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Abstract

In this report the theory of depth functions was researched, as well as an application on this
by simulating with multivariate distributions and an application on real-world data about the
weather in the Netherlands.

Depth functions are functions that measure data depth and order multivariate observations.
They desire properties such as affine invariance, maximality at the center, monotonicity relative
to the deepest point and vanishing at infinity. A consequence of this properties is that if a
distribution is angularly symmetric about some point µ, then this point is considered as a
multivariate median. There are two important depth functions: the halfspace depth and the
simplicial depth. The halfspace depth of a point is defined as the smallest probability for
which a closed halfspace contains that point. The range of this halfspace depth is [ 1

n+1 ,
1
2 ],

where n is the number of observations. For the simplicial depth, a distinction is made in
the sample and the population version. The sample simplical depth of a point is defined as
the number of closed simplices in which that point is contained, divided by the total number of
simplices. The population version is defined analogously, however with a probability instead. Its
maximum is 2−d, with dimension d. As the number of observations tends to infinity, the sample
simplicial depth tends to the population simplicial depth. Furthermore, contours for which the
depth is constant provide a good visualization of the depth, provided that the dimension allows
visualization, e.g. d ≤ 3. These contours are nested within each other. For elliptical distributions
the shapes of halfspace contours and isodensities coincide, as they are both ellipses. Finally, the
outlyingness is defined as the inverse of the depth minus 1, such that the ordering is reversed.

This theory is applied by simulating with multivariate distributions. The first distribution to
be considered is the bivariate normal distribution, in which the distinction of independent and
dependent variables is made. For both situations, the points with the lowest depth are situated
far away from the mean, in fact they are almost equally distanced from it. They highest depth
points are near the mean. The contours and isodensities are indeed ellipses. The halfspace
contours coincide with the isodensities. This is true for the simplicial depth as well, though the
outer contour is not shaped the same. Particularly, for the independent variables the ellipses are
circles. Another distribution is the bivariate Student’s t-distribution with independent variables.
The isodensities are shapes as squares and the halfspace depth contours are shaped as stars with
four ends. The last distribution being considered is the normal distribution in the fifth dimension.
Despite not being able to visualize these observations, nevermind the depth, we can however
compare the depth with the density. After a modification of the depth, it turns out they have
the same values.

The final part of this report is about the application of the theory to data of the weather.
The first data set to be considered is the maximal temperatures for every day in July for the
years 1901–2018. The month July is cut into smaller parts, such that we have 25 intervals of
7 days. For all years, the depth can be computed for all 25 intervals. Since the depth range is
very dense, the outlyingness is used. 2018 turns out not as outlying as thought before: only for
the last week the outlyingness is high. More years are considered and their depths corresponds
somewhat to their mean temperatures. The second data set to be considered is a bivariate data
set: the highest average wind speed in an hour and the highest amount of precipiation in an hour
for every day in the years 1906-2018. When both of these are high at the same, it is considered
as severe weather. The number of observations is lowered in order to compute contour lines.
These contours showed a good notion of the distribution of all data.
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1 Introduction

The month July of 2018 broke several records in the Netherlands [1]. According to measurements
of the KNMI (Royal Netherlands Meteorological Institute), it was a record breaking month. The
average temperature was 20.7 ◦C against an overall average of 17.9 ◦C. Yet, this was not the
hottest July ever: 2006 and 1994 tapped 22.3 ◦C and 21.4 ◦C respectively. It is still exceeding,
because the KNMI has been measuring temperatures since 1901, so the year of 2018 has the third
highest average July temperature out of 118 measured years. Moreover, on July 26th the highest
temperature ever was measured in De Bilt, with 35.7 ◦C. Another record is the precipitation
record: a poor 5.5 mm of percipitation was measured over the whole month, instead of a normal
81.1 mm: also a new record. Finally, it was the sunniest July ever, with 341 hours of sun,
compared to an average of 206 hours.

All these records brought big problems: a great risk on wildfires, harvest failures, dying
plants etc. [2]. It could be useful to prepare for such months, so one may ask themselves: how
often do such extreme months occur? To answer this question, the theory of depth functions can
be used. The theory of depth functions is used to order multivariate observations by data depth.
Depth is used to measure centrality. If data has high depth, then it is very central. In fact,
an observation with the highest depth is considered to be a multivariate median. It also means
that extreme data can be measured by low depth. A depth function orders this data. There
are some properties that these depth function should suffice, but there exists a large amount of
depth functions. Two important ones are introduced by Tukey in 1975 [3] and Liu in 1990 [4].

