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Preface

In recent years, the rise of federated learning has revolutionized the field of distributed
machine learning. By allowing participants to collaboratively train models while
keeping their data decentralized, federated learning has opened up new possibilities
for privacy-preserving and efficient machine learning in various domains. However,
this groundbreaking approach also brings about new challenges and vulnerabilities.

One of the major concerns in federated learning is the susceptibility to poisoning
attacks. Since participants can manipulate their data and models locally without
centralized oversight, there is a lack of assurance regarding the integrity of the training
process. While there have been server-side defenses proposed to mitigate these attacks
by modifying or rejecting local updates uploaded by clients, they are not foolproof.
In particular, bursty adversarial patterns with a high variance in the number of
malicious clients can circumvent the existing defenses, leaving the system vulnerable
to compromise.

In this master thesis, we propose a novel client-side defense mechanism, called
LeadFL, which addresses the limitations of existing server-side defenses and aims to
thwart backdoor and targeted attacks in federated learning. The core idea behind
LeadFL is the introduction of a unique regularization term in local model training,
effectively nullifying the Hessian matrix of local gradients. Through extensive research
and analysis, we provide convergence analysis of LeadFL and demonstrate its robustness
guarantee in terms of a certified radius, which quantifies the distances between benign
and poisoned models.

Our empirical evaluation reveals the effectiveness of LeadFL in mitigating bursty
adversarial patterns for both IID and non-IID data distributions. Notably, LeadFL
consistently reduces the backdoor accuracy from more than 75% using state-of-the-art
defenses to less than 10%, all while maintaining minimal impact on the accuracy of the
main task.

In the process of conducting the research for this thesis, the findings have been
distilled and presented in the form of a research paper titled LeadFL: Client Self-Defense
against Model Poisoning in Federated Learning. It is noteworthy to mention that this paper
has been accepted by 40𝑡ℎ International Conference on Machine Learning (ICML 2023), an
esteemed conference in the field of machine learning.

Profound gratitude is extended to Prof. Lydia Chen, whose mentorship, expertise,
and support have been integral to this research, enriching this work and contributing
significantly to my academic growth. Additional thanks are given to Prof. Stefanie
Roos for her valuable input and academic rigour, which have greatly enhanced the
quality of this research. Equally important, heartfelt thanks are extended to family and
friends who have provided constant encouragement, patience, and selfless support.

Chaoyi Zhu
Delft, June 2023
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1
Research Paper

In this chapter, we present our core motivations, theories, and results, adhering to the
structure of a research paper. Notably, this research paper has been accepted at 40𝑡ℎ
International Conference on Machine Learning (ICML 2023). The subsequent chapters
are structured as follows: Chapter 2 delves into an extensive background on federated
learning, offering an in-depth exploration of poisoning attacks and their corresponding
defense strategies. In Chapter 3, we provide detailed proof of convergence and
robustness for our algorithm introduced in the research paper. Lastly, in Chapter 4,
we showcase additional experiments that further corroborate the effectiveness of our
proposed method.
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LeadFL: Client Self-Defense against Model Poisoning in Federated Learning

Abstract
Federated Learning is highly susceptible to back-
door and targeted attacks as participants can ma-
nipulate their data and models locally without
any oversight on whether they follow the correct
process. There are a number of server-side de-
fenses that mitigate the attacks by modifying or
rejecting local updates submitted by clients. How-
ever, we find that bursty adversarial patterns with
a high variance in the number of malicious clients
can circumvent the existing defenses. We pro-
pose a client-self defense, LeadFL, that is com-
bined with existing server-side defenses to thwart
backdoor and targeted attacks. The core idea of
LeadFL is a novel regularization term in local
model training such that the Hessian matrix of
local gradients is nullified. We provide the con-
vergence analysis of LeadFL and its robustness
guarantee in terms of certified radius. Our empiri-
cal evaluation shows that LeadFL is able to mit-
igate bursty adversarial patterns for both iid and
non-iid data distributions. It frequently reduces
the backdoor accuracy from more than 75% for
state-of-the-art defenses to less than 10% while
its impact on the main task accuracy is always
less than for other client-side defenses.

1. Introduction
Federated Learning (FL) realizes collaborative learning
without the need to share possibly sensitive raw data. Clients
submit intermediate local models to a server, the federator,
who aggregates these models. In order to achieve models
of high accuracy, high-quality local models and effective
aggregation algorithms are needed. Adversarial clients can
reduce the accuracy, either overall or on specific tasks, by
manipulating their local data and the submitted model. For
instance, malicious clients can launch backdoor attacks,
which mislead the model to make inaccurate inferences on
images with certain triggers.

The attack severity is closely related to the number of mali-
cious clients that are chosen over time. Federated learning
proceeds in rounds. Usually, in each round, a certain num-
ber of clients are selected from a large pool. If the selection
is random and by the server, the number of malicious clients

chosen varies greatly even if the overall fraction of mali-
cious clients in the pool stays constant. Figure 1 displays
an example for 5 selected clients over 5 rounds. As a con-
sequence, in some rounds, the fraction, malicious clients
make up the majority of the clients, which allows them to
launch a strong attack.

Benign Clients

Perturbed
Model

Poisoned 
Model

Perturbed 
Model

LeadFL

Local Training

Server-side 
Defense

: Distribute Global Model

: Upload Model Updates

Malicious Clients

Poisoned Model 
from last round

The number of malicious clients varies every round

round 

perturb

Figure 1: Bursty adversarial patterns with the number of
malicious clients chosen varying greatly between rounds

Defense mechanisms (Blanchard et al., 2017; Fung et al.,
2020; Muñoz-González et al., 2019; Xia et al., 2019;
Mhamdi et al., 2018; Ozdayi et al., 2021; Panda et al., 2022;
Yin et al., 2018; Nguyen et al., 2022; Rieger et al., 2022;
Gupta et al., 2022; Xu et al., 2022) have been designed to
mitigate the attacks. The majority of these attacks are server-
side, meaning the federator assigns updates that appear to
be malicious a low weight during aggregation or completely
excludes them from the aggregation. These defenses have
been shown to be effective against sophisticated attacks
when the number of malicious selected clients is constant
and low (Nguyen et al., 2022; Panda et al., 2022; Rieger
et al., 2022). In addition to demonstrating the empirical ef-
fectiveness, theoretical frameworks, such as certified radius
on models (Panda et al., 2022) and inference samples (Xie
et al., 2021) provide theoretical guarantees of the defense
effectiveness.

In contrast, client-side defenses (Sun et al., 2021) have the
client modify the training process. The most notable client-
side defense is FL-WBC (Sun et al., 2021), which can deal
with bursty attack patterns. The authors find that a strong
bursty attack in one round has a lingering effect on the
model and the duration and severity of that effect depends

1
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on the sparsity of the Hessian matrix of gradients: the higher
the sparsity, the longer the attack effect. FL-WBC perturbs
the Hessian matrix of gradients by adding random noise into
clients’ local models to reduce sparsity. Such uncalibrated
random noise unfortunately leads to the degradation in the
global model accuracy. Moreover, there is no theoretical
guarantee that FL-WBC is robust against backdoor attacks.

In this paper, we design LeadFL, a client-side defense that
enhances server-side defenses to deal with bursty adver-
sarial patterns while not affecting global model accuracy
significantly. The core of LeadFL is an optimization frame-
work that optimally perturbs the Hessian matrix of local
gradients and local models using a regularisation term such
that their Hessian matrix is close to the identity matrix.We
verify the effectiveness of the proposed regularized Hessian
optimization by deriving the convergence analysis and certi-
fied radius analysis, which quantifies the distances between
benign and poisoned models. Specifically, we make the
following technical contributions:

• We design LeadFL, a novel client-side defense based
on Hessian matrix optimization, to mitigate the impact
of bursty adversarial patterns for backdoor and targeted
attacks.

• We derive the convergence analysis and certified radius
analysis, proving LeadFL that is effective.

• We empirically combine LeadFLwith different server-
side defenses and find that the combination can effec-
tively defend against strong attacks while other com-
binations of server-side and client-side defenses fail.
We reduce the backdoor accuracy by up to 65% and
achieve a lower impact on main task accuracy than
other combined defenses.

2. Background and Prior Art
We first introduce necessary concepts and then analyze the
state-of-the-art defenses against model poisoning.

2.1. Model Poisoning Attacks in Federated Learning

Federated Learning In Federated Learning (FL) (Konečný
et al., 2016), K clients indexed by k = {1 · · ·K} are se-
lected from a total of N clients at global round t to train a
learning model by using the local data to minimize the loss
function L(θk) with model weights of θk). Specifically,
at its local round of i, the client k uses stochastic gradient
descent to update weights as follows:

θk
t,i+1 ← θk

t,i − ηt,i∇L
(
θk
t,i

)

where ηt,i is the learning rate and each local round is com-
puted on a mini-batch of data samples uniformly chosen
from client k’s local data set.

Periodically, namely, at every global round t, the federator

selects a subset of clients and updates the global model
weights. The most common aggregation method is Fe-
dAvg (McMahan et al., 2017), which averages the selected
local models with weights proportional to their sample sizes.

Poisoning Attacks Malicious clients may join the training
process. We assume them to have the similar computa-
tional capability as benign clients and they cannot access
the weights or data of other clients. Their objectives are to
reduce the model accuracy on certain tasks, termed targeted
attacks (Chen et al., 2017; Bhagoji et al., 2019), or to mis-
lead the global model to make wrong inferences on data sets
with certain triggers, termed backdoor attacks (Xie et al.,
2019; Bagdasaryan & Shmatikov, 2021), without degrad-
ing the overall model accuracy. To obtain such a poisoned
model, malicious clients train their local models on mali-
cious data to minimize the malicious loss functions LM as
follows:

θk
t,i+1 ← θk

t,i − ηt,i
[
π∇L

(
θk
t,i

)
+ (1− π)∇LM

(
θk
t,i

)]

Note that data samples in the malicious data set are assumed
have the same distribution as the benign training data. The
only difference is that for targeted attacks, the labels are
altered to belong to a certain target class whereas for back-
door attacks, data samples with certain patterns are inserted
into the dataset.

Model poisoning attacks are typically stealthy and difficult
to detect, as the malicious dataset is usually small and does
not affect the accuracy of the global model(Fung et al., 2020;
Steinhardt et al., 2017; Tolpegin et al., 2020; Bagdasaryan
& Shmatikov, 2021).

2.2. Prior Art on Defenses

Server-side defenses To defend against the adversarial par-
ties, the federator may employ (i) robust aggregation by
computing the median (Yin et al., 2018) of all or subset
of client updates, e.g., Trimmed-mean (Yin et al., 2018),
or (ii) filtering by removing outliers in the set of updates
based on pair-wise distance, e.g., MultiKrum (Blanchard
et al., 2017). Bulyan (Mhamdi et al., 2018) combines both
approaches by first filtering the outliners using MultiKrum
and then applying robust aggregation using Trimmed Mean.
These defenses are designed for general adversarial attacks
where the number of malicious clients is strictly less than
the benign clients.

Defenses for poisonous model attacks. Recognizing the
increasing threat from poisoning attacks, the prior art de-
signs attack-specific defenses by bounding the norms of
updates or adding noise. SparseFed (Panda et al., 2022)
mitigates model poisoning attacks in FL by only updating
the most relevant weights of the aggregated models. Deep-
Sight (Rieger et al., 2022) mitigates backdoor attacks in
FL through clustering the last layer of deep models to fil-
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Figure 2: The lingering impact of bursty backdoor attack on
federated learning for FashionMNIST.

ter outliers. CRFL (Xie et al., 2021) exploits clipping and
smoothing methods to provide certified robustness against
backdoor attacks.

Aforementioned defenses mainly take place at the federa-
tor, under an implicit assumption that the number of ma-
licious clients selected in each global round is lower than
the number of benign clients. To the best of our knowledge,
FL-WBC (Sun et al., 2021) and Local Differential Privacy
(LDP) (Naseri et al., 2022) are the only client-side defenses
against model poisoning attacks in federated learning. In
LDP, benign clients add noise to updates before sending
updates to the server.

