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Abstract

Human Mesh Recovery (HMR) frameworks predict a comprehensive 3D mesh of an ob-
served human based on sensor measurements. The majority of these frameworks are purely
image-based. Despite the richness of this data, image-based HMR frameworks are vulnera-
ble to depth ambiguity, resulting in mesh inaccuracies in 3D space. Several HMR frameworks
in the literature use LiDAR data to avoid this depth ambiguity. However, these frameworks
are either only LiDAR-based, which limits performance due to LiDAR sparseness and limited
training data, or they are model-free, making the resulting meshes vulnerable to artifacts and
limited detail. Therefore, this work introduces SMPLify-3D, an optimization-based HMR frame-
work that combines the richness of image data and the depth information within sparse LiDAR
data to improve the 3D mesh inaccuracies of image-based HMR frameworks. The proposed
framework consists of three main steps: 1) a body part visibility filter based on the 2D de-
tected keypoints, 2) rough alignment between the mesh and the observed LiDAR point cloud
using the ICP algorithm, and 3) an optimization scheme, inspired by [7], that modifies the ac-
tual pose and shape of the mesh to improve both the 3D and image alignment. SMPLify-3D
is versatile compared to other methods and outperforms image-based and SMPL-compatible
LiDAR-based HMR frameworks by improving the Per-Vertex-Error (PVE) with 45% and 26%
on the 3DPW [66] and HumanM3 [17] datasets respectively. Multiple quantitative experiments
are conducted to show the effects of LiDAR noise and sparsity on the framework’s performance.
Additionally, qualitative results illustrate how the proposed method achieves superior results
on out-of-sample data recorded by a mobile robot. The source code for this work is available at:
https://github.com/guidodumont/SMPLify-3D.
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1 Introduction

1.1 Background

Many envision a future formed by new and advanced technologies such as artificial intelligence
(AI), self-driving cars, virtual/augmented reality, and interactive robotics [46, 50, 9, 24]. However,
looking at the current state of technology and its limitations, substantial advancements across
various technical domains are required to achieve this vision. One of the limiting factors is the
perception and understanding of the human body (pose and shape) during situations where tech-
nology and humans interact with each other, especially in robotics, autonomous driving, and vir-
tual/augmented reality [13, 52].

To address this, the literature describes several methods for human perception, one of which
is Human Mesh Recovery (HMR). HMR focuses on predicting a comprehensive 3D mesh of the
observed human based on input sensor measurements. Typically, HMR frameworks predict a set
of pose and shape parameters, which are then given to a parametric human body model, such as
SMPL [44] or SMPL-X [54], to create a detailed human mesh with an underlying 3D skeleton. The
richness of the information encoded in such a mesh, including 3D pose, occupancy, and optionally
facial expression and hand pose, distinguishes HMR from other human perception techniques.

1.2 Problem statement

The majority of HMR frameworks only use image data to reason about the corresponding pose
and shape parameters [30, 41, 8]. Despite the richness of this data, image-based HMR frameworks
are vulnerable to depth ambiguity, resulting in mesh inaccuracies; mainly within the 3D pose and
spatial placement of the mesh [41, 73]. Several works attempt to eliminate these ambiguities
using dense 3D scans or RGBD data. However, the quantity of depth information required by
such frameworks is not achievable in most applications. Only a few frameworks [38, 67, 18] use
sparse LiDAR data, which is representative for robotics applications, in an attempt to improve
the 3D accuracy of the mesh. However, these frameworks are either only LiDAR-based, which
limits performance due to LiDAR sparseness and limited training data, or they are model-free,
making the resulting meshes vulnerable to artifacts and limited detail. Therefore, we introduce an
HMR framework that aims to combine both the richness of image data and the depth information
within sparse LiDAR data to improve the depth ambiguity within SMPL predictions made by
image-based HMR frameworks, see Figure 1.

Figure 1: Image-based Human Mesh Recovery (HMR) frameworks predict a 3D human mesh
based on a single image. This mesh is often only aligned in image space but is inaccurate in 3D
space due to depth ambiguity. The proposed HMR framework, called SMPLify-3D, combines im-
age features and sparse LiDAR data to modify the 3D pose, shape, and placement of this mesh
and enhance both the image and 3D alignment. The red arrow and ellipses indicate the misplace-
ment and 3D pose inaccuracies, respectively. Additionally, the green and red skeletons represent
the ground truth and predicted 3D pose of the mesh.
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1.3 Contribution

The proposed HMR framework, called SMPLify-3D, consists of three main steps and extends
the optimization scheme proposed by [7]. First, a visibility filter determines which body part(s)
of the human body are visible within the camera and LiDAR measurements. Next, the spatial
placement of the mesh is improved by aligning the visible vertices of the mesh with the observed
LiDAR points using the Iterative Closest Point (ICP) algorithm. Finally, an optimization scheme
inspired by [7] optimizes the underlying pose and shape parameters of the SMPL mesh to en-
hance both the 3D and image alignment. Compared to [7] this optimization scheme includes two
additional terms in the objective function: a term to improve the 3D alignment between the mesh
and the observed LiDAR point cloud and a pose-prior to constrain the movement of occluded
body parts.

The proposed HMR framework is evaluated on three popular HMR datasets and subjected to an
ablation study and multiple experiments to show the effects of LiDAR noise and sparsity on the
framework’s performance. Additionally, qualitative results illustrate how the proposed frame-
work achieves superior results on out-of-sample data recorded by a mobile robot, highlighting its
versatility.

This work makes the following contributions: it presents a novel human mesh recovery (HMR)
framework that leverages both image and LiDAR data to predict SMPL-compatible human meshes.
By combining these data sources, the framework improves the mesh placement and 3D pose inac-
curacies commonly found in image-based HMR frameworks. Additionally, we demonstrate the
feasibility of deploying the proposed framework on a real mobile robot.

1.4 Document structure

This thesis is organized into several chapters to provide a comprehensive understanding of the
research conducted. The related work, Chapter 2, discusses existing methods relevant to ours,
highlighting their strengths and limitations. Chapter 3 describes the body part visibility filter, ICP
alignment, and optimization scheme used within the proposed HMR framework. After which,
Chapters 4 and 5 outline the experiments conducted to evaluate the performance of the proposed
framework using datasets with simulated and real LiDAR data respectively. Each chapter con-
cludes with a discussion to provide further insights and context. Finally, the main findings and
future works are described in Chapter 6.

4



2 Related work

This chapter describes multiple existing research landscapes related to our work: parametric hu-
man body models, human mesh recovery (HMR) frameworks, and HMR datasets. Therefore, this
chapter is divided into three sub-sections, one for each related field.

2.1 Parametric human body models

Underlying most HMR frameworks is a parametric human body model, such as SMPL [44], to
deterministically generate a detailed human mesh given a set of pose and shape parameters. The
SMPL (Skinnend Muti-Person Linear) model can create a wide variety of human shapes with dif-
ferent sizes, and poses, using a mesh of M = 6890 vertices. These meshes contain 24 body joints
and can be created with 72 pose parameters (24 × 3), 10 shape parameters, and a camera transla-
tion, denoted by θ̄, β̄, and t̄ respectively. These pose parameters define the underlying hierarchical
skeleton of the human mesh where each joint rotation is represented by an axis-angle representa-
tion. This definition of human pose in combination with the 10 shape parameters, which model
the variety of body shapes and sizes, form the input space of the SMPL model. Compared to pre-
vious parametric human body models, such as SCAPE [3], SMPL significantly improved model
variety and realism.

Most HMR frameworks use an underlying parametric human body to decouple mesh creation
and input space reasoning; predicting 85 SMPL parameters from a given input space is less de-
manding than predicting a full 3D human mesh with 6890 vertices. Furthermore, a standard
mesh format enables quantitative mesh reconstruction comparison and a general annotation for-
mat for HMR datasets. However, SMPL has some limitations; the non-existing details in hands
and face [54], the number of parameters [51], the naked meshes without clothing or hair [2], and
the long dependency chains of the pose-corrective blend-shapes [51]. These drawbacks are im-
proved upon in future works. The SMPL-X model [8] combines the FLAME [40] and MANO [57]
models with SMPL to create fully articulated hands and expressive faces, as shown in Figure 2.
The STAR model [51] decreased the number of parameters by 80% and reformulated the defini-
tion of the pose-corrective blend shapes to make deformation caused by changes in pose more
local, see Figure 3. Finally SMPL+D model [2] can offset SMPL vertices to model clothing and
hair.

Figure 2: Mesh created by SMPL-X with
fully articulated hands and fascial expres-
sion [54].

Figure 3: Corrective offset magnitudes of
rotating only the left elbow in the SMPL
(left) and STAR (right) model [51].
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2.2 Human mesh recovery frameworks

2.2.1 Image-based HMR frameworks

Soon after the introduction of SMPL [44], Bogo [7] introduced an optimization scheme, called SM-
PLify, that could fit SMPL parameters to an image. The goal of the underlying objective function
was to align the projected 3D joints of the SMPL model with the 2D keypoints detected in the
image while keeping the over pose and shape of the mesh feasible using multiple priors. This
optimization scheme was later modified by [34] to improve the mesh-image alignment of other,
often deep learning-based HMR frameworks. In contrast, [29] proposed a top-down, end-to-end
regression framework, that could predict SMPL parameters directly from images. To encour-
age feasible poses and shapes over infeasible ones, the framework consisted of a discriminator
trained to recognize infeasible human bodies. This discriminator significantly contributed to the
performance and was therefore copied by other end-to-end HMR frameworks such as VIBE [30].
VIBE is a popular HMR framework that can regress, temporal consistent SMPL parameters using
Gated Recurrent Units (GRU) [11] based on video. All these HMR frameworks follow a top-down
approach, which requires prior pedestrian detection and processes each detected human individ-
ually. In contrast, MubyNet [70] uses a bottom-up approach, which can directly regress SMPL
parameters for all humans in the image without needing prior detection.

