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Preface

 

 

During the bachelor Mechanical Engineering, I became quite 

fascinated by applying a mechanical approach to human movement 

and healthcare issues. The curriculum allowed me to learn more 

about how to approach the human body from a mechanical 

engineering perspective. By choosing the minor Sport, Movement, 

and Health at the VU University Amsterdam and a BSc thesis on 

meniscus tissue, my academic path became more and more clear. 

From a very young age, I practised various sports at a high 

recreational level, ball sports in particular being my favourite. I have 

experienced the effects of intensive movement on my own body, 

suffering sore muscles and pain regularly, recovering by training 

wisely. A specialisation in Sports Engineering within the MSc 

BioMechanical Design and studying Biomaterials and Tissue 

Engineering at University College London appeared to be both logical 

and very interesting steps. 

These main themes led to the thesis project of monitoring local 

muscle load in football, in close collaboration with the Dutch Football 

Association. The Sports Engineering Institute became my playground 

and provided a research area within the analysis of sports. At top-

level sports and technology, I had the opportunity to acquire more 

knowledge, investigate human movement, and design solutions to 

healthcare issues. What a great chance to contribute to research and 

development at an elite athlete level. I became convinced that anyone 

performing recreational sports and health, and moving conditions in 

general, can benefit from this approach and the results. 

From the start, this subject was quite an appealing challenge. 

Combining my competences as a sports-loving academic in an 

operational setting and finding answers by using a systematic big data 

analysis approach, suited me perfectly. This big data analysis 

approach formed the basis of developing a widely applicable, 

sustainable method, not only to use in top-level sports with elite 

football athletes but in other sports and levels as well, thereby 

reaching larger groups of consumers. Being a user-friendly method 

and a true cost saver, I strongly believe in further research. It could 

then be an excellent and widely used indicative muscle prevention 

system, focussed on improving performance and physical condition. 

I would like to thank Daan Bregman – TU Delft – and Edwin 

Goedhart – KNVB – for their perpetual enthusiasm in daily 

supervising me during the project. Their non-stop support and 

knowledge in this field made it possible to apply an academic 

perspective to a highly relevant topic in practice. Furthermore, I would 

like to thank the entire graduation committee for evaluating and 

discussing my thesis.  

To my dear family and friends, I say ‘thank you’ with a big 

smile.  You were all at my side throughout the process of my studies. 

In many ways you stimulated and supported me to pursue my 

possibilities and dreams for which I am truly grateful. 

 

Enjoy reading my thesis, 

 

Rozemarijn Schotel 

20.06.2019
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Abstract 

In football, a lot of hip and thigh muscle injuries occur as a 

result of high muscular loads due to accelerative leg movements. To 

prevent muscle damage and optimise performance, it is essential to 

continuously identify when and how frequent local hip and thigh 

muscular loads develop in the explosive and dynamic football 

environment. The currently used method is an acceleration index 

based on two-dimensional position data of the whole global body 

measured by the Local Positioning Measurement system. The 

problem is that this system does not correspond with the experienced 

load of players because leg movements are excluded. Therefore, this 

study introduces a new local concept of gathering local three-

dimensional leg acceleration data by inertial measurement units. 

This pilot study aims to use a big data analysis approach to 

translate leg acceleration data into a measure to indicate local muscle 

load and compare this new local and the current global method to the 

players’ experienced load. Five participants performed specific 

football drills with an intensity increase from jogging to sprinting and 

by adding a pass and shot. Measures are developed, based on the 

pelvis, upper leg, and lower leg accelerations, by a peak and 

cumulative data analysis approach. 

By evaluating trend percentages of the intensity increase, it is 

obtained that a local acceleration measure is comparable to the 

players’ experienced load if it considers the sum of normal or peak 

data points weighted per zone and per travelled distance. 

Furthermore, a similar result is obtained when only the upper leg or 

lower leg accelerations are considered. 

It can be concluded that local three-dimensional acceleration of 

the lower extremities, processed with a big data analysis approach, 

represent the football players’ experienced muscular load more 

accurate than the current global method. Further research, including a 

higher number of participants, should prove the significance. 
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Introduction  ӏ1
In football or – alternatively – soccer a lot of muscle injuries 

occur. 31% of all injuries consist of muscle injuries and cause 27% of 

the total injury absence of players (Ekstrand et al., 2011). Muscle 

injuries will be defined as: “a traumatic distraction or overuse injury to 

the muscle leading to a player being unable to fully participate in 

training or match play” (Ekstrand et al., 2011). Ekstrand et al. (2011) 

investigated muscle injuries in elite football teams, finding an average 

of 0.6 muscle injuries per player per season, which lead to missing 15 

days, 10 practices, and 2.5 matches per muscle injury. Furthermore, 

professional football players’ physical performance – based on whole 

body motion profiles and conducted passes – has increased over the 

past decade (Barnes et al., 2014). Barnes et al., 2014 showed that 

high-intensity running distance and actions increased by 30% and 

50%, respectively. The sprint distance and number of sprints 

increased by 35%. Additionally, the study shows substantial growth in 

the number of – successful – passes. Therefore, muscle injury risk 

increases as an effect of the physical performance raise. A growing 

rate of 4% per annum is visible with regards to training-related 

hamstring injuries in elite male football players (Ekstrand et al., 2016). 

The high – increasing – rate of muscle injuries is a big problem 

among players and teams since it leads to absence and high costs in 

professional football (Eirale, 2015, Corazza et al., 2013, and Ekstrand 

et al., 2011). A one-month injured elite football player costs around 

€500,000 (Ekstrand, 2013). Thus, the importance of muscle injury 

prevention from an economic point of view becomes clear. Bearing 

the massive impact on a player's health as well as the significant 

financial implications in mind, the need for early injury detection and 

minimising the injury rate through continuous monitoring of the muscle 

load becomes apparent and is of high relevance (Woods et al., 2004).  

Muscle injuries mostly arise at the end of a match half and 

during explosive movements. First, fatigue influences the muscles, 

which lead to a decline in maximal force or power output (Halson, 

2014, Fitts, 1994, and Edwards, 1983). Fatigue is easy to observe, 

but it is a complex phenomenon (Halson, 2014). Neuromuscular and 

mechanical factors are key in developing fatigue (Özkaya et al., 2017, 

Boyas and Guével, 2011, Enoka and Duchateau, 2008, and Noakes 

and St Clair Gibson, 2004). Many football movements consist of 

repetitive and short high-intensity activities, and different contraction 

and stimulus types are needed, which lead to muscle fatigue. A study 

by Mohr et al. (2003) shows that high-intensity running distance – 35-

45% – and sprinting distance – 43% – in elite players decline towards 

the end of each match half, i.e. fatigue starts to play a role. 

Furthermore, players experience temporary fatigue after short high-

intensity activities. Muscle injuries happen about equally during 

matches and practices – 53% and 47% respectively. However, the 

injury incidence rate is about six times higher in matches (Ekstrand et 

al., 2011). During matches, injuries were found to happen more 

towards the end of each half (Ekstrand et al., 2011 and Woods et al., 

2004). Second, football is an interval-based team sport with high 

physical demands: elite football players perform both high- and lower-

intensity activities during practices and matches. The high-intensity 

activities consist of acceleration and deceleration movements (Varley 

and Aughey, 2013), which are physically much more demanding than 

constant velocity, confronting players with large local musculoskeletal 

loads (Osgnach et al., 2010). Typical football movements are fast and 

explosive like sprinting, turning, shooting, sliding, and jumping 

(Mueller-Wohlfahrt et al., 2013, Varley and Aughey, 2013, Andersson 

et al., 2008, and Järvinen et al., 2005). Summarising, football players 

have a higher incident rate to get muscle injuries towards the end of 

each match half, which could be due to fatigue in the muscle fibres 

and the neuromuscular system as a result of the high-intensity nature. 

Explosive movements increase the risk of acute and chronic 

muscle damage and cause muscle injuries as a result of powerful 

eccentric muscle stretching (Nédélec et al., 2012 and Andersson et 

al., 2008). First, according to a study by Ekstrand et al. (2011), acute 

trauma causes 2 out of 3 football muscle injuries, and 42% of the 

groin, 30% of the hamstring, and 26% of the quadriceps muscle 

injuries were due to overuse. Furthermore, distinguishing direct and 

indirect muscle trauma within acute muscle injuries (Maffulli et al., 

2015 and Mueller-Wohlfahrt et al., 2013), most muscle injuries 

occurred during situations without any contact: 96% hamstrings, 96% 

quadriceps, and 92% adductors (Ekstrand et al., 2011). Second, 

muscle injuries mostly happen during excessive lengthening or 

stretching of an actively contracting muscle – i.e. eccentric contraction 

–, which can lead to muscle pain and weakness (Maffulli et al., 2015, 

Allen, 2001, and Garrett, 1999). Elite football players conduct a lot of 

explosive movements, which result in numerous powerful eccentric 

contraction. There is no external force in these situations, and muscle 

damage can evolve (Nédélec et al., 2012). Two initial events cause 

this indirect muscle damage: disruption of the sarcomeres – structural 

damage – and a failing excitation-contraction coupling system – non-

structural damage (Maffulli et al., 2015, Mueller-Wohlfahrt et al., 2013, 

Allen, 2001, and Proske and Morgan, 2001). The latter, overexertion, 

intra-/intermuscular and intersegmental coordination are prone to 

faults during the fast and explosive movements, (neuro-)muscular 

fatigue could play a role. Concluding, football players have a high 

chance to obtain exercise-induced skeletal muscle injuries, primary by 

an acute indirect muscle trauma or overuse, as a result of repetitive or 

excessive lengthening of muscle fibres or stretching of an active 

muscle (Askling et al., 2008 and Slavotinek et al., 2002). 

Hip and thigh muscles have the highest injury risk due to the 

type of movements in football and their specific muscle 

characteristics. First, acute indirect trauma and overuse are the most 

common types of muscle injuries in football. In both cases, there is no 

impact involved and can be divided into structural and non-structural 

injuries with different levels of severity (Mueller-Wohlfahrt et al., 

2013), respectively to the two initial events named above. Second, 

muscles involved in indirect traumas are mostly muscles crossing two 

joints with a pennate architecture and a high percentage of type II 

fibres (Maffulli et al., 2015, Mueller-Wohlfahrt et al., 2013, Järvinen et 

al., 2005, and Woods et al., 2004). Bi-articular muscles are more 

involved in getting injured than muscles spanning one joint, due to the 

increased chance of getting lengthened excessively and the complex 

intersegmental coordination system. Furthermore, pennate muscles 

have a muscle fibre angle relative to the long muscle axis, and 

therefore, have more but shorter muscle fibres, which makes it 

possible to powerfully contract with a small range of motion. 

Additionally, type II muscle fibres are mostly damaged (Clarkson and 

Hubal, 2002 and Friden et al., 1983), due to their non-fatigue resistant 

character (Schiaffino and Reggiani, 2011 and Kelly, 2004). Last, the 

most muscle injuries – 79% of all muscle injuries and 25% of all 

injuries – in professional football occur in three major muscle groups 

in the hip and thigh region: 37% in the hamstrings, 23% in the 

adductors, and 19% in the quadriceps (Ekstrand et al., 2011). So, 

overuse and acute non-contact situations can cause structural and 

non-structural damage, specifically biarticular muscles with a non-

fatigue resistant and pennate fibre composition are prone to get 

injured, which are seen in the hip and thigh muscles. 

To date, there is a high need to continuously know the 

muscular load of the most injury-sensitive muscle groups in real-life 

football situations and on an individual level. A quote by Halson 

(2014) emphasises the importance of monitoring: “Appropriate 
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monitoring of training load can provide important information to 

athletes and coaches; however, monitoring systems should be 

intuitive, provide efficient data analysis and interpretation, and enable 

efficient reporting of simple, yet scientifically valid, feedback”. 

Currently, limited knowledge exists on the local muscle level, and it is 

challenging for players, technical staff, and medical staff to track and 

identify when the load on the thigh musculoskeletal system becomes 

too high, which could lead to muscle injuries. To adjust the training 

load, optimise performance, and prevent muscle injuries, it is 

essential to know when and how many high local muscle loads occur 

(Halson, 2014). Two main approaches are used to determine the 

physical load. First, subjective measurement methods like 

questionnaires exist. A questionnaire is not a very accurate method 

but can be conducted very efficiently without spending a lot of money 

(Halson, 2014) to obtain the players’ experienced load for a specific 

activity or duration. Second, three objective systems exist to track the 

players’ whole body – i.e. global – activity throughout an entire 

practice or match. Video cameras, Global Positioning Systems, and 

Local Position Measurements are available to obtain the whole-body 

motion profile in two dimensions based on positional information in 

time (Buchheit et al., 2014 and Carling et al., 2008). These systems 

provide global data regarding the players’ travelled distance, speed, 

acceleration, and change in direction (e.g. Varley and Aughey, 2013 

and Mathie et al., 2004). Currently, the total travelled distance and 

travelled high-speed metres are used as an indicator of physical load 

and performance (Vigh-Larsen et al., 2018). But, football is a dynamic 

sport with many accelerations, which are eliminated by this approach 

(Polglaze et al., 2016). The Dutch Football Association recently 

started to include these in an acceleration index – i.e. acceleration 

count. However, this measure excludes specific information about 

local limb motion patterns. There do exist measurement systems 

which consider the local movements. Indoor three-dimensional motion 

analysis methods are available, such as VICON and Kinect (Afrouzian 

et al., 2016, Dupré et al., 2016, and van den Bogert et al., 2013). 3D 

motion analysis systems combine the kinematics and kinetics of the 

musculoskeletal system in a human body model. These commercially 

available systems measure a variety of local variables during one 

movement under controlled environmental conditions. This does not 

represent the dynamic football environment. Concluding, the problem 

is that the currently available monitoring systems do not provide 

accurate information about leg movements to predict the local load in 

real-life football situation, and therefore, it is necessary to develop 

new methods. 

The literature background of muscle injuries and current 

measurement system leads to the measurement requirements of this 

study. (i) Obtain the muscle load by objective measurement methods 

and use subjective data to support objective findings. (ii) Gain 

valuable local muscular load information of the hip and thigh muscles, 

due to the high muscle injury rate in the upper legs. (iii) Minimum and 

maximum peaks indicate low and high-intensity movements, 

respectively. The magnitude and number of peaks provide insight into 

heavy and easy drills. As stated before, acute non-contact trauma has 

a high occurrence rate and temporary fatigue arises during short high-

intensity activities. Therefore, monitor peaks above a certain threshold 

to decrease muscle injury risk. (iv) Use cumulative values to reveal 

the load of multiple drills, practices, or matches. Muscle injuries often 

happen as a result of overuse and most muscle injuries occur during 

the end of a match half, when fatigue starts to play a role. Therefore, 

local cumulative values of all performed movements could provide 

information and give a better understanding of muscle injuries in time. 

(v) Measure these peak and cumulative values in a timeframe of an 

entire practice or match. (vii) Obtain the data outside on the entire 

pitch in the normal environment to get a good view of all the repetitive 

dynamic activities (James, 2006). (viii) Use a non-invasive and safe to 

use measurement method which does not restrict the player when 

executing any movement (Fleming and Beynnon, 2004). In summary, 

the new method requires to obtain objective local data by capturing 

peak and cumulative values during an entire match or practice on the 

pitch, without restricting the players’ movement. 

Use accelerations of the lower extremities, measured by inertial 

measurement units, to indicate local muscle load. Eccentric 

contractions are the primary cause of high muscular loads in the hip-

and thigh-related muscle groups. These occur during the physically 

very demanding explosive high-intensity movements, like sprinting, 

shooting, and turning, which include many high and repetitive 

accelerations and decelerations. Therefore, monitoring the 

accelerations of the lower extremities has excellent potential to 

indicate hip and thigh muscle load. Many studies investigate the 

application of inertial measurement units – IMUs for short –  attached 

to the body segments to perform accurate and reliable human motion 

analyses in health monitoring, rehabilitation, and sports, due to the 

technical developments of the recent decade (Tao et al., 2012, Tao et 

al., 2012, Cuesta-Vargas et al., 2010, Saber-Sheikh et al., 2010, and 

Omkar et al., 2009, and Mathie et al., 2004). An IMU consists of a 3D 

magnetometer, gyroscope, and accelerometer module, which 

measure the magnetic field, angular rate, and acceleration, 

respectively (Tao et al., 2012, Yun et al., 2007, Zhu and Zhou, 2004, 

and Bachmann et al., 2004). This provides a sourceless, small, light, 

low-cost, onboard data-logging, optional wireless, and easy to use 

sensor, which can be used in any area without restricting the football 

player and in any environment to provide valuable objective kinematic 

information to evaluate the musculoskeletal system during movement 

(Tao et al., 2012, Cuesta-Vargas et al., 2010, Saber-Sheikh et al., 

2010, Yun et al., 2007, James, 2006, Channells et al., 2005, Mathie et 

al., 2004, Zhu and Zhou, 2004, and Mayagoitia et al., 2002). Most 

studies use all three or a combination of two of the IMU modules to 

obtain the position and orientation to analyse joint angles (El-Gohary 

et al., 2017, He et al., 2015, Seel et al. 2014, Kitamura and Sagawa, 

2012, Saber-Sheikh et al., 2010, Bonnet and Héliot, 2007) and are 

compared to 3D motion analysis methods (Channells et al., 2005) like 

VICON (Schiefer et al., 2011 and Mayagoitia et al., 2002). These 

studies were conducted using one or two IMUs during short and 

straightforward movements: around one joint, one segment, one 

movement, as a whole-body, in one direction or one plane, at 

constant speeds, low speeds, and repetitive motions. However, 

football is a dynamic sport with long durations (James, 2006). 

Concluding, further investigate the use of IMUs to obtain the local leg 

acceleration profile in a fast and dynamic realistic football setting, as 

this has not yet been studied. 

Two different data processing approaches can be distinguished 

to translate leg acceleration data into a measure to predict muscle 

load during football activities: a biomechanical segmental model of the 

legs and a big data analysis. Previous studies used IMUs to obtain 

the orientation, relative position, and direction and magnitude of 

displacement of a segment to analyse joint angles by a variety of 

methods: single and double integration, Euler angles, rotation matrix, 

quaternions, Kalman filter, and extended Kalman filter (He et al., 

2015, Seel et al., 2014, Schiefer et al., 2011, Saber-Sheikh et al., 

2010, Yun et al., 2007, James, 2006, Yun and Bachmann, 2006, 

Luinge and Veltink, 2005, Sabatini et al., 2005, Mathie et al., 2004, 

and Zhu and Zhou, 2004). Most of these algorithms use the 

integration of the angular rates to estimate the orientation or by 

integrating the acceleration twice to obtain the position, a downside of 

this method is drifting of the signal (Yun et al., 2007, and Sabatini et 

al., 2005). This drift will increase extensively due to the long 

measurement times, fast movements, and many directional changes 

in football. Furthermore, IMUs have an internal coordinate system. 

Obtain the segmental orientation by integrating the angular rate to 

separate the gravitational and kinematic acceleration components. 

