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A B S T R A C T

Travel-time prediction is a critical component of Intelligent Transportation Systems (ITS), offering vital infor-
mation for tasks such as accident detection, congestion management, and traffic flow optimisation. Accurate 
predictions are highly dependent on the selection of relevant features. In this study, a two-stage methodology is 
proposed which consists of two layers of Optimisation Algorithm and one Data-Driven method (OA2DD) to 
enhance the accuracy and efficiency of travel-time prediction. The first stage involves an offline process where 
interconnected optimisation algorithms are employed to identify the optimal set of features and determine the 
most effective machine learning model architecture. In the second stage, the real-time process utilises the 
optimised model to predict travel times using new data from previously unseen parts of the dataset. The proposed 
OA2DD method was applied to a case study on the M50 motorway in Dublin. Results show that OA2DD improves 
the convergence curve and reduces the number of selected features by up to 50 %, leading to a 56 % reduction in 
computational costs. Furthermore, using the selected features from OA2DD, reduced the prediction error by up to 
29 % compared to the full feature set and other feature selection methods, demonstrating the method’s effec-
tiveness and robustness.

1. Introduction

Globally, traffic congestion has become a pressing issue with wide-
spread consequences, such as higher accident rates, elevated air pollu-
tion, increased fuel consumption, less predictable travel times, and a 
decline in societal health [1]. Given these challenges, it becomes crucial 
to implement an effective Intelligent Transportation System (ITS) that 
can dynamically assess the traffic situation [2]. The functioning of the 
traffic system is intricately linked to the handling of fundamental traffic 
data [3]. To do so, predicting different aspects of traffic is one of the 
most important steps [4].

Numerous studies have been studying the prediction of different 
aspects of traffic such as traffic flow from regional [5-7] and network 
perspectives [8-10], speed [11,12], occupancy [13,14], travel time from 
path perspective that considers the travel time as the duration that ve-
hicles spend in specific route(s) from entering to exiting [15,16] and 
origin-destination perspective that focuses on vehicles’ total trip travel 
time [17,18]. Some other studies have focused on predicting the travel 
demand [19,20]. The importance of predicting travel time is not limited 
to road networks. Recent studies show that approaches on prediction 

and usage are captivating interest in other modes of transport, such as 
the railway systems [21,22].

Unlike flow, occupancy, or speed, travel time is more readily un-
derstandable to humans. The interpretation of flow, occupancy, or speed 
can vary depending on the type of road being analysed [23]. The pre-
diction of travel time is a crucial element of ITS [24], and it has a sig-
nificant role in the deployment of Advanced Traveler Information 
Systems (ATIS) and Advanced Traffic Management Systems (ATMS) 
[25]. The information regarding travel time serves as valuable input or 
auxiliary data for accident detection, congestion control, dynamic nav-
igation, and other related applications. Consequently, studying 
travel-time prediction holds significant importance [25].

Travel time prediction methods have been categorised from different 
points of view in the literature. However, one of the most common ap-
proaches is to divide them into a) model-based and b) data-driven 
methods [25]. Model-based methods use traffic parameters such as 
flow and speed to build a traffic model and predict future travel time. 
Two common model-based methods are the cell transmission model [26,
27] and queuing theory [28]. However, data-driven methods are the 
mainstream methods today [3], which uses datasets extracted from the 
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past and finds the potential in them to predict future travel time. Ma-
chine Learning (ML) techniques such as Artificial Neural networks 
(ANN) [29-31], Support Vector Regression (SVR) [32-34], and Deep 
Learning [35,36] are the commonly used techniques in data-driven 
methods.

Abdi and Amrit [37] in a review paper on prediction travel time and 
arrival time, gathered information on previous studies including input 
features. However, unity in the features is not observed among the 
studies. For instance, Kumar et al [38] used the day of the week, time of 
the day (TOD), and jam density, while Chiabaut and Faitout [39] 
selected the TOD, length of the section, speed, and congestion. In 
another study, Wang et al [40] only used speed, distance, and departure 
time. Finding the correct features to use as input is crucially important. If 
the data-driven methods are not given enough information (i.e., fea-
tures), they fail to predict accurately [41]. On the other hand, having 
irrelevant and redundant features can reduce the accuracy alongside 
increasing the computational cost [42]. Therefore, having a systematic 
approach to choose the necessary features is the first step in predicting 
travel time accurately. Consequently, this paper introduces a holistic 
methodology, from data collection to prediction, with a novel feature 
selection method consisting of two Optimisation Algorithms (OAs) and a 
Data-Driven predictive model (DDPM) named OA2DD.

The OA2DD method is based on the selection of features using the 
wrapper method, where feature subsets are selected via OAs and 
assessed using predictive algorithms. To demonstrate the efficacy of the 
OA2DD method, the Salp Swarm Algorithm (SSA) is utilized as an 
optimiser, with ANN employed for prediction. Furthermore, the optimal 
choice of the predictive algorithm structure has a significant effect on its 
accuracy. Therefore, the structure of the ANN is also optimised using 
another OA, i.e. SSA in this case. As a result, the proposed methodology 
yields more accurate travel time prediction requiring less computational 
resources. It is noted that in this work, travel time is studied from the 
path perspective, however, OA2DD logic can be implemented on the 
origin-destination perspective as well.

The method is applied to a case study involving the M50 motorway in 
Dublin, Ireland. The M50 motorway holds significant importance for 
both the local and national transportation infrastructure as the busiest 
road in Ireland [43] and numerous studies have been conducted on the 
M50, examining various aspects of this motorway. Corbally et al [44] 
predicted the duration of incidents in M50 using ML algorithms. Rogers 
and Darcy [45] studied the impact of toll booths on traffic flow. Kemp 
and O’Mahony [46] identified the latency in travel time prediction in 
M50, quantified its effects and proposed a model to remove it.

Overall, the main contributions of the current study are as follows:

• The study introduces a two-stage methodology for travel time pre-
diction, consisting of a novel feature selection method called OA2DD 
and a layer of DDPM.

• The OA2DD is a novel feature selection method based on the wrapper 
method. Unlike a conventional wrapper method that selects and in-
vestigates the impact of each feature on the output individually, 
OA2DD chooses the features according to the temporal correlation 
among them, where feature subsets are selected via OAs and assessed 
using predictive algorithms.

The current study is structured as follows: Section 2 provides the 
theoretical background of the ML and OA used in this study and also 
feature selection concept. Section 3 comprehensively explains the 
Methodology from data collection to real-time prediction of travel time 
and introduces the novel OA2DD feature selection method, Section 4
illustrates the Methodology through a case study employing SUMO 
simulation, detailing each step along with the presentation and discus-
sion of results. Lastly, Section 6 outlines the primary conclusions drawn 
and suggests potential avenues for further exploration.

