
Delft UniveRsity of Technology

MasteR Thesis

The Internal Language of Comprehension
Categories

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science in Computer Science

Author:
Niyousha Najmaei

Supervisor:
Dr. Benedikt AhRens

Thesis Committee:

Chair: Dr. Neil YoRKe-Smith
Committee Member: Dr. Benedikt AhRens
Committee Member: Kobe WullaeRt

August 2024

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

iii

Abstract

Denotational semantics of type theories provide a framework for understanding and reasoning about
type theories and the behaviour of programs and proofs. In particular, it is important to study what
can and can not be proved within Martin-Löf Type Theory (MLTT) as it is the basis of proof assistants
like Agda, Lean and Coq. Many models, including a certain class of comprehension categories, full and
split comprehension categories, have been studied for the semantics of dependent type theories. The
motivation for this work comes from the fact that not all comprehension categories are full and split,
and one expects that type theories more general than MLTT can be interpreted in a comprehension
category which is not full and split.

In this thesis, we first study howMLTT is interpreted in full split comprehension categories through
concrete examples. Next, we investigate type theories that can be interpreted in comprehension cat-
egories which are not necessarily full and split. For this, we propose a candidate type theory for the
internal language of comprehension categories by extracting a type theory from the semantics given
by a general comprehension category which is not full and split. We also give an interpretation of this
type theory in every comprehension category.

v

Acknowledgements

I would like to express my heartfelt gratitude to my supervisor, Benedikt Ahrens, for the guidance,
support and advice on various subjects, and for simply being an amazing human. I thank Benedikt and
my second supervisor, Kobe Wullaert, for the invaluable explanations, feedback and support through-
out the thesis. I also thank Neil Yorke-Smith for chairing the defense. I thank Benedikt Ahrens and
Paige North for suggesting the topic, and I am grateful to Ambroise Lafont, Niels van der Weide and
Ali Almasi for the useful discussions.

To my dear friends Ali, Radek and Saba, thank you for the support, thank you for strongly suggest-
ing that I take breaks and thank you for listening to me talk about categories. To my friends Radek and
Irtaza, thank you for the encouragement and good time. To my friend Alves, thank you for hosting
the weekly barbecues, which severely enhanced my experience in Delft. To all the frequent attendees
of said barbecues, thank you guys. To my flatmate Aaron, thank you for making my living experience
in Delft better than I could have ever imagined.

Niyousha Najmaei
Delft, August 2024

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Related Work 5

3 Preliminaries 7
3.1 Category Theory Preliminaries . 7

3.1.1 Arrow Category . 7
3.1.2 Grothendieck Fibration . 9
3.1.3 Fibred Functor and Adjunction . 15

3.2 Type Theory Preliminaries . 16
3.2.1 Judgements and Structural Rules . 16
3.2.2 Context Morphisms . 18
3.2.3 Unit Type . 19
3.2.4 Π-Types . 20
3.2.5 Σ-Types . 20

4 Comprehension Categories 23
4.1 Extended Example: Syntactic Category . 24

5 Interpretation of Dependent Type Theories 29
5.1 Judgements and Structural Rules . 30

5.1.1 Context Extension . 30
5.1.2 Substitution : Types . 30
5.1.3 Substitution is Pullback in C . 31
5.1.4 Substitution: Terms . 32
5.1.5 Functoriality of Substitution . 33
5.1.6 Weakening . 34
5.1.7 Contraction . 35
5.1.8 Extended Example: (Set, Set→, 1, cod) . 35
5.1.9 Extended Example: No Type Dependency . 36

5.2 Unit Type . 38
5.2.1 Extended Example : Syntactic Category . 40

5.3 Π- and Σ- Types . 43
5.3.1 Interpretation of Π-Types . 44
5.3.2 Interpretation of Σ-Types . 46

viii

5.3.3 Interpretation of Weak Σ-Types . 46
5.3.4 Extended Example : (Set, Set→, 1, cod) . 47
5.3.5 Extended Example : No Type Dependency . 49

6 Type Theory Extracted from the Semantics 55
6.1 Judgements and Structural Rules . 56

6.1.1 Judgements . 56
6.1.2 Rules for Context and Type Morphisms . 57
6.1.3 Rules for Context Extension . 59
6.1.4 Rules for Substitution . 59

6.2 Interpretation in a Comprehension Category . 61
6.3 Comprehension Preserving Cartesian Morphisms . 66
6.4 Unit Type . 70

6.4.1 Unit Type from Semantics . 71
6.4.2 Interpretation of Type Theory with Unit . 76
6.4.3 Bijection between Terms and Sections of Projections 77

7 Discussion and Conclusion 81

Bibliography 85

A Extension to Remark 6.21 89

1

Chapter 1

Introduction

Background and Motivation The significance of denotational semantics in the study of program-
ming languages has been well-recognised since Dana Scott’s foundational work [Sco70]. Denotational
semantics of type theories provide a framework for understanding and reasoning about type theories
and the behaviour of programs and proofs. This can ensure that the rules of the type theory are in-
terpreted in a consistent way that reflects the intended behaviour of the type theory. This consistency
and meaningfulness are critical for both theoretical validation and practical application.

For example, one can show that a result can not be proved in the type theory by showing that
the result does not hold for a model. This is relevant due to the inherent difficulty in proving non-
derivability in a type theory. As a particular case for this, one can show that a type theory is consistent
by showing that the type corresponding to False is interpreted as the empty set. This ensures that
there are no terms inhabiting the type False, thereby demonstrating the consistency of the type theory.
This is particularly important when using type theory as a logical framework in a proof assistant.

An example of showing the consistency of a type theory using denotational semantics can be found
in the work of Kapulkin and Lumsdaine [KL21], where the consistency of univalent type theory is dis-
cussed. The authors provide a model for dependent type theories in simplicial sets and show that
the translation of the univalence axiom in this model is a non-empty Kan complex. This implies that
Martin-Löf type theory plus the univalence axiom is at least as consistent as the classical foundations
used. Another example can be found in the lecture notes of Gratzer [Gra23], where the author gives
an interpretation of functional extensionality in categories with families [Dyb96] equipped with in-
tentional identity type and shows that this interpretation is inhabited in the model. This implies that
functional extensionality is a consistent addition to the rules of the type theory.

Martin-Löf Type Theory (MLTT) [Mar84] is used as a logical framework and is the basis of proof
assistants like Agda1, Lean2 and Coq3; hence, it is worthwhile to study what can and can not be proved
within this type theory. Various categorical structures have been studied as a framework for denota-
tional semantics of dependent type theories, which include the work of Seely [See84] on locally carte-
sian closed categories, Cartmell [Car86] on categories with attributes, Taylor [Tay87] on categories
with display maps and Jacobs [Jac93] on comprehension categories. In this report, we focus on the use
of comprehension categories as denotational semantics for dependent-type theories. An overview of
how some of the other structures compare to comprehension categories is provided in Chapter 2.

Comprehension categories, introduced by Jacobs [Jac93], are inspired by hyperdoctrines in cate-
gorical logic, introduced by Lawvere [Law70], and use Grothendieck fibrations to give a general frame-
work for type dependency semantics. As discussed by Lumsdaine and Warren [LW15], a certain class
of comprehension categories, full split comprehension categories, serve as models for dependent type

1https://wiki.portal.chalmers.se/agda/pmwiki.php
2https://lean-lang.org
3https://coq.inria.fr

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://lean-lang.org
https://coq.inria.fr

2 Chapter 1. Introduction

theories that adhere to the structural rules of MLTT. Comprehension categories and the interpretation
of MLTT in full split comprehension categories are discussed in Chapters 4 and 5 respectively.

Although full split comprehension categories are models for MLTT, all instances of comprehen-
sion categories are not full and split. One expects that dependent type theories that are more general
than MLTT can be interpreted in comprehension categories that are not full and split. For example,
type theories with a weaker notion of substitution where substitution is “functorial” only up to iso-
morphism, as opposed to MLTT, which has strictly functorial substitution, are interpreted in non-split
comprehension categories (see Section 5.1.5). In much of the literature, however, comprehension cat-
egories are taken to be full. This arises due to how terms in MLTT are interpreted in a comprehension
category as certain morphisms in the category of contexts. The main objective of this thesis is to study
the type theories that are interpreted in general comprehension categories without the requirements
of fullness and splitness.

ResearchProblem and Contributions Usually, one proposes semantics for a type theory by consider-
ing the requirements that the category should have such that it is possible to interpret the components
of the type theory in it. Examples of this can be found in the work of Seely [See84], Cartmell [Car86],
Taylor [Tay87], and Jacobs [Jac93]. Conversely, one can study the general type theories that can be
interpreted in a certain semantic framework by starting from the semantics and deriving the syntax
of a type theory such that all the structure of the semantic framework is reflected in the type theory.
If soundness and completeness of the rules of the type theory with respect to the class of models are
proved, then this type theory is called the internal language of the semantic framework. Given a class
of models and their internal language, one can show a certain property of the type theory by show-
ing the counterpart of the property in semantics and vice versa. This approach is taken by Ahrens et
al. [ANW23], where they derive the syntax of a directed type theory called Bicategorical Type Theory
(BTT) from comprehension bicategories, the bicategorical generalisation of comprehension categories.

The first contribution of this thesis is to conduct an in-depth discussion of the interpretation of
MLTT in full split comprehension categories by discussing extensive examples of interpretations in
specific full split comprehension categories and providing more detailed proofs and explanations for
the general case. This is done in Chapter 5, through two running examples of interpretations of certain
type theories in specific comprehension categories.

The second contribution of this thesis is to investigate type theories that are interpreted in compre-
hension categories which are not necessarily full. For this, in Section 6.1, we introduce a type theory
with rules extracted from the structure of comprehension categories such that all categorical struc-
tures are reflected in the type theory, similar to the approach taken by Ahrens et al. [ANW23]. By
comparing the rules of this type theory to MLTT, we aim to obtain a better understanding of compre-
hension categories and the type theories that are interpreted in them. We also show the soundness of
the rules of the derived type theory in Section 6.2 by providing an interpretation of this type theory in
comprehension categories.

The third contribution of this thesis is to further investigate the differences between BTT and
other proposed directed type theories by focusing on the one-dimensional, non-directed case. For
example, one of the differences between BTT and other type theories is the way terms are interpreted
as morphisms in the category of types instead of certain morphisms in the category of contexts. As
we take a similar approach to Ahrens et al. [ANW23] when extracting the rules of our type theory,
this difference also appears between our derived type theory and MLTT. To study this difference, in
Sections 6.3 and 6.4, we propose how a unit type can be added to the syntax of the type theory and
investigate the requirements for having a semantic one-to-one correspondence between the terms of

Chapter 1. Introduction 3

this type theory and those of MLTT.We expect this result to be in line with how the mismatch between
terms of BTT and other directed-type theories with terms interpreted similarly to MLTT could be
reconciled.

Outline

• In Chapter 2, we give an overview of some of the categorical semantics for dependent type the-
ory, focusing on how they are related to comprehension categories. We then discuss the work
of Lindgren [Lin21] on the semantics of type dependency in non-full comprehension categories.
We conclude the related work by discussing the type theory derived from comprehension bicat-
egories by Ahrens et al. [ANW23].

• Chapter 3 contains the category theory and type theory preliminaries.

• In Chapter 4, we discuss the definition of comprehension categories and some relevant results
from the literature.

• In Chapter 5, we discuss the interpretation of MLTT in full split comprehension categories. The
contribution of this report in this chapter is to discuss extensive examples of interpretations
in specific full split comprehension categories as well as providing more detailed proofs and
explanations.

• In Chapter 6, we introduce our type theory extracted from the structure of a comprehension
category and compare the syntax of this type theory to MLTT. We then show the soundness of
the rules by giving an interpretation in comprehension categories. We also add a unit type to
the type theory and discuss the requirements for having a semantic one-to-one correspondence
between the terms of this type theory and those of MLTT.

• Chapter 7 contains a discussion of the results of Chapter 6, a comparison between our type
theory and MLTT and a comparison between the results of this report and those of Ahrens et al.
[ANW23]. We also mention some limitations and possible directions for future work.

5

Chapter 2

Related Work

Comprehension Categories for Semantics of Type Dependency Cartesian closed categories are
known to be models for simply typed lambda calculus [LS88]. Locally cartesian closed categories
have been shown to be models of dependent type theories [See84; CD11; CGH14]. Several other cat-
egorical semantics have been studied for interpreting dependent type theories with Π- and Σ-types,
e.g. Martin-Löf type theory. These include categories with display maps [Tay87], contextual categories
[Car86; Str91], categories with attributes [Car86; Mog91], categories with families [Dyb96; Hof97] and
comprehension categories [Jac93].

Comprehension categories, as introduced by Jacobs [Jac93], are based on the work on hyperdoc-
trines in categorical logic, particularly the contributions of Lawvere [Law70] and Seely [See83], as well
as on Ehrhard’s [Ehr88] work on D-categories. Among the models for MLTT, comprehension cate-
gories are more general and less close to syntax and allow for certain type formers to be interpreted
more elegantly as (fibred) adjunctions [Hof97].

A certain class of comprehension categories, full split comprehension categories, are known to be
equivalent to categories with attributes [Car86; Mog91] and categories with families [Dyb96; Hof97].
The equivalence of full split comprehension categories and categories with attributes was shown by
Blanco [Bla91] and some back-and-forth constructions of these equivalences are discussed in Jacob’s
work [Jac93; Jac99]. Contextual categories, however, are closer to syntax and are not directly equiva-
lent to full split comprehension categories.

Non-full Comprehension Categories Lindgren [Lin21] discusses what type-formers for unit and Π-
types correspond to in comprehension categories that are not full. In Chapter 6, we use the definition
of a (non-full) comprehension category with unit from this work to derive the rules concerning the unit
type for the type theory presented in this thesis which is extracted from a comprehension category.

Deriving a TypeTheory from Semantics Ahrens et al. [ANW23] derive the syntax of their directed
type theory (BTT) from comprehension bicategories such that all categorical structures are reflected
in the type theory. This is similar to what is done in Chapter 6, in that we also extract the rules of the
type theory from semantics such that all the structure is reflected in the type theory.

As comprehension bicategories are a two-dimensional generalisation of comprehension categories,
we expect our type theory to be the 1-dimensional restriction of BTT. The bicategorical nature of
comprehension bicategories gives rise to BTT being a directed type theory. The type theory presented
in Chapter 6 is extracted from comprehension categories which do not feature bicategorical structure;
hence, this type theory is different from BTT in that it is not a directed type theory.

The terms in BTT are interpreted as 1-cells in the bicategory of types. This is different from the
usual interpretation of terms in other directed type theories as certain context morphisms, particularly

6 Chapter 2. Related Work

sections of projections from extended contexts to original contexts. Similarly, the terms of the type
theory introduced in Chapter 6 are interpreted as morphisms in the category of types, similar to terms
of BTT. This is different from terms in MLTT which are interpreted as sections of projections from
extended contexts to original contexts. Because of this, one expects the terms of our type theory to
be different from MLTT in ways similar to how terms in BTT differ from the other proposed directed
type theories in which terms are interpreted as certain context morphisms.

Additionally, both BTT and our type theory feature explicit substitution in the syntax. Since we
derive the rules of our type theory from comprehension categories that are not full and split, the
substitution is not strictly functorial and terms are interpreted differently than in MLTT. This is also
the case for BTT, as BTT is derived from comprehension bicategories that do not have a requirement
on fullness and splitness.

We derive our type theory from the syntax of a comprehension category where the base category
has a terminal object. The terminal object of the base category corresponds to the empty context in
the type theory. Hence, our type theory features rules regarding the well-formedness of the empty
context, whereas BTT does not.

7

Chapter 3

Preliminaries

Category theory preliminaries are discussed in Section 3.1 and type theory preliminaries are discussed
in Section 3.2.

3.1 Category Theory Preliminaries

In this section we review the category theory preliminaries needed for the rest of this report. The ba-
sics of category theory is presumed to be known by the reader and is therefore not covered. The reader
is referred to [Mac71] for basics of category theory. Nevertheless, as the arrow category is repeat-
edly used throughout this thesis, we discuss the background knowledge regarding arrow categories in
Section 3.1.1. The content presented in this section is based on [Mac71]. In section Section 3.1.2, we
review the required background knowledge about Grothendiek Fibrations. Much of the content of this
section is based on [Str18; AL19; JY21].

3.1.1 Arrow Category

Definition 3.1. Given a category C , the arrow category C→ consists of

1. An object a of C→ is a morphism of C ,

2. Given a : C(a0, a1) and b : C(b0, b1), a morphism f : C→(a, b) is a pair (f0 : a0 → b0, f1 : a1 →

b1) such that
a0 b0

a1 b1

f0

a b

f1

commutes,

3. for all a0, a1 : C and a : C(a0, a1), 1a = (1a0 , 1a1),

a0 a0

a1 a1

1a0

a a

1a1

4. for a : C(a0, a1), b : C(b0, b1), c : C(c0, c1) composition is defined by

C→(a, b)× C→(b, c) → C→(a, c)
((f0, f1), (g0, g1)) 7→ (g0 ◦ f0, g1 ◦ f1).

8 Chapter 3. Preliminaries

a0 b0 c0

a1 b1 c1

f0

a b

g0

c

f1 g1

Definition 3.2. The codomain functor cod : C→ → C is given on objects by the codomain of the
morphisms in C , which means that given α : C(a0, a1),

cod : α 7→ a1.

On morphisms, it acts as follows:

cod :

a0 b0

a1 b1

f0

a b

f1

 7→ (f1 : a1 → b1).

Definition 3.3. The domain functor dom : C→ → C is given on objects by the domain of themorphisms
in C , which means that given α : C(a0, a1),

cod : α 7→ a0.

On morphisms, it acts as follows:

dom :

a0 b0

a1 b1

f0

a b

f1

 7→ (f0 : a0 → b0).

Remark 3.4. A functor into the arrow category χ : T → C→, can be thought of as two functors,
cod ◦ χ : T → C and dom ◦ χ : T → C , and a natural transformation η : dom ◦ χ ⇒ cod ◦ χ.

For each A ∈ T , ηA := χA. For η to be a natural transformationwe need the following commuting
diagram for each f ∈ T (A, B) with χA = α ∈ C(a1, a2) and χB = β ∈ C(b1, b2):

(dom ◦ χ)A (dom ◦ χ)B

(cod ◦ χ)A (cod ◦ χ)B.

(dom◦χ) f

χA χB

(cod◦χ) f

This is exactly the commuting diagram corresponding to χ f in C→:

a1 b1

a2 b2.

γ1

α β

γ2

3.1. Category Theory Preliminaries 9

3.1.2 Grothendieck Fibration

Definition 3.5 ([Str18, Definition 2.1]). Let p : D → C be a functor. A morphism φ : Y → X in
D above u := p(φ) is called cartesian if and only if for all v : Θ → ∆ in C and θ : Z → X with
p(θ) = u ◦ v there exists a unique morphism ψ : Z → Y with p(ψ) = v and θ = φ ◦ ψ:

Z

Y X D

Θ

∆ Γ C.

ψ

θ

φ

p

v
u◦v

u

A morphism α : Y → X is called vertical if and only if p(α) is an identity morphism in C . For Γ ∈ C ,
we write DΓ for the subcategory of D consisting of those morphisms α with p(α) = idΓ. DΓ is called
the fibre of p over Γ. For f : A → B in C , X ∈ DA andY ∈ DB, we denote the collection of morphisms
above f with domain X and codomain Y as:

D f (X, Y) = {u : X → Y | p f = u}.

Lemma 3.6. Cartesian morphisms are closed under composition.

Proof. Let p : D → C be a functor, s : ∆ → Γ, u : Θ → ∆ and v : Ω → Θ morphisms in C , δ : Y → X
a cartesian morphism in D above s and φ : Z → Y a cartesian morphism above u:

H

Z Y X D

Ω Θ ∆ Γ C.

ψ
ξ

θ

φ δ
p

v u s

To show that δ ◦ φ is cartesian, we have to show that for all v : Ω → Θ and θ : H → X with
p(θ) = s ◦ u ◦ v, there exists a unique ψ : H → Z with p(ψ) = v and θ = (δ ◦ φ) ◦ ψ. From δ being
cartesian, we have that there exists a unique ξ : H → Y with p(ξ) = u ◦ v and θ = δ ◦ ξ. From v
being cartesian we get that there exists a unique ψ′ : H → Z with p(ψ′) = v and ξ = φ ◦ ψ′. Hence,
θ = δ ◦ φ ◦ ψ′ and ψ′ : H → Z is the unique morphism that we needed.

10 Chapter 3. Preliminaries

Lemma 3.7. Let p : D → C be a functor, u : ∆ → Γ a morphism in C , and φ : Y → X and θ : Z → X
cartesian morphisms in D above u. We have Z ∼= Y in D.

Z

Y X D

∆ Γ C

∼=i θ

φ

p

u

Proof. From φ being cartesian, we get a unique morphism i : Z → Y such that φ ◦ i = θ. From
θ being cartesian, we get a unique morphism i−1 : Y → Z such that θ ◦ i−1 = φ. From these we
get φ ◦ i ◦ i−1 = φ. Since φ is cartesian, there is a unique morphism of the form Y → Y such that
φ ◦ 1Y = φ, the identity morphism 1Y . Hence, i ◦ i−1 = 1Y . Similarly, one can show that i−1 ◦ i = 1X
and we get i : Z ∼= Y.

Lemma 3.8. Let p : D → C be a functor, u : ∆ → Γ a morphism in C , φ : Y → X and φ′ : Y′ → X in
D above u, and an isomorphism i : Y′ ∼= Y such that φ′ = φ ◦ i. If φ′ is cartesian, then so is φ.

Y′

Y X D

∆ Γ C

∼=i
φ′

φ

p

u

Proof. We need to show for all v : Θ → ∆ in C and θ : Z → X with p(θ) = u ◦ v there exists a
unique morphism ψ : Z → Y with p(ψ) = v and θ = φ ◦ ψ. Let v : Θ → ∆ in C and θ : Z → X with
p(θ) = u ◦ v. From φ being cartesian, we have a unique morphism ψ′ : Z → Y′ with p(ψ′) = v and
θ = φ′ ◦ ψ′. We take ψ to be i ◦ ψ′. Since p(i) = 1∆, we have p(ψ) = v. We have θ = φ ◦ ψ from
θ = φ′ ◦ ψ′ and φ′ = φ ◦ i.

Now to show uniqueness, let ψ′′ : Z → Y with p(ψ′′) = v and θ = φ ◦ ψ′′. We have to show
ψ = ψ′′. From θ = φ ◦ ψ′′, we get θ = φ ◦ i ◦ i−1 ◦ ψ′′ = φ′ ◦ i−1 ◦ ψ′′. Since ψ′ is the unique
morphism such that p(ψ′) = v and θ = φ′ ◦ ψ′, we get i−1 ◦ ψ′′ = ψ′. Hence, ψ′′ = i ◦ ψ′ and
ψ′′ = ψ.

Lemma 3.9. Cartesian morphisms in C→ are pullback squares in C .

Proof. Let a1, a2, b1, b2 : C, α : C(a1, a2) and β : C(b1, b2). We have to show that if (γ1, γ2) : C→(α, β)
is a cartesian morphism in C→, then the following commuting diagram is a pullback square in C :

a1 b1

a2 b2.

γ1

α1 β

γ2

3.1. Category Theory Preliminaries 11

To show that the diagram is a pullback square, we have to show that for any commuting

a′1 b1

a2 b2,

γ′
1

α′1
β

γ2

there exists a unique h : C(a′1, a1) such that α ◦ h = α′ and γ1 ◦ h = γ′
1. From the second diagram

commuting, we have (γ′
1, γ2) : C→(α′, β). Since (γ1, γ2) is cartesian, for all k : C(a2, a2) such that

cod(γ1, γ2) ◦ k = cod(γ′
1, γ2), there exists a unique (h′, k) : C→(α′, α) such that (γ1, γ2) ◦ (h′, k) =

(γ′
1, γ2). Now, we show that this h′ is the unique h that we need. From cod(γ1, γ2) ◦ k = cod(γ′

1, γ2),
we get γ2 ◦ k = γ2. Hence, k = 1a2 . From (γ1, γ2) ◦ (h′, 1a2) = (γ′

1, γ2) we have that h′ is the unique
morphism for which γ1 ◦ h′ = γ′

1. From (h′, 1a2) being a morphism in C→(α′, α) we get α ◦ h′ = α′.
Thus, cartesian morphisms in C→ are pullback squares in C .

Definition 3.10 ([Str18, Definition 2.2]). A functor p : D → C is called a (Grothendieck) fibration if
and only if for all u : ∆ → Γ in C and X ∈ DΓ there exists a cartesian arrow φ : Y → X above u
called a cartesian lifting of u to X.

Definition 3.11 ([AL19, Definition 5.3]). A cleaving for a fibration p : D → C is a function giving, for
each f : c′ → c in C and d : Dc, a cartesian lift of f into d. A cloven fibration over C is a fibration
equipped with a cleaving.

Definition 3.12 ([AL19, Definition 5.6]). A fibration p : D → C is split if and only if

1. the chosen lifts of identities are identities; and

2. the chosen lift of any composite is the composite of the individual lifts.

Example 3.13. For each category C , the domain functor dom : C→ → C , defined in Definition 3.3, is
a split fibration. If C has all pullbacks, the codomain functor cod : C→ → C , defined in Definition 3.2,
is also a split fibration and a fibre over Γ ∈ C is the slice category C/Γ.

We show these two statement in the following two lemmas.

Lemma 3.14. dom : C→ → C is a split fibration.

Proof. We need to show that for each ∆, Γ : C , f : C(∆, Γ) and β : Γ/C , there exists a cartesian fβ in
C→ into β. We take fβ to be the morphism corresponding to the following commuting diagram:

∆ Γ

X X.

f

β◦ f β

Now we need to show that fβ is cartesian, which is for each γ : Θ/C , g : γ → β and h1 : Θ → ∆,
where γ : Θ → Y, with dom ◦ g = g1 and f ◦ h1 = g1, there exists a unique h such that dom ◦ h = h1

12 Chapter 3. Preliminaries

and fβ ◦ h = g:
γ

β ◦ f β C→

Θ

∆ Γ C

h

g

fβ

dom

h1

g1

f

We show that the unique h is the map corresponding to the following commuting diagram:

Θ ∆

Y X.

h1

γ β◦ f

cod◦g

By definition dom ◦ h = h1. To show that fβ ◦ h = g, we need to show that the composition corre-
sponding to

Θ ∆ Γ

Y X X

h1

γ

f

β◦ f β

cod◦g

is equal to
Θ Γ

Y X,

g1

γ β

cod◦g

which follows from g1 = f ◦ h1 and the composition of morphisms in the arrow category. Now, to
prove the uniqueness, we need to show that if the diagram

Θ ∆

Y X

h1

γ β◦ f

k

commutes, and the composition corresponding to

Θ ∆ Γ

Y X X

h1

γ

f

β◦ f β

k

3.1. Category Theory Preliminaries 13

is equal to
Θ Γ

Y X,

g1

γ β

cod◦g

then k = cod ◦ g. From fβ ◦ h = g, we have f ◦ h1 = g1 and k = cod ◦ g; hence, the morphism is
unique.

By the definition of identity morphism and composition in C→, dom is split.

Lemma 3.15. If C has all pullbacks, cod : C→ → C is a split fibration and a fibre over Γ ∈ C is the slice
category C/Γ.

Proof. From Lemma 3.9 we know that cartesian morphisms in C→ are pullback squares in C . Since C
has all pullbacks, for all u : ∆ → Γ in C and α ∈ C→

Γ we have the following pullback square in C ,
which corresponds to a cartesian morphism in C→ into α:

∆ ×Γ dom(α) dom(α)

∆ Γ.

