Fine-tuning SfM-CNN [22] VGG16 Conv5 Siamese Loss 512

IME-CNN [23] ResNet101 IME Layer Regresion Loss 2048
MDP-CNN [24] ResNet101 Conv5 Block Triplet Loss 2048

From another viewpoint of the given information (image annotation or other su-
pervisory information), fine-tuned networks can be divided into supervised fine-tuning
and unsupervised fine-tuning. Supervised fine-tuning can be split into fine-tuning via
classification Loss and fine-tuning via pairwise Ranking Loss based on the loss function
scheme. When class labels are available for a new dataset, the best approach is to
optimise the parameters of a pretrained CNN model based on cross-entropy loss, which
is supervised fine-tuning based on classification. And when affinity information repre-
senting similar and dissimilar pairs is given, a fine-tuning approach based on pairwise
rank loss is a much better option for learning an optimal metric. Table 2.2 lists the
configuration schemes for fine-tuning CNN networks in a supervised and unsupervised
manner.
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2.3 CNN-based Enhancement Methods

As discussed in the preceding section, CNN-based image feature extraction networks
are susceptible to variable degrees of feature defocus. Background information and
distracting information from secondary objects are frequently present in the extracted
features, diminishing features’ representativeness and recognizability. Therefore, fea-
ture enhancement techniques aimed at optimising feature quality are a popular research
direction. In this section, we review the relevant research progress regarding both fea-
ture aggregation (Section 2.3.1) and feature embedding (Section 2.3.2).

2.3.1 Feature Aggregation

In CNN networks, features in the convolutional layer maintain more structural detail.
Neurons in the convolutional layer are exclusively coupled to local regions, ensuring
that the generated features retain more local information. To increase the robustness
of CNN features, several methods aggregate the local descriptors into a compact global
feature for matching.

Sum/average pooling and max pooling are two straightforward aggregation tech-
niques for generating global features [25][26]. The sum/average pooling is less discrim-
inative since it considers all activation outputs of the convolution layer, diminishing
the significance of highly activated features [27]. Consequently, maximum pooling ap-
proaches are appropriate for sparse features with low probability activations. These
approaches perform no additional operations on the feature map before pooling and
are therefore referred to as direct pooling.

Several sophisticated aggregation methods, such as channel weighting or spatial
weighting of convolutional feature maps, have been investigated to optimise direct pool-
ing. These aggregation techniques aim to emphasise the significance of focal features.
Babenko et al. [28] presented aggregated convolutional features (SPoC) to obtain com-
pact descriptors with Gaussian centres preprocessed a priori. Similar to the R-MAC
approach developed by Tolias et al. [29], regions in the feature map can be treated as
different subvectors. R-MAC generates a global description of an image by aggregating
CNN activation properties of spatial regions with a particular aggregation algorithm.
The literature [30] [20] enhances the R-MAC method by optimising the triadic rank-
ing loss function and applying region recommendation networks to improve the region
pooling technique of the original R-MAC method. As a remedy, Pang et al. [31] employ
thermal diffusion during the aggregation phase to measure convolutional features and
decrease the negative effects of burstiness.

2.3.2 Feature Embedding

The primary objective of feature embedding is also to increase the CNN features’ iden-
tifiability and to achieve the final local/global retrieval features.

As explained previously, CNN network convolutional features are parsed as local
descriptors and output as feature maps. Each vector in the feature map corresponds to
a region of the input image and is referred to as a ”Dense SIFT feature.” Inspired by
this insight, several works have employed embedding methods for SIFT features, such
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as BoW [8], VLAD [32], and FV [33], to embed and encode regional feature vectors and
subsequently aggregate them into a global descriptor. By translating individual char-
acteristics to a high-dimensional space before aggregation, feature embedding increases
their discriminative potential. After feature embedding, PCA reduces the dimension-
ality of features, while whitening reduces the co-occurrence between features.

Different embedding techniques have distinct computational features. BoW and
VLAD are computed in rigid Euclidean space. Their performance is directly propor-
tional to the number of centroids, whereas FV captures higher-order statistics and
enhances the efficacy of feature embedding at the expense of larger memory costs. A
more advanced concept is to integrate VLAD into a deep network in which each spatial
column feature is utilised to build clusters using k-means. This concept inspired the
development of NetVLAD [19].
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Methodology 3
This chapter will examine the theoretical methodology utilised in this paper. We first
introduce feature aggregation techniques that further improve the feature maps pro-
vided by the CNN model (Section 3.1). Following that, the augmented features’ whiten-
ing and dimensionality reduction strategies are described (Section 2.3). In addition,
this chapter introduces the fine-tuning CNN models with second-order attention and
the combination with various loss functions (Section 3.3). Finally, the proposed solution
pipeline is presented by combining the abovementioned methods (Section 3.4).

3.1 Feature Aggregation

As stated in Section 2.2, the neurons of the convolutional layer of the CNN network
are only related to local regions, ensuring that the generated features retain more local
information. To improve the robustness of CNN features, we need to apply feature
enhancement algorithms to aggregate local descriptors into a compact global feature for
matching. Pooling is a representative aggregation strategy, and three pooling methods
employed in this paper are detailed in this section.

With image I as input, the pre-trained deep convolutional network outputs deep
convolutional features in the final convolutional layer. The output consists of C feature
maps, each with height H and width W. The input image I is then represented by a
collection of H ×W C-dimensional vectors, which are the deep convolutional features
we are concerned with. The following aggregation methods all further process this
H ×W × C feature map.

3.1.1 Sum-Pooled Convolution (SPoC)

Sum-Pooled Convolutional (SPoC) [28] descriptor is the aggregation of unencoded deep
convolutional features. SPoC associates each deep convolutional feature f calculated
from the image I with the spatial coordinates (x, y) corresponding to this feature’s
spatial position in the map stack. In this thesis, we optimize the post processing of
SPoC discriptors. Figure 3.1 shows the working scheme of SPoC. The process can be
distilled as follows:

1) Sum Pooling
The construction of SPoC descriptors starts with the sum pooling of depth charac-
teristics. Set the target discriminative global representation as ψ(I). The similarity
between a pair of images can be expressed as a scalar product between their corre-
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Figure 3.1: SPOC Working Scheme.

sponding identifiers.

ψ1(I) =
H∑
y=1

W∑
x=1

f(x,y), (3.1)

sim (I1, I2) = ⟨ψ (I1) , ψ (I2)⟩ =
∑
fi∈I1

∑
fj∈I2

⟨fi, fj⟩ , (3.2)

2) Centering Prior
Next, we will concentrate on the image’s focal point. In most instances, the object
of interest is positioned in the image’s geometric centre. With a simple weighted
heuristics algorithm, we assign greater weight to the features from the centre of the
feature map stack by replacing equation 3.1 with:

ψ2(I) =
H∑
y=1

W∑
x=1

α(x,y)f(x,y). (3.3)

Coefficients α(w, h) are solely determined by the spatial coordinates h and w. We
employ the Gaussian weighting technique in particular:

α(x,y) = exp

{
−
(
y − H

2

)2
+
(
x− W

2

)2
2σ2

}
. (3.4)

3) Post Processing
After obtaining the representation, additional whitening, dimension reduction, and
normalisation will be performed. The original SPoC [28] methodology employs
L2 normalisation and PCA dimension reduction. This article optimises the post-
processing further by using both learnt whitening and end-to-end whitening, pro-
ducing superior outcomes. These post-processing techniques will be elaborated upon
in Section 3.3.

3.1.2 Regional Maximum Activation of Convolutions (RMaC)

RMAC [29] pooling is based on utilising a variable window for sliding windows. RMAC,
unlike other sliding windowing algorithms, does not perform sliding windowing on the
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image but rather on the feature map, which significantly accelerates feature extraction.
Figure 3.2 depicts the RMAC Pooling sliding window method.

Figure 3.2: RMAC Working Scheme.

We now consider defining a collection of R regions of varying sizes on the CNN
feature map. We collected samples of the square regions at L distinct scales. The
regions were sampled uniformly so that the overlap between successive sections was
close to 40%. We uniformly sampled l(l+m−1) rectangles of width 2min(W,H)/l+1
at every other scale l. Figure 3.3 depicts the rationale for this subscale sampling.

The related feature vectors are computed in each region and then post-processed
using l2 normalisation and the whitening technique described in Section 3.3. Finally,
a single global feature vector is generated by summing the set of all regional feature
vectors.

Figure 3.3: Region Sampling Scheme. There are three different levels of square region (L =
1, 2, ...l). When L = 1, the square region is maximal and its height and width is equal to the
min(H,W ). Two uniform regions was sampled. When L = 2,the width of the sample region
is 2/3min(H,W ) and 6 regions are sampled. When L = l, regions of width 2min(W,H)/l+1
are sampled.

3.1.3 Generalized Mean Pooling (GeM)

Generalized Mean (GeM) [21] Pooling is a compromise that incorporates the maximum
and average pooling methods. The key to attaining this balance is the learnable pooling
parameter p. By altering the value of p, GeM can focus on different fine-grained image
regions. Using the input feature map X , the output features of GeM pooling can be
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represented as a single D-dimensional feature vector ψ. GeM can be understood as
maximum pooling when pkß and average pooling when pk = 1.

ψ(g) =
[
ψ

(g)
1 . . . ψ

(g)
k . . . ψ

(g)
K

]⊤
, ψ

(g)
k =

(
1

|Xk|
∑
x∈Xk

xpk

) 1
pk

. (3.5)

The pooling parameter pk may be specified manually or learned. This process is
differentiable and serves as a part of the backpropagation. Equation 3.6 and 3.7 explains
this process. This thesis discovers the ideal range of values for the pooling parameter
pk using a series of experiments (Section 4.2). Similarly, the global features derived
from GeM are post-processed using the whitening method described in Section 3.3.

∂ψk

∂xi
=

1

|Xk|
ψ1−pk
k xipk − 1, (3.6)

∂ψk

∂pk
=
ψk

p2k

(
log

|Xk|∑
x∈Xk

xpk
+ pk

∑
x∈Xk

xpk log x∑
x∈Xk

xpk

)
. (3.7)

As a summary, the whole process of GeM is shown in Figure 3.4

Figure 3.4: The Whole Process of GeM.