3. Hessian Matrix
We first demonstrate the long-term impact of bursty adver-
sarial patterns on state-of-the-art defenses that we already
discussed in Section 2.2. Details about the framework used
can be found in Section 5. Using a total of 100 clients with
25 of them being malicious, we selected 5 clients per round.
Fig. 2a shows the number of malicious clients selected. The
learning task is image classification on FashionMNIST and
the malicious clients execute a 9-pixel attack (Bagdasaryan
& Shmatikov, 2021). As displayed in Figure 2b, none of the
defenses can defend against the attack, i.e., the final back-
door accuracy is around 90%, though Bulyan and Multikrum
are able to filter out the malicious updates occasionally. This
example highlights the ineffectiveness of existing defenses
against bursty adversarial patterns. While the attack only
directly affects some rounds, the effect lingers.

Attack Effect and Hessian Matrix The effect of attacks
taking place at round t, δt, can be formalized (Sun et al.,
2021) as follows δt ≜ θt − θM

t where θt represents the
global model weights at round t without the presence of
malicious updates and θM

t is the model weights from the
malicious clients.

Based on (Sun et al., 2021), the estimated attack effect, δ̂t,

can be written as the function of Hessian matrix

δ̂t =
N

K

[∑

k∈St
pk

I−1∏

i=0

(
I − ηtH

k
t,i

)
]
δ̂t−1, (1)

where pk is aggregation weight for client k, Hk
t,i ≜

∇2L
(
θk
t,i

)
is the Hessian matrix at local iteration i of global

round t and I is the identify matrix.

The Hessian matrix Hk
t,i is observed to be highly sparse

during the training process, for both benign and malicious
clients. Therefore, the weights of δ̂t−1 in Eq. 1 are close to∑

k∈St p
k
∏I−1

i=0 (I). As a consequence, δt causes notable
changes and due to the relation between δ̂t−1 and δ̂t, the
effect lingers.

Insight To mitigate the effect of poisoned weights, benign
clients can perturb the Hessian matrix such that that co-
efficient of δt−1 is minimized, i.e.,

∏I−1
i=0 (I). As noted

earlier, the Hessian matrix here is sparse, FL-WBC (Sun
et al., 2021) proposes to add random noise to the benign
clients’ model weights such that their Hessian matrix is
no longer sparse and the impact of δt−1 is thus reduced.
However, as the noise is randomly added, the coefficient
may not necessarily be reduced, unfortunately enhance the
attacking effects, and further degrade the model accuracy,
shown by extensive experiments in Appendix C. We are thus
motivated to find alternatives to perturb the Hessian Matrix
more effectively to reduce coefficients without degrading
the model’s accuracy.

4. LeadFL
In this section, we describe LeadFL, a novel client-side de-
fense and can be agilely combined with any existing server-
side defense.

4.1. Algorithm Design

The core idea of LeadFL is to mitigate the attack effect by
minimizing the coefficient term

(
I − ηtH

k
t,i

)
in Equation 1.

Essentially, we aim to add perturbation to the Hessian matrix
such that this coefficient term vanishes. We show that this
is equivalent to adding the same amount of perturbation
in model updates θk

t,i+1, which motivates our proposed
novel regularization term. We first summarize the proposed
regularized model update protocol before conducting an
analysis:

θ̃k
t,i+1 ← θk

t,i − ηt∇L
(
θk
t,i

)
(2)

θk
t,i+1 ← θ̃k

t,i+1 − ηtα clip
(
∇

(
I − ηtH̃

k
t,i

)
, q
)

(3)

where θ̃k
t,i+1 is the intermediate model weights in local iter-

ation t+ 1 of client k. H̃t,i is the estimation of the Hessian

3
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matrix of the local model before adding the regularization
term in this local iteration, α is a hyper-parameter to control
the magnitude of the regularization term, and clip is the
operation of bounding the regularization term to a threshold
q to ensure convergence.

Hessian Matrix Estimation As the Hessian matrix is the
second-order derivative of the loss function, we resort to
the estimation of the Hessian matrix proposed in (LeCun
et al., 1989). We only focus on the diagonal terms due to the
intractability of estimating non-diagonal terms. Specifically,
the diagonal elements in Hk

t,i can be estimated from the
change of the gradient between local iteration i and i+ 1:
∇L

(
θk
t,i+1

)
− ∇L

(
θk
t,i

)
. In this term, the change of the

gradient can be approximated by the change of the model
parameters during the local iterations, i.e.,

Ĥk
t,i =

(
∆θk

t,i+1 −∆θk
t,i

)
/ηt.

where ∆θk
t,i+1 = θk

t,i+1 − θk
t,i+1 and ∆θk

t,i = θk
t,i − θk

t,i.

The estimation of the Hessian Matrix before adding the reg-
ularization term in Equation 3 can be rewritten as a function
of model parameter changes.

H̃k
t,i =

(
θ̃k
t,i+1 − θk

t,i −∆θk
t,i

)
/ηt (4)

Adding Perturbation Our objective now is to perturb the
estimated Hessian matrix such that the coefficient term(
I − ηtH

k
t,i

)
is minimized, i.e.,

Ĥk
t,i ← argmin

H̃k
t,i

(
I − ηtH̃

k
t,i

)

Combining it with Equation 4, optimizing H̃ is then equiv-
alent to

θk
t,i+1 ← argminθ̃k

t,i+1

(
I −

(
θ̃k
t,i+1 − θk

t,i −∆θk
t,i

))

(5)

Gradient Clipping To ensure that the model can converge
after the regularization term is added, the gradients are
clipped with the threshold q during the local training. The
clipping function is defined as:

clip
(
∇

(
I− ηt,iH̃

k
t,i

)
, q
)
r,c

=




∇
(
I− ηt,iH̃

k
t,i

)
r,c
,

∣∣∣∣∇
(
I− ηt,iH̃

k
t,i

)
r,c

∣∣∣∣ ≤ q

q,

∣∣∣∣∇
(
I− ηt,iH̃

k
t,i

)
r,c

∣∣∣∣ > q

where r and c are the indexes of rows and columns of the
Matrix.

Algorithm 1 LeadFL and robust aggregation

Input: number of global rounds T , local learning rate
ηt, regularization rate α, clipping bound q, # of clients
selected in a round K
for communication round t = 0, 1, · · · , T − 1 do

Server randomly chooses K clients
parallel on clients k = 1, 2, · · · ,K do

Update model weights as global weights from the
last round θk

t ← θt;
for local iteration i = 0, 1, ... do

Compute gradients and update weights
θ̃k
t,i+1 ← θk

t,i − ηt∇L
(
θk
t,i

)
;

Estimate Hessian matrix
H̃k

t,i =
(
θ̃k
t,i+1 − θk

t,i −∆θk
t,i

)
/ηt

Compute and Clip gradients of the regularization
term Rk

t,i = clip
(
∇

(
I − ηtH̃

k
t,i

)
, q
)

;

Update weights θk
t,i+1 ← θ̃k

t,i+1 − ηtαR
k
t,i;

end for
Compute updates uk

t = θk
t − θt;

end parallel
Aggregate updates using server-side defense:
ut = Aggregation

(
{uk

t }Kk=1

)

Update θt+1 ← θt + ut

end for
Output: {θt}T−1

t=0

Algorithm To compute the model updates as shown in Equa-
tions 2 and 3, we adopt a two-step backpropagation process.
We first allow the losses to backpropagate and then esti-
mate the diagonal values of the Hessian matrix. Our second
step is to use the estimated Hessian Matrix to compute the
proposed regularization term and to allow the regulariza-
tion loss to backpropagate. We summarize the key steps of
LeadFL in Algorithm 1 and includes option of combining
it with a server-side defense.

4.2. Convergence Analysis

In this part, we show that LeadFL converges under the
same assumptions as other methods when there are no mali-
cious clients attacking the FL system.We summarize these
common assumptions in Appendix A.1.

In our defense, we add a new backpropagation process to
perturb the Hessian matrix as shown in Equation 3. This
extra backpropagation can be seen as a modification of
gradients ∇L:

∇L′ (θk
t,i

)
= ∇L

(
θk
t,i

)
+clip

(
∇

(
I − ηtH̃

k
t,i

)
, q
)

(6)

Based on Assumption 3.1.1 to 3.1.5, we can derive the

4
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convergence guarantee of our defense on FedAvg as follows.

Theorem 4.1 (Convergence Guarantee). Let Assump-
tions A.1 to A.5 hold and l, µ, σk, G,K,N,Γ,L∗ be as
defined therein and in Definition A.6 . Choose κ = l

µ ,
γ = max{8κ,E} and the learning rate ηt =

2
µ(γ+t) . Then

we have the following bound for LeadFL:

E [L (θT )]− L∗ ≤ κ

γ + T − 1

(
2(B + C)

µ
+

µγ

2
E ∥θ0 − θ∗∥2

)

where

C =
N −K

N − 1

4

K
E2(d2q2 +G2)

B =

N∑

k=1

p2k(d
2q2 + σ2

k) + 6lΓ + 8(E − 1)2(d2q2 +G2)

The proof is shown in Chapter 3.

4.3. Robustness Analysis

In this subsection, we use the certified radius framework
proposed by (Panda et al., 2022) to analyze the robustness of
LeadFL. We consider two types of threat models: periodic
poisoned model submissions and bursty poisoned model
submissions. Due to the space limitation, we provide the
definitions and assumptions in Chapter 3.

The certified radius is the upper bound on the distance be-
tween a poisoned model and a benign model. From (Xie
et al., 2021), minimizing the certified radius improves ro-
bustness because close models are likely to have the same
predictions. Based on the aforementioned assumptions and
definitions, the certified radius for general protocols is pro-
posed by (Panda et al., 2022).

Theorem 4.2. Let f be a c-coordinatewise-Lipschitz pro-
tocol on a dataset D. Then R(ρ) = Λ(T )(1 + dc)Λ(T )ρ
is a certified radius for f , where Λ(t) is the cumulative
learning rate Λ(t) =

∑T−1
t=0 ηt, d is the dimension of model

parameters.

4.3.1. SCENARIO I

Scenario I assumes a simplified model of bursty adversarial
patterns, namely the most extreme pattern where periodi-
cally, a large number of clients is malicious and there are no
malicious clients in the other rounds. Concretely, malicious
clients submit poisoned updates in global round TA. After-
wards, there are no malicious updates submitted between
round TA and round T − 1.

Theorem 4.3 (Certified Radius in Scenario I). Let Assump-
tions A.9 hold and TA,c be as defined therein. We assume

that LeadFL with FedAv aggregation is used. The certified
radius satisfies:

R(ρ) =

(
N

K

)T−TA

∣∣∣∣∣
T∏

t=TA

[∑

k∈St

pk
I−1∏

i=0

(
I − ηtH

k
t,i

)
]∣∣∣∣∣

·
TA−1∑

t=0

ηt(1 + dc)
∑TA−1

t=0 ηtρ

The proof is in Chapter 3. As LeadFL aims to minimize(
I − ηtH

k
t,i

)
in the local training as by Equation 6. Hence,

LeadFL achieves a low certified radius.

4.3.2. SCENARIO II

Here, we consider a more general threat model, the number
of malicious clients varies between rounds with resulting
bursty adversarial patterns. Concretely, we assume that the
clients are selected randomly. We furthermore assume the
presence of a server-side defense that filters out updates.

The probability of a server-side defense filtering out all mali-
cious updates is correlated to the number of malicious clients
selected in a communication round. For an attack atk, we
use gatk(·) to represent the above correlation. The probabil-
ity of a server-side defense filtering out all malicious updates
in global round t can be presented as ϕt

atk = gatk(K
t
m),

where Kt
m is the number of malicious clients selected in

round t. We then can derive the certified radius of LeadFL
combined with any given server-side defense under bursty
adversarial patterns as:

Theorem 4.4 (Certified Radius in Scenario II). Let Assump-
tion A.9 hold. The certified radius of the threat model is

R(ρ) = (1 + dc)

∑
t∈ΦT

ηt

ρ·


∣∣∣∣∣∣
∏

t∈ΓT


 N

|S∗
t |

∑

k∈S∗
t

pk
I−1∏

i=0

(
I − ηtH

k
t,i

)


∣∣∣∣∣∣
+ |ΦT |

∑

t∈ΦT

ηt




where ΦT is the set of communication rounds that server-
side defenses cannot filter out all malicious updates. ΓT is
the set of communication rounds that server-side defenses
filter out all malicious updates. S∗

t is a set of clients whose
updates are not filtered out by the server-side defense in
round t. |ΦT | and |S∗

t | are the cardinality of the set ΦT and
S∗
t , where E [|ΦT |] =

∑T−1
t=0 gatk(K

t
m).