2. Theoretical background

2.1. Salp Swarm Algorithm

Salp Swarm Algorithm is a metaheuristic OA widely employed in 
various engineering fields due to its simplicity and adaptability to 
diverse problems [47]. Inspired by the swarm intelligence of salps, SSA 
mimics the efficient coordination and movement of these marine or-
ganisms in search of a food source. The salp population in SSA is divided 
into leaders and followers, and their positions are defined in a 
n-dimensional search space, where n represents the number of decision 
variables in the optimisation problem. The following equations present 
how their positions are updated in each iteration [48]. 

P1
i =

{
FSi + r1((UBi − LBi)r2 + LBi) r3 ≥ 0
FSi − r1((UBi − LBi)r2 + LBi) r3 < 0

}

(1) 

r1 = 2e
−

(
4h
H

)2
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UPj
i =

1
2

(
Pj

i +Pj− 1
i

)
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where, P1
i , Pj

i, and UPj
i, are the i-th dimension of leader, j-th follower and 

updated j-th follower’s position, respectively. Moreover, H, h, FSi, UBi, 
and LBi, and are the maximum number of iterations, the current itera-
tion, the i-th dimension of the food source, upper, and lower bounds, 
respectively. Finally, r2 and r3 are random numbers between 0 and 1. 
Fig. 1, shows the algorithm’s pseudo code.

2.2. Artificial Neural Network

Artificial Neural Network is an ML technique inspired by the human 
neural system and its remarkable learning abilities. Essentially, ANN 
enables the learning of relationships between input values and an output 
quantity, even in the case of highly complex associations. The widely 
used ANN training technique is feed-forward back-propagation (FFBP) 
[49,50]. FFBP-based ANNs typically feature at least one hidden layer 
situated between an input layer and an output layer. Nodes in these 
layers are connected to every node in the subsequent layer through 
weight values.

In the feedforward phase, information moves from the input to the 
output layer to generate predictions based on the input data and the 
current weights. During back-propagation, weights are adjusted using 
training algorithms like Levenberg-Marquardt, Bayesian Regularization, 
or Scaled Conjugate Gradient to minimise prediction errors [49]. 
Levenberg-Marquardt is an extension of the Quasi-Newton method and 
avoids the need to compute the Hessian matrix for solving non-linear 
least squares problems. The weights and biases (wbk+1) are updated 
according to the following formula [51]: 

wbk+1 = wbk −
(
VKV + μZ

)− 1VKe 

where V is the Jacobian matrix containing the first derivatives of the 
network errors with respect to the weights and biases, e is the error 
vector, Z is the identity matrix, and μ is a damping factor. Neurons in the 
hidden layers receive inputs that are weighted based on their relevance 
from the previous layer. These inputs are then summed, with a bias 
added to the total, and the result is passed through an activation func-
tion. This process introduces non-linearities, enabling the network to 
model complex patterns. In contrast, output neurons usually don’t use 
an activation function, and input layer neurons simply pass the data into 
the network without applying weights or biases. Training an ANN in-
volves adjusting both weights and biases to optimise performance. 
Weights determine how much influence a neuron’s output has on the 
next layer, while biases act as thresholds that allow neurons to activate 
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even when all weighted inputs are zero. This adds flexibility, enabling 
the network to learn patterns more effectively and improve prediction 
accuracy. Biases, as constant values, help the network adapt to different 
patterns. Fig. 2 provides a schematic of an ANN and neurons in its 
hidden and output layers.

2.3. Feature selection

One of the primary objectives in data modelling and classification is 
to make predictions based on the training data and available features. 
Dealing with vast datasets characterized by a high-dimensional feature 
space poses significant challenges in ML tasks [52]. When there are 
numerous irrelevant and redundant features within the initial feature 
set, the utilization of dimensional reduction becomes crucial [53]. 

Dimensional reduction is an essential technique for eliminating these 
undesirable features. This process not only enhances the performance of 
ML algorithms but also reduces computational cost by eliminating 
irrelevant and redundant features [54-56].

Reducing the problem dimensions by identifying the important fea-
tures not only reduces computational load and increases the accuracy, 
but also helps understanding the underlying relationship between the 
key features and travel time. Furthermore, exclusively collecting 
essential features can result in saving time and resources in data 
collection [57]. Hence, after extracting features from the collected raw 
data, a feature selection process must be done. Feature selection 
methods typically explore the solution space to minimise the redun-
dancy of the selected features and maximise their relevance to the target 
class [58]. These methods can be based on a) filter models and b) 

Fig. 1. SSA’s pseudo code.

Fig. 2. Schematic ANN and neuron.
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wrapper models.
The filter model assesses the significance of features without 

employing any learning algorithm, making methods based on this model 
generally rapid. Within these models, features undergo evaluation and 
prioritization using information-theoretic metrics, and then those with 
the highest ranks are selected [59]. Wrapper-based methods integrate a 
supervised learning algorithm into the feature selection process, 
selecting features through the subset evaluation technique. The selec-
tion of features takes into account correlations and dependencies be-
tween them, with consideration for the bias of the prediction algorithm 
to optimise overall performance [60]. Wrapper-based methods, in gen-
eral, utilize iterative search processes where each iteration of the 
learning model guides the population of solutions toward the best so-
lution [56]. Wrapper models have a higher computational cost 
compared to filter models due to their use of learning algorithms. 
Nevertheless, an intelligent optimisation algorithm-based feature se-
lection method can explore the relationship between features making no 
assumptions [42]. Moreover, they can choose a subset of features with 
more compatibility with DDPM since they use a similar technique inside. 
However, there is limited use for them to select features for predicting 
traffic states and even less for predicting travel time [42].

2.4. Explored features in travel time prediction

There is a notable variety in the features used by studies in travel 
time predictions. In recent years the importance of used features for 
predicting travel time and their impacts on the accuracy of the pre-
dictions has gotten more attention. Although there is no unity in the 
used features in the literature, there are some studies that studied these 
features and improved the travel time accuracy by extracting effective 
features from their case studies. However, overall, there is a lack of focus 
on feature selection. Most studies focused on increasing prediction ac-
curacy by extracting new features and adding these features to the input 
vector rather than being exploratory in identifying the features or 
combinations that improve accuracy in the most efficient form.

For instance, Tang et al. [61] developed a tensor-based context-a-
ware approach to predict travel time. To capture the contextual infor-
mation of traffic conditions, this approach extracts historical, 
geographical and spatial-temporal features. In another study, Abdollahi 
et al. [36] used feature learning, feature extraction, and clustering al-
gorithms in their developed predictor to increase the accuracy of the 
prediction. The used dataset in this study was the New York City Taxi 
and Limousine Commission. Therefore, they used features such as pas-
senger count, fare, and tip. Moreover, Kawatani et al. [62] studied 
predicting bus travel time between two stops. They realized that adding 
the travel time of the previous bus between the same two stops and the 
travel time of the same bus between previous stops could increase the 
accuracy of the prediction. Shen et al. [63] proposed a neural network 
for travel time prediction based on tensor decomposition and graph 
embedding, to address the insufficient feature extraction of extract road 
network structure and travel speed.