3.2 Whitening and Dimension Reduction

In this section, the post-processing of feature vectors is considered. After pooling
aggregation, feature descriptors need to be whitened.

The whitening of the data representation is vital for image retrieval.High-
dimensional features carry a wealth of information. Whitening removes the correlation
between features by transforming the original data into a set of linearly independent
representations of each dimension through a linear transformation. Its significance lies
in reducing the dimensionality of the feature vectors while eliminating redundant in-
formation. The benefits of whitening are further emphasised in the case of CNN-based
descriptors [34][35].

Whitening in deep learning usually learns from generative models unsupervised via
Principal Components Analysis (PCA). In contrast, this thesis applies a more efficient
discriminative learning whitening [21], and a fully integrated end-to-end whitening [30],
respectively.
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3.2.1 Discriminative Learned Whitening

The discriminative learned whitening approach utilises labelled data provided by 3D
models and linear discriminant projections first described by Mikolajczyk [36]. Two
components comprise the projection: whitening and rotation. The whitening coefficient

is the inverse of the square root of the matching pairs covariance matrix C
− 1

2
S .

where
CS =

∑
Y (i,j)=1

(f(i)− f(j))(f(i)− f(j))⊤. (3.8)

The rotation part is the PCA of the nonmatching pairs covariance matrix in the

whitened space eig
(
C

− 1
2

S CDC
− 1

2
S

)
, where

CD =
∑

Y (i,j)=0

(f(i)− f(j))(f(i)− f(j))⊤. (3.9)

Eventually, the projection can be expressed as

P = C
− 1

2
S eig

(
C

− 1
2

S CDC
− 1

2
S

)
, (3.10)

when P⊤⊤
(f(i)− µ), and µ is the pooled feature vector.

To restrict the dimensions of the descriptors to D, we only use the eigenvectors
corresponding to the D greatest eigenvalues. l2 subsequently normalises the projected
vectors.

This whitening method uses all available training pairings while focusing on dis-
criminative information between matched and unmatched pairs. Discriminative learned
whitening finally makes a superior performance compared to the commonly used PCA
whitening.

3.2.2 End to End Whitening

The end-to-end whitening [30] method is implemented through a whitening layer at
the network’s end. The whitening is optimised end-to-end during fine-tuning, using the
same training data in batch mode and the convolutional filter.

This whitening layer is modelled directly from a fully connected layer and contains
the projection and rotation in Section 3.3.1. In other words, discriminative learning
whitening is integrated into a layer that whitens the training batch directly. This ap-
proach requires substantial training data. It is highly integrated and straightforward
to apply to multiple datasets, which is advantageous. Nonetheless, it has the disadvan-
tages of being computationally intensive and slow to converge.

Regarding final mAP performance, discriminative learnt whitening and end-to-end
whitening are comparable, and both significantly outperform PCA whitening.

3.3 Optimisation strategies

Although off-the-shelf CNN models have achieved remarkable retrieval accuracy, there
is still a need for research on fine-tuning CNN models for several specific tasks. This
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thesis combines many outstanding fine-tuning researches to optimise existing CNN
models in training, network layer and loss function design.

3.3.1 Fine-tuning Pretrained CNN

Deep learning frequently demands large training datasets, substantial computational
resources, and long model training time. In practice, models are rarely taught from
scratch but frequently pre-trained. Typically, pre-trained models can already extract
both shallow local features and deep abstract characteristics. Fine-tune adjusts the net-
work model’s structure, selectively loads pre-training parameters, and then retrains the
model using the task-specific dataset. This way allows us to obtain a high-performing
model with a minimal amount of data and computational expense.

In this research, we have chosen popular CNNs, such as ALexNet, ResNet, and
VGGNet, which are trained using the considerable training set ImageNet, as the pre-
trained networks. In this article, we utilise the Sfm120k and Google Landmarks version
datasets, which have a comparable data structure to ImageNet but are less in size.

Considering the medium size of the training dataset and the medium closeness to
the original dataset, we maintain the model structure and initial parameters from the
pre-trained network for retraining. Since the pre-trained network already has suitable
beginning parameters, we use a slower learning rate during fine-tuning to avoid altering
the parameters too rapidly. A lower learning rate also makes the model’s learning more
precise.

3.3.2 Second-order attention layer

The input image processed by a fully convolutional network generates an H × W ×
D feature map f . We undertake more fine-tuning in the following discussion and
experiments using GeM pooling as the baseline. Initially, the feature map is aggregated
into the global descriptor vector d = GeM(f, p), where p is the pooling parameter:

GeM(f , p) =

(
1

N

N∑
i=0

fp
i

) 1
p

. (3.11)

As previously stated, p in equation 3.8 is adjustable, and p can be changed for each
local contribution of feature map F to the global descriptor d according to its associated
feature activation. The GeM[21] method is thereby regarded as a first-order measure.
It assumes that each location on the map is independent and dismisses the influence
of each spatial characteristic relative to the others. In addition, the global descriptor
d has a finite receptive region, resulting in a relatively restricted contribution from
each local feature. The second-order attention (SOA) layer [37] is a good method to
incorporate spatial information into the feature pooling. Figure 3.5 visualize the SOA
layer structure and our implementation process.

First, we generate two projections of feature map f which is query q and key k.
Then q and k are flattened and transformed into a matrix of D × HW .The second-
order attention map z is then computed as

z = softmax
(
α · q⊤k

)
. (3.12)
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Figure 3.5: The SOA Layer.

where α is a scale factor and z has the shape HW ×HW , which allows the feature
map f to combine all the local features of the whole map. Then similarly to q and k,
a third projection value head v of f is generated with a shape HW × D. Finally, we
can obtain the second-order attentional feature map f so from the first-order attentional
feature map. ψ is another 1 × 1 convolution to control the influence of the attention.
In the feature map f so, a new feature f so

i,j is re-represented as a function of the features
from all positions in f , and therefore interpretable as a function of the whole input
image:

f so ≡ f + ψ(z× v), (3.13)

f so
i,j = g (zij ⊙ f) . (3.14)

Following the final second-order attention layer, the new feature map f so will be used
as input to the pooling layer for the subsequent feature augmentation and pooling step.
The final global features generated by the GeM pooling will have more comprehensive
local information:

GeM (f sop) =

(
1

N

N∑
i=0

f sop

i

) 1
p

. (3.15)

In this thesis, we further optimised the Second-Order Attention (SOA) layer. Ac-
cording to the research, the insertion position of the SOA layer may be any fully-
convolutional block in the CNN. This selection ranges from cov1 to cov5 for the
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ResNet101 utilized in this work. T Ng et al. [37] chose to link the SOA to both
cov4 and conv5 and attained high retrieval precision.

Table 3.1: Retrieval precision using various SOA embedding schemes. ResNet101-GeM serves
as our baseline. Results for the Medium and Hard regimens are provided in mAP.

Components
Medium Hard

ROxford RParis ROxford RParis

None (Baseline) ResNet101-GeM 67.3 80.6 44.3 61.5

ResNet101+SOA 4 68.2 81.0 45.7 62.3

Spatial (SOA) ResNet101+SOA 5 68.3 81.3 45.9 62.8

ResNet101+SOA 4,5 68.6 81.4 46.9 63.7

This thesis investigates further the selection of SOA block insertion sites. Table 3.1
displays the retrieval precision outcomes for various sites. Comparing inserting SOA
after cov4 and cov5 to inserting it only after cov4 or cov5 yields a tiny (0.2%) improve-
ment in accuracy. Furthermore, when we insert SOA after only one fully-convolutional
block, cov5 improves mAP by 1.1%, but cov4 only improves mAP by 0.9%. In or-
der to reduce the necessary computing resources, we have decided to insert the SOA
block just after cov5. This embedding optimization maximizes retrieval precision while
enhancing computing efficiency. In this paper, we refer to this optimized method of
applying second-order attention information as Second-Order Information (SOI).

3.3.3 Loss Functions

Suppose we have two images and have extracted the corresponding features using CNN.
We want to conduct a simple comparison task, i.e., determine if the two images corre-
spond to the same object. How would we typically approach this problem? An easy
approach is to compare the similarity of the extracted vectors. However, the “inter-
class” boundary of the features recovered by the CNN is not particularly large, making
it easy for classification to fail when an adversarial sample is introduced.

Several matching network architectures and accompanying loss functions have been
proposed to overcome this issue. In this paper, four loss functions are applied and
compared: Contrastive Loss [38], Triplet Loss [39], Listwise Average Precision (AP)
Loss [40] and Second-order Similarity (SOS) Loss [37].

3.3.3.1 Contrastive Loss

Before introducing contrastive loss [38], it is essential to have a solid grasp of Siamese
Networks. A Siamese Network is the integration of two similar or identical sub-
networks, each of which receives input and produces the appropriate feature vector.
When the sub-networks are identical, they can be constructed by a single network, fol-
lowed by the manual construction of the batch pairs. Figure 3.6 depicts the structure
of a Siamese network.
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Figure 3.6: The Siamese Network.

Siamese networks frequently apply contrastive loss to process pairs of data ef-
ficiently. In contrast to normal learning systems, where the loss function is a sum
over samples, the contrastive loss function runs across pairs of samples. Let X1, X2

represent a pair of input vectors for a Siamese network and let Y represent the binary
label associated with the input pairs. If X1, X2 are considered similar, Y = 0; if they
are considered distinct, Y = 1. The learnable parametric distance function DW is
defined as the Euclidean distance between the output Gw.

DW

(
X⃗1, X⃗2

)
=
∥∥∥GW

(
X⃗1

)
−GW

(
X⃗2

)∥∥∥
2
, (3.16)

while loss LW is given in its general form as

L(W ) =
P∑
i=1

L

(
W,
(
Y, X⃗1, X⃗2

)i)
, (3.17)

L

(
W,
(
Y, X⃗1, X⃗2

)i)
= (1− Y )LS

(
Di

W

)
+ Y LD

(
Di

W

)
, (3.18)

where x is the i− th labelled sample pair, LS and LD are partial loss functions for
pairs of similar and dissimilar points respectively, and P is the number of training pairs
(which may be as large as the square of the number of samples). LS and LD must be
designed to minimise L relative to W so that similar pairs have the lowest DW feasible
and dissimilar pairs have the highest DW possible.
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Further, the loss function can be finally expressed as

L
(
W,Y, X⃗1, X⃗2

)
= (1− Y )

1

2
(DW )2 + (Y )

1

2
{max (0,m−DW )}2. (3.19)

As a summary, the whole structure of contrastive loss is shown in Figure 3.7.

