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Abstract: During drinking water treatment, advanced oxidation process (AOP) with O3 and H2O2

may result in by-products, residual H2O2 and BrO3
−. The water containing H2O2 and BrO3

− often
flows into subsequent granular activated carbon (GAC) filters. A concentrated H2O2 solution can
be used as GAC modification reagent at 60 ◦C to improve its adsorption ability. However, whether
low concentrations of H2O2 residuals from AOP can modify GAC, and the impact of H2O2 residuals
on BrO3

− removal by the subsequent GAC filter at ambient temperature, is unknown. This study
evaluated the modification of GAC surface functional groups by residual H2O2 and its effect on
BrO3

− removal by GAC. Results showed that both H2O2 and BrO3
− were effectively removed by

virgin GAC, while pre-loaded and regenerated GACs removed H2O2 but not BrO3
− anymore. At

the ambient temperature 150 µmol/L H2O2 residuals consumed large amounts of functional groups,
which resulted in the decrease of BrO3

− removal by virgin GAC in the presence of H2O2 residuals.
Redox reactions between BrO3

− and surface functional groups played a dominant role in BrO3
−

removal by GAC, and only a small amount of BrO3
− was removed by GAC adsorption. The higher

the pH, the less BrO3
− removal and the more H2O2 removal was observed.

Keywords: bromate; granular activated carbon; hydrogen peroxide; surface functional groups; ozone

1. Introduction

The combination of an advanced oxidation process (AOP) as a pre-treatment with
subsequent managed aquifer recharge (MAR) has been suggested as a comprehensive
treatment system to effectively remove various organic micro-pollutants (OMPs) during
drinking water production [1,2]. However, a disadvantage of applying ozone-based AOP
is the formation of bromate (BrO3

−) [3–5], a genotoxic carcinogen [6], when bromide (Br−)
is contained in the water. WHO, USEPA, and the European Union have set drinking
water regulations for the maximum allowable concentration of BrO3

− at 0.078 µmol/L
(10 µg/L) [7–9]. In order to reduce the formation of BrO3

−, hydrogen peroxide (H2O2) may
be dosed excessively during AOP [10,11]. Since H2O2 contained in the effluent of ozone-
based AOP may cause undesired effects to the ecosystem of subsequent MAR systems [12],
it needs to be quenched to a low concentration before flowing into the MAR systems.
Therefore, a subsequent removal process may be required for both of BrO3

− and H2O2
control [13].

A recent study reported that the adsorption-based physical method has been proven to
be more effective for BrO3

− removal than chemical methods in potable water treatment [14].
Granular activated carbon (GAC) has been used as a powerful adsorbent in water treatment
and some drinking water companies use GAC filters to quench the excessive H2O2 from
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AOP [15]. GAC and modified GAC also have been shown to decrease BrO3
− formation [16]

or remove BrO3
− in a number of studies [17–19]. The previous studies focused on the

effects of carbon type, pH, temperature, empty bed contact time, source water, natural
organic matter (NOM) and other anions on BrO3

− removal through kinetic and isotherm
tests [17,20]. Previous studies found that BrO3

− could be effectively removed by virgin
GAC, while some studies revealed that after a certain running time, the loaded and/or
regenerated GAC was no longer effective for BrO3

− removal [17,20]. For example, 100%
BrO3

− removal was achieved in the first month and declined to around 5% removal after
11 months in a pilot with an empty bed contact time of 15 min [21]. The performance of
GAC in most applications is influenced by its surface chemistry [22–24], so the modification
of this GAC property, especially surface oxygen functional groups, has been frequently
the target of a variety of GAC beneficiation treatments [25]. Oxidation as one of the most
conventional modifications is mainly used to introduce carbon–oxygen surface groups
in GAC [26]. Some oxidants, such as HNO3, O3 and H2O2, have been tested for GAC
modification to increase the oxygen surface groups, and results indicated that the oxidation
of GAC increased the content of acidic oxygen surface groups and the adsorption capacity
of Hg, Cd, Cr(III), Cr(VI) and Cu(II) [26–28]. The oxidation treatment of GAC as a rule was
performed mostly using O2 and acid, and rarely with H2O2. The real situation in practice
is the co-presence of BrO3