However, all image-based HMR frameworks suffer from the same depth ambiguity, due to the
unconstraint transformation from 2D to 3D. This depth ambiguity makes ill-poses and global
placement challenging [73]. To improve global mesh placement and rotation, [41] reformulated
the projection loss and provided additional bounding box information to its proposed end-to-end
regression framework called CLIFF. Although is additional information was beneficial it did not
solve the global placement and rotation errors entirely. Even the first foundation model, called
SMPLer-X [8], which predicts SMPL-X parameters based on images and consists of a huge back-
bone, trained on 4.5M instances, suffers from depth ambiguity.

In an effort to improve upon the depth ambiguity, two recently proposed HMR frameworks use
the temporal information within videos to estimate camera and human motion in world frame
[64, 33]. These frameworks use temporal features and optical flow to estimate camera and hu-
man motion directly using regression or within an optimization framework. However, based on
the evaluation results in their publications, both models still make significant errors within mesh
placement [64, 33].

Figure 4: Evolution of image-based HMR frameworks1

1Figure 4 consists of 11 sub-figures, one for each model on the timeline. These sub-figures originate from their original
papers [3, 44, 7, 29, 70, 30, 34, 54, 51, 41, 8] respectively
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2.2.2 HMR frameworks based on 3D information

As described before, image-based HMR frameworks are unable to accurately reason about 3D
pose and mesh placement due to depth ambiguity. However, HMR is popular within the field of
computer vision and applications outside this space are yet to be discovered. Therefore, the num-
ber of publications that use (additional) 3D data to solve depth ambiguity within HMR is limited.
The proposed frameworks that do, use the (additional) 3D information to 1) model detailed exter-
nal surfaces based on dense 3D scans/RGBD data [58, 35] or 2) use LiDAR to improve the quality
and performance of HMR frameworks in general and long-range situations [38, 67, 18]. The first
research direction is mainly applicable and relatively popular in the field of computer graphics,
however, research in the second direction is very limited.

LiDAR data is sparse and colorless compared to RGB(D) data, but provides valuable depth in-
formation that can improve predictions made in 3D. LiDARCap [38] and LiveHPS [56], are se-
quential, purely LiDAR-based, HMR frameworks that make use of this depth information by pre-
dicting SMPL-compatible human meshes in long-range scenarios. [38] showed that their model
significantly outperforms image-based HMR frameworks in long-range scenarios (>= 14 me-
ters). Furthermore, they argued, based on qualitative results on the KITTI [20] and Waymo [62]
datasets, that their model can make reasonable guesses on placement and pose in ambiguous sit-
uations. However, due to dataset constraints, LiDARCap only predicts pose parameters θ⃗, mean-
ing that the shape parameters β⃗ of resulting SMPL models are all constant [38]. Furthermore,
although mid- to close-range performance was not provided, LiDARCap probably underperfor-
mance compared to image-based HMR frameworks in these scenarios, based on the performance
vs. distance trend shown in the publication.

Similar to LiDARCap, [18] recently proposed a purely LiDAR-based model-free framework called
HMR-LiDAR. This model is trained on the SLOPER4D dataset [15], among others. The pipeline
consists of a 3D pose regression network followed by a mesh reconstruction network (MRN). This
mesh reconstruction network increases the mesh resolution from 45 to 6890 vertices guided by the
observed LiDAR point cloud [18], see Figure 5. However, the model-free nature of the resulting
meshes is vulnerable to artifacts and inconsistencies, making the performance of the framework
heavily dependent on both the quality and quantity of the LiDAR data. Furthermore, due to the
limited amount of training data, the generalizability is limited.
To the best of my knowledge, Yang [67] proposed the only HMR framework, called S3, which
utilizes both image and LiDAR data to obtain good and consistent performance. The S3 frame-
work can predict skeleton, pose, and shape given a single image and/or LiDAR point cloud. This
model represents a 3D human mesh as a multi-dimensional neural field to generate animatable
3D humans with clothing and texture. Based on ablation studies and qualitative results, [67]
shows that combining image and LiDAR data enhances performance, especially in occluded and
ambiguous scenarios. In general, LiDAR data captures global structures with depth information
while images provide additional data to refine pose and shape details [67]. However, S3 is trained
on the RenderPeople dataset [1], which contains highly detailed 3D human models and images
captured in a studio environment with uniform backgrounds and perfect lighting conditions.
Consequently, S3 does not apply to our research scope since its training data does not contain
real-world, in-the-wild scenarios. Furthermore, the framework and pre-trained models are not
open-source.

Within this thesis, we propose an optimization-based HMR framework called SMPLify-3D, which
combines the richness of image data and the depth information within sparse LiDAR data to elim-
inate the depth ambiguity within image-based HMR frameworks.
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Figure 5: Principle of reverse mesh reconstruction
used in the mesh reconstruction network of LiDAR-
HMR [18]

Figure 6: Qualitative results of S3
framework with different sensory in-
puts [67]

2.3 Datasets and benchmarks for HMR

The datasets and benchmarks used in HMR can be divided into three categories: in-the-wild
(ITW), synthetic, and studio/indoor motion capture setups. Ideally, HMR frameworks are trained
and tested on in-the-wild datasets with ground truth SMPL or SMPL-X annotations. However,
such annotations are difficult to obtain making the datasets in this category relatively small [29,
30]. Therefore, many state-of-the-art HMR frameworks also include synthetic or 2D human pose
datasets within there training data [8]. Additionally, studio/indoor motion capture datasets can
be used to further diversify the training data, see Figure 7. By combining these different tech-
niques/datasets image-based HMR frameworks can achieve robust and generalizable perfor-
mance in out-of-sample scenarios [8].

In contrast, the number of datasets suitable for LiDAR-based HMR frameworks is very limited
due to the computer vision-focused research environment. Consequently, the training datasets for
LiDAR-based HMR frameworks lack variety in human pose, environments, distance to subject,
LiDAR sensors, LiDAR sparseness, and viewpoints, see Figure 19. Moreover, the quantity and
overall structure of LiDAR data can differ significantly between different instances and sensors.
This makes it challenging for LiDAR-based HMR frameworks to obtain a training dataset that
is large and diverse enough to achieve robust and generalizable performance. This limitation is
demonstrated in the qualitative results of Figures 24 and 25 later in the thesis.

The most popular datasets for HMR are listed in Table 1

Name Category Annotations Multi- LiDAR- # images
SMPL SMPL-X person data

1. 3DPW [66] ITW Yes NeA ✓ ✗ 22.7K
2. Talkshow [69] ITW - Yes ✗ ✗ 3.3M
3. UP3D [37] ITW Psuedo - ✗ ✗ 7.1K
4. OCHuman [75] ITW EFT - ✓ ✗ 2.5K
5. UBody [42] ITW - Yes ✗ ✗ 1M
6. SLOPER4D [15] ITW Psuedo∗ - ✗ ✓ 100K+
7. AGORA [53] Syn Yes Yes ✓ ✗ 106.7
8. BEDLAM [6] Syn - Yes ✓ ✗ 951K
9. SPEC [32] Syn Yes - ✗ ✗ 72K
10. SynBody [68] Syn - Yes ✓ ✗ 633K
11. FIT3D [19] Studio - Yes ✗ ✗ 1.7M
12. Human3.6M [25] Studio Yes NeA ✗ ✗ 312K
13. EgoBody [74] Studio Yes Yes ✓ ✗ 845K
14. EHF [54] Studio - Yes ✗ ✗ 100
∗The SMPL annotations only contain pose parameters

Table 1: Overview of popular HMR datasets, annotation types: EFT [28], and NeA: NeuralAnnot
[48]
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Figure 7: Dataset attribute distribution for image-based HMR-frameworks: a) and d) are image
features extracted by HumanBench [65] and OSX [42] pre-trained ViT-L backbone. b) Global ori-
entation (represented by rotation matrix) distribution. c) Body pose (represented by 3D skeleton
joints) distribution. Both e) scenes and f) Real/Synthetic are drawn on the same distribution as d).
All: all datasets. UMAP [45] dimension reduction is used with the x and y-axis as the dimensions
of the embedded space (no unit). [8]
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3 Methods

The proposed HMR framework in this work, called SMPLify-3D, aims to combine both the rich-
ness of image data and the depth information within sparse LiDAR data to improve SMPL pre-
dictions made by image-based HMR frameworks. This framework is partially inspired by [34],
who used a modified version of SMPLify [7] to only improve the image-mesh alignment of SMPL
predictions. In contrast, SMPLify-3D enhances both image and 3D alignment using image fea-
tures and sparse LiDAR data.

The proposed framework consists of three main steps: 1) defining the visibility of all body parts,
2) initial LiDAR-mesh alignment, and 3) mesh optimization, see Figure 8. Each step is explained
in detail in its respective section within this chapter (see Sections 4, 3.3, and 3.4). Additionally,
Section 3.1 describes the image-based HMR model, called CLIFF [41], which is used for the initial
SMPL predictions within this thesis.