Figure 3.7: The Structure of contrastive Loss.

3.3.3.2 Triplet Loss

Similar to contrastive loss, the objective of triplet loss [39] is to regulate the distance
between features to distinguish matches. Triplet loss seeks an embedding f(x) from an
image x into a feature space Rd. The embedding is denoted by the expression f(x) ∈ Rd.
It encapsulates a picture x within a d-dimensional Euclidean space. In addition, the
embedding is constrained to exist on the d-dimensional hypersphere, i.e.∥f(x)∥2 = 1

Figure 3.8: The structure of triplet Loss.

In contrast to contrastive loss, which emphasises the distance between positive ex-
amples and anchors, triplet loss concerns the difference in distance between positive
and negative images. In other words, for an image xa (anchor), we want to ensure that
it is close to the similar image xp (positive) and distant from the dissimilar picture xn
(negative) while maintaining a noticeable difference(margin) between the two kinds of
distances. Figure 3.8 illustrate this concept.

Thus we want

∥xai − xpi ∥
2
2 + α < ∥xai − xni ∥

2
2 ,∀ (x

a
i , x

p
i , x

n
i ) ∈ T , (3.20)
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where α is a margin that is enforced between positive and negative pairs. T is the set
of all possible triplets in the training set and has cardinality N . Then the loss is given
as

L =
N∑
i

[
∥f (xai )− f (xpi )∥

2
2 − ∥f (xai )− f (xni )∥

2
2 + α

]
+
. (3.21)

The corresponding gradient calculation formula for the three samples(anchor, postive
and negative) is

∂L

∂f (xai )
= 2 ∗ (f (xai )− f (xpi ))− 2 ∗ (f (xai )− f (xni )) = 2 ∗ (f (xni )− f (xpi ))

∂L

∂f (xpi )
= 2 ∗ (f (xai )− f (xpi )) ∗ (−1) = 2 ∗ (f (xpi )− f (xai ))

∂L

∂f (xni )
= 2 ∗ (f (xai )− f (xni )) ∗ (−1) = 2 ∗ (f (xai )− f (xpi )) .

(3.22)

3.3.3.3 Listwise Average Precision (AP) Loss

The aforementioned contrastive and triplet losses are pairwise losses that use the gen-
eration of a batch pair and the computation and adjustment of the Euclidean distance
between the pairs to determine and learn a match. These methods do not directly refer
to the matching scores, i.e. the average accuracy; thus, their contribution to the final
ranking is limited. Several methods have been proposed based on this inspiration to
directly learn ranking accuracy. They are collectively referred to as ranking loss.

This thesis’s listwise AP loss [40] is an efficient ranking loss. The triple loss produces
gradient updates based on a limited sample size, which may not be consistent with the
ranking criteria. In contrast, the listwise loss considers many photos and optimises the
average accuracy obtained from these images. Figure 3.9 illustrates this unique type of
processing.

Figure 3.9: AP Loss Structure. Different colours represent different classes. Instead of being
combined as pairs, every image is regarded as an independent input to compare and compute
the average precision of matches with all other images.
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As one of the Instance Retrieval (IR) metrics, AP does not depend on thresholds,
rank positions, or the number of relevant images. Therefore, it’s simpler and more
suitable for different queries to apply AP than other metrics. AP can be expressed as
a function of Sq and Yq. Sq denotes the similarity of query q and Yqin0, 1 denotes the
quality of the rank R(Sq) relative to the relevance of the actual image. Yq is 1 if query
q is relevant to the matching image, and 0 otherwise.

AP (Sq, Y q) =
N∑
k=1

Pk (S
q, Y q)∆rk (S

q, Y q) . (3.23)

where ∆Pk is the precision at rank k, i.e. the proportion of relevant items in the k
first indexes, which is given by:

Pk (S
q, Y q) =

1

k

k∑
i=1

N∑
j=1

Y q
j ⊮ [R (Sq, i) = j] , (3.24)

∆rk is the incremental recall from rankings k 1 to k, which is given by:

∆rk (S
q, Y q) =

1

N q

N∑
j=1

Y q
j ⊮ [R (Sq, k) = j] . (3.25)

The difficulty with Listwise AP loss is how to translate the discrete average accuracy
into a continuously differentiable approximation. We divide the interval [−1, 1] into
M − 1 intervals of equal size, each with metric ∆ = 2

M−1
. The mth(1 ≤ m ≤ M)

interval is centred on bm. First, the values of pm and ∆rk are calculated for each
bin. A soft assignment is then used as a replacement for the metrics. The function
δ : R × {1, 2, . . . ,M} → [0, 1] is defined by the fact that each δ(·,m) is a triangular
kernel of width 2∆ centred on bm, i.e.

δ(x,m) = max

(
1− |x− bm|

∆
, 0

)
. (3.26)

Thus, the quantized precision Pm and incremental recall rm are obtained for each
bin m as follows:

P̂m (Sq, Y q) =

∑m
m′=1 δ (S

q,m′)⊤ Y q∑m
m′=1 δ (S

q,m′)⊤ 1
,

∆r̂m (Sq, Y q) =
δ (Sq,m)⊤ Y q

Nq
,

(3.27)

The resulting quantized average precision, represented by APQ, is a smooth function
with respect to Sq, as shown by:

APQ (Sq, Y q) =
M∑

m=1

P̂m (Sq, Y q)∆r̂m (Sq, Y q) . (3.28)
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3.3.3.4 Second-order Similarity (SOS) Loss

Second-order Similarity (SOS) Loss is a loss calculation method applied to global de-
scriptors proposed by T. Ng et al [37].and inspired by SOS Net [41]. It does not
independently serve as a loss function but is combined with triplet loss.

The Triplet loss proposed in Equation 3.18 is used as a first-order similar loss LLOS:

LLOS = L =
N∑
i

[
∥f (xai )− f (xpi )∥

2
2 − ∥f (xai )− f (xni )∥

2
2 + α

]
+
. (3.29)

To maximise the utilisation of spatial information, the distances between input pairs
are utilised secondarily. The definition of second-order similarity loss LSOS is as follows:

LSOS =
1

|{(f (xai ) , f (x
p
i ) , f (x

n
i ))}|√√√√ ∑

{(f(xa
i ),f(x

p
i ),f(xn

i ))}

(
∥f (xai )− f (xni )∥

2 − ∥f (xpi )− f (xni )∥
2
)2
.

(3.30)

The final objective loss function is a mixture of first- and second-order loss for global
descriptors produced using second-order spatial attention, balanced by λ:

L = LFOS + λLSOS. (3.31)

3.4 A Summary: Proposed Feature Extraction Pipeline

Based on these methods presented in this chapter, this thesis combines, optimizes and
finally proposes the complete pipeline for feature extraction in image retrieval.

At the same time, the pipeline is subdivided into baseline and fine-tuned, depending
on whether the SOI block is used as a fine-tuning method, as shown in Figure 3.10 and
Figure 3.11.

Figure 3.10: Feature extraction baseline pipeline. The technical approach used for a particular
module is marked in blue.

25



Figure 3.11: Feature extraction fine-tuned pipeline. The technical approach used for a par-
ticular module is marked in blue. The detailed structure of the SOA Block was described in
the previous Section 3.2.1.

Our suggested feature extraction pipeline includes the following distinctions and
enhancements over existing methods from literature:

1. Pre-trained CNNs are often applied directly to image retrieval with a large
training dataset as a basis and a reliable network structure and parameters. However,
pre-trained CNNs are frequently not well adapted to the target dataset’s features when
confronted with specific retrieval tasks. Therefore, we use new medium-sized datasets,
retain the network settings, and fine-tune the pre-trained CNN with a lower learning
rate. The fine-tuned CNN significantly increases the target retrieval accuracy.

2. AP Loss[40] is a ranking loss type that uses mAP as the sole basis for learn-
ing. It has a distinct learning mechanism compared to pairwise losses, like contrastive
loss and triplet loss. In previous studies, AP loss has been less combined with fea-
ture enhancement methods which pairwise loss often matches. This thesis investigates
the combination of AP Loss with various pooling aggregation methods and whitening
techniques to achieve good retrieval mAP.

3. Second Order Attention (SOA)[37] is a method that enhances the utilization
of interaction information between feature map features. This thesis investigates and
optimizes the SOA’s incorporation and application, proposing the SOI. SOI optimizes
the embedding position by removing the conv 5 layer from SOA, which contributes
little to the final mAP. Through this optimization, we simplify the structure of SOA
without sacrificing accuracy.

4. Pooling, whitening and second-order information application are popular research
topics in feature enhancement, and many representative approaches exist. However,
different combinations of these approaches have not been fully explored. This thesis
investigates the application of a combination of various feature enhancement methods
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in an attempt to obtain all the advantages to produce better retrieval results.
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Experiments and Results 4
After examining the theoretical underpinnings of all image representations and CNN
models, we will set up our experiments in this part. First, we specify the dataset
utilised in our experiments, the data pre-processing techniques, and the metrics used
to evaluate the network’s performance. Then, we explain the architecture and strategies
of our neural network model and compare the validation experiments to demonstrate
why we built it up in this manner. Finally, the loss function design and hyperparameter
settings for Baseline and Fine-tuned models’ training implementations are presented.

4.1 Experiments Setup

In this section, we specify the experimental setup. We begin by describing the dataset
and the preprocessing steps involved in the experiment. Then, the evaluation metrics
applied to compare the network’s performance will be discussed.

4.1.1 Datasets

The datasets utilised in this chapter’s studies are categorised as model training and
test datasets. The training set comprises the large-scale SfM 120k [21] and Google
Landmarks datasets [42], while the test dataset comprises the widely used Oxford5k
[43], Paris6k [44], and their ideally cleaned versions ROxford5k and RParis6k [45].