− and H2O2, while as far as to the authors’ knowledge, it has
not been known whether the presence of H2O2 as a modification reagent of GAC can play
a positive role in BrO3

− adsorption by GAC during drinking water treatment. However,
another possibility could be that the co-presence of BrO3

− and H2O2 may compete the
active sites or oxygen-containing functional groups of GAC so that they may negatively
impact each other’s removal. What is more, the H2O2 decomposition product oxygen was
speculated to cover the active sites on the surface of GAC or block the micropores [29], so
that the presence of H2O2 may decrease BrO3

− removal efficiency. Oppositely, the presence
of H2O2 as a strong oxidant to modify GAC may increase the BrO3

− removal, as stated
earlier. However, till now it has not yet been investigated whether the co-presence of H2O2
and BrO3

− can improve BrO3
− removal by GAC.

The objectives of this study were to assess whether the presence of residual H2O2
from AOP in the water could improve the removal of BrO3

− by GAC and to investigate
the mechanism behind it.

2. Materials and Methods
2.1. GAC

Virgin, pre-loaded and regenerated GAC (Norit ROW 0.8 CAT) was used in this study.
The virgin GAC was purchased from Sigma-Aldrich (St. Louis, MO, USA). The pre-loaded
and regenerated GAC were collected from Dunea drinking water plant (Bergambacht, The
Netherlands). The GAC pre-loaded with natural organic matter was already used for two
and half years at the Dunea plant. The particle size of all GACs was 0.8–1.0 mm.

The GAC for the batch experiments was prepared by the following procedures. The
GAC was ground and sieved to obtain a particle size ranging from 0.25 mm to 0.8 mm. After
sieving, the GAC was washed with ultra-pure water until the water remained colorless,
and finally the GAC was dried at 175 ◦C for 72 h to remove volatile impurities.

2.2. Water and Chemical Reagents

The water used in batch experiments was prepared using chemical reagents and
deionized water from a Millipore Milli-Q system. Chemicals including sodium bro-
mate (NaBrO3), sodium hydroxide (NaOH), concentrated acid (HCl), sodium carbonate
(Na2CO3), sodium bicarbonate (NaHCO3) and hydrogen peroxide (H2O2) were purchased
from Sigma-Aldrich. The H2O2 solutions were prepared from a 30% standard solution
(Merck, Germany). All chemicals were of analytical grade. All solutions used in this study
were prepared using water from a Millipore Milli-Q system.
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2.3. Batch Experiments

In a survey of 100 drinking water utilities, BrO3
− concentrations were in the range of

<0.016–0.5 µmol/L following ozonation of water containing 0.025–5.36 µmol/L Br− [30,31].
It was decided to investigate the upper value of this range in this study, so 0.5 µmol/L
BrO3

− was achieved in the batch experiments. Batch experiments were conducted using
glass bottles with a volume of 1 L. During all the experiments, the batch reactors were
wrapped in thin foil. A 0.052 µmol/L NaBrO3 solution was prepared and 3 mL was dosed
into the batch reactors to obtain a concentration of 0.5 µmol/L BrO3

−. The research of
Lekkerkerker and Knol [32] showed that 180 µmol/L H2O2 dosage was enough to form
sufficient hydroxyl radicals in the AOP, so the residual H2O2 concentration in effluent
water of AOP will not exceed 180 µmol/L. Hence, 150 µmol/L H2O2 was dosed into the
batch reactors in this study.

As is shown in Figure 1, a series of experiments were performed using 36 batch glass
bottles at ambient temperature of 23–27 ◦C. The GAC dosage was always 5 g/L, and the
H2O2 and BrO3

− concentrations were always 150 µmol/L and 0.5 µmol/L, respectively.
All the batch reactors with H2O2 were covered by aluminium foils to prevent potential
degradation of H2O2 by the light.