However, some fast football movements will result in high leg angular 

rates, which exceed the gyroscope range in commercially available 

IMUs – see Appendix H.1. Complex biomechanical models of the 

trunk and lower extremities, which are time-consuming and need high 

computational load due to the constantly changing dynamic situations 

in football, are needed to make this approach sufficient. The 

biomechanical segmental model is not possible with the set 

requirements. These examples show the complexity and error 

sensitiveness of double integration of acceleration to obtain position 

http://www-tandfonline-com.tudelft.idm.oclc.org/author/Buchheit%2C+Martin
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and single integration of angular rate to obtain orientation (He et al., 

2015 and James, 2006). The quote by James (2006) explains this 

very accurately: “A purely technology based approach using 

accelerometers for sporting applications has yielded little success, 

whereas informed signal processing of the data through the use of 

sport specific knowledge and involvement of sport scientists has 

allowed the extraction key features in the data which can then be 

interpreted in a useful manner”. A second approach to express 

muscle load in local acceleration data of the lower extremities could 

be using big data analysis. A less accurate and precise approach, but 

collecting a lot of data, of extensive periods of measuring time, and in 

the real football environment, could provide a manner to predict local 

muscle load by developing measures based on a peak and 

cumulative analysis, and eventually optimise performance and 

prevent muscle injuries. This approach will allow wide applicability, 

within elite football athletes, but also has the potential to be used in 

other sports, in entire teams – i.e. on a big scale –, and on a 

recreational level. This could be achieved due to the affordable, easy 

to use, and low computational load of using accelerometers and a big 

data analysis approach. Using big data analysis is interesting to 

investigate, as this approach has not yet been researched. This study 

has been done to elaborate on the whole new concept of integrating 

commercially available IMUs in a sports legging and perform football 

drills with increased intensity on the pitch to obtain leg accelerations. 

The focus should be on translating the data into an easy to use and 

intuitive measure for players, medical staff, and technical staff.  

This pilot study aims to use a big data analysis approach to 

translate leg acceleration data into a measure to indicate local muscle 

load and compare this new local and the current global method to the 

players’ experienced load. Therefore, the research question of this 

exploratory research is: could local three-dimensional acceleration of 

the lower extremities, processed with a big data analysis approach, 

represent the football players’ experienced muscular load more 

accurate than the current global method? The current method is an 

acceleration index based on two-dimensional position data of the 

whole body obtained by the Local Positioning Measurement system – 

LPM for short – and the new local method gathers local acceleration 

data of the lower extremities in three dimensions by using the 

acceleration module of Shimmer3 IMUs. The expectations are that the 

local data is a more accurate representation of the experienced load 

than the current global measure, i.e. increasing the drill intensity in 

football will be visible in the local three-dimensional acceleration 

pattern of the lower extremities, but not in the current global indication 

of load. This research tests the hypothesis “the intensity increase of a 

football drill will increase the local load similarly as the experienced 

load, but not global, based on acceleration” to show this. 
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Method  ӏ2
2.1 Experiment design 

Develop an experiment with representative football drills, 

including significant intensity contrasts, and compare the local and 

global accelerations to the experienced load. Perform two drills – 

including specific football movements: jog/sprint, turn, and pass/shoot 

– on the pitch by 5 participants: (A) back/forth and (B) zigzag. 

Increase the intensity of these drills from jogging to sprinting and 

adding a pass/shot. The participants wear a set of sensors to 

measure the movements. The measurement methods are (I) 

questionnaire: subjective method to obtain the experienced load, (II) 

2D LPM: current objective method to obtain the global acceleration 

index of the whole body, with the sensor location between the 

shoulder blades, and (III) 3D accelerometers: new objective method 

to obtain the local acceleration of the lower extremities, with sensor 

locations at the middle of the pelvis, upper legs, and lower legs. 

 

2.1.1 Participants 

 Five participants perform the experiment. The information letter 

of Appendix A informs the participants by explaining the reason for 

the study, the experiment, and what will happen with their data. The 

participant profile: male in the age of 20–29 with a length between 

168–185cm, and three of them left-footed and the other two right-

footed. Furthermore, the participants’ sports background: one 

professional forward football player at the end of his revalidation, one 

indoor goalkeeper, two endurance players, and a field hockey player, 

all of them with plenty of experience in ball sports. All participants 

were able to complete the experiment. The participant number and 

profile will not be too critical, as long as the participants are men, able 

to shoot a ball, and can physically finish the experiment – i.e. to have 

a moderate fitness level –, because this is a pilot study. 

 

2.1.2 Measurement methods 

This study considers three measurement methods. The 

objective is to test the hypothesis with off-the-shelf accelerometers – 

Shimmer3 IMUs – available at the Delft University of Technology and 

the current global method – LPM system – of the Dutch Football 

Association to indicate muscle load in comparison to a questionnaire 

on experienced load. The study intends to explore acceleration 

measures. This paragraph elaborates on the use of these 

measurement methods and the attachment to the body without 

restricting the participant in any way while performing the experiment. 

Method I: Questionnaire. Obtain the experienced load on a 

scale of 1 – easy – to 10 – hard – per situation via a questionnaire by 

asking the participant directly after each part of the experiment. This 

results in subjective data and is the benchmark in this study. See 

Appendix B for the experienced load questionnaire. 

Method II: Local Positioning Measurement system. This is 

the current global objective method to obtain two-dimensional motion 

data of the whole body. LPM is a real-time radio-frequency 

identification technology based Local Positioning Measurement 

system and uses inmotio analysis software (Ogris et al., 2012, 

Frencken et al., 2010, Barris and Button, 2008, and Carling et al., 

2008). The system uses multiple passive base stations around the 

pitch and an active transponder worn by the football player to 

measure position in time, which can be used for an individual player 

or track a team (Buchheit et al., 2014, Ogris et al., 2012, Frencken et 

al., 2010, and Stelzer et al., 2004). The location of the sensor is in a 

small shoulder harness – Figure 2.1A –, which sticks to a special tight 

t-shirt with velcro fastener. See Figure 2.1D and E for a schematic 

visualisation and a participant picture of the global sensor location on 

the body, respectively. Additional features of the LPM system are 

cameras to film the participant and a heart rate monitor. The 

experiment protocol in Appendix C describes step-by-step how to 

operate the system. 

The current global acceleration measure to evaluate the 

players’ physical load and performance by medical and technical staff 

during practice and matches is an acceleration index. Inmotio is the 

software to calculate this by differentiating the position-time data twice 

to obtain whole body acceleration in the direction of movement and 

export this data in a .csv format with a sampling rate of 200Hz. The 

acceleration index is a cumulative value defined as the count of 

accelerations which meet the condition of at least 0.5s above 1.6 m/s2 

and lead to >10 km/h2. 

Method III: Shimmer3 Inertial Measurement Units. The 

accelerometer modules of the Shimmer3 IMUs – Figure 2.1B – 

measure the acceleration profile of the lower extremities. This is a 

local objective measurement method. There are two different 

accelerometer modules integrated: low-noise and wide-range, with a 

range of 2g and 16g, respectively. The protocol trial results exceed 

the low-noise range. The acceleration magnitudes of the legs will be 

the highest of the body, especially in the forward direction 

(Bhattacharya et al., 1980), but the other directions should be taken in 

consideration (Lafortuna, 1991), and will depend on the type of 

movement (Mathie et al., 2004). The highest accelerations occur 

around the ankle during sprinting: 8.1-12.0g (Woodward and 

Cunningham 1993, Lafortune 1991, and Bhattacharya et al., 1980). A 

study by Channells et al. (2005) used accelerometers of 18g to test 

constant running with different speeds. So, the three-dimensional 

wide-range accelerometers will include all the fast leg accelerations. 

Use five accelerometers to obtain a complete 3D acceleration 

profile of the lower extremities. The focus is on the three most 

occurring muscle injuries in football: hamstring, adductors, and 

quadriceps. Due to the bi-articular nature of the hamstrings and 

quadriceps, which cross the hip and knee joint, the acceleration 

profile of the pelvis and lower legs are relevant. The adductor muscle 

group cross the hip, therefore, consider the pelvis accelerations. So, 

the locations of the IMUs are in the middle of the pelvis, the right 

upper and lower leg, and the left upper and lower leg to include all leg 

movements (El-Gohary et al., 2017, Kitamura and Sagawa, 2012, 

Schiefer et al., 2011, and Namal et al., 2006), see Figure 2.1D. 

Integrate the five IMUs into a tight sports legging, which will not 

hinder or limitate movement of the participant, see Figure 2.1E. The 

middle of the leg might vary between the participants due to different 

segmental lengths. Therefore, the sensor locations in the legging are 

adjustable to customise to the participant. The sensors stay in place 

by safety pins. Be consistent and position the sensors roughly at the 

same location for each participant. Measure the sensor distance 

relative to each other and specific body features. A visualisation of the 

method to measure this distance is on the information participant form 

– Appendix B – and the protocol – Appendix C. Note the measured 

distance during the experiment in the information participant form. 

The position of the sensors will vary a bit between the participants, 

and some displacement will occur during movement. However, these 

small deviations are not of significance in this exploratory study, and 

by using a big data analysis approach, not of high relevance. 

Furthermore, IMUs have a local coordination system, see Figure 

2.1C. Therefore, position the sensors in the legging with the same 

orientation. Concluding, the local measurement method is a sensor 

legging with adjustable IMU locations to fit the participants, with IMUs 

in the same orientation and location throughout all experiments. 
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IMUs have an internal timeline, and therefore, start at a 

different moment in time. Create a mark in the angular rate signal – 

measured by the gyroscope module – by simultaneously rotating the 

IMUs around the z-axis. The synchronisation of the internal timelines 

occurs in the data processing phase – Paragraph 2.2.1 – by using this 

mark. The maximum gyroscope range – 2000dps – is sufficient. 

Furthermore, attach a reference IMU – sixth local sensor – at the 

location of the LPM sensor to obtain a similar acceleration profile – 

see Figure 2.1A – to synchronise the timelines of the global and local 

measurement methods. The discovery of using a reference sensor 

was during the protocol trial. So, use the gyroscope module of the 

IMUs and a reference IMU to synchronise the global and local data. 

ConsensysBasic is the software to operate the Shimmer3 

IMUs, see Figure 2.1F. There does exist a ConsensysPro version with 

more options, however, to make it easier to reproduce the experiment 

by others, use ConsensysBasic for convenience. The experiment 

protocol in Appendix C describes step-by-step how to operate the 

system in great detail. Varying the sampling rate during a local sensor 

trial resulted in 199.8Hz. Export the local calibrated data from this 

software in a .m file, to be processed. 

A.         B.         C.   

 

D.   

 

E.   

 

F.   

Figure 2.1 – A: LPM sensor including a reference IMU; B: All Shimmer3 IMUs; 

C: Internal coordinate system of Shimmer3 IMUs; D-E: Schematic 

representation and a picture of a participant with all measurement methods, 

respectively; F: Preparation and configuration of the IMUs. 

 

2.1.3 Experiment drills 

 Base the drill design on previous literature studies, the 

disadvantages of the LPM system, and the expertise of football staff. 

First, injuries mostly occur for hamstrings during multi-directional 

acceleration, changing of direction, stretching, high-speed running, 

shooting, and sliding (Melegati and Tornese, 2015, Heiderscheit et al., 

2010, Askling et al., 2007, Askling et al., 2006, and Woods et al., 

2004), for adductors during turning, twisting, shooting, stretching, 

jumping, quick accelerating, and side-to-side movement (Loureiro et 

al., 2017, Barreira et al., 2017, Dupré et al., 2016, and Maffulli et al., 

2015), and quadriceps during sprinting/running and shooting (Barreira 

et al., 2017 and Orchard, 2002). Second, global data represents the 

whole body movement measured at the upper back in 2D, while the 

movement pattern of the legs will be different and in 3D. Therefore, 

global data is expected to be insufficient to include all movement, 

whereas a local system will measure all leg movement. For example, 

LPM does not register when a player shoots a ball – Appendix H.2 –, 

while this has an impact on the thigh muscles. Last, discussing this 

knowledge with football experts, the chosen elements are jog/sprint, 

turn, and pass/shoot. So, when performing specific football 

movements, differences will show between the local and global data, 

and it is likely that sprinting, shooting, and high-speed turning – high-

intensity elements – will cause higher local muscular loads than 

jogging, passing, and low-speed turning – low-intensity elements. 

Process these elements into two drills, each including all 

movements in a slightly different form to add some variety. The drills 

are designed in collaboration with the medical football staff of the 

Dutch Football Association. Conduct two easy to perform drills to 

compare the different measurement methods and analyse if they 

structurally differentiate in both variations. Moreover, performing 

multiple drills per experiment increases the comparability with a real 

practice setting to evaluate if the new local method also works if 

muscle fatigue occurs. Performing multiple situations of each drill with 

an intensity increase will allow the comparison of the global and local 

measurements to the subjective method to predict load. So, the 

variable factor is the intensity increase per situation. Intensity can be 

adjusted by frequency, load, and duration (Halson, 2014). In this 

study, increase the intensity by changing the load while keeping the 

frequency and distance constant. Note that the duration will be shorter 

if speed is increased and longer by adding a shot, while travelled 

distance remains the same. The repetitions per situation are the same 

throughout the experiment, meaning that the distance is constant and 

the time it takes to complete every situation is dependent. 

Furthermore, use short distances to simulate the many short 

accelerative movements in football correctly and focus on performing 

the movements in a normal manner. Therefore, standardise the drills 

with as little constraints as possible and perform these on the pitch. 

Design the drills with large intensity contrasts and include elements 

which the global measurement method does not detect, but players 

experience as high load. 

Drill A. This drill is a simple back and forth exercise. The first 

situation includes two jogs of five meter and two turns – situation 1a – 

with a repetition rate of 10 times. The intensity increases by adding a 

pass – situation 1b – and a shot – situation 1c – at one side, aiming at 

a target. The second situation is similar, but sprinting replaces the 

jogging element, which also increases the turning intensity. See 

Figure 2.2A for a schematic representation, drill dimensions, and 

situation description. Figure 2.2C shows a picture of a participant 

performing drill A on the pitch during the experiment. 

Drill B. This drill is a zigzag exercise. The third situation 

includes three zigzags and seven turns – situation 3a –, with a 

repetition rate of 5 times. After each repetition, the participant walks or 

slowly jogs back to the start. The intensity increases by adding a shot 

– situation 3b – at the end, aiming at a target. The fourth situation is 

similar, but sprinting replaces the jogging element, which also 

increases the turning intensity. See Figure 2.2B and D for a schematic 

representation of drill B, including the dimensions and the situation 

description, and a picture of the drill during the experiment. 

Execution of the drills. The drill location on the pitch is for 

every experiment the same. Place one cone on the penalty spot, this 

is the start point of drill A, and the end point of drill B. Figure 2.2C and 

D show a picture of drill A and drill B on the pitch with a participant, 

respectively. As mentioned before, the focus is to conduct a study in 

the most natural environment of football players – i.e. out of lab 
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settings and on the pitch – while performing normal football drills. 

However, set some constraints on how to perform the drills to control 

the experiment, and in a later stage, being able to process and 

analyse the data of the different measurement methods. The protocol 

trial has been of great help on optimising this. The participant should 

perform the drills in a normal and clear manner, without playing with 

the ball and limit lots of movement in between the situations. 

Therefore, after each drill with a ball, the researcher will collect them. 

The drill consists of the following three elements. First, a jog and a 

sprint, which are around 60% and 100% of the maximum speed, 

respectively. Second, turn with one leg at the location of the cone – 

not around the cone –, it does not matter which leg. Third, if the 

situations involve a ball, the ball will replace the last cone, and the 

researcher places a new ball for all 10 or 5 repetitions – drill A and 

drill B, respectively. To be consistent, set a target to aim for when 

passing or shooting to create a similar movement. However, the 

shooting leg between participants does not matter. Last, pass or 

shoot the ball directly with the inside of the foot, without any small 

touch before hitting the ball. The protocol summarises the drill 

instructions – Appendix C –, explain these clearly to the participant. 

A.   

 

B.   

 

C.    

 

D.   

Figure 2.2 – A-B: Schematic representation of drill A and B, including the 

situation descriptions; C-D: Picture of drill A and B during the experiment. 

Drills versus hypothesis. Link the hypothesis to the drills. (A) 

Intensity increase of jogging – hypothesis A.I – and sprinting – 

hypothesis A.II – back/forth by a pass/shot will increase the local load 

similarly as the experienced load, but not global, based on 

acceleration. (B) Intensity increase of jogging – hypothesis B.I – and 

sprinting – hypothesis B.II – a zigzag by a shot will increase the local 

load similarly as the experienced load, but not global, based on 

acceleration. Figure 2.3 shows an overview of the expected muscle 

load with intensity increase – low, medium, and high – when 

measuring with a subjective – left –, objective global – middle –, and 

objective local – right – method. It is expected that global and local 

methods can differentiate between the situations when the intensity 

increases from a jog to a sprint. However, the LPM system is not able 

to differentiate the load within the situations, i.e. increasing the 

intensity by a pass/shot. However, from practice, the local muscle 

load is higher. The new local acceleration method is expected to 

include a pass/shot, due to the consideration of all leg movements.  

 

Figure 2.3 – Link drills to the hypothesis: the expected muscle load with 

intensity increase – low, medium, and high – when measuring with a subjective 

– left –, objective global – middle –, and objective local – right – method. 

 

2.1.4 Experiment protocol 

Perform all experiments in a similar way by clearly describing 

and standardising the experiment protocol. The standardisation of the 

set-up will not limit the participant in performing the drills in a natural 

football way. The description of each step is with a high level of detail, 

see Appendix C. The explanation of all relevant information 

considering the participants, measurement methods, and drills have 

been discussed in the previous paragraphs. The protocol consists of 4 

steps: pre-preparation, preparation, experiment, and completion. 

Step 0: Pre-preparation. The pre-preparation step includes 

the set-up of the experiment. First, test and get familiar with all 

measurement methods and design the drill, legging, and protocol. 

Next, develop all documents: ethics checklist, informed consent, 

information letter participants, and information participant form and 

drill questionnaire, see Appendix D, E, A, and B, respectively. The 

experiment deals with human participants and approval by the ethical 

committee of the Delft University of Technology has been permitted, 

see Appendix D.  Last, collection or knowing where to find all 

equipment, reservation of the pitch, and inviting participants. 

Use three trials to evaluate, improve, and optimise the 

experiment: (i) Shimmer3 IMU and ConsensysBasic trial, (ii) LPM 

system and Inmotio trial, and (iii) a protocol trial. The first two trials 

are to test and familiarise with the measurement methods and figure 

out their limitations. Use the observations to make the protocol draft. 

Next, conduct a trial to test the protocol and drills on the pitch with 

one participant, including all three measurement methods. See 

Appendix F and G for the trial protocol and questionnaire document, 

respectively. Use all knowledge and improvements to optimise the 

final experiment protocol, not for further processing and analysing. 

Step 1: Preparation. First, preparations before the participant 

arrives: collection of all equipment and measurement methods, drill 

preparations on the pitch, and the preparations of the IMUs for data 

logging. To perform the experiment, 10 footballs and a minimum of 11 

cones for the drills are needed. Use a large tape measure to set-up 

the drills with the correct dimensions. Second, preparations when the 

participant arrives: conduct all participant formalities – explain the 

experiment and sign the informed consent –, start the IMUs, attach all 

sensors to clothing after the participant has changed, measure sensor 

distance, and start the LPM system to capture data. 
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Step 2: Experiment. Instruct the participant on how to perform 

the experiment at the pitch. Between the situations is a resting time of 

3 minutes and between drill A and B there is a pause of 5 minutes. 

Step 3: Completion. First, completion before the participant 

leaves: stop the LPM system, detach all sensors from clothing, and 

stop the IMUs. Second, when the participant leaves: import data from 

all individual IMUs. Last, possible at a later stage, export the LPM 

data from Inmotio and Shimmer3 IMU data from ConsensysBasic for 

data processing and analysing. 

 

2.2 Data processing and analysing 

Develop a data processing and analysing tool to test different 

measures to predict local muscle load based on local leg acceleration 

data obtained by the experiments. The processing of lots of data can 

be easily done by an algorithm in MATLAB (Namal et al., 2016 and 

Channells et al., 2005). Base the algorithm on drill A and use drill B to 

test if the methods also work for a slightly more advanced exercise. A 

main file runs different functions. Every function performs specific 

actions and contributes to the data processing and translation of the 

local acceleration data into a single value to indicate local muscle load 

per situation. Conduct a peak and cumulative data analysis. Analyse 

different local measures by varying the input of data process method 

and measure design to compare the measurement methods.  