Note that the value |ΦT | depends entirely on the server-side
defense. In the absence of a server-side defense, the certified
radius is hence large, so we need the server-side defense to
lower it.
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Table 1: Comparison of defenses under 9-pixel pattern backdoor attack on IID and non-IID FashionMNIST dataset.

Distribution IID Non-IID
Server-side Defense SparseFed Multi-Krum Bulyan SparseFed Multi-Krum Bulyan
Client-side Defense None None LDP FL-WBC Ours None LDP FL-WBC Ours None None LDP FL-WBC Ours None LDP FL-WBC Ours

MA 85.9 89.3 87.0 87.2 87.9 89.2 86.0 86.0 86.3 84.9 85.6 76.7 77.2 79.1 77.4 73.4 71.7 74.0
BA Avg 97.9 82.6 76.0 77.5 32.9 78.8 74.1 70.6 21.6 99.8 88.7 80.4 74.0 39.5 92.5 71.9 73.7 32.3
BA Final 99.9 93.2 79.6 80.6 0.0 90.6 62.2 86.5 0.3 99.9 93.3 86.7 70.3 1.2 88.6 94.7 69.0 2.0

Table 2: Comparison of defenses under 9-pixel pattern backdoor attack on IID and non-IID CIFAR10 dataset.

Distribution IID Non-IID
Server-side Defense SparseFed Multi-Krum Bulyan SparseFed Multi-Krum Bulyan
Client-side Defense None None LDP FL-WBC Ours None LDP FL-WBC Ours None None LDP FL-WBC Ours None LDP FL-WBC Ours

MA 50.9 76.3 48.0 43.3 56.9 76.2 41.5 42.2 54.8 55.3 70.7 43.2 42.9 55.3 61.7 36.7 36.2 51.4
BA Avg 95.8 77.5 53.1 56.9 35.6 79.1 46.7 51.3 43.9 45.2 85.8 55.4 54.4 45.2 87.5 48.8 48.1 46.8
BA Final 98.5 80.5 43.8 40.5 25.6 87.0 23.4 35.5 21.4 34.4 96.2 52.4 35.4 34.4 95.2 29.8 47.7 27.3

5. Evaluation
In this section, we demonstrate the effectiveness of LeadFL
for multiple server-side defenses. We consider heteroge-
neous data distributions and compare against state-of-the-art
client-side defense mechanisms. Furthermore, our ablation
study confirms that a combination of server-side and client-
side defenses succeeds in mitigating attacks that are highly
effective in the presence of either of the two.

We perform all experiments using PyTorch’s deep learning
framework (Paszke et al., 2019) in combination with the
FLTK Testbed 1. We reimplemented FL-WBC, LDP, and the
targeted attacks based on the source code of FL-WBC 2 to
compare them with our defense. Additionally, we reimple-
ment SparseFed and backdoor attacks based on the source
code provided by (Panda et al., 2022) 3 and (Bagdasaryan &
Shmatikov, 2021) 4, respectively. Our code can be found at
https://github.com/CarlosChu-c/LeadFL.

5.1. Evaluation Metrics

Our goal is to achieve high accuracy for the main task but
mitigate the backdoor. Thus, we primarily focus on the
following three metrics:

• Main Task Accuracy (MA): The main task accuracy
is the fraction of correctly classified samples of the
model on test data without the trigger. As other works,
we consider the maximum accuracy achieved during
training.

• Backdoor Accuracy (BA): The backdoor accuracy
qualifies how successful the attacker is in integrating
a backdoor into the model. We measure backdoor
accuracy as the percentage of samples with the trigger
that are classified as intended by the attacker. We found

1https://github.com/JMGaljaard/
fltk-testbed

2https://github.com/jeremy313/FL-WBC
3https://github.com/sparsefed/sparsefed
4https://github.com/ebagdasa/backdoors101

that the backdoor accuracy does not converge during
our experiments, hence we consider both the average
and the final backdoor accuracy. The final backdoor
accuracy is the one of the model that is later used but it
does not give a full picture due to the high variance in
backdoor accuracy over rounds, which is why we also
include the average backdoor accuracy.

• Mitigation rounds: Our attacks do not have the same
strength in every round due to the fact that the number
of malicious clients selected varies between rounds.
When a lot of malicious clients are involved, the back-
door accuracy spikes and then decreases again. After
a strong attack that achieves a temporary backdoor ac-
curacy of more than 50%, we define the mitigation
rounds as the number of communication rounds until
the backdoor accuracy drops below 50%.

5.2. Evaluation Setup

In each simulation run, we have a set of clients. During
each round, the server selects clients. The clients train and
apply the client-side defense during training. Afterwards,
the server aggregates the local updates submitted by the
clients, applying the server-side defense during aggregation.

Client Selection and Rounds There are 100 clients in total,
of which 25 are malicious. There are 80 global rounds and
10 local rounds. The server selects 10 clients per global
round. For most experiments, the selection is random but
consistent over experiments, i.e., for two experiments, the
clients selected in round t are the same to enable comparison
between the different settings. Figure 2a displays the num-
ber of malicious clients per round. In order to ensure that
our results are not an artifact of this one specific client selec-
tion, we present results for other selections in the Chapter
4.

In previous work, periodic attacks alternating between a
large number of malicious selected clients and no malicious
selected clients have been evaluated. In addition to random
selecting, we hence also use a selection corresponding to

6
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Table 3: Comparison of defenses under 9-pixel pattern backdoor attack on IID CIFAR100 dataset.

Distribution IID
Server-side Defense SparseFed Multi-Krum Bulyan
Client-side Defense None None LDP FL-WBC Ours None LDP FL-WBC Ours

MA 32.3 38.4 28.3 28.8 30.6 37.4 25.6 25.8 27.2
BA Avg 85.1 58.0 57.3 53.8 29.3 56.1 49.3 48.3 29.0
BA Final 68.3 52.2 34.5 29.2 6.4 32.8 21.7 20.4 3.5
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Figure 3: Comparison of 9-pixel back door attack on FashionMNIST and CIFAR10 when the attack is periodic.

such a periodic attack: For every 10 global rounds, 6 of
10 clients are malicious in the first two rounds while the
remaining 8 rounds only have honest clients.

Datasets and Model Architecture We conduct experiments
on FashionMNIST, CIFAR10 and CIFAR100, which are
both benchmark tasks in image classification. For Fashion-
MNIST, each of the 100 clients receives 600 images out of
60.000. For CIFAR10 and CIFAR100, each client gets 500
out of 50.000.

In the IID setting, samples are uniformly distributed to
clients. In the non-IID setting, we deploy the limited la-
bel strategy (McMahan et al., 2017) that is also used for the
evaluation of FL-WBC in FashionMNIST and CIFAR10:
Of the 10 classes in each of the two datasets, each client is
assigned 5 random classes. They are then assigned an equal
number of randomly selected samples from each of their
classes. The clients’ datasets are selected independently.

We adopt the same model architectures as FL-WBC (Sun
et al., 2021) on FahionMNIST and CIFAR10. On Fash-
ionMNIST, we employ two convolutional layers and one
fully-connected layer. Our CIFAR10 model consists of two
convolutional layers and three fully-connected layers. And
on CIFAR100, we employ ResNet9 (He et al., 2016), which
is a more complicated model. The detail of the model ar-
chitecture and hyperparameters can be found in Chapter
3.

Attacks and Defenses For attacks, we evaluate both state-
of-the-art backdoor and targeted attacks. In terms of back-
door attacks, we use the 9-pixel pattern backdoor attacks
and the single-pixel backdoor attacks from (Bagdasaryan
& Shmatikov, 2021). As a targeted attack, we evaluate the
single-image targeted attacks from (Bhagoji et al., 2019):

All malicious clients add one incorrectly classified image
to their otherwise clean dataset; it is the same image for all
clients. We use the settings that achieved the best results in
the original papers.

Here, we use Multi-Krum (Blanchard et al., 2017) and
Bulyan (Mhamdi et al., 2018) as server-side defenses. We
also compare SparseFed (Panda et al., 2022), one of the state-
of-the-art defenses against poisoning attacks in FL. More-
over, we considered CMA (Yin et al., 2018) and CTMA (Yin
et al., 2018) but they had very little effect in comparison to
the other defenses, so we only include the corresponding
results in the Chapter 4.Note that our protocol can enhance
any other server-side defense as well.

For client-side defenses, we choose FL-WBC and LDP as
the baseline. For these two defenses, we apply Laplace
noise with mean = 0 and std = 0.2 as in the original
papers. For our defense, we set the clipping norm q = 0.2.
For the regularization term, we use hyperparameter tuning to
choose α = 0.4 for FashionMNIST, α = 0.25 for CIFAR10,
and α = 0.15 for CIFAR100.

5.3. Results

Table 1, 2 and 3 show the results for the 9-pixel backdoor
attack. In our threat model, SparseFed presents limited
effectiveness in defending against poisoning attacks, achiev-
ing higher Backdoor accuracy than Multi-Krum and Bulyan
across all three datasets. And it can be seen that our defense
achieves the highest main task accuracy and lowest backdoor
accuracy. In comparison to the case without a client-side
defense, the main task accuracy is reduced by less than 10%
whereas the final backdoor accuracy is 0 or close to 0 for
FashionMNIST. For CIFAR10, the main task accuracy of
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Figure 4: Comparison of 9-pixel pattern backdoor accuracy on FashionMNIST and CIFAR10. The server-side defense here
is Multi-Krum. Black hollow circles indicate that the system is attacked very strongly in that round.
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Figure 5: Various defenses’ tradeoffs between main task accuracy and mitigation rounds on FashionMNIST and CIFAR10.

our defense is between 50% and 60% and the final backdoor
accuracy is between 20% and 35%. The average backdoor
accuracy for our defense is higher than the final accuracy but
always below 50% and lower than the backdoor accuracy
of the state-of-the-art defenses. For CIFAR100, the main
task accuracy is about 30% and the final backdoor accuracy
is only between 3% and 7%. Indeed, without a client-side
defense, the final and average backdoor accuracy is always
above 75% in FashionMNIST and CIFAR10, and 55% in
CIFAR100, meaning that the server-side defense on its own
is ineffective. The other client-side defenses are consider-
ably less effective than ours: For FashionMNIST, they have
a final and average backdoor accuracy of above 69%, a stark
contrast to our defense, especially for the final backdoor
accuracy. For CIFAR10, the difference is less pronounced,
with backdoor accuracies that are only about 10% higher
than for our defense. However, the main task accuracy of
the other defenses falls below 50% for CIFAR10. For CI-
FAR100, although the main task accuracy of our defense is
only about 2% higher than other client-side defenses, the
average backdoor accuracy and final backdoor accuracy of
our defense is about 20% lower than other defenses.

While our defense is hence an improvement over existing de-
fenses, there are notable differences between settings. Non-
IID distributions of data reduce the main task accuracy and
increase the backdoor accuracy for all defenses. The result
is unsurprising: The more uniform benign clients are, the
easier it is to detect malicious clients whose model updates
differ. However, if client data and hence models already

differ between benign clients, it becomes more difficult to
identify and mitigate malicious behavior.

In order to analyze how the backdoor accuracy is affected by
the number of attackers, we consider the backdoor accuracy
over the duration of the experiment. Figure 4 displays the
backdoor accuracy. We can see that whenever the number of
malicious clients exceeds the number of benign clients, i.e.,
if there are at least 6 malicious clients selected in a round,
the backdoor is successfully embedded into the model, as
shown by a high backdoor accuracy of close to 100%. In
subsequent rounds with a lower amount of malicious clients,
the backdoor accuracy decreases. Our defense exhibits a
faster decrease in backdoor accuracy than the other defenses,
which results in the lower final and average backdoor ac-
curacy seen above. The same pattern is observed for both
datasets and levels of data heterogeneity, although the speed
of recovery is faster for iid data distributions.