3.1 Initial SMPL prediction

SMPLify-3D aims to enhance SMPL predictions made by image-based HMR frameworks. The
input space of our proposed framework consists of this initial SMPL prediction, the observed Li-
DAR point cloud, and the 2D keypoints detected in the image. Theoretically, all SMPL-compatible
HMR frameworks described in the literature can provide the initial SMPL prediction. However,
competitive top-down regression frameworks are preferred to ensure a strong initial guess for the
mesh optimization and make the overall framework more versatile by keeping it single-instance-
based. CLIFF [41] aligns with all these preferences and is therefore the model chosen to provide
the initial SMPL predictions within this thesis.

The Carry Location Information in Full Frames (CLIFF) model proposed by [41], aims to improve
placement and pose predictions. Most top-down HMR frameworks only use an image patch as
input. However, this cropped patch discards location and rotation information with respect to the
camera coordinate system, limiting the accuracy of both mesh placement and 3D pose predictions
[41]. To address this problem, CLIFF [41] modified the model structure of [29] by 1) extending the
input space with additional bounding box information and 2) calculating the 2D reprojection loss
relative to the full image rather than the cropped image patch. These modifications enabled CLIFF
to achieve state-of-the-art performance at the time of publication.

Using the current state-of-the-art model PLIKS [60], was considered. However, this framework is
partially optimization-based which would further increase computation time during inference.

Figure 8: The proposed SMPLify-3D framework that combines the richness of image data and
the depth information within sparse LiDAR data to improve SMPL predictions made by purely
image-based HMR frameworks, see the red arrow and ellipse. Furthermore, the final SMPL mesh
aligns in both image and 3D space.
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3.2 Body part visibility

During inference, many instances contain fully or partially occluded body parts [66, 31], either
due to obstacles or the camera’s viewing frustum. These occlusions are a limiting factor for most
HMR frameworks, but only several publications aim to improve in such situations [49, 55].

In this work, defining body part visibility is crucial for both LiDAR-mesh alignment and mesh
optimization. For instance, when a pedestrian walks by, they can be rotated by 90 degrees relative
to the vertical axis of the camera frame. This rotation causes one side of the body to be (partially)
occluded and unobserved in both camera and LiDAR data. In contrast, the initial SMPL predic-
tion made by CLIFF does reason about this side of the body. Therefore, directly comparing all
vertices of the predicted mesh with the LiDAR data results in sub-optimal or infeasible optimiza-
tion solutions in 3D space.

The backface culling algorithm [72], used in computer graphics to reduce rendering times of
large-scale 3D meshes, partially addresses this problem. However, this algorithm defines face
visibility purely based on the magnitude of the inner product between the face-normal n⃗ and the
normalized viewing vector p⃗;

n⃗ · p⃗ < w

{
visible, if true
invisible, otherwise

(1)

Where w is a positive threshold between 0 and 1, that defines how much a face-normal should
align with the viewing vector to be classified as visible [72]. While effective, backface culling
only considers face orientation and does not account for occlusions due to the object’s shape itself
(self-occlusion) or other objects in the scene (scene-occlusion). Variations of this algorithm exist
that partially address occlusions based on the viewing frustum and other meshes in the scene.
However, these variations are primarily designed for large-scale 3D scenes and focus only on
scene-occlusion rather than self-occlusion [23]. Therefore, we propose a body part visibility filter
specifically for SMPL meshes that removes faces occluded by self-occlusion.

The proposed filter uses the confidence or visibility scores of 2D human pose predictions to rea-
son about body part visibility. For instance, if both the right shoulder and elbow have confi-
dence/visibility scores below a given threshold Jcon f , the filter assumes that the right upper arm
is occluded. If a body part is identified as occluded, all faces belonging to that body part are also
assumed to be occluded and thus removed from the backface culling prediction, see Figure 9.
Since our work is compatible with SMPL, the correspondence between face-id and body part is
known in prior and independent of pose and shape.

Although simple, this body part visibility filter improves performance for instances with (par-
tially) occluded body parts, as demonstrated in Section 4.4. Other options, such as depth anal-
ysis, were considered. However, using the initial SMPL predictions to determine face visibility
assumes that the corresponding 3D pose is partially correct, which is not always the case.

3.3 Initial LiDAR-mesh alignment

As described in the related work (see Chapter 2), image-based HMR frameworks find it difficult
to accurately place the predicted mesh within the camera frame. To address this limitation, the
second step of our proposed frameworks finds an initial transformation T(R(⃗θglob)|⃗t) between the
visible vertices of the mesh V ⊂ M and the sparse LiDAR data P using the Iterative Closest Point
(ICP) algorithm [5]. After applying this transformation, the mesh is correctly placed in 3D space
and can be projected onto the image using the actual camera parameters rather than a predicted
set. However, the applied transformation is often so significant that the mesh scaling becomes
infeasible after image projection. The mesh optimization scheme described in the next section
will improve this infeasible scaling and 3D pose to improve both image and 3D alignment.

11



Figure 9: The visibility filter determines
body part visibility based on 2D keypoint
confidence scores. In this example, the
right arm (indicated in orange) is marked
as occluded due to low confidence. Com-
bined with the back face culling algo-
rithm (blue vertices in the middle image),
only the visible points, as shown in the
right image remain.

Figure 10: The mesh optimization step within
SMPLify-3D aims to improve both the image and 3D
alignment of the mesh by modifying the SMPL pa-
rameters, see the red ellipses.

3.4 Mesh optimization

The ICP algorithm described in the previous section aligns the predicted mesh with the corre-
sponding LiDAR data given the initial SMPL parameters. However, the 3D pose of the initial
SMPL parameters still contains inaccuracies due to depth ambiguity and ill-poses [73], see Fig-
ure 10. Therefore, both the image and 3D alignment can be improved further by optimizing all
SMPL parameters; shape β⃗, body pose θ⃗body, camera translation t⃗cam, and rotation θ⃗glob over the
observed 2D keypoints and the sparse LiDAR data respectively. This section is divided into two
sub-sections defining the objective function used and the scalar weights optimization.

3.4.1 Objective function

The proposed objective function is inspired by the work of [7, 34] and introduces two additional
terms 1) a term to improve the 3D alignment between the mesh and the sparse LiDAR data L3D
and 2) a pose prior that constrains the movement of occluded body parts Lθocc . The full objective
function used within SMPLify-3D is defined as L(β⃗, θ⃗, t⃗cam, K, Jest, P, V) =

LJ(β⃗, θ⃗, t⃗cam, K, Jest) + λθLθ (⃗θ) + λaLa (⃗θ) + λβLβ(β⃗)︸ ︷︷ ︸
Proposed by [7]

+ λ3DL3D(β⃗, θ⃗, t⃗cam, P, V) + λθoccLθocc (⃗θ)︸ ︷︷ ︸
Proposed terms

(2)
With camera translation t⃗cam, camera parameters K, the observed 2D keypoints Jest, the set of pose
parameters θ⃗ = {⃗θglobal , θ⃗body}, the sparse LiDAR point cloud P, visible vertices V ⊂ M, and the
scalar weights λi.

Originally, [7] also included an interpenetration term within the objective function. However, fu-
ture research [34] showed that this term does not contribute significantly to overall performance
while being relatively computationally expensive. Consequently, many subsequent works, in-
cluding ours, discard this interpenetration term.

Joint reprojection loss LJ [7]:
The objective of this term is to improve the mesh-image alignment by penalizing the weighted 2D
distance between the observed 2D keypoints Jest and the projected 3D joints of the SMPL mesh
[7]:

LJ(β⃗, θ⃗, t⃗cam, K, Jest) = ∑
joint i

wiρ(ΠK(R
θ⃗
(J(β⃗)i), t⃗cam)− Jest,i) (3)

12



With the projection from 3D to 2D ΠK, induced by the camera parameters K, and the contribution
weights for each joint wi equal to the confidences provided by the 2D Human Pose Estimation
(HPE) model. Occluded joints generally have lower confidence scores and thus a smaller contri-
bution within this term, making them more pose prior-driven. Furthermore, the noise within the
detections is handled by a Geman-McClure penalty function ρ [21].

Pose prior loss Lθ [7]:
The first pose prior Lθ is trained on a large-scale CMU dataset and favors probable poses over
improbable ones. This prior is represented as a mixture of N = 8 Gaussians which all produce a
weight gi used to penalize specific infeasible pose parameters, see [7] for further definition.

Lθ (⃗θ) = − log ∑
j
(giN (⃗θ, µθ,j, ∑θ,j)) (4)

Unnatural joint bending loss La [7]:
Both the joint reprojection and 3D LiDAR alignment loss can converge to a solution that requires
unnatural; hyperextending or positive bending of the elbows and knees. This term aims to pre-
vent such behavior by penalizing infeasible pose parameters [7].

La (⃗θ) = ∑
i

exp(θi) (5)

Shape prior loss Lβ [7]:
The shape prior Eβ(β⃗) within the objective function penalizes infeasible shape parameters by
calculating the difference between the predicted shape parameters and the shape space of the
SMPL training set. This shape space is represented by a diagonal matrix ∑−1

β containing the
squared singular values of all shape parameters present in the SMPL training set [7].