⌟
α

u

This means that cod : C→ → C is a (cloven) fibration. By the definition of cod, a fibre over Γ ∈ C is
the slice category C/Γ.

Now, we show that cod is a split fibration. For each Γ ∈ C and α : C/Γ, we have:

id∗Γα α C→

Γ Γ C,

idΓα

cod

idΓ

where the cartesian lift idΓα corresponds to the following pullback square in C :

dom(α) dom(α)

Γ Γ.

iddom(α)

α
⌟

α

idΓ

This means that id∗Γα = α. For each Γ, Γ′, Γ′′ ∈ C , s : Γ → Γ′, s′ : Γ′ → Γ′′ and α : C/Γ′′, we have:

s∗(s′∗α) s′∗α α C→

Γ Γ′ Γ′′ C,

ss′∗α s′α

cod

s s′

14 Chapter 3. Preliminaries

where the cartesian morphisms s′α and ss′∗α correspond to the following pullback squares in C :

dom(s∗(s′∗α)) dom(s′∗α) dom(α)

Γ Γ′ Γ′′

α
⌟

s′∗α
⌟

s∗(s′∗α)

s s′

The pullback of α along s′ ◦ s is s∗(s′∗α), which means that (s′ ◦ s)∗α = s∗(s′∗α). Hence, cod is a split
fibration.

Definition 3.16 ([Str18, Section 3]). Let p : D → C be a cloven fibraton. Every morphism s : Γ → ∆
induces a reindexing functor s∗ : D∆ → DΓ with the following action on objects and morphisms:

1. for each A ∈ D∆, s∗A is the domain of the chosen life sA.

s∗A A D

Γ ∆ C

sA

p

s

2. for each A, B ∈ D∆, and α ∈ D∆(A, B), s∗α ∈ DΓ(s∗A, s∗B) is the unique morphism that
makes the following diagram commute given by sB being cartesian:

s∗A A

s∗B B.

sA

s∗α α

sB

Remark 3.17 ([Str18, Section 3]). Let p : D → C be a fibration. If p is not split, for composable u and
v in C , v∗ ◦ u∗ is not equal to (u ◦ v)∗ in general, but the functors are canonically isomorphic.

v∗u∗A

u∗A

(uv)∗A A D

Γ ∆ C

vu∗A

iA ∼=
uA

(uv)A
p

u◦v

For each A ∈ D∆, we know from Lemma 3.6, that the composition uA ◦ vu∗A is cartesian. From
Lemma 3.7 we get the isomorphism iA : v∗u∗A ∼= (uv)∗A. If p is split, for composable u and v in
C we have v∗ ◦ u∗ = (u ◦ v)∗. This is because from requirement 2 of Definition 3.12 we know that
the lift of the composition is the composition of lifts and we have uvA = uA ◦ vu∗A. Similarly for the

3.1. Category Theory Preliminaries 15

identity morphism, if p is not split, for each Γ ∈ C and A ∈ DΓ we have A ∼= id∗A:

A

id∗A A D

Γ Γ C.

∼=

id∗A
p

idA

Remark 3.18. Each Grothendieck fibration p : D → C can equivalently be thought of as a pseudofunc-
tor of the form F : Cop → Cat, where C is a small category. The Grothendieck construction associates
to each pseudofunctor F : Cop → Cat a cloven fibration [JY21, Section 10.1]. This cloven fibration is
split if and only if the pseudofunctor is a strict functor [JY21, Proposition 10.1.11]. This construction
defines a 2-equivalence of 2-categories [JY21, Theorem 10.6.16].

3.1.3 Fibred Functor and Adjunction

Definition 3.19 ([Jac93, Definition 2.4]). Let p : C → B and q : D → B be fibrations with the same
basis B. A functor F : C → D is called a fibred functor (also called a cartesian functor) if it preserves
cartesian morphisms and q ◦ F = p.

Proposition 3.20 ([Jac93, Lemma 2.5]). Let p : C → B and q : D → B be fibrations and let F : p → q
be a fibred functor over B. For every A ∈ C , one obtains a fibrewise functor FA : CA → DA by restriction.
Then F is full (faithful) if and only if every FA is full (faithful).

Definition 3.21 ([Jac99, 1.8.6 Definition]). Let p : C → B and q : D → B be fibrations with the same
base category B. A fibred adjunction over B is given by fibred functors F, G in:

C D

B,

F

p
G

q

such that there is an ordinary adjunction D C
G

Fa with F and G as functors, and natural trans-

formations η : idC ⇒ GF and ϵ : FG ⇒ idD given by this adjunction are vertical.

Proposition 3.22. An adjunction D C
G

Fa of fibred functors F and G in:

C D

B,

F

p
G

q

is a fibred adjunction if and only if

D f (FX, Y) ∼= C f (X, GY),

16 Chapter 3. Preliminaries

for each f : A → B in B and objects X in CA and Y in DB.

Proof. For the proof, see for example [Lin21, Lemma 2.2.0.11, Lemma 2.2.0.12].

3.2 Type Theory Preliminaries

In this section we discuss the restriction of Martin-Löf type theory that is used in this report. When we
talk about MLTT, we mean a type theory with judgements and structural rules of MLTT, as discussed
in [Mar84], with unit, Π- and Σ- types. We do not consider identity types, W−types and universes.
Therefore, these topics are not included in this section. Throughout this report we consider the (defi-
nitional) equality of contexts, types and terms up to renaming of bound variables.

An overview on the judgements and structural rules of the type theory is given in Section 3.2.1.
In Section 3.2.2 we discuss the notion of context morphisms which are mappings between contexts,
used in categorical semantics for interpreting how substitution translates one context into the other
by replacing variables with terms of certain types. Unit, Π- and Σ- types in MLTT are then discussed
in Sections 3.2.4, 3.2.5 and 5.2, respectively.

The content of this section is based on [Hof97] and Appendix A.2 of [Uni13].

3.2.1 Judgements and Structural Rules

The Judgements of the type theory are as follows:

1. Γ ctx, which is read as “Γ is a (well-formed) context”;

2. Γ ` A type, which is read as “A is type in context Γ”;

3. Γ ` a : A, which is read as “a is a term of type A in context Γ”;

4. Γ ≡ ∆ ctx, which is read as “Γ and ∆ are (definitionally) equal contexts”;

5. Γ ` A ≡ B type, which is read as “A and B are (definitionally) equal types in context Γ”;

6. Γ ` a ≡ a′ : A, which is read as “a and a′ are (definitionally) equal terms of type A in context
Γ”.

Contexts can be thought of as lists of the form [x1 : A1, x2 : A2, . . . , xn : An] saying distinct terms
x1, . . . , xn have assumed types A1 . . . An respectively. Here, terms x1, . . . , xi may occur free in Ai,
which expresses type dependency in the type theory. Well-formedness of context Γ is given by the
judgement Γ ctx. Empty list corresponds to the empty context denoted as � ctx.

The type theory has the following structural rules.

1. Rules for context formation:

C-Emp� ctx
Γ ctx Γ ` A type

C-Ext
Γ.x : A ctx

Γ ≡ ∆ ctx Γ ` A ≡ B type
C-Ext-Eq

Γ.x : A ≡ ∆.y : B ctx

3.2. Type Theory Preliminaries 17

2. Variable rule:
Γ.x : A.∆ ctx Var

Γ ` x : A

3. Rules expressing definitional equalities are equivalence relations:

Γ ctx C-Eq-R
Γ ≡ Γ ctx

Γ ≡ ∆ ctx C-Eq-S
∆ ≡ Γ ctx

Γ ≡ ∆ ctx ∆ ≡ Θ ctx C-Eq-T
Γ ≡ Θ ctx

Γ ctx Γ ` A type
Ty-Eq-R

Γ ` A ≡ A type

Γ ctx Γ ` B ≡ A type
Ty-Eq-S

Γ ` A ≡ B type

Γ ctx Γ ` A ≡ B type Γ ` B ≡ C type
Ty-Eq-T

Γ ` A ≡ C type

Γ ctx Γ ` A type Γ ` a : A
Tm-Eq-R

Γ ` a ≡ a : A

Γ ctx Γ ` A type Γ ` b ≡ a : A
Tm-Eq-S

Γ ` a ≡ b : A

Γ ctx Γ ` A type Γ ` a ≡ b : A Γ ` b ≡ c : A
Tm-Eq-T

Γ ` a ≡ c : A

4. Rules relating typing and definitional equality:

Γ ctx Γ : A type Γ ` a : A Γ ≡ ∆ ctx Γ ` A ≡ B type
Tm-Conv

∆ ` a : B

Γ, ∆ ctx Γ ≡ ∆ ctx Γ ` A type
Ty-Conv

∆ ` A type

5. We also have the following weakening, substitution and contraction rules which can be derived
from the other rules. We explicitly mention these here as they are frequently used in the rest of
the report. In these rules, J ranges over one of the judgements a : A, A type, a ≡ b : A, A ≡
B type.

Γ, ∆ ` J Γ ` C type
Weak

Γ.x : C.∆ ` J

Γ.x : C ` J Γ ` c : C
Subst

Γ.∆[c/x] ` J [c/x]

Γ.x : C.y : C, ∆ ` J
Contr

Γ.x : C.∆[x/y] ` J [x/y]

Here, J [c/x] (and ∆[c/x]) is the capture-free substitution of c for all occurrences of x in J ,
which means that no free variables in c will become bound in J [c/x] [Hof97].

18 Chapter 3. Preliminaries

3.2.2 Context Morphisms

Contextmorphisms aremappings between contexts, used in categorical semantics for interpreting how
substitution translates one context into the other by replacing variables with terms of certain types. The
notion of context morphism can be used in formulating a typing rule for generalised substitution, that
is the simultaneous substitution of all the variables in the target context up to renaming of variables.

In the rest of this report, we sometimes use the word “substitution” when referring to the notion
of context morphism discussed in this section.

Definition 3.23 ([Hof97, Definition 2.11]). Let Γ and ∆ be well-formed contexts with ∆ of the form
[x1 : A1, . . . , xn : An]. A context morphism from Γ to ∆ is an n−tuple of terms (M1, . . . , Mn) such
that for each i ≤ n the following judgement holds:

Γ ` Mi : Ai[M1/x1, . . . , Mi−1/xi−1].

Notation 3.24. Given contexts Γ and ∆, a context morphism s from Γ to ∆ is denoted as s : Γ → ∆ or
Γ ` s : ∆.

Remark 3.25 ([Hof97, Proposition 2.12]). One can derive the following rule for generalised substitution
by induction on the length of ∆ and using the Rules Weak and Subst.

Γ ` s : ∆ ∆.Θ ` J
Gen-Subst

Γ.Θ[f /∆] ` J [f /∆]

Here by Θ[f /∆] (and similarly J [f /∆]), we mean the simultaneous substitution of all variables in ∆
with the terms that make up the context morphism f .

Example 3.26. For any context Γ, there is a unique context morphism () : Γ → �, the empty context
morphism.

Example 3.27. Let Γ = [n : N, v : Vec(n)], where Vec(n) is the type of vectors of natural numbers
of length n. (2, [0, 1]) is a context morphism from � to Γ as � ` 2 : N and � ` [0, 1] : Vec[2/n].

Example 3.28 ([Hof97, Section 2.4]). Let Γ = [n : N, p : idN(0, n)], where idN is the identity type of
natural numbers. (0, reflN(0)) is a context morphism from � to Γ as � ` 0 : N and � ` reflN(0) :
(idN(0, n))[0/n].

Example 3.29. Let Γ = [b : Bool] and ∆ = [b1 : Bool, b2 : Bool, c : Conj(b1, b2)], where Conj(b1, b2)
is the boolean result of b1 ∧ b2. (False, b,False) is a context morphism from Γ to ∆ as Γ ` False : Bool,
Γ ` b : Bool, Γ ` False : (Conj(b1, b2))[False/b1, b/b2].

Example 3.30. For any context Γ = [x1 : A1, . . . , xn : An], we have a context morphism (x1, . . . , xn)
from Γ to Γ. This is called the identity context morphism.

Notation 3.31. For any context Γ, we denote the identity context morphism defined in Example 3.30
as idΓ or 1Γ.

Example 3.32 ([Hof97, Proposition 2.13]). Given context morphisms f : Γ → ∆ and g : ∆ → Θ,
where g = (M1, . . . , Mn), we have a context morphism (M1[f], . . . , Mn[f]) from Γ to Θ.

Notation 3.33. Given context morphisms f : Γ → ∆ and g : ∆ → Θ, the composition context
morphism defined in Example 3.32 is denoted as g ◦ f .

3.2. Type Theory Preliminaries 19

Example 3.34. For any Γ = [x1 : A1, . . . , xn : An], a context morphism of the form Γ → Γ.x : A
is (x1, . . . , xn, x). A context morphism of the form Γ.x : A → Γ is given by πA := (x1, . . . , xn),
the projection from the extended context to the non-extended one. Note that by this definition, an
extension context morphism of the form Γ → Γ.x : A composed with a projection context morphism
of the form Γ.x : A → Γ is the identity context morphism on the context Γ.

Notation 3.35. Given a context morphism s from Γ to ∆, by (s, x : A) we mean a context morphism
s′ which is made of all the terms in s plus a term x of type A. For example, we denote the context
morphism from Γ to Γ.x : A defined in Example 3.34, which is of the form (x1, . . . , xn, x), as (idΓ, x)
or (idΓ, x : A).

Notation 3.36. Given a context Γ = [x1 : A1, . . . , xn : An]. We denote the projection context mor-
phism from Γ.x : A to Γ defined in Example 3.34 as πA.

Example 3.37. If type A is not dependent on any variables from context Γ, a context morphism s′ :
Γ → ∆.x : A is equivalent to a morphisms s : Γ → ∆ and a term x : A; hence, the context morphism
s′ is of the form (s, x : A), where we use Notation 3.35. If A contains variables from ∆, a context
morphism s′ : Γ → ∆.x : A is equivalent to a morphism s : Γ → ∆ and a term x : A[s/∆]; hence, the
context morphism s′ is of the form (s, x : A[s/∆]).

Proposition 3.38 ([Hof97, Proposition 2.13]). Given f : Γ → ∆, g : ∆ → Θ, Θ ` A type and Θ ` t : A,
we have:

1. Γ ` A[g ◦ f] ≡ A[g][f];

2. Γ ` t[g ◦ f] ≡ t[g][f].

Proposition 3.39 ([Hof97, Proposition 2.13]). The composition of substitutions is associative.

Proposition 3.40 ([Hof97, Exercise 2.14]). For s : Γ → ∆, id∆ ◦ s ≡ s ≡ s ◦ idΓ.

3.2.3 Unit Type

Unit type is either defined as a type with a unique term in each context or as an inductive type with
elimination and computation rules.

The following rules define unit type as a type with a unique term in each context.

Γ ctx Unit-Ty
Γ ` 1Γ : type

Γ ctx Unit-Tm
Γ ` ttΓ : 1Γ

Γ ` x : 1Γ Unit-Unique
Γ ` x ≡ ttΓ : 1Γ

The following rules define unit type as an inductive type with elimination and computation rules.

Γ ctx Unit-Form
Γ ` 1Γ type

20 Chapter 3. Preliminaries

Γ ctx Unit-Intro
Γ ` ttΓ : 1Γ

Γ.x : 1Γ ` A type Γ ` a : A[ttΓ/x]
Unit-Elim

Γ.x : 1Γ ` urecA,a : A

Γ.x : 1Γ ` A type Γ ` a : A[ttΓ/x]
Unit-Comp

Γ ` urecA,a[ttΓ/x] ≡ a : A[ttΓ/x]

The elimination and computation rules state that for a context Γ and type A in Γ, to have a term of type
A in context Γ.x : 1, it suffices to have a term of type A[tt/x] in context Γ. This can also be thought
of as meaning that for defining a function of the form 1 → A it suffices to define the function for tt.

3.2.4 Π-Types

Π-types correspond to cartesian product over a family of sets in set theory; given a family of sets
(Bi)i∈I , one can form the set Πi∈I Bi that has as elements functions mapping an index i to an element of
the corresponding set Bi. Similarly, in type theory, given a type B dependent on A, which corresponds
to the judgement Γ.x : A ` B type, we get a type ∏x:A B in context Γ. A term of ∏x:A B corresponds
to a dependent function that takes a parameter a of type A and has a result of type B[a/x]. This idea
is captured in the following formation, introduction, elimination and computation rules:

Γ ` A type Γ.x : A ` B type
Π-Form

Γ ` Π(x:A)B type

Γ.x : A ` b : B
Π-Intro

Γ ` λ(x : A).b : Π(x:A)B

Γ ` f : Π(x:A)B Γ ` a : A
Π-Elim

Γ ` f (a) : B[a/x]

Γ, x : A ` b : B Γ ` a : A
Π-Comp

Γ ` (λ(x : A).b)(a) ≡ b[a/x] : B[a/x]

The elimination and computation rules reflect the idea of how the function is applied to its parameter.
In addition to these, we also have the rules that state definitional equality is preserved for the formation
and introduction rules.

As a special case for Π-Types, if B does not depend on A, which corresponds to the judgements
Γ ` A type and Γ ` B type, then the type ∏x:A B is the definition of a (non-dependent) function type
A → B.

3.2.5 Σ-Types

Σ-types correspond to disjoint union in set theory; given a family of sets (Bi)i∈I , one can form the
set ∑i∈I Bi := {(i, b)|i ∈ I ∧ b ∈ Bi}, where the elements are pairs of an index i and an element of
Bi. Similarly, in type theory, given a type B dependent on A, which corresponds to the judgement
Γ.x : A ` B type, we get a type ∑x:A B in context Γ. The terms of ∑x:A B are pairs where the first
element is a term a of type A and the second element is of type B[a/x]. This is stated in the following

3.2. Type Theory Preliminaries 21

formation and introduction rules:

Γ ` A type Γ.x : A ` B type
Σ-Form

Γ ` Σ(x:A)B type

Γ.x : A ` B type Γ ` a : A Γ ` b : B[a/x]
Σ-Intro

Γ ` (a, b) : Σ(x:A)B

The elimination and computation rules reflect the idea that to define a function out of ∑x:A B, it is
enough to specify the function on the pairs:

Γ.z : Σ(x:A)B ` C type Γ.x : A.y : B ` g : C[(x, y)/z] Γ ` p : Σ(x:A)B
Σ-Elim

Γ ` recz:Σ(x:A)B(C, g, p) : C[p/z]

Γ.z : Σ(x:A)B ` C type Γ.x : A.y : B ` g : C[(x, y)/z] Γ ` a : A Γ ` b : B[a/x]
Σ-Comp

Γ ` recz:Σ(x:A)B(C, g, (a, b)) ≡ g[a, b/x, y] : C[(a, b)/z]

The computation rule states that a function out of ∑x:A B defined using rec∑x:A B from the elimination
rule, acts on the pairs as specified by the term g.

Two examples of functions defined out of ∑x:A B are the first and second projections π1 and π2.
These projections are defined as follows, assuming Γ ` A type, Γ.x : A ` B type and Γ ` p : ∑x:A B:

π1(p) := recz:∑a:A B(A, x, p) : A

π2(p) := recz:∑a:A B(B[π1(z)/x], y, p) : B[π1(p)/x]

There is a weak version of the elimination rule, called weak Σ-elimination. In this case, the elimi-
nation rule is restricted to the cases where C does not depend on ∑x:A B, i.e. having the following as
the elimination and computation rules:

Γ ` C type Γ.x : A.y : B ` g : C Γ ` p : ∑(x:A) B
Weak Σ-Elim

Γ ` rec∑(x:A) B(C, g, p) : C

Γ ` C type Γ.x : A.y : B ` g : C Γ ` a : A Γ ` b : B[a/x]
Weak Σ-Comp

Γ ` rec∑(x:A) B(C, g, (a, b)) ≡ g[a, b/x, y] : C

Here, it is still possible to define the first projection, similar to the previous case, but not the second
one. Under proposition-as-types, one can consider the strong and weak Σ- types as counterparts of
the constructive existential quantification and the existential quantification in classical mathematics,
respectively.

As a special case, if B does not depend on A, which corresponds to the judgements Γ ` A type
and Γ ` B type, then the type ∑x:A B is the definition of an ordinary product type A × B.

23

Chapter 4

Comprehension Categories

In this section we go over the definition of a comprehension category as introduced in [Jac93] and
discuss examples of comprehension categories. We also mention and prove some relevant results from
the literature that will be used in the rest of this report.

Comprehension categories feature a cloven Grothendieck fibration p : T → C , where C corre-
sponds to the category of contexts and for each Γ ∈ C the fibre TΓ corresponds to the category of
types in context Γ. The reindexing functors corresponding to the lifts provided by the cleaving of the
fibration give the semantics for substitution between contexts. Context extension is captured by a
functor χ0 : T → C which sends a type A in context Γ to the extended context Γ.A, and a natu-
ral transformation π : χ0 → p that provides the coherence condition needed for projections from
extended contexts to the original contexts. These two functors and natural transformation can be
thought of as one functor χ : T → C→ into the arrow category, which is called the comprehension.
Lastly, to capture how context morphisms from Γ to ∆ are built of terms in context Γ, an additional
requirement is added that χ preserves cartesian morphisms. This ensures that cartesian morphisms in
T correspond to pullback squares in C .

Definition 4.1 ([Jac93, Definition 4.1]). A comprehension category consists of a category C , a (cloven)
fibration p : T → C , and a functor χ : T → C→ preserving cartesian arrows, such that the following
diagram commutes:

T C→

C.

χ

p cod

Here, χ is called the comprehension.

We will see later that the objects of C correspond to contexts, and the objects of the fibre TΓ over
Γ ∈ C correspond to (dependent) types in context Γ. Usually, C is required to have a terminal object.
The terminal object of C corresponds to the empty context in the type theory.

Notation 4.2. In the rest of this report, unless specified otherwise, by a comprehension category we
mean comprehension category (C, T , χ, p)which means that the base is denoted as C , the correspond-
ing fibration as p : T → C and the comprehension as χ.

Definition 4.3 ([Jac93, Definition 4.1]). A comprehension category is called full if χ : T → C→ is fully
faithful and is called split if p : T → C is a split fibration.

Remark 4.4. C is not required to have all pullbacks. In other words, we do not require cod : C→ → C
to be a fibration.

24 Chapter 4. Comprehension Categories

Remark 4.5. χ is a functor into the arrow category C→, so, as discussed in Remark 3.4, it can be
thought of as two functors dom ◦ χ : T → C and cod ◦ χ : T → C and a natural transformation
π : dom ◦ χ ⇒ cod ◦ χ.

We denote dom ◦ χ as χ0 due to [Jac93, Notation 4.2]. For each Γ ∈ C and A ∈ TΓ, χ0A is denoted
as Γ.A. We will see later that this corresponds to the extension of context Γ with a term of type A. χA,
which by Remark 4.5 can also be thought of as πA : C(Γ.A, Γ), is called the projection from Γ.A to Γ.
We will see that this corresponds to the projection from an extended context to the original context.

Example 4.6 ([Jac93, Example 4.5]). Recall from Lemma 3.15 that if C has all pullbacks, cod : C→ → C
is a split fibration. Hence, if C has all pullbacks, using the identity functor 1 : C→ → C→ we get the
identity comprehension category:

C→ C→

C.

1

cod cod

The identity comprehension category is full and split.

Example 4.7. Thecategory Set has pullbacks. Let X, Y, Z ∈ Set be sets, and f : X → Z and g : Y → Z
be functions. We have the following pullback square in Set:

X ×Z Y X

Y Z,

⌟
f

g

where X ×Z Y := {(x, y) ∈ X × Y| f x = gy}. Hence, cod : Set→ → Set is a fibration and we have
the following full split comprehension category:

Set→ Set→

Set.

1

cod cod

This is a special case of the comprehension category explained in Example 4.6.

4.1 Extended Example: Syntactic Category

Given a dependent type theory with judgements and structural rules of Martin-Löf type theory, one
can construct a full split comprehension category from the syntax. In this subsection we explain the
construction of this syntactic category as it is described in [Jac93, Example 4.3], and why it makes a
full split comprehension category. We use ‖−‖ to denote the semantic counterpart of a type-theoretic
entity. The construction is as follows.

1. Category C has contexts as its objects, up to definitional equality of contexts, and context mor-
phisms as its morphisms. Using Propositions 3.39 and 3.40 we can see that this makes a category.

4.1. Extended Example: Syntactic Category 25

Recall from Definition 3.23 that for ∆ = [x1 : A1, . . . , xn : An], a context morphism s : Γ → ∆
is an n-tuple of terms (up to definitional equality) (M1, . . . , Mn) satisfying:

Γ ` Mi : Ai[M1, . . . , Mi−1/x1, . . . , xi−1].

Note that the category C constructed in this way, has a terminal object, namely the empty context
�. This is justified by Example 3.26.

2. Objects of T‖Γ‖ are of the form ‖A‖ for Γ ` A type, up to definitional equality. This means
that for a type A in context Γ, p : T → C sends ‖A‖ to its context ‖Γ‖. For types A and B in
context Γ, morphisms from ‖A‖ to ‖B‖ correspond to terms t of type B in context Γ.A, which
is Γ.x : A ` t : B.
Now, we show that this makes a category.

(a) For each context Γ and type A in Γ the identity morphism id‖A‖ is given by the variable
rule Γ.x : A ` x : A.

(b) The composition of morphisms is given by the following substitution. Let Γ.x : A ` t1 : B
and Γ.y : B ` t2 : C. We have ‖t1‖ ∈ T (‖A‖, ‖B‖) and ‖t2‖ ∈ T (‖B‖, ‖C‖). The
composition defined as ‖t2‖ ◦ ‖t1‖ := ‖t2[t1/y]‖ is a morphism in T (‖A‖, ‖C‖), since
Γ.x : A ` t2[t1/y] : C.

(c) Let Γ.y : A ` t : B. From the definition of composition we have ‖t‖ ◦ id‖A‖ = ‖t[y/x]‖
and idB ◦ ‖t‖ = ‖x[t/x]‖. From the type theory we know that Γ.x : A ` t[y/x] ≡ t : B
and Γ.y : A ` x[t/x] ≡ t : B which means ‖t‖ ◦ id‖A‖ = ‖t‖ = id‖B‖ ◦ ‖t‖.

(d) Let Γ.x : A ` t1 : B, Γ.y : B ` t2 : C and Γ.z : C ` t3 : D. We have ‖t1‖ ∈
T (‖A‖, ‖B‖), ‖t2‖ ∈ T (‖B‖, ‖C‖) and ‖t3‖ ∈ T (‖C‖, ‖D‖). From the definition of
composition we get ‖t3‖ ◦ (‖t2‖ ◦ ‖t1‖) = ‖t3[(t2[t1/y])/z]‖ and (‖t3‖ ◦ ‖t2‖) ◦ ‖t1‖ =
‖t3[t2/z])[t1/y]‖. From the type theory we know that Γ.x : A ` t3[(t2[t1/y])/z] ≡
(t3[t2/z])[t1/y] : D which means ‖t3‖ ◦ (‖t2‖ ◦ ‖t1‖) = (‖t3‖ ◦ ‖t2‖) ◦ ‖t1‖.

3. χ preserves cartesian arrows, and sends an object ‖A‖ in T‖Γ‖ to π‖A‖ ∈ C(‖Γ.A‖, ‖Γ‖). This
gives p = cod ◦ χ. For each A, B : TΓ and a morphism α : TΓ(A, B), χ sends α to a morphism
β that makes the following diagram commute:

Γ.A Γ.B

Γ.