We compare this behavior for random client selection with
the periodic attack described in Section 5.2. We observe
the same pattern, displayed in Figure 3, as when selecting
clients randomly, only that it is now periodic. For the peri-
odic setting, we derive the number of mitigation rounds, as
defined in Section 5.1. As the delay between two attacks is
always the same and the attacks are of the same severity, the
periodic setting enables use to compare recovery in a fair
manner. We can then analyze whether there is a trade-off
between mitigation rounds, i.e., strength of the defense, and
main task accuracy.
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Concretely, for each experiment and each attack, we com-
pute the number of mitigation rounds. If the backdoor ac-
curacy does not recover during the 8 rounds between two
attacks, we use ≥ 8 for the number of mitigation rounds.
For a defense d, we then compute MAr,d, the average main
task accuracy over all experiments for d that have r miti-
gation rounds5. Figure 5 shows the results. Our defense
achieves a better trade-off between main task accuracy and
recovery, i.e., for the same number of mitigation rounds, it
has a higher main task accuracy. An exception is the case
≥ 8 with no client-side defense having a higher main task
accuracy, which makes sense as if our defense does not lead
to recovery, not applying a defense is the better option. How-
ever, usually our defense successfully mitigates the attack
and if it does so, it has a higher main task accuracy than
other defenses.

All the presented results are for the 9-pixel attack. The
results for the 1-pixel attack and the single-image targeted
attack are similar (see Chapter 4).

6. Conclusion
To defend against model poisoning attacks with bursty adver-
sarial patterns, we propose a novel client-side self defense,
LeadFL, which perturbs the local model updates by adding
a novel regularization term based on the Hessian matrix
of the gradients. Thanks to the optimized regularization,
LeadFL effectively thwarts backdoor and targeted attacks
with a low degradation of the main task accuracy, proven
theoretically and empirically. Evaluated on FashionMNIST,
CIFAR10 and CIFAR100, LeadFL combined with a server-
side defense can reduce the backdoor accuracy by up to 65
% in comparison only using a server-side defense.
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2
Background

The rapid development of computational devices and the big data revolution have led
to the creation and accessibility of vast amounts of data. However, the centralization
of such extensive data collections for model training on a single cloud server can be
prohibitively expensive and time-consuming (Li et al., 2021). Moreover, the dispersion
of private data across local clients leads to the emergence of isolated data islands
(Kairouz et al., 2021). In this context, federated learning has emerged as a promising
distributed machine learning framework that finds application in numerous domains
(Konečnỳ et al., 2016). In this paradigm, data remains distributed across a multitude
of clients, and the model training process is decentralized. At the commencement of
each training round, the server disseminates the model to all clients. Subsequently,
each client locally trains the model utilizing its own data, then returns

Despite the advantages offered by federated learning in terms of enhancing machine
learning training speed and safeguarding data privacy, recent research highlights that
this framework is not immune to poisoning attacks. These attacks can be orchestrated
by a portion of the local clients who alter their model updates with malicious intent,
such as to compromise the global model’s performance or to cause the model to behave
unpredictably with specific inputs (Bagdasaryan et al., 2020; Wang et al., 2020). There
are two primary types of such poisoning attacks. The first, known as Untargeted
poisoning attacks, seeks to degrade the overall performance of the global model. The
second, Targeted poisoning attacks, is designed to make the model behave inappropriately
on specific inputs subtly controlled by the attackers.

This chapter will delve into the background of federated learning, poisoning attacks,
and the defenses devised to counter these threats.

2.1. Fedearted learning
In the federated learning paradigm, each client retains a local model, while a central
server maintains a global model for the purpose of model aggregation, as depicted in
Figure 2.1. This process bears resemblance to centralized training, involving multiple
iterative rounds. At the beginning of each round, the server disseminates the global
model to the clients, facilitating them in updating their individual models. The clients
then employ their local datasets to train their models and subsequently transmit the

12
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updates, which could be gradients or weights, back to the central server. The server
aggregates these local models using algorithms such as FedAvg.

To elaborate, at the start of the 𝑡𝑡ℎ round, the server distributes the weight of the
aggregated model, denoted as 𝜃

𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 , to each client (𝑘1, 𝑘2, ..., 𝑘𝑚). Each client then
uses its local dataset to train and update its local model as follows:

𝜃
global
𝑖 ,𝑡

−→
trained on local dataset

𝜃local
𝑖 ,𝑡+1 (2.1)

Here, 𝑖 denotes the 𝑖𝑡ℎ client. Upon completion of local training, each client uploads
its trained model to the server. For aggregating models across n clients, the FedAvg
algorithm computes the new global model as a weighted average of the submitted
local models, as follows:

𝜃
global
𝑖 ,𝑡+1 =

𝑚∑
𝑖=1

𝑛𝑖∑𝑚
𝑠=1 𝑛𝑠

𝜃local
𝑖 ,𝑡+1 (2.2)

In this equation, 𝑛𝑖 represents the size of the local dataset of client 𝑘𝑖 . Thus, a client’s
influence in model aggregation is proportional to the size of its local dataset.

Similarly, clients can also submit only model updates for modifying the global model.
If the model updates of the 𝑖𝑡ℎ client in the 𝑡𝑡ℎ round are denoted asΔ𝑖 ,𝑡 = 𝜃local

𝑖 ,𝑡+1 −𝜃
global
𝑖 ,𝑡

,
then FedAvg using the model gradient can be formulated as:

𝜃
global
𝑖 ,𝑡+1 = 𝜃

global
𝑖 ,𝑡

+
𝑚∑
𝑖=1

𝑛𝑖∑𝑚
𝑠=1 𝑛𝑠

Δ𝑖 ,𝑡 (2.3)

2.2. Poisoning Attacks in Federated Learning
Federated learning systems are susceptible to a variety of threats, such as poisoning
attacks, inference attacks, and gradient inversion attacks. Among these, poisoning
attacks stand out as the most severe. The adversaries in poisoning attacks are clients,
which makes them quite different from gradient inversion and model inversion attacks,
where the server acts as the adversary. However, typically in real-world scenarios,
the server is assumed to be reliable and trusted. Poisoning attacks are also more
threatening compared to inference attacks. This is due to the fact that the malicious
parties in a poisoning attack have the ability to directly alter the model updates
of clients to fulfill their harmful intentions. On the other hand, inference attacks
merely allow the adversary to infer private data from other clients without reducing
performance, under the assumption that the server is honest-but-curious. In this
subsection, we will delve into the details of model poisoning attacks within the context
of federated learning.

Categorized by attackers’ objective
Based on the attacker’s objective, poisoning attacks can be split into two groups:
untargeted and targeted poisoning attacks. Untargeted poisoning attacks are designed
to undermine the performance of the global model, while targeted poisoning attacks
are used by assailants aiming to subtly alter a model in response to specific inputs
under their control, such as a unique user or a set of inputs. Among targeted attacks,
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Global 
Model

Local Data 1

Local Model 2 Local Model 3Local Model 1

Local Data 2 Local Data 3

Distribute Global Model
Update Local Models/Updates

Figure 2.1: An overview of the federated learning system. The Global Model, updated after each global
round, is maintained on the server side. The Local Model is trained on each client’s Local Data.
Following every global round, the server aggregates the individual local models to create a new,

updated Global Model.

backdoor attacks are the most covert and hazardous. These attacks trigger the model to
behave anomalously when presented with specific cues, like particular pixel patterns
in images or specific text words.

Categorized by attack techniques
As depicted in Figure 2.2, poisoning attacks can be classified into data poisoning attacks
(Xie et al., 2019; Sun et al., 2019; Wang et al., 2020; Bagdasaryan et al., 2020) and model
poisoning attacks (Blanchard et al., 2017; Yin et al., 2018; Xie et al., 2020; Baruch et al.,
2019; Fang et al., 2020; Shejwalkar & Houmansadr, 2021), based on the attack method.
In a data poisoning attack, an attack modifies or distorts the distribution of a local
client’s training data, which subsequently poisons the local and, after aggregation, the
global model. For instance, in a label-flipping attack, the training data label is flipped
to diverge the model, and in a backdoor attack, particular patterns are added to the
training data that lead the model to misclassify data samples. Model poisoning attacks
involve manipulating model updates before aggregation. This poisoned model update
can affect the global model by changing the convergence direction or decelerating
convergence speed. For instance, in a sign-flipping attack, the malicious clients change
the sign of the model updates to poison the global model.

2.3. Defenses against Poisoning Attacks
Defenses against poisoning attacks in federated learning can be categorized into four
classes according to their approaches: 1) filtering-based defenses: 2.3.1, 2) DP-derived
defenses: 2.3.2, 3) optimizer-based defenses: 2.3.3, and 4) ensembling-based defenses:
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Figure 2.2: A comparison of data poisoning attacks and model poisoning attacks: Data poisoning
attacks corrupt users’ local training data, while model poisoning attacks directly manipulate the model

updates.

2.3.4.
In filtering-based defenses, the server tries to discard malicious updates or anoma-

lous coordinates of updates, leveraging all updates submitted to the server over single
or multiple rounds. Differential privacy-derived defenses involve the server or clients
employing clipping or noise addition techniques, derived from differential privacy,
to enhance the robustness of the federated learning system against poisoning attacks.
Optimizer-based defenses involve modifying the optimizer, like SGD, used in the
optimization process to mitigate the impact of poisoning attacks. Ensembling-based
defenses involve choosing diverse sets of clients to avoid the influence of attackers.
These defenses can also be classified into server-side and client-side based on their
implementation location. And some defenses utilize multiple strategies to safeguard
against poisoning attacks.

2.3.1. Filtering-based
In these defense mechanisms, the server identifies and eliminates malicious or un-
reliable updates, which are determined based on the updates from one or multiple
rounds. Consequently, all the defenses in this category are implemented on the server
side, meaning the server, not the benign clients, conducts the defenses. There are
several types of filtering-based defenses, including distance-based, statistics-based,
clustering-based, and spectral anomaly detection defenses. Each of these categories
will be further explored in the sections that follow.

Distance-based Methods
Distance-based methods involve the server identifying malicious updates by comparing
the distances between updates to defend against poisoning attacks in distributed
learning. Krum (Blanchard et al., 2017) is a seminal method in this category. It chooses
an update Δ𝑖 from the 𝑖𝑡ℎ client that is nearest to its 𝑛 − 𝑚 − 2 neighboring updates
in the 𝑙2 norm. The downside of Krum is that the convergence speed is slow, which
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leads to the proposal of the Multi-Krum method (Blanchard et al., 2017). Multi-Krum
selects 𝑘 gradients in an iterative Krum way. It selects a gradient using Krum from
the remaining set, adds it to a selection set, and removes it from the remaining set.
FABA (Xia et al., 2019) eliminates malicious updates based on their difference from
the average update, reducing computational complexity. AFA (Muñoz-González et al.,
2019) detects malicious updates based on the cosine-similarities with averaged updates,
enabling the number of attacks to remain unknown. FoolsGold (Fung et al., 2020)
concentrates on Sybil attacks, maintaining a history of updates from each client in each
round. It computes the pairwise similarity between aggregated historical updates
to estimate client similarity more accurately. In comparison, Krum, MultiKrum, and
FABA all assume the number of attackers is below a certain threshold. However, in
AFA, the number of attackers can remain unknown.

Statistics-Based Methods
The defenses in this category attempt to filter out the poisoning updates based on
statistical information such as median, trimmed mean, or magnitude of updates (Yin
et al., 2018). Some of these defenses filter updates element-wise rather than client-
wise. Coordinate-wise median focuses on the statistical performance of the robust
aggregation methods, while Coordinate-wise trimmed mean is similar, but removes
the top and bottom 𝛽 values and computes the averages of the rest of the values as
its aggregate of this dimension (Yin et al., 2018). Bulyan combines distance-based
and statistic-based defense, focusing on the problem that a single gradient dimension
with a very large value can bypass Krum and Multi-Krum and diverge the model
(Mhamdi et al., 2018). The defense mechanism proposed in (Ozdayi et al., 2021)
identifies malicious updates using sign information and adjusts the learning rate of
each parameter to steer the model away from malicious influences. This is achieved by
a voting system based on the sign of updates, with a learning rate negation if updates in
a certain direction are insufficient. On the other hand, (Panda et al., 2022) updates only
the top-k highest magnitude elements of gradients, detecting malicious coordinates by
their magnitude. This method also includes a robustness verification framework and
aims to minimize the certified radius, the maximum drift of a poisoned model from a
benign one.