In experiment A as shown in Figure 1, 16 batch reactors and three different GACs
(virgin GAC, regenerated GAC and pre-loaded GAC) were used to investigate the removal
of bromate and H2O2 by GAC with different running time. This experiment involved eight
treatment groups (only H2O2, virgin GAC + H2O2, regenerated GAC + H2O2, pre-loaded
GAC + H2O2, only BrO3

−, virgin GAC + BrO3
−, regenerated GAC + BrO3

−, and pre-
loaded GAC + H2O2). The groups without GAC were references. Before the experiment
started, the three GACs were collected to characterize their surface functional groups.
Water samples were collected at 0, 10, 20, 60, 120 and 180 min for BrO3

− and H2O2 analysis.
In experiment B as shown in Figure 1, 0.5 µmol/L BrO3

− and/or 150 µmol/L H2O2
was dosed into batch reactors with virgin GAC to investigate whether the presence of
residual H2O2 from AOP improved the removal of BrO3

− by GAC. This experiment
involved 6 treatment groups (BrO3

−, H2O2, BrO3
− + H2O2, BrO3

− + GAC, H2O2 + GAC,
and BrO3

− + H2O2 + GAC). The groups without GAC were references. Water samples
were collected from the reactors for the analysis of BrO3

− and H2O2. To identify the
consumed/modified oxygen containing surface functional groups during the contact time,
GAC samples were collected for the analysis of surface oxygen functional groups at the
beginning and the end of the experiment.

To further assess the effect of H2O2 presence on BrO3
− removal in a broad pH range,

batch experiment C was performed using eight batch reactors with virgin GAC, H2O2 and
BrO3

−, in different pH levels ranging from 5.5 to 10. During the whole experiment, the
solutions in batch reactors were not buffered. Every 5 min, solution pH was measured,
and HCl or NaOH solution was dropped into batch reactors manually to reach a stable pH
level. Water samples were collected at 0, 10, 20, 60, 120, 180, 240 and 300 min for BrO3

−

and H2O2 analysis. Additionally, GAC samples were collected to measure the initial and
ending surface functional groups.
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Figure 1. The schematic diagram of the reactor (a) and the flowchart of the experimental plan (b).

2.4. Analytical Methods
2.4.1. Functional Groups Measurement

The amount of surface acidic and basic functional groups was measured by the Boehm
method [33]. Four series of GAC samples (0.5 g) were added to four flasks (100 mL). Then,
50 mL of 0.05 mol/L sodium hydrogen carbonate (NaHCO3), sodium carbonate (Na2CO3)
and sodium hydroxide (NaOH) were added to the flasks, respectively. The flasks were
then sealed and stirred at room temperature for 24 h. The GAC samples were then filtrated
and carefully washed. All filtrates were collected and subsequently diluted to 100 mL.
Then, the diluent was titrated with 0.05 mol/L HCl and the surface oxygenated groups
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were determined according to the following assumptions: NaOH neutralizes carboxyl,
phenolic and lactonic groups. Na2CO3 neutralizes carboxyl and lactonic groups. NaHCO3
neutralizes carboxyl groups only. The amount of basic surface groups was determined
with 0.05 mol/L HCl solution. The filtrate was collected as above, and then titrated with
0.05 mol/L NaOH solution.

2.4.2. Other Analysis and Measurements

Hydrogen peroxide test kits (1.18789.0001, VWR Company, Radnor, PA, USA) with
a detection range of 0.44–180 µmol/L were used for water-phase H2O2 measurements
because of ease of operation, the rapid decomposition of H2O2 and accuracy of results.
After being filtered through 0.45 µm filters, the samples were transferred to a 10/20 mm
rectangular cell and measured in a photometer (Spectroquant NOVA 60).

BrO3
− was analysed using a Metrohm Schiedam ion chromatograph (SenTix® 940 IDS

probe, Multi 340i, WTW, Germany) equipped with a suppressed conductivity detector,
using an A Supp 16 150/4.0 column, a guard column, and a 100 µL sample loop. A 3.75 mM
Na2CO3 and 0.375 mM NaOH solution was used as the eluent. The eluent flow rate was
set at 0.7 mL/min. pH was measured with a SenTix® 940 (WTW) electrode (Xylem Inc.,
Weiheim, Germany), both using the WTW Multi 3420 m (Xylem Inc., Weiheim, Germany).