β

πA πB

The context morphism β is of the form (id‖Γ‖, ‖t‖), where id‖Γ‖ is the identity morphism on ‖Γ‖
and we have Γ.A ` t : B. Hence, for each Γ ∈ C and A, B ∈ TΓ there is a bijection between
TΓ(A, B) and C→(πA, πB), which means that χ is fibrewise fully faithful; hence, fully faithful.

4. It remains to show that p is a cloven split fibration to show that we have constructed a full split
comprehension category.

(a) Let ∆ = [x1 : A1, · · · , xn : An] and s = (M1, · · · , Mn) : Γ → ∆. For each type Ai in
∆ the cartesian lift of ‖s‖ into ‖Ai‖ is given by ‖s‖‖Ai‖ := ‖Mi‖ : T (‖Ai[s]‖, ‖Ai‖), as
Γ.x : Ai[s] ` Mi : Ai. We will see why this morphism is cartesian in Sections 5.1.2 to 5.1.4.

26 Chapter 4. Comprehension Categories

(b) For Γ ` A typewe have Γ ` A[idΓ] ≡ A and from part 1 of Proposition 3.38 we know that
Γ ` A[g ◦ f] ≡ A[g][f] for f : Γ → ∆, g : ∆ → Θ, Θ ` A type. This means that p is a
split fibration.

This concludes the extended example.

Remark 4.8. The initiality of a full split comprehension category given by the construction in Sec-
tion 4.1 is discussed in [LW15]. This means that full split comprehension categories can be considered
models for dependent type theories with judgements and structural rules of Martin-Löf type theory.

Lemma 4.9 ([Jac93, Lemma 4.4], [Jac99, Lemma 10.3.1]). In a comprehension category, for each Γ, ∆ ∈ C ,
A ∈ T∆ and s : Γ → ∆, the pullback of πA along s exists and is itself a projection, particularly πs∗A. This
means that for an arbitrary s : Γ → ∆ and A ∈ ∆, we always have a pullback square of the following
form:

Γ.s∗A ∆.A

Γ ∆,

⌟
s.A

πs∗A πA

s

where s.A is χsA.

Proof. For each Γ, ∆ ∈ C , A ∈ T∆ and s : Γ → ∆, the cleaving of the fibration gives a cartesian
morphism sA : s∗A → A. χsA corresponds to:

Γ.s∗A ∆.A

Γ ∆,

χsA

πs∗A πA

s

From Lemma 3.9 we know that cartesian morphisms in C→ are pullback squares in C and that χ pre-
serves cartesian morphisms; hence, we always have a pullback square of the following form in C :

Γ.s∗A ∆.A

Γ ∆,

s.A

⌟
πs∗A πA

s

where s.A = χsA.

Example 4.10. The full subcategory of C→ with all the projections as objects is denoted as D→ due to
[Jac99]. By Lemma 4.9, the pullback of all the projections in D→ exists in C . Hence, cod : D→ → C is
a fibration. This means that the following is a comprehension category:

D→ C→

C,

ι

cod cod

where ι is the inclusion. This comprehension category is split, since cartesian morphisms in D→ are
pullback squares in C .

4.1. Extended Example: Syntactic Category 27

Lemma 4.11 ([Jac93, Lemma 4.4]). In a comprehension category, for each Γ, ∆ ∈ C , A ∈ T∆ and s : Γ →
∆, we have the following bijection:

C/∆(s, πA) ∼= {t ∈ C(Γ, Γ.s∗A)|t is a section of πs∗A}.

In other words, there is a bijection between morphisms s′ : Γ → ∆.A in C that make the following diagram
commute:

Γ ∆.A

∆,

s′

s πA

and the sections ts∗A : Γ → Γ.s∗A of the projection πs∗A : Γ.s∗A → Γ in C .

Proof. The bijection is given by factorising s′ through s.A, in the following pullback square from
Lemma 4.9:

Γ

Γ.s∗A ∆.A

Γ ∆.

ts∗A

s′

⌟
s.A

πs∗A πA

s

Lemma 4.12 ([Jac93, Section 5.5]). In a full comprehension category, we have the following bijection for
each Γ ∈ C and A, B ∈ TΓ:

TΓ(A, B) ∼= {t ∈ C(Γ, Γ.s∗A)|t is a section of ππ∗
AB}

Proof. From χ being fully faithful we have, TΓ(A,B)
∼= C/Γ(πA, πB) which means that there is a

bijection between elements of TΓ(A,B) and morphisms s : Γ.A → Γ.B in C that make the following
diagram commute:

Γ.A Γ.B

Γ.

s

πA πB

For each such s : Γ.A → Γ.B, we get a unique section of ππ∗
AB from the following pullback square:

Γ.A

Γ.A.π∗
AB Γ.B

Γ.A Γ.

t

s

ππ∗
A B

⌟
πB

πA

28 Chapter 4. Comprehension Categories

Hence, in a full comprehension category, there is a bijection between elements of TΓ(A, B) and sections
of ππ∗

AB.

Remark 4.13. As discussed in [Jac93, Lemma 4.9], the inclusion functor ι : Compfull(C) → Comp(C),
where Comp(C) is the category of comprehension categories with base C and suitable cartesian func-
tors as morphism, has a left adjoint. This means that every comprehension category can be turned into
an equivalent full one. [CGH14; LW15; Str18] explain two ways to turn a comprehension category
into an equivalent split one using left and right adjoints of the inclusion functor ι : Compsplit(C) →
Comp(C), where Compsplit is the category of split comprehension categories with base C and suitable
cartesian functors that preserve the splitting as morphisms.

29

Chapter 5

Interpretation of Dependent Type Theories

In Chapter 4, we have briefly pointed to how each component of a comprehension category corre-
sponds to the components of a type theory. In this section, we make this more precise and discuss
the interpretation of a dependent type theory with judgements and structural rules of Martin-Löf type
theory in a full split comprehension category. Whenever the assumptions of the comprehension cat-
egory being full or split are used, it is explicitly stated. Then, we discuss the interpretation unit type,
Π- and Σ-types in comprehension categories.

Assuming a Martin-Löf type theory with judgements and structural rules, the high-level idea be-
hind the interpretation in a comprehension category is as follows.

1. The objects of C can be thought of as contexts, and the morphisms can be thought of as context
morphisms. Identity context morphism, composition and their properties are as described in
Section 3.2.1. The terminal object of C can be thought of as the empty context, with a unique
context morphism, the empty context morphism, from each context to it.

2. The objects of a fibre TΓ over Γ can be thought of as (dependent) types in context Γ. Hence,
p : T → C can be thought of as sending a type to its context.

3. For each A ∈ TΓ the comprehension χA, denoted as πA : Γ.A → Γ, can be thought of as
a projection projection from the extended context Γ.A back to Γ. This means that χ0 can be
thought of as context extension.

4. For each Γ ∈ C and A ∈ TΓ, the sections of the projection πA, morphisms t : Γ → Γ.A in C
such that πA ◦ t = 1Γ, can be thought of as terms of type A.

5. Substitution is given by the universal property of the cartesian morphisms. In particular, for
∆ = [x1 : A1, · · · xn : An] and a context morphism s = (M1, · · · Mn) : Γ → ∆, as defined in
Definition 3.23, the term Mi is identified by the lift sAi ∈ TΓ(s∗Ai, Ai) given by the cleaving.

Throughout this section, we discuss two running examples of dependent type theories that can
be interpreted in two certain comprehension categories. After discussing the interpretation of each
component of dependent type theory in comprehension categories, we go back to the examples and
discuss the interpretations in those certain instances.

The first example concerns the type theory that can be interpreted in the comprehension category
made from the category Set, which is discussed in Example 4.7. This example corresponds to how
dependent type theories can be interpreted in set theory. The interpretations of the judgements and
structural rules of the type theory in this category are discussed in Section 5.1.8. Whether unit, Σ- and
Π- types can be interpreted in this comprehension category and the interpretations are discussed in
Example 5.16 and Section 5.3.4.

30 Chapter 5. Interpretation of Dependent Type Theories

The second example is about a comprehension category in which a type theory with no type de-
pendency can be interpreted. We discuss the type theory that can be interpreted in the comprehension
category defined in Example 5.5 and compare this with our expectations of what the interpretation
should be in the presence of no type dependency. In this sense, this example serves as a sanity check
of the interpretations discussed in this section for the special case of not having type dependency. The
interpretations of the judgements and structural rules of the type theory in this category are discussed
in Section 5.1.9. Whether unit, Σ- and Π- types can be interpreted in this comprehension category and
the interpretations are discussed in Example 5.17 and Section 5.3.5.

5.1 Judgements and Structural Rules

In this section, we describe the interpretation of a type theory with judgements and structural rules of
Martin-Löf type theory in a comprehension category. We use ‖−‖ to denote the semantic counterpart
of a type-theoretic entity. The interpretation of the judgements in a comprehension category is as
follows:

1. Γ ctx is interpreted as an object ‖Γ‖ in C (up to definitional equality of contexts);

2. Γ ` A type is interpreted as an object ‖A‖ in the fibre T‖Γ‖ (up to definitional equality of types);

3. Γ ` t : A is interpreted as a morphism ‖t‖ in C such that ‖t‖ is a section of the projection π‖A‖,
i.e. ‖t‖ : ‖Γ‖ → χ0‖Γ‖ in C and π‖A‖ ◦ ‖t‖ = 1‖Γ‖.

Context extension is interpreted as the action of χ0 on the objects of T . For a type A in context
Γ, χ0‖A‖ := ‖Γ.A‖ is the interpretation of the context Γ extended with a term of type A. Substi-
tution is interpreted as the reindexing functors induced by the fibration p. s being a context mor-
phism (substitution), as defined is Definition 3.23, from context Γ to ∆ is interpreted as a morphism
‖s‖ : ‖Γ‖ → ‖∆‖ in C . Weakening and contraction are also interpreted as certain reindexing func-
tors. In particular, weakening corresponds to reindexing functors of the form π∗

A : TΓ → TΓ.A where
πA : Γ.A → Γ and contraction corresponds to reindexing functors of the form δ∗A : TΓ.A.A → TΓ.A
where δA : Γ.A → Γ.A.A. This is further explained in Sections 5.1.1 to 5.1.7.

5.1.1 Context Extension

Given a context Γ and a type A in context Γ, the context extension rule states that the extended context
Γ.A is well-formed:

Γ ctx Γ ` A type

Γ.A ctx

Recall from Remark 4.5 that χ : T → C→ can be thought of as dom ◦ χ : T → C , denoted as χ0,
cod ◦ χ : T → C which is equal to p, and π : χ0 ⇒ p. Context extension is interpreted as the action
of χ0 of the objects of T , which is ‖Γ.A‖ := χ0‖A‖.

5.1.2 Substitution : Types

Recall from Definition 3.16 that for each morphism s : Γ → ∆ in C , the reindexing functor s∗ : T∆ →
TΓ takes A ∈ T∆ to s∗A ∈ TΓ, where s∗A is the domain of sA, the cartesian cartesian lift of s in A

5.1. Judgements and Structural Rules 31

given by the cleaving of the fibration:

s∗A A T

Γ ∆ C.

sA

p

s

As mentioned above, s being a context morphism (substitution) from context Γ to ∆ is interpreted
as a morphism ‖s‖ : ‖Γ‖ → ‖∆‖ in C . Given a context morphism s : Γ → ∆ and a type A in
context ∆ corresponding to the judgement ∆ ` A type, substitution gives a type A[s] in context Γ,
corresponding to the judgement Γ ` A[s] type. In the comprehension category, this is interpreted as
the action of the reindexing functor ‖s‖∗ : T‖∆‖ → T‖Γ‖ on objects. This means that the result of the
substitution s applied to type A in context ∆, which is A[s/∆], is interpreted as ‖s‖∗‖A‖.

Notation 5.1. For Γ, ∆ ∈ C , s : Γ → ∆ and A ∈ T∆, the comprehension χ0(sA) is denoted by
s.A : Γ.s∗A → ∆.A.

Example 5.2. As an example we consider the case of substitution of one variable of type A with a term
of type A in a type B in context Γ.x : A. This is given by the following substitution rule:

Γ.x : A ` B type Γ ` a : A
Γ ` B[a/x] type

As mentioned in Example 3.34, the corresponding context morphism to this substitution is (idΓ, a : A),
which is a section of the projection π‖A‖. In other words, the corresponding context morphism is
‖a‖ : ‖Γ‖ → ‖Γ.A‖. The type B[a/x] in context Γ is interpreted as ‖B[a/x]‖ := ‖a‖∗‖B‖:

‖B[a/x]‖ ‖B‖ T

‖Γ‖ ‖Γ.A‖ C.

‖a‖‖B‖

p

‖a‖

5.1.3 Substitution is Pullback in C
We have now seen the interpretation of substitution for types in a comprehension category. We now
see how context morphisms being n−tuples of terms is interpreted in comprehension categories.
Recall from Definition 3.23 that in the syntax, for ∆ = [x1 : A1, . . . , xn : An], a context mor-
phism s : Γ → ∆ is an n−tuple of terms (up to definitional equality) (M1, . . . , Mn) satisfying
Γ ` Mi : Ai[M1/x1, . . . , Mi−1/xi−1].

We saw in Example 3.37 that a context morphism s′ : Γ → ∆.x : A is equivalent to a morphism
s : Γ → ∆ and a term t : A[s/∆]. To interpret this in a comprehension category, we need to have the
following bijection:

a section t of π‖s‖∗‖A‖

s′ : ‖Γ‖ → ‖∆.A‖ in C
(5.1)

32 Chapter 5. Interpretation of Dependent Type Theories

for each contexts Γ, ∆, type A in context ∆ and context morphism s : Γ → ∆. We know from
Lemma 4.9 that for each Γ, ∆ ∈ C , A ∈ T∆ and s : Γ → ∆ we have the following pullback square:

Γ.s∗A ∆.A

Γ ∆,

⌟
s.A

πs∗A πA

s

and from Lemma 4.11 we get the required bijection in (5.1) by factorising s′ through ‖s‖.‖A‖ in:

‖Γ‖

‖Γ.A[s]‖ ‖∆.A‖

‖Γ‖ ‖∆‖.

t

s′

⌟

‖s‖.‖A‖

π‖s‖∗‖A‖ π‖A‖

‖s‖

This justifies why χ should preserve cartesian morphisms in a comprehension category. We see in the
next section that the morphism t is the interpretation of A[s/∆].

5.1.4 Substitution: Terms

Given a context morphism s : Γ → ∆, a type A in context ∆ and a term ∆ ` t : A, substitution
gives a term t[s] of type A[s] in context Γ, corresponding to the judgement Γ ` t[s] : A[s]. In the
comprehension category, t[s] is interpreted as the unique morphism given by the universal property
of the following pullback:

‖Γ‖ ‖∆‖

‖Γ.A[s]‖ ‖∆.A‖

‖Γ‖ ‖∆‖,

‖s‖

‖t[s]‖ ‖t‖
‖s‖.‖A‖

π‖A[s]‖ π‖A‖

‖s‖

⌟

where ‖A[s]‖ = ‖s‖∗‖A‖. Note that the outer diagram commutes as ‖t‖ is a section of π‖A‖.

Example 5.3. As an example we consider the case of substitution of one variable given by the following
substitution rule:

Γ.x : A ` t : B Γ ` a : A
Γ ` t[a/x] : B[a/x]

Similar to what we saw in Example 5.2, the corresponding context morphism to this substitution is
‖a‖ : ‖Γ‖ → ‖Γ.A‖. The term t[a/x] of type B[a/x] in context Γ is interpreted as the morphism

5.1. Judgements and Structural Rules 33

given by the universal property of the following pullback:

‖Γ‖ ‖Γ.A‖

‖Γ.B[a/x]‖ ‖Γ.A.B‖

‖Γ‖ ‖Γ.A‖.

‖a‖

‖t[a/x]‖ ‖t‖
‖a‖.‖B‖

π‖B[a/x]‖ π‖B‖

‖a‖

⌟

5.1.5 Functoriality of Substitution

If p is not a split fibration, the interpretation of substitution defined in Section 5.1.2 is functorial only
up to isomorphism. If p is a split fibration, the substitution can be interpreted up to equality. We know
from Propositions 3.39 and 3.40 that substitution in Martin-Löf type theory is strictly functorial; hence,
to interpret Martin-Löf type theory the comprehension category should be split.

Let Γ, Γ′, Γ′′ ∈ C , s : Γ → Γ′ and s′ : Γ′ → Γ′′. We know from Remark 3.17 that (s′ ◦ s)∗ ∼= s∗ ◦ s′∗,
which means that for each A ∈ T ′′

Γ we have the following isomorphism:

s∗s′∗A

s′∗A T

(s′s)∗A A

Γ Γ′ Γ′′ C.

s
s ′∗A

∼=
s ′
A

p
(s′s)A

s s′

In the type theory, this corresponds to substitution being associative only up to isomorphism. Similarly
for each identity morphism idΓ : Γ → Γ in C , and each A ∈ TΓ we have the following isomorphism:

A

id∗Γ A A T

Γ Γ C,

∼=

id∗A
p

idΓ

which corresponds to A[idΓ/Γ] ∼= A in the type theory.
This means that comprehension categories with a non-split p can model type theories with sub-

stitution that is functorial only up to isomorphism, and comprehension categories with a split p can
model type theories with strictly functorial substitution. Note that as discussed in Remark 4.13, a
fibration p : T → C can be turned into an equivalent split one with the same base.

34 Chapter 5. Interpretation of Dependent Type Theories

5.1.6 Weakening

In a comprehension category, for each Γ ∈ C and A ∈ TΓ, the projection πA : Γ.A → Γ in C induces
a reindexing functor π∗

A : TΓ → TΓ.A which corresponds to weakening:

π∗
AB B T

Γ.A Γ C.

πAB

p

πA

Given a context Γ and a type A in context Γ, the weakening rule states that for a type B in context
Γ, B is a type in context Γ.A.

Γ ` A type Γ ` B type

Γ.x : A ` B type

In the comprehension category, this is interpreted as the action of the reindexing functor π∗
‖A‖ :

T‖Γ‖ → T‖Γ.A‖ on objects. This means that given Γ ` B type, which is interpreted as ‖B‖ ∈ T‖Γ‖,
‖B‖ is mapped to π∗

‖A‖‖B‖ ∈ T‖Γ.A‖ which corresponds to the judgement Γ.A ` B type.
For terms the weakening rule is as follows:

Γ ` A, B type Γ ` t : B
Γ.x : A ` t : B

Term t of type B in the extended context Γ.A is interpreted as the morphism given by the universal
property of the following pullback:

‖Γ.A‖ ‖Γ‖

‖Γ.A.B[πA]‖ ‖Γ.B‖

‖Γ.A‖ ‖Γ‖,

π‖A‖

‖tB[πA]‖ ‖t‖
π‖A‖.‖B‖

π‖B[πA]‖ π‖B‖

π‖A‖

⌟

where B[πA] corresponds to π∗
‖A‖‖B‖.

The reindexing functors of the form π∗
A are called weakening functors. We will see in section

Section 5.3 that Π- and Σ-types can be interpreted in a comprehension category as right and left
adjoints to the weakening functors.

5.1. Judgements and Structural Rules 35

5.1.7 Contraction

In a comprehension category, for each Γ : C and A ∈ TΓ, a morphism δA : Γ.A → Γ.A.A in C induces
a reindexing functor δ∗A : TΓ.A.A → TΓ.A which corresponds to contraction:

δ∗AB B T

Γ.A Γ.A.A C.

δAB

p

δA

Given a context Γ.x : A.y : A, and a type B in context Γ.x : A.y : A, the contraction rule states that
B[x/y] is a type in context Γ.x : A:

Γ, x : A, y : A ` B type

Γ, x : A ` B[x/y] type

In the comprehension category, this is interpreted as the action of a reindexing functor δ∗‖A‖ : T‖Γ.A.A‖ →
T‖Γ.A‖ on objects, where δ‖A‖ is the interpretation of a context morphism of the form (idΓ, x : A, y :
A). This means that B[x/y] is interpreted as δ∗‖A‖‖B‖ .

For terms the weakening rule is as follows:

Γ, x : A, y : A ` t : B
Γ, x : A ` t[x/y] : B[x/y]

Term t of type B in the extended context Γ.A is interpreted as the morphism given by the universal
property of the following pullback:

‖Γ.A‖ ‖Γ.A.A‖

‖Γ.A.B[x/y]‖ ‖Γ.A.A.B‖

‖Γ.A‖ ‖Γ.A.A‖.

δ‖A‖

‖t[x/y]‖ ‖t‖
δ‖A‖.‖B‖

π‖B[x/y]‖ π‖B‖

δ‖A‖

⌟

5.1.8 Extended Example: (Set, Set→, 1, cod)

We have seen in Example 4.7 that (Set, Set→, 1, cod) is a full split comprehension category:

Set→ Set→

Set.

1

cod cod

By Remark 4.8, we can interpret the judgements and structural rules of a dependent type theory in this
comprehension category. The interpretation is as follows.

36 Chapter 5. Interpretation of Dependent Type Theories

1. The judgement Γ ctx is interpreted as an object ‖Γ‖ in Set, which means ‖Γ‖ is a set.

2. We know from Lemma 3.15 that for the fibrations cod : Set→ → Set, a fibre over Γ ∈ Set is the
slice category Set/Γ. The judgement Γ ` A type is interpreted as a morphism ‖A‖ in Set into
‖Γ‖, which is a function with ‖Γ‖ as its codomain.

3. Context extension is interpreted as 10 which is dom : Set→ → Set. For Γ ` A type, the context
Γ extended with type A is interpreted as ‖Γ.A‖ := dom(‖A‖). This means that ‖A‖ coincides
with the projection π‖A‖ : ‖Γ.A‖ → ‖Γ‖.

4. Given Γ ` t : A, the term t is interpreted as ‖t‖ : ‖Γ‖ → ‖Γ.A‖ in Set such that ‖A‖ ◦
‖t‖ = 1‖Γ‖. This means that terms of type A are interpreted as right inverses of the function
‖A‖ : ‖Γ.A‖ → ‖Γ‖.

5. Given contexts Γ and ∆, a type A in context ∆ and a context morphism s from Γ to ∆, the result of
applying the substitution to type A, i.e. A[s], is interpreted as the first projection of the pullback
of ‖A‖ along ‖s‖:

‖Γ‖ ×‖∆‖ ‖∆.A‖ ‖∆.A‖

‖Γ‖ ‖∆‖.

‖A[s]‖
⌟

‖A‖

‖s‖

This means that ‖Γ.A[s]‖ := ‖Γ‖ ×‖∆‖ ‖∆.A‖.

6. For a context Γ and a type A in Γ, weakening from context Γ to Γ.A is interpreted as substi-
tution along π‖A‖. Here π‖A‖ coincides with ‖A‖; hence, weakening is interpreted as the first
projection of the pullback along ‖A‖:

‖Γ.A‖ ×‖Γ‖ ‖Γ.B‖ ‖Γ.B‖

‖Γ.A‖ ‖Γ‖.

π∗
‖A‖‖B‖

⌟
‖B‖

‖A‖

5.1.9 Extended Example: No Type Dependency

In a type theory with no type dependency, extended context Γ.x : A can be thought of as the cartesian
product Γ × [x : A] . This is the motivation behind defining the following comprehension category.

Example 5.4 ([Jac93, Example 4.11]). Let C be a category with products. A category C̄ is defined with
pairs of objects (Γ, A) from C as objects. Morphisms (Γ, A) → (∆, B) in C̄ are given by two maps
u : Γ → ∆ and f : Γ × A → B in C . Composition is described by (v, g) ◦ (u, f) = (v ◦ u, g ◦ 〈u ◦
π1, f 〉) and identities by (id, π2), where π1 and π2 are the projections of the binary product. The first
projection π1 : C̄ → C is then a split fibration.

For s : Γ → ∆ in C and (∆, A) : C̄∆, the cartesian lift of s into (∆, A) is given by (s, 1A) :
(Γ, A) → (∆, A). For (s, 1A) to be cartesian, for each u : Θ → Γ in C and (s ◦ u : Θ → ∆, f :
Θ × B → A) : (Θ, B) → (∆, A) in C̄ , there should exist a unique g : Θ × B → A in C such that
(s ◦ u, f) = (s, 1A) ◦ (u, g) = (s ◦ u, 1A ◦ 〈u ◦ π1, g〉). The unique g is f .

5.1. Judgements and Structural Rules 37

(Θ, B)

(Γ, s∗A) (∆, A) C̄

Θ

Γ ∆ C

(u,g)

(s◦u, f)

(s,sA)

π1

u
s◦u

s

This fibration gives the following full split comprehension category:

C̄ C→

C,

PC

π1 cod

where PC : C̄ → C→ maps a pair (Γ, A) to the first projection of the binary product π1 : Γ × A → Γ.

Example 5.5. Set has products; hence, by Example 5.4 (Set, Set,PSet, π1) is a full split comprehension
category:

Set Set→

Set.

PSet

π1 cod

Now, we discuss the interpretation of the judgements and structural rules of a type theory with no
type dependency in the comprehension category (Set, Set,PSet, π1) from Example 5.5. Here, contexts
and types can both be thought of as sets, and the extended context Γ.A can be thought of as Γ × A.
This is in line with there being no type dependency in the type theory.

The interpretation is as follows.

1. The judgement Γ ctx is interpreted as a set ‖Γ‖.

2. The judgement Γ ` A type is interpreted as a set ‖A‖, and an object (‖Γ‖, ‖A‖) in Set over Γ.

3. Context extension is given by dom ◦ PSet. For Γ ` A type, the context Γ extended with type A
is interpreted as ‖Γ.A‖ := ‖Γ‖ × ‖A‖. This is in line with there being no type dependency in
the type theory.

4. Given Γ ` t : A, the term t is interpreted as ‖t‖ : ‖Γ‖ → ‖Γ‖ × ‖A‖ in Set such that
π1 ◦ ‖t‖ = 1‖Γ‖, where π1 is the first projection of the product. This means that terms of type
A are interpreted as right inverses of the first projections of products.

5. Let Γ and ∆ be contexts, A a type in context ∆ and s a context morphism from Γ to ∆. We
know from Example 5.4 that the cartesian lift of ‖s‖ into (‖∆‖, ‖A‖) is (‖s‖, 1‖A‖). This means
that the interpretation ‖A[s]‖ coincides with ‖A‖. This is in line with there being no type
dependency in the type theory.

38 Chapter 5. Interpretation of Dependent Type Theories

6. Weakening from context Γ to Γ.A is interpreted as substitution along π‖A‖. Here π‖A‖ coincides
with π1; hence, weakening is interpreted as substitution along π1. Similar to part 5, for a type
B in context Γ.A, the interpretation of this substitution applied to B coincides with ‖B‖.

5.2 Unit Type

In this section, by unit type, we mean a type inhabited with exactly one term. This corresponds to
the first definition of unit type in Section 3.2.3. In Remark 5.18 we discuss how unit type defined as
an inductive type (see the second definition in Section 3.2.3) can be interpreted in a comprehension
category.

Intuitively, to interpret the unit type of the type theory discussed in Section 4.1 in a full split
comprehension category, each fibre TΓ should have an object 1Γ, such that for each Γ ∈ C and A ∈ TΓ,
there is a unique morphism (1Γ, tt) : Γ.A → Γ.1Γ.

Γ.A Γ.1Γ

Γ Γ

(1Γ,tt)

πA π1Γ

From χ being fully faithful, we have a bijection between C(Γ.A, Γ.1) and T (A,1), hence for each
Γ ∈ C and A ∈ TΓ, there should be a unique morphism from each A to 1Γ, i.e. each fibre should have
a terminal object 1Γ. In addition, for each s : Γ → ∆, the reindexing functor s∗ : T∆ → TΓ should
preserve terminal objects. Hence, we expect that a type theory with unit types can be interpreted in
full a comprehension category with fibrewise terminals [Jac99, Definition 1.8.1].