Lβ(β⃗) = β⃗T ∑−1
β β⃗ (6)

3D alignment loss L3D:
The 3D pose of the initial SMPL prediction can be inaccurate due to depth ambiguity and ill-
poses [73]. To improve these 3D inaccuracies, the proposed 3D alignment loss L3D aims to align
the visible vertices V ⊂ M of the mesh with the observed sparse LiDAR data P. Because the
visible vertices V depend on all SMPL parameters, this term can penalize very specific pose and
shape parameters to improve the alignment of individual body parts. To achieve this, this term
calculates the chamfer distance [4] between the visible vertices V ∈ Rnx3 and the sparse LiDAR
point cloud P ∈ Rmx3. To make the 3D data term independent of the number of LiDAR points,
the chamfer distance is divided by the number of points within the point cloud itself:

L3D(β⃗, θ⃗, t⃗cam, P, V) =
1
n

n

∑
vi∈V

min
pi∈P

∥∥vi − pi
∥∥2

2 +
1
m

m

∑
pi∈P

min
vi∈V

∥∥pi − vi
∥∥2

2 (7)

Pose prior for occluded body parts Lθocc :
If a body part is identified as occluded, the corresponding pose parameter is only contained by
the pose-prior Lθ (assuming low confidence scores on the corresponding detected key points).
However, this makes these pose parameters biased towards its "general" value encoded in Lθ .
This "general" pose often differs from the observed pose, making this behavior partially unde-
sirable. Therefore, the proposed pose prior constrains the absolute angular distance between the
optimized and initial pose parameters corresponding to occluded body parts, denoted as θ⃗′body,occ

and θ⃗body,occ respectively.

Lθocc(θ) = ∑
i=0

1 − ⟨qi, q′i⟩2 (8)

where q′i and qi are normalized quaternion representations of the occluded pose parameters θ⃗′body,occ

and θ⃗body,occ, and ⟨·⟩ is the inner product.
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The objective function (see Equation 2) and SMPL model [44] are both fully differentiable. Con-
sequently, the optimization problem is solved using gradient descent and PyTorch.

3.4.2 Scalar weights optimization

The optimization scheme has multiple hyperparameters; five scaler weights within the objective
function (see Equation 2) λθ , λa, λβ, λ3D, λθocc , the Geman-McClure penalty ρ, backface culling
threshold w, and joint confidence threshold Jcon f . The optimal values for these hyperparameters
are unique for every instance/dataset and depend on the 3D pose and shape of the humans ob-
served and noise levels within the input data. To find the (sub)-optimal set of scaler weights for
the datasets used in this work, we performed Bayesian Optimization on a subset of data.

Bayesian Optimization (BO) [59] is an efficient and robust method for hyperparameter optimiza-
tion, particularly well-suited for scenarios where objective function evaluations are computation-
ally expensive. By constructing a probabilistic surrogate model, typically using Gaussian Pro-
cesses, BO predicts the objective function’s behavior and iteratively selects promising hyperpa-
rameter configurations through an acquisition function that balances exploration and exploita-
tion. This method reduces the number of evaluations needed to identify (sub)-optimal parame-
ters, making it suited for large-scale and resource-intensive hyperparameter optimization tasks
[59].

The (sub-)optimal hyperparameters found in 100 iterations of Bayesian Optimization using a sub-
set of the data are visible in Table 2.

Dataset ρ λθ λa λβ λ3D λθocc w Jcon f
3DPW [66] 100 2.2 11 5 800 35 0.2 0.6
SLOPER4D [15] 100 0.75 8.5 1 500 55 0.2 0.7
HumanM3 [17] 100 1 3 17.5 600 135 -1 0.6
UTCampus1 [71] 100 1.4 10 10 300 50 0.2 0.7
1UTCampus dataset does not contain SMPL annotations, the (sub)-optimal
scaler weights and thresholds are determined based on qualitative results.

Table 2: (sub)-optimal scaler weights and thresholds found for the 3DPW [66], SLOPER4D [15],
HumanM3 [17], and UT Campus [71] dataset

3.5 Discussion

The proposed framework, SMPLify-3D, combines image features, sparse LiDAR data, and SMPL
predictions from image-based HMR frameworks to derive SMPL parameters that accurately rep-
resent observed pedestrians in both image and 3D spaces. The proposed framework is partially
inspired by SMPLify [7] and consists of three main steps: 1) defining the visibility of all body
parts, 2) initial LiDAR-mesh alignment, and 3) mesh optimization.

Our framework and the use of multi-modal data introduce several challenges. Firstly, the algo-
rithm for identifying body part visibility heavily relies on the performance and confidence scores
of the 2D human pose estimation (HPE) model. Consequently, inaccuracies in the detection model
can lead to misidentification of occlusions, propagating errors throughout the subsequent steps.
Additionally, confidence scores of 2D HPE models are not always reliable indicators of predic-
tion accuracy and/or occlusions [27]. Secondly, the effectiveness of the Iterative Closest Point
(ICP) algorithm used for initial mesh alignment is correlated with both the occluded body part
detection and LiDAR noise levels. These correlations can cause the ICP algorithm to converge
to suboptimal solutions. However, the subsequent mesh optimization can still mitigate potential
suboptimal alignments. Thirdly, obtaining a (sub-)optimal set of hyperparameters is complex.
These hyperparameters directly influence the effectiveness of the optimization scheme. The (sub-
)optimal set depends on the quality of the input data and the variety of pedestrian poses observed,
making it challenging to find universally effective values. Lastly, accurate optimization requires
precise alignment between image features and LiDAR projections, a condition that could be dif-
ficult to consistently achieve in real-world scenarios. To address this, multiple modifications and
solutions are proposed in Chapter 5 to reduce the dependency on accurate alignment between
image and LiDAR data.
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4 Experiments with simulated LiDAR data

This chapter presents the experiments conducted to demonstrate the performance and robustness
of our proposed method, SMPLify-3D. It includes both quantitative and qualitative comparisons
with other HMR frameworks, as well as experiments examining the effects of LiDAR density
and noise on the framework’s performance, and an ablation study. All experiments in this chap-
ter were performed on the 3DPW dataset [66] using simulated LiDAR data and the evaluation
metrics below:

- PVE* [mm] (Per Vertex Error) calculates the average distance between the predicted and
ground-truth vertices.

- MPJPE* [mm] (Mean Per Joint Position Error) calculates the average distance between each
predicted and ground-truth 3D joint.

- PA-MPJPE [mm] (Procrusted-Aligned Mean Per Joint Position Error) performs Procrustes
alignment before computing MPJPE, which mainly measures the articulated poses, elimi-
nating the discrepancies in scale and global rotation.

* Image-based HMR frameworks first align the predicted and ground-truth root joint to elimi-
nate the global translation error, meaning that the shown performances of these models cannot
be achieved in real life.

LiDAR data simulation
Due to the uncommon use of additional LiDAR data in HMR, none of the representative in-the-
wild datasets provide synchronized image and LiDAR data with ground truth SMPL annotations
2. Consequently, we have simulated LiDAR data on the 3DPW dataset [66] based on the provided
SMPL annotations, similar to the approach in [14], see Figure 11. To examine the effects of LiDAR
density on performance, we simulated three Ouster LiDARs with different resolutions, detailed
in Table 3 and Figure 12.

Resolution Range noise [mm] Angular noise [◦] Range [m]
Nr. Sensor type Vert. Hor. mean std mean std min max
1. Ouster-32 32 512 ±25.0 10.0 0.0 0.01 0.5 90.0
2. Ouster-64 64 1024 ±25.0 10.0 0.0 0.01 0.5 90.0
3. Ouster-128 128 2048 ±25.0 10.0 0.0 0.01 0.5 90.0

Table 3: Specifications of simulated LiDAR sensors, all have a drop-out probability of 10%

Figure 11: The calculation of the intersec-
tion point p between the LiDAR emissions
(blue lines) and the mesh [14] used during
LiDAR simulation.

Figure 12: Simulated LiDAR with three dif-
ferent sensors: Ouster-32, Ouster-64, and
Ouster-128 respectively

2The SLOPER4D dataset [15] contains synchronized image and LiDAR data, but it is not recorded in an urban envi-
ronment and has limited variety in pose and distance to the root joint, see Figure 19
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Besides the noise defined in Table 3, all simulated LiDAR sensors have a drop-out probability of
10% and are only defined within the camera frustum. However, due to the absence of 3D scene
information, occlusions due to other entities in the scene are not accounted for within the simu-
lation of the LiDAR data. Although this increases the available information in some situations,
its effect on the final results is likely minimal due to the relatively small number of (partially)
occluded instances. Furthermore, the occluded body parts algorithm (see Section ) helps mitigate
this issue by excluding regions of the mesh classified as occluded by the visibility filter within the
mesh optimization.

4.1 Comparison results

We compared our proposed method with other, image- and video-based methods described in
the literature, as shown in Table 4. All the frameworks used in this comparison did not have ad-
ditional depth information. Therefore all image- and video-based models in Table 4 first align the
predicted and ground-truth root joint before metric evaluation, making the presented results not
achievable in real life. In contrast, the presented SMPLify-3D performance does not require root
joint alignment, making them representative for real-life performance. Despite the difference in
alignment, our framework outperformce image-based HMR frameworks on all metrics, indepen-
dent of the LiDAR’s resolution. Moreover, the improved PA-MPJPE also shows that SMPLify-3D
does not only apply a translation/rotation but also modifies the pose θ⃗ and shape β⃗ parameters
to achieve better performance.