3. Results and Discussion
3.1. BrO3

− and H2O2 Removal by Three GACs with Different Usage Times

Figure 2 presents H2O2 and BrO3
− removal efficiencies within 180 min by virgin

GAC, pre-loaded GAC and regenerated GAC, respectively. As is shown in Figure 2a,
among the three kinds of GAC, virgin GAC had the best BrO3

− removal capacity (81%).
No BrO3

− removal was observed in the batch reactor without GAC, indicating BrO3
−

was not self-decomposed or decomposed by microbes in a short experiment period of
180 min. The pre-loaded GAC did not remove BrO3

− at all, which is in line with a previous
study reporting that BrO3

− removal rate by GAC apparently decreased with increasing
operation time [34], probably because the active sites or valid functional groups on the
surface of GAC were exhausted due to preloading in the preceding two years with natural
organic matter present in the drinking water treatment plant [35]. It seems that 3.8% BrO3

−

was removed by regenerated GAC, which is in line with a previous study reporting that,
compared with regenerated GAC, virgin GAC had a better removal effect on BrO3

− [36].
This result indicates that the thermal regeneration restored active sites or functional groups
on the surface of GAC to some degree. In conclusion, these results indicate that GAC may
become invalid for BrO3

− removal after a period of running, even after regeneration, in
practice. As is shown in Figure 2b, H2O2 was not decomposed in the absence of GAC
within 180 min, indicating that the decrease of H2O2 in other groups was caused by GAC
instead of other factors. No obvious difference was observed between preloaded GAC
and virgin GAC groups. H2O2 removal rate in regenerated GAC group was slightly lower
than that in preloaded GAC group. GAC regeneration and recycle slighly decreased H2O2
removal capacity, but regenerated GAC is still able to effectively quench residual H2O2.
Previous studies showed that GAC can be used to quench the residual H2O2 after drinking
water treatment AOPs, and the catalytic activity of GAC has nothing to do with continuous
exposure to hydrogen peroxide, but is related to the physical and chemical properties of
the GAC surface [37,38].
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Figure 2. (a) BrO3
− and (b) H2O2 removal by different types of GAC. GAC dosage was 5 g/L. Initial

BrO3 concentration was 0.5 µM.

3.2. Surface Functional Groups of Three GACs with Different Usage Times

Figure 3 presents the acidic and basic functional groups on the surface of three kinds of
GAC with different usage times before the BrO3

− and H2O2 removal experiment. Generally,
the overall concentrations of acidic and basic functional groups are observed to be in
the following order: virgin GAC > regenerated GAC > pre-loaded GAC, although the
concentration of basic functional groups on the surface of virgin GAC is the same as that
of regenerated GAC, indicating that the virgin GAC contained rich functional groups
and the regeneration can recover a portion of functional groups. Usually, regardless
of the regeneration method used, the porosity, specific surface area and surface oxygen
functional groups on the surface of the regenerated GAC are less than that of the virgin
GAC. Mesopores formed during the regeneration are considered to promote the carbon
adsorption capacity [39]. Correspondingly, BrO3

− removal ability was also recovered
after GAC regeneration, but not much (Figure 2). Acid groups are classified to lactonic
groups, carboxyl groups and phenolic groups. Among the three acidic functional groups,
lactonic groups and phenolic groups on virgin GAC are greater than that on regenerated
and pre-loaded GAC. This might also be one of the reasons why virgin GAC reached the
highest removal efficiencies of BrO3

− and H2O2 (Figure 2).
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3.3. Effect of H2O2 on BrO3
− Removal by Virgin GAC

To assess the interaction of BrO3
− and H2O2 removal by virgin GAC, Figure 4 presents

the removal of BrO3
− and H2O2 by 5 g/L virgin GAC in the presence and the absence of

the other. Figure 4a shows that the initial 0.5 µmol/L BrO3
− was removed 60–80% by GAC

under the presence and absence of H2O2 in 180 min, respectively. It can be observed that
the BrO3

− concentration decreased faster in the absence than in the presence of 150 µmol/L
H2O2, that is the presence of 150 µmol/L H2O2 negatively impacted BrO3