Definition 5.6 ([Jac99, Definition 1.8.1]). A comprehension category has fibrewise terminals if:

1. for each Γ ∈ C , TΓ has a terminal object;

2. for each s : Γ → ∆ the reindexing functor s∗ : T∆ → TΓ preserves terminal objects.

Definition 5.7. In a comprehension category with fibrewise terminals, we can define a terminal object
functor :

1 : C → T
Γ 7→ 1Γ,

where 1Γ is a terminal object in the fibre TΓ. 1 takes a morphism s : Γ → ∆ in C to s1∆ ◦ i : 1Γ → 1∆
in T :

1Γ

s∗1∆ 1∆ T

Γ ∆ C,

i ∼=

s1∆
p

s

where i is the isomorphism from requirement 2 of Definition 5.6. Now we show that this defines a
functor. For each Γ, ∆ ∈ C and s : Γ → ∆ in C , there is a unique morphism of the form 1Γ → 1∆

5.2. Unit Type 39

above s, since s1∆ is cartesian and s∗1∆ is terminal in TΓ. In particular, for each Γ ∈ C , we have
1(1Γ) = 11Γ . Additionally, for each s : Γ → Γ′ and s′ : Γ′ → Γ′′ in C , we have 1s′◦s = 1s′ ◦ 1s since
1s′◦s and 1s′ ◦ 1s are both of the form 1Γ → 1

′′
Γ in T above s′ ◦ s.

Lemma 5.8. In a comprehension category with fibrewise terminals, 1 : C → T is fully faithful.

Proof. We need to show that for each Γ, ∆ ∈ C , C(Γ, ∆) ∼= T (1Γ,1∆). Let Γ, ∆ ∈ C and s : Γ → ∆.
Given s : C(Γ, ∆) we get s′ : T (1Γ,1∆) := s1∆ ◦ i, where i is the isomorphism i : 1Γ

∼= s∗1∆ from
requirement 2 of Definition 5.6:

1Γ

s∗1∆ 1∆ T

Γ ∆ C.

∼=i
s′

s1∆
p

s

Given s : T (1Γ,1∆) we get s̄ : C(Γ, ∆) := p(s). For each s : C(Γ, ∆) we have (s1∆ ◦ i) = p(s1∆ ◦
i) = s, and for each s : T (1Γ,1∆) we have s̄1∆ ◦ i = s; hence C(Γ, ∆) ∼= T (1Γ,1∆) and 1 is fully
faithful.

Definition 5.9 ([Jac93, Definition 4.12]). A comprehension category with unit is given by a fibration
p : T → C provided with a terminal object functor 1 : C → T , which has a right adjoint χ0 : T → C .
The comprehension χ : T → C→ is then given by A 7→ p(ϵA) where ϵ : 1 ◦ χ0 ⇒ idT is the counit
of the adjunction. See [Jac99, Lemma 1.8.9] for proof that this makes a comprehension category.

Example 5.10. Recall from Example 4.6 that for C with pullbacks, the identity functor 1 : C→ → C→

gives a full split comprehension category, the identity comprehension category:

C→ C→

C.

1

cod cod

The identity comprehension category has unit. For each Γ ∈ C and α ∈ C→, we have the bijection

C→(idΓ, α) ∼= C(Γ, dom(α)). This corresponds to the adjunction C→ C,
dom

id(−)

a where id(−) maps

each Γ ∈ C to idΓ.

Lemma 5.11 ([Jac93, Lemma 4.13]). In a comprehension category with unit,

1. for each Γ ∈ C and A ∈ TΓ, we have a bijection between the sections tA : Γ → Γ.A of the projection
πA : Γ.A → Γ and the morphisms in TΓ(1Γ, A);

2. for each Γ, ∆ ∈ C , A ∈ T∆ and s : Γ → ∆, we have a bijection between s′ : Γ → ∆.A in C such
that πA ◦ s′ = s and morphisms in TΓ(1Γ, s∗A);

The first statement indicates that the terms of type A in context Γ in the syntax correspond to
(type) morphisms t : TΓ(1Γ, A) in the comprehension category.

40 Chapter 5. Interpretation of Dependent Type Theories

Proof. 1. From the adjunction in Definition 5.9, for each Γ, ∆ ∈ C and A ∈ T∆ we have T (1Γ, A) ∼=
C(Γ, ∆.A). As a special case, we have T (1Γ,1Γ) ∼= C(Γ, Γ) for each Γ ∈ C . Since 1Γ is the
terminal object in the fibre TΓ, this means that there is a unique morphism in C(Γ, Γ) for each
Γ ∈ C , the identity morphism 1Γ. As a consequence, for Γ ∈ C and A ∈ TΓ all morphisms
in C(Γ, Γ.A) are sections of the projection πA : Γ.A → Γ. From the adjunction we also have
T (1Γ, A) ∼= C(Γ, Γ.A) for each Γ ∈ C and A ∈ TΓ. Since morphisms in C(Γ, Γ.A) are all
sections of πA, we get a bijection between sections tA : Γ → Γ.A of the projection πA and the
morphisms in TΓ(1Γ, A).

2. From Lemma 4.11 we have a bijection between such morphisms s′ : Γ → ∆.A and sections of
πs∗A. Using part 1 of Lemma 5.11 we get a bijection between such morphisms s′ : Γ → ∆.A in
C and morphisms in TΓ(1Γ, s∗A).

Lemma 5.12. In a comprehension category with unit, for each Γ ∈ C , π1Γ has a unique section ttΓ : Γ →
Γ.1Γ.

Proof. From part 1 of Lemma 5.11, we have that for each Γ ∈ C , there is a bijection between sections
of π1Γ and T (1Γ,1Γ). 1Γ is the terminal object of the fibre TΓ; hence, π1Γ has a unique section.

Remark 5.13. Lemma 5.12 justifies why a type theory with unit type can be interpreted in a compre-
hension category with unit.

Lemma 5.14. In a comprehension category with unit, for each Γ ∈ C we have Γ ∼= Γ.1Γ.

Proof. From Lemma 5.8 we get C(Γ.1Γ, Γ.1Γ) ∼= T (1Γ.1Γ ,1Γ.1Γ). 1Γ.1Γ is terminal in TΓ.1Γ ; hence,
there is a unique morphism in C(Γ.1Γ, Γ.1Γ), the identity morphism 1Γ.1Γ . From Lemma 5.12, we
know that π1Γ has a unique section ttΓ : Γ → Γ.1Γ. We have tt ◦ π1Γ = 1Γ.1Γ since there is a unique
morphism in C(Γ.1Γ, Γ.1Γ). Hence, ttΓ : Γ ∼= Γ.1Γ.

Remark 5.15. As a result of Lemma 5.14, in a full comprehension category with unit the singleton
context [tt : 1] is isomorphic to the terminal empty context �.

5.2.1 Extended Example : Syntactic Category

In case the construction explained in Section 4.1 is applied to a type theory that has a unit type, the
resulting comprehension category has unit. In a full comprehension category constructed from a type
theory with unit type Γ ` 1Γ type that has a unique term Γ ` tt : 1Γ, we can define a functor

1 : C → T
‖Γ‖ 7→ ‖1Γ‖.

To show that the full comprehension category has unit, we need to show that:

1. T has fibrewise terminals and 1 is a terminal object functor;

2. we have the adjunction T C.
χ0

1a

5.2. Unit Type 41

Each context morphism s : Γ.A → Γ.1Γ in the syntax is of the form (idΓ, ttΓ) where ttΓ is the
unique term of1Γ; hence, for each context Γ and type A in context Γ there is a unique contextmorphism
s : Γ.A → Γ.1Γ. This means that in the comprehension category, there is a unique morphism in
C(‖Γ.A‖, ‖Γ.1Γ‖). From χ being fully faithful we have C(‖Γ.A‖, ‖Γ.1Γ‖) ∼= T (‖A‖, ‖1Γ‖); hence,
‖1Γ‖ is a terminal object in the fibre TΓ.

For each context morphism s : Γ → ∆, there is a unique extension of s to (s, tt∆) : Γ → ∆.1∆ in
the syntax. This means that in the comprehension category, for each ‖s‖ : ‖Γ‖ → ‖∆‖ in C we have
a unique s′ : ‖Γ‖ → ‖∆‖.‖1∆‖ such that π‖1∆‖ ◦ s′ = ‖s‖. From Lemma 4.9, we know that there is
a bijection between such s′ : ‖Γ‖ → ‖∆‖.‖1∆‖ and sections t‖s‖∗‖1∆‖ of π‖s‖∗‖1∆‖; hence, there is a
unique section of π‖s‖∗‖1∆‖ in C .

From the syntax we know that for each type A in context Γ, there is a bijection between context
morphisms of the form Γ.A → Γ.B and context morphisms of the form Γ → Γ.B; hence, we have the
bijection C(‖Γ.A‖, ‖Γ.s‖∗‖1∆‖) ∼= C(‖Γ‖, ‖Γ.s‖∗‖1∆‖). Thismeans that there is a uniquemorphism
in C(‖Γ.A‖, ‖Γ.s‖∗‖1∆‖). Using χ being fully faithful, we get that there is a unique morphism in
T (‖A‖, ‖s‖∗‖1∆‖). This means that ‖1∆‖ is a terminal object in TΓ and that reindexing preserves
terminal objects. This concludes showing T has fibrewise terminals and 1 is a terminal object functor.

Let Γ, ∆ ctx, ∆ ` A type. From the syntax we know that for each type A in Γ and type B in context
∆, there is a bijection between context morphisms of the form Γ.A → Γ.B and context morphisms of
the form Γ → Γ.B; hence, we have the bijection C(‖Γ‖, ‖∆‖.‖A‖) ∼= C(‖Γ.1Γ‖, ‖∆‖.‖A‖). From
χ being fully faithful we have C(‖Γ.1Γ‖, ‖∆‖.‖A‖) ∼= T (‖1Γ‖, ‖A‖); hence, T (‖1Γ‖, ‖A‖) ∼=
C(‖Γ‖, ‖∆‖.‖A‖). For naturality in ‖Γ‖ and ‖A‖, we need to show that for each contexts Γ1, Γ2, ∆1
and ∆2, types A1 in ∆1 and A2 in ∆2, context morphism g : Γ2 → Γ1 and a pair of context morphisms
h = (h1 : ∆1 → ∆2, h2 : ∆1.A1 → ∆2.A2) such that πA2 ◦ h2 = h1 ◦ πA1 , the following diagram
commutes:

T (‖1Γ1‖, ‖A1‖) C(‖Γ1‖, ‖∆1.A1‖)

T (‖1Γ2‖, ‖A2‖) C(‖Γ2‖, ‖∆2.A2‖).

∼=

hom(1(‖g‖),‖h‖) hom(‖g‖,χ0‖h‖)
∼=

Hence, we have the adjunction T C.
χ0

1a

This concludes the extended example.

Example 5.16. Recall from Example 4.7 that the comprehension category (Set, Set→, 1, cod) is a spe-
cial case of the identity comprehension category:

Set→ Set→

Set.

1

cod cod

By the same reasoning as in Example 5.10, the comprehension category (Set, Set→, 1, cod) has unit.

The adjunction corresponding to unit is Set→ Set.
dom

id(−)

a

Continuing the interpretation given in Section 5.1.8, we discuss the interpretation of a type theory
with unit type in the comprehension category (Set, Set→, 1, cod). From the adjunction, we know that
the interpretation of unit type 1 in context Γ is the identity morphism 1Γ is Set, i.e. ‖1Γ‖ := 1‖Γ‖. This

42 Chapter 5. Interpretation of Dependent Type Theories

means that the interpretation of the extended context Γ.1 coincides with the interpretation of Γ. As
a special case, the interpretation of the context [tt : 1] coincides with the interpretation of the empty
context. Since ‖Γ.1Γ‖ and ‖Γ‖ coincide for each context Γ, we have ‖ttΓ‖ = 1‖Γ‖ = ‖1Γ‖.

Example 5.17. The comprehension category discussed in Example 5.4 has unit if C has a terminal object
denoted as 1C :

C̄ C→

C.

PC

π1 cod

For each Γ in C and (∆, A) in C̄ we have the bijection C̄((Γ, 1C), (∆, A)) ∼= C(Γ, ∆× A) as Γ× 1C = Γ

which is natural in Γ and (∆, A). This corresponds to the adjunction C̄ C,
dom◦PC

1Ca where 1C sends

each Γ in C to (Γ, 1C).
Set has a terminal object; hence, the following comprehension category discussed has unit:

¯Set Set→

Set.

PSet

π1 cod

with Set Set,
dom◦PSet

1Seta as the adjunction, where 1Set sends each set Γ to (Γ, {∗}). Continuing the

interpretation given in Section 5.1.9, we now discuss the interpretation of unit type in a type theory
with no type dependency in this category. From the adjunction, we know that the interpretation of the
unit type in the singleton set, i.e. ‖1‖ := {∗}. For each context Γ, the interpretation of the extended
context Γ.1Γ is ‖Γ‖ × {∗} which is ‖Γ‖. As a special case, the interpretation of the context [tt : 1]
coincides with the interpretation of the empty context. Since ‖Γ.1Γ‖ and ‖Γ‖ coincide for each context
Γ, we have ‖ttΓ‖ = 1‖Γ‖.

Remark 5.18. We have now seen how unit type defined as a type with a unique term can be interpreted
in a comprehension category. We know from Section 3.2.3, that in a type theory, unit type can also be
defined as an inductive type with formation, introduction, elimination and computations rules.

A type theory with unit type defined like this can be interpreted in a full comprehension category
where for each Γ ∈ C , we have:

1. a type 1Γ ∈ TΓ;

2. a section ttΓ : Γ → Γ.1Γ;

3. for any type A ∈ TΓ.1Γ and section a of πA[tt], a section urecA,a of πA, such that urecA,a ◦ ttΓ =
ttΓ.A ◦ a:

5.3. Π- and Σ- Types 43

Γ Γ.1Γ

Γ.A[ttΓ] Γ.1Γ.A

Γ Γ.1Γ.

ttΓ

a urecA,a

ttΓ.A

πA[ttΓ] πA

ttΓ

⌟

This is the corrected version of the definition of a unit type from [LW15, Definition 3.4.4.5]. There was
a mistake in the original paper, which was confirmed over email by the first author: In the paper, the
third requirement is stated as urecA,a ◦ ttΓ = a.

5.3 Π- and Σ- Types

Dependent product and sum types can be expressed as certain fibred adjunctions or equivalently as
fibrewise adjunctions plus an additional condition on the fibred adjunctions being compatible with
reindexing: the ”Beck-Chevalley” condition. Here, we focus on the latter approach. The equivalent
definition of a comprehension category with products and sums using fibred adjunctions is stated in
[Jac93, Section 5].

Dependent product types correspond to right adjoints to weakening functors, and dependent sum
types correspond to left adjoints to weakening functors. In the following definition, this is expressed
using fibrewise adjunctions plus a Beck-Chevalley condition, which states that the adjunctions com-
mute with reindexing. Recall from Section 5.1.6 that weakening functors are reindexing functors of
form π∗

A where A ∈ T .

Definition 5.19 ([Jac93, Section 5]). A comprehension category has products (sums) if

1. for every A ∈ TΓ, every weakening functor π∗
A : TΓ → TΓ.A has a right adjoint ∏A : TΓ.A → TΓ

(left adjoint ∑A):

TΓ.A TΓ
∏A

π∗
Aa (TΓ TΓ.A);

π∗
A

∑Aa

2. the Beck-Chevalley condition holds, which means that for each s : Γ → ∆ in C and A ∈ T∆,
the natural transformation s∗ ∏A ⇒ ∏s∗A(s.A)∗ (∑s∗A(s.A)∗ ⇒ s∗ ∑A) is an isomorphisms.
Note that s.A : Γ.s∗A → ∆.A is χ0sA.

Remark 5.20. The natural transformation s∗ ∏A ⇒ ∏s∗A(s.A)∗ mentioned in Definition 5.19 comes
from:

T∆.A TΓ.s∗A TΓ

T∆.A T∆ TΓ,

(s.A)∗ ∏s∗A

∏A

π∗
A

s∗

π∗
s∗A

ϵ

η

∼=

44 Chapter 5. Interpretation of Dependent Type Theories

where η and ϵ are the unit and counit of the corresponding adjunctions, and the middle isomorphism
is weakening commuting with substitution up to isomorphism, i.e. πs∗As∗ ∼= (s.A)∗π∗

A. From Re-
mark 3.17, we have (s.A)∗ ◦π∗

A
∼= (πA ◦ sA)

∗, and we get the isomorphism using πA ◦ s.A = s ◦πs∗A
from the following commuting square corresponding to χsA:

Γ.s∗A ∆.A

Γ ∆.

s.A

πs∗A πA

s

5.3.1 Interpretation of Π-Types

Type theoretic dependent product types are interpreted in a comprehension category with products
by interpreting the formation, introduction, elimination, computation and η−reduction rules. The
formation rule is interpreted as the action of ∏A on the objects of TΓ.A for each A ∈ TΓ. Each
B ∈ TΓ.A, which corresponds to the judgement Γ.x : A ` B type, can be seen as a type B that contains
a variable of type A.

To be able to interpret the other four rules, it suffices to have a bijection between the terms f of
type ∏A B and terms b of type B in context Γ.A, where a is a term of type A in context Γ. Hence, in
a comprehension category with products we want to have a bijection between pairs of sections f of
π∏A B : Γ. ∏A B → Γ and sections b of πB : Γ.B → Γ:

section f of π∏A B

section b of πB

First, we obtain amap from sections of π∏A B to sections of πB using Lemma 4.9 and the adjunction.
Given a section f of π∏A B, we can obtain a section tπ∗

A(∏A B) of ππ∗
A(∏A B) using Lemma 4.9. For

A ∈ TΓ, B ∈ TΓ.A and each section f : Γ → Γ. ∏A B of π∏A B, we get a unique section of ππ∗
A(∏A B)

from the following diagram, where we have the pullback square from Lemma 4.9 and the outer diagram
commutes as f is a section of π∏A B:

Γ.A Γ

Γ.A.π∗
A(∏A B) Γ. ∏A B

Γ.A Γ.

πA

tπ∗
A(∏A B)

f

ππ∗
A(∏A B)

⌟
π∏A B

πA

The desired map maps f to (χ0ϵB) ◦ t, where ϵ is the counit of the adjunction, ϵB : π∗
A(∏A B) → B

and χ0ϵB : Γ.A.π∗
A(∏A B) → Γ.A.B.

This map, together with the substitution rule, is reflected in the type theory as the elimination rule
of the dependent product type, i.e. the application of a term f : ∏A B to a variable of type A. To show
that this map is an isomorphism, however, doesn’t come for free in comprehension categories with

5.3. Π- and Σ- Types 45

product. In the following lemma, we discuss that this map is an isomorphism if and only if χ preserves
products, which is if and only if we have C/∆(s, π∏A B) ∼= C/∆.A(s.A, πB) for each Γ, ∆ ∈ C ,
A ∈ T∆ and B ∈ T∆.A and s : Γ → ∆. This means that the type-theoretic dependent product type can
be interpreted in a comprehension category with products where χ preserves products. We also show
that this condition holds in a comprehension category with unit.

Definition 5.21 ([Jac93, Section 5.1]). In a comprehension category, χ preserves products if and only if

C/∆(s, π∏A B) ∼= C/∆.A(s.A, πB)

for each Γ, ∆ ∈ C , A ∈ T∆ and B ∈ T∆.A and s : Γ → ∆. This means that χ preserves products if and
only if there is a bijection between commuting diagrams of the form

Γ ∆. ∏A B

∆
s π∏A B

and
Γ.A ∆.A.B

∆.A
s.A πB

in C .

Lemma 5.22 ([Jac93, Lemma 5.2]). In a comprehension category with products, the following two state-
ments are equivalent for each A ∈ TΓ and B ∈ TΓ.A:

1. there is a bijection between sections of π∏A B and sections of πB;

2. χ preserves products.

Proof. Let Γ, ∆ ∈ C , A ∈ T∆ and B ∈ T∆.A and s : Γ → ∆. For brevity, we write {sections of πA}
for {tA : Γ → Γ.A|πA ◦ tA = 1Γ}. First we show that {sections of π∏A B} ∼= {sections of πB} then
C/∆(s, π∏A B) ∼= C/∆.A(s.A, πB):

C/∆(s, π∏A B) ∼= C/Γ(idΓ, πs∗(∏A B)) (by Lemma 4.11)
= {sections of πs∗ ∏A B}
∼= {sections of π∏s∗A((s.A)∗B)} (by Beck-Chevalley)
∼= {sections of π(s.A)∗B} (by assumption)
= C/Γ.A(idΓ.A, π(s.A)∗B)

∼= C/∆.A(s.A, πB). (by Lemma 4.11)

Conversely, if C/∆(s, π∏A B) ∼= C/∆.A(s.A, πB) then {sections of π∏A B} ∼= {sections of πB} :

{sections of π∏A B} = C/∆(id∆, π∏A B)
∼= C/∆.A(id∆.A, πB) (by assumption)
∼= C/∆.A(id∆, πB) (by Remark 3.17)
= {sections of πB}.

Lemma 5.23 ([Jac93, Lemma 5.3]). A comprehension category with unit preserves products.

46 Chapter 5. Interpretation of Dependent Type Theories

Proof. Let Γ, ∆ ∈ C , A ∈ T∆ and B ∈ T∆.A and s : Γ → ∆. For brevity, we write {sections of πA}
for {tA : Γ → Γ.A|πA ◦ tA = 1Γ}. Using Lemma 5.22, we need to show that {sections of π∏A B} ∼=
{sections of πB}:

{sections of π∏A B} ∼= TΓ(1Γ, ∏
A

B) (by part 1 of Lemma 5.11)

∼= TΓ.A(π
∗
A1Γ, B) (by the adjunction in Definition 5.19)

∼= TΓ.A(1Γ.A, B) (by requirement 2 of Definition 5.6)
∼= {sections of πB}. (by part 1 of Lemma 5.11)

5.3.2 Interpretation of Σ-Types

Similar to the Π-types, the interpretation of the formation rule of Σ-types for Γ ` A type and Γ.x : A `
B type is the action of ∑‖A‖ ‖B‖, left adjoint to π∗

‖A‖, on the objects of T‖Γ.A‖. To be able to interpret
the introduction, elimination and computation rules, it suffices to have the following bijection in a
comprehension category with sums:

{sections of π∑‖A‖ ‖B‖} ∼= {(a, b)|a is a section of π‖A‖ and b is a section of π‖B‖[a]}

We get this bijection if the contexts ‖Γ.A‖.‖B‖ and ‖Γ‖. ∑‖A‖ ‖B‖ are isomorphic. This means
that we can interpret Σ-types in a comprehension category with sums, if for each Γ ∈ C , A ∈ TΓ and
B ∈ TΓ.A, χ0(πA∑A B ◦ ηB) : Γ.A.B → Γ. ∑A B is an isomorphism, where πA∑A B is the lift of πA into
∑A B and η is the unit of the adjunction. Hence, we have the following definition of a comprehension
category with strong sums:

Definition 5.24 ([Jac93, Definition 5.8]). A comprehension category has strong sums if it has sums in
such a way that for each Γ ∈ C , A ∈ TΓ and B ∈ TΓ.A, the following map is an isomorphism:

χ0(πA∑A B ◦ ηB) : Γ.A.B → Γ. ∑
A

B.

Σ-types are interpreted in a comprehension category with strong sums.

Example 5.25 ([Jac93, Example 5.14 (iv)]). The construction discussed in Section 4.1 applied to a type
theory with unit type, Π-types and Σ-types yields a full comprehension category with unit, product
and strong sum.

5.3.3 Interpretation of Weak Σ-Types

For Σ-types with a weak elimination rule, as discussed in Section 3.2.5, we require the following bijec-
tion in a comprehension category with sums for each Γ ∈ C , A, C ∈ TΓ and B ∈ TΓ.A:

{sections of ππ∗
B(π

∗
AC)} ∼= {sections of ππ∗

(∑A B)C
},

which corresponds to the following bijection in the type theory:

Γ.z : ∑x:A B ` t : C

Γ.x : A.y : B ` t′ : C

5.3. Π- and Σ- Types 47

Lemma 5.26 ([Jac93, Section 5.5]). In a full comprehension category with sums, we have the following
bijection:

{sections of ππ∗
B(π

∗
AC)} ∼= {sections of ππ∗

(∑A B)C
}.

Proof.

{sections of ππ∗
B(π

∗
AC)} ∼= TΓ(∑

A
B, C) by Lemma 4.12

∼= TΓ.A(B, π∗
AC) (by the adjunction

in Definition 5.19)
∼= {sections of ππ∗

(∑A B)C
} (by Lemma 4.12

Hence, weak Σ-types can be interpreted in a full comprehension category with sums.

5.3.4 Extended Example : (Set, Set→, 1, cod)

We saw in Section 5.1.8 and Example 5.16 that (Set, Set→, 1, cod) is a full split comprehension category
with unit. We also saw how a type theory with unit type is interpreted in this comprehension category.
Now, we discuss whether (Set, Set→, 1, cod) has strong sums (products), and whether a type theory
with Σ-types (Π- types) can be interpreted in this comprehension category.

Proposition 5.27 ([Jac93, Examples 5.14(i)]). If C has finite limits, the identity comprehension category
from Example 4.6 is full with unit and strong sums.

Set has finite limits; hence, by Proposition 5.27 the comprehension category (Set, Set→, 1, cod) is
full with unit and strong sums. This means that we can interpret a type theory with unit and Σ-types
in (Set, Set→, 1, cod) as explained in Section 5.3.2. We have already seen the interpretation of unit
type in this comprehension category in Example 5.16. Now we discuss Σ-types.

To interpret Σ-types in this comprehension category we need an adjunction and a Beck-Chevalley
condition as explained in Definition 5.19. We also need the isomorphism corresponding to strong
sums given in Definition 5.24. For the adjunction we need a left adjoint to the pullback functor π∗

A. A
candidate for this left adjoint is πA ◦ −:

Set/Γ Set/Γ.A.
π∗

A

πA◦−a

To show that this is an adjunction, we need to show the following bijection for each πA, πC ∈ Set/Γ
and πB ∈ Set/Γ.A:

Set/Γ(πA ◦ πB, πC) ∼= Set/Γ.A(πB, πΓ.A×ΓΓ.C),

where πΓ.A×ΓΓ.C is the first projection of the pullback, and that this is natural in πB and πC. The
construction is as follows.

1. For each f ∈ Set/Γ(πA ◦πB, πC)we can get a f ′ ∈ Set/Γ.A(πB, πΓ.A×ΓΓ.C) by b 7→ (πBb, f b)
for each b ∈ Γ.A.B. This works because πA(πB(b)) = πc(f (b)) from the definition of f .

48 Chapter 5. Interpretation of Dependent Type Theories

2. For each f ∈ Set/Γ.A(πB, πΓ.A×ΓΓ.C) we can get a f̄ ∈ Set/Γ(πA ◦ πB, πC) by f̄ := π2 ◦ f .
Thisworks because from the definition of f wehaveπ1 ◦ f = πB; hence, πA ◦π1 ◦ f = πA ◦πB,
which gives πC ◦ π2 ◦ f = πA ◦ πB using the commutativity of the following pullback square:

Γ.A ×Γ Γ.C Γ.C

Γ.A Γ.