Clustering Methods
Clustering is used in all defenses in this category to filter out outliers before the
aggregation process. Compared to other methods used to detect anomalies, clustering
can still be used when outliers are only slightly less than benign values, which fits
the threat model of poisoning attacks. FLAME uses pairwise cosine distances to
measure the angular differences between all model updates and applies the HDBSCAN
clustering algorithm (Nguyen et al., 2022). DeepSight consists of three steps in anomaly
detection: classification, clustering, and identifying poisoned clusters (Rieger et al.,
2022). SignGuard involves Norm-based Thresholding and Sign-based Clustering to
filter out gradients with the Norm larger or smaller than a threshold (Xu et al., 2022).
MUD-HoG focuses on the history of gradients of each client and filters out all the
updates from malicious and unreliable clients instead of filtering out the updates that
are predicted as malicious and unreliable (Gupta et al., 2022).
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Spectral Anomaly Detection Methods
Spectral anomaly detection has been used in several papers to defend against data
poisoning attacks in centralized learning settings. The method in a certain work utilizes
an encoder and decoder structure to approximate low-dimensional embeddings (Li
et al., 2020). Once trained on benign updates, the encoder-decoder model can identify
backdoored updates with much higher generation errors. VAE (Variation Auto-encoder)
is used as the encoder-decoder in this work (Li et al., 2020).

2.3.2. DP-derived
Recent advancements in federal learning algorithms have laid out the theoretical basis
for differential privacy (DP). The categories of differential privacy algorithms are 1)
Local DP, wherein every client introduces noise or limits the updates or gradients
during local training, and 2) Central DP (CDP), where the server enforces DP during
aggregation. In these algorithms, a clipping operation limits each client’s update
magnitude, assuring strict privacy guarantees for the subsequent perturbation step.
This step involves introducing noise to the model’s update for the safeguarding of client
privacy. It has been demonstrated that the clipping and noise introduction phases
effectively combat poisoning attacks, particularly those that are targeted. This section
presents defense measures comprising algorithms derived from different privacy
forms.

Differential Privacy in Federated Learning
The commonly used (𝜖, 𝛿)-differential privacy is defined as follows. An algorithmℳ
is (𝜖, 𝛿)-differentially private if

𝑃(ℳ(𝒟) ∈ 𝒮) ≤ 𝑒𝜖𝑃 (ℳ (𝒟′) ∈ 𝒮) + 𝛿 (2.4)

where𝒟 and𝒟′ represent neighboring datasets, and 𝒮 is an arbitrary subset ofℳ’s
outputs.

Clipping
This section presents defenses that include clipping operations. It introduces papers
that enhance the clipping function.

(Karimireddy et al., b) applies iterative centered clipping, robust against gradient
noise distribution. The centered clipping method follows:

𝒗𝑡+1 = 𝒗𝑡 +
1
𝑛

𝑛∑
𝑖=1
(Δ𝑖 − 𝒗𝑡)min

(
1, 𝐿𝑡

∥Δ𝑖 − 𝒗𝑡 ∥

)
(2.5)

where 𝒗𝑡 represents the aggregated update in the 𝑡-th round, Δ𝑖 is the 𝑖-th client’s
update in the 𝑡-th round, and 𝐿𝑡 is the 𝑡-th round’s clipping threshold. The paper’s proof
demonstrates that the centered clipping method yields fewer errors than preceding
clipping methods.

(Xie et al., 2021) provides a thorough proof of the proposed defense’s certified
robustness. The certification elucidates the robustness of the proposed defense’s
relationship with different federal learning parameters like the number of attackers,
training iterations, and poisoning rate. The clipping method’s clipping bound is a
hyper-parameter that can be adjusted to manage the robustness-accuracy trade-off.
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The authors of (Nguyen et al., 2022) discovered that benign model updates’ L2-
norms diminish during training. Therefore, the clipping bound should adapt to the
decrease. Their FLAME algorithm employs the L2-norms of updates’ median in a
round as the clipping bound. If more than 50% of clients are benign, this method
assures the clipping bound always falls within the L2 norms between benign and
global models.

(Naseri et al., 2022) proposes local differential privacy and contrasts it with central
differential privacy. The clipping and noises phase is executed following each client’s
local round in local difference privacy.

Noising
The citation (Xie et al., 2021) introduces isotropic Gaussian noise 𝜖𝑡 ∼ 𝒩

(
0, 𝜎2

𝑡 I
)

directly
to the aggregated global model after clipping it. 𝜎𝑡 here is a hyper-parameter linked to
certain robustness.

(Nguyen et al., 2022) applies an adaptive noising method to adjust the Gaussian
noise’s variance added to the aggregated model updates. According to prior research,
a model can classify backdoored examples better the more noise introduced to a
model during training. However, more noise causes more substantial performance
degradation. Hence, this defense attempts to strike a balance between defending
against attacks and maintaining the model’s accuracy in the main task. The defense
adds Gaussian noise based on the median distance between each client’s model and
the global model. The Gaussian noise is 𝜖𝑡 ∼ 𝒩

(
0, 𝜎2I

)
, where 𝜎 = 𝜆 · 𝑆𝑡 . 𝑆𝑡 is the

previous round’s median distances between each client’s models and the global model.
And 𝜆 is a hyper-parameter derived from differential privacy. Consequently, if the
model changes substantially in this round, the amount of noise will increase, effectively
eliminating the backdoor attack effect from the aggregated model.

The paper (Naseri et al., 2022) tested Local Differential Privacy (LDP) and Central
Differential Privacy (CDP). The central differential privacy aligns closely with the
paper (Xie et al., 2021). In local differential privacy, Gaussian noise 𝜖𝑡 ∼ 𝒩

(
0, 𝜎2

𝑡 I
)

is
added to the local model in each local training epoch. According to the paper, like
CDP, LDP can mitigate backdoor attacks and doesn’t necessitate trusting the server.

FL-WBC (Sun et al., 2021) aims to perturb the Hessian matrices’ kernel of benign
clients to mitigate the attack effect while maintaining the benign task’s performance.
The authors first introduce a quantitative estimator called AEP (Attack Effect on
Parameter), which includes a quantitative estimation of the attack’s impact on the
target model’s parameters. The authors demonstrate that AEPs are hidden in local
models’ Hessian matrices’ kernel. Since Hessian matrices are high-dimensional, the
authors estimate the diagonal elements by the gradient change. The perturbation is
then executed by adding noise to the weight elements, where the change of gradients
is not significant. In essence, the proposed method is a client-side defense, which
adds adaptive noise to the model during local training based on an approximation of
Hessian matrices.

Smoothing
Here, smoothing refers to randomized parameter smoothing applied to the final
global model during the inference (testing) stage. CRFL (Xie et al., 2021) enhances the
randomized smoothing proposed in prior work by creating a new smoothed classifier
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ℎ𝑠 . The prediction results for ℎ𝑠 are a majority vote over predictions for ℎ, whose
parameters are drawn from a probability distribution 𝜇. The final prediction result is
denoted as ℎ𝑠 (𝑤; 𝑥test ) and 𝑐 is a class that belongs to 𝒴. The smoothing process is
shown below:

ℎ𝑠 (𝑤; 𝑥test ) = arg max
𝑐∈𝒴

𝐻𝑐
𝑠 (𝑤; 𝑥test )

where 𝐻𝑐
𝑠 (𝑤; 𝑥test ) = P𝑊∼𝜇(𝑤) [ℎ (𝑊 ; 𝑥test ) = 𝑐]

(2.6)

The authors use a Gaussian distribution as 𝜇 in the implementation: 𝜇(𝑤) =
𝒩

(
𝑤, 𝜎2

𝑇
I
)
. This approach has the downside of difficulty achieving a continuous

distribution on a deep learning model, consisting of a multitude of parameters. In
practice, this defense employs Monte Carlo estimation to acquire an estimate of the
final result. That is, the final global model is perturbed by generating Gaussian random
noise 𝑀 times to generate 𝑀 different models. Finally, these M different models’
voting results are counted, and the final predicted outcome is the voting winner. This
method’s effect on robustness can be theoretically certified.

The DP-derived defense uses clipping, noise, and smoothing methods to diminish
the model’s performance while enhancing the FL system’s robustness. Hence, this
defense type mainly focuses on target and backdoor attacks. The effect of these
attacks will be mitigated along with the decrease in global accuracy. Several works
in this category aim to strike a better balance between utility and robustness by
adaptively clipping updates or adding adaptive noise updates. And there are two
works (Naseri et al., 2022) and (Sun et al., 2021) that attempt to perform DP from
the client’s perspective. According to (Naseri et al., 2022), Local Differential Privacy
(LDP) and Central Differential Privacy (CDP) are more effective than merely clipping
updates by norm in defending against backdoor attacks. However, local differential
privacy can better protect the system when the server is untrustworthy. Additionally,
client-side defenses are much harder to exploit by known attackers, so attackers cannot
easily devise adaptive attacks. Furthermore, in light of the numerous works that
have been published on the proof of the DP algorithm, paper A extends this work by
implementing a certified defense based on DP. Although it may not perform as well as
other defenses, this work’s probability makes it very impressive.

2.3.3. Optimizer-based
Strategies under this category aim to tweak optimizers such as SGD, a common tool
during training, to counteract poisoning assaults.

The study by (Karimireddy et al., b) introduces a technique known as worker
momentum to address time-coupled attacks, where the impact of an attack can
accumulate over multiple rounds, even if the attack directly affects only one round.
The worker momentum method involves averaging the stochastic gradients of the
workers over past gradients, which reduces the variance of benign workers and makes
time-coupled Byzantine perturbations more detectable. This is achieved by using a
momentum controller, which adjusts the momentum of each client’s update based
on the gradient of the loss function and the previous momentum. The method then
aggregates the momentum and applies it to update the model. As a result, this
method can effectively defend against most poisoning attacks. The same method is
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also employed in a subsequent work by the same author (Karimireddy et al., a).
In preceding robust federated aggregation methodologies, the variance to norm

ratio of non-Byzantine gradients remained under a specified limit. According to
(El-Mhamdi et al.), the concept of momentum from centralized SGD is adapted for
federated learning, with the difference being its application on the client side rather
than on the server. As all gradients from each client already contain momentum, all
momentum calculations are conducted on the workers, thereby eliminating additional
computational costs. The application of momentum allows model parameters to
navigate the loss function with a certain level of inertia, aggregating both the actual
gradient and the stochastic noise. Commonly, cumulative errors exhibit a moderate
growth rate, with previous errors partly offsetting future ones. However, if consecutive
gradients maintain a sufficiently low solid angle, prior real gradients don’t counteract
future real gradients, which can result in the norm of gradients growing faster than its
variance, thereby dampening the impact of the attack.

2.3.4. Ensemble-based
Ensemble-based defenses vary from previous methods by incorporating multiple
models or updates for a more resilient system.

(Cao et al.) presented an ensemble federated learning method, at its time, the only
certified approach. This strategy includes selecting 𝑘 clients from a total of 𝑛, yielding(
𝑛

𝑘

)
client sets and equivalently, global models. During inference, 𝑝𝑖 represents the

proportion of global models predicting data samples as label 𝑖. The ultimate prediction
is the label with the highest 𝑝𝑖 . This ensemble process enhances the model’s robustness
against model poisoning attacks through voting. A certified security level is also
defined to measure the quantifiable level of a data example. If the malicious client
count doesn’t exceed this level, the global model can reliably predict the same label as
the clean model. This is achieved by basing predictions on majority votes from the
global models. Considering most models learn from regular clients due to 𝑘 clients’
subsampling, the accuracy of majority voting can be certified.

However, established robust aggregation techniques, such as anomaly detection,
might fail in non-I.I.D settings due to the heterogeneous nature of model updates.
(Karimireddy et al., a) counters this challenge with an ensemble-based aggregation
method, known as bucketing. It groups clients’ updates in each round into buckets,
averages the updates within each bucket, and applies robust aggregation methods,
such as Krum, on these averaged updates. This reduces variance in the updates
and makes the ensemble update more homogeneous, thus improving the defense
performance by increasing the success rate of robust aggregation methods, especially
in non-I.I.D settings.