− removal by
GAC, indicating 150 µmol/L H2O2 may not successfully modify the surface functional
groups of GAC at the ambient temperature. A previous study found that the activated
carbon modified with 0.04 mol/L hydrogen peroxide at 75 ◦C removed 85.6% cobalt from
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aqueous solution after 1h, while the activated carbon modified at a lower temperature
of 25 ◦C removed only 74% cobalt after 1 h [40]. It further proves that the modification
temperature has a great influence on the physical and chemical properties of the activated
carbon surface, and the low temperature environment cannot modify GAC well. Figure 4b
shows that 150 µmol/L H2O2 was decomposed fully by GAC and its decomposition in
the presence and the absence of 0.5 µM BrO3

− had no considerable difference during the
180 min contact time (p > 0.05), indicating an ignorable influence of 0.5 µmol/L BrO3

− on
H2O2 decomposition. In the reference without GAC, both BrO3

− and H2O2 showed steady
concentrations, indicating that no self-decomposition took place and the removal of BrO3

−

and H2O2 can be contributed to GAC.
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3.4. The Mechanism of H2O2 Impact on BrO3
− Removal by Virgin GAC

3.4.1. BrO3
− Removal by Adsorption or Reduction?

Figure 5 presents the removal of BrO3
− by virgin GAC and correspondingly the

increase of reaction product Br−, in the presence and absence of H2O2. Under both
situations, the BrO3

− concentration gradually decreased, and correspondingly the Br−

concentration gradually increased with time. The molar mass of BrO3
− and Br− in the

reactor tends to stabilize after a slight decrease in the first 6 min. This slight decrease could
be caused by GAC adsorption. The gradual increase of Br− with the decrease of BrO3

−

indicates that the removal of BrO3
− by virgin GAC is mainly a reduction process, which

might involve redox reactions between surface functional groups and BrO3
−. Obviously,

the presence of 150 µmol/L H2O2 significantly inhibited the removal of BrO3
− by virgin

GAC. Figure 5 showed that the addition of H2O2 changed the physical and chemical
properties of the GAC surface, resulting in a significant decrease in the acidic and basic
oxygen-containing functional groups on the GAC surface, thereby reducing the reaction
efficiency of the functional groups with BrO3

−. When H2O2 and BrO3
− coexist, there

may be competition for GAC oxygen-containing functional groups and adsorption active
sites, which is one of the reasons why BrO3

− removal was inhibited by H2O2. In addition,
bromine mass loss in BrO3

− and Br− is observed due to the presence of H2O2, by comparing
Figure 5a,b. During H2O2 decomposition, a small amount of OH· can be generated [41].
The OH· can further oxidize Br− into intermediate products, such as HOBr and BrO− [42],
which could explain the bromine mass loss under the situation of H2O2 addition.
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H2O2, (b) without H2O2.

3.4.2. Modification of GAC Surface Functional Groups by H2O2

The surface oxygen-containing functional groups of initial GAC and the modified
GAC after contacting with BrO3

− and H2O2 are presented in Figure 6. It is observed
that both H2O2 alone and BrO3

− alone consumed acid groups and basic groups, indicat-
ing the presence of H2O2 consumed oxygen-containing surface functional groups with
BrO3

− instead of provided more functional groups. Therefore, the H2O2 concentration
of 150 µmol/L could be too low to effectively modify GAC oxygen-containing surface
functional groups. Among the three acid groups, both the amount of carboxyl groups
and phenolic groups did not change significantly after different reactions and the main
change lay in lactonic groups, indicating that H2O2 mainly reacted with lactonic groups.
The functional group modification by H2O2 can be explained as follows.
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H2O2 has a property of electrophilic attacking, so H2O2 attacks the unsaturated bonds
of C=C by electrophilic addition and introduces the phenolic groups [43], as shown in
Equation (1). In a previous study [43], around 1.47 mol/L H2O2 was used to modify
activated carbon at 60 ◦C for 2 h and the modification treatment increased the forma-
tion of carboxyl groups and carbonyl groups but decreased the formation of phenolic
groups, which was explained by the fact that phenolic groups formed in Equation (1)
could be further oxidized to carboxyl groups by esterification and dehydration as shown in
Equations (2) and (3). A previous study [44] showed that different from the steady rise of
carboxyl groups and lactonic groups, the concentration of phenolic groups first increased
and then decreased with the increase of H2O2 concentration, which could be caused by the
fact that the dehydration of phenolic groups became faster than the formation of phenolic
groups with the increase of oxidation ability. Therefore, the low H2O2 concentration, an
environmentally relevant concentration, in this study might be not enough to further
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conduct the following two steps reactions, dehydration and esterification, as shown in
Equations (2) and (3), which might explain the increase of phenolic groups instead of
carboxyl group. In conclusion, an environmentally relevant concentration of H2O2 from
AOP cannot significantly increase the concentrations of carboxyl and lactonic groups due
to the limited oxidation ability.
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3.5. Effect of pH on BrO3
− and H2O2 Removal