 

2.2.1 Data processing 

This paragraph will explain the data processing functions: pre-

process data, data process methods, and situation segmentation. 

Pre-process data. First, load and select the objective raw 

global and local data. Second, resample the local data from 199.8Hz 

to 200Hz and include the sensor correction sampling frequency 

percentages – Equation A1-2. Third, synchronise timelines of local 

data – 6 IMUs, see Appendix H.3. Followed by the synchronisation of 

the local and global timelines by using the reference IMU – 6 IMUs 

and LPM, see Appendix H.4. For both synchronisations use cross-

correlation and process the leg differences into the local and global 

data, see Equation A3-5. Last, filter the local acceleration data by a 

moving-average 1D filter, see Equation A6. 

Data process methods. This processing step includes the 

different methods to process the local data, see Equation A7-13 for an 

overview of the options and their calculations, in the order of testing. 

Furthermore, normalise the local acceleration data – 0–100 – to the 

maximum of the experiment – Equation A14 – to select zones and 

peaks according to these zones in the measure design – Appendix 

H.5. Find the maximum within the participant and not of all 5. 

The following reasoning results in the data process methods. 

First, only methods that use absolute values are important, meaning 

not differentiating between accelerations and decelerations. Second, 

the synchronisation of the internal timelines will not be exact on the 

timestamp. Therefore, do not combine the local sensors, because 

100% accuracy cannot be guaranteed. However, it is possible to use 

the individual signals or to combine the x-, y-, and z-components per 

sensor. Calculations between sensors a few timesteps off could make 

a big influence due to the fast leg movements. Third, IMUs have an 

internal coordinate system. The orientation of the sensor is needed to 

separate the inertial and gravitational acceleration components during 

movement. A gyroscope can calculate the orientation but exceeds the 

range, see Appendix H.1. Therefore, do not consider gravity. 

However, if the participant stands still, the effect of gravity is visible in 

the y-component – Appendix H.6 –, but during movement, this effect 

influences all components. So, it would be best to use the individual 

signals or a method which combines the x-, y-, and z-components. 

Situation segmentation. Conduct the segmentation selection 

of the drills manually into situations. Base this on the changes in 

global speed and acceleration data and check if the selected 

segments – including a safe margin – are correct for the local data – 

Appendix H.7. A method or algorithm to select the drills and situations 

automatically which would work for all experiments and situations has 

not been found, as some of the participants perform more movement 

in between the situations. The situations of drill A have a specific 

segment selection method and are carefully selected manually. Keep 

this method constant for all experiments and situations. However, 

roughly select the situations of drill B to check if the measure will also 

work for entire exercises by loosely selecting the start and end times 

– i.e. to check if this approach works if a coach or trainer selects a 

certain part of the training. Include the walking part of drill B, eliminate 

the time this part takes by conducting calculations in the measure 

design per travelled distance, which is kept constant. First, select drill 

A very precisely with a specific method: (i) count the peaks in the 

global speed – 10 back/forth repetitions, so 20 times –, (ii) select the 

start and end times in the global absolute acceleration and speed. 

Start time: if acceleration is zero before the first large acceleration of 

the situation and the speed increases from zero. End time: if 

acceleration is zero after the last large acceleration of the situation 

and the speed decreases towards zero. Due to some movements 

before and after the situations, the acceleration is not always exactly 

zero. However, it is quite clear to see, and the design of the 

experiment eliminates this as much as possible. Second, select drill B 

roughly: (i) count the zigzags in global data – 5 repetitions –, (ii) select 

roughly the start and end times in timeframes. At some of the 

experiments too many repetitions of the situations are performed, to 

make a fair comparison, the surplus will be manually removed. Next, 

load and select the start and end times of the situations per drill and 

per experiment from an excel sheet – see Appendix I. Furthermore, 

add a safe margin of three seconds before and after each situation, 

see Equation A15. Use a safe margin to include all data, because: (i) 

leg movement starts earlier and ends later than the global whole body 

movement, (ii) synchronisation of the timelines is not exact, 

compensate for any small mis-synchronisation, and (iii) some 

participants conduct small movements before and after the situations, 

compensate for any mis-selection in the global data. Last, use the 

start and end times to select the situations in the local acceleration 

signal, see equation A16, but also to cut the global data. 

 

Equations A – Calculation overview of data processing. 

 

2.2.2 Local acceleration measure design 

This paragraph will focus on calculating the global measure and 

the local acceleration measure design, which is a combination of 

measure calculations and the combined measure methods. 

Measure calculations per travelled distance. First, calculate 

the acceleration index and travelled distance from the global data per 

situation – Equation B1 –, the Inmotio software calculates this 

automatically per experiment. Second, apply different operations to 
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the local acceleration data: (i) allocate the accelerations in zones – 

Equation B2-4 –, (ii) find the peaks in the local acceleration data – 

Equation B5 –, (iii) allocate the peaks in zones – Equation B6-8 –, (iv) 

conduct measure calculations, see Equation B9-23 for an overview of 

the options and their calculations, in the order of testing, and (v) 

divide the measures by the travelled distance, see Equation B24. 

Determine three intensity zones – low, medium, and high – at 

the data process method function by reviewing the intensity increase 

of the situations in the normalised local acceleration data – Appendix 

H.5. Use the lower boundary to exclude very small peaks, which could 

be due to the noise of the wide-range accelerometer or small sensor 

movements. Furthermore, introduce a weighting factor for each of the 

three intensity zones in a way that they represent that higher intensity 

increases the muscle load more. Use the value of the low boundary of 

each zone as the weight factor. Vary the zones and weight factors to 

obtain a decent distribution. 

Develop measures to differentiate high- and low- intensity 

movements – maximum and minimum peaks, respectively – and the 

overall – cumulative – situation load. The measures identified based 

on the local acceleration data are number of, average, sum, and area 

under the curve and are divided into 4 categories, measures with: all 

data points – 1-3 –, peak data points – 4-9 –, normal data points 

weighted per zone – 10-12 –, and peak data points weighted per zone 

– 13-15, all per travelled distance. 

Choose measures per travelled distance, instead of per 

second. First, because it allows the introduction of a safe margin in 

the data segment function, and therefore, includes the entire situation 

– global movements start later than the local leg movements. 

Furthermore, the participants are standing still before and after the 

situations or move very slowly, so the travelled distance has a smaller 

influence than time. Third, the drill scheme is based on a fixed 

distance scheme. Last, include walking back in drill B. Taking the 

distance – which is constant for all situations and participants –, will 

eliminate the time it takes of walking or slowly jogging back, which 

varies between participants. Calculations of the travelled distance per 

situation are from the global data. 

 

Equations B – Calculation overview of measure design. 

Combined measure methods. Sum the measures of the 

individual local sensors in different ways into one value and obtain the 

combined measure to indicate local muscle load, see Equation B26-

30 for an overview of the options and their calculations, in the order of 

testing. If necessary, first combine x-, y-, and z-components per 

sensor, see Equation B25. The standard combined measure method 

is the original experimental set-up of all five sensors (1). However, it 

would be interesting to investigate if different sensor combinations will 

be sufficient, thus consider the following combined measure methods 

as well: (2) only upper and lower legs, (3) only pelvis and upper legs, 

(4) only upper legs, and (5) only lower legs. The combination of the 

measure calculations and combined measure methods result in new 

local measures. 

 

2.2.3 Data analysing 

The goal is to design local acceleration measures to represent 

the players’ experienced load. The steps to analyse and evaluate the 

measures – obtained by the experiments and the processing of the 

local leg acceleration data – will be explained in this paragraph. 

Result selection. First, load and select the experienced load – 

subjective – data of the situations per drill and per experiment from an 

excel sheet – see Appendix I. Second, select and re-organise the 

objective results per measure and situation of all 5 experiments. Next, 

calculate the mean – Equation C1 – and standard deviation – 

Equation C2 – of all experiments per measure and situation – 

subjective, objective global, and objective local measures. Note that 

the standard deviation can be above the normalised maximum of 10, 

which is allowed. Fourth, normalise the average – Equation C3 – and 

standard deviation – Equation C4 – to the maximum value – 0–10 – 

per measure and drill. Fifth, calculate trend percentages per situation 

– i.e. per hypothesis. An indicative percentage per measure of the 

jog/sprint without shoot to the jog/sprint with shoot – i.e. select the first 

and last per situation –, see Equation C5. It has been chosen to use 

the without/with shoot situations, so the method used to analyse and 

evaluate drill A and B are consistent. Last, allocate all the trend lines 

of the objective global and local measures into three groups according 

to their trend percentages to compare different measures and test the 

hypotheses: (1) larger, (2) similar, and (3) smaller, see Equation C6-8. 

Base the group boundaries on the trend percentages of the subjective 

measure. Plot different line sorts per group in the next analysing step. 

 

Equations C – Calculation overview of results. 

Visualisation of the results. Develop a standard figure – to 

test all possibilities in the same format – to find, analyse, and evaluate 

different measures. The standard figure contains: (i) line plot of the 

results and (ii) an experiment, processing, and measure design 

summary. First, the visualisation of the results to test the hypotheses. 

Plot the mean and standard deviation of all experiments and per 

measure – subjective, current objective global, and new objective 

local. Separate the drills into jogging and sprinting situations, i.e. per 

hypothesis. Second, display the experiment, data processing, and 

measure design summary: the drill and the situations, a picture of the 

drill, measurement methods – including trend percentage and group 

allocation –, a picture of the sensor locations, and process methods 

and measure design used to obtain new local measures – including 

trend percentage and group allocation. The output is a line plot of the 

results per situation, including an experiment, processing, and 

measure design summary. 

The units are not relevant because of the normalisation of the 

data. Normalisation occurs in two functions: (i) the data process 

methods function – normalisation of the acceleration data to select 



9 

zones – and (ii) the results function – normalisation of the measures 

to calculate the trend of the situation intensity increase per measure. 

Furthermore, it is not necessary to translate the time from timeframes 

to seconds – the depended factor is chosen to be distance. 

The trend is important – it is a qualitative study –, and not the 

comparison of the values with each other – i.e. quantitative research – 

and visualisation of the data should be done carefully. First, use a line 

plot to simplify the comparison of the different measures when the 

intensity of the situations increases – within the measure –, instead of 

comparing the different methods per situation – between the 

measures. The latter cannot be compared with each other because 

the values of the measures are qualitative. The lines of the local 

measures are divided and visualised into the groups because it is 

about comparing to the experienced load and find consistency 

throughout the measures, and not to find the best measure – 

therefore, a summary of the used data process methods and measure 

design are added to the figure. Furthermore, visualise all measures 

on the same y-axis as a result of the normalisation of the results. 

However, the location of the different measure lines relative to each 

other does not mean anything. It has been chosen not to let all the 

measures start at the same position to clearly show the difference 

between jogging and sprinting per drill. Next, the intensity steps on 

the x-axis between low-medium-high do not represent the same 

intensity increase amount. Therefore, it is not possible to state that 

the increase is – for example – linear. Furthermore, the ability to plot 

subjective results, current global measure, and multiple new 

accelerometer measures – different combinations of data process 

method, measure calculations, and combined measure methods –, in 

the same figure simplifies analysing and interpreting the results. 

Moreover, it reduces the running time. However, only one of the three 

inputs can have multiple options to compare and visualise these 

relative to each other in one graph. Note that the subjective and 

current objective results remain the same per situation. So, the focus 

is not on evaluating the results of different measurement methods per 

situation, but on the trend of one measure when the intensity 

increases of the situation. 

Analysing and evaluating the results. This part will elaborate 

on a systematic method to analyse and evaluate the newly designed 

local measures and the current global measure in comparison to the 

players’ experienced load. It is expected that multiple new local 

measure designs could be successful to predict the local muscle load. 

(1) Define three intensity zones and weight factors for each zone. The 

experiment is designed on increasing the drill intensity. Therefore, 

roughly select the zones and weight factors by observation of the 

normalised processed data and evaluating the intensity increase of 

the situations. (2) Calculate the trend percentages of the subjective 

load measure and formulate groups. Obtain the trend percentages 

from the situations without a ball to the ones with a shot for the 

jogging and sprinting situations and for drill A and B. Next, based on 

these results formulate three groups per situation, i.e. per hypothesis: 

larger, similar, and smaller, include a 10% margin to create the 

groups. (3) Calculate the trend percentages of the current objective 

global and new objective local measures and allocate to the groups. 

Conduct these calculations with fixed zones and weight factors. Then, 

based on these trend percentages, allocate the global and local 

objective measures into the three groups. (4) Conduct a rough 

analysis by making one big overview of all possible combinations of 

data process methods and measure designs with fixed zones and 

weight factors according to their allocated groups. Select all 

potentially successful process method and measure design variations  

for further analysis. (5) Conduct a more in-depth analysis. (i) Vary 

data process methods: plot all potential measure calculations in one 

figure per potential data process method for drill A and with the 

standard combined measure method. This standard considers adding 

all sensors, which is the original experiment set-up. Evaluate the 

figure and select successful process methods. (ii) Vary measure 

calculations: plot all potential data process methods in one figure per 

potential measure calculation for drill A and with the standard 

combined measure method. Evaluate the figure and select successful 

measures. (iii) Vary combined measure methods: plot all combined 

measure methods in one figure per selected data process method 

and selected measure calculation for drill A. Evaluate the figure and 

select successful combined measure methods. (iv) Varying drills: plot 

successful combinations with drill B. Note that ‘successful’ refers to 

this pilot study, and therefore, is interesting to consider in further 

research. By carefully conducting this analysis, successful new local 

measures to represent the experienced load can be obtained. 

 

2.2.4 Data processing and analysing flow chart 

Figure 2.4 shows the data process and analyse flow chart and 

see Appendix I for the MATLAB code of the main script and functions, 

including input tables. This is a summary of previous sections. 

 (I) Input: (1) drill, data process method, measure calculations, 

combined measure method, three intensity zones, weight 

factors for the three zones, and group allocation, these 

variables can be variated, (2-3) objective raw global and local 

data, (4) start and end times situations of drill A or B, and (5) 

subjective experienced load data of drill A or B. 

 (A) Data processing: (1) pre-process data – load the data, 

synchronise the global and local sensors, and filter the local 

acceleration data, (2) process methods – test different data 

process methods and normalise the local acceleration data, 

and (3) segmentation – cut the data into the situations. 

 (B) Local acceleration measure design: (1) measure 

calculations – test different operations applied to the local 

acceleration data, and (2) combined measure – test different 

methods to add measures of the individual sensors together.  

 (C) Data analysing: (1) results – re-organise the results and 

calculate the normalised mean and standard deviation, trend 

percentages, and group allocation, to compare the measures, 

and (2) visualisation – plot the results. 

  (O) Output: plot of subjective, objective global, and objective 

local muscle load measures to test the hypotheses. 

 

Figure 2.4 – Data processing and analysing flow chart. 
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Results  ӏ3
This chapter shows the results after processing the 

experimental data. The previous section explained a systematic 

approach to analyse and evaluate these results. The results of 

executing these steps will be central in this chapter. The global 

acceleration index and the new local acceleration measure designs – 

which are systematically combined by different data process methods, 

measure calculations, and combined measure methods – are 

compared to the experienced load. 

First, the intensity zones are defined as 10%-40% – low – 40%-

70% – medium –, and 70%-100% – high –, with weight factors 1, 4 

and 7, respectively for the three intensity zones. 

Second, the experienced load trend percentages from low to 

high intensity per hypothesis are A.I = 96%, A.II = 24%, B.I = 39%, 

B.II = 7% – drill A and situation 1, drill A and situation 2, drill B and 

situation 3, and drill B and situation 4, respectively. Based on these 

results, three groups – (1) larger, (2) similar, and (3) smaller – are 

formulated per situation including 10% margin. A.I: (1) 106 to infinity, 

(2) 86 to 106, and (3) -infinity to 86; A.II: (1) 34 to infinity, (2) 14 to 34, 

and (3) -infinity to 14; B.I: (1) 49 to infinity, (2) 29 to 49, and (3) -

infinity to 29; B.II: (1) 17 to infinity, (2) -3 to 17, and (3) -infinity tot -3. 

Third, the trend percentages of the objective global and local 

measures with fixed zones and weight factors are calculated. Allocate 

these global and local trend percentage into the three groups, which 

are based on the subjective experience. The results for the global 

acceleration index are A.I = 8%, A.II = -5%, B.I = 5%, B.II = -6%, thus 

all allocated in group 3. See Appendix J for all possible local measure 

designs and their group allocation. 

Fourth, the results of a rough analysis on all possible 

combinations of data process methods (P) and measure designs – i.e. 

measure calculations (M) and combined measure methods (S) – with 

fixed zones and weight factors according to their allocated groups can 

be found in Figure 3.1A and B, and the extended version in Appendix 

J. Figure 3.1A shows the results of all data process methods per 

situation – i.e. per hypothesis – and per measure calculation, with the 

standard combined measure method (S1). A grey dot is group 3, 

meaning smaller, and therefore, not representing the experienced 

load. A green dot is either group 1 or group 2, indicating a similar or 

larger trend percentage than the experienced load. Figure 3.1B 

includes all five combined measure methods. In this figure, the same 

dot system is applied. However, only a green dot is permitted if the 

data process method and measure design is group 1 or 2 for all 

hypotheses – i.e. A.I, A.II, B.I, and B.II. The grey shadow in Figure 

3.1B is the overall result of Figure 3.1A: if all situations per data 

process method and measure calculation variation have a green dot 

in Figure 3.1A, a green dot is permitted in Figure 3.1B. The green 

shadow is explained in the in-depth analysis, see next paragraph. The 

seventh data process method does work, however, will not be further 

considered due to the long running time. All potentially successful 

data process method and measure design variations for further 

analysis are selected based on Figure 3.1A and B and are highlighted 

with green text. Figure 3.1C summarises the potential successful 

options. The green text in this overview is for the in-depth analysis. 

Only use the potential successful combinations for further analysis. 

Fifth, an in-depth analysis is conducted on the potential data 

process methods and measure designs. (i) Vary data process 

methods: all potential measure calculations are plotted in one figure 

per potential data process method for drill A and with the standard 

combined measure method, see Appendix K. Evaluating the figures of 

the appendix results in successful data process method 1, 4, 5, and 6. 

(ii) Vary measure calculations: all potential data process methods are 

A.   

 

B.   

 

C.   

Figure 3.1 – A-B: Rough analysis results of data process method, measure 

calculation, and combined measure method combinations in green text and in-

depth analysis results in green shadow; C: Overview of potential successful 

combinations after rough analysis and the successful combinations after in-

depth analysis highlighted in green text. 

plotted in one figure per potential measure calculation for drill A and 

with the standard combined measure method, see Appendix L. 

Evaluating the figures of the appendix results in successful measure 

12 and 15. (iii) Vary combined measure methods: all combined 

measure methods are plotted in one figure per successful data 

process method and successful measure calculation for drill A, see 

Appendix M. Evaluating the figures of the appendix results in all 

combined measure methods if using a combination of data process 

method 1, 4, 5, or 6 with measure calculation 12 or 15. (iv) Varying 

drills: the successful combinations are plotted with drill B. See Figure 

3.1A for an overview of successful combinations highlighted in green 

shadow – after evaluating the figures in Appendix K and L – 

considering potential data process methods and measure calculations 
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with the standard combined measure method obtained from the rough 

analysis. Furthermore, see Figure 3.1B for an overview of successful 

combinations highlighted in green shadow – after evaluating the 

figures in Appendix M – considering green highlighted data process 

method and measure calculation combinations of Figure 3.1A with all 

combined measure methods. The final results are highlighted in green 

shadow in Figure 3.1B and summarised in green text in Figure 3.1C. 