In one of the few studies on feature selection for predicting travel 
time, Jia et al. [64] used a feature selection method named sample en-
tropy. This feature selection method is used for time series prediction 
problems. It calculates the complexity of each subsequence to find the 
one that increases the accuracy of the prediction in methods such as long 
short-term memory. In another study that was conducted on predicting 
travel time using urban big data, Zou et al. [65] studied the impact of 
various features on predicting results by sequentially adding these fea-
tures into the model. Although this can be considered as a form of 
feature selection, this approach can be computationally costly if not 
impossible when the number of features increases. Moreover, Li et al. 
[66] extracted 14 candidate features from GPS and weather stations. 
Then they used XGBoost and light GBM to select the 10 most effective 
features. Although this study used a systematic approach for feature 
selection, it does not study spatial or temporal correlation between 

features. XGBoost was also used in another study on predicting travel 
time by Kang et al. [67]. In this study, spatio-temporal correlation be-
tween features was studied.

3. Methodology

In this work, the proposed Methodology consists of two parts. The 
first part is an offline process, whose main outcome is a list of features 
constituting a trained DDPM to predict the travel time. The second part 
is an online process which includes training the DDPM using real-time 
data to yield a real-time prediction of the travel time. Fig. 3 depicts 
the Methodology and its components. The rest of this section explains 
the different steps of the offline process.

3.1. Feature extraction

Three types of input including volume, time of the day, week, month, 
or year, and speed have been used to predict travel time [68]. However, 
this information needs to be extracted from the raw data collected from 
detectors. A common way to collect traffic data is by using sensors 
placed in fixed locations along the road. These sensors detect vehicles 
that pass by. Some typical sensors used for this purpose include 
inductive-loop detectors, cameras, and radar [1]. To extract the needed 
information, in the first step, a day should be divided into time intervals. 
Then, in the case of volume, upstream and downstream detectors are 
used to count the number of vehicles within the understudy segment of 
the highway. Moreover, traffic has a daily, weekly, monthly, seasonal, 
and annual cycle. Therefore, the time of the day, day of the week, week 
of the month, and month of the year should be considered. Finally, the 
average speed of each lane (if accessible), or the speed limit of each lane 
if they have different speed limits should be used (see Fig. 4).

Moreover, there is a temporal correlation in the time series of travel 
time. In other words, there is a correlation between the mean travel time 
of the current time interval and the same value of the previous time 
intervals [69]. Therefore, the same features- i.e. volume, time of the day, 
week, month, or year, and speed- of the previous time intervals should 
be considered as well. However, extracted features from the previous 
time intervals are different from the extracted features from the current 
time interval. For the previous time intervals, information about the 
time of the day, week, month, or year, and speed is not needed since the 
model already has the information from the current time interval. 
However, depending on how congested the traffic is, how long the 
segment is, and how long the time interval is, some of the vehicles from 
previous time intervals may have not exited the segment yet. Therefore, 
the travel time of the vehicles that exited the segment during the pre-
vious time intervals should be considered instead.

Although travel time is an important piece of information and draws 
a sensible image of the traffic, more information is needed to be able to 
illustrate a completely understandable image. For instance, two time 
intervals can have the same mean travel time when one of them has slow 
consistent traffic, while vehicles can speed up first and get stuck in 
congested traffic later in the other time interval. Therefore, another 
parameter named waiting time should be used to address that issue. 
Waiting time is the accumulative time that vehicles spend in the segment 
while driving slower than a given threshold which is 0.36 km/h in this 
work. The waiting time of the vehicles that exited the segment during 
the previous time intervals is considered a candidate feature as well. 
Then all the extracted features will be put inside the candidate feature 
pool.

3.2. Candidate features pool

Candidate features pool is the set of all the features that potentially 
increase the accuracy of the predicted travel time without (or with the 
least) increase in the redundancy of the selected features. The extracted 
features from the current time interval are the TOD (i.e., week, month, 
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and year if accessible), speed of each lane (i.e., speed limit or average 
speed if accessible), the number of vehicles entering the segment during 
the time interval, and the number of vehicles that are already inside the 
segment when the time interval starts. Moreover, the extracted features 
from the selected number of previous time intervals are the number of 
vehicles entering the segment during those time intervals, the number of 
vehicles that already are in the segment when those intervals started, the 
mean travel time (MT) and the mean waiting time (MW) of the vehicles 
that exit the segment during those intervals. Selecting the number of 
previous time intervals depends on the accessible data and computa-
tional budget. Table 1 summarises the candidate features.

3.3. Feature selection

Feature extraction can encompass a broad spectrum of candidate 
features. Nevertheless, not all extracted features contribute to enhancing 
forecasting accuracy, as there might be irrelevant or redundant features 
within the extracted set [69]. The elimination of these features has the 
potential to further improve forecasting accuracy or, at the very least, 

maintain the current level of accuracy while reducing the complexity of 
the predicting model [70-72]. Existing feature selections either rank the 
potential features based on their importance (filter models) or decide 
whether a feature should be selected or not. These methods consider 
features individually. However, in the current study, the majority of the 
features are sequential and extracted due to their temporal correlation; 

Fig. 3. Methodology’s different parts and the interconnections.

Fig. 4. Aspects to be considered in the feature extraction.

Table 1 
Candidate features.

Current time 
interval (t)

t-1 t-2 … t-n

Time of the day Entering 
vehicles

Entering 
vehicles

Entering 
vehicles

Per-lane speeds Existing 
vehicles

Existing 
vehicles

Existing 
vehicles

Existing vehicles Mean travel 
time

Mean travel 
time

Mean travel 
time

Mean waiting 
time

Mean waiting 
time

Mean waiting 
time
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hence, some of them cannot be selected without the others. For instance, 
the travel time of the t-5th time interval cannot be selected without the 
travel time of the next time intervals up until the current one. To address 
this limitation, a novel feature selection method hybridizing two OAs 
and a DDPM named OA2DD is proposed in this study. In the current 
study, to be able to explain the Method, an ANN as the DDPM and a SSA 
as an optimiser are used, which are explained in Section 2.

3.3.1. OA2DD
As mentioned before, the main concept of OA2DD is based on the 

wrapper method in which an OA explores different subsets of features 
and imports them to a DDPM as its input. Then, based on the accuracy of 
the predicted output, the wrapper model tries to find the subset of fea-
tures that maximises the accuracy. However, most of the DDPMs have 
adjustment parameters that need to be set before the start. In the case of 
ANN, the number of hidden layers and the number of neurons in each 

Fig. 5. OA2DD flowchart.
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layer need to be set. These numbers that build the ANN’s structure 
crucially impact the ANN’s performance and accuracy. Therefore, the 
structure of an ANN needs to be optimised according to a given feature 
subset to reach the maximum accuracy possible for that subset of 
features.