π2

π1
⌟

πc

πA

3. Nowwe show that f ′ = f for each f ∈ Set/Γ(πA ◦πB, πC). f ′ sends b ∈ Γ.A.B toπ2(πBb, f b)
which is f b; hence, f ′ = f by functional extensionality.

4. We also show that (f̄)′ = f for each f ∈ Set/Γ.A(πB, πΓ.A×ΓΓ.C). (f̄)′ = f sends b ∈ Γ.A.B
to (πBb, π2(f b). We know from the definition of f that πBb = π1(f b); hence, (πBb, π2(f b) =
(π1(f b), π2(f b)) = f b and (f̄)′ = f by functional extensionality.

For naturality, we need to show that for each g : Set/Γ.A(πB2 , πB1) and h : SetΓ(πC1 → πC2), we
have the following commuting square:

Set/Γ(πA ◦ πB1 , πC1) Set/Γ.A(πB1 , πΓ.A×ΓΓ.C1)

Set/Γ(πA ◦ πB2 , πC2) Set/Γ.A(πB2 , πΓ.A×ΓΓ.C2).

∼=

hom((πA◦−)g,h) hom(g,π∗
Ah)

∼=

This concludes showing πA ◦ − is left adjoint to π∗
A.

For the Beck-Chevalley condition to hold, for each s : Γ → ∆ in Set, πA ∈ Set/∆ and πB ∈
Set/Γ.A we need:

πs∗πA ◦ (s∗AπB) ∼= s∗(πA ◦ πB).

We have πs∗πA ◦ (s∗AπB) = s∗(πA ◦ πB) from the following pullback square:

P2 ∆.A.B

P1 ∆.A

Γ ∆,

s∗AπB πB

sA

s∗πA πA

s

⌟

⌟

where P1 is the pullback of πA along s and P2 is the pullback of πB along sA. Lastly, we show that
sums defined this way are strong sums. In this comprehension category, for each πB ∈ Set/Γ.A
we have dom(πA ◦ πB) = Γ.A.B; hence, the isomorphism corresponding to strong sums given in
Definition 5.24 is Γ.A.B ∼= Γ.A.B which holds.

This means that for each context Γ, type A in context Γ and type B in context Γ.A, we can interpret
∑A B as ‖A‖ ◦ ‖B‖.

Now, we see whether Π-types can be interpreted in this comprehension category as discussed in
Section 5.3.1.

5.3. Π- and Σ- Types 49

Definition 5.28. A category C is locally cartesian closed if and only if all of its slice categories C/X are
cartesian closed, i.e. they have all finite products and all exponentials.

Proposition 5.29 ([Jac93, Examples 5.14(i)]). The identity comprehension category (C, C→, 1, cod) is a
full comprehension category with unit, products and strong sums if and only if C is locally cartesian closed.

Set is locally cartesian closed; hence, from Proposition 5.29 we have that (Set, Set→, 1, cod) is a
full comprehension category with unit, products and strong sums. This means that we can interpret
Π- types in this comprehension category as well.

For Π- types, we need an adjunction and a Beck-Chevalley condition of the forms given in Defini-
tion 5.19. In addition to this, we need 1 : Set→ → Set→ to preserve products.

It is explained in [Jac99, Exercise 1.3.3] and [Jac99, Proposition 1.9.8] that for πA ∈ Set/Γ, the
adjunction corresponding to Π-types is given by:

Set/Γ.A Set/Γ,
ΠπA

π∗
Aa

where for each πB ∈ Set/Γ.A, ΠπA πB is the domain of the following equaliser in Set/Γ:

ΠπA πB (πA ◦ πB)
πA ππA

A .e

πB◦−

1πA

In other words, ΠπA πB is the set of all sections s : Γ.A → Γ.A.B of πB such that πA ◦ πB ◦ s = πA.
For this to be an adjunction, we need to show:

Set/Γ.A(π∗
A(πC), πB) ∼= Set/Γ(πC, ΠπA πB),

for each πC ∈ Set/Γ and πB ∈ Set/Γ.A and a naturality condition. This is given by the following
natural isomorphism from (πA ◦ πB) being an exponential object:

Set/Γ(πC, (πA ◦ πB)
πA) ∼= Set/Γ(πC × πA, πA ◦ πB),

and πC × πA in Set/Γ being πA ◦ π∗
A(πC) in Set.

[Jac99, Lemma 1.9.7] states that in fibration for which each reindexing functor has both a left and
a right adjoint, the Beck-Chevalley holds for sums if and only if it holds for products. We have already
shown that the Beck-Chevalley condition holds for sums; hence, it also holds for products. Lastly, 1
preserves products by the definition of ΠπA πB and Lemma 5.22.

This means that for each context Γ, type A in context Γ and type B in context Γ.A, we can interpret
∏A B to be Π‖A‖‖B‖ in Set/Γ, which is the set of all sections s : ‖Γ.A‖ → ‖Γ.A.B‖ of ‖B‖ such
that ‖A‖ ◦ ‖B‖ ◦ s = ‖A‖.

5.3.5 Extended Example : No Type Dependency

We know from Examples 5.5 and 5.17 that (Set, Set,PSet, π1) is a full split comprehension category
with unit. Continuing the interpretation given in Section 5.1.9 and Example 5.17, we now discuss
whether this category has strong sums (products), and whether a type theory with Σ-types (Π- types)
can be interpreted in this comprehension category. Since there is no type dependency in the type
theory, we expect the interpretation of Σ-types to coincide with that of dependent product type and

50 Chapter 5. Interpretation of Dependent Type Theories

the interpretation of Π-types to coincide to that of (non-dependent) function types as explained in
Sections 3.2.4 and 3.2.5.

Proposition 5.30 ([Jac93, Examples 5.14(ii)]). If C has finite products, (C, C̄,PC , π1) is full with unit and
strong sums. This comprehension category is full with unit, products and strong sums if and only if C is
cartesian closed.

Set is cartesian closed; hence, by Proposition 5.30 the comprehension category (Set, Set,PSet, π1)
is full with unit, strong sums and products. This means that we can interpret Σ-types in a type theory
with no type dependency in (Set, Set,PSet, π1) as explained in Section 5.3.2. To check if we can inter-
pret Π-types in this comprehension category as explained in Section 5.3.1 we need to check whether
PSet preserves products or not.

We start with Σ-types. To interpret Σ-types in this comprehension category we need an adjunc-
tion of the form given in part 1 of Definition 5.19, a Beck-Chevalley condition as explained in part 2
of Definition 5.19, and the isomorphism corresponding to strong sums given in Definition 5.24. The
adjunction for Σ-types is:

SetΓ SetΓ×A.
π∗

A

(π1,A×−)

a

This is an adjunction since for each Γ, A, B, C : Set and (Γ × A, B), (Γ, A), (Γ, C) : Set we have the
following bijection:

SetΓ((Γ, A × B), (Γ, C)) ∼= SetΓ×A((Γ × A, B), (Γ × A, C)),

using Γ × (A × B) = (Γ × A)× B, natural in (Γ, C) and (Γ × A, B).
For the Beck-Chevalley condition to hold s∗A × (s.A)∗ ⇒ s∗(A ×−) should be an isomorphism

for each s : Γ → ∆ in Set and (∆, A) ∈ Set∆. From Section 5.1.9 we know that in this comprehension
category sA = 1A and s∗A = A, so the natural transformation of the Beck-Chevalley condition is
A × − ⇒ A × − which is an isomorphism. For the comprehension category to have strong sums
Γ.A.B should be isomorphic to Γ. ∑A B for each Γ : Set, (Γ, A) ∈ SetΓ and (Γ × A, B) ∈ SetΓ×A (See
Definition 5.24), but in this comprehension category these two sets coincide.

This means that for each context Γ and types A and B in context Γ, the Σ-type ∑A B is interpreted
as an object (‖Γ‖, ‖A‖ × ‖B‖) in SetΓ. This coincides with the interpretation of product type A × B
defined as follows:

Γ ` A, B type
×-form

Γ ` A × B type

Γ ` A, B type Γ ` x : A Γ ` y : B
×-intro

Γ ` (x, y) : A × B

Γ ` A, B type Γ ` z : A × B
×-elim

Γ ` p1(z) : A
Γ ` p2(z) : B

Γ ` A, B type Γ ` x : A Γ ` y : B
×-comp

Γ ` p1((x, y)) ≡ x : A
Γ ` p2((x, y)) ≡ y : B

5.3. Π- and Σ- Types 51

The projections are called p1 and p2 (instead of the usual π1 and π2 notation), to distinguish between
these and the projections of a categorical product.

The interpretation of the given product type in (Set, Set,PSet, π1) is as follows.

1. For context Γ and types A and B in context Γ, the type A × B is interpreted as an object
(‖Γ‖, ‖A‖ × ‖B‖) in Set‖Γ‖.

2. For the introduction rule, we have ‖x‖ : ‖Γ‖ → ‖Γ‖ × ‖A‖ such that π1 ◦ ‖x‖ = 1‖Γ‖ and
‖y‖ : ‖Γ‖ → ‖Γ‖ × ‖B‖ such that π1 ◦ ‖y‖ = 1‖Γ‖ (see Section 5.1.9). We define ‖(x, y)‖ as
〈1Γ, 〈‖x‖, ‖y‖〉〉 : ‖Γ‖ → ‖Γ‖ × (‖A‖ × ‖B‖), which satisfies π1 ◦ ‖(x, y)‖ = 1‖Γ‖.

3. For the elimination rule, we have ‖z‖ : ‖Γ‖ → ‖Γ‖× (‖A‖× ‖B‖) such that π1 ◦ ‖z‖ = 1‖Γ‖.
We define ‖p1(z)‖ as 〈1Γ, π1‖A‖×‖B‖ ◦ π2‖Γ‖×(‖A‖×‖B‖) ◦ ‖z‖〉 : ‖Γ‖ → ‖Γ‖× ‖A‖, which satisfies
π1 ◦ ‖p1(z)‖ = 1‖Γ‖. Similarly, we can define ‖p2(z)‖ as 〈1Γ, π2‖A‖×‖B‖ ◦ π2‖Γ‖×(‖A‖×‖B‖) ◦ ‖z‖〉 :
‖Γ‖ → ‖Γ‖ × ‖B‖, which satisfies π1 ◦ ‖p2(z)‖ = 1‖Γ‖

4. For the computation rule, we have ‖x‖ : ‖Γ‖ → ‖Γ‖ × ‖A‖ such that π1 ◦ ‖x‖ = 1‖Γ‖ and
‖y‖ : ‖Γ‖ → ‖Γ‖×‖B‖ such that π1 ◦ ‖y‖ = 1‖Γ‖. We need to check whether ‖p1((x, y))‖ =
‖x‖, and ‖p2((x, y))‖ = ‖y‖. From the interpretation of the introduction and elimination rule
we have:

‖p1((x, y))‖ = 〈1Γ, π1‖A‖×‖B‖ ◦ π2‖Γ‖×(‖A‖×‖B‖) ◦ ‖(x, y)‖〉
= 〈1Γ, π1‖A‖×‖B‖ ◦ π2‖Γ‖×(‖A‖×‖B‖) ◦ 〈1Γ, 〈‖x‖, ‖y‖〉〉〉
= 〈1Γ, π1‖A‖×‖B‖ ◦ 〈‖x‖, ‖y‖〉〉
= 〈1Γ, ‖x‖〉
= ‖x‖.

Similarly, one can show ‖p2((x, y))‖ = ‖y‖.

Next, we move to Π-types. Similar to the previous case, we need an adjunction and a Beck-
Chevalley condition of the forms given in Definition 5.19. In addition to this, we need PSet to preserve
products. The adjunction corresponding to Π-types is:

SetΓ×A SetΓ.
(π1,(−)A)

π∗
Aa

Here (−)A sends B to the exponential BA, which in Set is the set of all functions from A to B. This is an
adjunction since for each Γ, A, B, C : Set and (Γ × A, B), (Γ, A), (Γ, C) : Set, we have the following
bijection:

SetΓ×A((Γ × A, C), (Γ × A, B)) ∼= SetΓ((Γ, C), (Γ, BA)),

natural in (Γ× A, B) and (Γ, BA). This is because there is a uniquemorphism of the form Γ×C → BA

for each morphism of the form Γ × C × A → B in Set, by the definition of exponentials.
For the Beck-Chevalley condition to hold s∗(−)A ⇒ ((s.A)∗(−))s∗A should be an isomorphism

for each s : Γ → ∆ in Set and (∆, A) ∈ Set∆. From Section 5.1.9 we know that in this comprehension
category sA = 1A and s∗A = A, so the natural transformation of the Beck-Chevalley condition is
(−)A ⇒ (−)A, which is an isomorphism.

52 Chapter 5. Interpretation of Dependent Type Theories

It remains to check whether PSet preserves products defined this way. PSet preserves products if
and only if there is a bijection between the commuting diagrams of the form

Γ ∆ × BA

∆
s π1

and
Γ × A ∆ × A × B

∆ × A
s×1A π1

for each Γ, ∆ ∈ Set, (∆, A) ∈ Set∆, (∆ × A, B) ∈ Set∆×A and s : Γ → ∆ in Set (see Definition 5.21).
Morphisms that make the left diagram commute are of the form 〈s, f 〉 where f : Γ → BA, and
morphisms that make the right diagram commute are of the form 〈π1 ◦ (s × 1A), 〈π2, g〉〉 where g :
Γ × A → B. By the definition of exponentials there is a bijection between Set(Γ, BA) and Set(Γ ×
A, B); hence, PSet preserves products.

This means that for each context Γ, type A in context Γ and type B in context Γ.A, the Π-type
∏A B is interpreted as (‖Γ‖, ‖B‖‖A‖) in Set‖Γ‖, where ‖B‖‖A‖ is the set of all functions from ‖A‖
to ‖B‖. This coincides with the interpretation of (non-dependent) function type A → B defined as
follows:

Γ ` A, B type
func-form

Γ ` A → B type

Γ ` A, B type Γ.x : A ` b : B
func-intro

Γ ` (λx : A.b) : A → B

Γ ` A, B type Γ ` f : A → B
func-elim

Γ.x : A ` f @x : B

Γ ` A, B type Γ.x : A ` b : B
func-beta

Γ.x : A ` (λx : A.b)@x ≡ b : B

Γ ` A, B type Γ ` f : A → B
func-eta

Γ ` (λx : A. f @x) ≡ f : A → B

For context Γ and types A and B in context Γ, the type A → B is interpreted as an object (‖Γ‖, ‖B‖‖A‖)
in Set‖Γ‖. For the introduction rule, we have ‖b‖ : ‖Γ‖ × ‖A‖ → (‖Γ‖ × ‖A‖) × ‖B‖ such that
π1 ◦ ‖b‖ = 1‖Γ‖×‖A‖. For an exponential object BA, we have an evaluation map evBA : BA × A → B,
which is universal in the sense that for each e : C × A → B, there exists a unique u : C → BA

such that ev ◦ (u × 1A) = e. Hence, for the exponential object ‖B‖‖A‖ and morphism π2 ◦ ‖b‖ :
‖Γ‖ × ‖A‖ → ‖B‖, there exists a unique uπ2◦‖b‖ : ‖Γ‖ → ‖B‖‖A‖ such that:

ev‖B‖‖A‖ ◦ (uπ2◦‖b‖ × 1‖A‖) = π2 ◦ ‖b‖. (5.2)

The interpretation of (λx : A.b) is defined as follows:

‖(λx : A.b)‖ : ‖Γ‖ → ‖Γ‖ × ‖B‖‖A‖ := 〈1‖Γ‖, uπ2◦‖b‖〉.

5.3. Π- and Σ- Types 53

For the elimination rule, we have ‖ f ‖ : ‖Γ‖ → ‖Γ‖ × ‖B‖‖A‖ such that π1 ◦ ‖ f ‖ = 1‖Γ‖. The
interpretation of f @x is defined as follows:

‖ f @x‖ : ‖Γ‖ × ‖A‖ → (‖Γ‖ × ‖A‖)× ‖B‖ := 〈1‖Γ‖×‖A‖, ev‖B‖‖A‖ ◦ (π2 ◦ ‖ f ‖ × 1‖A‖)〉.

For the β−conversion rule we need to show:

‖(λx : A.b)@x‖ = 〈1‖Γ‖×‖A‖, ev‖B‖‖A‖ ◦ (uπ2◦‖b‖ × 1‖A‖)〉 = ‖b‖,

which is give by Eq. (5.2). For the η−conversion rule we need to show:

‖(λx : A. f @x)‖ = 〈1‖Γ‖, uπ2◦‖ f @x‖〉 = f ,

where π2 ◦ ‖ f @x‖ = ev‖B‖‖A‖ ◦ (π2 ◦ ‖ f ‖ × 1‖A‖). This is given by uπ2◦‖ f @x‖ being the unique
morphism that satisfies π2 ◦ ‖ f @x‖ = ev‖B‖‖A‖ ◦ (uπ2◦‖ f @x‖ × 1‖A‖).

55

Chapter 6

Type Theory Extracted from the Semantics

We have seen in Chapter 5 how MLTT can be interpreted in a full split comprehension category. All
comprehension categories, however, are not full and split. One expects that more general dependent-
type theories can be interpreted in comprehension categories that are not full and split. For example, a
type theory with a weaker notion of substitution where substitution is “functorial” only up to isomor-
phism, as opposed to MLTT which has strictly functorial substitution, can be interpreted in a non-split
comprehension category, as discussed in Section 5.1.5. In much of the literature, however, comprehen-
sion categories are taken to be full [LW15]. This arises due to how terms of MLTT are interpreted in a
comprehension category as sections of the projection context morphisms in the category of contexts.

Usually, one proposes semantics for a type theory by considering the requirements that the cate-
gory should have such that it is possible to interpret the components of the type theory in it. One can
study the general type theories that can be interpreted in a certain semantic framework by starting
from the semantics and deriving the syntax of a type theory such that all the structure of the semantic
framework is reflected in the type theory. If soundness and completeness of the rules of the type the-
ory with respect to the class of models is proven, then this type theory is called the internal language
of the semantic framework.

Soundness means that if a judgement can be derived in the type theory from certain premises, then
this result also holds for every model of the type theory given the premises. One can prove soundness
by giving an interpretation of the type theory in every model. The converse of the soundness theorem
is the completeness theorem, which states that if a statement holds for every model of the type theory,
it can also be derived from the type theory. Given a class of models and their internal language one
can show a certain property of the type theory by showing the semantic counterpart in the models
and vice versa.

Some examples of internal languages are as follows. Simply typed lambda calculus is the internal
language of cartesian closed categories [LS88]. Extensional dependent type theories are the internal
language of locally cartesian closed categories [See84; CD11; CGH14]. In categorical logic, first order
logic is the internal language of hyperdoctrines [See84].

In this section we investigate type theories that can be interpreted in comprehension categories
which are not necessarily full. For this, in section Section 6.1 we introduce a type theory with rules
extracted from the structure of comprehension categories such that all categorical structures are re-
flected in the type theory. We also show the soundness of the rules of the derived type theory by
providing an interpretation of this type theory in comprehension categories in Section 6.2. Showing
completeness, and showing that this type theory is the internal language of comprehension categories,
is left for future work.

The type theory is then compared to MLTT to highlight the differences of a type theory that is
interpreted in comprehension categories and MLTT which has full split comprehension categories as
a model. The main differences between this type theory and MLTT is that the terms in this type theory

56 Chapter 6. Type Theory Extracted from the Semantics

are interpreted as morphisms in the category T of types, and that substitution in this type theory is
functorial only up to isomorphism. This is contrary to MLTT where terms are interpreted as certain
morphisms in C , particularly sections of the projection context morphisms, and substitution is strictly
functorial. These two differences result from there being no requirement on fullness and splitness,
respectively.

We then propose how unit type can be added to this type theory and investigate the requirements
for having a semantic one-to-one correspondence between the terms of this type theory and the terms
of MLTT in Section 6.4.

6.1 Judgements and Structural Rules

In this section, we derive the judgements and structural rules of a type theory with explicit substitution
from a comprehension category (C, T , χ, p), where C has a terminal object, without requiring that χ
preserves cartesian morphisms. This is a weaker notion of a comprehension category where cartesian
morphisms in T do not correspond to pullback squares in C . In addition to this, we do not impose any
requirements of fullness and splitness on the comprehension category.

6.1.1 Judgements

The judgements of the type theory are as follows:

1. Γ ctx, which is read as “Γ is a context”;

2. Γ ` s : ∆, which is read as “s is a substitution from Γ to ∆”, where Γ, ∆ ctx;

3. Γ ` s ≡ s′ : ∆, which is read as “s is equal to s′”, where Γ ` s, s′ : ∆;

4. Γ ` A type, which is read as “A is a type in context Γ”, where Γ ctx;

5. Γ|A ` t : B, which is read as “t is a term of type B depending on A in context Γ”, where
Γ ` A, B type;

6. Γ|A ` t ≡ t′ : B, which reads as “t and t′ are equal”, where Γ|A ` t, t′ : B.

The judgement Γ ` s : ∆ can also be read as “s is a context morphism from Γ to ∆”, since this
judgement is interpreted as ‖s‖ being a morphism in the category of contexts C from ‖Γ‖ to ‖∆‖ (see
Section 6.2). Similarly, the judgement Γ|A ` t : B can also be read as “t is a type morphism from A
to B”. Judgements 2 and 5 are the same as the corresponding judgements in the type theory derived
from comprehension bicategories in [ANW23].

Unlike Martin-Löf type theory, this type theory has explicit substitution in the syntax in the sense
discussed in [Aba+91]. Another difference between this type theory and Martin-Löf type theory is the
terms. As we will see in Section 6.2, the terms of this type theory are interpreted as morphisms in
T , whereas as discussed in Section 5.1, the terms of Martin-Löf type theory are interpreted as certain
morphisms in C , particularly the sections of the projection context morphisms from extended contexts
to the original contexts. We will refer to the particular context morphisms which are interpreted as a
section of a projection context morphism as MLTT terms.

Notation 6.1. Similar to [ANW23, Section 8], we define the following notations that stand for four
judgements, which use the composition and identities introduced in Rules ctx-mor-id, ctx-mor-comp,
ty-mor-id and ty-mor-comp.

6.1. Judgements and Structural Rules 57

1. Γ
∼
` s : ∆ stands for the following four judgements:

• Γ ` s : ∆

• ∆ ` s−1 : Γ

• ∆ ` s ◦ s−1 ≡ 1∆ : ∆

• Γ ` s−1 ◦ s ≡ 1Γ : Γ

2. Γ|A
∼
` t : B stands for the following four judgements:

• Γ|A ` t : B

• Γ|B ` t−1 : A

• Γ|B ` t ◦ t−1 ≡ 1B : B

• Γ|A ` t−1 ◦ t ≡ 1A : A

Notation 6.2. We use the notation Γ ` t : A to refer to MLTT style terms. This means that we use the
following notations for MLTT style terms, which stand for multiple judgements.

1. Γ ` t : A stands for the following two judgements:

• Γ ` t : Γ.A

• Γ ` πA ◦ t ≡ 1Γ : Γ

2. Γ ` t ≡ t′ : A stands for the following five judgements:

• Γ ` t : Γ.A

• Γ ` πA ◦ t ≡ 1Γ : Γ

• Γ ` t′ : Γ.A

• Γ ` πA ◦ t′ ≡ 1Γ : Γ

• Γ ` t ≡ t′ : Γ.A

Note that MLTT style terms are not part of the syntax of this type theory. This notation is only used
for brevity, as sections of projections are frequently used.

When referring to a rule that uses one of these notations, it is clear from the context which judge-
ment is used.

6.1.2 Rules for Context and Type Morphisms

From the category C of context we derive the following rules.

Γ ctx ctx-mor-id
Γ ` 1Γ : Γ

Γ, ∆, Θ ctx Γ ` s : ∆ ∆ ` s′ : Θ ctx-mor-comp
Γ ` s′ ◦ s : Θ

Γ, ∆ ctx Γ ` s : ∆
ctx-id-unit-r

Γ ` s ◦ 1Γ ≡ s : ∆

58 Chapter 6. Type Theory Extracted from the Semantics

Γ, ∆ ctx Γ ` s : ∆
ctx-id-unit-l

Γ ` 1∆ ◦ s ≡ s : ∆

b Γ, ∆, Θ, Φ ctx Γ ` s : ∆ ∆ ` s′ : Θ Θ ` s′′ : Φ ctx-comp-assoc
Γ ` s′′ ◦ (s′ ◦ s) ≡ (s′′ ◦ s′) ◦ s : Φ

Rule ctx-mor-id is derived from the identity morphisms in C and Rule ctx-mor-comp is derived from
the composition of morphisms in C . Such definitions of identity context morphism and the composi-
tion of context morphisms are in line with the definitions given in Examples 3.30 and 3.32 for identity
and composition of context morphisms in Martin-Löf type theory. Rules ctx-id-unit-r and ctx-id-unit-l
are derived from the left and right unit laws of identity in category C , and are in line with Proposi-
tion 3.40 about Martin-Löf type theory. Lastly, Rule ctx-comp-assoc is derived from the associativity
of composition in C , which is in line with Proposition 3.39 about Martin-Löf type theory.

From category C having a terminal object we derive the following rules.

empty-ctx� ctx

Γ ctx empty-ctx-mor
Γ ` 〈〉Γ : �

Γ ctx Γ ` s : � empty-ctx-mor-unique
Γ ` s ≡ 〈〉Γ : �

Rule empty-ctx is derived from C having a terminal object. Rules empty-ctx-mor and empty-ctx-mor-
unique are derived from the universal property of the terminal object. This means that empty context
is a well-formed context in the type theory and there is a unique substitution from each context Γ to
the empty context, which is also the case for Martin-Löf type theory as discussed in Example 3.26.

From the category T of types we derive the following rules.

Γ ctx Γ ` A type
ty-mor-id

Γ|A ` 1A : A

Γ ctx Γ ` A, B, C type Γ|A ` t : B Γ|B ` t′ : C
ty-mor-comp

Γ|A ` t′ ◦ t : C

Γ ctx Γ ` A, B type Γ|A ` t : B
ty-id-unit-r

Γ|A ` t ◦ 1A ≡ t : B

Γ ctx Γ ` A, B type Γ|A ` t : B
ty-id-unit-l

Γ|A ` 1B ◦ t ≡ t : B

Γ ctx Γ ` A, B, C, D type Γ|A ` t : B Γ|B ` t′ : C Γ|C ` t′′ : D
ty-comp-assoc

Γ|A ` t′′ ◦ (t′ ◦ t) ≡ (t′′ ◦ t′) ◦ t : D

Similar to the rules derived from the category of contexts, Rule ty-mor-id is derived from the identity
morphisms in T and Rule ty-mor-comp is derived from the composition of morphisms in T . Rules
ty-id-unit-r and ty-id-unit-l are derived from the left and right unit laws of identity in category T and
Rule ty-comp-assoc is derived from associativity of composition in T .

6.1. Judgements and Structural Rules 59

6.1.3 Rules for Context Extension

The rules regarding context extension are derived from functor χ, the comprehension. Recall from
Remark 3.4 that a functor χ : T → C→ into the arrow category can be thought of as two functors
χ0 := dom ◦ χ, cod ◦ χ and a natural transformation π : χ0 ⇒ cod ◦ χ. From the definition of
a comprehension category, we know that cod ◦ χ = p. The rules regarding context extension are
derived from χ0 : T → C and π : χ0 ⇒ p. The fibration p is used in Section 6.1.4 to derive the rules
regarding substitution.

The rules for context extension are as follows.