Structure from Motion(Sfm) 120K
The Sfm 120k [21] dataset employs the geolocation information and camera

information contained in the images for 3D modelling using the Structure from Motion
method. The dataset also employs SfM to identify similar structures from unsupervised
data as a training set, avoiding manual annotation. Positive samples are selected to
observe sufficient 3D Points in conjunction with the query photographs, while negative
samples are derived from various 3D models. The entire procedure is automated. The
complete collection produced 1,474 3D models that were recreated. After deleting
overlapping models, there are 713 3D models with more than 163 data points. The 3D
models contain between 25 and 11k pictures.

GoogleLandmarks version2
GoogleLandmarks [42] represents a new standard for large-scale, fine-grained

instance recognition and image retrieval in artificial and natural landmarks. The
Google Landmarks Collection V2 contains over 5 million images and over 200,000
unique instance labels, making it the most extensive dataset for instant recognition. It
is separated into three subsets: (i) 118k query images annotated with ground truth, (ii)
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4.1 million training images of 203k landmarks with labels that can be used for training,
and (iii) 762k indexed images of 101k landmarks. This paper uses the training subset
in the training procedure. In addition, the Google Landmark Dataset V2 contains
landmarks from 246 of the 249 nations included in the ISO 3166-1 country code list.

Oxford-5k
Oxford-5k [43] includes 5,062 photographs of 11 Oxford structures. Each image was

acquired from Flickr searching for a particular Oxford landmark. These image sets were
manually annotated to provide thorough ground truth for eleven distinct landmarks,
each represented by five potential queries, which gives 55 queries against which an
object retrieval system can be assessed. All of the photographs in Oxford-5k have a
resolution of 1024 by 768 pixels, making him a significant benchmark in image retrieval.

Paris-6k
Paris-6k [44] consists of 6412 photographs gathered from Flickr. It is organised

into 12 sections, each focusing on a distinct architectural style in Paris. The collection
includes 500 images of evaluation queries and 55 queries with bounding boxes. The
same four types of labels annotate the photos as in the Oxford-5k dataset. Similar
to Oxford-5k, all images in Paris-6k are also of high resolution (1024*768). The
annotation and evaluation processes for Oxford-5k and Paris-6k were recently revised.
New query and interference photos were added to both datasets, resulting in the
Revisited Oxford and Revisited Paris datasets, which are discussed in greater detail
below. Due to the prevalence of Oxford-5k and Paris-6k, we concentrated on evaluating
the performance of the original datasets.

Revisited Oxford-5k and Revisited Paris-6k
Revisited Oxford-5k (ROxford-5k) and Revisited Paris-6k (RParis-6k) [45] are fur-

ther optimisation of the Oxford-5k and Paris-6k datasets. In the new datasets, extra
effort was made to ensure the ground truth’s dependability when creating new anno-
tations for both datasets. Formerly erroneous marks are eliminated. Three additional
protocols with varying detection difficulty levels are introduced: easy, medium, and
hard. The images within each query group are manually tagged and relabeled under
the various detection techniques. Table 4.1 illustrates the effects of reassigning labels
to the original dataset.

Table 4.1: Reassignment of annotations to the original Oxford-5k and Paris-6k datasets.

R oxford

Labels Easy Hard Uncl. Neg.

Positive 438 50 93 1
Junk 50 222 72 9
Negative 1 72 133 63768

R Paris

Labels Easy Hard Uncl. Neg.

Positive 1222 643 136 6
Junk 91 813 835 61
Negative 16 147 273 71621

These protocols enable a fair comparison between various approaches. Fifteen new
and complex queries were introduced for each dataset. The images in these new queries’
are all related to the original landmarks but are more challenging to identify.
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4.1.2 Data Preprocessing

The primary objective of image preprocessing is to increase the accuracy of feature ex-
traction and picture identification by removing extraneous information from the image,
boosting the detectability of relevant information, and simplifying the data as much as
possible. The preprocessing of image matching in deep learning primarily consists of
geometric transformation and normalization.

The objective of picture geometry transformation is to standardize the size of the
input image to correspond with the fixed input size of the neural network. On the other
hand, image normalisation increases the image quality, allowing it to display more detail
and increasing its distinction. In addition, it selectively highlights or suppresses features
of the image that are of interest. This section describes how the experiment handles
the geometric transformation and normalization process.

First, we intentionally set the image scale parameter imgsize, which specifies the
input image’s longest side size and is typically set to 1024. This transformation is
implemented using the thumbnail function of the Pillow package. It allows us to scale
the image while maintaining its aspect ratio and without surpassing the original image’s
dimensions.

After the picture size has been set, the Transform function module is used to exe-
cute an additional transformation. Transform.ToTensor turns the image range from
(0,255) to (0,1), and then Transform.Normalization transforms the range from (0,1)
to (-1,1). Specifically, the Transform.Normalization function executes the following
operations for each channel:

Image = (Image−mean)/std. (4.1)

Figure 4.1 depicts the geometrically converted and normalised image. It will be
given to the CNN network for the subsequent feature extraction stage.

Figure 4.1: The image preprocessing is illustrated, from left to right, with the original image,
the scale-transformed image, and the tensor normalized image.

4.1.3 Evaluation Protocol

This thesis evaluates image retrieval results based on the metrics mean average preci-
sion (mAP) and extract time per query image, which capture precision and efficiency,
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respectively. In addition, the multi-scale evaluation protocol is also described in this
section.

4.1.3.1 Mean Average Precision

Mean Average Precision (mAP ) is a performance metric for object detection models.
Before introducing the definition and calculation of mAP , it is necessary to grasp
several concepts. In information retrieval, we are frequently concerned with ”what
proportion of the recovered information is of interest to the user” and ”how much of
the material of interest to the user gets retrieved,” two questions Precision and Recall
can address. Precision is the proportion of true cases among all positive predictions or
the accuracy of the prediction. Recall is the proportion of accurate predictions among
all positive predictions or the coverage of correct predictions. Table 4.12 provides
a complete analysis of the ideas of true and false positive cases and true and false
negative instances.

Table 4.2: True positive examples(TP), Fulse positive examples(FP), True negative exam-
ples(TN) and Fulse negative examples(FN).

Reality
Positive Negative

Model Positive TP FP
prediction Negative FN TN

Based on these concepts, we may express Precision (P) and Recall (R) as

P =
TP

TP + FP
, (4.2)

R =
TP

TP + FN
, (4.3)

while accuracy is the ratio of actual positive and negative cases to the whole sample
and is stated as

Accuracy =
TP + TN

TP + FP + TN + FN
. (4.4)

Calculating the Precision and Recall for each prediction yields the P-R curve. Ide-
ally, we would like a model to have both high precision and a high Recall, but as shown
in Figure 4.2, there is a fluctuation between the two mutually supporting. Therefore,
optimising the detection capability of a model is fundamentally a process of the tradeoff
between Precision and Recall. Based on the Precision-Recall curve, a numerical metric
may be derived by computing the mean of the Precision values corresponding to each
recall value: AP (Average Precision).

AP =
n−1∑
i=1

(ri+1 − ri) pinterp (ri+1) , (4.5)
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Figure 4.2: A typical P-R Curve.

AP measures how well the trained model finds the target category. AP also indicates
how well the trained model can identify the category of interest.

Once the AP has been determined, the computation of the mAP is straightforward.
The AP is computed for all categories, and then the average is used to determine the
mAP . The mAP evaluates the accuracy with which the trained model detects each
category. If a K−category query is assumed, the formula for calculating mAP is

mAP =

∑K
i=1APi

K
. (4.6)

4.1.3.2 Extract time per query image

For a user-centric search system, the effectiveness is equivalent to speed. In other
words, the primary concern is the time required for one search to produce results when
a user enters an image. As explained in Section 3.4, our retrieval system consists of
offline database image feature extraction and online query image feature extraction.
Data processing and feature extraction in the Database and index building are offline.
The online component of Query image feature extraction has the greatest effect on the
effectiveness and speed of this retrieval system. This is why Extract time per query
image is utilised as this paper’s evaluation parameter for efficiency.

We will now introduce the measure of extract time per query picture (Te). The
test dataset is supplied to our feature extraction model, which extracts and stores
the queries from the test set. Assuming that the test dataset contains M database
images and N query images, the database images and query images will be extracted
independently for the test. We record the time T at which all N queries are extracted,
then

Te =
T

N
. (4.7)
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The extracted database feature vector and the query feature vector are independently
stored, indexed, and compared to determine the final retrieval result. It is essential to
notice that the matching time is orders of magnitude less than the feature extraction
time, emphasising the significance and applicability of extract time per query image as
a parameter for validating retrieval speed.

4.1.3.3 Multi scale Evaluation

This thesis introduces the multi-scale assessment mechanism for testing the model. In
a single-scale evaluation, the image dimensions given to the CNN are limited to 1024
× 1024 pixels. Figure 4.3 depicts how, in multi-scale evaluation, the input images
are scaled to different dimensions and then fed into the network collectively. The
global descriptors from many scales are finally merged into one global descriptor. The
learnt whitening procedure operates on this unified multi-scale global descriptor. If not
specified otherwise, single-scale evaluation is applied in our investigations.

Figure 4.3: Multi scale division.

4.2 Comparison Validation of Configuration

As discussed in Chapter 3, our model pipeline for feature extraction consists of a base
CNN model, a pooling layer for feature enhancement, and a whitening procedure for
dimensionality reduction. Each of these three categories contains an abundance of
implementation ideas and methodologies. Which methodology will be utilized in each
module, and why did this thesis make these decisions? I will address these concerns in
this section through a series of comparative validation experiments.

4.2.1 Comparison Validation of Backbone Network

Network architecture is the cornerstone of CNN models. We use three alternatives
fine-tuned CNN architectures as the backbone in this paper: fine-tune AlexNet (Alex),
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fine-tuned ResNet (Res), and fine-tuned VGGNet (VGG). In light of their prevalence in
the current image matching and retrieval field, these network architectures were chosen
for comparison in this section. We develop models based on each using a uniform
pooling strategy (GeM) to assess their performance on the testing datasets.

4.2.1.1 Diverse Networks Experiments

Before presenting the exact experimental parameter settings, the topologies of the three
underlying networks are briefly described.