The first ensemble-based defense (Cao et al.) relies on dividing clients into groups
and using majority voting to confirm the aggregated model’s accuracy, but this method
proves time-intensive. The experiment saw the training of 435 global models from
various client subsets, resulting in a significant accuracy drop in non-I.I.D. settings.
However, the certified accuracy remains comparable in non-I.I.D and I.I.D environments
when just 1% of clients are malicious. But in an I.I.D environment, this rises to 6.1%.
The second defense strategy (Karimireddy et al., a) pairs well with other aggregation
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techniques such as Krum, Multi-Krum, and Bulyan, making it potentially more practical
and beneficial.



3
LeadFL Analysis

This chapter delves deeply into the convergence and robustness analysis of LeadFL.
The theorems related to convergence and robustness that were outlined in the research
paper will be thoroughly proven in the following sections.

3.1. Assumptions and Definitions
This section enumerates the assumptions adopted from prior works (Li et al., 2019;
Sun et al., 2021; Panda et al., 2022).

Assumption 3.1.1 (Smoothness). ℒ is ℓ -smooth if ∀𝒙 , 𝒚 ∈ ℛ𝑑

ℒ(𝒙) − ℒ(𝒚) + (𝒙 − 𝒚)𝑇ℒ(𝒙) ≤ ℓ2 ∥𝑥 − 𝑦∥
2
2

Assumption 3.1.2 (Convex). ℒ is 𝜇-strongly convex if ∀𝒙 , 𝒚 ∈ ℛ𝑑,

ℒ(x) − ℒ(y) + (x − y)𝑇∇ℒ(y) ≥
𝜇

2 ∥x − y∥22

Assumption 3.1.3 (Bound of Variance). Let 𝜉𝑘𝑡 be sampled from the 𝑘-th device’s local
data uniformly at random. The variance of stochastic gradients in each device is
bounded:
E


∇ℒ𝑘 (𝜽𝑘𝑡 , 𝜉𝑘𝑡 ) − ∇ℒ𝑘 (𝜽𝑘𝑡 )

2 ≤ 𝜎2

𝑘
for 𝑘 = 1, · · · , 𝑁 .

Assumption 3.1.4 (Bound of Norm). The expected squared norm of stochastic gradients

is uniformly bounded, i.e., E



∇ℒ𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖)


2

≤ 𝐺2 for all 𝑘 = 1, . . . , 𝑁 , 𝑖 = 0, . . . , 𝐼−1
and 𝑡 = 0, . . . , 𝑇 − 1

In our FL system, 𝐾 clients are randomly selected among 𝑁 clients each round.
Then we adapt the following assumption from (Li et al., 2019).

22
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Assumption 3.1.5 (Selection of Clients). Assume 𝒮𝑡 contains a subset of 𝐾 indices
uniformly sampled from [𝑁] without replacement. Assume the data is balanced
in the sense that 𝑝1 = · · · = 𝑝𝑁 = 1

𝑁 . The aggregation step of FedAvg performs
𝜽𝑡 ←− 𝑁

𝐾

∑
𝑘∈𝒮𝑡 𝑝𝑘𝜽

𝑘
𝑡 .

Definition 3.1.6 (Loss of clients). Denote ℒ∗ and ℒ∗
𝑘

as the minimum value of ℒ and
ℒ𝑘 , where ℒ is the loss of a model trained on the combination of datasets from all
the clients and ℒ𝑘 is the loss of a model trained on the dataset of client 𝑘. We can set
Γ = ℒ∗ −∑𝑁

𝑘=1 𝑝𝑘ℒ∗𝑘 which can quantify the degree of noniid. If the data are iid, then Γ

goes to zero as the number of samples grows. If the data are noniid, then Γ is nonzero,
and its magnitude reflects the heterogeneity of the data distribution.

Definition 3.1.7 (Poisoning Attack). For a protocol 𝑓 = (𝒢 ,𝒜 , 𝜂)we define the set of
poisoned protocols 𝐹(𝜌) to be all protocols 𝑓 ∗ = (𝒢∗,𝒜 , 𝜂) that are exactly the same as 𝑓
except that the gradient oracle 𝒢∗ is a 𝜌-corrupted version of 𝒢. That is, for any round
𝑡 and any model 𝜃𝑡 and any dataset 𝐷 we have we have 𝒢∗ (𝜃𝑡 , 𝐷) = 𝒢 (𝜃𝑡 , 𝐷) + 𝜖 for
some 𝜖 with ∥𝜖∥1 ≤ 𝜌

Definition 3.1.8 (Certified Radius). Let 𝑓 be a protocol and 𝑓 ∗ ∈ 𝐹(𝜌) be a poisoned
version of the same protocol. Let 𝜃𝑇 , 𝜃∗𝑇 be the benign and poisoned final outputs of
the above protocols. We call 𝑅 a certified radius for 𝑓 if ∀ 𝑓 ∗ ∈ 𝐹(𝜌);𝑅(𝜌) ≥

��𝜃𝑇 − 𝜃∗
𝑇

��
1

Assumption 3.1.9 (Coordinate-wise Lipschitz). The protocol 𝑓 (𝒢 ,𝒜 , 𝜂) is c-coordinate-
wise Lipschitz if for any round 𝑡 ∈ [𝑇], models 𝜃𝑡 , 𝜃∗𝑡 ∈ ℳ, and a dataset 𝐷 we have
that the outputs of the gradient oracle on any coordinate cannot drift too much farther
apart. Specifically, for any coordinate index 𝑖 ∈ [𝑑]��𝒢 (

𝜃∗𝑡 , 𝐷
)
[𝑖] − 𝒢 (𝜃𝑡 , 𝐷) [𝑖]

�� ≤ 𝑐 · ��𝜃∗𝑡 − 𝜃𝑡
��
1

3.2. Convergence Analysis
Proof of 3.2.1 (Theorem 4.1 in the research paper)
Theorem 3.2.1 (Convergence Guarantee). Let Assumptions 3.1.1 to 3.1.5 hold and
𝑙 , 𝜇, 𝜎𝑘 , 𝐺, 𝐾, 𝑁, Γ,ℒ∗ be as defined therein and in Definition 3.1.6 . Choose 𝜅 = 𝑙

𝜇 ,
𝛾 = max{8𝜅, 𝐸} and the learning rate 𝜂𝑡 = 2

𝜇(𝛾+𝑡) . Then we have the following bound
for LeadFL:

E [ℒ (𝜽𝑇)] − ℒ∗ ≤
𝜅

𝛾 + 𝑇 − 1

(
2(𝐵 + 𝐶)

𝜇
+

𝜇𝛾

2 E ∥𝜽0 − 𝜽∗∥2
)

where
𝐶 =

𝑁 − 𝐾
𝑁 − 1

4
𝐾
𝐸2(𝑑2𝑞2 + 𝐺2)

𝐵 =

𝑁∑
𝑘=1

𝑝2
𝑘
(𝑑2𝑞2 + 𝜎2

𝑘
) + 6𝑙Γ + 8(𝐸 − 1)2(𝑑2𝑞2 + 𝐺2)
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Proof : The expected distance between the gradients before and after regularization
can be bounded.

E



∇ℒ′𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖) − ∇ℒ𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖)


2

2

=E



clip

(
∇
(
I − 𝜂𝑡Ĥ𝑘

𝑡,𝑖

)
, 𝑞
)


2

2
≤E∥𝑞∥22 = 𝑑2𝑞2

(3.1)

Using the bounds above and Assumption 3.1.3, we can derive new bounds for the

variance of modified gradients E



∇ℒ′𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖) − ∇ℒ𝑘 (𝜽𝑘𝑡,𝑖)


2

E



∇ℒ′𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖) − ∇ℒ𝑘 (𝜽𝑘𝑡,𝑖)


2

≤ E



∇ℒ′𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖) − ∇ℒ𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖)


2

+ E



∇ℒ𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖) − ∇ℒ𝑘 (𝜽𝑘𝑡,𝑖)


2

≤ 𝑑2𝑞2 + 𝜎2
𝑘
,

where we use the triangle inequality.
Similarly, we can also derive bounds the expected squared norm of modified

gradients using Assumption 3.1.4.

E



∇ℒ′𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖)


2

≤E



∇ℒ′𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖) − ∇ℒ𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖)


2

+ E



∇ℒ𝑘 (𝜽𝑘𝑡,𝑖 , 𝜉𝑘𝑡,𝑖)


2

≤𝑑2𝑞2 + 𝐺2,

Applying the bounds for the variance and the expected squared norm of modified
gradients after applying LeadFL, we can derive our convergence guarantee from
Theorem 3 in (Li et al., 2019) by replacing these bounds.

3.3. Robustness Analysis
Proof of Theorem 3.3.1 (Theorem 4.3 in the research paper)
Theorem 3.3.1 (Certified Radius in Scenario I). Let Assumptions 3.1.9 hold and 𝑇𝐴,𝑐 be as
defined therein. We assume that LeadFL with FedAv aggregation is used. The certified radius
satisfies:

𝑅(𝜌) =
(
𝑁

𝐾

)𝑇−𝑇𝐴 ����� 𝑇∏
𝑡=𝑇𝐴

[∑
𝑘∈S𝑡

𝑝𝑘
𝐼−1∏
𝑖=0

(
𝐼 − 𝜂𝑡𝐻 𝑘

𝑡,𝑖

)] �����
·
𝑇𝐴−1∑
𝑡=0

𝜂𝑡(1 + 𝑑𝑐)
∑𝑇𝐴−1
𝑡=0 𝜂𝑡𝜌
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Proof. Equation (1) in the research paper can be rewritten as follows:

𝜽𝑡 − 𝜽∗𝑡 =
𝑁

𝐾

[∑
𝑘∈𝑆𝑡

𝑝𝑘
𝐼−1∏
𝑖=0

(
𝐼 − 𝜂𝑡𝐻 𝑘

𝑡,𝑖

)] (
𝜽𝑡−1 − 𝜽∗𝑡−1

)
(3.2)

This equation can be used iteratively to get:

𝜽𝑇 − 𝜽∗𝑇 =

(
𝑁

𝐾

)𝑇−𝑇𝐴 𝑇∏
𝑡=𝑇𝐴

[∑
𝑘∈𝑆𝑡

𝑝𝑘
𝐼−1∏
𝑖=0

(
𝐼 − 𝜂𝑡𝐻 𝑘

𝑡,𝑖

)]
(
𝜽𝑇𝐴 − 𝜽∗𝑇𝐴

) (3.3)

Apply the Theorem 4.2 in the research paper, we can get:���𝜽𝑇𝐴 − 𝜽∗𝑇𝐴

��� ≤ · 𝑇𝐴−1∑
𝑡=0

𝜂𝑡(1 + 𝑑𝑐)
∑𝑇𝐴−1
𝑡=0 𝜂𝑡𝜌 (3.4)

Combine Equations 3.3 and 3.4, the certified radius can be derived:��𝜽𝑇 − 𝜽∗𝑇
�� ≤ (

𝑁

𝐾

)𝑇−𝑇𝐴 ����� 𝑇∏
𝑡=𝑇𝐴

[∑
𝑘∈S𝑡

𝑝𝑘
𝐼−1∏
𝑖=0

(
𝐼 − 𝜂𝑡𝐻 𝑘

𝑡,𝑖

)] �����
·
𝑇𝐴−1∑
𝑡=0

𝜂𝑡(1 + 𝑑𝑐)
∑𝑇𝐴−1
𝑡=0 𝜌

(3.5)

Proof of Theorem 3.3.2(Theorem 4.4 in the research paper)
Theorem 3.3.2 (Certified Radius in Scenario II). Let Assumption 3.1.9 hold. The certified
radius of the threat model is

𝑅(𝜌) = (1 + 𝑑𝑐)
∑
𝑡∈Φ𝑇

𝜂𝑡
𝜌·©­«

������∏𝑡∈Γ𝑇
 𝑁|𝑆∗𝑡 |

∑
𝑘∈𝑆∗𝑡

𝑝𝑘
𝐼−1∏
𝑖=0

(
𝐼 − 𝜂𝑡𝐻 𝑘

𝑡,𝑖

)
������ + |Φ𝑇 |∑𝑡∈Φ𝑇 𝜂𝑡ª®¬

where Φ𝑇 is the set of communication rounds that server-side defenses cannot filter out all
malicious updates. Γ𝑇 is the set of communication rounds that server-side defenses filter
out all malicious updates. 𝑆∗𝑡 is a set of clients whose updates are not filtered out by the
server-side defense in round 𝑡. |Φ𝑇 | and |𝑆∗𝑡 | are the cardinality of the set Φ𝑇 and 𝑆∗𝑡 , where
E [|Φ𝑇 |] =

∑𝑇−1
𝑡=0 𝑔𝑎𝑡𝑘(𝐾𝑡𝑚).