Γ ctx Γ ` A type ext-ty
Γ.A ctx

Γ ctx Γ ` A, B type Γ|A ` t : B
ext-tm

Γ.A ` Γ.t : Γ.B

Γ ctx Γ ` A type
ext-id

Γ.A ` Γ.1A ≡ 1Γ.A : Γ.A

Γ ctx Γ ` A, B, C type Γ|A ` t : B Γ|B ` t′ : C
ext-comp

Γ.A ` Γ.(t′ ◦ t) ≡ Γ.t′ ◦ Γ.t : Γ.B

Γ ctx Γ ` A type
ext-proj

Γ.A ` πA : Γ

Γ ctx Γ ` A, B type Γ|A ` t : B
ext-coh

Γ.A ` πB ◦ Γ.t ≡ πA : Γ

Rule ext-ty is derived from the action of χ0Γ on the objects of TΓ, where χ0Γ is the restriction of χ0 to
the fibre TΓ. Rule ext-tm is derived from the action of χ0Γ on the morphisms in TΓ. Rules ext-comp and
ext-id are derived from functoriality of χ0Γ . Rules ext-proj and ext-coh are derived from the morphisms
in C and coherence conditions given by π : χ0 ⇒ p.

Rule ext-ty is the usual context extension rule. Rule ext-proj gives the context morphism corre-
sponding to projection from an extended context to the original context, which aligns with the context
morphism described in Example 3.34 for Martin-Löf type theory. Rule ext-tm states that for each type
morphism, a term t in type B dependent on type A, there is a corresponding context morphism from
the extended context Γ.A to the extended context Γ.B, and Rule ext-coh gives the coherence condi-
tion for this correspondence. Lastly, Rules ext-id and ext-comp state that composition and identity
are preserved under this correspondence. Note that here we do not have a one-to-one correspondence
between such type morphisms and context morphisms, as there is no assumption of fullness on the
comprehension category, i.e. χ is not necessarily fully faithful.

6.1.4 Rules for Substitution

Unlike Martin-Löf type theory, this type theory features explicit substitution in the syntax. From Re-
mark 3.18, we know that the fibration p : T → C can be thought of as a pseudofunctor of the form
Cop → Cat. The rules regarding substitution are derived from this pseudofunctor. Under the equiva-
lence mentioned in Remark 3.18, the fibration p : T → C can be thought of as reindexing functors of

60 Chapter 6. Type Theory Extracted from the Semantics

the form s∗ : T∆ → TΓ for each s : Γ → ∆ in C , and two natural isomorphism corresponding to com-
position of reindexing functors and reindexing along identity morphisms. Namely, for each s : Γ → ∆
and s′ : ∆ → Θ in C , we have a natural isomorphism icomp : (s′ ◦ s)∗ ∼= s∗ ◦ s′∗, and for each A ∈ TΓ
we have an isomorphism iidA : 1∗Γ A ∼= A.

The rules for substitution are as follows.

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A type
sub-ty

Γ ` A[s] type

Γ, ∆ ctx Γ ` s : ∆ ∆|A ` t : B
sub-tm

Γ|A[s] ` t[s] : B[s]

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A type
sub-pres-id

Γ|A ` 1A[s] ≡ 1A[s] : A

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A, B, C type ∆|A ` t : B ∆|B ` t′ : C
sub-pres-comp

Γ|A ` (t′ ◦ t)[s] ≡ t′[s] ◦ t[s] : C

Γ ctx Γ ` A type
sub-id

Γ|A[1Γ]
∼
` iidA : A

Γ, ∆, Θ ctx Γ ` s : ∆ ∆ ` s′ : Θ Θ ` A type
sub-comp

Γ|A[s′ ◦ s]
∼
` icompA,s,s′ : (A[s′])[s]

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A type
lift-compreh

Γ.A[s] ` s.A : ∆.A

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A type
lift-coh

Γ.A[s] ` πA ◦ s.A ≡ s ◦ πA[s] : ∆

Γ ctx Γ ` A type
iid-coh

Γ.A[1Γ] ` 1Γ.A ◦ Γ.iidA ≡ 1Γ.A : Γ.A

Γ, ∆, Θ ctx Γ ` s : ∆ ∆ ` s′ : Θ Θ ` A type
icomp-coh

Γ.A[s′ ◦ s] ` s′.A ◦ s.A[s′] ◦ Γ.icompA,s,s′ ≡ (s′ ◦ s).A : Θ.A

Rules sub-ty and sub-tm are derived from the action of the reindexing functor s∗ : T∆ → TΓ
on objects and morphisms respectively. Rules sub-pres-id and sub-pres-comp are derived from the
functoriality of the reindexing functor. Rule sub-id is derived from the isomorphism iidA : 1∗Γ A ∼= A
and Rule sub-comp from the isomorphism icompA,s,s′ : (s′ ◦ s)∗A ∼= s∗(s′∗A).

Rules sub-ty and sub-tm are the usual substitution rules. Rules sub-id and sub-comp state that
substitution is functorial up to isomorphism, unlike Martin-Löf type theory which has strictly func-
torial substitution as stated in Propositions 3.39 and 3.40. As discussed in Section 5.1.5, this is in line
with there being no assumption on the splitness of the comprehension category. Rules sub-pres-id and
sub-pres-comp state that identity and composition of typemorphisms are preserved under substitution.

Rules lift-compreh and lift-coh are derived from χsA : πA[s] → πA in C→, where sA is the carte-
sian lift of s into A. Rules iid-coh and icomp-coh concern the coherence conditions regarding the

6.2. Interpretation in a Comprehension Category 61

comprehension of iidA and icompA,s,s′ , from Rules sub-id and sub-comp, and the comprehension of cer-
tain cartesian lifts.

Another difference between this type theory and Martin-Löf type theory is that in Martin-Löf type
theory contextmorphisms are built from terms, whereas here, there is no such correspondence between
context morphisms and terms (type morphisms). In addition to this, because there is no requirement
that χ preserves cartesian morphisms, there is also no correspondence between the context morphisms
and sections of the projections in C .

The rules of the type theory are summarised in Fig. 6.1. In addition to these, we also have the rules
related to ≡ being a congruence for all the judgements, which are listed in Fig. 6.2.

Proposition 6.3. From the rules given in Figs. 6.1 and 6.2, we can derive the following weakening rules:

Γ ctx Γ ` A, B type
weak-ty

Γ.A ` B[πA] type

Γ ctx Γ ` A, B, C type Γ|B ` t : C
weak-tm

Γ.A|B[πA] ` t[πA] : C[πA]

Proof. For weakening of types, the derivation is as follows.

Γ ctx

Γ ctx Γ ` A type ext-ty
Γ.A ctx

Γ ctx Γ ` A type
ext-proj

Γ.A ` πA : Γ Γ ` B type
sub-ty

Γ.A ` B[πA] type

For terms, we obtain the weakening rule as follows.

Γ ctx

Γ ctx Γ ` A type ext-ty
Γ.A ctx

Γ ctx Γ ` A type
ext-proj

Γ.A ` πA : Γ Γ ` B, C type Γ.B ` t : C
sub-tm

Γ.A|B[πA] ` t[πA] : C[πA]

6.2 Interpretation in a Comprehension Category

In this section, we show soundness of the rules of the type theory by giving an interpretation of the type
theory in every comprehension categories where C has a terminal object and where χ doesn’t preserve
cartesian morphisms. Note that there is no assumption of fullness and splitness on the comprehension
category.

The judgements are interpreted as follows:

1. Γ ctx is interpreted as an object ‖Γ‖ in C ;

2. Γ ` s : ∆ is interpreted as a morpshim ‖s‖ : ‖Γ‖ → ‖∆‖ in C ;

3. Γ ` s ≡ s′ : ∆ is interpreted as ‖s‖ = ‖s′‖;

4. Γ ` A type is interpreted as an object ‖A‖ in T‖Γ‖;

5. Γ|A ` t : B is interpreted as a morphism ‖t‖ : ‖A‖ → ‖B‖ in T‖Γ‖;

6. Γ|A ` t ≡ t′ : B is interpreted as ‖t‖ = ‖t′‖.

62 Chapter 6. Type Theory Extracted from the Semantics

Γ ctx ctx-mor-id
Γ ` 1Γ : Γ

Γ, ∆, Θ ctx Γ ` s : ∆ ∆ ` s′ : Θ ctx-mor-comp
Γ ` s′ ◦ s : Θ

Γ, ∆ ctx Γ ` s : ∆
ctx-id-unit-r

Γ ` s ◦ 1Γ ≡ s : ∆
Γ, ∆ ctx Γ ` s : ∆

ctx-id-unit-l
Γ ` 1∆ ◦ s ≡ s : ∆

Γ, ∆, Θ, Φ ctx Γ ` s : ∆ ∆ ` s′ : Θ Θ ` s′′ : Φ ctx-comp-assoc
Γ ` s′′ ◦ (s′ ◦ s) ≡ (s′′ ◦ s′) ◦ s : Φ

empty-ctx� ctx
Γ ctx empty-ctx-mor

Γ ` 〈〉Γ : �
Γ ctx Γ ` s : � empty-ctx-mor-unique
Γ ` s ≡ 〈〉Γ : �

Γ ctx Γ ` A type ty-mor-id
Γ|A ` 1A : A

Γ ctx Γ ` A, B, C type Γ|A ` t : B Γ|B ` t′ : C ty-mor-comp
Γ|A ` t′ ◦ t : C

Γ ctx Γ ` A, B type Γ|A ` t : B
ty-id-unit-r

Γ|A ` t ◦ 1A ≡ t : B

Γ ctx Γ ` A, B type Γ|A ` t : B
ty-id-unit-l

Γ|A ` 1B ◦ t ≡ t : B

Γ ctx Γ ` A, B, C, D type Γ|A ` t : B Γ|B ` t′ : C Γ|C ` t′′ : D ty-comp-assoc
Γ|A ` t′′ ◦ (t′ ◦ t) ≡ (t′′ ◦ t′) ◦ t : D

Γ ctx Γ ` A type ext-ty
Γ.A ctx

Γ ctx Γ ` A, B type Γ|A ` t : B
ext-tm

Γ.A ` Γ.t : Γ.B

Γ ctx Γ ` A type
ext-id

Γ.A ` Γ.1A ≡ 1Γ.A : Γ.A
Γ ctx Γ ` A, B, C type Γ|A ` t : B Γ|B ` t′ : C ext-comp

Γ.A ` Γ.(t′ ◦ t) ≡ Γ.t′ ◦ Γ.t : Γ.B

Γ ctx Γ ` A type ext-proj
Γ.A ` πA : Γ

Γ ctx Γ ` A, B type Γ|A ` t : B
ext-coh

Γ.A ` πB ◦ Γ.t ≡ πA : Γ

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A type sub-ty
Γ ` A[s] type

Γ, ∆ ctx Γ ` s : ∆ ∆|A ` t : B
sub-tm

Γ|A[s] ` t[s] : B[s]

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A type sub-pres-id
Γ|A ` 1A[s] ≡ 1A[s] : A

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A, B, C type ∆|A ` t : B ∆|B ` t′ : C
sub-pres-comp

Γ|A ` (t′ ◦ t)[s] ≡ t′[s] ◦ t[s] : C

Γ ctx Γ ` A type
sub-id

Γ|A[1Γ]
∼
` iidA : A

Γ, ∆, Θ ctx Γ ` s : ∆ ∆ ` s′ : Θ Θ ` A type sub-comp
Γ|A[s′ ◦ s]

∼
` icompA,s,s′ : (A[s′])[s]

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A type lift-compreh
Γ.A[s] ` s.A : ∆.A

Γ, ∆ ctx Γ ` s : ∆ ∆ ` A type
lift-coh

Γ.A[s] ` πA ◦ s.A ≡ s ◦ πA[s] : ∆

Γ ctx Γ ` A type
iid-coh

Γ.A[1Γ] ` 1Γ.A ◦ Γ.iidA ≡ 1Γ.A : Γ.A
Γ, ∆, Θ ctx Γ ` s : ∆ ∆ ` s′ : Θ Θ ` A type icomp-coh

Γ.A[s′ ◦ s] ` s′.A ◦ s.A[s′] ◦ Γ.icompA,s,s′ ≡ (s′ ◦ s).A : Θ.A

FiguRe 6.1: Rules of the type theory.

The rules introduced in Section 6.1.2 regarding context and type morphisms are interpreted as
follows.

6.2. Interpretation in a Comprehension Category 63

Γ, ∆ ctx Γ ` s : ∆ ctx-eq-refl
Γ ` s ≡ s : ∆

Γ, ∆ ctx Γ ` s1, s2 : ∆ Γ ` s1 ≡ s2 : ∆ ctx-eq-sym
Γ ` s2 ≡ s1 : ∆

Γ, ∆ ctx Γ ` s1, s2, s3 : ∆ Γ ` s1 ≡ s2 : ∆ Γ ` s2 ≡ s3 : ∆ ctx-eq-trans
Γ ` s1 ≡ s3 : ∆

Γ, ∆, Θ ctx Γ ` s1, s2 : ∆ ∆ ` t : Θ Γ ` s1 ≡ s2 : ∆ ctx-comp-cong-1
Γ ` t ◦ s1 ≡ t ◦ s2 : Θ

Γ, ∆, Θ ctx Γ ` t : ∆ ∆ ` s1, s2 : Θ ∆ ` s1 ≡ s2 : Θ ctx-comp-cong-2
Γ ` s1 ◦ t ≡ s2 ◦ t : Θ

Γ ctx Γ ` A, B type Γ|A ` t : B
ty-eq-refl

Γ|A ` t ≡ t : B

Γ ctx Γ ` A, B type Γ|A ` t1, t2 : B Γ|A ` t1 ≡ t2 : B ty-eq-sym
Γ|A ` t2 ≡ t1 : B

Γ ctx Γ ` A, B type Γ|A ` t1, t2, t3 : B Γ|A ` t1 ≡ t2 : B Γ|A ` t2 ≡ t3 : B ty-eq-trans
Γ|A ` t1 ≡ t3 : B

Γ ctx Γ ` A, B, C type Γ|A ` u1, u2 : B Γ|B ` v : C Γ|A ` u1 ≡ u2 : B
ty-comp-cong-1

Γ|A ` v ◦ u1 ≡ v ◦ u2 : C

Γ ctx Γ ` A, B, C type Γ|A ` v : B Γ|B ` u1, u2 : C Γ|B ` u1 ≡ u2 : C
ty-comp-cong-2

Γ|A ` u1 ◦ v ≡ u2 ◦ v : C

Γ ctx Γ|A ` t1, t2 : B Γ|A ` t1 ≡ t2 : B ext-cong
Γ.A ` Γ.t1 ≡ Γ.t2 : Γ.B

Γ ` s : ∆ ∆|A ` t1, t2 : B ∆|A ` t1 ≡ t2 : B
sub-cong

Γ|A[s] ` t1[s] ≡ t2[s] : B[s]

FiguRe 6.2: Rules of the type theory regarding ≡ being a congruence.

1. Rule ctx-mor-id is interpreted as the identity morphisms in C . This means ‖1Γ‖ := 1‖Γ‖, for
each context Γ.

2. Rule ctx-mor-comp is interpreted as the composition of morphisms in C . This means ‖s′ ◦ s‖ :=
‖s′‖ ◦ ‖s‖ for each context Γ, ∆ and Θ and context morphisms s from Γ to ∆ and s′ from ∆ to
Θ.

3. Rules ctx-id-unit-r and ctx-id-unit-l are interpreted as the unit laws of identity in C .

4. Rule ctx-comp-assoc is interpreted as the associativity of composition in C .

5. Rule empty-ctx is interpreted as the terminal object in C .

64 Chapter 6. Type Theory Extracted from the Semantics

6. Rules empty-ctx-mor and empty-ctx-mor-unique are interpreted as the universal property of the
terminal object ‖�‖. This means that ‖〈〉Γ‖ is the unique morphism from Γ to the terimanl object
in C .

7. Rule ty-mor-id is interpreted as the identity morphisms in T . This means ‖1A‖ := 1‖A‖, where
A is a type in context Γ.

8. Rule ty-mor-comp is interpreted as the composition of morphisms in T . This means ‖t′ ◦ t‖ :=
‖t′‖ ◦ ‖t‖ for types A, B and C in context Γ, term t of type A dependent on B and term t′ of
type B dependent on C.

9. Rules ty-id-unit-r and ty-id-unit-l are interpreted as the unit laws of identity in T .

10. Rule ty-comp-assoc is interpreted as the associativity of composition in T .

This means that Γ
∼
` s : ∆ is interpreted as ‖s‖ : ‖Γ‖ ∼= ‖∆‖ in C with the inverse ‖s−1‖. Similarly,

Γ|A
∼
` t : B is interpreted as ‖t‖ : ‖A‖ ∼= ‖B‖ in T‖Γ‖ with the inverse ‖t−1‖.

The rules introduced in Section 6.1.3 regarding comprehension are interpreted as follows.

1. Rule ext-ty is interpreted as the action of χ0 on the objects of TΓ. This means ‖Γ.A‖ :=
dom(χ(‖A‖)) for a type A in context Γ.

2. Rule ext-tm is interpreted as the action of χ0 on the morphisms of TΓ. This means ‖Γ.t‖ :=
dom(χ(‖t‖)) for a term t of type B dependent on A in context Γ.

3. Rule ext-id is interpreted as χ0 preserving identity.

4. Rule ext-comp is interpreted as χ0 preserving composition.

5. Rule ext-proj is interpreted as the action of χ on the objects of T . This means ‖πA‖ := χ(‖A‖)
for a type A in context Γ.

6. Rule ext-coh is interpreted as the following commuting diagram corresponding to χ(‖t‖) for a
term t of type B dependent on A in context Γ:

‖Γ.A‖ ‖Γ.B‖

‖Γ‖.

‖Γ.t‖

‖πA‖ ‖πB‖

The rules introduced in Section 6.1.4 regarding substitution are interpreted as follows.

1. Rules sub-ty and sub-tm are interpreted as the action of the reindexing functor ‖s‖∗ : T‖∆‖ →
T‖Γ‖ on objects andmorphisms respectively. Thismeans ‖A[s]‖ := ‖s‖∗‖A‖ and ‖t[s] := ‖s‖∗‖t‖‖,
for contexts Γ and ∆, a context morphism s from Γ to ∆, types A and B in ∆ and a term t of type
A dependent on B in context ∆.

2. Rules sub-pres-id and sub-pres-comp are interpreted as the reindexing functor ‖s‖∗ : T‖∆‖ →
T‖Γ‖ preserving identity and composition respectively, for contexts Γ and ∆ and a context mor-
phism s from Γ to ∆.

6.2. Interpretation in a Comprehension Category 65

3. Rule sub-id is interpreted as the isomorphism ‖A[1Γ]‖ ∼= ‖A‖, which is 1∗‖Γ‖‖A‖ ∼= ‖A‖, for a
type A in context Γ. This isomorphism is discussed in Remark 3.17.

4. Rule sub-comp is interpreted as the isomorphism ‖A[s′ ◦ s]‖ ∼= ‖(A[s′])[s]‖, which is (‖s′‖ ◦
‖s‖)∗‖A‖ ∼= ‖s‖∗(‖s′‖∗‖A‖), for a type A in context Θ and context morphisms s from Γ to ∆
and s′ from ∆ to Θ. This is discussed in Remark 3.17.

5. Rule lift-compreh is interpreted as ‖s.A‖ := dom(χ(‖s‖‖A‖)), where ‖s‖ : ‖Γ‖ → ‖∆‖ in C ,
‖A‖ ∈ T‖∆‖ and ‖s‖‖A‖ is the cartesian lift of ‖s‖ into ‖A‖.

6. Rule lift-coh is interpreted as the following commuting square corresponding to χ(‖s‖‖A‖) :
‖πA[s]‖ → ‖πA‖ in C→:

‖Γ.A[s]‖ ‖∆.A‖

‖Γ‖ ‖∆‖.

‖s.A‖

‖πA[s]‖ ‖πA‖

‖s‖

7. Rule iid-coh is interpreted as the following commuting diagram in C :

‖Γ.A‖

‖Γ.A[1Γ]‖ ‖Γ.A‖

‖1Γ.A‖‖Γ.iidA‖

‖1Γ.A‖

This follows from the following commuting diagram in T that we have from Remark 3.17:

‖A‖

‖A[1Γ]‖ ‖A‖ T

‖Γ‖ ‖Γ‖ C,

‖1Γ‖‖iidA‖

‖1Γ‖‖A‖
p

‖1Γ‖

where ‖1Γ‖‖A‖ is a cartesian lift.

8. Rule icomp-coh is interpreted as the following commuting diagram in C :

‖Γ.A[s′ ◦ s]‖

‖Γ.A[s′][s]‖ ‖∆.A[s′]‖ ‖Θ.A‖.

‖Γ.icompA,s,s′
‖

‖(s ′◦s).A‖

‖s.A[s′]‖ ‖s′.A‖

66 Chapter 6. Type Theory Extracted from the Semantics

This follows from the following commuting diagram in T that we have from Lemma 3.7 and Re-
mark 3.17:

‖A[s′ ◦ s]‖

‖A[s′][s]‖ ‖A[s′]‖ ‖A‖ T

‖Γ‖ ‖∆‖ ‖Θ‖ C,

‖icompA,s,s′
‖

‖(s ′◦s)‖‖A‖

‖s‖‖A[s′]‖ ‖s′‖‖A‖
p

s s′

where ‖s′‖‖A‖, ‖s‖‖A[s′]‖ and ‖(s′ ◦ s)‖‖A‖ are cartesian lifts.

6.3 Comprehension Preserving Cartesian Morphisms

As mentioned in Section 6.1.4, one of the differences between this type theory and MLTT is that here,
context morphisms are not built out of terms. By context morphisms being built out of terms we mean
that given Γ ` s : ∆ and ∆ ` A type, there is a bijection between terms of the form Γ|1Γ ` t : A[s]
and context morphisms of the form Γ ` s′ : ∆.A that satisfy Γ ` πA ◦ s′ ≡ s : ∆, where 1Γ is unit
type.

In this section we discuss the rules that need to be added to the type theory to have context mor-
phism be built out of certain sections of the projection context morphisms (MLTT style terms), and
what this means semantically. We will see that semantically this corresponds to χ preserving carte-
sian morphisms. In Section 6.4 we discuss how unit type can be added to the type theory, and the
requirements for having a bijection between terms of the form Γ|1Γ ` t : A and MLTT style terms of
the form Γ ` t : A. Adding this to the type theory, results in having context morphisms that are built
out of terms, in the sense described above.

Having context morphisms built out of MLTT style terms means that given Γ ` s : ∆ and ∆ `
A type, we have a bijection between MLTT style terms of the form Γ ` ts,s′ : A[s], and context
morphisms of the form Γ ` s′ : ∆.A that satisfy Γ ` πA ◦ s′ ≡ s : ∆.

First, in Lemma 6.4 we show that with the rules of the type theory given in Figs. 6.1 and 6.2, given
a section t of πA[s], s.A ◦ t is a context morphism from Γ to ∆.A that satisfies Γ ` πA ◦ s′ ≡ s : ∆.
Next, in Lemma 6.5 we show that if the two following rules are added to the rules in Figs. 6.1 and 6.2,
we get context morphisms that are made of MLTT style terms

Γ, ∆ ctx ∆ ` A type Γ ` s : ∆ Γ ` s′ : ∆.A Γ ` s ≡ πA ◦ s′ : ∆
ctx-mor-to-ml

Γ ` ts,s′ : A[s]
Γ ` s.A ◦ ts,s′ ≡ s′ : ∆.A

Γ, ∆ ctx ∆ ` A type Γ ` s : ∆ Γ ` t : A[s]
ctx-mor-to-ml-unique

Γ ` ts,s.A◦t ≡ t : A[s]

Lastly, in Lemma 6.6 we show that semantically, this is equivalent to χ preserving cartesianmorphisms.
Lemma 6.4. From the rules of the type theory given in Figs. 6.1 and 6.2, we can derive the following two
rules:

Γ, ∆ ctx ∆ ` A type Γ ` s : ∆ Γ ` t : A[s]
Γ ` s.A ◦ t : ∆.A

Γ ` πA ◦ s.A ◦ t ≡ s : ∆

6.3. Comprehension Preserving Cartesian Morphisms 67

Proof. The first conclusion can be derived as follows:

Γ, ∆ ctx ∆ ` A type ∆ ` A type
lift-compreh

Γ.A[s] ` s.A : ∆.A Γ ` t : A[s]
ctx-mor-comp

Γ ` s.A ◦ t : ∆.A
For the second conclusion we first show that Γ ` s ◦ πA[s] ◦ t ≡ s : ∆ using the assumption that t

is a section of πA[s]:

Γ ` πA[s] ◦ t ≡ 1Γ : Γ Γ ` s : ∆
ctx-comp-cong-1

Γ ` s ◦ πA[s] ◦ t ≡ s ◦ 1Γ : ∆
Γ ` s : ∆ ctx-id-unit-r

Γ ` s ◦ 1Γ ≡ s : ∆
ctx-eq-trans

Γ ` s ◦ πA[s] ◦ t ≡ s : ∆

Now, using Rule lift-coh we can get the second conclusion as follows:

Γ ` s : ∆ ∆ ` A type
lift-coh

Γ.A[s] ` πA ◦ s.A ≡ s ◦ πA[s] : ∆ Γ ` t : Γ.A[s]
ctx-comp-cong-2

Γ ` πA ◦ s.A ◦ t ≡ s ◦ πA[s] ◦ t : ∆ Γ ` s ◦ πA[s] ◦ t ≡ s : ∆
ctx-eq-trans

Γ ` πA ◦ s.A ◦ t ≡ s : ∆
Semantically, this is showing that the following outer diagram commutes:

Γ

Γ.A[s] ∆.A

Γ ∆.

t
s.A◦t

s.A

πA[s] πA

s

Lemma 6.5. If the following two rules are added to the rules given in Figs. 6.1 and 6.2, the context mor-
phisms of the resulting type theory are built out of MLTT style terms:

Γ, ∆ ctx ∆ ` A type Γ ` s : ∆ Γ ` s′ : ∆.A Γ ` s ≡ πA ◦ s′ : ∆
ctx-mor-to-ml

Γ ` ts,s′ : A[s]
Γ ` s.A ◦ ts,s′ ≡ s′ : ∆.A

Γ, ∆ ctx ∆ ` A type Γ ` s : ∆ Γ ` t : A[s]
ctx-mor-to-ml-unique

Γ ` ts,s.A◦t ≡ t : A[s]

Proof. Let A be a type in context ∆, and s a context morphism from Γ to ∆. We need to show that
if Rules ctx-mor-to-ml and ctx-mor-to-ml-unique are added to the rules in Figs. 6.1 and 6.2, there is
a bijection between MLTT style terms of the form Γ ` t : A[s] and context morphisms of the form
Γ ` s′ : ∆.A that satisfy Γ ` πA ◦ s′ ≡ s : ∆.

We know from Lemma 6.4 that for each Γ ` t : A[s], s.A ◦ t is a context morphism from Γ to ∆.A
that satisfies Γ ` πA ◦ s.A ◦ t ≡ s : ∆. We know from the first conclusion of Rule ctx-mor-to-ml that

68 Chapter 6. Type Theory Extracted from the Semantics

for each context morphism of the form Γ ` s′ : ∆.A satisfying Γ ` πA ◦ s′ ≡ s : ∆, we have an MLTT
style term Γ ` ts,s′ : A[s].

We need to show that for each Γ ` t : A[s], ts,s.A◦t given by Rule ctx-mor-to-ml is equal to t. This
is given by Rule ctx-mor-to-ml-unique. We also need to show that for each Γ ` s′ : ∆.A satisfying
Γ ` πA ◦ s′ ≡ s : ∆, the corresponding context morphism from Γ to ∆, which is s.A ◦ ts,s′ , is equal to
s′. This is given by the second conclusion of Rule ctx-mor-to-ml.