The following three figures show the results with combinations of data 

process methods (P), measure calculations (M), and combined 

measure methods (S): P1,4,5,6, M12, and S1 for drill A and B in 

Figure 3.2, P1,4,5,6, M15, and S1 for drill A and B in Figure 3.3, and 

P4, M15, and S1,2,3,4,5 for drill A and B in Figure 3.4. 

 

            A.I                                     A.II               B.I                                        B.II  

          

Figure 3.2 – Plot of data process method 1, 4, 5, and 6, measure calculation 12, and combined measure method 1 for drill A and B. 

            A.I                                     A.II               B.I                                        B.II  

          

Figure 3.3 – Plot of data process method 1, 4, 5, and 6, measure calculation 15, and combined measure method 1 for drill A and B. 

            A.I                                     A.II               B.I                                        B.II    

          

Figure 3.4 – Plot of data process method 4, measure calculation 15, and combined measure method 1, 2, 3, 4, and 5 for drill A and B. 
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Discussion  ӏ4
This pilot study aimed to use a big data analysis approach to 

translate leg acceleration data into a measure to indicate local muscle 

load and compare this new local and the current global method to the 

players’ experienced load. It can be concluded that local three-

dimensional acceleration of the lower extremities, processed with a 

big data analysis approach, represent the football players’ 

experienced muscular load more accurate than the current global 

method. The hypothesis: “the intensity increase of a football drill will 

increase the local load similarly as the experienced load, but not 

global, based on acceleration” is confirmed for adding a shot. 

However, both local and global methods identify the intensity increase 

of a football drill from jogging to sprinting. These conclusions are in 

line with the expectations that the local data is a more accurate 

representation of the experienced load than the current global 

measure, i.e. increasing the drill intensity in football will be visible in 

the 3D leg acceleration pattern, but not in the global whole body 

acceleration signal. The concept of measuring a lot of data – including 

noise and inaccuracies – and processing this with a peak and 

cumulative big data analysis, instead of focussing on an exact body 

segment method, is successful in indicating local muscle load during 

practice in a representative football environment, without restricting 

the players’ movement. 

By evaluating trend percentages of the intensity increase, it is 

clear that a local acceleration measure is comparable to the players’ 

experienced load when it considers the sum of normal or peak data 

points weighted per zone and per travelled distance. Furthermore, a 

similar result is obtained when only the upper leg or lower leg 

accelerations are considered. Multiple new local measure designs are 

successful. However, the goal is not to find the best, but compare the 

current global and new local objective measures to the subjective load 

to indicate muscle load if the drill intensity increases. This is an 

exploratory study to introduce a new local method, and the hypothesis 

cannot be proven significant due to the small participant number. The 

algorithm is made to extend easily to a big group of participants. 

Further research is needed to define better intensity zones and weight 

factors, to select the best measure and quantify this, and with larger 

participant groups to better validate the hypothesis. 

 

4.1 Result interpretation 

The conclusions are obtained by processing and analysing the 

experimental data. Two drills are performed – including specific 

football movements: jog/sprint, turn, and pass/shoot – on the pitch by 

five participants: (A) back/forth and (B) zigzag. Different situations of 

these drills are performed by increasing the intensity from jogging to 

sprinting and adding a pass/shot. The participants wear a set of 

sensors to measure the movements. The measurement methods are 

(I) questionnaire: subjective method to obtain the players’ 

experienced load, (II) 2D LPM: current objective method to obtain the 

global acceleration index of the whole body, with the sensor location 

between the shoulder blades, and (III) 3D accelerometers: new 

objective method to obtain the local acceleration of the lower 

extremities, with sensor locations at the middle of the pelvis, upper 

legs, and lower legs. A MATLAB algorithm is used to process the 

experiment data to find, analyse, and evaluate new measures – 

based on leg acceleration data – to indicate local muscle load. A main 

file runs different functions to perform specific actions to the data and 

translate the local acceleration data into a single value to indicate 

local muscle load per situation by a peak and cumulative data 

analysis. The input varies between different data process methods 

and a combination of measure calculations and combined measure 

methods, i.e. measure design. The hypotheses are tested by 

calculating the trend percentages – jog/sprint without shoot to the 

jog/sprint with shoot – and dividing them into groups to compare the 

global measure and new local measures to the experienced load – 

which is the benchmark. The interpretation of the obtained results has 

been done by a systematic rough and in-depth analysis. 

Interpretation of the rough analysis. The rough analysis 

filtered the tested data process methods and measure designs into 

potential combinations. The rough analysis is based on the 

experienced load group formulation without plotting the figures. 

Therefore, these do not include the pass situation of drill A. It became 

clear that measures in categories considering normal and peak data 

points per travelled distance are not in line with the subjective load, 

i.e. measures which are not weighted per zone. This can be explained 

by the very high and narrow – i.e. short – shot peaks. This results in 

negligible effects, due to the long measuring times per situation, 

which include many low and medium movements. Therefore, intensity 

zones and weight factors are introduced – to indicate if a higher 

muscle load would increase the chance of overuse or muscle damage 

– which is expected to differentiate the movement intensities. The 

results confirm that measures regarding normal and peak data points 

weighted per zone per travelled distance show potential. 

Within the weighted per zone categories, the number of points 

– normal and peak – show no success. This is due to the constant 

travelled distance, and the fact that measures are calculated per 

travelled distance. Some variability in the constant distance occurs 

due to the differences in turning and adding a ball at the end of the 

drill – the passing/shooting movement will result in a few extra meters. 

This is eliminated by calculating the measures per meter. When 

repeating this study, it would be best to place the ball one meter 

before the end of the drill to compensate for the extra movement.  

The results of the different measure calculations are very 

consistent throughout all data process methods. Data process method 

7 – involving envelope to process the acceleration signals – has a 

very long computational time. It is preferable to obtain a fast running 

data process method to make this a practical measurement method. 

Therefore, no further analysis has been conducted with this method. 

The potential data process methods and measure designs are plotted 

and evaluated by an in-depth analysis. 

Interpretation of the in-depth analysis: experienced load. 

The players’ experienced load has been chosen to be the standard. In 

the in-depth analysis, figures are plotted to conduct a visual 

evaluation of the trend. The pass situation of drill A is included, which 

is of added value to check the consistency of the measures. The 

obtained result supports the expectation of increased experienced 

load when drill intensity increases. A football-like environment was 

correctly simulated by including the football-specific movements into 

drills with short distances in an out-of-lab setting. The short distances 

represent the many accelerative and decelerative changes occurring 

in football, which are known to have a high muscle load.  

Appearing from the response of the participants, it was an 

exhausting and intense experiment. Specifically, the fatigue starts to 

play a role during drill B – because this was performed after drill A –, 

which will influence the performance of the drill. However, exhaustion 

is a common phenomenon in normal training. The role of conducting 

drill B is to test the measures in a slightly more advanced exercise. 

This results in a better simulation of the real football environment. 

Some thoughts on eliminating this factor are to decrease the amount 

of drills, situations per drill, repetitions per situation, or add more time 

in between the situations.  
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The participant reported the experienced load during the 

experiment at the end of each situation. However, the experiments 

were experienced very heavy – especially the sprint situation of drill B 

– and sometimes the scale of 1-10 was not sufficient when the 

participant started with a relatively high mark. Therefore, also group 1 

– larger trend than the experienced load trend – is considered. 

Interpretation of the in-depth analysis: global measure. The 

global acceleration index does not differentiate within the situations. 

However, as expected, there is a load increase if the intensity 

increases to sprinting. Compared to the players’ experienced load, the 

group allocation is 3, which is smaller. The acceleration index is a 

cumulative measure defined as the acceleration count which meet the 

condition of at least 0.5s above 1.6 m/s2 and lead to ≥10 km/h2. The 

accelerations below 1.6 m/s2 are considered to be noise and do not 

count. These boundaries and thresholds are not based on scientific 

research but on experience. This index could exclude short high-

intensive and low-speed movements, however these contribute to 

muscle load increase. Furthermore, the movement of the whole body 

does not represent the many leg acceleration movements. Therefore, 

it did not register any passes or shots. The results obtained by this 

experiment were expected, and the global measure does not 

represent the experienced load accurately 

Interpretation of the in-depth analysis: local measure. The 

in-depth analysis is first conducted with the standard combined 

measure method, which is the original local measurement set-up of all 

sensors. The trend percentage is chosen to be from low to high 

intensity, to be consistent between both drills. However, during this in-

depth analysis, a visual comparison easily observes if unexpected 

and inconsistent trends occur, as the pass situation is included. 

Therefore, all the potential data process method and measure 

calculation combinations are plotted and evaluated. It is observed that 

using the same measure calculation, normal and peak data points 

weighted per zone have a very similar outcome. Furthermore, 

different observations per data process method when adding a pass: 

pass had a slightly higher or similar load as the shot, the jog and pass 

situation has a similar load as sprinting, or when sprinting is higher 

than sprinting with a pass. All these observations occurred in the 

same measure calculation. Therefore, eliminate the average of all 

normal and peak data weighted per zone measures, because it does 

not represent the experienced load. The in-depth analysis is 

conducted on drill B with the successful measure calculation – the 

sum of all normal and peak data weighted per zone and per travelled 

distance – and successful data process methods, a comparable result 

to the experienced load is achieved. 

Combined measure methods are included to test the relevance 

of the sensor locations. Testing different sensor combinations will 

evaluate the potential of using short tight leggings – i.e. upper legs – 

or adding accelerometers in the shin guards – i.e. lower legs –, which 

would be very convenient. The results show a very consistent 

outcome of all the five methods tested, and a similar result is obtained 

when using the accelerations of the upper or lower legs. 

 

4.2 Implications for practice 

The ultimate goal is to gain more insight into how to prevent 

muscle injuries and optimise performance. This can be achieved by 

differentiating the local muscle load between activities or drills, to 

categorise exercise intensity in muscle load zones, and measure data 

for a long period of time – i.e. multiple practices and matches. In the 

future, this should be a standard, easy to use, and intuitive measure 

for players and staff to continuously monitor local muscle load. An 

example is how total travelled distance and high-speed travelled 

meters as an indication of physical load and performance is currently 

used. A second example is the concept of the metabolic equivalent of 

a task – MET –, which can be used to categorise the intensity level of 

a specific activity (Jetté et al., 1990). The designed measures should 

provide insight into the following questions: (i) how many practices 

and what type of drills should be performed, (ii) how many matches 

should be performed and when should a player be substituted, and 

(iii) monitoring the intensity – frequency, load, and duration – of the 

drills, practices, and matches. The newly proposed method in this 

study shows excellent potential to monitor local muscle load during 

practice and matches continuously, to reduce the amount of thigh 

muscle injuries, and to adjust and optimise the training load. 

The new local measurement method could be embedded in 

short training leggings or in shin pats to improve usability. This is 

comfortable to wear during activity without restricting the player and 

gain data instantly on the pitch. Using accelerometers to obtain 

kinematic data is made possible as a result of the many technological 

improvements of the last decade. It is a sourceless, small, light, low-

cost, onboard data-logging, optional wireless, and easy to use sensor. 

This can be used in any area without restricting the football player and 

in any environment – outside laboratories – to provide valuable 

objective kinematic information to evaluate the musculoskeletal 

system during movement. Local acceleration of the lower extremities 

is promising to continuously monitor local muscle load in a real 

football setting on the pitch, in dynamic situations, and during entire 

drills, practices and matches. 

Furthermore, local data should be tracked real-time during 

practices and matches to find the peak and cumulative values. To 

continuously monitor the muscle load of the legs, real-time feedback 

can be a major support for football staff (Halson, 2014 and Sato et al., 

2009). This can be achieved because a big data analysis approach is 

used. The algorithm to translate the acceleration is a simple and low 

computational load algorithm, leading to short processing times. Real-

time measuring and monitoring allows direct observing and 

intervening when the muscular load becomes too high, and therefore, 

preventing muscle injuries. 

In football, a dominant and non-dominant leg exists, which 

could lead to different muscle injury risks. A study by Svensson et al. 

(2016) on the difference of muscle injuries in the dominant and non-

dominant leg showed no significant difference in the adductors and 

quadriceps, while structural hamstring injuries were found to have a 

higher injury rate in the dominant leg. According to Ekstrand et al. 

(2011), muscle tears in the shooting leg – i.e. dominant leg – occurred 

more often in the quadriceps – 60% –, while it was found to be about 

the same in the hamstrings – 50% – and adductors – 54%. During this 

study, the average of all participants is used and both left- and right-

footed players were identified. Therefore, no combined measure 

method is tested on the separate left or right leg. After developing and 

further testing of the activity monitoring system, it could be used for 

individual athletes. The different loading of the left and right leg could 

be differentiated. 

During this exploratory study, the application within football has 

been central, but also other sports can benefit from this method and it 

can be useful in clinical applications. First, the motion activities of elite 

football players are comparable with elite field-hockey, rugby and 

Australian football players (Spencer et al., 2004). So, besides using 

this method in football, similar type of intermitted sports can be 

targeted, for example, field hockey, rugby, volleyball, handball, 

basketball, and baseball. Measuring local acceleration profiles would 

even apply to sports like athletics and speed skating. Similarly, 

Paralympic sports could benefit from monitoring local muscular load. 

Furthermore, the use of a big data analysis approach can be an 

affordable easy to use measurement method for recreational use. A 

whole team can be tracked for long periods of time. This shows the 

broad usability of this method in sports. Second, this method can be 

potentially used as a measurement tool in clinical applications. To 

monitor the local muscular load of patients while performing certain 

activities and during revalidation of muscle injuries in sports. For 

example, patients with muscle disorders. Last, the focus in this study 

is on the muscles around the thigh, but expanding this to monitor 

around other joints, like the knee, shoulder, elbow, wrist, is possible. 

This could be an advantage in sports like basketball, handball, 

baseball, tennis, and volleyball. This overview shows the wide 

applicability of using local acceleration to obtain local muscle load. 

Before the method can be deployed for all these applications, further 

research is needed. 
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4.3 Recommendations and further research 

This study has been done to elaborate on the whole new 

concept of integrating commercially available IMUs in a sports legging 

and perform football drills with increased intensity on the pitch to 

obtain the leg acceleration pattern. It can be concluded that 

measuring local acceleration shows great potential to use and 

translate into a measure by a big data analysis approach to predict 

muscle load and meet the set requirements. However, further 

research is needed to develop an activity monitor based on 

measuring a lot of data to support medical and technical football staff. 

(i) Define accurate intensity zones, (ii) define weight factors and 

investigate if there exists a connection between heavier movements 

and higher muscle load, (iii) differentiate acceleration and 

deceleration, (iv) differentiate left and right leg, (v) investigate to what 

extent muscle fatigue influences this method, (vi) select the best 

measure and quantify this by conducting maximal tests of individual 

athletes, (vii) use the obtained local acceleration data to perform 

pattern identification, in case of this data: jog/sprint, turn, pass/shot, 

and intensity classification of these elements related to muscle load, 

(viii) use larger participant groups and (ix) validate to obtain how 

accurate and reliable this method is, and (x) reduce the size of the 

accelerometers – i.e. IMUs used in this study are relatively large – if 

the research progressed to a later stage. Many topics should be 

addressed before the concept of leg acceleration measurements can 

be commercially available. 

A validation method can show if the obtained local acceleration 

data is representative and accurate to predict local hip and thigh 

muscle load. Methods to validate and evaluate the new local method 

currently exist because this could be performed in lab settings. 

VICON is a 3D movement analysis method which can measure a 

variety of variables. The VICON system can be relevant for 

observation and validation purposes, more precisely: (i) to validate 

measured accelerations and decelerations by IMUs, (ii) to find the 

optimal amount and location of sensors needed to give an accurate 

acceleration profile of the lower extremities, and (iii) the combination 

with the force plate could support on finding an accurate prediction to 

muscular loads. The force plate is about one square meter, and 

therefore, one activity/movement at the time can be measured, like 

one walking, running, or sprinting step, one shot, one jump, etc. 

VICON could have a positive contribution in later research phases.  
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Appendix A – Information letter participant 
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Appendix B – Information participant and drill questionnaire 
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Appendix C – Experiment protocol 
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Appendix D – Filled-in and signed ethics checklist: approved TU Delft 
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Appendix E – Informed consent 
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Appendix F – Experiment protocol trail 
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Appendix G – Information participant and drill questionnaire trial 
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Appendix H – Plots to check the functions 

Note, these plots are only plots to check and show examples of functions. Therefore, the plots are very basic, without legends, axis labels, etc. 

 

Example of x-, y-, and z-gyroscope data of all sensors of one participant 

 

 

Example of processed and segmented global data of one participant 
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Example of processed and segmented local data of one participant 

 

 
 

 

Example of local z-angular rate before and after synchronisation of all sensors of one participant 
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Example of global acceleration – blue – and local x-acceleration of  

reference sensor X – green – after synchronisation of one participant 

 

 

 

 

 

 

Example of normalised local acceleration after data  

processing including intensity zones of one participant 
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Example of global speed and acceleration data of one participant 
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Appendix I – MATLAB code for main script and functions, including input tables 

 

Main MATLAB script: DataProcessingAnalysingTool.m 
%------------------------------------------------------------------------------------------------------------------------------------------------ 

%  Name:          Rozemarijn Schotel                                                                                                             

%  Course:        Graduation project                                                                                                             

%  Main file:     Data processing and analysing tool                                                                                             

%  Last updated:  12.06.2019                                                                                                                     

%------------------------------------------------------------------------------------------------------------------------------------------------ 

 

%% SUMMARY PROJECT: 

% TITLE:         Monitoring local muscle load in football 

% AIM OF STUDY:  This pilot study aims to use a big data analysis approach to translate leg acceleration data into a measure to indicate local 

%                muscle load and compare this new local and the current global method to the players’ experienced load.  

% MAIN QUESTION: Could local three-dimensional acceleration of the lower extremities, processed with a big data analysis approach, represent the 

%                football players’ experienced muscular load more accurate than the current global method?  

% HYPOTHESIS:    Intensity increase of a football drill will increase the local load similarly as the experienced load, but not global, based on  

%                acceleration. 

% The current method is an acceleration index based on two-dimensional position data of the whole body obtained by the local positioning  

% measurement system – LPM for short – and the new local method gathers local acceleration data of the lower extremities in three dimensions by  

% using the acceleration module of Shimmer3 IMUs. The expectations are that the local data is a more accurate representation of the experienced 

% load than the current global measure, i.e. increasing the drill intensity in football will be visible in the local three-dimensional  

% acceleration pattern of the lower extremities, but not in the current global indication of load. Two drills are performed – including specific  

% football movements: jog/sprint, turn, and pass/shoot – on the pitch by 5 participants: (A) back/forth and (B) zigzag. Perform different  

% situations of these drills by increasing the intensity from jogging to sprinting and adding a pass/shot. Keep the frequency, and therefore, the 

% travelled distance constant. The participants wear a set of sensors to measure the movements. The measurement methods are (1) questionnaire:  

% subjective method to obtain the experienced load, (2) 2D LPM: current objective method to obtain the global acceleration index of the whole  

% body, with the sensor location between the shoulder blades, and (3) 3D accelerometers: new objective method to obtain the local acceleration of 

% the lower extremities, with sensor locations at the middle of pelvis, upper legs, and lower legs. Use a MATLAB algorithm to process the  

% experiment data to find, analyse, and evaluate new measures – based on local acceleration data of the lower extremities – to predict local  

% muscle load in football. A main file runs different functions to perform specific actions to the data and translate the local acceleration data 

% into a single value to indicate local muscle load per situation by a peak and cumulative data analysis. Vary the inputs: different data process 

% methods and a combination of measure calculations and combined measure methods, i.e. measure design. Then, test the hypotheses by calculating  

% the trend percentages – jog/sprint without shoot to the jog/sprint with shoot – and divide them in groups to compare the global measure and new 

% local measures to the experienced load. Group allocation is based on the subjective measure, because from practice it is believed that the  

% objective current method is not sufficient and a new method needs to be found which are more in line with these.  