The performance of SMPLify-3D is correlated with the resolution of the LiDAR sensor used.
Lower-resolution sensors have fewer depth measurements on the subject, resulting in weaker
guidance and constraints in 3D. However, the performance gap between the Ouster-642 and
Ouster-1283 is significantly smaller than that between Ouster-642 and Ouster-321, suggesting a
lower bound on the necessary depth information density (see further experiments in Section 4.2
and Figure 16).

To compare real life performance, we evaluated CLIFF [41] without root joint alignment and with
ICP alignment on the test set of 3DPW [66], see Table 5. These results show that the performance
presented in the publications are, by far, not achievable in real life and demonstrate the value of
our contribution. ICP alignment between the predicted mesh and recorded LiDAR data signifi-
cantly improves the raw performance of CLIFF, however, it is still underperforming compared to
CLIFF with root alignment and SMPLify-3D.

3DPW [66]
Method PVE ↓ MPJPE ↓ PA-MPJPE ↓
VIBE [30] 99.1 82.9 51.9
DynaBOA [22] 82.0 65.5 40.4
MotionBERT [76] 79.4 68.8 40.6V

id
eo

WHAM-B [61] 71.0 59.4 37.2
SMPLify [7] 106.8 - -
TRACE [64] 97.3 79.1 37.8
SPIN [34] 96.9 59.2 -
ROMP [63] 93.4 76.7 47.3
HybrIK [39] 82.3 71.6 41.8
CLIFF [41] 81.2 69.0 43.0
Cha. [10] 76.3 66.0 39.0

Im
ag

e

PLIKS [60] 73.3 60.5 38.5
SMPLify-3D 1 73.2 57.0 47.7
SMPLify-3D 2 57.2 43.9 38.5

Li
D

A
R

SMPLify-3D 3 50.5 39.1 35.1

Table 4: Performance comparison between SMPLify-3D with different LiDAR sensors and other
image-/video-based methods on the 3DPW dataset [66].

1 2 3 LiDAR type used following Table 3.
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PW3D [66]
Method PVE ↓ MPJPE ↓

C
LI

FF

With root alignment 81.2 69.0
Without root alignment 481.1 479.0
ICP alignment2 103.4 90.5
SMPLify-3D 73.2 57.0
SMPLify-3D 57.2 43.9

Li
D

A
R

SMPLify-3D 50.5 39.1

Table 5: Real life performance comparison between SMPLify-3D and CLIFF [41].

From the camera’s perspective, the performance difference between CLIFF [41] and SMPLify-3D,
as shown in Table 4, appears minimal, see Figure 13. However, the difference becomes significant
when viewed parallel to the camera’s depth axis. In this view, the 3D inaccuracies predicted by
CLIFF are clearly visible, primarily due to ill-poses; multiple 3D poses can result in similar 2D
projections [73]. With the additional depth information, SMPLify-3D can mitigate these artifacts
by fitting the predicted mesh to this extra data during optimization.

Figure 13: Qualitative results of SMPLify-3D (blue) compared to CLIFF [41] (red) and the ground
truth (green) on some samples of the 3DPW test-set [66]. Note that the CLIFF results are first
aligned with the pelvis joint before 3D visualization.
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Figure 14: Area As of projection Πxz used
to calculate LiDAR density.

Figure 15: LiDAR density [/m2] vs distance
to subject.

4.2 Effect of LiDAR density and distance to subject

The sparsity of LiDAR data, and consequently the number of LiDAR points per instance, is in-
fluenced by the sensor’s resolution and the distance to the subject. Although the ICP algorithm
and the 3D alignment term in the objective function (see Equation 7) are independent of the num-
ber of points, sparse depth information contains less information and is therefore correlated with
performance. To see what the effect of this sparsity is, we evaluated SMPLify-3D on the 3DPW
dataset [66] while recording the number of LiDAR points per instance, point cloud density [/m2],
and the distance [m] to subject.

Since the number of LiDAR points per instance directly correlates with both sensor resolution
and distance to the subject, different scenarios can yield the same number of points. For instance,
a low-resolution sensor with the subject nearby and a high-resolution sensor with the subject far-
ther away can have the same number of LiDAR points. To eliminate these conflicting scenarios
and obtain more consistent results based solely on distance, as shown in Figure 15, we formulated
point cloud density [points/m2] as:

ρ =
num. points

As
≈ num. points

A
(

Πxz
(

Rz(ψ)M
)) (9)

With vertices M, rotation around the z-axis Rz(·) with angle ψ, xz-plane projection Πxz, and sur-
face area operator A(·) to create the surface projection area As, see Figure 14.

Both PVE and MPJPE improve exponentially with increasing LiDAR density and the number of
points per instance, as shown in Figure 16. This exponential trend highlights the significant value
additional depth information brings to the proposed method, even in scenarios with low LiDAR
density and high-instance sparsity. Moreover, despite the decreasing number of occurrences, the
mean and standard deviation of both metrics converge to a constant value. This converging be-
havior indicates that beyond a certain threshold, additional 3D information does not further en-
hance performance. Based on these results, this threshold appears to be around a density of 200
points/m² or 100 points per instance. These thresholds align with observations made by [18]

In contrast, when visualizing the metrics against the distance to the subject, as seen in Figure
17 a-b, the correlation is less pronounced. Here, performance shows a slight positive correlation
with the distance to the subject, which varies depending on the LiDAR’s resolution. This decline
in performance and positive correlation is most evident with the Ouster-32, though it is relatively
minor and noisy due to the limited number of occurrences.
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(a) PVE vs. LiDAR density [/m2]. (b) PVE vs. number of points per instance.

(c) MPJPE vs. LiDAR density [/m2]. (d) MPJPE vs. number of points per instance.

Figure 16: Results of LiDAR density experiments

The relationship between LiDAR resolution and the amount of correlation can be explained us-
ing Figure 15. The density threshold of 200 points/m2, explained in the previous paragraph,
is reached at different distances from the sensor depending on its resolution. For instance, this
threshold is reached at 16.5m or 8.0m for the Ouster-128 and Ouster-64, respectively, assuming
constant pose. This means that the density threshold of 200 points/m2 is not reached for the
Ouster-128 or only in a small number of instances for the Ouster-64, explaining the minimal or no
correlation between performance and distance in Figure 17 a-b. Conversely, the density threshold
for the Ouster-32 is reached at 4.1m. This results in a larger number of instances with insufficient
LiDAR density, amplifying the correlation and making it more noticeable in Figure 17 a-b.

Additionally, the mean and standard deviation of both evaluation metrics are correlated with the
sensor’s resolution, as seen in Table 6. It is noteworthy that the magnitude of the mean and stan-
dard deviation decrease at a similar rate across the metrics. This indicates that higher-resolution
sensors contribute to improved averages and reduced noise levels.

PVE ↓ MPJPE ↓
Method mean std mean std
With ICP alignment 103.4 54.0 90.5 47.3

C
LI

FF

With root alignment 81.2 30.6 69.0 8.1

Ouster-32 73.2 50.9 57.0 42.7
Ouster-64 57.2 40.0 43.9 31.0

O
ur

s

Ouster-128 50.5 35.4 39.1 26.4

Table 6: Comparison between CLIFF [41] and SMPLIfy-3D on achieved mean and standard devi-
ation on both PVE and MPJPE.
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(a) PVE∗ vs. distance to the subject. (b) MPJPE∗ vs. distance to the subject.

(c) PVE∗ vs. distance to subject comparison be-
tween SMPLify-3D and CLIFF with ICP and root
joint alignment [41].

(d) MPJPE∗ vs. distance to subject comparison be-
tween SMPLify-3D and CLIFF with ICP and root
joint alignment [41].

Figure 17: Correlation between performance and distance to the subject
∗ Due to visualization purposes, only the positive standard deviation is shown

When comparing the performance for distance to subject with CLIFF [41], we obtain Figure 17 c-d.
As expected, CLIFF with root alignment shows better standard deviation (noise levels) compared
to CLIFF with ICP alignment, particularly when comparing MPJPE. The small standard deviation
in MPJPE for CLIFF with root alignment, seen in Figure 17 d and Table 6, originates from the
evaluation metric itself. MPJPE calculates the average distance between all 3D joints, so aligning
the root joint (hips) with the ground truth significantly reduces noise. In contrast, CLIFF with
ICP alignment and SMPLify-3D (Ouster-128) both rely on ICP alignment, between the the visible
points of the predicted mesh and the observed LiDAR point cloud. The quality of this alignment
fluctuates, increasing the standard deviation. However, SMPLify-3D outperforms both versions
of CLIFF in terms of average performance.

4.3 Effect of LiDAR noise

Industrial LiDAR sensors can accurately measure distance using the concept of time-of-flight [36].
However, LiDAR measurements contain noise, particularly in distance and angle measurements,
the number of returned reflections, and measured intensities. [36] conducted extensive perfor-
mance tests to quantify the magnitude and amount of noise for 10 commonly used LiDAR sen-
sors, including the Ouster LiDAR’s we have simulated. We used their findings to define feasi-
ble noise levels, see Table 18a, to quantify the impact of LiDAR noise on our proposed method.
The noise levels are individually applied to all three simulated LiDAR sensors while keeping the
other types of noise constant following Table 3. The noise is modeled using the noise definition
of CARLA [16], after which the performance on the 3DPW dataset [66] is evaluated, see Figure 18.