Semantically, Rules ctx-mor-to-ml and ctx-mor-to-ml-unique correspond to having a unique u :
Γ → Γ.A[s] in C such that πA[s] ◦ u = 1Γ and s.A ◦ u = s′ for each Γ, ∆ ∈ C , A ∈ T∆, s : Γ → ∆ and
s′ : Γ → ∆.A with πA ◦ s′ = s:

Γ

Γ.A[s] ∆.A

Γ ∆.

u

s′

s.A

πA[s] πA

s

In the following lemma, we show that this condition holds in a (weak) comprehension category, if and
only if χ preserves cartesian morphisms.

Lemma 6.6. In a (weak) comprehension category (C, T , χ, p), χ preserves cartesian morphisms if and
only if for each Γ, ∆ ∈ C , A ∈ T∆, s : Γ → ∆ and s′ : Γ → ∆.A with πA ◦ s′ = s, there exists a unique
u : Γ → Γ.A[s] such that πA[s] ◦ u = 1Γ and s.A ◦ u = s′. In other words, all commuting squares of the
following form in C are pullback squares:

Γ.A[s] ∆.A

Γ ∆,

s.A

πA[s] πA

s

⌟

if and only if for all commuting squares of such form and s′ : Γ → Γ.A[s] with πA ◦ s′ = s, there exists
a unique u : Γ → Γ.A[s] such that πA[s] ◦ u = 1Γ and s.A ◦ u = s′:

Γ

Γ.A[s] ∆.A

Γ ∆.

u

s′

s.A

πA[s] πA

s

Proof. Let (C, T , χ, p) be a (weak) comprehension category where for all s : Γ → ∆ and s′ : Γ → ∆.A
in C such that πA ◦ s′ = s, there exists a unique u : Γ → Γ.A[s] such that πA[s] ◦ u = 1Γ and
s.A ◦ u = s′. We show that χ preserves cartesian morphisms. Let s : Γ → ∆, sΘ : Θ → Γ and
s′Θ : Θ → ∆.A in C such that πA ◦ s′Θ = s ◦ sΘ. We need to show that there exists a unique

6.3. Comprehension Preserving Cartesian Morphisms 69

uΘ : Θ → Γ.A[s] such that πA[s] ◦ uΘ = sΘ and s.A ◦ uΘ = s′Θ:

Θ

Γ.A[s] ∆.A

Γ ∆.

uΘ

s′Θ

sΘ

s.A

πA[s]

⌟
πA

s

Since πA ◦ s′Θ = s ◦ sΘ, using the assumption, there exists a unique u1 : Θ → Θ.A[s][sΘ] such
that

s.A ◦ sΘ.A[s] ◦ u1 = s′Θ, (6.1)

and

πA[s][sΘ] ◦ u1 = 1Θ, (6.2)

in the following diagram:

Θ

Θ.A[s][sΘ] Γ.A[s] ∆.A

Θ Γ ∆.

u1

s′Θ

sΘ.A[s]

πA[s][sΘ]

s.A

πA[s] πA

sΘ s

We define uΘ := sΘ.A[s] ◦ u1 as a candidate for the unique morphism of the form Θ → Γ.A[s]
that satisfies s.A ◦ uΘ = s′Θ and πA[s] ◦ uΘ = sΘ. We have the first requirement from:

s.A ◦ uΘ = s.A ◦ sΘ.A[s] ◦ u1 (by definition of uΘ) (6.3)
= s′Θ, (by (6.1)) (6.4)

and the second from:

πA[s] ◦ uΘ = πA[s] ◦ sΘ.A[s] ◦ u1 (by definition of uΘ)
= sΘ ◦ πA[s][sΘ] (by commuting of the left inner square)
= sΘ ◦ 1Θ (by (6.2))
= sΘ.

Now, we need to show that uΘ is a unique morphism that satisfies these requirements. Let t : Θ →

70 Chapter 6. Type Theory Extracted from the Semantics

Γ.A[s] such that s.A ◦ t = s′Θ and πA[s][sΘ] ◦ t = sΘ. Since πA[s] ◦ uΘ = sΘ, using the assumption we
have that there exists a unique u : Θ → Θ.A[s][sΘ] such that sΘ.A[s] ◦ u = uΘ and πA[s][sΘ] ◦ u = 1Θ.
We know from the definition of uΘ and (6.2), that u1 satisfies these requirements; hence, we have:

sΘ.A[s] ◦ u1 = uΘ. (6.5)

Similarly, since πA[s] ◦ t = sΘ, using the assumption we have that there exists a unique ut : Θ →
Θ.A[s][sΘ] such that sΘ.A[s] ◦ ut = t and πA[s][sΘ] ◦ ut = 1Θ. From sΘ.A[s] ◦ ut = t and s.A ◦ t = s′Θ,
we get s.A ◦ sΘ.A[s] ◦ ut = s′Θ. But we know that u1 is the unique morphism that satisfies (6.1) and
(6.2), which means ut = u1. Hence, we have:

sΘ.A[s] ◦ u1 = t. (6.6)

From (6.5) and (6.6), we get uΘ = t. This concludes showing that the following is a pullback square in
C :

Θ

Γ.A[s] ∆.A

Γ ∆.

uΘ

s′Θ

sΘ

s.A

πA[s]

⌟
πA

s

The converse holds as a special case of the definition of pullback.

Γ, ∆ ctx ∆ ` A type Γ ` s : ∆ Γ ` s′ : ∆.A Γ ` s ≡ πA ◦ s′ : ∆
ctx-mor-to-ml

Γ ` ts,s′ : A[s]

Γ ` s.A ◦ ts,s′ ≡ s′ : ∆.A

Γ, ∆ ctx ∆ ` A type Γ ` s : ∆ Γ ` t : A[s]
ctx-mor-to-ml-unique

Γ ` ts,s.A◦t ≡ t : A[s]

FiguRe 6.3: Rules of the type theory regarding χ preserving cartesian morphisms.

Remark 6.7. As a result of Lemma 6.6, if we start from a comprehension category and follow the
approach used in Section 6.1 to obtain a type theory, the resulting type theory would have the rules
from Figs. 6.1 to 6.3.

6.4 Unit Type

In Section 6.4.1, we discuss adding unit type to the type theory given in Figs. 6.1 to 6.3. Following the
approach taken in Section 6.1, we start from an appropriate notion of comprehension category with
unit and derive the rules such that all the structure is reflected in the type theory. We use the definition
of unit type given in [Lin21] for comprehension categories that are not full. Next, in Section 6.4.2 we

6.4. Unit Type 71

show soundness by giving an interpretation of the rules concerning unit type in any such comprehen-
sion category with unit. Finally, in Section 6.4.3, we discuss the requirement for having terms (type
morphisms) on the form Γ|1Γ ` t : A coincide with MLTT style terms of the form Γ ` t : A.

6.4.1 Unit Type from Semantics

Similar to Chapter 5, for each context Γ, we define unit type in context Γ, as a type 1Γ such that the
projection context morphism π1Γ has a unique section. This is expressed as:

Γ ctx
1-form

Γ ` 1Γ type
Γ ctx

1-intro
Γ ` ttΓ : 1Γ

Γ ctx Γ ` t : 1Γ
1-unique

Γ ` t ≡ ttΓ : 1Γ

where the last rule uses the notation introduced in Notation 6.2. Since our type theory has explicit
substitution, we also have to include rules expressing how unit type behaves with respect to reindexing
(substitution). The preservation of unit under substitution (up to isomorphism) can be expressed as:

Γ, ∆ ctx Γ ` s : ∆
sub-pres-1

Γ|1∆[s]
∼
` i1,s : 1Γ

We add these rules to the type theory following the approach used in Section 6.1. We start from
an appropriate notion of comprehension category with unit and extract the rules for adding unit type
such that all the structure of the comprehension category is reflected in the type theory. Note that
we are extending the type theory with the rules in Figs. 6.1 to 6.3, i.e. the rules corresponding to χ
preserving cartesian morphisms are included; however, whenever the rules in Fig. 6.3 are used, we
explicitly mention it.

The appropriate notion of a comprehension category with unit for Rules 1-form, 1-intro, 1-unique
and sub-pres-1 has for each object Γ ∈ C :

1. an object 1Γ in CΓ;

2. a unique section ttΓ : Γ → Γ.1Γ of π1Γ in C ;

3. such that for each s : Γ → ∆ in C , we have s∗1∆
∼= 1Γ, i.e. the reindexing functors preserve 1

(up to isomorphism).
We will first show that requirements 1 and 3, can be thought of as having a fibred functor 1 : C →

T in :
C T

C.

1

idC p

For each Γ ∈ C , we denote 1(Γ) as 1Γ. Then, we show that requirement 2, is equivalent to having

Cs(cod(s′), ∆) ∼= C→
s (s′, π1∆),

for each s : Γ → ∆ in C and morphism s′ in C with cod(s′) = Γ, which can be thought of as an

adjunction C C→
χ◦1

coda that is “fibred” in some appropriate sense (see Remark 6.9). Finally, we will

extract the rules for unit type from a comprehension category with unit defined as follows.

72 Chapter 6. Type Theory Extracted from the Semantics

Definition 6.8. A comprehension category has unit types if there is a fibred functor 1 : C → T in :

C T

C,

1

idC p

and an adjunction C C→
χ◦1

coda that is “fibred” in the sense that for each s : Γ → ∆ in C and

morphism s′ in C with cod(s′) = Γ, we have:

Cs(cod(s′), ∆) ∼= C→
s (s′, π1∆),

as explained in Proposition 3.22.

Remark 6.9. As explained in [Lin21, Remark 3.1.0.5], the adjunction in Definition 6.8 is not a fibred
adjunction in the proper sense (see Definition 3.21), as cod is not a fibration unless C has all pullbacks.

Remark 6.10 ([Lin21, Remark 3.1.0.6]). The isomorphism

Cs(cod(s′), ∆) ∼= C→
s (s′, π1∆),

implies that for each s : Γ → ∆ and s′ : Θ → Γ in C , there is a unique morphisms : Θ → ∆.1∆ making
the following diagram commute:

Θ ∆.1∆

Γ ∆.

u

s′ π1∆

s

This is because Cs is fibred over C by idC ; hence the only morphism above s is s itself.

Remark 6.11. Definition 6.8 is equivalent to the definition of a comprehension category with pseudo-
stable unit types defined in [Lin21, Definition 3.1.0.3], by Lemma 6.14. This is, however, different from
the comprehension category with unit discussed in Definition 5.9, where we have the assumption of
χ being fully faithful.

Lemma 6.12. Given a functor 1 : C → T with p ◦ 1 = idC :

C T

C,

1

idC p

the following are equivalent:

1. 1 is a fibred functor;

2. for each s : Γ → ∆ in C , s∗1∆
∼= 1Γ, where s∗ is the reindexing functor corresponding to the

fibration p : T → C .

Proof. First, we show if 1 : C → T preserves cartesian morphisms, then for each s : Γ → ∆ in C ,
s∗1∆

∼= 1Γ. Because C is fibred over C by idC , then for each s : Γ → ∆ in C , s is cartesian in C . Since

6.4. Unit Type 73

1 : C → T preserves cartesian morphisms, for each s : Γ → ∆, 1(s) is cartesian in T . We have
s∗1∆

∼= 1Γ from Lemma 3.7.
Next, we show if for each s : Γ → ∆ in C , s∗1∆

∼= 1Γ, then 1 : C → T preserves cartesian
morphisms. Because C is fibred over C by idC , then for each s : Γ → ∆ in C , s is cartesian in C . This
means that we need to show 1(s) : 1Γ → 1∆ is cartesian for each s : Γ → ∆. We have 1(s) is cartesian
from Lemma 3.8.

s∗1∆

1Γ 1∆ T

Γ ∆ C.

∼=
s1∆

1(s)
p

s

Lemma 6.13. Given a fibred functor 1 : C → T in

C T

C,

1

idC p

for each s : Γ → ∆, the following diagram is a pullback squares in C :

Γ.1Γ ∆.1∆

Γ ∆.

χ0(1(s))

π1Γ
⌟

π1∆

s

Proof. Since both 1 and χ preserve cartesian morphisms and cartesian morphisms in C→ are pullback
squares in C .

Lemma 6.14 ([Lin21, Proposititons 3.1.0.4 and 3.1.0.8]). In a comprehension category equipped with a
fibred functor 1 : C → T , the following are equivalent:

1. for each Γ ∈ C , π1Γ has a unique section ttΓ : Γ → Γ.1Γ;

2. for each s : Γ → ∆ in C and morphism s′ in C with cod(s′) = Γ, we have:

Cs(cod(s′), ∆) ∼= C→
s (s′, π1∆).

Proof. We know from Remark 6.10, that the second statement is equivalent to having a unique mor-
phisms u that makes the following diagram commute:

Θ ∆.1∆

Γ ∆.

u

s′ π1∆

s

74 Chapter 6. Type Theory Extracted from the Semantics

for each s : Γ → ∆ and s′ : Θ → Γ in C .
First, we show 2 ⇒ 1. Let Γ ∈ C . By taking s = s′ = 1Γ, we have that there exists a unique

morphisms ttΓ : Γ → Γ.1Γ that makes the following diagram commute:

Γ Γ.1Γ

Γ Γ.

ttΓ

1Γ π1Γ

1Γ

This means that π1Γ has a unique section.
Next, we show 1 ⇒ 2. Let s : Γ → ∆ and s′ : Θ → Γ in C . We need to show that there exists a

unique morphism u : Θ → Γ.1Γ such that π1Γ ◦ u = s ◦ s′. We take u to be χs ◦ χs′ ◦ ttΘ:

Θ

Θ.1Θ ∆.1∆ Γ.1Γ

Θ ∆ Γ.

tt1Θ
u

χ(s′)
π1Θ

χ(s)
π1∆ π1Γ

s′ s

⌟ ⌟

This choice of u satisfies π1Γ ◦ u = s ◦ s′ since tt1Θ is a section of π1Θ and both of the two inner
squares commute. To show uniqueness, let u′ : Θ → Γ.1Γ such that π1Γ ◦ u′ = s ◦ s′. We know from
Lemma 6.13, that the outer square is a pullback square in C ; hence, there exists a unique e : Θ → Θ.1Θ
such that π1Θ ◦ e = 1Θ and u′ = χs ◦ χs′ ◦ e. Since, tt1Θ is the unique section of π1Θ , we have
u = χs ◦ χs′ ◦ ttΘ = χs ◦ χs′ ◦ e = u′.

Lemma 6.15. In a comprehension category with unit as defined in Definition 6.8, for each Γ ∈ C , we have
Γ ∼= Γ.1Γ.

Proof. Let Γ ∈ C . We know from Lemma 6.14 that π1Γ has a unique section tt. Hence, to prove
Γ ∼= Γ.1Γ, we need to show that ttΓ ◦ π1Γ = 1Γ.1Γ . Using Remark 6.10 and taking s = 1Γ and
s′ = π1Γ we have there there is a unique morphism u : Γ.1Γ → Γ.1Γ that makes the following
diagram commute:

Γ.1Γ Γ.1Γ

Γ Γ.

u

π1Γ π1Γ

Since 1Γ.1Γ makes the diagram commute, we have that 1Γ.1Γ is the unique morphism such that π1Γ ◦
1Γ.1Γ = π1Γ . We know π1Γ ◦ ttΓ = 1Γ as ttΓ is a section. This gives π1Γ ◦ ttΓ ◦π1Γ = 1Γ ◦π1Γ = π1Γ .
Since 1Γ.1Γ is the unique morphism such that π1Γ ◦ 1Γ.1Γ = π1Γ , we get ttΓ ◦ π1Γ = 1Γ.1Γ .

Now that we have shown Lemmas 6.12 and 6.14, we start from a comprehension category with
unit, that is equipped with a fibred functor 1 : C → T with all the projections of units having unique
sections, and extract the rules for adding unit type to the type theory. From 1 : C → T being a functor
that satisfies p ◦ 1 = idC , we gets the following rules:

Γ ctx
1-form

Γ ` 1Γ type

6.4. Unit Type 75

Γ, ∆ ctx Γ ` s : ∆
compreh-1-mor

Γ.1Γ ` χ0(1(s)) : ∆.1∆

Γ, ∆ ctx Γ ` s : ∆
compreh-1-coh

Γ.1Γ ` π1∆ ◦ χ0(1(s)) ≡ s ◦ π1Γ : ∆

Γ ctx compreh-1-id
Γ.1Γ ` χ0(1(1Γ)) ≡ 1Γ.1Γ : Γ.1Γ

Γ, ∆, Θ ctx Γ ` s : ∆ ∆ ` s′ : Θ
compreh-1-comp

Γ.1Γ ` χ0(1(s′)) ◦ χ0(1(s)) ≡ χ0(1(s′ ◦ s)) : Θ.1Θ

Rule 1-form corresponds to the action of 1 on the objects of C . The action of 1 on morphisms gives
1(s) : T (1Γ,1∆) for each s : Γ → ∆ in C . Rules compreh-1-mor and compreh-1-coh correspond
to χ(1(s)) : C→(π1Γ , π1∆). Rules compreh-1-id and compreh-1-comp correspond to 1, and conse-
quently χ ◦ 1, preserving identity and composition.

From 1 preserves cartesian morphisms, we get the following rule using Lemma 6.12:

Γ, ∆ ctx Γ ` s : ∆
sub-pres-1

Γ|1∆[s]
∼
` i1,s : 1Γ

From all projections of units having unique sections, we get:

Γ ctx
1-intro

Γ ` ttΓ : 1Γ

Γ ctx Γ ` t : 1Γ
1-unique

Γ ` t ≡ ttΓ : 1Γ

The rules concerning unit type are summarised in Fig. 6.4.

Γ ctx
1-form

Γ ` 1Γ type

Γ ctx
1-intro

Γ ` ttΓ : 1Γ

Γ ctx Γ ` t : 1Γ
1-unique

Γ ` t ≡ ttΓ : 1Γ

Γ, ∆ ctx Γ ` s : ∆ sub-pres-1
Γ|1∆[s]

∼
` i1,s : 1Γ

Γ, ∆ ctx Γ ` s : ∆ compreh-1-mor
Γ.1Γ ` χ0(1(s)) : ∆.1∆

Γ, ∆ ctx Γ ` s : ∆ compreh-1-coh
Γ.1Γ ` π1∆ ◦ χ0(1(s)) ≡ s ◦ π1Γ : ∆

Γ ctx compreh-1-id
Γ.1Γ ` χ0(1(1Γ)) ≡ 1Γ.1Γ : Γ.1Γ

Γ, ∆, Θ ctx Γ ` s : ∆ ∆ ` s′ : Θ compreh-1-comp
Γ.1Γ ` χ0(1(s′)) ◦ χ0(1(s)) ≡ χ0(1(s′ ◦ s)) : Θ.1Θ

FiguRe 6.4: Rules of the type theory regarding unit type.

76 Chapter 6. Type Theory Extracted from the Semantics

Remark 6.16. Alternatively, we could have defined unit type with elimination and computation rules
instead of Rule 1-unique similar to what is explained in Remark 6.16. We expect Rule 1-unique to be
derivable from the elimination and computation rules if an appropriate notion of extensional identity
type is added to the type theory.

6.4.2 Interpretation of Type Theory with Unit

In this section, we show the soundness of the derivation of the rules regarding unit type in Fig. 6.4
by giving an interpretation of the type theory expressed by the rules in Figs. 6.1 to 6.4 in any non-
full comprehension category with unit as defined in Definition 6.8. The interpretation of the rules in
Fig. 6.4 is as follows:

1. Rule 1-form is interpreted as the action of 1 : C → T on the objects.

2. Rules 1-intro and Rule 1-unique are interpreted as the unique section ttΓ : ‖Γ‖ → ‖Γ.1Γ‖ given
by Lemma 6.14.

3. Rule sub-pres-1 is interpreted as the isomorphism ‖s‖∗‖1∆‖ ∼= ‖1Γ‖ given by Lemma 6.12.

4. Rules compreh-1-mor and compreh-1-coh are interpreted as χ(1(‖s‖))) : C→(‖π1Γ‖, ‖π1∆‖),
which corresponds to the following commuting square in C :

‖Γ.1Γ‖ ‖∆.1∆‖

‖Γ‖ ‖∆‖.

(χ0◦1)‖s‖

‖π1Γ‖ ‖π1∆‖

‖s‖

5. Rule compreh-1-id is interpreted as χ(1(1‖Γ‖))) : C→(‖π1Γ‖, ‖π1Γ‖), which corresponds to
the following commuting square in C :

‖Γ.1Γ‖ ‖Γ.1Γ‖

‖Γ‖ ‖Γ‖.

(χ0◦1)1‖Γ‖

‖π1Γ‖ ‖π1Γ‖

1‖Γ‖

6. Rule compreh-1-comp is interpreted as χ(1(s′ ◦ s)) : C→(‖π1Γ‖, ‖π1Θ‖), which corresponds
to the following commuting square in C :

‖Γ.1Γ‖ ‖Θ.1Θ‖

‖Γ‖ ‖Θ‖.

(χ0◦1)‖s′◦s‖

‖π1Γ‖ ‖π1Θ‖

‖s′◦s‖

The interpretation of the rules in Figs. 6.1 to 6.3 is the same as discussed in Sections 5.1 and 6.3.

6.4. Unit Type 77

Remark 6.17. The proof of completeness is left for future work. Completeness implies that from the
rules of Figs. 6.1 to 6.4, one can derive the following rule in the type theory, which corresponds to the
result of Lemma 6.15:

Γ ctx unit-iso
Γ

∼
` ttΓ : Γ.1Γ

6.4.3 Bijection between Terms and Sections of Projections

Now that we have added unit type to the type theory, we discuss the requirements for having a bijection
between terms of the form Γ|1Γ ` t : A and the sections of the projection Γ.A ` πA : Γ. Semantically,
this corresponds to having:

TΓ(1Γ, A) ∼= C→
Γ (1Γ, πA)

for each Γ ∈ C and A ∈ TΓ, in a comprehension category with unit (see Definition 6.8). In the type
theory, this corresponds to having the following rules:

Γ ctx Γ ` A type Γ|1Γ ` t : A
tm-to-ml

Γ|Γ.t ◦ ttΓ : A

Γ ctx Γ ` A type Γ ` t : A
ml-to-tm

Γ|1Γ ` ttm : A

Γ|1Γ ` t : A
bij-tm-to-ml

Γ|1Γ ` (Γ.t ◦ ttΓ)
tm ≡ t : A

Γ ` t : A bij-ml-to-tm
Γ ` Γ.(ttm) ◦ ttΓ ≡ t : A

Rule tm-to-ml can already be derived from the rules in Figs. 6.1 to 6.4. This derivation is discussed in
the following lemma.

Lemma 6.18. In a type theory given by Figs. 6.1 to 6.4, we can derive the following rule:

Γ ctx Γ ` A type Γ|1Γ ` t : A
tm-to-ml

Γ|Γ.t ◦ ttΓ : A

This means that for each term Γ|1Γ ` t : A, we have an MLTT style term given by Γ.t ◦ ttΓ.

Proof. First, we show that given a context Γ, a type A in context Γ and Γ|1Γ ` t : A, Γ.t ◦ ttΓ is a
context morphism from Γ to Γ.A.

Γ ctx
1-intro

Γ ` ttΓ : Γ.1Γ

Γ ctx
Γ ctx

1-form
Γ ` 1Γ type Γ ` A type Γ|1Γ ` t : A

ext-tm
Γ.1Γ ` Γ.t : Γ.A ctx-mor-comp

Γ ` Γ.t ◦ ttΓ : Γ.1Γ

Now we show that Γ ` Γ.t ◦ ttΓ ≡ 1Γ : Γ.

78 Chapter 6. Type Theory Extracted from the Semantics

Γ ctx
1-intro

Γ ` ttΓ : Γ.1Γ

Γ ` 1Γ, A type Γ|1Γ ` t : A
ext-coh

Γ.1Γ ` πA ◦ Γ.t ≡ π1Γ : Γ
ctx-comp-cong-2

Γ ` πA ◦ Γ.t ◦ ttΓ ≡ π1Γ ◦ ttΓ : Γ
Γ ctx

1-intro
Γ ` π1Γ ◦ ttΓ ≡ 1Γ : Γ

ctx-eq-trans
Γ ` πA ◦ Γ.t ◦ ttΓ ≡ 1Γ : Γ

Hence we have the following rule.

Γ ctx Γ ` A type Γ|1Γ ` t : A
tm-to-ml

Γ|Γ.t ◦ ttΓ : A

Semantically this corresponds to showing χ(t) ◦ ttΓ is a section of πA, i.e. πA ◦ χ(t) ◦ ttΓ = 1Γ.
For each Γ ∈ C , A ∈ T and t ∈ TΓ(1Γ, A), we have πA ◦ χ(t) ◦ ttΓ = π1Γ ◦ ttΓ, as χ(t) is a
morphism in C→(π1Γ , πA). Using π1Γ ◦ ttΓ = 1Γ which we have from ttΓ being a section of π1Γ , we
get πA ◦ χ(t) ◦ ttΓ = 1Γ.

Γ ctx Γ ` A type Γ ` t : A
ml-to-tm

Γ|1Γ ` ttm : A

Γ|1Γ ` t : A
bij-tm-to-ml

Γ|1Γ ` (Γ.t ◦ ttΓ)
tm ≡ t : A

Γ ` t : A bij-ml-to-tm
Γ ` Γ.(ttm) ◦ ttΓ ≡ t : A

FiguRe 6.5: Rules of the type theory regarding the bijection between terms of the from
Γ|1Γ ` t : A and MLTT style terms of the form Γ ` t : A.

Rules ml-to-tm, bij-tm-to-ml and bij-ml-to-tm can be added to the rules in Figs. 6.1 to 6.4 to have
the desired bijection between terms of the form Γ|1Γ ` t : A and the MLTT style terms of the form
Γ ` t : A. This rules needed to get this bijection are summarised in Fig. 6.5. In a type theory given by
the rules in Figs. 6.1 to 6.5 certain terms coincide with the terms in MLTT. In particular, given context
Γ and type A in context Γ, the terms of the form Γ|1A ` t : A coincide with MLTT style terms of type
A.

Remark 6.19. In a type theory that is expressed using rules from Figs. 6.1 to 6.5, context morphisms
are built out of terms in the sense that given Γ ` s : ∆ and ∆ ` A type, there is a bijection between
terms of the form Γ|1Γ ` t : A[s] and context morphisms of the form Γ ` s′ : ∆.A that satisfy
Γ ` πA ◦ s′ ≡ s : ∆.

Proposition 6.20. In a comprehension category with unit (Definition 6.8), if χ is fully faithful we have:

TΓ(1Γ, A) ∼= C→
Γ (1Γ, πA).

Proof. We know from Lemma 6.15, that in a comprehension category with unit, for each Γ ∈ C , Γ ∼=
Γ.1Γ. This implies:

C→
Γ (1Γ, πA) ∼= C→

Γ (π1Γ , πA),

6.4. Unit Type 79

for each Γ ∈ C and A ∈ TΓ. From Proposition 3.20 we know that χ is fully faithful if and only if it is
fibrewise fully faithful. This means that if χ is fully faithful, we get

TΓ(1Γ, A) ∼= C→
Γ (π1Γ , πA).

Hence, in a comprehension categorywith unit, if χ is fully faithful, then TΓ(1Γ, A) ∼= C→
Γ (1Γ, πA).