%------------------------------------------------------------------------------------------------------------------------------------------------ 

clear variables; close all; clc; format long 

  

% Hypotheses to test 

HypothesisName = ... 

[{'A.I: Intensity increase of jogging back/forth by a' 'pass/shot will increase the local load similarly as the' 'experienced load, but not 

global, based on acceleration'}; ...       

 {'A.II: Intensity increase of sprinting back/forth by a' 'pass/shot will increase the local load similarly as the' 'experienced load, but not 

global, based on acceleration'}; ... 

 {'B.I: Intensity increase of jogging a zigzag by a shot' 'will increase the local load similarly as the experienced' 'load, but not global, 

based on acceleration'}; ... 

 {'B.II: Intensity increase of sprinting a zigzag by a shot' 'will increase the local load similarly as the experienced' 'load, but not global, 

based on acceleration'}]; 

IntensityName = {{'1a: low' '1b: medium' '1c: high'},{'2a: low' '2b: medium' '2c: high'};{'3a: low' '3b: high'},{'4a: low' '4b: high'}}; 

  

% Measurement methods used: 

MeasurementName = {'>  Questionnaire (subjective method):' 'experienced load'; ... 

                   '>  1x 2D LPM (current objective method):' 'global acceleration index'; ... 

                   '>  5x 3D Accelerometer (new objective' 'method): local acceleration measure'}; 

 

%% >> ** SELECTION MENU ** << %% 

% Make some choices in this selection menu to analyse different processing methods and develop potential measures. It is possible to choose  

% multiple options in select group 2, 3, and 4 to visualise these in the same figure. However, only one group can have multiple options to  

% compare and visualise these relative to each other in one graph. 

  

% >> ** 1. SELECT DRILL ** << 

SelectDrill = 1;    % One option = # 

DrillName =    {'A - 10x back and forth per situation (6x)'; ... 

                'B - 5x zigzag per situation and walk back (4x)'}; 

SitName =     {{'>  Situation 1a: jog + turn + no ball';   '>  Situation 1b: jog + turn + pass';   '>  Situation 1c: jog + turn + shoot'}; ... 

               {'>  Situation 2a: sprint + turn + no ball';'>  Situation 2b: sprint + turn + pass';'>  Situation 2c: sprint + turn + shoot'}; ... 

               {'>  Situation 3a: jog + turn + no ball';                                           '>  Situation 3b: jog + turn + shoot'}; ... 

               {'>  Situation 4a: sprint + turn + no ball';                                        '>  Situation 4b: sprint + turn + shoot'}}; 

  

% >> ** 2. SELECT DATA PROCESS METHOD ** <<  

SelectProcess = 4;    % One option = #; multiple option = [#,#,#,etc] 

ProcessName = {'1: absolute values of all individual x,y,z acc'; ... 

               '2: absolute values of sum of local x,y,z acc'; ... 

               '3: sum of absolute values of local x,y,z acc'; ... 

               '4: magnitude of combined local x,y,z acc'; ... 

               '5: absolute values of gradient of magnitude of combined local x,y,z acc'; ... 

               '6: absolute values of difference of magnitude of combined local x,y,z acc'; ... 

               '7: envelope of magnitude of combined local x,y,z acc'}; 

  

% >> ** 3: SELECT MEASURE CALCULATION ** << 

SelectMeasure = 15;    % One option = #; multiple option = [#,#,#,etc]  

MeasureName = {'1: average';                                % Measures with all data points (per travelled distance) 

               '2: sum'; ...                                % " 

               '3: area under curve'; ...                   % " 

               '4: peak amount'; ...                        % Measures with peak data points (per travelled distance) 

               '5: peak average'; ...                       % " 

               '6: peak sum'; ...                           % " 

               '7: area under peak curve'; ...              % " 

               '8: peak width average'; ...                 % " 

               '9: peak width sum'; ...                     % " 

               '10: time spend weighted per zone'; ...      % Measures with normal data points weighted per zone (per travelled distance) 

               '11: average weighted per zone'; ...         % " 

               '12: sum weighted per zone'; ...             % " 

               '13: peak amount weighted per zone'; ...     % Measures with peak data points weighted per zone (per travelled distance) 

               '14: peak average weighted per zone'; ...    % " 

               '15: peak sum weighted per zone'};           % " 

  

% >> ** 4: SELECT COMBINED MEASURE METHOD ** << 

SelectCombine = 1;    % One option = #; multiple option = [#,#,#,etc] 

CombineName =  {'1: P + R1 + R2 + L1 + L2'; ...             % P = pelvis        R1 = right upper leg    L1 = left upper leg 

                '2: R1 + R2 + L1 + L2'; ...                 %                   R2 = right lower leg    L2 = left lower leg 

                '3: P  + R1 + L1'; ... 

                '4: R1 + L1'; ... 

                '5: R2 + L2'};              
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% >> ** 5: DEFINE OTHER OPTIONS ** << 

Zone = [10 40 70 100];                                        % Define three intensity zones (low, medium, and high) to categorise the peaks 

WeightFactor = [1 4 7];                                       % Define weighting factors for the three zones 

Group = {[inf 96+10 96-10 -inf; inf 24+10 24-10 -inf]; ...    % Define group allocation, based on experienced load trend percentages:   

         [inf 39+10 39-10 -inf; inf 7+10  7-10  -inf]};       %    A.I=96%, A.II=24%, B.I=39%, B.II=7% (inclusive +/- 10%) 

  

% >> ** PLOT AND/OR SAFE VISUALISATION: OFF=0 / ON=1 ** << 

FinalPlotC2 = 1;           % Visualisation of the results after data processing to analyse the results 

SaveFigureC2 = 1;          % Save the generated figure in the allocated folder for later use 

 

%% PLOTS TO CHECK FUNCTIONS  

% OFF=0 / ON=1. Only use when one option is selected per select group. Furthermore, these are only plots to check functions, therefore, the plots 

% are very basic, without legends, axis labels, etc. 

CheckPlotA1 = 0;    % Plot 1: Check synchronisation timeline of local GYR-Z data  

                    % Plot 2: Check synchronisation timeline of global ACC and local X ACC-X data 

CheckPlotA2 = 0;    % Plot 3: Check normalised local acceleration data after data process methods 

CheckPlotA3 = 0;    % Plot 4: Check start and end times of situations in global speed and acceleration data 

                    % Plot 5: Synchronised and segmented global data 

                    % Plot 6: Synchronised and segmented local acceleration data 

CheckPlotB1 = 0;    % Plot 7: Check zone and peak selection in local acceleration data (plot is executed in A2_DataProcess) 

 

%% PARAMETERS 

ExpNr = 5;                                           % 5 participants performed the experiment 

SampRate = 200; SrLocal = 199.8;                     % Global (= LPM, reference) and local (= IMUs) sampling rate [Hz] 

SafeMargin = 3;                                      % A safe margin of 3 seconds at the start/end of the situations 

TotSen = 7; SenLocal = 6; AccLocal = 3;              % 7 sensors: 1x LPM + 6x (incl. 1 reference) IMUs, with 3 accelerometers (x,y,z) 

LoadMeasure = [1 2];                                 % Load indication of (1) global and (2) local method, 1 = # and 2 = # per travelled distance 

Colour = [107 134 137; 0 166 214; 0 102 109]/255;    % Colours used for plotting: experienced load, current global method, and new local method 

if SelectDrill==1; SitNr = 6; SitCat = [1 2 3; 4 5 6]; HypCat = [1 2]; end    % Number of situations of drill A (6x10 back/forth) 

if SelectDrill==2; SitNr = 4; SitCat = [1 2; 3 4];     HypCat = [3 4]; end    % Number of situations of drill B (4x5 zigzags and walk back) 

  

% The units are not relevant because of the normalisation of the acceleration data to select zones (see data process method section) and  

% measures to calculate the trend of the situation intensity increase per measure and compare the measures within and not between the measures  

% (see results section). Normalise the measures per drill (so not per hypothesis) in order to compare them on the same y-axis. It is a  

% qualitative study (i.e. about the trend), not a quantitative research (i.e. it is not to compare the values with each other). Furthermore, it  

% is not necessary to translate the time from timeframes to seconds (the depended factor is chosen to be distance, not time). 

 

%% FUNCTION A1: PRE-PROCESS DATA 

% Load and select the correct raw objective global and local data, resample the local data, synchronise internal timelines of all global and  

% local sensors, and filter the local acceleration data. 

Data_PreProcess = cell(ExpNr,1); 

for Exp = 1:ExpNr 

    Data_PreProcess{Exp,1} = A1_DataPreProcess(Exp,CheckPlotA1,SampRate,SrLocal,SenLocal,AccLocal,Colour); 

end 

 

%% FUNCTION A2: DATA PROCESS METHODS 

% Different methods to process the data and normalise the local acceleration data (0–100) to the maximum. 

Data_Process = cell(ExpNr,1); 

for Exp = 1:ExpNr 

    for Process = 1:length(SelectProcess) 

        ProcessMethod = SelectProcess(Process); 

        PreProcessData = Data_PreProcess{Exp,1}; 

        Data_Process{Exp,1}{Process,1} = A2_DataProcess(Exp,ProcessMethod,PreProcessData,Zone,CheckPlotA2,CheckPlotB1,TotSen,SenLocal,Colour); 

    end 

end 

 

%% FUNCTION A3: SEGMENTATION OF THE DRILLS AND SITUATIONS   

Data_Segment = cell(ExpNr,1); 

for Exp = 1:ExpNr 

    for Process = 1:length(SelectProcess) 

        for Sit = 1:SitNr 

            ProcessData = Data_Process{Exp,1}{Process,1}; 

            Data_Segment{Exp,1}{Process,Sit} = A3_DataSegment(Exp,Sit,ProcessData,SelectDrill,CheckPlotA3,SampRate,SafeMargin,SenLocal,Colour); 

        end 

    end 

end 

 

%% FUNCTION B1: GLOBAL AND POTENTIAL LOCAL MEASURE CALCULATIONS 

% Conduct measure calculations, i.e. apply different operations to the local acceleration data. 

Measure_Calculations = cell(ExpNr,1); 

for Exp = 1:ExpNr 

    for Process = 1:length(SelectProcess) 

        for Sit = 1:SitNr 

            SegmentData = Data_Segment{Exp,1}{Process,Sit}; 

            Measure_Calculations{Exp,1}{Process,Sit} = 

B1_MeasureCalculations(SegmentData,SelectMeasure,MeasureName,Zone,WeightFactor,LoadMeasure); 

        end 

    end 

end 

 

%% FUNCTION B2: COMBINED MEASURE 

% Sum the measures of the individual local sensors in different ways into one value and obtain the combined measure to indicate local muscle 

load. 

Measure_Combined = cell(ExpNr,1); 

for Exp = 1:ExpNr 

    for Process = 1:length(SelectProcess) 

        for Sit = 1:SitNr 

            CalculationsMeasure = Measure_Calculations{Exp,1}{Process,Sit}; 

            Measure_Combined{Exp,1}{Process,Sit} = B2_MeasureCombined(CalculationsMeasure,SelectMeasure,SelectCombine,CombineName,SenLocal); 

        end  

    end 

end 

 

%% FUNCTION C1: RESULTS  

% First, load and select the subjective data, and select and re-organise the results. Furthermore, calculate and normalise (0–10) the mean and  

% standard deviation of all experiments per measure and per drill to the maximum. Last, calculate the trend percentage from the first to last of  

% the situation (per hypothesis) and allocate into three groups to compare different combined measures and test the hypotheses: larger, similar,  

% and smaller, base this on experienced load trend percentage.    

Data_Results = C1_Results(Measure_Combined,SelectDrill,SelectProcess,SelectMeasure,SelectCombine,Group,ExpNr,SitNr,SitCat); 

 

%% FUNCTION C2: VISUALISATION OF THE RESULTS TO TEST THE HYPOTHESES 

% Develop a standard figure (in order to test all possibilities in the same format) to find, analyse, and evaluate different measures for local  

% muscle load in football, and compare these to the current global measure and subjective measure. Furthermore, the figure shows a summary of the 

% experiment, processing, and measure design. 

Data_Visualisation = C2_Visualisation(Data_Results,HypothesisName,IntensityName,MeasurementName,SelectDrill,DrillName,SitName,SelectProcess, ... 

ProcessName,SelectMeasure,MeasureName,SelectCombine,CombineName,Zone,WeightFactor,Group,FinalPlotC2,SaveFigureC2,ExpNr,SampRate,LoadMeasure, ... 

Colour,SitCat,HypCat); 
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MATLAB function A1_DataPreProcess.m 
%------------------------------------------------------------------------------------------------------------------------------------------------ 

%  Function A1: pre-process data. Load and select the correct raw objective global and local data, resample the local data, synchronise internal  

%  timelines of all global and local sensors, and filter the local acceleration data. 

%------------------------------------------------------------------------------------------------------------------------------------------------ 

  

function Data_PreProcess = A1_DataPreProcess(Exp,CheckPlotA1,SampRate,SrLocal,SenLocal,AccLocal,Colour) 

  

    % (1) Anonymous experiment number; (2) Approximate experiment length based on the video (duration in timeframes [Hz]): ExpStart (from  

    % start of 15x jumping) and EndTime (after last shot + 10 seconds = 2000 timeframes), this will exclude any warming-up, cooling-down, and  

    % weird peaks because LPM sensor is inside building; (3) Sampling frequency percentages per experiment [P R1 R2 L1 L2 X]. 

    if Exp==1; ExpCd='Exp1'; ExpStart=44600;  ExpEnd=632600; Sr_Exp=[0.997 0.997 0.997 0.997 0.999 0.997]*SrLocal; end 

    if Exp==2; ExpCd='Exp2'; ExpStart=35400;  ExpEnd=606000; Sr_Exp=[0.997 0.997 0.611 0.997 0.999 0.620]*SrLocal; end 

    if Exp==3; ExpCd='Exp3'; ExpStart=99400;  ExpEnd=689400; Sr_Exp=[0.997 0.997 0.997 0.997 0.999 0.997]*SrLocal; end 

    if Exp==4; ExpCd='Exp4'; ExpStart=39400;  ExpEnd=534600; Sr_Exp=[0.997 0.997 0.997 0.997 0.999 0.997]*SrLocal; end 

    if Exp==5; ExpCd='Exp5'; ExpStart=106800; ExpEnd=734800; Sr_Exp=[0.997 0.997 0.612 0.997 0.999 0.997]*SrLocal; end 

 

%% LOAD AND SELECT CORRECT RAW OBJECTIVE DATA 

    % Define location of stored data. 

    RootPath = 'C:\Users\Rozemarijn Schotel\Google Drive\TU Delft\Graduation project\5. Data Processing and Analysing'; 

    DataFolder = strcat(RootPath,'\',ExpCd); 

  

    % Read global data from exported .csv file. Select relevant rough global data: 2D position and motion data, heartbeat, and acc count/index. 

    % Correct for weird peaks in global signal at start and end if the LPM sensor is outside the measuring area. 

    Global_Load = csvread(strcat(DataFolder,'\',ExpCd,'_LPM_200Hz.csv'),1,0);    % 1:t, 2:X, 3:Y, 4:Spd, 5:Acc, 6:Dist, 7:HB, 8:AccCnt, 9:AccIdx 

    Global_Rough = Global_Load(ExpStart:ExpEnd,[2,3,6,4,5,7,8,9]);               % 1:X, 2:Y, 3:Dist, 4:Spd, 5:Acc, 6:HB, 7:AccCnt, 8:AccIdx 

  

    % Load local (calibrated) data from exported .mat file. Select relevant rough local data: wide range accelerometer (+/- 16g), because the 

    % fast movements performed during the experiment exceed the low-noise accelerometer of +/- 2g. The calibrated data is exported from the  

    % ConsensysBasic program, which imports the measured data from the Shimmer3 IMUs, so no further calibration is needed. Furthermore, resample  

    % local data (= 199.8 Hz, including the correction percentages) to sampling rate reference (= 200 Hz; to meet sampling rate of LPM). 

    Local_NameSen= {'P' 'R1' 'R2' 'L1' 'L2' 'X'};    % Data of pelvis, right upper and lower leg, left upper and lower leg, and extra upper back 

    Local_NameAccVar = {'_Accel_WR_X_CAL' '_Accel_WR_Y_CAL' '_Accel_WR_Z_CAL'}; 

    Local_Load = cell(1,SenLocal); Local_RoughAcc(1,SenLocal) = struct; Local_AccLength = zeros(1,SenLocal); 

    for i = 1:SenLocal 

        Local_Load{i} = load(strcat(DataFolder,'\',ExpCd,'_',Local_NameSen{i},'_','Calibrated.mat')); 

        for j = 1:AccLocal 

            SelectSen = strcat(Local_NameSen{i},Local_NameAccVar{j}); 

            [p,q] = rat(SampRate/Sr_Exp(i),0.0001); 

            Local_RoughAcc(i).data(:,j) = resample(Local_Load{1,i}.(SelectSen),p,q); 

            Local_AccLength(i) = length(Local_RoughAcc(i).data(:,j)); 

        end 

    end 

 

%% SYNCHRONISE TIMELINES OF LOCAL DATA (6 IMUs)  

    % The Shimmer3 IMUs are simultaneously rotated around the same axis, to create a mark in the signal. The mark is created before the sensors  

    % are attached to the participant. Based on local angular rate of z-axis (GYR-Z), therefore, select relevant rough local data: GYR-Z.  

    % Resample local data (= 199.8 Hz), including the correction percentages) to sampling rate reference (= 200 Hz) 

    Local_NameGyrVar = {'_Gyro_Z_CAL'}; 

    t_rot = 5*60*SampRate;    % End time (5 min) of timeframe to find the rotation 

    Local_SelectGyr(1,SenLocal) = struct; Local_RoughGyr = zeros(t_rot,SenLocal); 

    for i = 1:SenLocal 

        SelectSen = strcat(Local_NameSen{i},Local_NameGyrVar{1}); 

        [p,q] = rat(SampRate/Sr_Exp(i),0.0001); 

        Local_SelectGyr(i).data(:,1) = resample(Local_Load{1,i}.(SelectSen),p,q); 

        Local_RoughGyr(:,i) = Local_SelectGyr(i).data(1:t_rot,1); 

    end 

  

    % Find cross correlation in local GYR-Z data. 

    lag_diff1 = zeros(1,SenLocal); 

    for i = 1:SenLocal 

        [C1,lag1] = xcorr(Local_RoughGyr(:,i),Local_RoughGyr(:,1));    % Find cross correlation in rotation local GYR-Z data 

        [~,I1] = max(abs(C1));                                         % Find the index of the highest peak 

        lag_diff1(i) = lag1(I1);                                       % Sample difference between the signals 

    end 

  

    % Manually compensate for wrong calibration R2 and X in experiment 2. 

    if Exp==2; lag_diff1 = [lag_diff1(1) lag_diff1(2) lag_diff1(3)-2113 lag_diff1(4) lag_diff1(5) lag_diff1(6)-2289]; end 

  

    % Process the lag differences found in local GYR-Z data. 