The OA2DD consists of three different parts. First, there is an OA that 
explores different subsets of features, i.e., the first OA. Then, there is 
another OA inside the first one, which explores different adjustment 
parameters for the DDPM for each feature subset, i.e., the second OA. It 
should be noted that the two OAs work as bi-level optimisation, whereas 
the second OA is fully nested in the first one. Finally, a DDPM inside the 
second OA takes the selected features by the first OA as inputs, adapts to 
the given adjustment parameters chosen by the second OA, and predicts 
the output after being trained. In other words, the DDPM’s error serves 
as the second OA’s objective function, and the hybridization of these two 
serves as the first OA’s objective function. This way, the minimum error 
related to each feature subset can be acquired; hence, a fair comparison 
between feature subsets can be conducted and the best subset with the 
overall minimum error can be chosen. Fig. 5 illustrates OA2DD’s pro-
cess, and the rest of this section explains OAs and DDPM individually. a) 
The first OA

The first OA’s job is to explore different subsets of features to select 
the subset that causes the minimum error in predicting the output, i.e., 
travel time. In the first step, it determines the initial parameters. Then, it 
randomly creates the search agents’ population with respect to the lower 
and upper bounds. Each search agent’s position represents a subset of 
features. The extracted features in the candidate features pool are 
divided into five categories and the selected features from each category 
by a search agent are represented by a cell in its position (see Fig. 6). The 
features in the first category are the ones related to the current time 
interval, hence they are always being selected since they have important 
impacts on the output. In each of the other categories, there is a tem-
poral correlation among the members. Therefore, none of them can be 
chosen for a subset unless all the members before them are chosen. For 
instance, existing vehicles at the start of t-4 cannot be chosen unless the 
same values of t-3, t-2, and t-1 are chosen. As a result, the agent only 
carries a number in its position for each category which represents how 
many members of that category from the top are selected. For example, 
an agent with the position of [3,3,1,0,1] represents a subset of time, of 

the day, week, month, or year, speeds, and existing vehicles at the start 
of t, entering vehicles during t-1, entering vehicles during t-2, entering 
vehicles during t-3, existing vehicles at the start of t-2 and waiting time 
of t-1. The number of considered previous time intervals, i.e., n, depends 
on the problem properties and can be set by the user. After generating 
every agent’s position, it calls the second OA for each agent to calculate 
their fitness. Then, the agent with the best fitness, i.e., the lowest error, 
is compared with the food source and if it has a better fitness, it replaces 
the food source. Finally, search agents’ positions are updated for the 
next iteration and the same process is conducted until the maximum 
number of iterations is reached. The final food source represents the 
subset of selected features.

The OA in a conventional wrapper feature selection method aims to 
minimise the error between the predicted output and the actual output 
by choosing the most effective individual features. This minimising 
problem is formulated as follows:

Minimise 

Error =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T
∑T

i
(Ai − Ei)

2

√
√
√
√ (4) 

Subject to: 

E(X) = F(LW×(F(IW×X+ b1))+ b2) (5) 

X(W) = [w1x1,w2x2,…,wmxm] (6) 

0 ≤ wk ≤ 1 (7) 

wk ∈ N (8) 

where Ej, Aj, and T are the ANN’s predicted output, actual values of the 
output, and the number of data records in each dataset, respectively. 
Moreover, F, LW, IW, b1, b2, and m are the ANN’s activation function, 
hidden layer’s weights, input layer’s weights, input layer’s bias, hidden 
layer’s bias, and the number of potential features in the candidate fea-
tures’ pool, respectively. X is the candidate features’ pool vector, wk 
indicates whether xk (k-th feature) is selected or not. The first OA in 
OA2DD, on the other hand, divides the set candidate features into 
different subsets. The elements of each subset have a temporal 

Fig. 6. The definition of a search agent’s position in the first OA.
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correlation with each other and are sorted from the most recent value to 
the oldest. The first OA’s next step is minimising the prediction error by 
selecting several sequential elements from each subset. This minimising 
problem is the same as Eq (4). However, it is subjected to different 
conditions. The subjects are formulated as follows:

Subject to: 

E(X) = F(LW×(F(IW×X+b1))+b2) (9) 

x1, x2,…, xn⊂X (10) 

xj(z) =
{
zjxj,1,

(
zj − 1

)
xj,2,…,

(
zj − m+1

)
xj,m

}
(11) 

0 ≤ zj ≤ m (12) 

zj ∈ N (13) 

where xj is the j-th subset of candidate features and zj indicates the 
number of selected features from the j-th subset of the set of candidate 
features.

The main difference between the first OA and a conventional 
wrapper feature selection method is in their minimising functions. The 
first OA solves Eq. (4), while a conventional wrapper feature selection 
solves Eq. (5). These equations are written assuming that an ANN with 
only one hidden layer is used as a DDPM and the error is calculated by 
root mean square error in both methods.

A conventional wrapper feature selection method treats all features 
equally without considering any relation among them. This means that it 
can select, for example, the number of entering vehicles during the t-9th 
time interval as a selected feature without selecting the same value from 
any other time interval. On the contrary, the first OA in OA2DD selects 
that value if and only if the same value from all the time intervals be-
tween t-9 and t is selected. b) Hybridising the second OA and the DDPM

As it was mentioned before, in the first OA, to calculate each agent’s 
fitness, the second OA is called. The second OA’s goal is to find the 
optimum adjustment parameters for the DDPM for the current subset of 
features. Its general process is similar to the first OA except for the 
definition of agents’ position. After determining the initial parameters, it 
generates the agents randomly. Each agent’s position represents a 
different set of adjustment parameters for the DDPM. In this study ANN 
is used as the DDPM, however, this logic can be applied to any other 
DDPM. As shown in Fig. 7, in the second OA, a search agent’s position 

consists of two parts, i.e., L and N. Part L is binary and indicates whether 
a layer is active or not while Part N determines the number of neurons in 
each of the hidden layers. The maximum number of hidden layers, i.e., 
m, and the maximum number of neurons in each layer, i.e., k, should be 
preset by the user based on the complexity of the problem. For instance, 
when m and k are 3 and 20 respectively, an agent with the position of 
[1,0,1,4,7,2] represents an ANN that has two hidden layers (the second 
hidden layer is deactivated) with 4 and 2 neurons in them respectively. 
In the next step, the second OA calls the DDPM to calculate each agent’s 
fitness. Then, in each iteration, the best agent is compared to the food 
source and replaces it if has a lower error. Subsequently, the position of 
each agent is updated, and the next iteration starts and goes through the 
same process until the last iteration. The final food source represents the 
optimum structure of the DDPM, i.e., ANN, with the lowest prediction 
error for the current subset of features, i.e., the search agent from the 
first OA.

For every agent in the second OA, the DDPM is called once. Every 
time that the DDPM is called it gets the input dataset consisting of the 
selected features by the first OA’s agent, then adapts to the adjustment 
parameters determined by the second OA’s agent and calculates the 
prediction error. In the case of ANN, it needs to be trained every time 
that is called according to the selected features and determined 
structure.