Range noise
There is a clear, almost linear, positive correlation between range noise and PVE performance, as
shown in Figure 18b. The deviation between extremes slightly decreases with lower LiDAR reso-
lution, suggesting a correlation between depth information density and the impact of range noise
on performance. Sparse depth information offers less guidance and constraints, making opti-
mization less dependent on depth. Conversely, dense depth information provides more guidance
and constraints, making the optimization more sensitive to noise.
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mean std
min max step

Range noise [mm] 0.0 50.0 10.0 10.0
Angular noise [◦] 0.0 0.1 0.02 0.01
Dropout-rate 0.0 0.6 0.1 -

(a) Noise levels used, based on [36], within LiDAR
noise experiment.

(b) Influence of range noise on the 3DPW [66] test-
set.

(c) Influence of angular noise on the 3DPW [66] test-
set.

(d) Influence of dropout on the 3DPW [66] testset.

Figure 18: Results of LiDAR noise experiments.

Angular noise
The overall trends observed for range noise; positive linear correlation and the connection be-
tween performance decrease and LiDAR resolution, are also visible in the results for angular
noise, see Figure 18c. However, these results are noisier, possibly due to the random over- and
under-estimation of the measured angle. These errors can either cancel out or amplify the overall
trend, adding noise to the results.

Dropout
Compared to both range- and angular noise, the visible trend for dropout rate is significantly
different, see Figure 18d. As expected, high-resolution LiDAR sensors are less affected by higher
dropout rates compared to lower-resolution sensors. Furthermore, the overall positive correlation
moves toward exponential, amplifying the differences between the different sensors. The corre-
lation between LiDAR density and performance, described before, is also visible in these results,
given that every LiDAR sensor improves with less/zero dropout.
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4.4 Ablation study

We conducted an ablation study to investigate the significance of the newly introduced compo-
nents; visible points algorithm, 3D data term E3D, and the additional pose prior Eθocc within our
proposed framework SMPLify-3D. By systematically disabling each term in isolation, we aim to
understand how each component contributes to the overall performance. The ablation study was
performed on the test set of the 3DPW dataset [66] and for all three LiDAR sensors defined in
Table 3.

The ablation results in Table 8 show that the 3D data term E3D within the objective function
contributes the most to overall performance, followed by the pose prior Eθocc and the body part
visibility filter. The constant performance without E3D across all three LiDAR sensors indicates
that the ICP alignment before the optimization is less sensitive to depth information density com-
pared to the mesh optimization (see Figures 16a and 16c). A similar observation applies to the
performance difference with and without the additional pose prior Eθocc as the pose prior is inde-
pendent of depth information.

However, the contribution of the body part visibility filter is not apparent in Table 8 because the
number of instances with one or more partially occluded body parts is low compared to the total
number of instances in the dataset. Therefore, we repeated the ablation study for the body part
visibility filter only on the instances with partially occluded body parts, see Table 7. This sampled
dataset consists of 1,063 instances (2.9% of the total number of instances), each containing at least
one occluded body part. Within this subset, the contribution of the body part visibility filter is
more prominent, despite being less significant compared to the other terms in the ablation study.

All terms No body part visibility filter
mean std mean std t-value p-value

PVE ↓ 82.0 50.9 84.3 60.2 9.512 0.3416
MPJPE ↓ 62.9 42.6 64.9 52.7 9.623 0.3360

O
us

te
r

-3
2

PA-MPJPE ↓ 50.2 35.0 51.5 42.3 7.720 0.4402
PVE ↓ 66.9 40.0 69.3 47.6 12.585 0.2082
MPJPE ↓ 48.2 31.0 50.4 36.4 15.002 0.1337

O
us

te
r

-6
4

PA-MPJPE ↓ 41.1 29.4 42.3 34.8 8.588 0.3905
PVE ↓ 58.7 35.4 60.2 42.2 8.879 0.3747
MPJPE ↓ 43.6 26.4 45.3 35.6 12.506 0.2112

O
us

te
r

-1
28

PA-MPJPE ↓ 37.2 27.1 38.7 33.5 11.350 0.2565

Table 7: Ablation study results to understand the importance of the proposed visibility filter for
the (partially) occluded body parts. This study is conducted on a sampled 3DPW dataset [66]
containing 1,063 instances, all with (partially) occluded body parts.

All terms No Lθocc No L3D
mean std mean std t-value p-value mean std t-value p-value

PVE ↓ 73.2 50.9 75.9 75.9 -68.66 0.00 171.2 113.1 -191.95 0.00
MPJPE ↓ 57.0 42.6 58.2 43.2 -66.92 0.00 159.3 113.2 -194.86 0.00

O
us

te
r

-3
2

PA-MPJPE ↓ 47.6 35.0 48.9 35.5 -53.33 0.00 49.6 22.1 -78.44 0.00
PVE ↓ 57.2 40.0 60.1 41.3 -33.2 1.09-23 173.2 117.4 -188.63 0.00
MPJPE ↓ 43.9 31.0 45.2 31.8 -27.73 0.00 161.7 117.8 -191.47 0.00

O
us

te
r

-6
4

PA-MPJPE ↓ 38.5 29.4 40.4 31.0 -24.21 0.00 49.2 21.6 -77.00 0.00
PVE ↓ 50.5 35.4 52.4 36.8 -7.18 1.43-12 174.9 121.4 -185.41 0.00
MPJPE ↓ 39.1 26.4 40.3 27.6 -5.74 9.71-09 163.4 121.8 -188.04 0.00

O
us

te
r

-1
28

PA-MPJPE ↓ 35.1 27.1 36.6 28.9 -7.27 3.62-13 49.4 23.0 -76.71 0.00

Table 8: Ablation study results to understand the importance of the proposed terms within the
objective function, see Equation 2. This study is conducted on the full 3DPW dataset [66] contain-
ing 35,515 instances.
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4.5 Discussion

The experiments in this chapter used simulated LiDAR data on the 3DPW dataset [66] to quan-
titatively compare our method with other HMR frameworks and examine the impact of LiDAR
density and noise on performance. Additionally, we conducted an ablation study to highlight the
contributions of the body part visibility filter and each proposed term in the objective function.

The quantitative comparison showed that our proposed method surpasses image- and video-
based HMR frameworks across all metrics, independent of LiDAR resolution, see Table 4. This
improvement indicates that combining the richness of image data with the depth information
within LiDAR can enhance HMR performance, irrespective of LiDAR resolution. Unlike image-
/video-based HMR frameworks that align the root joint with the ground-truth annotation to re-
move global mesh placement ambiguity before evaluation, SMPLify-3D aligns the predicted mesh
with the observed LiDAR data. This makes root alignment before evaluation redundant and the
presented results achievable in real life scenarios, see Table 5.

It’s important to note that SMPLify-3D is one of the first HMR frameworks to combine image
features with sparse LiDAR data, making the quantitative results in Table 4 not a direct one-to-
one comparison. The simulated LiDAR data was created based on ground-truth human mesh
annotations from the 3DPW dataset [66]. However, this data also included occluded body parts
due to the absence of 3D scene information. Although the body part visibility filter filters out
some of these body parts, the simulated data still is not fully representative for real-world mea-
surements. Moreover, the simulated LiDAR points did not account for misidentified points from
other entities in the scene due to occlusions, potentially affecting performance.

The effect of LiDAR density and noise on the proposed framework’s performance was evaluated
through multiple experiments. As anticipated, performance improved with increased LiDAR
density. However, the correlation plateaued at approximately 100 LiDAR points per instance, be-
yond which additional points became less to not effective. Furthermore, all types of LiDAR noise
negatively impacted performance, with the extent of this impact varying according to the LiDAR
resolution.

Despite the extensive results, the majority of instances within the 3DPW dataset are at close range
(< 6m), making the LiDAR experiments biased towards these close-range situations and less rep-
resentative of long-range scenarios. Additionally, due to limited resources, only a few noise levels
and combinations were tested, and LiDAR sensors with 16 vertical rays were not included in the
experiments.

The ablation study illustrated the contribution of the visibility filter and each term within the
objective function to overall performance. However, the visibility filter only contributes to per-
formance if one or more body parts are identified as occluded. Therefore, a small subset of the
dataset was sampled to specifically show the contribution of this term. Despite an improvement,
the visibility filter is less significant compared to the proposed terms within the objective function.
It could be more effective to use another pose estimation model that directly or more accurately
reasons about joint visibility.
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5 Experiments with real LiDAR data

This chapter describes the experiments conducted with real LiDAR data, in contrast to the ex-
periments presented in Chapter 4, which utilized simulated LiDAR data. The chapter is divided
into two sections. The first section provides a quantitative and qualitative comparison of our
proposed method with other point cloud-based HMR frameworks using the SLOPER4D [15] and
HumanM3 [17] datasets. The second section showcases the versatility of our proposed method
with qualitative results on the UT Campus dataset [71] and data collected by a mobile robot in
the AMR lab3.

5.1 Comparison with other point cloud-based HMR methods

5.1.1 Datasets

We evaluated our proposed method, SMPLify-3D, against other 3D pose and HMR frameworks
that use point cloud data on the SLOPER4D [15] and HumanM3 datasets.

SLOPER4D [15] is a single-person, outdoor motion capture dataset with synchronized image
and LiDAR data along with ground-truth SMPL annotations. However, the dataset is only par-
tially released and does not contain an official train- and test-split. Therefore, we follow the data
splits proposed by [18], resulting in a test set with 8,064 instances sampled from a single scene.

HumanM3 [17] is a multi-view, multi-modal, and multi-person dataset for 3D pose estima-
tion. It includes four different outdoor scenes and provides 15 3D keypoints for every person
observed, resulting in a test set of 8,951 instances.