Proof. Denote 𝑓 ∗ = (𝒢∗,𝒜 , 𝜂) ∈ 𝑓 (𝜌) as an arbitrary 𝜌-poisoned version of 𝑓 in
Definition 3.1.7. And let 𝒖1, . . . , 𝒖𝑇 and 𝒖∗1, . . . , 𝒖

∗
𝑇

be the model updates that the
benign oracle 𝒢 would produce on models 𝜽0, . . . , 𝜽𝑇−1 and 𝜽∗0, . . . , 𝜽

∗
𝑇−1, respectively.

We also define 𝒖̂1, . . . , 𝒖̂𝑇 to be the output of the adversarial gradient oracle 𝒢∗ on
models 𝜽0, . . . , 𝜽𝑇−1. By the definition of 𝜌-poisoning in Definition 3.1.7, we have��𝒖̂𝑡 − 𝒖∗𝑡

��
1 ≤ 𝜌.
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Based on the definition of model updates, we use the triangle inequality to get the
following inequality between

��𝜽𝑡 − 𝜽∗𝑡
�� and

��𝜽𝑡−1 − 𝜽∗
𝑡−1

�� when the system is attacked in
round 𝑡 − 1��𝜽𝑡 − 𝜽∗𝑡

�� = ��𝜽𝑡−1 − 𝜂𝑡𝑢𝑡 − 𝜽∗𝑡−1 + 𝜂𝑡 𝑢̂𝑡
�� ≤ ��𝜽𝑡−1 − 𝜽∗𝑡−1

�� + 𝜂𝑡 |𝑢𝑡 − 𝑢̂𝑡 | (3.6)

Using the triangle inequality again, we can get

|𝑢𝑡 − 𝑢̂𝑡 | =
��𝑢𝑡 − 𝑢∗𝑡 + 𝑢∗𝑡 − 𝑢̂𝑡 �� ≤ ��𝑢𝑡 − 𝑢∗𝑡 �� + ��𝑢∗𝑡 − 𝑢̂𝑡 �� (3.7)

According to Definition 3.1.7 and coordinate-wise Lipshitz in Assumption 3.1.9:

|𝑢𝑡 − 𝑢̂𝑡 | ≤
��𝑢𝑡 − 𝑢∗𝑡 �� + ��𝑢∗𝑡 − 𝑢̂𝑡 �� = 𝑑𝑐

��𝜽𝑡−1 − 𝜽∗𝑡−1
�� + 𝜌 (3.8)

By plugging the above equation into Equation 3.6, we get��𝜽𝑡 − 𝜽∗𝑡
�� ≤ ��𝜽𝑡−1 − 𝜽∗𝑡−1

��+𝜂𝑡 (𝑑𝑐 ��𝜽𝑡−1 − 𝜽∗𝑡−1
�� + 𝜌

)
= (1 + 𝑑𝑐𝜂𝑡)

��𝜽𝑡−1 − 𝜽∗𝑡−1
��+ 𝜌𝜂𝑡 (3.9)

According to Bernoulli’s inequality, we have��𝜽𝑡 − 𝜽∗𝑡
�� ≤ (1 + 𝑑𝑐)𝜂𝑡 ��𝜽𝑡−1 − 𝜽∗𝑡−1

�� + 𝜌𝜂𝑡 (3.10)

Now we get the inequality between
��𝜽𝑡 − 𝜽∗𝑡

�� and
��𝜽𝑡−1 − 𝜽∗

𝑡−1

�� when the system is
attacked in round 𝑡 − 1.

Since we introduced server-side defense, we rewrite Equation 3.2

𝜽𝑡 − 𝜽∗𝑡 =
𝑁��𝑆∗𝑡 ��


∑
𝑘∈𝑆∗𝑡

𝑝𝑘
𝐼−1∏
𝑖=0

(
𝐼 − 𝜂𝑡𝐻 𝑘

𝑡,𝑖

)
(
𝜽𝑡−1 − 𝜽∗𝑡−1

)
(3.11)

Then we get the following relationship between
��𝜽𝑡 − 𝜽∗𝑡

�� and
��𝜽𝑡−1 − 𝜽∗

𝑡−1

�� when
server-side defense filters out all malicious updates in round 𝑡 − 1.

��𝜽𝑡 − 𝜽∗𝑡
�� ≤ 𝑁��𝑆∗𝑡 ��

������∑𝑘∈𝑆∗𝑡 𝑝𝑘
𝐼−1∏
𝑖=0

(
𝐼 − 𝜂𝑡𝐻 𝑘

𝑡,𝑖

)������ ��𝜽𝑡−1 − 𝜽∗𝑡−1
�� (3.12)

Finally, we can use Equation 3.10 and 3.12 to prove the Theorem by induction
hypothesis

𝑅(𝜌) =
��𝜽𝑇 − 𝜽∗𝑇

�� = (1 + 𝑑𝑐)∑∈Φ𝑇 𝜂𝑡𝜌
©­«
������∏𝑡∈Γ𝑇

 𝑁��𝑆∗𝑡 ��
∑
𝑘∈𝑆∗𝑡

𝑝𝑘
𝐼−1∏
𝑖=0

(
𝐼 − 𝜂𝑡𝐻 𝑘

𝑡,𝑖

)
������ + |Φ𝑇 |∑𝑡∈Φ𝑇 𝜂𝑡ª®¬

(3.13)



4
Additional Experiments

In this chapter, we present supplementary experiments that are not included in the
main part of our research paper. For all datasets, we choose the learning rate 𝜂 = 0.01
and batch size 𝐵𝑎 = 32 for all clients. The model architectures for two datasets are
shown in Table 4.1.

4.1. Comparison Between FL-WBC and LDP

Figure 4.1: Comparison between FL-WBC and LDP on different datasets. The black circles represent the
communication round that malicious clients conduct the attack.

The only difference between FL-WBC and LDP (Local Differential Privacy) is that
FL-WBC adds noise to only the smaller elements in Hessian Matrix by estimating the
matrix, whereas LDP includes noise for all elements. Therefore, LDP can also be used
to perturb the null space of the Hessian Matrix. We, therefore, believe that a detailed
comparison between the two is necessary.

The experiment compares the FL-WBC given std of Laplace noise 𝑠 = 0.4 with
LDP 𝑠 = 0.4 on both FashionMNIST and CIFAR10 datasets with IID settings under
single-image targeted attack. The threat model is the same as the paper (Sun et al.,

27
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Table 4.1: Model Architectures for FashionMNIST and CIFAR10 dataset

FashionMNIST CIFAR10
5×5 Conv2d 1-16 3×3 Conv2d 3-32
5×5 Conv2d 16-32 3×3 Conv2d 32-32

FC-10 2×2 MaxPool
3×3 Conv2d 32-64
3×3 Conv2d 64-64

2×2 MaxPool
3×3 Conv2d 64-128
3×3 Conv2d 128-128

2×2 MaxPool
FC-128
FC-10

2021). The results in Figure 4.1 show a slight difference between FL-WBC and LDP
in all settings. The FashionMNIST-IID dataset shows almost no difference between
the two defenses approach. Both FL-WBC and LDP successfully defend the attack
and maintain almost the same benign accuracy in the first 100 communication rounds.
With the CIFAR10-IID setup, the FL-WBC and LDP successfully defend the attack for
the first 80 communication rounds. However, both defenses lead to a loss of model
accuracy. The benign accuracy of FL-WBC and LDP have the same distribution, and
both results are below 50%. In other words, there is no significant difference between
the results of FL-WBC and LDP in this experiment.

4.2. Additional Results
4.2.1. Results of different client selections
In the research paper, only one client selection result is shown. In order to ensure that
our results are not an artifact of this one specific client selection, we present results
for another selection result shown in Figure 4.2. We can observe that, the backdoor
accuracy is still very high at the round when the extreme attack is conducted. Our
defense still exhibits a faster decrease in backdoor accuracy than the other defenses.

Table 4.2: Comparison of defenses under 9-pixel pattern backdoor attack on IID FashionMNIST dataset.
The number of clients is 1000

Distribution IID
Server-side Defense Multi-Krum Bulyan
Client-side Defense None LDP FL-WBC Ours None LDP FL-WBC Ours

MA 86.7 84.1 83.7 84.4 85.2 83.9 84.0 84.2
BA Avg 77.2 73.5 67.9 52.8 82.8 76.1 72.9 45.7
BA Final 71.0 65.1 62.3 35.7 79.9 53.2 46.9 26.9
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Figure 4.2: Results of different random client selections. The backdoor attack here is the 9-pixel-pattern
backdoor attack. The server-side defense here is Multi-Krum. Black hollow circles indicate that the

system is attacked very strongly in that round.
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Figure 4.3: Comparison of backdoor accuracy on FashionMNIST and CIFAR10 with both IID and
non-IID settings. The backdoor attack here is single pixel backdoor attack. The server-side defense here
is Multi-Krum. Black hollow circles indicate that the system is attacked very strongly in that round.

4.2.2. Results of the larger scale setting
In the research paper, the number of clients in our system is 100. In this subsection, we
present the results of experiments with an increased number of clients, totaling 1000,
while maintaining 25% of malicious clients. The dataset is evenly distributed among
all clients, and each round involves the selection of 100 clients, with other settings
remaining consistent with Table 1 in the research paper. As shown in Table 4.2, our
method still achieves the highest MA and lowest BA compared to other client-side
defenses in the larger-scale experiments.
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Figure 4.4: Comparison of backdoor accuracy on FashionMNIST and CIFAR10 with both IID and
non-IID settings. The attack here is single image targeted attack. The server-side defense here is

Multi-Krum. Black hollow circles indicate that the system is attacked very strongly in that round.
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4.2.3. Results of CMA and CTMA under 9-pixel backdoor attack
In the research paper, we only show the results of MultiKurm and Bulyan server-side
defenses. Table 4.3 and 4.4 contain the results of CMA and CTMA.

4.2.4. Results of single-pixel backdoor attack
Table 4.5, 4.6 and Figure 4.3 show the performance of defenses under single-pixel
backdoor attacks.

4.2.5. Results of single image targeted attack
We also measure Malicious Confidence (MC): In (Bhagoji et al., 2019), the authors
present a single-image attack where a malicious client inserts exactly one image with
the wrong label in their dataset. The malicious confidence is the confidence of the
global model in their classification of the malicious image. We consider both average
and final confidence. Note that this metric is only relevant for single-image attacks.
Table 4.7, 4.8 and Figure 4.4 show the performance of defenses under single image
targeted attacks.
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Table 4.3: Comparison of defenses under 9-pixel pattern backdoor attack on FashionMNIST dataset
with both IID and non-IID settings.

Distribution Server-side
Defense

Client-side
Defense MA BA

Avg
BA

Final

IID

None

None 89.8 98.4 100.0
LDP 88.7 90.7 98.8

FL-WBC 88.1 90.2 99.5
Ours 89.0 95.0 95.7

CMA

None 90.0 93.8 100.0
LDP 87.1 95.8 99.3

FL-WBC 87.2 96.7 99.2
Ours 87.6 96.7 99.6

CTMA

None 89.7 96.6 100.0
LDP 88.4 97.8 99.9

FL-WBC 90.0 98.9 99.6
Ours 87.5 91.9 96.8

Multi-Krum

None 89.3 82.6 93.2
LDP 87.0 76.0 79.6

FL-WBC 87.2 77.5 80.6
Ours 87.9 32.9 0.0

Bulyan

None 89.2 78.8 90.6
LDP 86.0 74.1 62.2

FL-WBC 86.0 70.6 86.5
Ours 86.3 21.6 0.3

Non-IID

None

None 87.6 99.7 100.0
LDP 82.2 94.9 99.4

FL-WBC 84.0 94.7 96.6
Ours 84.9 97.5 97.1

CMA

None 85.6 98.9 100.0
LDP 78.5 97.6 99.9

FL-WBC 78.5 97.6 99.9
Ours 80.2 98.2 92.5

CTMA

None 85.3 99.2 100.0
LDP 81.9 99.6 99.9

FL-WBC 82.4 99.3 99.9
Ours 80.8 95.1 67.3

Multi-Krum

None 85.6 88.7 93.3
LDP 76.7 80.4 86.7

FL-WBC 77.2 74.0 70.3
Ours 79.1 39.5 1.2

Bulyan

None 77.4 92.5 88.6
LDP 73.4 71.9 94.7

FL-WBC 71.7 73.7 69.0
Ours 74.0 32.3 2.0
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Table 4.4: Comparison of defenses under 9-pixel pattern backdoor attack on CIFAR10 dataset with both
IID and non-IID settings.