3.4. Data-driven model and prediction

After selecting the features, the data-driven model is trained using 
the selected features to predict the mean travel time in real time. This 
part operates in real-time, meaning that when the model is trained, the 
necessary data can be collected from the road segment under study and 
the model predicts the mean travel time for the current time interval in 
almost a second. To make the feature selection and predictive model 
more compatible with each other, it is advised to use the hybridization 
of the second OA and DD as the predictive model. In this study, an ANN 
is used for that purpose. During the training, validation, and testing 
process, root mean square error (RMSE) is used as the statistical error 
indicator. Furthermore, to present the error of the prediction other in-
dicators including Pearson correlation coefficient (R), Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), scatter index 
(SI), Mean Bias Error (MBE), and RMSE are used (a test dataset is used 
for presenting and comparing). To do so, the results of the testing phase 

Fig. 7. The definition of a search agent’s position in the second OA.
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are compared. 

R =

∑T
j=1

(
Ej − E

)(
Aj − A

)

∑T
j=1

(
Ej − E

)2 ∑T
j=1

(
Aj − A

)2 (14) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T
∑T

j=1

(
Aj − Ej

)2

√
√
√
√ (15) 

MAE =
1
T
∑T

j=1

⃒
⃒Aj − Ej

⃒
⃒ (16) 

MAPE =
100
T

∑T

j=1

⃒
⃒
⃒
⃒
Aj − Ej

Aj

⃒
⃒
⃒
⃒ (17) 

SI =
RMSE

A
(18) 

Fig. 8. M50 motorway. Source: Google Maps. (b) under examination part of M50 in the simulator.
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MBE =
1
T
∑T

j=1

(
Ej − Aj

)
(19) 

where Ej E, Aj, A, T, are the ANN’s estimated output, average of esti-
mated outputs, actual values of the output, average of actual output, the 
number of data records in each dataset, and the mean value of the actual 
travel time, respectively. SI indicates the performance of a prediction. If 
SI ≤ 0.1 the performance is “excellent”, if 0.1 < SI ≤ 0.2 the perfor-
mance is “good”, when 0.2 < SI ≤ 0.3 the performance is “fair”, and if 
0.3 < SI, the performance is “poor” [73]. MBE indicates if a prediction is 
overestimated (MBE > 0) or underestimated (MBE <0) and quantifies it. 
Finally, after training the data-driven model using the collected dataset 
and its selected features using OA2DD, this data-driven model can be 
used in the real-time process.

4. Case study: M50 motorway in Dublin

The OA2DD is demonstrated in a simulation study conducted on the 
M50 motorway in Dublin. The M50, which takes on a C-shape as 
depicted in Fig. 8(a), serves as a vital link connecting the southern and 
northern regions of Dublin. As Ireland’s busiest motorway, congestion 
on the M50 has become a notable issue [74]. Existing data indicates that 
in 2021, there were 45.1 million passages recorded on the M50 
motorway [75]. In this research, to evaluate the traffic dynamics, a 
detailed simulation of the motorway is carried out using the Simulation 
of Urban MObility (SUMO) tool [76]. Fig. 8(a) also depicts the particular 
segment being analysed on the M50 map, while Fig. 8(b) displays the 
same segment within SUMO showcasing five lanes and maintaining the 
standard speed limit of 100 km/h. It is essential to highlight that this 
study exclusively examines the southbound direction of the M50.

The M50 model utilized in SUMO for this paper was developed by 
Gueriau and Dusparic [77]. This model integrates both Human Driving 
Vehicles (HDV) and Connected and Autonomous Vehicles (CAV) oper-
ating at automation levels 2 and 4, denoting automation with human 
supervision and fully automated driving, respectively [77]. The re-
searchers designed six distinct scenarios encompassing various ratios of 
HDVs and CAVs. For this study, Scenario A is selected, which exclusively 
involves 100 % HDVs with no CAVs. Demand patterns and volumes were 
determined using observed data, averaging daily observations from 
2012 to 2019. However, since this dataset only includes the same speed 
limit for every lane, i.e., 100 km/h, in this study, the dataset from the 
mentioned study is imported to SUMO and by changing each lane’s 
speed limits to different values between 36 km/h and 144 km/h a bigger 
dataset is produced to study the impact of per-lane speed limits on travel 
time as input features. Then, the dataset is randomised, the first thou-
sand records are used in feature selection (Section 5.3), and the second 
thousand records are used to train the DDPM (Section 5.4). In both cases, 
the dataset is divided into a training set (80 %), a validating set (10 %), 
and a testing set (10 %). Moreover, the collected observed dataset [77] is 
used for real-time prediction (Section 5.5). Table 2 presents the statis-
tical values of travel time in each dataset.

5. Results and discussion

5.1. Feature extraction

As mentioned before, the first step for extracting features is to divide 
the day into time intervals. For this case study, 10 min time intervals are 
chosen. Then, to collect the volume data, detectors are placed (Fig. 9). 
The number of vehicles entering the under-study area during each time 
interval (EC) and the number of vehicles existing in the area at the start 
of each time interval (IC) can be collected using these detectors. More-
over, since, the dataset used for the simulation contained the average 
values of seven years of data collection, the only time value that can be 
used is the TOD. The time of the week, the month, and the year are not 
available in this dataset. Regarding the speed, per-lane mean speeds are 
not available and cannot be applied in this case study. However, the 
simulation was run multiple times with different speed limits for each 
individual lane, so the effects of speed limits can be studied. Hence, per- 
lane speed limits (S) are extracted as well. Finally, the mean values of 
travel time and waiting time of each time interval are extracted.

5.2. Candidate features pool

Once the main features are extracted for each time interval, it is 
needed to determine the maximum number of previous time intervals 
that need to be considered in the pool. In this case study 10 previous 
time intervals are considered in the pool. As presented in Table 3, the 
candidate features pool consists of different columns (each column is 
allocated to a time interval). The current time interval’s column includes 
TOD at the start of the time interval, the per-lane speed limits, the 
number of vehicles existing in the under-study area for the previous time 
intervals, the number of vehicles entering the area during the time in-
terval, the number of vehicles already existing in the area at the start of 
the time interval, and the mean value of travel time and waiting time of 
the vehicles that exit the area during the time interval are considered as 
the candidates.

5.3. Feature selection

The next step is to apply the OA2DD to the candidate features pool. 
To compare the results of OA2DD, a normal wrapper feature selection 
using binary SSA with a predefined ANN (SSAANN), a Particle Swarm 
Optimisation (PSO) wrapper feature selection with a predefined ANN 
(PSOANN), an SSA wrapper feature selection with SVR (SSASVR), a PSO 
wrapper feature selection with SVR (PSOSVR), and a wrapper feature 
selecting method using binary SSA with an ANN that optimised its 
structure using another SSA (SANSA) are implemented on the candidate 
features pool. The only difference between OA2DD and SANSA is that 
the first OA in SANSA is a binary OA and does not follow any instruction, 
such as the one that OA2DD follows to select features. Moreover, 
because of the random start points of OAs and ANN, all the models are 
run 10 times, and the best results are presented.