The removal of BrO3
− and H2O2 by virgin GAC under different pH conditions is

shown in Figure 7. At pH 5.5 and 7, BrO3
− concentration decreased sharply within the first

50 min, and then remained constant. In contrast, BrO3
− concentrations slowly decreased

within the whole 300 min and did not arrive at an equilibrium status at pH 8.5 and 10.
Therefore, BrO3

− removal efficiency was higher at the acidic and neutral conditions than
at the basic condition, which seems in conflict with a previous study [45]. This is probably
because (1) BrO3

− is a strong oxidizer under low pH conditions, and its reactivity is in
direct proportion to the square of the proton concentration [46]; (2) as pH decreases, the
protonation of surface functional groups of activated carbon or dissociation of OH− makes
the material surface electropositive, resulting in electrostatic attraction of BrO3

− [45]. As
for H2O2, with the increase of pH, H2O2 decomposition was more efficient. At pH 10,
almost all H2O2 was removed while only 64% H2O2 was removed at pH 5.5. The results
indicate that a higher pH is favourable to H2O2 removal in GAC filters during drinking
water treatment.
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Figure 8 presents the effect of pH on surface functional groups’ modification by H2O2.
With the increase of pH, the surface acid groups decreased from 1 mmol/g to 0.7 mmol/g
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in the pH range of 5.5–7 and then became stable in the pH range of 7–10. In contrast, the
basic group greatly increased with the increase of pH from 5.5 to 10. At pH 10, even the
basic groups reached 1.2 mmol/g, higher than the initial level of 0.8 mmol/g. With regard
to the three acid groups, as the pH increased, the lactonic groups and phenolic groups
presented a notable decrease and a slight decrease respectively, while the carboxyl groups
did not show regular changes.
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It is reasonable that the change trends of the acid groups and the basic groups with
pH change were caused by acid-base neutralization. What is more, with the increase of
pH, the basic groups were observed to increase (Figure 8), and simultaneously the H2O2
removal efficiency also increased (Figure 7), which is in line with previous studies reporting
that the basic groups enhanced the H2O2 removal [35]. More specifically, the decrease of
lactonic groups might be explained by the fact that the lactonic groups produced by the
esterification reaction between carboxyl groups and phenolic groups decreased with the
increase of pH.

4. Conclusions

Virgin GAC has the most acidic and basic surface functional groups, and correspond-
ingly it presented the highest BrO3

− removal. However, GAC hardly remove BrO3
−

anymore after two years running and thermal regeneration in this study. In our experi-
ments, 5 g/L GAC decreased H2O2 from 150 µmol/L to <3 µmol/L within 80 min and the
removal efficiency was not evidently impacted by GAC running time or regeneration.

The presence of 150 µmol/L H2O2 inhibited BrO3
− removal by virgin GAC, which

could be explained by the fact that H2O2 competed oxygen-containing functional groups with
BrO3

−. H2O2 removal efficiency was hardly impacted by the presence of 0.5 µmol/L BrO3
−.

Redox reactions between BrO3
− and surface functional groups played a dominant role

in BrO3
− removal by GAC, and a small amount of BrO3

− was removed by GAC adsorption.
BrO3

− removal efficiency was higher at acidic and neutral conditions than at basic
conditions. In contrast, H2O2 removal efficiency was increased with pH increase, which
could be explained by the increase of alkaline surface functional groups with the increase
of pH.
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