    Local_StartValue = lag_diff1+abs(min(lag_diff1))+1;                                 % Find synchronised start point 

    Local_GyrLength = length(Local_RoughGyr)-max(Local_StartValue)+Local_StartValue;    % Compensate for new length 

    Local_Syn1Gyr = zeros(min(Local_GyrLength),SenLocal); 

    for i = 1:SenLocal; Local_Syn1Gyr(:,i) = Local_RoughGyr(Local_StartValue(1,i):Local_GyrLength(1,i),i); end  

     

    % Plot 1: Check synchronisation timeline of local GYR-Z data 

  

    % Use the lag differences found in local GYR-Z data and process into the local acceleration data to synchronise the timelines. Crop to  

    % shortest vector and place these local acceleration data in one matrix. 

    Local_AccLength = min(Local_AccLength)-max(Local_StartValue)+Local_StartValue;    % Compensation for new length 

    Local_Syn1Acc = zeros(min(Local_AccLength),SenLocal*AccLocal); 

    for i = 1:SenLocal 

        for j = 1:AccLocal 

            Local_Syn1Acc(:,j+3*(i-1)) = Local_RoughAcc(i).data(Local_StartValue(1,i):Local_AccLength(1,i),j); 

        end 

    end 

 

%% SYNCHRONISE TIMELINES OF LOCAL AND GLOBAL DATA (6 SHIMMERS AND LPM) 

    % Based on local X ACC-X and global ACC data: find cross correlation of local X ACC-X and global ACC 

    [C2,lag2] = xcorr(Local_Syn1Acc(:,16),Global_Rough(:,5));    % Find cross correlation in local X ACC-X and global ACC data 

    [~,I2] = max(abs(C2));                                       % Find the index of the highest peak 

    lag_diff2 = lag2(I2);                                        % Sample difference between the signals 

  

    % Use the lag differences found and process into the global and local ACC data to synchronise the timelines 

    A = length(Global_Rough); B = length(Local_Syn1Acc)-lag_diff2;  % Crop to length of global data 

    if B>A; Local_Syn2Acc = Local_Syn1Acc(lag_diff2:A+lag_diff2-1,:); Global_Syn2 = Global_Rough; end 

    if A>B; Local_Syn2Acc = Local_Syn1Acc(lag_diff2:B+lag_diff2-1,:); Global_Syn2 = Global_Rough(1:B,:); end 

  

    % Plot 2: Check synchronisation timeline of global ACC and local X ACC-X data 

 

%% FILTER ACCELERATION SIGNALS 

    % Consider the filtering of the local acceleration signal as a pre-processing step to smoothening the data. Inmotio (i.e. LPM program)  

    % filters the global acceleration signal. The chosen filtering method is a moving-average 1D filter. ‘A moving-average filter is a common  

    % method used for smoothing noisy data. The filter function is used to compute averages along a vector of data. A moving-average filter  

    % slides a window of length WindowSize along the data, computing averages of the data contained in each window’ (source: mathworks.com). The  

    % filtered data will return in the same length vector, and combined to a matrix. Filter functions tested (only one dimensional): smooth,  

    % filter, medfilt1, hampel, filtfilt, sgolayfilt >> chosen filter. 

    WindowSize = 2; b = (1/WindowSize)*ones(1,WindowSize); a = 1; Local_Syn2FiltAcc = zeros(size(Local_Syn2Acc)); 

    for i = 1:size(Local_Syn2Acc,2); Local_Syn2FiltAcc(:,i) = filter(b,a,Local_Syn2Acc(:,i)); end 

 

%% RESULT FUNCTION A1 
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% Data_PreProcess = [1:X, 2:Y, 3:Dist, 4:Spd, 5:Acc, 6:HB, 7:AccCount, 8:AccIndex, 9:PAx, 10:PAy, 11:PAz, 12:R1Ax, 13:R1Ay, 14:R1Az, 15:R2Ax,  

% 16:R2Ay, 17:R2Az, 18:L1Ax, 19:L1Ay, 20:L1Az, 21:L2Ax, 22:L2Ay, 23:L2Az, 24:XAx, 25:XAy, 26:XAz] per experiment. 

Data_PreProcess = [Global_Syn2 Local_Syn2FiltAcc];      

 

%% PLOTS TO CHECK FUNCTION 

    if CheckPlotA1==1 

        % Plot 1: Check synchronisation timeline of local GYR-Z data 

        figure('Name','1: CHECK SYNCHRONISATION (LOCAL GYR-Z DATA)','NumberTitle','off','Visible','on');  

        set(gcf,'Position',get(0,'Screensize')); 

        for k = 1:SenLocal 

            subplot(SenLocal,2,(2*k)-1); plot(Local_RoughGyr(:,k),'Color',Colour(3,:)); if k == 1; title('BEFORE'); end 

            subplot(SenLocal,2,2*k);     plot(Local_Syn1Gyr(:,k), 'Color',Colour(3,:)); if k == 1; title('AFTER'); end    

        end   

        sgtitle(['CHECK SYNCHRONISATION OF EXPERIMENT ' num2str(Exp) ' (LOCAL GYR-Z DATA)']) 

  

        % Plot 2: Check synchronisation timeline of global ACC and local X ACC-X data 

        figure('Name','2: CHECK SYNCHRONISATION (GLOBAL ACC AND LOCAL X ACC-X DATA)','NumberTitle','off','Visible','on');  

        set(gcf,'Position',get(0,'Screensize')); 

        plot(Local_Syn2Acc(:,16),'Color',Colour(3,:)); hold on; plot(Global_Syn2(:,5),'Color',Colour(2,:)) 

        sgtitle(['CHECK SYNCHRONISATION OF EXPERIMENT ' num2str(Exp) ' (GLOBAL ACC AND LOCAL X ACC-X DATA)']) 

    end 

  

end 

 

MATLAB function A2_DataProcess.m 
%------------------------------------------------------------------------------------------------------------------------------------------------ 

%  Function A2: data process methods. Different methods to process the data and normalise the local acceleration data (0–100) to the maximum. 

%------------------------------------------------------------------------------------------------------------------------------------------------ 

  

function Data_Process = A2_DataProcess(Exp,ProcessMethod,PreProcessData,Zone,CheckPlotA2,CheckPlotB1,TotSen,SenLocal,Colour) 

  

    PreProcess_Gen = PreProcessData(:,[1:4,6:8]);    % Select global general data 

    PreProcess_Acc = PreProcessData(:,[5,9:end]);    % Select global and local ACC data 

 

%% DATA PROCESSING METHODS 

    % First, only test methods with absolute or positive values, meaning not differentiating between accelerations and decelerations. Second, the 

    % synchronisation of the internal timelines will not be exactly on the timestamp. Therefore, do not combine the local sensors, because 100%  

    % accuracy cannot be promised. However, it is possible to use the individual signals or to combine the x,y,z-components per sensor.  

    % Calculations between sensors a few timesteps off could make a big influence due to the fast leg movements. Third, all local sensors have  

    % their own internal coordinate system. Therefore, do not consider gravity, because the inertial and gravitational acceleration components  

    % cannot be separated during movement. The position of the sensor is needed to do so. A gyroscope is able to support on calculating the  

    % position, but exceeds the range of the IMUs. However, if the participant stands still, the effect of gravity is clearly visible in the  

    % y-component, but during movement this effect influences all x,y,z-components. So, in general without being able to obtain the position of  

    % the sensor, the individual x,y,z-component do not mean anything. Therefore, it would be best to use a method which combines the  

    % x,y,z-components. Multiple manners to combine the x,y,z-components have been considered. 

  

    acc = PreProcess_Acc; 

  

    if ProcessMethod==1    % 1 = absolute values of all individual x,y,z acc 

        Data_ProcessAcc = zeros(length(acc),size(acc,2)); 

        for i = 1:size(acc,2)  

            Data_ProcessAcc(:,i) = abs(acc(:,i));  

        end  

    end 

  

    if ProcessMethod==2    % 2 = absolute values of sum of local x,y,z acc 

        Data_ProcessAcc = zeros(length(acc),TotSen); 

        for i = 1:TotSen 

            if i==1; Data_ProcessAcc(:,i) = abs(acc(:,i));  

            else;    Data_ProcessAcc(:,i) = abs(acc(:,(i-1)*3-1)+acc(:,(i-1)*3)+acc(:,(i-1)*3+1));  

            end 

        end 

    end 

  

    if ProcessMethod==3    % 3 = sum of absolute values of local x,y,z acc 

        Data_ProcessAcc = zeros(length(acc),TotSen); 

        for i = 1:TotSen 

            if i==1; Data_ProcessAcc(:,i) = abs(acc(:,i));  

            else;    Data_ProcessAcc(:,i) = abs(acc(:,(i-1)*3-1))+abs(acc(:,(i-1)*3))+abs(acc(:,(i-1)*3+1)); 

            end 

        end 

    end 

  

    if ProcessMethod==4    % 4 = magnitude of combined local x,y,z acc 

        Data_ProcessAcc = zeros(length(acc),TotSen); 

        for i = 1:TotSen 

            if i==1; Data_ProcessAcc(:,i) = sqrt(acc(:,i).^2); 

            else;    Data_ProcessAcc(:,i) = sqrt(acc(:,(i-1)*3-1).^2+acc(:,(i-1)*3).^2+acc(:,(i-1)*3+1).^2); 

            end 

        end 

    end 

  

    if ProcessMethod==5    % 5 = absolute values of gradient of magnitude of combined local x,y,z acc 

        % 'Numerical gradient of a function is a way to estimate the values of the partial derivatives' (mathworks.com). 

        Data_ProcessAcc = zeros(length(acc),TotSen); 

        for i = 1:TotSen 

            if i==1; Data_ProcessAcc(:,i) = abs(gradient(sqrt(acc(:,i).^2))); 

            else;    Data_ProcessAcc(:,i) = abs(gradient(sqrt(acc(:,(i-1)*3-1).^2+acc(:,(i-1)*3).^2+acc(:,(i-1)*3+1).^2))); 

            end 

        end 

    end 

  

    if ProcessMethod==6    % 6 = absolute values of difference of magnitude of combined local x,y,z acc 

        % Calculate the differences, therefore, the vector length will decrease by 1. 

        PreProcess_Gen = PreProcess_Gen(1:end-1,:); Data_ProcessAcc = zeros(length(acc)-1,TotSen);  

        for i = 1:TotSen 

            if i==1; Data_ProcessAcc(:,i) = abs(diff(sqrt(acc(:,i).^2))); 

            else;    Data_ProcessAcc(:,i) = abs(diff(sqrt(acc(:,(i-1)*3-1).^2+acc(:,(i-1)*3).^2+acc(:,(i-1)*3+1).^2))); 

            end 

        end 

    end 

  

    if ProcessMethod==7    % 7 = envelope of magnitude of combined local x,y,z acc 

        Data_ProcessAcc = zeros(length(acc),TotSen); 

        for i = 1:TotSen 

            if i==1; [Data_ProcessAcc(:,i),~] = envelope((sqrt(acc(:,i).^2)),1,'peak'); 

            else;    [Data_ProcessAcc(:,i),~] = envelope((sqrt(acc(:,(i-1)*3-1).^2+acc(:,(i-1)*3).^2+acc(:,(i-1)*3+1).^2)),1,'peak'); 

            end 

        end  
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    end 

 

%% NORMALISE SIGNAL TO 0-100 

    % Normalise the data (0-100) to the maximum of the experiment to select zones and peaks according to these zones in the measure function.  

    % Percentage of maximal (distinguish global and local): select absolute maximal value in global and local acceleration data and normalise.  

    % Find the maximum within the participant and not the overall maximum of all 5 participants. 

  

    MaxGlobal = max(Data_ProcessAcc(:,1));          GlobalAcc_Norm = (Data_ProcessAcc(:,1)./MaxGlobal)*100;        

    MaxLocal  = max(max(Data_ProcessAcc(:,2:end))); LocalAcc_Norm  = (Data_ProcessAcc(:,2:end)./MaxLocal)*100; 

  

    % Plot 3:  Check normalised local acceleration data after process methods 

 

%% RESULT FUNCTION A2 

% Data_Process = [1:X, 2:Y, 3:Dist, 4:Spd, 5:HB, 6:AccCount, 7:AccIndex, 8:AccGlobal, 9-end:AccLocal] per experiment and per data process method. 

Data_Process = [PreProcess_Gen GlobalAcc_Norm LocalAcc_Norm]; 

 

%% PLOTS TO CHECK FUNCTION 

    if CheckPlotA2==1  || CheckPlotB1==1 

        % Plot 3:  Check normalised local acceleration data after process methods 

        figure('Name','3: CHECK NORMALISED LOCAL ACCELERATION DATA AFTER HANDLING','NumberTitle','off','Visible','on'); 

        set(gcf,'Position',get(0,'Screensize')); 

        for k = 1:size(LocalAcc_Norm,2) 

            subplot(SenLocal,size(LocalAcc_Norm,2)/SenLocal,k); hold on; plot(LocalAcc_Norm(:,k),'Color',Colour(3,:)); 

            xlim([0 length(LocalAcc_Norm)]); ylim([-10 110]) 

            if CheckPlotB1==1 

                % Plot 7: Check zone and peak selection in local acceleration data. Execute this plot in A2_DataProcess, because it is easier to 

                % check the zone and peak selection before the data is segmented into multiple parts. 

                for i = 1:length(Zone); yline(Zone(i),'--'); end                                          % Zone selection 

                %[pks,loc] = findpeaks(LocalAcc_Norm(:,k),'MinPeakHeight',Zone(1)); plot(loc,pks,'r.');    % Peak selection 

            end 

        end 

        sgtitle(['NORMALISED LOCAL ACCELERATION DATA OF EXPERIMENT ' num2str(Exp)]) 

    end 

     

end 

 

MATLAB function A3_DataSegment.m 

Input 4a: start and end times of drill A  Input 4b: start and end times of drill B 

Exp. code Sit 1a Sit 1b Sit 1c Sit 2a Sit 2b Sit 2c  Exp. code Sit 3a Sit 3b Sit 4a Sit 4b 

Exp1_Start 13271 62666 110276 159469 229068 278160  Exp1_Start 366600 427000 500400 561600 

Exp1_End 23332 73556 121313 167439 238352 287553  Exp1_End 390000 449300 524000 586500 

Exp2_Start 9752 59946 114298 166311 210607 264587  Exp2_Start 336500 407000 475600 540000 

Exp2_End 23745 76217 130755 174362 220405 275085  Exp2_End 368300 441300 502500 569100 

Exp3_Start 17189 63643 111916 159789 204523 252412  Exp3_Start 335200 401100 464600 548500 

Exp3_End 26923 73803 121837 166703 212527 260968  Exp3_End 364300 428000 505500 588200 

Exp4_Start 3057 47910 94602 141293 184389 234245  Exp4_Start 302700 360400 416100 473200 

Exp4_End 11626 57222 104668 147781 191707 242032  Exp4_End 325100 382500 437000 493500 

Exp5_Start 24965 75489 121659 176872 229618 284035  Exp5_Start 389400 461900 532200 604600 

Exp5_End 33097 83730 129164 182840 236316 291184  Exp5_End 414200 484600 556100 626400 

 
%------------------------------------------------------------------------------------------------------------------------------------------------ 

%  Function A3: Segmentation of the drills and situations. 

%------------------------------------------------------------------------------------------------------------------------------------------------ 

  

function Data_Segment = A3_DataSegment(Exp,Sit,ProcessData,SelectDrill,CheckPlotA3,SampRate,SafeMargin,SenLocal,Colour) 

  

    % Segment selection. Conduct manually the segmentation selection of the drills into situations. Base this on the changes in global speed and 

    % acceleration data (plot 4) and check if the selected segments (including +/- a safe margin) are correct for the local data (plot 6). A  

    % method or algorithm to select the drills and situations automatically which would work for all experiments and drills/situations has not  

    % been found, as some of the participants perform more movement in between the situations. Select drill A very precisely with a specific  

    % method: (i) count the peaks in the global speed (10 back/forth repetitions, so 20 times), (ii) select the start and end times in the global 

    % absolute acceleration and speed. Start time: if acceleration is zero before the first large acceleration of the situation and the speed  

    % increases from zero. End time: if acceleration is zero after the last large acceleration of the situation and the speed decreases towards  

    % zero. Due to some movements before and after the situations it is not always exact zero. However, it is quite clear to see and the design  

    % of the experiment eliminates this as much as possible. Select drill B more roughly: (i) count the zigzags in global data (all 5  

    % repetitions, except for situation 3b of experiment 1 and situation 3a of experiment 5, which have 6 repetitions), (ii) select roughly the  

    % start and end times in timeframes (only select 5 repetitions). Use drill B to see if the measure will also work for entire exercises by  

    % roughly selecting the start and end times. This is also the reason to include the walking part, eliminate the time this part takes by  

    % conducting calculations in the measure design per travelled distance, which is kept constant. 

    if SelectDrill==1; StartEndTimes_Load = xlsread('Input4a_StartEndTimes_DrillA.xlsx'); end    % Start and end time of drill A 

    if SelectDrill==2; StartEndTimes_Load = xlsread('Input4b_StartEndTimes_DrillB.xlsx'); end    % Start and end time of drill B 

    t_StartEndLoad = StartEndTimes_Load(Exp*2-1:Exp*2,:)';                                       % Selection of correct experiment 

     

    % Add a safe margin of three seconds before and after each situation. It turned out that this safe margin was not enough for experiment 2,  

    % therefore, add an extra of 3 seconds (600 timeframes) to the start time in the excel file. Use a safe margin to include all data according  

    % to the situation because of three reasons. First, the local acceleration of the legs start earlier and end later than the global whole body 

    % acceleration. Second, the synchronisation of the sensor timelines is not exact, so this safe margin compensates for any small mis  

    % synchronisations. Third, some participants conduct small movements before and after the situations, include a safe margin to compensate for 

    % any mis selections in the global data for movements which do not belong to the situation. 

    time = [t_StartEndLoad(:,1)-SafeMargin*SampRate t_StartEndLoad(:,2)+SafeMargin*SampRate]; 

  

    % Plot 4: Check start and end times of situations in global speed and acceleration data 

    % Plot 5: Synchronised and segmented global data 

    % Plot 6: Synchronised and segmented local acceleration data 

 

%% RESULT FUNCTION A3 

% Data_Segment(if drill A) = [1: Sit1a, 2: Sit1b, 3: Sit1c, 4: Sit2a, 5: Sit2b, 6: Sit2c] per experiment and per data process method and [1:X,  

% 2:Y, 3:Dist, 4:Spd, 5:HB, 6:AccCount, 7:AccIndex, 8:AccGlobal, 9-end:AccLocal] per situation.  

% Data_Segment(if drill B) = [1: Sit3a, 2: Sit3b, 3: Sit4a, 4: Sit4b] per experiment and per data process method and [1:X, 2:Y, 3:Dist, 4:Spd,  

% 5:HB, 6:AccCount, 7:AccIndex, 8:AccGlobal, 9-end:AccLocal] per situation. 