Before implementing the OA2DD, its adjustment parameters are 
defined. These parameters are chosen with respect to the computational 
budget (see Table 4). The other methods utilized for comparison use the 
same values as Table 4 when applicable.

During the feature selection in the first OA, 2000 (number of itera-
tions × number of search agents) individual search agents go through a 
search area of 114 = 14641 different combinations to achieve the 12 
selected features. This number of combinations is calculated based on 
the fact that there are five columns in the candidate features’ pool, the 
features in the first columns are always chosen, and the potential 
number of selected features from any of the other four columns is be-
tween 0 and 10.

For each one of those search agents from the first OA, another set of 
2000 individual search agents go through a search area of 203 = 8000 
(three layers with 20 potential neurons in each) different structures to 

Table 2 
Statistical values of travel time (s) in different datasets.

Statistical values Feature selection 
dataset

Data-driven 
dataset

Real-time 
dataset

Minimum 229.69 231.2 244.33
Maximum 1067.3 1137.7 969.6
Mean 512.4 505.2 456.5
Standard 

deviation
234.62 230.52 237.92

Skewness 0.48 0.51 0.82
Kurtosis 1.80 1.81 2.00
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find the optimum structure for ANN with respect to the first OA’s agent 
position. The comparison feature selection methods are also applied to 
the case study and Fig. 10 compares their convergence curves to 

OA2DD’s. As can be seen, the proposed OA2DD has the best perfor-
mance among the others followed by SANSA which is the binary version 
of OA2DD. Furthermore, SSAANN, SANSA, and SSASVR achieve their 
minimum fitness value (RMSE) quicker than the other methods with a 
few noticeable drops while OA2DD, PSOANN, and PSOSVR’s fitness 
value gradually decrease. Therefore, it can be concluded that OA2DD do 
not fall into local optimum, because of its thorough search.

Moreover, Fig. 11 presents the selected features by each feature se-
lection method. As can be seen, one of the advantages of OA2DD 
compared to conventional wrapper feature selection methods is that the 
features are selected following a structure from the closest time intervals 
to the current one. The furthest selected features by OA2DD are from the 
fourth time interval before the current one. The other methods, on the 
other hand, selected at least one feature from the 10th time interval, 
while not choosing features from more recent time intervals. Hence 
OA2DD makes the data collection easier and cheaper. Furthermore, 
OA2DD selected 19 features which is less than the selected features by 
the other methods (22-25). This advantage of OA2DD reduces the cost of 
data collection as well as computational cost. The complexity of an ANN 
which is defined as the sum of the number of links in the ANN, i.e. the 
number of weights and biases, is used as the computational cost (CC) 
indicator in this study [78,79] and is calculated as follows: 

CC =
∑I

i=1
(Ni(Ni− 1 +1)) (20) 

where CC is the complexity, Ni is the number of neurons in the ith layer, 
N1 and NI are the number of neurons in the input and output layer, 
respectively, and I is the number of layers in the ANN. For example, for 
an ANN with 5 inputs, one hidden layer with 7 neurons in it, and one 
output CC calculates as follows: 

Fig. 9. Schematic locations of the detectors.

Table 3 
Case study’s candidate features.

t (current time 
interval)

t-1 t-2 … t-10

Time of the day Entering 
vehicles

Entering 
vehicles

Entering 
vehicles

Lane1 speeds limit Existing 
vehicles

Existing 
vehicles

Existing 
vehicles

Lane2 speeds limit Mean travel 
time

Mean travel 
time

Mean travel 
time

Lane3 speeds limit Mean waiting 
time

Mean waiting 
time

Mean waiting 
time

Lane4 speeds limit
Lane5 speeds limit
Existing vehicles

Table 4 
OA2DD adjustment parameters.

Parameter Value

Maximum number of iterations 100
The number of search agents 20
Maximum number of hidden layers 3
Maximum number of neurons in each hidden layer 20
Activation function in hidden layers Hyperbolic tangent sigmoid
ANN training algorithm Levenberg-Marquardt
Cost function RMSE
The number of total runs 10

Fig. 10. Convergence curves of six different feature selection algorithms.
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CC = (7×(5+1)) + (1×(7+ 1)) = 38 (21) 

Moreover, if an ANN with 10 neurons in its hidden layer is trained 
with the selected features by all the mentioned methods and used to 
predict the travel time in real-time, the architecture of the ANNs that are 
trained by selected features by any of the mentioned methods and their 
computational costs are presented in Table 5.

5.4. Data-driven model

The second OA’s job in OA2DD is to optimise the structure of the 
ANN according to the selected features by the first OA. The optimised 
ANN according to the final selected features has a hidden layer with 10 
neurons in it. The same structure is used for the data-driven model in the 

rest of this study. As mentioned in Section 3.4, the DDPM is trained using 
a data set with the selected features. In this section, an ANN with a 
hidden layer with 10 neurons in it is chosen as the DDPM, and it is 
trained on a new dataset (see Section 4) to predict the travel time given 
each subset of features and the full set of features. Table 6 presents 
different testing error indicators to compare the performances of ANNs 
trained by different subsets of features.

OA2DD’s RMSE by the value of 49.13 seconds is lower than SANSA’s 
by 11 %, the full set’s by 29 %, PSOANN by 12 %, PSOSVR by 29 %, 
SSAANN by 12 %, and SSASVR by 17 %. Pearson correlation coefficient 
(R), between 0 and 1, indicates how the predicted mean travel times 
match their actual values, and as it can be seen all the feature subsets 
provide an R equal or higher than 0.95 where OA2DD has the highest 

Fig. 11. Selected features by six different feature selection methods.

Table 5 
Reduction in computational cost resulted from feature selection.

Method Selected Features ANN’s architecture CC Reduction in CC

Full set 47 47-10-1 481 0
OA2DD 19 19-10-1 211 56 %
SANSA 24 24-10-1 261 46 %
PSOANN 25 25-10-1 271 44 %
PSOSVR 22 22-10-1 241 50 %
SSAANN 24 24-10-1 261 46 %
SSASVR 24 24-10-1 261 46 %

Table 6 
Errors of an ANN predicting mean travel time using features subsets selected by 
different methods. The best results are highlighted in boldface.