Compared to the 3DPW dataset [66] used in Chapter 4, the SLOPER4D and HumanM3 datasets
exhibit different characteristics, as shown in Figure 19. The SLOPER4D test set is limited to a
single sequence of a man running, viewed from behind, offering limited variety in distance and
3D poses. Conversely, the HumanM3 dataset features multiple scenes and multiple people, pro-
viding greater variety in both distance and 3D pose. Additionally, HumanM3 includes many
instances where subjects are partially occluded by others, making it more challenging than the
SLOPER4D dataset. However, both datasets can not match the variety in distance and 3D pose
within the 3DPW dataset. This difference in variety is also visually apparent when comparing
data samples, see Figure 20.

(a) Distance between the cam-
era and root joint of the ground
truth annotation.

(b) Dimensionallity reduced pose parameter θ⃗ space of the SMPL annota-
tions within the three datasets. Compared to SLOPER4D (gray) and Hu-
manM3 (purple), 3DPW (blue) contains much more variety in 3D pose.

Figure 19: Data attributes of 3DPW [66], SLOPER4D [15], and HumanM3 [17] datasets.

3https://autonomousrobots.nl/
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Figure 20: Data samples form the 3DPW [66] (top), HumanM3 [17] (middle), and SLOPER4D
(bottom) [15] datasets.

5.1.2 Quantitative results

Table 9 includes both model-free and SMPL-based methods. Model-free methods predict the loca-
tions of all 6,890 mesh vertices directly, while SMPL-based methods predict a set of SMPL param-
eters; 72 pose and 10 shape parameters. This difference in mesh construction leads to remarks for
quantitative comparison. First, model-free methods can place vertices and 3D joints anywhere
in space, whereas SMPL-based methods are constrained by the SMPL model’s pose and shape
parameters. These parameters have long-range correlations and affect all vertices and 3D joints
when a single parameter changes. This constraint prevents SMPL-based methods from making
small local mesh adjustments [51]. Second, the mesh structures of model-free methods can differ
significantly from parametric methods. As a result, the Per-Vertex-Error (PVE) can sometimes be
misleading and may not accurately represent mesh reconstruction quality [18]. To address this,
[18] introduced the Mean-Per-Edge-Relative-Error (MPERE) for model-free methods, which mea-
sures the difference between the predicted li and ground-truth l̂i length of mesh all edges m to
reason about the reconstruction quality of short edges in dense parts more effectively [18].

MPERE =
m

∑
i=1

1
m

||li − l̂i||1
l̂i

(10)

SLOPER4D [15] HumanM31 [17]
Method ↓ PVE ↓ MPJPE ↓ PA-MPJPE ↓ MPERE ↓ [18] MPJPE ↓ PA-MPJPE ↓
PRN [18] - 57.0 - - 82.2 -
V2V-PoseNet [47] - 50.7 - - 83.0 -
PRN+P2M [18, 12] 65.3 56.6 - 0.132 80.6 -
V2V+P2M [47, 12] 59.8 50.7 - 0.126 83.0 -

M
od

el
-f

re
e

LiDAR-HMR [18] 51.9 51.0 - 0.094 77.6 -
LiDARCap [38] 148.1 158.3 - 0.050 175.8 -
SAHSR [26] 81.2 72.6 - 0.085 105.5 -
VoteHMR [43] 60.9 54.6 - 0.079 105.8 -
CLIFF [41] 93.7 84.7 69.3 0.057 106.3 66.5

SM
PL

-b
as

ed

SMPLify-3D 64.4 55.8 43.5 0.060 83.9 58.1
1 Multi-view

Table 9: Performance comparison between SMPLify-3D other point-cloud-based 3D pose and
HMR frameworks on the SLOPER4D [15] and HumanM3 [17] datasets.

Due to these differences in mesh structure, comparing reconstruction quality using PVE and
MPERE can be difficult. However, comparing 3D pose accuracies with MPJPE and PA-MPJPE
provides a better performance representation across both method types. Given the flexibility dif-
ferences, it is unsurprising that SMPLify-3D is slightly outperformed by most model-free meth-
ods.
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Furthermore, SMPLify-3D is optimization-based, meaning the presented performance is achieved
by only adjusting hyperparameters, unlike other models (except CLIFF) that are specifically trained
on the corresponding dataset. This demonstrates the versatility of our method making it poten-
tially more suited for different unseen inference data.

SMPLify-3D is the only SMPL-based HMR framework that achieves competitive performance
on both datasets. While VoteHMR [43] is competitive on the SLOPER4D dataset [15], its perfor-
mance drops significantly on the more challenging HumanM3 dataset [17]. This trend is con-
sistent across all SMPL-based HMR frameworks, underscoring the superiority of SMPLify-3D.
Additionally, the performance gap between CLIFF [41] and SMPLify-3D highlights the value of
incorporating LiDAR data within HMR and the contributions of this work.

5.1.3 Qualitative results

Figure 21: Qualitative comparison between CLIFF [41] with ICP alignment (gray), LiDAR-HMR
[18] (blue), and SMPLify-3D (purple) on the SLOPER4D [15] and HumanM3 [17] datasets. The
ground truth mesh and 3D pose annotations are shown in green and the predicted 3D poses are
illustrated in red.
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Figure 22: The LiDAR and front-facing
camera of the Jackal robot are used in lab
experiment

Figure 23: Difference in viewpoint across
the datasets used [15, 17] and the lab exper-
iment

The competitive performance indicated in Table 9 is also evident in the qualitative results shown
in Figure 21. Generally, instances with substantial LiDAR coverage from top to bottom appear
visually comparable. However, in cases where the LiDAR data is sparse or does not cover all
body parts, SMPLify-3D shows superior qualitative performance. Additionally, as seen in the
fourth row of Figure 21, LiDAR-HMR can predict infeasible joint angles. Moreover, the effective-
ness of our optimization scheme is prominent when comparing the CLIFF + ICP results with the
SMPLify-3D mesh predictions.

5.2 Qualitative experiments

To further evaluate the versatility of our proposed HMR framework, we conducted two additional
qualitative experiments using data recorded by a mobile robot. The first subsection presents qual-
itative results from data recorded by a mobile robot named Jackal in the AMR lab. The second
subsection showcases qualitative results on the UT Campus dataset and introduces a minor modi-
fication to the original optimization scheme proposed in Chapter 3. This minor modification aims
to improve performance in scenarios where the LiDAR-image alignment is sub-optimal.

5.2.1 Experiment in the lab

The data for this lab experiment was recorded by a mobile robot named Jackal, see Figure 22. This
robot is designed for navigating crowded urban environments and is equipped with a VLP16
LiDAR and five Intel RealSense D455 cameras arranged in a circular formation to provide 360-
degree camera coverage. However, this experiment only utilized the front-facing camera.

The data recorded by the Jackal robot differs significantly from the data with the SLOPER4D
[15] and HumanM3 [17] datasets for two reasons; 1) Due to the small footprint of this mobile
robot, both the LiDAR sensor and camera are mounted significantly closer to the ground, as illus-
trated in Figure 23. 2) The VLP16 LiDAR sensor, with its 16 vertical rays, has a lower resolution
compared to the sensors used in the other datasets, resulting in much sparser LiDAR data.

The dataset used within this experiment contains 5 minutes of data across two sequences involv-
ing single and multi-person scenarios, resulting in 4,182 instances. Unfortunately, due to time
and complexity constraints, the recorded data does not include 3D pose or SMPL annotations.

The qualitative results presented in Figure 24 demonstrate the performance differences between
LiDAR-HMR [18] and the proposed method. In straightforward scenarios where the observed
human is standing upright facing the camera/LiDAR (first row), both models can predict feasible
3D pose and shape. However, in scenarios with unique or less common 3D poses, the LiDAR-
HMR models often fail to predict feasible HMR results; some predictions face the wrong direc-
tion (see row 2) or exhibit infeasible 3D pose or shape (see rows 3 and 4). In contrast, SMPLify-3D
accurately models such unique or uncommon 3D poses. Additionally, by utilizing image fea-
tures, SMPLify-3D significantly improves image-mesh alignment compared to LiDAR-HMR and
enhances robustness against noise in the LiDAR data (see the left person in row 5). These re-
sults indicate that pre-trained LiDAR-HMR models are biased towards the 3D poses and shapes
present in their corresponding training set, leading to limited performance on out-of-sample data.
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In contrast, SMPLify-3D is more versatile and able to produce feasible predictions even in situ-
ations with challenging 3D poses and sparse LiDAR data, highlighting its superior adaptability
and robustness.

Figure 24: Qualitative comparison between two LiDAR-HMR [18] models and SMPLify-3D on
data recorded within the AMR-lab. The two LiDAR-HMR models are respectively trained on the
SLOPER4D [15] and Waymo [62] datasets.

5.2.2 UT Campus

Finally, the proposed method is qualitatively evaluated on the UT Campus dataset [71]. This
dataset, combined with the presented method, will be used by the AMR-lab at the Technical Uni-
versity of Delft (TU Delft) to create a spatial-temporal 2D/3D occupancy dataset with pseudo-
ground-truth annotations. This new dataset focuses on crowded urban environments and aims to
facilitate occupancy learning from the perspective of mobile robots. The proposed method in this
thesis will be employed to generate occupancy predictions for all pedestrians within the dataset.