Data_Segment = ProcessData(time(Sit,1):time(Sit,2),:); 

 

%% PLOTS TO CHECK FUNCTION 

    if CheckPlotA3==1 && Sit==1 

        t = [time(:,1);time(:,2)]; 

        % Plot 4: Check start and end times of situations in global speed and acceleration data 

        figure('Name','4: CHECK START/END TIMES OF SITUATIONS IN GLOBAL SPEED AND ACCELERATION DATA','NumberTitle','off','Visible','on');  

        set(gcf,'Position',get(0,'Screensize')); 

        plot(ProcessData(:,8),'Color',Colour(2,:)); hold on; plot(ProcessData(:,4),'c'); for i = 1:length(t); xline(t(i),'r'); end 

        title(['GLOBAL SPEED AND ACCELERATION DATA OF EXPERIMENT ' num2str(Exp)]) 
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        % Plot 5: Synchronised and segmented global data 

        figure('Name','5: SYNCHRONISED AND SEGMENTED GLOBAL DATA','NumberTitle','off'); set(gcf,'Position',get(0,'Screensize')); 

        subplot(4,2,[1,3]); plot(ProcessData(:,1),ProcessData(:,2),'Color',Colour(2,:)); xlim([-45 -25]); ylim([-6 2]); title('Position') 

        subplot(4,2,2);     plot(ProcessData(:,5),'Color',Colour(2,:)); title('Heartbeat'); hold on;    for i = 1:length(t); xline(t(i),'r'); end 

        subplot(4,2,4);     plot(ProcessData(:,3),'Color',Colour(2,:)); title('Distance'); hold on;     for i = 1:length(t); xline(t(i),'r'); end 

        subplot(4,2,[5,6]); plot(ProcessData(:,4),'Color',Colour(2,:)); title('Speed'); hold on;        for i = 1:length(t); xline(t(i),'r'); end 

        subplot(4,2,[7,8]); plot(ProcessData(:,8),'Color',Colour(2,:)); title('Acceleration'); hold on; for i = 1:length(t); xline(t(i),'r'); end 

        sgtitle(['SYNCHRONISED AND SEGMENTED GLOBAL DATA OF EXPERIMENT ' num2str(Exp)]) 

  

        % Plot 6: Synchronised and segmented local acceleration data 

        figure('Name','6: SYNCHRONISED AND SEGMENTED LOCAL ACCELERATION DATA','NumberTitle','off'); set(gcf,'Position',get(0,'Screensize')); 

        Data_ExpHanLocal = ProcessData(:,9:end); 

        for k = 1:size(Data_ExpHanLocal,2) 

            subplot(SenLocal,size(Data_ExpHanLocal,2)/SenLocal,k); xlim([0 length(Data_ExpHanLocal)]); ylim([-10 110]) 

            plot(Data_ExpHanLocal(:,k), 'Color',Colour(3,:)); hold on; for i = 1:length(t); xline(t(i),'r'); end 

        end 

        sgtitle(['SYNCHRONISED AND SEGMENTED LOCAL ACCELERATION DATA OF EXPERIMENT ' num2str(Exp)]) 

    end 

  

end 

 

MATLAB function B1_MeasureCalcualtions.m 
%------------------------------------------------------------------------------------------------------------------------------------------------ 

%  Function B1: Global and potential local measure calculations. Conduct measure calculations, i.e. apply different operations to the local  

%  acceleration data. 

%------------------------------------------------------------------------------------------------------------------------------------------------ 

  

function Measure_Calculations = B1_MeasureCalculations(SegmentData,SelectMeasure,MeasureName,Zone,WeightFactor,LoadMeasure) 

  

    SegmentData_Gen = SegmentData(:,1:7);      % Select global general data = [1:X, 2:Y, 3:Dist, 4:Spd, 5:HB, 6:AccCount, 7:AccIndex] 

    SegmentData_Acc = SegmentData(:,8:end);    % Select global and local acceleration data = [1:AccGlobal, 2-end:AccLocal] 

 

%% OBJECTIVE DATA: GLOBAL MEASURE CALCULATIONS 

    Dist     = SegmentData_Gen(end,3)-SegmentData_Gen(1,3);    % Travelled distance [m] per experiment and per situations 

    AccIndex = SegmentData_Gen(end,7)-SegmentData_Gen(1,7);    % Acceleration index per experiment and per situations 

    if LoadMeasure(1)==1; CurrentMeasure_Global = AccIndex; end 

    if LoadMeasure(1)==2; CurrentMeasure_Global = AccIndex/Dist; end 

 

%% OBJECTIVE DATA: LOCAL MEASURE CALCULATIONS 

    SigNr = size(SegmentData_Acc,2);                        % Number of global and local acceleration signals (based on process method used) 

    CalMeasure_Local = zeros(length(MeasureName),SigNr);    % Number of total amount of measures tested 

    for i = 1:SigNr 

        acc = SegmentData_Acc(:,i); 

         

        % Note, determine the zones and weight factors on the results at the data process method stage by reviewing (plot 3) the normalised local  

        % acceleration data, as the intensity increases of the situations. Test some variation, which will result in a decent distribution of the  

        % zones and weight factors. 

  

        % Allocate the accelerations in zones (it is not needed to divide by the sampling rate and obtain per second). 

        ZT1 = acc(Zone(1)<acc & acc<=Zone(2)); ZT2 = acc(Zone(2)<acc & acc<=Zone(3)); ZT3 = acc(Zone(3)<acc & acc<=Zone(4)); 

        if isempty(ZT1); ZT1 = 0.001; end; if isempty(ZT2); ZT2 = 0.001; end; if isempty(ZT3); ZT3 = 0.001; end 

         

        % Find the peaks in the global and local acceleration data and allocate the peaks in zones. 

        % Plot 7: Check zone and peak selection in local acceleration data (execute plot in A2_DataProcess) 

        [pks,~,w] = findpeaks(SegmentData_Acc(:,i)); 

        ZP1 = pks(Zone(1)<pks & pks<=Zone(2)); ZP2 = pks(Zone(2)<pks & pks<=Zone(3)); ZP3 = pks(Zone(3)<pks & pks<=Zone(4)); 

        if isempty(ZP1); ZP1 = 0.001; end; if isempty(ZP2); ZP2 = 0.001; end; if isempty(ZP3); ZP3 = 0.001; end 

                 

        % Potential measures to test per signal (in the order of trying) in four categories: measures with all data points, measures with peak  

        % data points, measures with normal data points weighted per zone, and measures with peak data points weighted per zone, all per  

        % travelled distance. 

        WF = WeightFactor; 

        CalMeasure_Local(:,i) = ... 

            [mean(acc) ...                                                % 1  = average 

             sum(acc) ...                                                 % 2  = sum 

             trapz(acc) ...                                               % 3  = area under curve 

             length(pks) ...                                              % 4  = peak amount 

             mean(pks) ...                                                % 5  = peak average 

             sum(pks) ...                                                 % 6  = peak sum 

             trapz(pks) ...                                               % 7  = area under peak curve 

             sum(w)/length(w) ...                                         % 8  = peak width average 

             sum(w) ...                                                   % 9  = peak width sum 

             length(ZT1)*WF(1)+length(ZT2)*WF(2)+length(ZT3)*WF(3) ...    % 10 = time spend weighted per zone 

             mean(ZT1)*WF(1)+mean(ZT2)*WF(2)+mean(ZT3)*WF(3) ...          % 11 = average weighted per zone 

             sum(ZT1)*WF(1)+sum(ZT2)*WF(2)+sum(ZT3)*WF(3) ...             % 12 = sum weighted per zone 

             length(ZP1)*WF(1)+length(ZP2)*WF(2)+length(ZP3)*WF(3) ...    % 13 = peak amount weighted per zone 

             mean(ZP1)*WF(1)+mean(ZP2)*WF(2)+mean(ZP3)*WF(3) ...          % 14 = peak average weighted per zone 

             sum(ZP1)*WF(1)+sum(ZP2)*WF(2)+sum(ZP3)*WF(3)]';              % 15 = peak sum weighted per zone 

    end 

     

    % Measures per travelled distance [#/m] per experiment, per data process method, and per situation. Choose measures per travelled distance,  

    % instead of per second. First, because it allows the introduction of a safe margin in the data segment function, and therefore, include the  

    % entire situation (global movements start later than the local movements of the legs). Furthermore, the participants are standing still  

    % before and after the situations or move very slowly, so the travelled distance has a smaller influence than time. Third, include walking  

    % back in drill B. Taking the distance (which is constant for all situations and participants), will eliminate the time it takes of walking 

    % or slowly jogging back, which varies between participants. Last, the drill scheme is based on a fixed distance scheme. Calculations of the 

    % travelled distance per situation are from the global data. 

    if LoadMeasure(2)==1; NewMeasure_Local = CalMeasure_Local; end 

    if LoadMeasure(2)==2; NewMeasure_Local = CalMeasure_Local/Dist; end 

 

%% RESULT FUNCTION B1 

% Measure_Calculations = {1,1} current global measure and {1,2} new local measures per acceleration signal per experiment, per data process  

% method, and per situation. 

Measure_Calculations = {CurrentMeasure_Global NewMeasure_Local(SelectMeasure,:)}; 

 

%% PLOTS TO CHECK FUNCTION 

% Execute this plot in A2_DataProcess, because it is easier to check the peak and zone selection before the data is segmented into multiple  

% parts. 

  

end 

 

MATLAB function B2_MeasureCombined.m 
%------------------------------------------------------------------------------------------------------------------------------------------------ 

%  Function B3: Combined measure. Sum the measures of the individual local sensors in different ways into one value and obtain the combined  

%  measure to indicate local muscle load. 

%------------------------------------------------------------------------------------------------------------------------------------------------ 
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function Measure_Combined = B2_MeasureCombined(CalculationsMeasure,SelectMeasure,SelectCombine,CombineName,SenLocal) 

  

    CurrentMeasure_Global     = CalculationsMeasure{1,1};  

    NewCombinedMeasure_Global = CalculationsMeasure{1,2}(:,1); 

  

    % Combine the individual local sensors in order to obtain one value 

    NewCombinedMeasure_Local = zeros(length(SelectMeasure),length(CombineName)); 

    for i = 1:length(SelectMeasure) 

        NewMeasure_Local = CalculationsMeasure{1,2}(i,2:end); 

  

        % If necessary, first combine x,y,z-components per sensor 

        if length(NewMeasure_Local)>SenLocal; AccL = NewMeasure_Local;  

            NewMeasure_Local = [sum(AccL(:,1:3)) sum(AccL(:,4:6)) sum(AccL(:,7:9)) sum(AccL(:,10:12)) sum(AccL(:,13:15))];  

        end 

  

        % Combine the individual local sensors = [1: P = pelvis; 2: R1 = right upper leg; 3: R2 = right lower leg; 4: L1 = left upper leg;  

        % 5: L2 = left lower leg; 6: X = upper back (not used)] 

        NewCombinedMeasure_Local(i,:) = [sum(NewMeasure_Local(1:5)) ...        % 1 = P  + R1 + R2 + L1 + L2 

                                         sum(NewMeasure_Local(2:5)) ...        % 2 = R1 + R2 + L1 + L2 

                                         sum(NewMeasure_Local([1,2,4])) ...    % 3 = P  + R1 + L1 

                                         sum(NewMeasure_Local([2,4])) ...      % 4 = R1 + L1 

                                         sum(NewMeasure_Local([3,5]))];        % 5 = R2 + L2 

    end 

  

%% RESULT STEP B3 

% Measure_Combine = {1: current measure global, 2: new global measure per combined measure, 3: new local measure per combined measure} per  

% experiment, per data process method, and per situation. 

Measure_Combined = {CurrentMeasure_Global NewCombinedMeasure_Global NewCombinedMeasure_Local(:,SelectCombine)}; 

  

end 

 

MATLAB function: C1_Results.m 

Input 5a: experienced load of drill A  Input 5b: experienced load of drill B 

Exp. code Sit 1a Sit 1b Sit 1c Sit 2a Sit 2b Sit 2c  Exp. code Sit 3a Sit 3b Sit 4a Sit 4b 

Exp1 1,0 2,0 3,5 6,0 7,5 9,0  Exp1 7,0 10,0 10,0 10,0 

Exp2 1,0 2,0 3,5 5,5 5,0 7,5  Exp2 2,5 4,0 7,5 8,0 

Exp3 3,0 3,5 4,5 7,5 8,0 7,5  Exp3 4,0 4,5 7,0 8,0 

Exp4 3,0 3,5 4,0 5,5 8,0 7,5  Exp4 3,0 5,0 7,0 8,0 

Exp5 3,5 5,5 7,0 8,5 8,5 9,5  Exp5 4,0 5,0 9,0 9,5 

 
%------------------------------------------------------------------------------------------------------------------------------------------------ 

%  Function C1: results. First, load and select the subjective data, and select and re-organise the results. Furthermore, calculate and normalise  

%  (0–10) the mean and standard deviation of all experiments per measure and per drill to the maximum. Last, calculate the trend percentage from  

%  the first to last of the situation (per hypothesis) and allocate into three groups to compare different combined measures and test the  

%  hypotheses: larger, similar, and smaller, base this on experienced load trend percentage.   

%------------------------------------------------------------------------------------------------------------------------------------------------ 

  

function Data_Results = C1_Results(Measure_Combined,SelectDrill,SelectProcess,SelectMeasure,SelectCombine,Group,ExpNr,SitNr,SitCat) 

 

%% LOAD AND SELECT SUBJECTIVE DATA 

    % Read experienced load (subjective) data of the situations per drill and per experiment - from an excel sheet. 

    if SelectDrill==1; ExperiencedLoad_Load = xlsread('Input5a_ExperiencedLoad_DrillA.xlsx'); end    % Experienced load of drill A 

    if SelectDrill==2; ExperiencedLoad_Load = xlsread('Input5b_ExperiencedLoad_DrillB.xlsx'); end    % Experienced load of drill B 

    Select_SubLoad = ExperiencedLoad_Load; 

  

%% SELECT AND RE-ORGANISE THE OBJECTIVE RESULTS (CURRENT AND NEW MEASURES) 

    % select and re-organise the objective results per measure and per situation of all 5 experiments. 

    P = length(SelectProcess); M = length(SelectMeasure); C = length(SelectCombine); 

    Select_CurGlobal = cell(1,1);               % Currently used method to indicate load, based on global ACC data (acceleration index [#]) 

    Select_NewLocal  = cell(max([P,M,C]),1);    % Processed data, resulted in measures for local muscle load, based on local ACC data 

    for Exp = 1:ExpNr 

        for Process = 1:P 

            for Sit = 1:SitNr 

                for Measure = 1:M 

                    for Combined = 1:C 

                        if P>1; i=Process; elseif M>1; i=Measure; elseif C>1; i=Combined; else; i=1; end   

                        Select_CurGlobal{1,1}(Exp,Sit) = Measure_Combined{Exp,1}{Process,Sit}{1,1}(1,1);    % Vary per experiment and situation 

                        Select_NewLocal{i,1}(Exp,Sit)  = Measure_Combined{Exp,1}{Process,Sit}{1,3}(Measure,Combined); 

                    end 

                end 

            end 

        end 

    end 

  

%% MEAN AND STANDARD DEVIATION OF ALL EXPERIMENTS PER MEASURE AND SITUATION 

    % Results of subjective and objective data: mean of all experiments, standard deviation of all experiments, and minimum/maximum value of the  

    % experiments (calculate the maximum in order to use this in normalising the signal). 

    Select_Results = [Select_SubLoad;Select_CurGlobal;Select_NewLocal];    % All selected data: subjective, current global and new local 

    MeanStd_Results = cell(length(Select_Results),1); 

    for i = 1:length(Select_Results) 

        MeanStd_Results{i,1} = [mean(Select_Results{i,1});std(Select_Results{i,1});min(Select_Results{i,1});max(Select_Results{i,1})];  

    end 

 

%% NORMALISE SIGNAL TO 0-10 

    % Normalise the average and standard deviation to the maximum value (0–10) per measure and per drill (so not per hypothesis). Normalise the  

    % measure per drill in order to compare them on the same y-axis, it is about the trend: qualitative measure, not a quantitative, i.e. it is  

    % not to compare the values with each other. Select maximal value per measure and normalise: (1) subjective, (2) current objective global,  

    % and (3) new objective local. 

    Norm_Results = cell(length(MeanStd_Results),1); Max_Results = cell(length(MeanStd_Results),1);  

    for i = 1:length(MeanStd_Results) 

            Max_Results{i,1}  = max(MeanStd_Results{i,1}(4,:));  

            Norm_Results{i,1} = (MeanStd_Results{i,1}./Max_Results{i,1})*10; 

    end 

 

%% TREND PERCENTAGES PER SITUATION (I.E. PER HYPOTHESIS) 

    % An indicative percentage per measure of the jog/sprint without shoot to the jog/sprint with shoot (i.e. select the first and last per  

    % situation): (1) subjective, (2) current objective global, and (3) new objective local. It has been chosen to use the without/with shoot  

    % situations, so the method used to analyse and evaluate drill A and B are consistent. 

    Trend_Results = zeros(length(Norm_Results),1); SC = SitCat; 

    for i = 1:length(Norm_Results) 

        for j = 1:2 

            Trend_Results(i,j) = round(((Norm_Results{i,1}(1,SC(j,end))-Norm_Results{i,1}(1,SC(j,1)))/Norm_Results{i,1}(1,SC(j,1)))*100); 
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        end 

    end     

 

%% GROUP ALLOCATION 

    % Allocate all the trend lines of the objective global and local measures into three groups according to their trend percentages to compare  

    % different measures and test the hypotheses: (1) larger, (2) similar, and (3) smaller. Base the group boundaries on the trend percentages  

    % of the subjective measure. So, in the next analysing step (C2_Visualisation), plot different line sorts per group. 

    Group_Results = zeros(size(Trend_Results)); SD = SelectDrill; 

    for i = 1:length(Trend_Results) 

        for j = 1:2 

            if Group{SD,1}(j,1)>Trend_Results(i,j) && Group{SD,1}(j,2)<=Trend_Results(i,j); Group_Results(i,j) = 1; end    % Larger 

            if Group{SD,1}(j,2)>Trend_Results(i,j) && Group{SD,1}(j,3)<=Trend_Results(i,j); Group_Results(i,j) = 2; end    % Similar 

            if Group{SD,1}(j,3)>Trend_Results(i,j) && Group{SD,1}(j,4)<=Trend_Results(i,j); Group_Results(i,j) = 3; end    % Smaller 

        end 

    end 

 

%% RESULT STEP C1 

% Data_Results = {1: selected results normalised to the maximum ([1: average of all participants; 2: standard deviation; 3: minimum value;  

% 4: maximum value] per situation; 2: trend percentages; 3: group allocation} and per category: [1: subjective measure; 2: current objective  

% global measure; 3-end: new objective local measure]. 

Data_Results = {Norm_Results;Trend_Results;Group_Results}; 

  

end 

 

MATLAB function: C2_Visualisation.m 
%------------------------------------------------------------------------------------------------------------------------------------------------ 

%  Function C2: visualisation of the results to test the hypotheses. Develop a standard figure (in order to test all possibilities in the same 

%  format) to find, analyse, and evaluate different measures for local muscle load in football, and compare these to the current global measure 

%  and subjective measure. Furthermore, the figure shows a summary of the experiment, processing, and measure design.                                                                                               

%------------------------------------------------------------------------------------------------------------------------------------------------ 

  

function Data_Visualisation = C2_Visualisation(Data_Results,HypothesisName,IntensityName,MeasurementName,SelectDrill,DrillName,SitName, ... 

         SelectProcess,ProcessName,SelectMeasure,MeasureName,SelectCombine,CombineName,Zone,WeightFactor,Group,FinalPlotC2,SaveFigureC2, ... 

         ExpNr,SampRate,LoadMeasure,Colour,SitCat,HypCat) 

  

    % Abbreviations to keep the code short and clear 

    R =  Data_Results{1};                                                     % Results per measure (subjective, objective global and local) 

    TP = Data_Results{2}; TPI = num2str(TP(:,1)); TPII = num2str(TP(:,2));    % Trend percentages, incl. the separation per hypothesis 

    GR = Data_Results{3}; GRI = num2str(GR(:,1)); GRII = num2str(GR(:,2));    % Group formulation, incl. the separation per hypothesis 

     

    % Abbreviations and general calculations (L: length; N: numbers of used processing options to text; S: select names of used processing  

    % options; C: translate these names to text) to keep the code short and clear for drill (A), process (P), measure (M), and combined (C). 