Distribution Server-side
Defense

Client-side
Defense MA BA

Avg
BA

Final

IID

None

None 71.3 93.5 99.6
LDP 55.1 77.0 79.7

FL-WBC 56.2 77.1 89.5
Ours 60.4 70.2 58.7

CMA

None 74.1 93.3 99.2
LDP 12.8 67.6 70.6

FL-WBC 12.6 62.3 69.9
Ours 64.6 82.3 79.0

CTMA

None 75.8 95.2 99.7
LDP 56.6 95.1 96.4

FL-WBC 56.4 94.8 97.1
Ours 61.3 79.4 49.4

Multi-Krum

None 76.3 77.5 80.5
LDP 48.0 53.1 43.8

FL-WBC 43.3 56.9 40.5
Ours 56.9 35.6 25.6

Bulyan

None 76.2 79.1 87.0
LDP 41.5 46.7 23.4

FL-WBC 42.2 51.3 35.5
Ours 54.8 43.9 21.4

Non-IID

None

None 73.7 97.0 100.0
LDP 50.8 86.3 92.5

FL-WBC 52.6 83.2 89.6
Ours 60.5 76.3 67.7

CMA

None 69.6 97.3 99.9
LDP 13.5 58.4 69.2

FL-WBC 13.2 63.9 69.7
Ours 60.3 87.5 90.1

CTMA

None 73.0 98.3 100.0
LDP 54.2 97.5 99.1

FL-WBC 51.1 97.2 99.8
Ours 56.9 90.1 84.5

Multi-Krum

None 70.7 85.8 96.2
LDP 43.2 55.4 52.4

FL-WBC 42.9 54.4 35.4
Ours 55.3 45.2 34.4

Bulyan

None 61.7 87.5 95.2
LDP 36.7 48.8 29.8

FL-WBC 36.2 48.1 47.7
Ours 51.4 46.8 27.3
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Table 4.5: Comparison of defenses under single pixel backdoor attack on FashionMNIST dataset with
both IID and non-IID settings.

Distribution Server-side
Defense

Client-side
Defense MA BA

Avg
BA

Final

IID

None

None 90.1 96.2 99.7
LDP 88.0 88.0 95.1

FL-WBC 87.8 85.2 97.7
Ours 88.1 91.2 95.7

CMA

None 89.9 89.1 99.8
LDP 87.0 96.0 97.9

FL-WBC 87.0 96.7 99.3
Ours 87.7 91.2 98.0

CTMA

None 89.8 92.0 99.7
LDP 88.2 96.3 99.6

FL-WBC 87.6 96.0 99.2
Ours 88.2 84.4 92.1

Multi-Krum

None 89.4 28.1 39.7
LDP 87.0 70.7 90.7

FL-WBC 86.9 71.4 76.8
Ours 87.5 70.3 43.4

Bulyan

None 89.1 72.2 89.7
LDP 85.9 68.8 79.4

FL-WBC 85.3 72.4 78.3
Ours 86.7 67.6 85.8

Non-IID

None

None 88.0 98.8 99.9
LDP 83.4 90.9 97.8

FL-WBC 82.2 91.0 98.1
Ours 82.8 93.9 97.0

CMA

None 85.7 95.4 99.9
LDP 76.4 96.3 99.2

FL-WBC 79.3 96.6 99.6
Ours 79.5 93.4 93.7

CTMA

None 85.5 97.4 99.9
LDP 81.0 98.2 99.7

FL-WBC 81.7 98.6 99.9
Ours 81.5 94.5 92.8

Multi-Krum

None 86.5 79.2 85.1
LDP 80.5 72.7 64.5

FL-WBC 78.2 73.8 82.6
Ours 81.7 54.4 87.9

Bulyan

None 85.2 83.9 85.9
LDP 73.7 66.9 85.2

FL-WBC 70.1 72.5 71.4
Ours 75.0 62.6 46.2



4.2. Additional Results 34

Table 4.6: Comparison of defenses under single pixel backdoor attack on CIFAR10 dataset with both
IID and non-IID settings.

Distribution Server-side
Defense

Client-side
Defense MA BA

Avg
BA

Final

IID

None

None 71.3 93.5 99.6
LDP 55.1 77.0 79.7

FL-WBC 56.2 77.1 89.5
Ours 62.1 70.2 58.7

CMA

None 74.1 93.3 99.2
LDP 12.8 67.6 70.6

FL-WBC 12.6 62.3 69.9
Ours 64.6 82.3 79.0

CTMA

None 75.8 95.2 99.7
LDP 56.6 95.1 96.4

FL-WBC 56.4 94.8 97.1
Ours 61.3 79.4 49.4

Multi-Krum

None 76.3 77.5 80.5
LDP 48.0 53.1 43.8

FL-WBC 43.3 56.9 40.5
Ours 56.9 35.6 25.6

Bulyan

None 76.2 79.1 87.0
LDP 41.5 46.7 23.4

FL-WBC 42.2 51.3 35.5
Ours 55.8 43.9 26.4

Non-IID

None

None 74.5 92.3 99.8
LDP 52.7 73.0 81.2

FL-WBC 51.4 70.2 85.0
Ours 62.3 62.8 55.5

CMA

None 67.8 89.5 98.4
LDP 13.1 67.5 69.5

FL-WBC 13.7 66.3 68.5
Ours 59.2 82.7 74.1

CTMA

None 73.6 92.6 99.8
LDP 54.8 93.6 94.2

FL-WBC 48.7 94.0 95.2
Ours 58.1 77.7 78.7

Multi-Krum

None 71.0 68.7 78.5
LDP 40.7 34.8 19.3

FL-WBC 39.6 35.9 20.0
Ours 51.5 26.6 31.9

Bulyan

None 62.7 69.8 78.3
LDP 33.6 25.4 16.6

FL-WBC 37.5 22.1 15.5
Ours 49.1 17.6 10.3
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Table 4.7: Comparison of defenses under single image targeted attack on FashionMNIST dataset with
both IID and non-IID settings.

Distribution Server-side
Defense

Client-side
Defense MA MC

Avg
MC
Final

IID

None

None 89.9 94.6 98.9
LDP 87.4 79.7 95.8

FL-WBC 88.3 82.7 75.5
Ours 88.2 82.0 95.8

CMA

None 89.3 98.1 99.9
LDP 86.1 88.6 77.9

FL-WBC 86.7 86.1 83.6
Ours 87.6 93.6 91.0

CTMA

None 89.0 94.2 99.4
LDP 87.3 95.2 93.9

FL-WBC 87.4 95.2 98.8
Ours 87.5 89.4 99.9

Multi-Krum

None 89.1 89.5 99.5
LDP 86.5 57.9 88.7

FL-WBC 86.4 58.1 1.3
Ours 86.8 44.9 7.4

Bulyan

None 89.1 92.0 100.0
LDP 85.0 34.0 0.1

FL-WBC 85.5 86.2 84.1
Ours 86.7 33.9 14.0

Non-IID

None

None 87.7 97.2 99.6
LDP 83.3 86.1 99.2

FL-WBC 83.7 92.9 95.7
Ours 83.9 78.9 96.7

CMA

None 87.1 94.6 99.9
LDP 81.2 87.5 92.6

FL-WBC 79.4 81.8 94.5
Ours 82.2 81.5 83.1

CTMA

None 86.7 95.4 99.8
LDP 84.8 93.3 87.1

FL-WBC 84.8 92.9 93.7
Ours 84.4 78.4 84.0

Multi-Krum

None 86.3 87.6 99.6
LDP 81.6 55.2 92.1

FL-WBC 80.6 59.4 77.0
Ours 84.5 46.1 5.7

Bulyan

None 76.8 86.8 99.9
LDP 71.8 54.2 77.1

FL-WBC 73.9 83.5 99.8
Ours 77.2 39.8 0.0
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Table 4.8: Comparison of defenses under single image targeted attack on FashionMNIST dataset with
both IID and non-IID settings.

Distribution Server-side
Defense

Client-side
Defense MA MC

Avg
MC
Final

IID

None

None 70.5 98.9 99.9
LDP 51.1 97.2 97.2

FL-WBC 50.8 95.5 100.0
Ours 60.4 89.1 100.0

CMA

None 71.0 99.8 99.9
LDP 13.9 96.2 100.0

FL-WBC 13.9 99.6 100.0
Ours 60.6 97.0 100.0

CTMA

None 68.4 99.8 99.9
LDP 47.0 98.9 100.0

FL-WBC 47.4 98.4 100.0
Ours 60.8 96.1 99.9

Multi-Krum

None 75.4 94.7 100.0
LDP 46.3 86.6 99.9

FL-WBC 46.7 82.5 99.9
Ours 56.6 47.7 2.4

Bulyan

None 73.6 84.1 93.8
LDP 41.6 49.0 0.0

FL-WBC 41.9 6.5 0.0
Ours 53.6 1.7 0.0

Non-IID

None

None 72.6 99.0 100.0
LDP 48.6 83.3 100.0

FL-WBC 50.6 86.0 97.7
Ours 60.3 90.2 100.0

CMA

None 65.9 99.6 99.6
LDP 13.0 98.0 100.0

FL-WBC 15.1 96.0 100.0
Ours 61.5 98.4 100.0

CTMA

None 70.5 98.9 99.9
LDP 47.3 97.3 99.1

FL-WBC 47.8 96.9 100.0
Ours 55.0 95.5 100.0

Multi-Krum

None 70.5 92.4 100.0
LDP 43.8 60.6 100.0

FL-WBC 43.3 65.0 100.0
Ours 51.7 55.3 0.0

Bulyan

None 68.1 84.7 100.0
LDP 39.8 63.9 100.0

FL-WBC 38.4 62.9 100.0
Ours 49.1 25.1 3.5



5
Conclusion

In conclusion, this research tackles the challenges posed by bursty adversarial patterns
in federated learning, specifically focusing on client-side defenses. Previous studies
have explored client-side defenses, such as FL-WBC (Sun et al., 2021), which addresses
bursty attack patterns. However, it has been observed that FL-WBC’s use of uncalibrated
random noise to perturb the Hessian matrix of gradients can lead to a degradation in
global model accuracy, and its robustness against backdoor attacks lacks theoretical
guarantees.

To address these limitations, we have introduced LeadFL, a novel client-side defense
mechanism designed to enhance server-side defenses while mitigating the impact of
bursty adversarial patterns without significantly affecting global model accuracy. The
core of LeadFL lies in its optimization framework, which perturbs the Hessian matrix of
local gradients and local models using a regularization term to maintain the proximity
of the Hessian matrix to the identity matrix.

In support of the effectiveness of our proposed regularized Hessian optimization,
we have derived convergence analysis and certified radius analysis, quantifying the
distances between benign and poisoned models. These analyses provide theoretical
evidence of LeadFL’s efficacy in combating bursty adversarial patterns.

Furthermore, we have conducted empirical evaluations by combining LeadFL with
different server-side defenses. The results demonstrate that our proposed combination
effectively defends against strong attacks, outperforming other combinations of server-
side and client-side defenses. Specifically, we have achieved a reduction of up to 65%
in backdoor accuracy while maintaining a lower impact on the accuracy of the main
task compared to previous defense approaches.

However, it is worth noting that LeadFL, despite its effectiveness, does introduce
a slight influence on overall accuracy. Although this influence is relatively minor
compared to other defense mechanisms, even small perturbations in accuracy can be
significant in certain critical applications. We are committed to further enhancing
our algorithm to minimize the impact on the accuracy of the main task. Our future
research will focus on improving the performance of LeadFL to ensure even better
preservation of the main task accuracy.
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