The UT Campus dataset [71] is a large-scale multiclass, multimodal dataset focused on crowded
urban environments recorded at the University of Texas. The dataset is partially annotated and
contains ground-truth 3D bounding boxes across 53 object classes, LiDAR terrain segmentations,
and global pose information. Unlike the other datasets used in this thesis, the UT Campus dataset
is not specifically designed for HMR or 3D pose estimation, presenting several challenges:
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1. The dataset does not contain 2D bounding boxes, pose, or tracking annotations.

2. Only a limited number of LiDAR frames have annotated 3D annotations/bounding boxes.

3. Many pedestrians are (partially) occluded due to the crowded environments.

4. The LiDAR-image alignment is inconsistent, particularly in frames where the recording ve-
hicle rotates quickly.

The first three challenges are addressed by generating pseudo-ground-truth annotations using
various 2D and 3D detection models. However, the accumulated noise in these pseudo-ground-
truth annotations, combined with the inconsistent LiDAR-image alignment, makes finding a fea-
sible solution in the optimization space difficult. To enhance the robustness of the proposed opti-
mization scheme in such situations, the next section describes a minor modification to the original
method outlined in Chapter 3.

Experimental setup
To make the proposed method more resilient to noisy input features and reduce dependency on
precise LiDAR-image alignment, the optimization scheme, after initial ICP alignment, has been
divided into three parts: 1) scaling optimization (Lscale), 2) 3D mesh optimization with root align-
ment between the 2D and projected 3D root joint (Lm), and 3) image alignment (Limg). Compared
to the original optimization scheme proposed in Chapter 3, this updated version should be more
versatile and robust against imprecise LiDAR-image alignment. Additionally, the updated frame-
work can be configured to prioritize either image or LiDAR alignment, enhancing its adaptability..

Scaling optimization:
After the ICP alignment between the initial SMPL prediction and LiDAR data (see section 3.3) the
mesh scaling within the 2D image space is infeasible. Therefore, in the first optimization step, we
only optimize for the shape parameters β⃗, responsible for mesh scaling.

Lscale(β⃗, θ⃗, t⃗cam, K, Jalgn
est ) = LJ(β⃗, θ⃗, t⃗cam, K, Jalgn

est ) + λβLβ(β⃗) (11)

Where LJ and Lβ follow the definitions of equations 3 and 6. However, the estimated 2D joints
Jest originally within LJ are translated by t ∈ R2 to align the root joint Jest0 with the projected 3D
root joint Jpro0 .

t = Jpro0 − Jest0 (12)

Jalgn
est = Jest + t (13)

3D mesh optimization:
The second optimization aims to align the 3D pose and shape with both the image- and LiDAR
features by optimizing the body pose θ⃗body, shape β⃗, and global rotation θ⃗glob parameters. The

objective function is very similar to equation 2. However, Jalgn
est is used instead of the Jest to make

this optimization step independent of image-LiDAR alignment.

Image alignment:
The first two steps of the updated optimization scheme improve the 2D and 3D alignment of the
SMPL prediction but are independent of image-LiDAR alignment. This final optimization step
can only optimize the camera translation tcam to improve the final image or LiDAR alignment,
depending on the scaler weight λ3D.

Limg(β⃗, θ⃗, t⃗cam, K, Jest) = LJ(β⃗, θ⃗, t⃗cam, K, Jest) + λ3DL3D(β⃗, θ⃗, t⃗cam, P, V) (14)
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Qualitative results

Figure 25: Qualitative comparison between SMPLify-3D and LiDAR-HMR [18] on the UT Cam-
pus dataset [71]. The ellipses indicate areas of notable difference: green ellipses show where
SMPLify-3D outperforms LiDAR-HMR, while red ellipses highlight areas where LiDAR-HMR
surpasses SMPLify-3D.
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Qualitatively, SMPLify-3D outperforms LiDAR-HMR [18] in most instances within the UT Cam-
pus dataset [71], as shown in Figure 25. The performance differences are particularly noticeable
in the 3D poses of the arms and legs, especially when limited LiDAR data is available (green el-
lipses). Additionally, SMPLify-3D’s projected predictions align more accurately with the image.
However, SMPLify-3D is not always superior. Instances with inaccurate 2D keypoint detections
or initial SMPL predictions can lead to suboptimal solutions, as highlighted by the red ellipses.

5.3 Discussion

The experiments conducted in this chapter used HMR and 3D pose datasets with real LiDAR data
[15, 17] to quantitatively compare the proposed method with other LiDAR-based HMR frame-
works. Furthermore, the second part of this chapter shows qualitative results from data recorded
within the AMR-lab and the UT Campus dataset [71].

The proposed HMR framework achieves competitive results on both the SLOPER4D [15] and Hu-
manM3 [17] dataset compared to other LiDAR-based HMR frameworks, see table 9. Especially
considering that the other methods are specifically trained on these datasets, while SMPLify-3D
only required adjustments to several hyperparameters. Moreover, the HumanM3 dataset’s multi-
view setup demonstrates the versatility of our framework.

However, comparing mesh reconstruction quality between model-free and SMPL-based meth-
ods is challenging due to their differing mesh structures. The commonly used Per-Vertex-Error
(PVE) can be misleading and may not accurately represent mesh reconstruction quality. To ad-
dress this, [18] proposed the MPERE metric, however, this metric is biased towards SMPL-based
methods. Therefore, comparing 3D pose accuracy is more representative, despite the model-free
methods’ ability to place joints anywhere in space, while SMPL-based models are constrained
by the SMPL model/parameters. Compared to other SMPL-based methods, SMPLify-3D is the
only framework that remains competitive on both datasets when evaluated alongside model-free
methods. This may suggest that the current SMPL-compatible, LiDAR-based HMR frameworks
are mainly focused on close-range scenarios or dense point cloud data. Despite the competitive
results of SMPLify-3D, both the SLOPER4D and HumanM3 datasets exhibit limited variation in
3D poses compared to the 3DPW dataset used in Chapter 4, as shown in Figure 19, making the
comparison biased towards these specific 3D poses.

The versatility of our method compared to other LiDAR-based methods is also evident in qual-
itative experiments on the AMR lab and UT Campus datasets. In commonly observed scenar-
ios where the human subject is standing upright facing the camera/LiDAR, the performance
of LiDAR-HMR and SMPLify-3D is comparable. However, in unique or uncommon 3D poses,
LiDAR-HMR is unable to predict feasible results, making SMPLify-3D superior in these situa-
tions, see Figure 24.

Despite the demonstrated versatility of the proposed method, occlusions and misaligned input
features can lead to inaccurate predictions. The proposed modification based on qualitative re-
sults from the UT Campus dataset aims to address these challenges, but there are no quantitative
results that show the effectiveness of the updated optimization framework. Furthermore, the
updated framework introduces more tunable weights in the objective function, complicating the
tuning process.
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6 Conclusion and Future works

6.1 Conclusion

This work introduced SMPLify-3D, a Human Mesh Recovery (HMR) framework that combines
the richness of image data with the depth information from sparse LiDAR data to enhance the
SMPL predictions made by purely image-based HMR frameworks. By leveraging multi-modal
data, SMPLify-3D addresses common issues in image-based HMR, such as 3D pose inaccuracies
and mesh placement errors due to depth ambiguity. The proposed framework consists of three
main steps: 1) defining the visibility of all body parts, 2) initial LiDAR-mesh alignment, and 3)
mesh optimization (see Figure 8).

Compared to image-based HMR frameworks, SMPLify-3D significantly improves PVE, MPJPE,
and PA-MPJPE scores by 45%, 54%, and 10% respectively on the 3DPW [66] dataset with simu-
lated LiDAR data. Additionally, SMPLify-3D’s performance is directly applicable in real-life sce-
narios, unlike image-based HMR frameworks that require root joint alignment. SMPLify-3D also
achieves competitive/superior performance on the HumanM3 [17] and SLOPER4D [15] datasets,
despite these LiDAR-based HMR frameworks being specifically trained on those datasets. This
highlights the versatility of SMPLify-3D. Additionally, experiments with simulated LiDAR data
have revealed the correlation between LiDAR density, noise, and the framework’s performance.

We also demonstrated the feasibility of deploying SMPLify-3D on a real mobile robot using the
UT Campus [71] dataset and an experiment in the AMR lab. These qualitative experiments show-
cased the superior versatility and performance of our framework compared to LiDAR-HMR.

While this work focuses on improving image-based HMR predictions, SMPLify-3D can also en-
hance the image and 3D alignment of SMPL predictions made by non-image-based HMR frame-
works.

6.2 Future works

Despite the demonstrated versatility and competitive performance of SMPLify-3D across multi-
ple datasets, there are several avenues for future research to further enhance performance. Cur-
rently, the framework defines body-part visibility based on the confidence scores of human pose
estimation (HPE) networks. However, these confidence scores may not be a reliable indication of
prediction accuracy/occlusion [27]. Misidentified body-part visibilities can lead to suboptimal so-
lutions and interpenetration errors that propagate through the optimization scheme. Therefore,
developing an improved method for determining body-part visibility could significantly boost
performance.

Additionally, the proposed optimization scheme does not contain a temporal and spatial con-
sistency term. This implies that currently, consecutive SMPL predictions for the same person can
differ significantly in position and 3D pose. Especially if the input space of the mesh optimization
is noisy. This leads to fluctuating accuracies and potentially infeasible predictions. Incorporating
temporal and spatial consistency terms within the objective function could mitigate these issues
and further enhance the framework’s robustness.
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