    PL = length(SelectProcess); PN = num2str(SelectProcess); PS = ProcessName(SelectProcess); PC = char(PS);    % Data process methods 

    ML = length(SelectMeasure); MN = num2str(SelectMeasure); MS = MeasureName(SelectMeasure); MC = char(MS);    % Measure calculations 

    CL = length(SelectCombine); CN = num2str(SelectCombine); CS = CombineName(SelectCombine); CC = char(CS);    % Combined measure 

    SD = SelectDrill;  

    LMG = LoadMeasure(1); LML = LoadMeasure(2); 

 

%% FIGURE GENERAL 

    % Visualisation of the results after data processing and obtaining new measures to analyse and evaluate the obtained results, in order to  

    % test the hypotheses. Plot the mean and standard deviation of all experiments and per measure, according to the selected hypothesis. 

    figure('Name','VISUALISATION OF THE RESULTS AFTER DATA PROCESSING TO ANALYSE AND EVALUATE THE OBTAINED RESULTS','NumberTitle','off');  

    set(gcf,'Position',get(0,'Screensize'),'Color','w');     

    row = 7; column = 6;         % Subplot dimensions: a=rows and b=columns 

    F1 = 12; F2 = 10; F3 = 9;    % Font size of title, plot, and summary, respectively 

    annotation('line',[.660 .660],[0.05 0.94],'Color',[0.7 0.7 0.7]); annotation('line',[.661 .661],[0.05 0.94],'Color',[0.7 0.7 0.7]); 

    if     PL>1; TitleAdd = ' - test different data process methods';     ID_Number = [num2str(SD),'.','P','.', MN,'.', CN]; 

    elseif ML>1; TitleAdd = ' - test different measure calculations';     ID_Number = [num2str(SD),'.', PN,'.','M','.', CN]; 

    elseif CL>1; TitleAdd = ' - test different combined measure methods'; ID_Number = [num2str(SD),'.', PN,'.', MN,'.','C']; 

    else;        TitleAdd = '';                                           ID_Number = [num2str(SD),'.', PN,'.', MN,'.', CN]; 

    end 

    S_G = subplot(row,column,[1,2,3,4]); text(0,1,['\bfRESULTS PER HYPOTHESIS' TitleAdd],'FontSize',F1,'VerticalAlignment','middle'); axis off 

    OldPosG = get(S_G,'Position'); NewPosG=OldPosG; NewPosG(1)=NewPosG(1)-.028; set(S_G,'Position',NewPosG) 

 

%% PLOT RESULTS 

    % Plot results: (1) subjective measure, (2) current objective global measure, and (3) new objective local measures. Use a line plot to 

    % simplify the comparison of the different measures if the intensity of the situations increases (within the measures), instead of  

    % comparing the different methods per situation (between the measures). The latter cannot be compared with each other, because the values  

    % of the measures are qualitative, not quantitative. The trend is important. 

    Col1 = [Colour;Colour(end,:);Colour(end,:)];    % Plot colours [1:QNR, 2:LPM, 3:AccGR1, 4:AccGR2, 5:AccGR3] 

    Col2 = {['\color[rgb]{' num2str(Colour(1,:)) '}'];['\color[rgb]{' num2str(Colour(2,:)) '}'];['\color[rgb]{' num2str(Colour(3,:)) '}']}; 

    Symbol = {'o-','^-','*-','x--','x:'};           % Plot symbols     [1:QNR, 2:LPM, 3:AccGR1, 4:AccGR2, 5:AccGR3] 

    Line1  = [2.50,2.50,1.50,1.50,1.50];            % Plot linewidth   [1:QNR, 2:LPM, 3:AccGR1, 4:AccGR2, 5:AccGR3] 

    Line2  = [1.00,1.00,1.00,1.00,1.00];            % Legend linewidth [1:QNR, 2:LPM, 3:AccGR1, 4:AccGR2, 5:AccGR3] 

    Sit =  SitCat; Hyp = HypCat;                    % The situations are categorised into two sub-groups to test the hypotheses 

    for j = 1:2    % The two situations performed per drill can be categorised into jogging and sprinting 

        if j==1; subplot(row,column,[7,8, 13,14,19,20,25,26,31,32,37,38]); hold on; end    % Plot results of situation regarding jogging 

        if j==2; subplot(row,column,[9,10,15,16,21,22,27,28,33,34,39,40]); hold on; end    % Plot results of situation regarding sprinting 

        for i = 1:length(R) 

            if i==1; k=1; elseif i==2; k=2; else; if GR(i,j)==1; k=3; elseif GR(i,j)==2; k=4; elseif GR(i,j)==3; k=5; end; end 

            plot(R{i}(1,Sit(j,1):Sit(j,end)),Symbol{k},'Color',Col1(k,:),'LineWidth',Line1(k),'HandleVisibility','on'); 

            errorbar(Sit(1,:),R{i}(1,Sit(j,1):Sit(j,end)),R{i}(2,Sit(j,1):Sit(j,end)), ... 

                     Symbol{k},'Color',Col1(k,:),'linestyle','none','HandleVisibility','off'); 

        end 

        title({HypothesisName{Hyp(j),1};HypothesisName{Hyp(j),2};HypothesisName{Hyp(j),3}},'FontWeight','normal','FontAngle','italic'); 

        ylim([-1.9 10.5]); if j==1; ylabel('Normalised load'); end; if j==2; set(gca,'ycolor',[1 1 1]); end 

        xlim([Sit(1,1)-0.2 Sit(1,end)+0.2]); xticks(Sit(1,:)); xticklabels(IntensityName{SD,j}); xlabel('Intensity'); 

        set(gca,'FontSize',F2); 

        % Legend design 

        L = zeros(size(Col1,1),1); for l = 1:size(Col1,1); L(l) = plot(NaN,NaN,Symbol{l},'Color',Col1(l,:),'LineWidth',Line2(l)); end 

        legend(L,[Col2{1} 'Questionnaire'],[Col2{2} 'LPM'], ... 

                 [Col2{3} 'Accelerometer (1 - larger: '  num2str(Group{SD,1}(j,2)) ' tot ' '\infty'                  ')'], ... 

                 [Col2{3} 'Accelerometer (2 - similar: ' num2str(Group{SD,1}(j,3)) ' tot ' num2str(Group{SD,1}(j,2)) ')'], ... 

                 [Col2{3} 'Accelerometer (3 - smaller: ' '-\infty'                 ' tot ' num2str(Group{SD,1}(j,3)) ')'], ... 

                 'Location','SouthEast','FontSize',F3); legend('boxoff'); 

    end 

 

%% PROCESSING SUMMARY 

    AddNew = '\newline    '; AddBlt = '    -  '; 

    if LMG==1; AddLMG = ''; elseif LMG==2; AddLMG = '\rm (per distance)'; end  

    if LML==1; AddLML = ''; elseif LML==2; AddLML = '\rm (per travelled distance)'; end 

     

    % Part 1: Display experiment summary > drill and the situations 

    SummaryP1a = {['\bfDATA PROCESSING SUMMARY\rm (total of ' num2str(ExpNr) ' participants)'];['ID number: ' ID_Number];''; ... 

                  ['\bfSituations of drill:\rm ' char(DrillName{SD})]; char(SitName{SD*2-1})};  

    SummaryP1b = {'';'';'';'';char(SitName{SD*2})}; 

    subplot(row,column,5); text(0.0,1.1,SummaryP1a,'FontSize',F3,'VerticalAlignment','top'); axis off 

    subplot(row,column,6); text(0.2,1.1,SummaryP1b,'FontSize',F3,'VerticalAlignment','top'); axis off 
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    % Part 2: Display a picture of the drill 

    if SD==1; Load_PictureD = 'Picture_DrillA.png'; elseif SD==2; Load_PictureD = 'Picture_DrillB.png'; end 

    subplot(row,column,[11,12]); [PictureD,~,alphaD] = imread(Load_PictureD); showD = imshow(PictureD); showD.AlphaData = alphaD; 

  

    % Part 3: Display experiment and data processing summary > measurement methods, incl. trend percentage and group formulation 

    SummaryP3 = {['\rm\bfMeasurement methods (SR = ' num2str(SampRate) 'Hz):\rm'];'\it(trend L-H and group allocation)\rm'; ... 

                 ['\rm\bf' Col2{1} MeasurementName{1,1} AddNew MeasurementName{1,2}]; ... 

                 ['\rm\it    (I = ' TPI(1,:) '% and II = ' TPII(1,:)  '%)']; ... 

                 ['\rm\bf' Col2{2} MeasurementName{2,1} AddNew MeasurementName{2,2} AddLMG]; ... 

                 ['\rm\it    (I = ' TPI(2,:) '% = G' GRI(2,:)  ' and II = ' TPII(2,:) '% = G' GRII(2,:) ')']; ... 

                 ['\rm\bf' Col2{3} MeasurementName{3,1} AddNew MeasurementName{3,2}]}; 

    if PL==1&&ML==1&&CL==1; SummaryP3=[SummaryP3;'\rm\it    (I = ' TPI(3,:) '% = G' GRI(3,:)  ' and II = ' TPII(3,:) '% = G' GRII(3,:) ')']; end 

    subplot(row,column,[17,23]); text(0,1.05,SummaryP3,'FontSize',F3,'VerticalAlignment','top'); axis off     

  

    % Part 4: Display a picture of the sensor locations 

    S_P4 = subplot(row,column,[18,24]); [PictureS,~,alphaS] = imread('Picture_Sensors.png'); showS = imshow(PictureS); showS.AlphaData = alphaS; 

    OldPosP4 = get(S_P4,'Position'); NewPosP4=OldPosP4; NewPosP4(1)=NewPosP4(1)+.05; set(S_P4,'Position',NewPosP4) 

  

    % Part 5: Display data processing and measure design summary > selected options, incl. trend percentage and group formulation 

    if PL>1||ML>1||CL>1; TPI = TPI(3:end,:); TPII = TPII(3:end,:); GRI = GRI(3:end,:); GRII = GRII(3:end,:); TPGR = cell(max([PL,ML,CL]),1); 

        for i = 1:max([PL,ML,CL]); TPGR{i} = ['\it   (I = ' TPI(i,:) '% = G' GRI(i,:) ' and II = ' TPII(i,:) '% = G' GRII(i,:) ')\rm']; end 

        if     PL>1; AddP = cell(PL,1); for j = 1:PL; AddP{j} = [AddBlt char(PS(j)) AddNew TPGR{j}]; end; AddM = [AddBlt MC]; AddC = [AddBlt CC]; 

        elseif ML>1; AddP = [AddBlt PC]; AddM = cell(ML,1); for j = 1:ML; AddM{j} = [AddBlt char(MS(j)) TPGR{j}]; end; AddC = [AddBlt CC]; 

        elseif CL>1; AddP = [AddBlt PC]; AddM = [AddBlt MC]; AddC = cell(CL,1); for j = 1:CL; AddC{j} = [AddBlt char(CS(j)) TPGR{j}]; end 

        end 

    else; AddP = [AddBlt PC]; AddM = [AddBlt MC]; AddC = [AddBlt CC]; 

    end 

    Z1 = num2str(Zone(1)); Z2 = num2str(Zone(2)); Z3 = num2str(Zone(3)); Z4 = num2str(Zone(4)); 

    WF1 = num2str(WeightFactor(1)); WF2 = num2str(WeightFactor(2)); WF3 = num2str(WeightFactor(3)); 

    AddZWF = ['    (Zones and weight factors: I=' Z1 '-' Z2 '%=' WF1 ', II=' Z2 '-' Z3 '%=' WF2 ', III=' Z3 '-' Z4 '%=' WF3 ')']; 

    SummaryP5 = {['\rm\bfLocal data processing and measure design:\rm\it (trend L-H and group allocation)\rm' Col2{3}]; ... 

                  '\bf>  Data process methods:\rm '; char(AddP); ... 

                 ['\bf>  Measure calculations:\rm' AddLML]; AddZWF;   char(AddM); ... 

                  '\bf>  Combined measure methods:\rm ';    char(AddC)}; 

    if PL>1||ML>1||CL>1; AddShift = 1.06; else; AddShift = 1.00; end  

    subplot(row,column,[29,30,35,36,41,42]); text(0,AddShift,SummaryP5,'FontSize',F3,'VerticalAlignment','top'); axis off 

  

    % Save the figure with the ID_Number name in the folder: Visualisation Results - Figures 

    if SaveFigureC2==1 

        annotation('rectangle',[0.1 0.05 0.868 0.89],'Color',[0.7 0.7 0.7]);    % A rectangle box around the figure, to cut around for the report 

        saveas(gcf,['Visualisation Results - Figures\' 'ID_Number_' ID_Number '.jpg']);  

    end 

  

    % Close the figure 

    if FinalPlotC2==0; close all; end 

  

%% RESULTS OF STEP C2 

% Data_Visualisation = visualisation of the results after data processing (subjective, objective global, and objective local measures, including  

% an experiment, data processing, and measure design summary) to analyse and evaluate the obtained results (based on trend percentages and group  

% allocation) in order to test the hypothesis. 

Data_Visualisation = ID_Number; 

  

end 
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Appendix J – Results rough analysis: overview of all measures divided into groups 

P = data process method; M = measure calculations; S = measure combined method. 

 
  S = 1   S = 2   S = 3   S = 4   S = 5  

  A B   A B   A B   A B   A B  

Measures I II I II   I II I II   I II I II   I II I II   I II I II  

Experienced Load 2 2 2 2 Y  2 2 2 2 Y  2 2 2 2 Y  2 2 2 2 Y  2 2 2 2 Y 

Acceleration index 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 

P = 1 M = 1 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 2 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 3 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 4 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 
 M = 5 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 6 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 7 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 8 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 9 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 
 M = 10 3 3 3 2 N  2 3 3 2 N  3 3 3 2 N  3 3 3 2 N  1 3 2 2 N 
 M = 11 1 2 1 1 Y  1 2 1 1 Y  1 2 1 2 Y  1 2 1 1 Y  1 1 1 1 Y 
 M = 12 1 2 2 2 Y  1 2 1 2 Y  1 2 2 2 Y  1 2 2 2 Y  1 2 1 2 Y 
 M = 13 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  2 3 2 2 N 
 M = 14 1 2 1 1 Y  1 2 1 1 Y  1 2 1 2 Y  1 2 1 1 Y  1 1 1 1 Y 
  M = 15 1 2 1 2 Y  1 2 1 2 Y  1 2 2 2 Y  1 2 2 2 Y  1 2 1 1 Y 

P = 2 M = 1 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 2 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 3 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 4 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 
 M = 5 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 6 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 7 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 8 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 9 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 2 N  3 3 3 3 N 
 M = 10 1 3 2 2 N  1 3 2 2 N  1 3 3 2 N  2 3 3 2 N  1 3 2 2 N 
 M = 11 1 2 1 1 Y  1 2 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 3 1 2 N 
 M = 12 1 3 1 2 N  1 3 1 2 N  1 3 2 2 N  1 3 2 2 N  1 3 1 2 N 
 M = 13 2 3 3 2 N  2 3 3 2 N  3 3 3 2 N  3 3 3 2 N  1 3 2 2 N 
 M = 14 1 2 1 1 Y  1 2 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 3 1 2 N 
  M = 15 1 2 1 2 Y  1 2 1 2 Y  1 2 2 2 Y  1 2 2 2 Y  1 2 1 1 Y 

P = 3 M = 1 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 2 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 3 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 4 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 
 M = 5 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 6 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 7 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 8 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 9 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 
 M = 10 1 3 2 2 N  1 3 2 2 N  2 3 3 2 N  2 3 3 2 N  1 3 2 2 N 
 M = 11 1 1 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 2 1 1 Y 
 M = 12 1 2 1 2 Y  1 2 1 2 Y  1 3 2 2 N  1 3 2 2 N  1 2 1 2 Y 
 M = 13 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  1 3 2 2 N 
 M = 14 1 1 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 2 1 1 Y 
  M = 15 1 2 1 2 Y  1 2 1 2 Y  1 2 2 2 Y  1 3 2 2 N  1 2 1 1 Y 

P = 4 M = 1 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 2 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 3 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 4 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 
 M = 5 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 6 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 7 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 8 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 9 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 10 2 3 2 2 N  2 3 2 2 N  3 3 3 2 N  3 3 3 2 N  1 3 2 2 N 
 M = 11 1 1 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 2 1 1 Y 
 M = 12 1 2 1 2 Y  1 2 1 2 Y  1 2 2 2 Y  1 2 2 2 Y  1 2 1 2 Y 
 M = 13 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  1 3 2 2 N 
 M = 14 1 1 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 1 1 1 Y  1 2 1 1 Y 
  M = 15 1 2 1 2 Y  1 2 1 2 Y  1 2 2 2 Y  1 2 2 2 Y  1 2 1 2 Y 

P = 5 M = 1 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 2 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 3 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 4 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 
 M = 5 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 6 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 7 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 8 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 9 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 10 1 3 2 2 N  1 3 2 2 N  3 3 2 2 N  3 3 2 2 N  1 3 2 2 N 
 M = 11 1 2 1 1 Y  1 2 1 1 Y  1 2 1 1 Y  1 2 1 1 Y  1 2 1 1 Y 
 M = 12 1 2 1 1 Y  1 2 1 1 Y  1 1 1 2 Y  1 1 1 1 Y  1 2 1 1 Y 
 M = 13 3 3 2 2 N  2 3 2 2 N  3 3 3 2 N  3 3 3 2 N  1 3 2 2 N 
 M = 14 1 2 1 1 Y  1 2 1 1 Y  1 2 1 1 Y  1 2 1 1 Y  1 2 1 1 Y 
  M = 15 1 2 1 1 Y  1 1 1 1 Y  1 1 1 2 Y  1 1 1 1 Y  1 2 1 1 Y 

P = 6 M = 1 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 2 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 3 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 4 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 
 M = 5 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 6 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 7 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 8 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 9 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 10 1 3 2 2 N  1 3 2 2 N  3 3 2 2 N  3 3 2 2 N  1 3 2 1 N 
 M = 11 1 1 1 2 Y  1 1 1 2 Y  1 2 1 2 Y  1 2 1 2 Y  1 1 1 2 Y 
 M = 12 1 2 1 1 Y  1 2 1 1 Y  1 2 1 2 Y  1 2 1 1 Y  1 2 1 1 Y 
 M = 13 3 3 2 2 N  3 3 2 2 N  3 3 2 2 N  3 3 3 2 N  1 3 2 2 N 
 M = 14 1 1 1 2 Y  1 1 1 2 Y  1 2 1 2 Y  1 2 1 2 Y  1 1 1 2 Y 
  M = 15 1 2 1 1 Y  1 2 1 1 Y  1 2 1 2 Y  1 2 1 2 Y  1 1 1 1 Y 

P = 7 M = 1 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 2 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 3 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 4 3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N  3 3 3 3 N 
 M = 5 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 6 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 7 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 8 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N 
 M = 9 3 3 3 3 N  3 3 3 3 N  3 3 3 2 N  3 3 3 3 N  3 3 3 3 N 
 M = 10 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  1 3 2 2 N 
 M = 11 1 1 1 1 Y  1 1 1 1 Y  1 1 1 2 Y  1 1 1 2 Y  1 2 1 1 Y 
 M = 12 1 2 2 2 Y  1 2 1 2 Y  2 2 2 2 Y  1 2 2 2 Y  1 2 1 1 Y 
 M = 13 3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  3 3 3 2 N  2 3 3 2 N 
 M = 14 1 1 1 1 Y  1 1 1 1 Y  1 1 1 2 Y  1 1 1 2 Y  1 2 1 1 Y 
  M = 15 1 2 1 1 Y  1 2 1 1 Y  1 2 2 2 Y  1 1 2 2 Y  1 2 1 1 Y 
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Appendix K – Results in-depth analysis: figures of different measure calculations 
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Appendix L – Results in-depth analysis: figures of different data process methods 
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Appendix M – Results in-depth analysis: figures of different combined measure methods 
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