Fine tuned AlexNet
The AlexNet [4] model comprises five convolutional layers and three fully connected

layers, as depicted in Figure 4.4. AlexNet introduces ingeniously Local Response Nor-
malization (LRN), which simulates a neurobiological function known as lateral inhibi-
tion to achieve local inhibition. LRN makes the response’s greater values proportionally
larger, enhancing the model’s capacity for generalization. In the final fully connected
layer, drop-out is introduced. During the deep learning network training, drop-out indi-
cates that the neural network units are momentarily removed from the network (while
preserving their weights) and no longer respond to the forward and reverse sent input.
It effectively prevents the model from overfitting while accelerating computation due
to the reduced network complexity.

In this thesis, we fine-tune the training of AlextNet using the Sfm120k [21] dataset
to obtain fine-tuned AlexNet (Alex).

Figure 4.4: AlexNet Structure. [4]

Fine-tuned VGGNet
Using multiple consecutive smaller convolutional kernels instead of more giant con-

volutional kernels is an improvement of VGG16 [9] over AlexNet [4]. In particular,
VGG employs three 3x3 convolutional kernels in place of 7x7, and two 3x3 convolu-
tional kernels in place of 5*5 convolutional kernels. This substitution primarily intends
to increase the network’s depth while maintaining the same perceptual field. Conse-
quently, more sophisticated learning is assured at a lower cost. VGG16 and VGG19
are the two typically utilised hierarchies for VGGNet. In the experiments comparing
AlexNet and VGGNet, this thesis use VGG16 with 16 layers of depth. The model
hierarchy of VGGNet is illustrated in Figure 4.5.

In this thesis, we fine-tune the training of VGGNet using the Sfm120k [21] dataset
to obtain fine-tuned VGGNet (VGG).
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Figure 4.5: VGGNet Structure. [5]

Fine-tuned ResNet

ResNet [5] is based on the VGG19 network, with modifications and the addition
of residual units via a short-circuiting mechanism. The network architecture of the
34-layer ResNet is depicted in Figure 4.6. An essential ResNet design idea is that the
number of feature maps is doubled when the feature map size is halved, preserving the
network layers’ complexity. ResNet adds a short-circuiting mechanism between two
layers, resulting in residual learning, as shown in Figure 4.6.

We further analyse the design of residual units in ResNet, which uses two types
of residual units, as shown in Figure 4.7. When the input and output dimensions are
the same, the input can be directly added to the output for short-circuit connections.
There are two strategies when the dimensions do not match: (1) perform a downsample
and then use zero-padding to expand the dimensions so that the parameters remain the
same; (2) employ a new mapping (shortcut projection), which increases the parameters
as well as the computational cost.
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Figure 4.6: ResNet34 Structure. [5]
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Figure 4.7: Two types of residual units for ResNet. The left shows the shallow network
residual unit and the right shows the deep network residual unit.[5]

ResNet supports a range of standard depths, and in comparative studies with
AlexNet and VGGNet, we employ ResNet101 with 101 depth layers. In this thesis,
we fine-tune the training of 101 layers ResNet using the Sfm120k [21] dataset to obtain
fine-tuned ResNet (Res).

As indicated in Section 4.3, we trained the models with Alex, VGG, and Res as
backbones, respectively. In order to streamline the training process and increase train-
ing speed and efficiency, post-whitening was omitted from this comparison experiment.
Similarly, to increase the experiment’s efficiency, the feature output dimension was
reduced to 512 to retrieve the findings more quickly. The lower dimension features
may be slightly less representative than the higher dimensional features. However, the
goal of this experiment is to examine the most appropriate base model structure as
opposed to the final model configuration. Thus this lack of precision should be disre-
garded. The default settings of the general model settings were utilised for all other
hyperparameters, and Table 4.3 details the individual experimental settings.

Table 4.3: Elemental set-up for comparative validation experiments of different CNN network
models.

Experimental elements Setting

Backbone Alex/Res/VGG

Pooling Method GeM

Whitening Method None

Output dim 512

Loss function Contrastive

Loss Margin 0.85

Optimizer Adam

Learning rate 1e-6
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We evaluated Alex, VGG and Res on four test datasets, Oxford5k, Paris6k, ROx-
ford5k, and RParis6k, and achieved the accuracy and speed results presented in Tables
4.4 and 4.5.

Table 4.4: The mAP performance comparison of methods for different CNN backbones. Eval-
uation is performed on Oxford5k Paris6k, ROxford5k, and RParis6k datasets.

Method

mAP

Oxford Paris
ROxford RParis

M H M H

Alex 61.7 71.5 43.3 17.1 58 29.7

VGG 80.3 83.8 56.2 28.9 69.2 46.9

Res 85.2 88.8 55.8 28.1 69.7 47.0

Table 4.5: The speed performance comparison of methods for different CNN backbones.
Evaluation is performed on Oxford5k Paris6k, ROxford5k, and RParis6k datasets.

Method

Extract time per query image (Te/s)

Oxford Paris ROxford RParis

Alex 0.0423 0.0399 0.0465 0.456

VGG 0.0526 0.0515 0.0526 0.513

Res 0.0537 0.0535 0.0537 0.535

From the data above, it is evident that both ResNet101CNN and VGG16CNN
demonstrate a significant increase in accuracy compared to AlexCNN, with this gain
reaching approximately 20% on Oxford5k and Paris6k. On the Revisited Oxford-5k
dataset, the VGG16CNN outperformed ResNet101, while on all other datasets, it
was the ResNet101CNN that outperformed. Comparing the feature extraction times
of ResNet101CNN and VGG16CNN on the Oxford5k and Paris6k datasets reveals a
0.001-second improvement for VGG16CNN. Overall, it was determined that ResNet101
performed the best in this trial.

4.2.1.2 Layer Depth Experiment

Having established ResNet as the backbone architecture, we want to investigate the
effect of different layer depths on its performance. Therefore further comparison ex-
periments were implemented for 50, 101 and 150 layers of ResNet. The experimental
parameters were set as Table 4.6.

The results in terms of accuracy and speed are shown in Tables 4.7 and 4.8, where
we conducted comparative tests on four test datasets, Oxford5k, Paris6k, ROxford5k
and RParis6k.

In image retrieval, we ideally prefer to attain both high precision and excellent
efficiency. However, it is evident from Tables 4.7 that a deeper hierarchy yields more
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accurate retrieval results at the expense of increased time and decreased efficiency.
Therefore, an effective retrieval system aims to strike a trade-off between precision and
speed. Res101 obtains an mAP of 85.2 on Oxford5k and 88.8 on Paris6k in 0.0537s and
0.0535s, respectively. The combined performance of Res101 in terms of accuracy and
speed led us to choose it as the model backbone.

Table 4.6: Elemental set-up for comparative validation experiments of different ResNet Layers.

Experimental elements Setting

Backbone Res50/Res101/Res150

Pooling Method GeM

Whitening Method None

Output dim 512

Loss function Contrastive

Loss Margin 0.85

Optimizer Adam

Learning rate 1e-6

Table 4.7: The mAP performance comparison of methods for different layer depths. Evalua-
tion is performed on Oxford5k Paris6k, ROxford5k, and RParis6k datasets.

Method

mAP

Oxford Paris
ROxford RParis

M H M H

Res50 82.3 85.9 52.7 25.4 66.6 45.4

Res101 85.2 88.8 55.8 28.1 69.7 47.0

Res150 88.8 89.2 57.1 29.5 70.1 48.9

Table 4.8: The speed performance comparison of methods for different layer depths. Evalua-
tion is performed on Oxford5k Paris6k, ROxford5k, and RParis6k datasets.

Method

Extract time per query image (Te/s)

Oxford Paris ROxford RParis

Res50 0.0498 0.0478 0.0499 0.0479

Res101 0.0537 0.0535 0.0537 0.0535

Res150 0.0634 0.0613 0.0648 0.0613
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Table 4.9: Elemental set-up for comparative validation experiments of different pooling meth-
ods.

Experimental elements Setting

Backbone Res101

Pooling Method SPoc/RMac/GeM

Whitening Method None

Output dim 512

Loss function Contrastive

Loss Margin 0.85

Optimizer Adam

Learning rate 1e-6

4.2.2 Comparison Validation of Pooling Methods

As noted in Section 3.2, this thesis employs various pooling strategies to increase the
identifiability of features by aggregating them. In this subsection, control variable
experiments are performed on the various pooling strategies to compare their perfor-
mance.

4.2.2.1 Diverse Pooling Methods

We train the model in accordance with Section 4.3. On Resnet101, which did well in
the network structure comparison tests, the three pooling methods GeM [21], SPoC
[28], and RMac [29] were trained. In order to streamline the training process and
increase training speed and efficiency, post-whitening was omitted from this comparison
experiment. This design also provides a more objective evaluation of the effect of the
pooling approach on the training effect and removes distracting elements. In order to
save training time, the feature output dimension was set to 512 in this experiment, as
same as the prior experiments. The default settings of the general model settings were
utilised for all other hyperparameters, and Table 4.9 displays the specific experimental
settings.

We named the models based on the three different pooling methods as Res-GeM,
Res-SPoc and Res-RMac and tested them on four test datasets, Oxford-5k, Paris-6k,
ROxford-5k and RParis-6k, and obtained the results in terms of precision and speed as
shown in Tables 4.10 and 4.11.

Res-GeM performed the best in this experiment when both accuracy and speed are
considered combined.

4.2.2.2 Pooling Parameter Experiment

Having established GeM as the model’s pooling method, the next step’s objective was to
investigate the pooling parameter p on the model’s properties; thus, additional compar-
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Table 4.10: The mAP performance comparison of methods for different pooling methods.
Evaluation is performed on Oxford-5k, Paris-6k, ROxford-5k, and RParis-6k datasets.

Method

mAP

Oxford Paris
ROxford RParis

M H M H

Res-SPoc 82.9 85.9 54.7 26.3 68.4 43.9

Res-RMac 84.8 87.8 56.5 28.0 70.1 48.1

Res-GeM 85.2 88.8 55.8 28.1 69.7 47.0

Table 4.11: The speed performance comparison of methods for different pooling methods.
Evaluation is performed on Oxford-5k, Paris-6k, ROxford-5k, and RParis-6k datasets.