Feature subset RMSE (s) R MAE (s) MAPE (%) SI MBE (s)

OA2DD 49.13 0.98 34.18 6.64 0.10 1.20
SANSA 55.48 0.97 38.78 7.58 0.11 2.5
PSOANN 56.16 0.97 41.49 8.54 0.11 3.58
PSOSVR 69.43 0.95 48.88 9.9 0.14 2.45
SSAANN 56.00 0.97 41.83 8.61 0.11 0.54
SSASVR 59.31 0.97 45.16 9.63 0.12 3.15
Full set 69.33 0.95 50.09 9.87 0.14 2.17
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value with 0.98, which shows a high correlation between the predicted 
travel time and the calculated travel time by SUMO. Moreover, using the 
feature subset selected by OA2DD has the least MAE and MAPE values, i. 
e., 34.18 seconds and 6.64 %, respectively, and according to its MAPE 
value, it has the accuracy of 93.46 % which is the highest amongst the 
others. On the other hand, the ANN trained by the full set of features has 
the least accuracy by having the same values of 50.09 seconds and 9.87 
%. According to SI, using selected features by OA2DD results in an 
“excellent” performance while the other methods provide a “good” 
performance, and according to MBE, all the methods result in an over-
estimation of mean travel time, OA2DD providing the second best score. 
Overall, using OA2DD results in the most accurate prediction among all 
the methods, while using the full set of features results in the least ac-
curate prediction.

The better performance of SSAANN compared to SSASVR, and 
PSOANN compared to PSOSVR shows the importance of compatibility 
between the DDPM used in the wrapper feature selection algorithm and 
the one used as the predictor. Moreover, the superiority of OA2DD to 
SANSA proves that the rationale of the first OA in OA2DD that considers 
the temporal correlation amongst input features, results in not only 
easier and cheaper data-collection with lower computational costs but 
also in more accurate prediction. Real-time prediction

After developing the DDPM, it can be implemented and used. In this 
section, the ANNs developed, trained, and tested in the previous section 
using different feature subsets are implemented on the original observed 
dataset (see Section 4) consisting of 133 records. Table 7 presents and 
compares the performances of ANNs trained by each feature subset in 
real-time prediction.

Results show that PSOANN provides the minimum RMSE with a 
value of 57.11 followed by OA2DD by only a 2 % difference, and SANSA 
is the third one by 3 %. Moreover, PSOANN has slightly better R and SI 
compared to OA2DD. On the other hand, the MAE and MAPE of OA2DD 
are the overall lowest and lower than the same values of PSOANN by 17 
% and 25 % respectively. Comparing OA2DD with other modes indicates 
that it has a lower RMSE, lower or equal R, lower MAE, and MAPE. 
However, in the case of SI, SANSA and PSOANN perform slightly better 
than OA2DD, and OA2DD comes in fifth place in the case of MBE.

5.5. The impact of using different optimisation algorithms

The proposed methodology in this study consists of two OAs and SSA 
is used to showcase the methodology performance. However, any other 
OAs can also be used instead of SSA. Therefore, three other commonly 
used OAs in feature selection are also used in the same methodology. 
These algorithms include PSO, Grey Wolf Optimisation (GWO) [80], and 
Whale Optimisation Algorithm (WOA) [81] The same dataset that was 
used for the feature selection phase (see Section 5.3) is given to the other 
models and their convergence curves are presented in Fig. 12. All the 
methods were run 10 times, and their best performances are presented. 
It should be noted that the model named OA2DD here is the same one in 
previous sections and it uses SSA as the OA. However, its name is not 
changed in this section to avoid confusion. As can be seen in Fig. 12, all 
models perform similarly. They all have a big reduction in error around 

the same area, i.e., between the 20th and 40th iterations and another 
decrease between the 80th to 100th iterations. Moreover, the difference 
between the most accurate method, i.e., WOA-OA2DD and the least 
accurate method, i.e., GWO-OA2DD is less than two seconds. Overall, 
OA2DD with any metaheuristic OA performs better than the conven-
tional wrapper feature selection shown previously.

5.6. Explanatory analysis

One of the main reasons for predicting traffic is to help decision- 
makers to be able to adapt the traffic conditions to the current situa-
tion and reduce congestion with methods such as variable speed limits 
and ramp metering. It can also be used to inform the road users, so they 
can avoid congestion by changing their route or departure time. 
Therefore, the accuracy of travel time prediction in congested traffic can 
be argued as more important than that of free-flow conditions. A com-
parison of actual mean travel time and predicted mean travel time using 
the subset of features selected by OA2DD is illustrated in Fig. 13(a). As 
can be seen, the predictor performs well throughout the day even in 
congested traffic. The longest period of time that the predictor is not able 
to match the real value consistently is between 11:00 and 15:00. This 
phenomenon is due to the sensitivity of the predictor to EC. As shown in 
Fig.12(b), before 6:00 and after 21:00 less than 2000 cars per hour enter 
the road, and consequently the road is under free-flowing conditions. 
Then EC and IC start to rise up to the period from 11:00 to 15:00 where 
around 5000 cars per hour still enter the road, but the road goes back to 
free-flow condition because of lower IC. Due to the rise in the EC, the 
predictor expects the mean travel time to be higher than what it actually 
is. The trends in other input parameters such as the IC, that is more 
compatible with mean travel time, as shown in Fig. 13(b), help to in-
crease the accuracy of those parts.

As observed, an increase in both IC and EC starting around 5:00 leads 
to a rise in mean travel time. Both IC and travel time reach their peak 
around 9:00. After 9:00, due to the earlier decrease in EC and the current 
decline in IC, mean travel time begins to decrease as well. Between 
11:00 and 15:00, despite relatively high EC, the sharp drop in IC results 
in a continued reduction in mean travel time. The pattern during the 
second peak mirrors that of the first. Additionally, Fig. 13 shows that 
when IC and EC are either both high or low, the prediction accuracy 
improves. Conversely, accuracy decreases when IC and EC have 
opposing values, i.e., when one is high and the other is low.

Moreover, in predicting traffic, if there is a prediction error, opera-
tionally it is better to see a false congestion rather than a false free flow. 
In the case of false free-flow decision-makers lose the chance to react to 
the situation and cannot adapt the road to the traffic. As can be seen in 
Fig. 13, when there is a relevant error in the predicted travel time, the 
predictor overestimates the travel time except for 8:00 and 19:00. Thus, 
that error does not keep the decision makers from reacting. This overall 
overestimating can also be seen in MBE. Furthermore, as can be seen, the 
predictor is able to catch the trend and follow the changes in mean travel 
time throughout the day. This ability of the predictor, helps the decision- 
makers to be informed about the upcoming congestion and to have the 
chance to adapt the road to it before it happens. Nonetheless, this spe-
cific sensitivity of the prediction with the decrease of the IC can be the 
aim of future research as emphasises an important trend in the dynamics 
of traffic for effects of prediction.

5.7. Model interpretation

The predicted travel times derived from traffic data can be utilized to 
assess traffic conditions and improve route planning. For these appli-
cations, ensuring that the model is interpretable is essential, so traffic 
engineers and planners can rely on the insights generated by the ML 
model in their routine tasks. In particular, this approach could provide 
in-depth information about which features are most influential when 
predicted travel times differ significantly from usual patterns. To do so, 

Table 7 
Errors of an ANN predicting mean travel time using feature subsets selected by 
different methods for real-time prediction. The best results are highlighted in 
boldface.