Remark 6.21. Assuming completeness of the rules in Figs. 6.1 to 6.4, Proposition 6.20 implies that if
the rules corresponding to χ being fully faithful are added to the rules in Figs. 6.1 to 6.4, then the
rules corresponding to TΓ(1Γ, A) ∼= C→

Γ (1Γ, πA) can be derived in the type theory. By the rules
corresponding to χ being fully faithful we mean:

Γ ctx Γ ` A, B type Γ.A ` s : Γ.B Γ.A ` πB ◦ s ≡ πA : Γ
χ-full

Γ|A ` χ−1(s) : B

Γ.A ` Γ.χ−1(s) ≡ s : Γ.B

Γ ctx Γ ` A, B type Γ|A ` t1, t2 : B Γ.A ` Γ.t1 ≡ Γ.t2 : Γ.B
χ-faithful

Γ|A ` t1 ≡ t2 : B

Thederivation of Rules tm-to-ml, ml-to-tm, bij-tm-to-ml and bij-ml-to-tm in a type theory that is given
by the rules in Figs. 6.1 to 6.4 plus Rules χ-full and χ-faithful is presented in Appendix A.

81

Chapter 7

Discussion and Conclusion

In this section, we summarise the results of Chapter 6 and discuss them by comparing the type theory
introduced in Section 6.1 to MLTT. We also compare the results to that of Ahrens et al. [ANW23] by
comparing our type theory to BTT, the directed type theory introduced by them. We then mention
some limitations and directions for future work.

In Chapter 6, we proposed a type theory as the internal language of comprehension categories by
extracting the rules of this type theory from the semantics given by a comprehension category. Starting
from a (weak) comprehension category without the requirement of χ preserving cartesian morphisms,
we derived the rules in Figs. 6.1 and 6.5. We showed soundness by giving an interpretation of this type
theory in every comprehension category.

We then showed that if we start from a comprehension category where χ preserves cartesian mor-
phisms, we get the rules in Fig. 6.3 in addition to the previous rules. We also discussed that by adding
the rules in Fig. 6.3, we require context morphisms to be built out of sections of the projection mor-
phisms, which corresponds to context morphisms being built out of terms in MLTT.

Next, we discussed an appropriate notion for semantics of the unit type in a comprehension cate-
gory that is not full, and extracted the rules regarding the unit type, Fig. 6.4, from the semantics. We
again showed soundness by giving an interpretation of these rules in a comprehension category with
unit. Finally, we discussed how adding the rules in Fig. 6.5 makes certain type morphisms in our type
theory coincide with terms in MLTT, and how this is related to requiring the comprehension category
to be full.

Comparison with MLTT In Section 6.1, we extracted the rules of a type theory from a (weak) com-
prehension category and in Section 6.2, we gave an interpretation of this type theory in every compre-
hension category.

The judgements of this type theory differ from MLTT in the following ways:

1. The first difference is that this type theory features explicit substitution in the syntax. Thismeans
that we have judgements of the form Γ ` s : ∆, which is read as “s is context morphism from Γ
to ∆”.

2. The second difference is that the judgements regarding terms in this type theory are of the form
Γ|A ` t : B, whereas in MLTT the judgements are of the form Γ ` t : A. The judgement
Γ ` t : A is interpreted as sections of the projection context morphisms in the category on
contexts C , where the judgement Γ|A ` t : B is interpreted as a morphism in TΓ(A, B). In a
comprehension category with no requirement on the fullness of the comprehension category,
there is no one-to-one correspondence between hom-sets of TΓ and C/Γ. This difference is
expected since we extract the rules of the type theory from a comprehension category that is
not necessarily full.

82 Chapter 7. Discussion and Conclusion

3. The third difference is that in this type theory, we do not have judgements regarding equality of
contexts and types. The category of contexts C and types T are not necessarily strict. Hence, the
type theory that is derived from such a comprehension category does not feature judgements
regarding definitional equality of contexts and types. All the rules of the type theory should be
considered up to renaming of the variables.

One of the main differences between the rules of this type theory and the rules of MLTT is that
substitution in this type theory is not strictly functorial. We know from Proposition 3.39 that in MLTT,
the composition of substitution is associative. We also know from Proposition 3.40 that in MLTT,
A[idA] = A. In this type theory, however, these only hold up to isomorphism of types. This is
expected since the rules of the type theory are derived from a non-split comprehension category andwe
know from Remark 3.17 that strictly functorial substitution can be interpreted in a split comprehension
category.

Another difference between MLTT and this type theory is that in this type theory context mor-
phisms are not built of terms. To have context morphisms be made of terms, one needs to derive the
rules from a comprehension category where certain pullbacks exist in the category of contexts C , par-
ticularly the ones discussed in Section 5.1.3. We showed in Section 6.3, that requiring these pullbacks
to exist is equivalent to requiring χ to preserve cartesian morphisms. Hence, by adding the rules in
Fig. 6.3 to the ones in Figs. 6.1 and 6.5, we get a type theory in which context morphisms are built out
of MLTT style terms.

In our type theory, the unit type is given by the rules in Fig. 6.4. Unlike in MLTT, we have a
rule that expresses how the unit type is preserved (up to isomorphism) under substitution. This is
because we have explicit substitution in our type theory. In addition to this, we also have rules for
coherence conditions regarding unit, context extension and comprehension. We also discussed how
adding the rules in Fig. 6.5, gives a bijection between MLTT style terms and terms of this type theory
(type morphisms).

Comparison with BTT We expect the type theory presented in Figs. 6.1 and 6.2 to be the one-
dimensional restriction of the directed type theory introduced by Ahrens et al. [ANW23] (BTT). This
is because the rules of BTT are extracted from comprehension bicategories which are the bicategorical
generalisation of comprehension categories. Note that we do not include the rules in Figs. 6.3 to 6.5 in
this comparison.

Both these type theories feature explicit substitution in the syntax and the terms of BTT are inter-
preted the same as the terms of our type theory. The syntax of BTT is extracted fromweak comprehen-
sion bicategories, which are a weak version of comprehension bicategories where the comprehension
does not necessarily preserve cartesian 1-cells and opcartesian 2-cells. In our case, this corresponds
to the comprehension not preserving cartesian morphisms. Doing so, results in a type theory where
context morphisms are not built of the sections of projection context morphisms.

It is discussed in [ANW23, section 11] how terms of BTT differ from the terms of other proposed di-
rected type theories in the way they are interpreted, and propose a way to reconcile this mismatch. The
terms of our type theory are interpreted similarly to the terms of BTT; hence, differ from terms ofMLTT
in their interpretations. We investigate the reconciliation of this mismatch in the one-dimensional
sense by proposing how the unit type can be added to the syntax and discussing the requirements for
having a bijection between the interpretations of our terms and MLTT style terms. We expect this
result to be in line with how the mismatch between terms of BTT and other directed-type theories
with terms interpreted similarly to MLTT could be reconciled.

Chapter 7. Discussion and Conclusion 83

Another difference between our type theory and BTT is that our type theory is extracted from a
comprehension category where C has a terminal object. This results in having an empty context and
rules regarding context morphisms into the empty context in the type theory.

In addition to these, the counterparts of Rules lift-compreh, lift-coh, iid-coh and icomp-coh are
not present in BTT. We add these rules to reflect the comprehension of the cartesian lifts and the
corresponding coherence conditions in the type theory.

Limitations and Future Work A limitation of this work is that we do not prove a completeness
theorem for the type theory presented in Chapter 6. To partially compensate for this, we derive some
results from the semantics in the type theory aswell. This serves both as a sanity check for the extracted
rules and as a way to compare the proofs in syntax and semantics. Proving the completeness is a
possible direction for future work. Another possible direction for future work is to formalise the type
theory and proofs of soundness and completeness in a proof assistant.

Lastly, we do not discuss type formers like Π-, Σ- and W- types, identity types and universes.
Lindgren [Lin21] discusses that Π-types correspond to certain relative adjoints in a comprehension
category which is not full. A possible way to extend this work, would be to extract the rules from a
non-full comprehension category with products, defined by Lindgren [Lin21], and to extend this to Σ-
types.

Conclusion In this thesis, we studied the interpretation of Martin-Löf type theory in full split com-
prehension categories and highlighted where the full and splitness assumptions are being used, by
studying type theories that can be interpreted in general comprehension categories. For this, we started
from the semantics given by a comprehension category and extracted a type theory such that all of
the semantic structure is reflected in the type theory following the approach taken by Ahrens et al.
[ANW23]. We then discussed adding the unit type to this type theory and the extra requirements that
would make this type theory closer to MLTT.

85

Bibliography

[Aba+91] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. “Explicit Substi-
tutions”. In: J. Funct. Program. 1.4 (1991), pp. 375–416. doi: 10.1017/S0956796800000186.
uRl: https://doi.org/10.1017/S0956796800000186.

[AL19] Benedikt Ahrens and Peter LeFanu Lumsdaine. “Displayed Categories”. In: Log. Methods
Comput. Sci. 15.1 (2019). doi: 10.23638/LMCS-15(1:20)2019. uRl: https://doi.org/
10.23638/LMCS-15(1:20)2019.

[ANW23] Benedikt Ahrens, Paige Randall North, andNiels van derWeide. “Bicategorical type theory:
semantics and syntax”. In: Math. Struct. Comput. Sci. 33.10 (2023), pp. 868–912. doi: 10.
1017/S0960129523000312. uRl: https://doi.org/10.1017/s0960129523000312.

[Bla91] Javier Blanco. Relating categorical approaches to type dependency. Master’s thesis. 1991.
[Car86] John Cartmell. “Generalised algebraic theories and contextual categories”. In: Ann. Pure

Appl. Log. 32 (1986), pp. 209–243. doi: 10.1016/0168-0072(86)90053-9. uRl: https:
//doi.org/10.1016/0168-0072(86)90053-9.

[CD11] Pierre Clairambault and Peter Dybjer. “The Biequivalence of Locally Cartesian Closed Cat-
egories and Martin-Löf Type Theories”. In: Typed Lambda Calculi and Applications - 10th
International Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings. Ed. by
C.-H. Luke Ong. Vol. 6690. Lecture Notes in Computer Science. Springer, 2011, pp. 91–106.
doi: 10.1007/978-3-642-21691-6_10. uRl: https://doi.org/10.1007/978-3-
642-21691-6_10.

[CGH14] Pierre-Louis Curien, Richard Garner, and Martin Hofmann. “Revisiting the categorical in-
terpretation of dependent type theory”. In:Theor. Comput. Sci. 546 (2014), pp. 99–119. doi:
10.1016/J.TCS.2014.03.003. uRl: https://doi.org/10.1016/j.tcs.2014.03.
003.

[Dyb96] Peter Dybjer. “Internal TypeTheory”. In: Types for Proofs and Programs, InternationalWork-
shop TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers. Ed. by Stefano Berardi and
Mario Coppo. Vol. 1158. Lecture Notes in Computer Science. Springer, 1996, pp. 120–134.
doi: 10.1007/3-540-61780-9_66. uRl: https://doi.org/10.1007/3-540-61780-
9_66.

[Ehr88] Thomas Ehrhard. “A Categorical Semantics of Constructions”. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July
5-8, 1988. IEEE Computer Society, 1988, pp. 264–273. doi: 10.1109/LICS.1988.5125.
uRl: https://doi.org/10.1109/LICS.1988.5125.

[Gra23] Daniel Gratzer. Denotational Semantics of Type Theory. Lecture Notes. Apr. 2023. uRl:
http://www.danielgratzer.com/papers/2023-semantics-primer-lecture-
notes.pdf.

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1017/S0956796800000186
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.1017/S0960129523000312
https://doi.org/10.1017/S0960129523000312
https://doi.org/10.1017/s0960129523000312
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.1007/978-3-642-21691-6_10
https://doi.org/10.1007/978-3-642-21691-6_10
https://doi.org/10.1007/978-3-642-21691-6_10
https://doi.org/10.1016/J.TCS.2014.03.003
https://doi.org/10.1016/j.tcs.2014.03.003
https://doi.org/10.1016/j.tcs.2014.03.003
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1109/LICS.1988.5125
https://doi.org/10.1109/LICS.1988.5125
http://www.danielgratzer.com/papers/2023-semantics-primer-lecture-notes.pdf
http://www.danielgratzer.com/papers/2023-semantics-primer-lecture-notes.pdf

86 Bibliography

[Hof97] Martin Hofmann. Syntax and Semantics of Dependent Types. Ed. by Andrew M. Pitts and
P.Editors Dybjer. Publications of the Newton Institute. Cambridge University Press, 1997.

[Jac93] Bart Jacobs. “ComprehensionCategories and the Semantics of TypeDependency”. In:Theor.
Comput. Sci. 107.2 (1993), pp. 169–207. doi: 10.1016/0304- 3975(93)90169- T. uRl:
https://doi.org/10.1016/0304-3975(93)90169-T.

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Vol. 141. Studies in logic and the founda-
tions of mathematics. North-Holland, 1999. isbn: 978-0-444-50853-9. uRl: http://www.
elsevierdirect.com/product.jsp?isbn=9780444508539.

[JY21] Niles Johnson and Donald Yau. “Categories”. In: 2-Dimensional Categories. Oxford Univer-
sity PressOxford, Jan. 2021, pp. 1–34. isbn: 978-0-198-87137-8.

[KL21] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. “The simplicial model of Univalent Foun-
dations (after Voevodsky)”. In: Journal of the European Mathematical Society 23.6 (Mar.
2021), pp. 2071–2126. issn: 1435-9863. doi: 10.4171/jems/1050. uRl: http://dx.doi.
org/10.4171/JEMS/1050.

[Law70] F William Lawvere. “Equality in hyperdoctrines and comprehension schema as an adjoint
functor”. In: Applications of Categorical Algebra 17 (1970), pp. 1–14.

[Lin21] Michael Lindgren.Dependent products as relative adjoints. Master’s thesis. 2021. uRl: https:
//ncatlab.org/nlab/files/Lindgren-DependentProductsAsRelativeAdjoints.
pdf.

[LS88] J Lambek and P J Scott. Cambridge studies in advanced mathematics: Introduction to higher-
order categorical logic. Cambridge University Press, Mar. 1988. isbn: 978-0-521-35653-4.

[LW15] Peter Lefanu Lumsdaine and Michael A. Warren. “The Local Universes Model: An Over-
looked Coherence Construction for Dependent Type Theories”. In: ACM Transactions on
Computational Logic 16.3 (July 2015), pp. 1–31. issn: 1557-945X. doi: 10.1145/2754931.
uRl: http://dx.doi.org/10.1145/2754931.

[Mac71] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in Mathe-
matics, Vol. 5. New York: Springer-Verlag, 1971.

[Mar84] Per Martin-Löf. Intuitionistic type theory. Vol. 1. Studies in proof theory. Bibliopolis, 1984.
isbn: 978-88-7088-228-5.

[Mog91] Eugenio Moggi. “A Category-theoretic Account of ProgramModules”. In: Category Theory
and Computer Science, Manchester, UK, September 5-8, 1991, Proceedings. Ed. by David H.
Pitt, David E. Rydeheard, Peter Dybjer, AndrewM. Pitts, and Axel Poigné. Vol. 389. Lecture
Notes in Computer Science. Springer, 1991, pp. 101–117. isbn: 978-3-540-51662-0. doi: 10.
1007/BFB0018347. uRl: https://doi.org/10.1007/BFb0018347.

[Sco70] Dana Scott. “Outline of a Mathematical Theory of Computation”. In: Proceedings of the
Fourth Annual Princeton Conference on Information Sciences and Systems (1970), pp. 169–
176. uRl: https://ncatlab.org/nlab/files/Scott-TheoryOfComputation.pdf.

[See83] Robert A. G. Seely. “Hyperdoctrines, Natural Deduction and the Beck Condition”. In:Math.
Log. Q. 29.10 (1983), pp. 505–542. doi: 10.1002/MALQ.19830291005. uRl: https://doi.
org/10.1002/malq.19830291005.

[See84] Robert AG Seely. “Locally cartesian closed categories and type theory”. In: Mathematical
proceedings of the Cambridge philosophical society. Vol. 95. 1. Cambridge University Press.
1984, pp. 33–48.

https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.1016/0304-3975(93)90169-T
http://www.elsevierdirect.com/product.jsp?isbn=9780444508539
http://www.elsevierdirect.com/product.jsp?isbn=9780444508539
https://doi.org/10.4171/jems/1050
http://dx.doi.org/10.4171/JEMS/1050
http://dx.doi.org/10.4171/JEMS/1050
https://ncatlab.org/nlab/files/Lindgren-DependentProductsAsRelativeAdjoints.pdf
https://ncatlab.org/nlab/files/Lindgren-DependentProductsAsRelativeAdjoints.pdf
https://ncatlab.org/nlab/files/Lindgren-DependentProductsAsRelativeAdjoints.pdf
https://doi.org/10.1145/2754931
http://dx.doi.org/10.1145/2754931
https://doi.org/10.1007/BFB0018347
https://doi.org/10.1007/BFB0018347
https://doi.org/10.1007/BFb0018347
https://ncatlab.org/nlab/files/Scott-TheoryOfComputation.pdf
https://doi.org/10.1002/MALQ.19830291005
https://doi.org/10.1002/malq.19830291005
https://doi.org/10.1002/malq.19830291005

Bibliography 87

[Str18] Thomas Streicher. Fibered Categories à la Jean Bénabou. 2018. arXiv: 1801.02927 [math.CT].
uRl: https://arxiv.org/abs/1801.02927.

[Str91] Thomas Streicher. Semantics of type theory - correctness, completeness and independence
results. Progress in theoretical computer science. Birkhäuser, 1991. isbn: 978-0-8176-3594-
7.

[Tay87] Paul Taylor. “Recursive domains, indexed category theory and polymorphism”. PhD thesis.
University of Cambridge, 1987. uRl: https://ncatlab.org/nlab/files/Taylor-
IndexedCategoryTheory.pdf.

[Uni13] TheUnivalent Foundations Program.Homotopy TypeTheory: Univalent Foundations ofMath-
ematics. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.

https://arxiv.org/abs/1801.02927
https://arxiv.org/abs/1801.02927
https://ncatlab.org/nlab/files/Taylor-IndexedCategoryTheory.pdf
https://ncatlab.org/nlab/files/Taylor-IndexedCategoryTheory.pdf
https://homotopytypetheory.org/book

89

Appendix A

Extension to Remark 6.21

In this appendix, we show that if the rules corresponding to χ being fully faithful, Rules χ-full and
χ-faithful, are added to the type theory described in Figs. 6.1 to 6.4, we can derive the rules regarding
the bijection discussed in Section 6.4.3, Rules tm-to-ml, ml-to-tm, bij-tm-to-ml and bij-ml-to-tm.

The derivation of Rule tm-to-ml is already discussed in Lemma 6.18.

Notation A.1. For each type A in context Γ and Γ|1Γ ` t : A, we denote the corresponding MLTT
style term Γ.t ◦ ttΓ as tml.

Lemma A.2. If we have the following rules:

Γ ctx Γ ` A, B type Γ.A ` s : Γ.B Γ.A ` πB ◦ s ≡ πA : Γ
χ-full

Γ|A ` χ−1(s) : B

Γ.A ` Γ.χ−1(s) ≡ s : Γ.B

which corresponds to χ being full, for each MLTT style term Γ ` t : A, we have Γ|1Γ ` t ◦ π1Γ : A. This
corresponds to the rule:

Γ ctx Γ ` A type Γ ` t : A
ml-to-tm

Γ|1Γ ` χ−1(t ◦ π1Γ) : A

Proof. To get Γ|1Γ ` χ−1(t ◦ π1Γ) : A we need to show Γ.1Γ ` t ◦ π1Γ : Γ.A and Γ.1Γ ` πA ◦ t ◦
π1Γ ≡ π1Γ : Γ. Then we use Rule χ-full to get the desired conclusion.

First we show Γ.1Γ ` t ◦ π1Γ : Γ.A:

Γ ctx
1-from

Γ ` 1Γ type
ext-proj

Γ.1Γ ` π1Γ : Γ Γ ` t : Γ.A
ctx-mor-comp

Γ.1Γ ` t ◦ π1Γ : Γ.A

Now we show Γ.1Γ ` πA ◦ t ◦ π1Γ ≡ π1Γ : Γ:

Γ ctx
1-from

Γ ` 1Γ type
ext-proj

Γ.1Γ ` π1Γ : Γ Γ ` πA ◦ t ≡ 1Γ : Γ
ctx-comp-cong-2

Γ.1Γ ` πA ◦ t ◦ π1Γ ≡ 1Γ ◦ π1Γ : Γ Γ.1Γ ` 1Γ ◦ π1Γ ≡ π1Γ : Γ
ctx-eq-trans

Γ.1Γ ` πA ◦ t ◦ π1Γ ≡ π1Γ : Γ

Finally, we have:

90 Appendix A. Extension to Remark 6.21

Γ.1Γ ` t ◦ π1Γ : Γ.A Γ.1Γ ` πA ◦ t ◦ π1Γ ≡ π1Γ : Γ
ml-to-tm

Γ|1Γ ` χ→(t ◦ π1Γ) : A

Semantically this corresponds to showing that t ◦ π1Γ is in C→
Γ (π1Γ , πA), and using χ being full

to get a morphism in TΓ(1Γ, A).

Notation A.3. If we have Rule χ-full in the type theory, for Γ ` t : A, we denote the term Γ|1Γ `
χ−1(t ◦ π1Γ) : A as ttm.

Lemma A.4. If we have Rules χ-full and χ-faithful

Γ ctx Γ ` A, B type Γ.A ` s : Γ.B Γ.A ` πB ◦ s ≡ πA : Γ
χ-full

Γ|A ` χ−1(s) : B

Γ.A ` Γ.χ−1(s) ≡ s : Γ.B

Γ ctx Γ ` A, B type Γ|A ` t1, t2 : B Γ.A ` Γ.t1 ≡ Γ.t2 : Γ.B
χ-faithful

Γ|A ` t1 ≡ t2 : B

which correspond to χ being full and faithful, in the type theory, then we have a bijection between terms
of the form Γ|1Γ ` t : A and the MLTT style terms of the form Γ ` tml : A.

Proof. From Lemma 6.18, for each Γ|1Γ ` t : A we have an MLTT style term tml := Γ.t ◦ ttΓ. Since
we have the Rule χ-full, from Lemma A.2 we know that for each MLTT style term Γ ` t : A we have
a term ttm := χ−1(t ◦ π1Γ), where Γ|1Γ ` ttm : A. To show the bijection, we need to show the
following two rules:

Γ|1Γ ` t : A
tm-to-ml-bij

Γ|1Γ ` (tml)tm ≡ t : A
Γ ` t : A ml-to-tm-bij

Γ ` (ttm)ml ≡ t : A

First, starting from an MLTT style term Γ ` t : A, from Rule χ-full we get Γ|1Γ ` ttm : A and
Γ.1Γ ` Γ.ttm ≡ t ◦ π1Γ : Γ.A. Using Rule tm-to-ml we get Γ ` Γ.ttm ◦ ttΓ : A and we need to show
Γ|1Γ ` (tml)tm ≡ t : A. First we show:

Γ ctx
1-intro

Γ ` ttΓ : Γ.1Γ Γ.1Γ ` Γ.ttm ≡ t ◦ π1Γ : Γ.A
ctx-comp-cong-2

Γ.1Γ ` Γ.ttm ◦ ttΓ ≡ t ◦ π1Γ ◦ ttΓ : Γ.A

Next we show:
Γ ctx

1-intro
Γ ` t : Γ.A Γ ` π1Γ ◦ ttΓ ≡ 1Γ : Γ

ctx-comp-cong-1
Γ.1Γ ` t ◦ π1Γ ◦ ttΓ ≡ t ◦ 1Γ : Γ.A

Using the previous two results and Rule ctx-eq-trans we have Γ.1Γ ` Γ.ttm ◦ ttΓ ≡ t ◦ 1Γ : Γ.A.
Finally we have:

Γ.1Γ ` Γ.ttm ◦ ttΓ ≡ t ◦ 1Γ : Γ.A
Γ ` t : Γ.A ctx-id-unit-r

Γ.1Γ ` t ◦ 1Γ ≡ t : Γ.A ctx-eq-trans
Γ.1Γ ` Γ.ttm ◦ ttΓ ≡ t : Γ.A

Appendix A. Extension to Remark 6.21 91

which means Γ|1Γ ` (tml)tm ≡ t : A.
Now we start from a term Γ|1Γ ` t : A. From Lemma 6.18 we get an MLTT style term tml :=

Γ.t ◦ ttΓ. From Rule χ-full we get Γ|1Γ ` (tml)tm : A and Γ.1Γ ` Γ.(tml)tm ≡ tml ◦ π1Γ : Γ.A,
which means that Γ.1Γ ` Γ.(tml)tm ≡ Γ.t ◦ ttΓ ◦ π1Γ : Γ.A. We also know from Γ

∼
` ttΓ : Γ.1Γ that

Γ.1Γ ` ttΓ ◦ π1Γ ≡ 1Γ.1Γ : Γ.1Γ. Hence we get:

Γ.1Γ ` Γ.(tml)tm ≡ Γ.t ◦ ttΓ ◦ π1Γ : Γ.A
Γ.1Γ ` Γ.t : Γ.A Γ.1Γ ` ttΓ ◦ π1Γ ≡ 1Γ.1Γ : Γ.1Γ ctx-comp-cong-1

Γ.1Γ ` Γ.t ◦ ttΓ ◦ π1Γ ≡ Γ.t ◦ 1Γ.1Γ : Γ.1Γ ctx-eq-trans
Γ.1Γ ` Γ.(tml)tm ≡ Γ.t ◦ 1Γ.1Γ : Γ.1Γ

Finally, we have:

Γ.1Γ ` Γ.(tml)tm ≡ Γ.t ◦ 1Γ.1Γ : Γ.1Γ

Γ|1Γ ` t : A
ext-tm

Γ.1Γ ` Γ.t : Γ.A
ctx-unit-id-r

Γ.1Γ ` Γ.t ◦ 1Γ.1Γ ≡ Γ.t : Γ.A
ctx-eq-trans

Γ.1Γ ` Γ.(tml)tm ≡ Γ.t : Γ.A
χ-faithful

Γ|1Γ ` (tml)tm ≡ t : A

	Abstract
	Acknowledgements
	Introduction
	Related Work
	Preliminaries
	Category Theory Preliminaries
	Arrow Category
	Grothendieck Fibration
	Fibred Functor and Adjunction

	Type Theory Preliminaries
	Judgements and Structural Rules
	Context Morphisms
	Unit Type
	-Types
	-Types

	Comprehension Categories
	Extended Example: Syntactic Category

	Interpretation of Dependent Type Theories
	Judgements and Structural Rules
	Context Extension
	Substitution : Types
	Substitution is Pullback in C
	Substitution: Terms
	Functoriality of Substitution
	Weakening
	Contraction
	Extended Example: (Set, Set, 1, cod)
	Extended Example: No Type Dependency

	Unit Type
	Extended Example : Syntactic Category

	- and - Types
	Interpretation of -Types
	Interpretation of -Types
	Interpretation of Weak -Types
	Extended Example : (Set, Set, 1, cod)
	Extended Example : No Type Dependency

	Type Theory Extracted from the Semantics
	Judgements and Structural Rules
	Judgements
	Rules for Context and Type Morphisms
	Rules for Context Extension
	Rules for Substitution

	Interpretation in a Comprehension Category
	Comprehension Preserving Cartesian Morphisms
	Unit Type
	Unit Type from Semantics
	Interpretation of Type Theory with Unit
	Bijection between Terms and Sections of Projections

	Discussion and Conclusion
	Bibliography
	Extension to rem-appendix