Method

Extract time per query image (Te/s)

Oxford Paris ROxford RParis

Res-SPoc 0.0591 0.0542 0.0593 0.0547

Res-RMac 0.0568 0.0566 0.0536 0.0565

Res-GeM 0.0537 0.0535 0.0537 0.0535

ison experiments were further conducted with other pooling parameters. The following
parameters were set for the experiment:

Table 4.12: Elemental set-up for comparative validation experiments of different pooling
parameters.

Experimental elements Setting

Backbone Res101

Pooling Method GeM Pooling

Whitening Method None

Output dim 512

Loss function Contrastive

Loss Margin 0.85

Optimizer Adam

Learning rate 1e-6

Tables 4.13 illustrates the comparison tests performed on four test sets: Oxford5k,
Paris6k, ROxford5k, and ROxford6k.

On the results of Oxford-5k and Paris-6k datasets, we observed that the pooling
parameter p produced consistently good results around the starting value p = 3, with
mAPs of 67.9 and 74.8, respectively. Meanwhile, a shared fixed parameter and a
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shared learning parameter performed similarly, with the latter slightly outperforming
the former. Thus for the remainder of the experiments, we used the shared learning
parameter p and manually set the initial value at 3.

Table 4.13: The mAP performance comparison of methods for different pooling parameters.
Evaluation is performed on Oxford-5k, Paris-6k, ROxford-5k, and RParis-6k datasets.

Method mAP

Initial p Learned p Oxford Paris
ROxford RParis

M H M H

3 - 67.9 74.8 45.8 18.5 69.7 47

3 2.35 67.7 73.5 46.1 19.1 69.9 48

2,5 - 66.8 74.1 45.3 18.1 69.0 46

1,10 - 65.6 72.2 45.1 18.1 69.2 46.5

1,10 1.5-8.7 65.3 71.4 45.1 17.8 69.0 46.8

4.2.3 Comparison Validation of Whitening Methods

This thesis compares three whitening techniques: standard PCA whitening [20], dis-
criminative learnt whitening [21], and end-to-end whitening [30]. The theoretical prin-
ciples for these strategies is outlined in Section 3.3, and more experimental details are
provided in this section.

Figure 4.8: The process of learned whitening implementation.

Figure 4.9: The process of end-to-end whitening implementation.

Whitening is often learned unsupervised using generative models using PCA on
independent datasets. In the experiments, discriminative whitening was learned via
the Sfm30k dataset, which employed the identical 3D training data gathering approach
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as the training set. Figure 4.8 illustrates that discriminative learned whitening was
conducted as a post-processing step after the global descriptors were extracted.

As depicted in Figure 4.9, end-to-end whitening has a different training pattern
than discriminative learned whitening. This approach whitens using a fully connected
layer that can be learned (FC Layer). The FC Layer is connected after the Global
Pooling Layer, and its initialization is the outcome of supervised whitening learning
with training data and predefined features.

In order to highlight the dimensionality reduction of the high-dimensional global
features by the whitening process, the feature output dimension in this experiment was
set to 2048, and two distinct pooling methods were used to lessen the effect of the
pooling layer structure. The default settings of the general model were utilized for all
other hyperparameters, and Table 4.14 details the individual experimental settings.

Table 4.14: Elemental set-up for comparative validation experiments of different whitening
methods.

Experimental elements Setting

Backbone Res101

Pooling Method GeM Pooling

Whitening Method PCA/Learned whitening/End-to-end whitening

Output dim 2048

Loss function Triplet

Loss Margin 0.85

Optimizer Adam

Learning rate 1e-6

We named the models based on the three different whitening methods GeM-PCA,
GeM-lw and GeM-e2e, with GeM-0 being the control group without any whitening
treatment. Comparative tests were performed on four test sets, Oxford-5k, Paris-6k,
ROxford-5k and ROxford-6k, and the results in terms of accuracy and speed were
obtained as shown in Tables 4.15 and 4.16.

Table 4.15: The mAP performance comparison of methods for different whitening methods.
Evaluation is performed on Oxford-5k, Paris-6k, ROxford-5k, and RParis-6k datasets.

Method

mAP

Oxford Paris
ROxford RParis

M H M H

GeM-0 66.0 76.1 45.8 18.5 69.7 47

GeM-PCA 58.1 60.2 42.9 16.3 59.9 42.4

GeM-lw 82.1 89.7 62.78 37.5 77.0 55.3

GeM-e2e 83.1 89.9 63.4 37.6 77.0 56.2
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Table 4.16: The speed performance comparison of methods for different whitening methods.
Evaluation is performed on Oxford-5k, Paris-6k, ROxford-5k, and RParis-6k datasets.

Method

Extract time per query image (Te/s)

Oxford Paris ROxford RParis

GeM-0 0.1034 0.0791 0.1029 0.0793

GeM-PCA 0.0784 0.0781 0.0791 0.0775

GeM-lw 0.0550 0.0534 0.0550 0.0533

GeM-e2e 0.0638 0.0621 0.0634 0.0632

Table 4.17: The pros and cons of different whitening methods. Minus signs indicate weakening
and plus signs indicate enhancement.

Methods mAP Speed

GeM baseline baseline

PCA whitening − +

Discriminative learning whitening + =/+

End-to-end whitening ++ =

Observing the experimental data, it is evident that adding the whitening step con-
siderably improves Gem’s accuracy. Table 4.17 summarises the pros and cons of the
various whitening techniques regarding precision and speed.

Both discriminative learning whitening and end-to-end whitening performed unques-
tionably better than the situation without whitening. However, local PCA whitening
diminished the model’s precision and speed while decreasing its dimensionality. On
the Oxford-5k and Paris-6k datasets, global end-to-end whitening enhances mAP more
significantly, achieving mAP 83.1 and 89.9. Notably, despite obtaining comparable
performance, discriminative learning whitening requires additional post-processing of
descriptors at test time, whereas end-to-end integrated models are more convenient to
test. In light of these considerations, the decision was made to implement an end-to-end
whitening strategy.

4.3 Training Implementation of Baseline Model

After identifying the precise methods that will be implemented for each module of the
model, the specific training implementation process of the baseline model is presented.
First, the entire training procedure is described, followed by the selection and mining
of training pairs and the formulation of the loss function. After numerous trials, the
ideal hyperparameter parameters for the model are reported.
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4.3.1 Implementation Process

The Baseline model consists of a CNN model, a pooling layer for enhancing features,
and a whitening procedure for dimensionality reduction. Each training tuple has one
original image, M positive and N negative images. First, a training image is prepro-
cessed and then put into the Res101 network, where the feature maps are retrieved
using convolution. The feature maps are further enhanced by a GeM [21] pooling layer.
D×H×W feature maps are pooled into a single D×1 global descriptor and processed
by a whitening layer to generate the final descriptor. Each training session has a fixed
amount of training tuples, and the descriptors in a training tuple are computed, learned
via the loss function, and then fed back to the model during the training round. Figure
4.10 depicts the experiment’s training implementation.

Figure 4.10: The process of baseline model training implementation.

4.3.1.1 Selection of Training Pairs

In our experiments, 551 building models were chosen for training, whereas 162 building
models were chosen for validation. All of these training data are provided to the model
as training tuples. How are the training tuples chosen and concatenated in the massive
training dataset? The selection of training pairs is dependent on the loss function’s
design. Contrastive and triplet are pairwise loss functions. Therefore they require a
pair of positive and negative examples. Each training and validation tuple consists of
one query image, M positive images, and N negative images, where M and N are set as
1 and 5, respectively. For each epoch round, the tuples’ positive and negative images
are reselected randomly from the dataset. Figures 4.11 depict the components of a
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training tuple.

In the case of AP Loss [40], it is a type of ranking loss and does not rely on the
distance between positive and negative training pairs for learning and iteration. Instead
of generating a training tuple, thousands of images are analysed simultaneously during
each training session, and the AP scores between them are directly learned.

Figure 4.11: Composition of a typical training tuple.

4.3.1.2 Loss Performances

Different loss functions employ distinct strategies for learning and dealing with descrip-
tions. This thesis tries pairwise loss represented by contrastive and triplet as well as
ranking loss represented by AP loss, respectively. We select ROxford-5k and RParis-6k
as test cases to demonstrate their performance during training.

In this experiment, the feature output dimension was set to 2048, and all other
hyperparameters were set using the default settings of the general model, as shown in
Table 4.18. Using ROxford-5k and RParis-6k as the test set, the variation curves of
mAP with the number of training rounds of the model using different loss functions are
plotted, as shown in Figure 4.12.

Table 4.18: Elemental set-up for different loss functions in baseline model.

Experimental elements Setting

Backbone Res101

Pooling Method GeM Pooling

Whitening Method End-to-end whitening

Output dim 2048

Loss function Contrastive/Triplet/AP

Loss Margin 0.85

Optimizer Adam

Learning rate 1e-6
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(a) Performance on ROxford-5k (Middle Evaluation)(b) Performance on ROxford-5k (Hard Evaluation)

(c) Performance on RParis-6k (Middle Evaluation) (d) Performance on RParis-6k (Hard Evaluation)

Figure 4.12: Performance comparison of different loss functions. The evaluation was per-
formed with ResNet101 GeM on the ROxford-5k and RParis-6k datasets in middle and hard
modesrespectively shown as Figures a-d). These figures show the variation of mAP with the
number of training epochs.

Figure 4.12 demonstrates that Triplet loss has a faster convergence rate and already
exhibits consistent accuracy between the 5th and 10th epoch. Contrarily, the con-
trastive loss is inferior to the triplet loss in the final mAP achieved, beginning to settle
around the 15th epoch. AP Loss performed comparably to the previous two in terms
of mAP, was somewhat superior to triplet loss, and was slower than the previous two
in network convergence. This weakness may be owing to the training process, which
involves inputting hundreds of training photos at each epoch, resulting in a slower
learning rate and an iterative effect. In light of the preceding performance, the final
model in this thesis employs triplet loss for model learning.
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4.3.2 Hyperparameters

In machine learning, hyperparameter optimization seeks to identify the hyperparame-
ters that allow machine learning algorithms to perform optimally on validation datasets.
In contrast to general model parameters, hyperparameters are predetermined prior to
training. This model’s hyperparameters consist of the learning rate, query size, batch
size, etc. Hyperparameters optimization is a combinatorial optimization problem that
cannot be solved by gradient descent. In addition, the time cost of evaluating a set
of hyperparameter configurations is very high, making it challenging to use some op-
timization techniques (e.g. evolutionary algorithms) for hyperparameter optimization.
Each hyperparameter tweak must be retrained to evaluate its effect, which is inefficient
for large models such as the one used in this thesis. Consequently, grid search and
random search are frequently utilized for hyperparameter settings.