Feature subset RMSE (s) R MAE (s) MAPE (%) SI MBE (s)

OA2DD 58.38 0.97 37.64 8.14 0.13 5.00
SANSA 58.72 0.97 40.98 9.00 0.12 5.2
PSOANN 57.11 0.98 45.43 10.80 0.12 6.67
PSOSVR 61.99 0.97 42.34 8.54 0.14 2.81
SSAANN 61.17 0.97 43.90 9.28 0.13 2.81
SSASVR 65.61 0.96 45.48 9.82 0.14 4.56
Full set 66.92 0.96 43.65 9.19 0.14 3.67
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Fig. 12. OA2DD’s convergence curves using different OAs.

Fig. 13. (a) Real mean travel time vs predicted mean travel time, and (b) hourly EC and IC.
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Shapley Additive Explanation (SHAP) [82] is used in this paper.
SHAP leverages game theory principles to interpret the results of any 

ML model by determining Shapley values. These values provide insight 
into why a particular prediction deviates from the model’s average 
output and quantify the contribution of each variable to the final result. 
The Shapley value represents the average impact of a feature across all 
potential combinations of features [83]. For each combination, the 
contribution is assessed by comparing the predicted outcome with and 
without the inclusion of the specific feature. In other words, The SHAP 
value represents the impact of a feature on the difference between the 
predicted value for a specific query point and the average prediction. For 
each query point, the total deviation from the average prediction is 
equal to the sum of the SHAP values across all features. Fig. 14 shows the 
SHAP figure. The SHAP value for the a-th feature and the query point q is 
defined by the value of v: 

φa
(
vq
)
=

1
B

∑

S⊆β{a}

vq(S ∪ {a}) − vq(S)
(B− 1)!

|S|!(B− |S|− 1)!

(22) 

where B is the number of all features, β is the set of all features, |S| is the 
number of elements in set S,

As shown in Fig. 14(a), IC has the most significant impact on the 
predicted mean travel time, with a Shapley value exceeding 180, while 
the second most influential feature is TOD, with a Shapley value over 20. 

The high Shapley value of IC accounts for the similarity between its daily 
trend and that of the mean travel time. Additionally, as seen in Fig. 14
(b), except for IC, which spans a wide range on both the positive and 
negative sides of the graph, the other features are more concentrated 
around 0. Furthermore, it is evident that some features, such as ICt-2 and 
ECt-4, have a reverse impact on the predictor. This means that as their 
values increase, the predictor value decreases.

6. Limitations and future opportunities

There are some limitations in this study and some opportunities that 
need to be explored in the future. First, the same rationale can be applied 
to feature selection and prediction for different traffic parameters, such 
as traffic flow and mean speed. Then, the effect of the size of the road 
segment and time intervals as well as mixing HDVs with CAVs on the 
selected features needs to be studied. Moreover, the transferability of the 
method, specifically, whether the features selected for the M50 are also 
the best choices for another highway, needs to be investigated. As 
mentioned in the paper, the day of the week, the week of the month, and 
the month of the year have important impacts on traffic and travel time. 
However, in this paper, the case study focused on 24 h traffic. Larger 
periods can also be explored in further studies. A more comprehensive 
dataset that includes more information such as weather and road surface 
conditions can also increase the accuracy of the prediction. This 

Fig. 14. SHAP values. (a) Global feature importance, (b) Local explanation summary.

A. Kandiri et al.                                                                                                                                                                                                                                 Transportation Engineering 18 (2024) 100272 

15 



information was not available for this research. Moreover, the simula-
tion used in this study was built based on a dataset from 2012 to 2019. 
More recent datasets can enhance the reliability of this method. None-
theless, it is highlighted that within this context the OA2DD performed 
consistently with a prediction accuracy of less than 8.14 % in relative 
error.

It is worth noting that the current methodology relies on data during 
the training phase, prompting discussion on where such data can be 
sourced within the traffic system. The assumption made in this study is 
that much of this data either already exists or will become readily 
available in the near future, given the significant data collection efforts 
in traffic systems (e.g., tolls, vehicle counters). Additionally, data from 
vehicle users, such as cell data or connected vehicles, could prove 
valuable for further investigations. The availability of such datasets 
would provide all necessary data for this implementation. However, the 
presented methodology and rationale can be implemented on any kind 
of existing dataset. In conclusion, it is crucial to emphasize that this 
study aims to highlight how OA2DD concepts can significantly impact 
travel time prediction, particularly through the integration of data and 
both offline and online training for real-time operation.

Moreover, in this study, because of the nature of the case study and 
data accessibility external data such as the weather and road surface 
conditions were not considered. The case study was a 24 h simulation 
that was used as a proof of concept. However, considering the external 
data and how they should be imported into OA2DD is an opportunity for 
further exploration. In this regard, questions such as, would a new 
feature that expands the space be required, or will the same set of fea-
tures in the ANN suffice or is there a need to define scenario-dependent 
ANN that are concurrent, need to be answered in future research.

7. Conclusion

This study introduces a comprehensive methodology, which en-
compasses the entire process from data collection to travel time pre-
diction. Notably, the introduced methodology incorporates a novel 
feature selection method that considers temporal correlations between 
input features and the output variable, aiming to enhance the accuracy 
of travel time prediction. The implementation of the OA2DD is exam-
ined through a case study utilizing the M50 motorway in Dublin, with 
SUMO employed for training, validating, and testing its outputs. The 
scenarios used to train the OA2DD were constructed in SUMO, drawing 
from an observed dataset. The following points are concluded from the 
study.

• The hybridization of two OAs and a DDPM (OA2DD) can reduce the 
computational cost in travel time prediction by reducing the number 
of selected features compared to standard wrapper feature selection 
methods.

• An ANN trained with selected features by OA2DD outperforms ANNs 
trained with selected features by other wrapper methods across all 
statistical indicators.

• Using the full set of features to train an ANN, results in the least 
accuracy and highest computational cost in the prediction which 
means feature selection is a necessary step before the prediction of 
travel time.

• The fact that the ANN trained by the features selected by PSOSVR 
and SSASVR are the second and third least accurate ones, respec-
tively, shows that the compatibility of the DDPM of the feature se-
lection method and prediction method is important.

• The difference between OA2DD’s performance and SANSA’s per-
formance shows the introduced rationale of selecting features with 
respect to their temporal correlation provides more accuracy with 
less computational cost.

• According to the results, for predicting mean travel time for 10 min 
time intervals, the past four time intervals are the ones that have a 
relevant impact on the prediction.

Moreover, the findings of this study have several policy implications 
including the following:

• The prediction model can enhance real-time traffic management by 
allowing authorities to adjust signals and lanes proactively, reducing 
congestion during peak hours.

• Accurate travel time predictions help policymakers target infra-
structure improvements, ensuring efficient allocation of resources to 
reduce congestion.

• The model can inform policies like congestion pricing, encouraging 
alternative transport modes and reducing peak-time congestion.

• While the benefits of this approach are significant, it is essential that 
its implementation runs in parallel with policies ensuring the safe 
usage of AI, where techniques like exploratory analysis play a critical 
role in maintaining safety and effectiveness.
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