Grid search is a technique that identifies an acceptable set of hyperparameter con-
figurations by attempting all possible hyperparameter combinations. Suppose there
are k total hyperparameters, and the kth hyperparameter can take on mk different
values. Consequently, there are k×mk configurations in total. If the hyperparameters
are continuous, they can be discretized by selecting a few ”empirical values,” such as
setting the learning rate to 1e − 6. We cannot discretize continuous hyperparameters
at equal intervals but must instead discretize them according to their unique features.
The grid search trains a model based on several combinations of these hyperparame-
ters, then tests the performance of these models on the development set and selects the
configuration with the greatest performance.

Table 4.19: Hyperparameter configuration of the optimal baseline model trained on the
Sfm120k dataset.

Baseline Model(Sfm120-Res)

Superparameters Description Value

p Initial value of pooling parameter 3

loss margin Decision margins for triplet loss functions 0.5

lr Learning rate of the modle 5e-7

neg-num Number of negative images per training tuple 5

query size Number of randomly selected queries per epoch 2000

pool size Size of the pool for hard negative examples mining 20000

batch size Number of training tuples in a mini-batch 5

image size Artificially specified size of training images 1024

epoch Total number of training epochs 100
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Table 4.20: Hyperparameter configuration of the optimal baseline model trained on the Google
Landmarks v2 dataset.

Baseline Model(GL-Res)

Superparameters Description Value

p Initial value of pooling parameter 3

loss margin Decision margins for triplet loss functions 0.75

lr Learning rate of the modle 5e-7

neg-num Number of negative images per training tuple 5

query size Number of randomly selected queries per epoch 2000

pool size Size of the pool for hard negative examples mining 20000

batch size Number of training tuples in a mini-batch 8

image size Artificially specified size of training images 1024

epoch Total number of training epochs 100

However, there are a huge number of hyperparameters for the model provided in this
thesis, and the impact of different hyperparameters on the model’s performance varies
significantly. Some hyperparameters (such as query size) have a modest effect on model
performance, whilst others (such as learning rate) have a relatively substantial effect. In
this instance, employing grid search would be a futile attempt on unimportant hyper-
parameters that would consume too much time. For hyperparameter optimization, this
thesis uses a stochastic search approach. In stochastic search, a random combination
of hyperparameters is generated, and the configuration with the highest performance
is chosen.

Two optimization models were developed for this thesis using Sfm120k and Google-
Landmark v2 as training sets for optimization training. After multiple hyperparameter
optimization trials, Tables 4.19 and 4.20 indicate the ideal hyperparameter combina-
tions for the two models. The accuracy of the two optimization models at various sizes
is displayed in Table 4.21 and 4.22.

Table 4.21: The mAP performance of Sfm120-Res Model with different scales. Evaluation is
performed on Oxford-5k, Paris-6k, ROxford-5k, and RParis-6k datasets.

Scales

mAP of Sfm120-Res

Oxford Paris
ROxford RParis

M H M H

[1] 86.2 90.6 66.9 76.6 39.8 55.2

[1,
√
1/2, 1/2] 87.8 92.7 67.8 77.6 41.7 56.2
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Table 4.22: The mAP performance of GL-Res Model with different scales. Evaluation is
performed on Oxford-5k, Paris-6k, ROxford-5k, and RParis-6k datasets.

Scales

mAP of GL-Res

Oxford Paris
ROxford RParis

M H M H

[1] 87.5 91.6 64.6 78.0 40.9 57.5

[1,
√
2,
√
1/2] 89.9 93.7 67.3 80.6 44.3 61.5

4.4 Training Implementation of Fine-tuned SOI Model

Following the training in Section 4.3, we have obtained a Baseline model with excellent
performance. However, we are not stopped with this, and the additional application
of the SOI module on top of the baseline model provides us with a further optimised
model with improved performance. This section discusses the training procedure and
specifics of the SOI model’s optimisation.

Figure 4.13: The process of SOI model training implementation.

4.4.1 Implementation Process

The optimised SOI model comprises a CNN model, an SOI module for feature map
optimisation, a pooling layer for feature aggregation, and a whitening procedure for
dimensionality reduction. Images are also processed in groups of tuples during the
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training phase, with each training tuple including one original image, M positive images,
and N negative images. First, a training image is preprocessed and then put into the
ResNet101 network, where a feature map is produced using convolution. The feature
map is processed through the GeM [21] pooling and whitening layers to acquire the final
descriptors. Afterwards, it is transferred through the SOI module to generate a new
feature map with increased local spatial information utilisation. In our experiments, 100
such epochs are used to train a model. Each training session includes a predetermined
number of training tuples selected and configured in the same manner as the baseline
model. Figure 4.13 depicts the experiment’s training implementation.

Similarly, this thesis conducts experiments comparing the performance of different
loss functions for the fine-tuned SOI model. Pairwise loss, represented by contrastive
and triplet, and an additional second-order similarity loss function (SOS) are applied.
Their performance during training is shown as examples in ROxford5k and RParis6k
datasets.

In this experiment, the feature output dimension was set to 2048, and all other
hyperparameters were set using the default settings as general, as shown in Table 4.23.
Using ROxford5k and RParis6k as the test set, the variation curves of mAP with the
number of training rounds of the model using different loss functions are plotted, as
shown in Figure 4.14.

Table 4.23: Elemental set-up for different loss functions in fine-tuned model.

Experimental elements Setting

Backbone Res101

Pooling Method GeM Pooling

Whitening Method End-to-end whitening

Output dim 2048

Loss function Contrastive/Triplet/AP

Loss Margin 0.85

Optimizer Adam

Learning rate 1e-6

Figure 4.14 demonstrates that the single Triplet loss has a faster convergence rate
and is already accurate at the 10th epoch. On the other hand, the single Contrastive
Loss is marginally inferior to the Triplet loss and begins to settle around the 15th
epoch. And after combining with SOS loss, both converge with a minor delay, but
both demonstrate evident improved precision (mAP). In this thesis, the final model
employed triplet+ SOS loss for fine-tuned model learning.

4.4.2 Hyperparameters

This part also employs a random search technique for optimizing hyperparameters. In
random search, hyperparameters are generated randomly, and the configuration with
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(a) Performance on ROxford-5k(Middle Evaluation) (b) Performance on ROxford-5k(Hard Evaluation)

(c) Performance on RParis-6k(Middle Evaluation) (d) Performance on RParis-6k(Hard Evaluation)

Figure 4.14: Performance comparison of different loss functions. The evaluation was per-
formed with Res101 GeM on the ROxford-5k and RParis-6k datasets in middle and hard
modesrespectively shown as Figures a-d). These figures show the variation of mAP with the
number of training epochs.

the highest performance is selected. In this thesis, the optimization fine-tuned SOI
model was obtained using the GoogleLandmark v2 training set. After multiple hyper-
parameter optimization trials, Table 4.24 illustrates the best hyperparameter settings
for this model. The accuracy performance of this optimization fine-tuned SOI model
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at various scales is displayed in Table 4.25.

Table 4.24: Hyperparameter configuration of the optimal SOI model trained on the Google
Landmarks v2 dataset.

Fine-tuned Model(GL-Res-SOI )

Superparameters Description Value

p Initial value of pooling parameter 3
loss margin Decision margins for triplet loss functions 1.25

lr Learning rate of the modle 1e-6
ld Decay rate for learning rate 1e-2

lambda SOS loss term weight 10
neg-num Number of negative images per training tuple 5
query size Number of randomly selected queries per epoch 2000
pool size Size of the pool for hard negative examples mining 20000
batch size Number of training tuples in a mini-batch 8
image size Artificially specified size of training images 1024
epoch Total number of training epochs 100

Table 4.25: The mAP performance of GL-Res-SOI Model with different scales. Evaluation
is performed on Oxford-5k, Paris-6k, ROxford-5k, and RParis-6k datasets.

Scales

mAP of GL-Res-SOI

Oxford Paris
ROxford RParis

M H M H

[1] 89.5 91.6 66.6 80.7 45.3 62.1

[1,
√
2,
√
1/2] 90.9 94.7 69.9 81.6 47.9 64.5

4.5 Generalization Tests

4.5.1 Datasets

To further test the model’s generalisation ability, datasets other than Oxford5k,
Paris6k and its revisited version were used. The composition of these datasets is
described in this subsection.

1M Distractors
This data comprises nearly one million high-resolution (1024 × 768) photographs
crawled from Flickr’s 145 most popular tags. In practice, 100k interference images are
frequently utilised alongside existing datasets to evaluate the model’s generalisation
and noise immunity. This thesis employs the ROxford105k and RParis106k datasets,
including 100k overlapping images for extensive testing.
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Custom
This is a proprietary dataset developed by this thesis, and it consists of 20 objects
and around 1,000 digital historical photos. They are obtained via Google and several
museum websites. The content includes statues, art, architecture, maps, antiquities
and other typical digital history content. Each retrieved object group consists of 10 to
15 photographs of the same object taken from various angles and lighting conditions.
Each image in the custom dataset is independent of the sfm120k dataset and the Google
Landmarks v2 dataset utilised during the prior training.

4.5.2 Results and discussions

Our results are extensively compared to the state-of-the-art. Table 4.26 summarises
the results of the GL-Res model and the GL-Res-SOI model provided in this paper, as
well as previously published data.

Table 4.26: Large-scale image retrieval results of our proposed models in comparison to state-
of-the-art methods on the ROxf-RPar, R1M-distractors, and Custom datasets. We analyse
using the mAP and mP@10 metrics against the Medium and Hard evaluation protocols. The
best results in the table are marked in bold in royal blue, the second best results are in light
blue.

ROxford-5K RParis-6K ROxford+1M RParis+1M

M H M H M H M H
Custom

Method

mAP mp@10 mAP mp@10 mAP mp@10 mAP mp@10 mAP mp@10 mAP mp@10 mAP mp@10 mAP mp@10 mAP mp@10

Local Feature based descriptor

HesAff-rSIFT-ASMK [46] 60.4 85.6 36.4 56.7 61.2 97.9 34.5 80.6 45.0 76.0 25.7 42.1 42.0 95.3 16.5 63.4 89.9 97.9

HesAff-rSIFT-ASMK-SP 60.6 86.1 36.7 57.0 61.4 97.9 35.0 81.7 - - - - - - - - 90.2 98.0

DELF-D2R-R-ASMK [17] 69.9 89.0 45.6 61.9 78.7 99.0 57.7 93.0 - - - - - - - - 90.5 98.5

CNN based Global descriptor

AlexNet-GeM [21] 43.3 62.1 17.1 26.2 58 91.6 29.7 67.6 24.2 42.8 9.4 11.9 29.9 84.6 8.4 39.6 85.1 92.0

VGG16-GeM [21] 61.9 82.7 33.7 51.0 69.3 97.9 44.3 83.7 42.6 68.1 19.0 29.4 45.4 94.1 19.1 64.9 88.4 95.5

ResNet101-RMac [29] 60.9 78.1 32.4 50.0 78.9 96.9 59.4 86.1 39.3 62.1 12.5 24.9 54.8 93.9 28.0 70.0 88.2 95.8

ResNet1010-GeM [O] 45.8 66.2 18.1 31.3 69.7 97.6 47.0 84.9 25.6 45.1 4.7 13.4 46.2 94.0 20.3 70.4 85.1 92.0

ResNet101-GeM-AP [40] 67.5 - 80.1 - 60.5 - 47.5 - 23.2 - 52.5 - 25.1 - 89.9 98.1

ResNet101-GeM-DAME [47] 65.3 85.0 40.3 56.3 77.1 98.0 56.0 88.0 44.7 70.1 22.8 35.6 50.3 94.6 22.0 69.0 88.9 98.0

Our Models

GL-Res(baseline) 67.8 87.6 41.7 56.7 77.6 98.1 56.3 89.1 46.3 72.3 19.9 35.9 54.3 95.3 24.7 73.3 89.97 98.1

GL-Res-SOI(fine-tuned) 69.9 86.7 47.9 63 81.6 97.1 64.5 93.0 53.5 76.7 29.9 48.9 59.2 94.9 33.4 81.6 90.97 98.97

By incorporating SOI blocks and SOS loss functions, our refined model GL-Res-SOI
delivers state-of-the-art mAP and mP@10 performance for both medium and hard pro-
tocols. GL-Res-SOI surpasses the baseline model GL-Res in ROxford-5k and RParis-6k
for mAP with significant increases of 2.1% and 7.2%, respectively, in the most difficult
demanding protocols. Also, for the mAP of ROxford-5k-Medium, our method outper-
formed the state-of-the-art local aggregation method DELF-D2R-R-ASMK by 0.3%,
RParis-6k-Medium by 2.9% and RParis-6k-Hard by 6.8%.

GL-Res-SOI also performs the most advanced global no-rearrangement single-
channel approach for R-1M. For R-1M, it also achieves state-of-the-art performance
across global single-pass approaches, exceeding baseline in mAP by 9.2% on ROxford-
1M-Medium, 10% on ROxford-1M-Hard, and by 4.9% on RParis-1M-Medium, 9.7% on
RParis-1M-Hard.
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And on our custom-built dataset, GL-Res-SOI again performed exceptionally well,
achieving 90.97% mAP. This outcome demonstrates the success of our model proposed
in this thesis for retrieving of digital historical images.

4.6 Performance of Final Integration Retrieval System

The model for feature extraction proposed in this thesis is a component of the entire
system for image retrieval. In practical application, the GL-Res-SOI model presented
in this thesis is integrated with the index matching module and reranking module
developed by team members to produce a digital historical image search system.

The following visualisations derive from search tests conducted with this search
method. In each search, the top ten matched images are displayed.

Furthermore, in order to enhance this search system’s functionality and make it
more user-friendly, it is necessary to equip it with more efficient tools. The interface
for the web-based version of the search engine is depicted in Figure 4.19a. The user
uploads an image of interest locally and searches for it, and the system delivers the
thirty most comparable photographs in the database, as illustrated in Figure 4.19b.

(a) Easy Example.

(b) Hard Example.

Figure 4.15: Visual search results for examples of historic buildings.

56



(a) Easy Example.

(b) Hard Example.

Figure 4.16: Visual search results for examples of painting arts.

(a) Easy Example.

(b) Hard Example.

Figure 4.18: Visual search results for examples of maps.
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(a) Easy Example.

(b) Hard Example.

Figure 4.17: Visual search results for examples of the sculptures.

(a) Retrieve interface. (b) Display interface.

Figure 4.19: Digital historical image search engine.

58



Conclusion 5
In this chapter, we discuss and summarize the work presented in this thesis. We also
recommend potential improvements as well as future work that can be investigated
further.

5.1 Summary

In recent years, the expansion of the Internet has brought an explosion of visual infor-
mation, including social media, medical photographs, and digital history. This massive
amount of visual content generation and sharing presents new challenges, especially
when searching for similar images in databases — Content-Based Image Retrieval
(CBIR). How to make a CBIR system acquire visual image features rapidly and pre-
cisely is an intense scientific interesting topic.

In this project, we investigated the extraction and optimization of image features
with several deep learning based methodologies. We constructed multiple neural net-
work models to enable content-based feature extraction. The model involved in this
task is the CNN, the most straightforward and effective model to perform the image
retrieval task. We finally proposed two new feature extraction models in this thesis as
main contributions: the baseline model GL-Res and the fine-tuned model GL-Res-SOI.

Our extraction models are fed with images as input and construct high-dimensional
global uniform descriptors at their output. Specifically, fine-tuned CNNs were involved
in the extraction process, with fine-tuned ResNet101 demonstrating to be the most
appropriate network backbone for the task following a series of comparative valida-
tion trials. The H ×W × D feature maps outputted by ResNet can be more repre-
sentative and discriminative by feature aggregation approaches. During the process
of feature aggregation, Generalized Mean Pooling(GeM) [21], Sum-Pooled Convolu-
tion(SPoC) [28], and Regional Maximum Activation of Convolutions(RMaC) [29] were
selected and validated, with GeM achieving the best performance. The aggregated high-
dimensional global features were dimensionally reduced by whitening methods to im-
prove the model’s efficiency further. Principal Components Analysis (PCA) [8], learned
discriminative whitening [29] post-processing of descriptors, and end-to-end whitening
layer [21] were all considered. The end-to-end whitening layer was experimentally
demonstrated to reduce dimensionality while maximising precision without excessive
loss. Fine-tuned ResNet Backbone, GeM pooling layer, and end-to-end whitening layer
consist the baseline model GL-Res. Based on the well-performing baseline model, we
also add a secondary attention block between the CNN and pooling layers to enhance
the interaction information between features. We innovatively enhance the utilisation
of second-order information by simplifying its structure and optimizing the cooperat-
ing position. We name this fine-tuned extraction model with better performance as
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GL-Res-SOI.
In our experiments, two evaluation metrics were utilised to evaluate the outcomes of

image retrieval in Oxford, Paris, and their revisited datasets to assess the performance
of various models. Mean average precision (mAP) and extract time per query (Te)
evaluate the precision and speed of the models, respectively. According to the current
common standards in image retrieval, we used two different mAP evaluation protocols,
medium(M) and hard(H).

From the results, the fine-tuned model GL-Res-SOI presented in this paper outper-
formed the state-of-art methods on the most popular test datasets. On the common
benchmark RParis6k datasets, GL-Res-SOI outperforms the state-of-the-art method
DELF-D2R-R-ASMK by 2.9%(M) and 6.8%(H). For the challenging datasets with 1M
distractors, our GL-Res-SOI also achieves outstanding mAP performance. It attains
53.5 mAP(M) and 29.9 mAP(H) on ROxford+1M, as well as 59.2 mAP(M) and 33.4
mAP(H) on RParis+1M. On our self-made historical dataset Custom, GL-Res-SOI
attains the excellent 90.97 mAP and 98.97 mP@10.

5.2 Contributions

The main contributions of this thesis are as follows:

1. Fine-tune the pre-trained CNNs with medium size datasets to get new CNN
models to fit into our task. Fine-tuned CNN highly improve the final mAP.

2.Investigate and optimizes the incorporation of second order attention information
in feature map and propose the method SOI. SOI optimizes the embedding position
and simplify the structure of SOA without sacrificing accuracy.

3. Combine and compare different feature aggregation methods and whitening meth-
ods. Explores how to combine all strengths to make features more compact, discrimi-
native and representative.

4. Propose two new CNN based model for feature extraction. This proposed model
beats the state-of-art model and achieves 90.67% mAP on Custom dataset.

5.Design and achieve a fast and user-friendly search engine based on the pro-
posed model. Its respond time per query is around 0.1s. A demo of this
search engine has also been posted on GitHub(https://github.com/yanan-huu/
Image-Search-Engine-for-Historical-Research)

5.3 Recommendation

Numerous ideas could be integrated with this digital historical image search platform
to enhance the work of this thesis. Due to time constraints, some ideas with high
workloads could not materialize, and others were of complexity beyond the author’s
current knowledge. Research directions worthy of further exploration to extend this
thesis work are

1) The combination of local and global features of one image
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This thesis focuses primarily on the image’s global high-level features, which has
the advantage of yielding a more abstract and invariant single feature descriptor.
In contrast to global features, however, local features are low-dimensional, high
robustnesss, and simple to process and compute. Even though the fine-tuned
model in this thesis employs a secondary attention module to improve the usage
of local spatial information in the feature map extraction step, local features are
still not truly integrated. In a multi-layer model, retrieval accuracy would be
improved if low-dimensional local features extracted from the bottom layer and
high-dimensional global features derived from the top layer were utilised simulta-
neously.

2) Video Retrieval

In addition to numerous visuals such as photographs, digital resources often in-
clude video clips. Theoretically, video content retrieval is possible so long as
standard image feature extraction and retrieval methods can be carried out on
the primary frames. However, because of the enormous number of frames, fea-
ture extraction speed requirements for video material retrieval are substantially
greater. Therefore, rapid feature extraction from a large number of still images is
a vital study direction.
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