In Section 2 the theory of depth functions is explained. Two specific depth functions, the
halfspace and simplicial depth function, will be researched here. There are a couple of theorems
and lemmas in this section and the proofs of these are either found in Appendix A or referenced.
In Section 3 the theory is applied to simulations with multivariate distributions, e.g. the bivariate
normal distribution. In Section 4, some real-world data is looked into and the theory is again
applied on this, to eventually say something about the frequency of extreme weather, particularly
of temperatures and severe weather which in this case is heavy wind combined with heavy
precipitation.
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2 Depth functions

The main goal of this project is to find a way to measure the data depth in multivariate data.
The data depth is a measure of how deep a data point (or an observation) lies in a data cloud.
For instance one may consider the univariate normal distribution. If a data point is located
near the median, then we say that this point is deep in data, since most of the observations lie
around the median. Observations far away from the median are not deep in the data.

To find out how deep a point lies in a data cloud, the data set needs to be ordered. In the
univariate case, i.e. observations in R1, one can order the data in value from small to large.
With bivariate or multivariate data, that will not work anymore, since each point consists of
more than one value. Thus, another method is required to order this kind of data. This is done
by introducing a depth function. There exist several kinds of depth functions [5], however two
of them will be discussed below: the halfspace depth and the simplicial depth, in which we make
the distinction between the sample and the theorical one.

2.1 Key properties of a depth function

It is just stated that there exist multiple depth functions. These depth functions should all
contain certain properties to satisfy some sort of ordering of the data. A depth function is
denoted as D(x|FX), with x ∈ Rd and where X is a random vector in Rd, with cdf F . The
properties, as proposed in [4], are stated below:

P1. Affine invariance. D(Ax + b|FAX+b) = D(x|FX), for any nonsingular matrix A and
vector b. It means that any depth function is invariant under affine transformations, e.g. trans-
lations, rotations etc.

P2. Maximality at the center. If µ is the center (point of symmetry) of F, then D(µ|F ) =
supx∈Rd D(x|F ).

P3. Monotinicity relative to the deepest point. If µ is the point of maximal depth of F, then
D(x|F ) ≤ D(µ+ α(x− µ)|F ), with α ∈ [0, 1]. Note that ‖µ− (µ+ α(x− µ))‖ = |α| · ‖x− µ‖ ≤
‖x− µ‖. This means that points closer to the deepest point have higher depth.

P4. Vanishing at infinity. D(x|F )→ 0 as ‖x‖ → ∞.
In P2, the symmetry is not clearly defined, because there are different ways to define mul-

tivariate symmetry. Here, two will be considered, the angular symmetry and the halfspace
symmetry.

A random variable X in Rd, or its distribution F , is called angular symmetric about µ ∈ Rd if
and only if the random variables (X−µ)/‖X−µ‖ and −(X−µ)/‖X−µ‖ are equally distributed.
X is defined to be halfspace symmetric if P (X ∈ H) ≥ 1

2 for every closed halfspace H containing
b. If F is angularly symmetric about µ, then any hyperplane passing through µ divides Rd into
two halfspaces with equal probability, 1

2 . Thus, the center of angular symmetry is some sort of
multivariate median. Moreover, angular symmetry implies halfspace symmetry [6].

2.2 Halfspace depth

The first depth function being discussed will be the halfspace depth. It is also known as the
Tukey depth, since it was introduced by Tukey in 1975 [3]. This method is explained by first
giving an intuitive idea and a formilization follows afterwards.

The halfspace depth is based on the centrality of data. Consider a data cloud in Rd. The
median of the data cloud should be in the absolute center of that cloud. Consider a symmetric
model. As a consequence of the symmetry of the data cloud, every hyperplane (lines in R2,
regular planes in R3 etc.) that goes through the median should be cutting the data cloud
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exactly in half. This hyperplane cuts Rd into two spaces, which are called halfspaces. If such
a hyperplane has the median on its boundary, then both halfspaces should contain the same
amount of data, theoretically. This is not the case for observations other than the median, where
some halfspaces that have such observations on its boundary contain more than half of the data
and some less than a half. What follows is that when the amount of observations in halfspaces
differ more, then every observation on the boundary are considered more outlying. The idea of
the halfspace depth is that for an observation, every halfspace that has this observation on its
boundary is researched and the one containing the least data will be used.

As a formalization, the halfspace depth of a point z is defined to be the smallest probability
of a halfspace containing z:

DH(z) = inf{P (H)| H is a closed halfspace, z ∈ H} (1)

Note that z does not necessarily have to be on the boundary of a halfspace, according to the
definition. However, if H is a closed halfspace containing z, but z is not on the boundary of H,
and if H minimizes the amount of observations contained, then this halfspace can be restricted
by moving its boundary parallel towards z. The probability will remain the same and now z is
on the boundary of the new halfspace. Thus, without loss of generality, it may be assumed that
the boundary of a closed halfspace H which contains z and minimizes P (H) passes through that
point z.

This depth function can be expressed in terms of its distribution function for the univariate
case. A univariate halfspace is a half line, i.e. a straight line extending from a point indefinitely
in one direction only. Consider the following theorem:

Theorem 1. If F is a distribution in R1, then

DH(z) = min{F (z), 1− F (z)} ∈
[
0,

1

2

]
.

Moreover, the depth is maximized in the median µ with maximum value 1
2 .

The proof may be found in appendix A. This theorem may be extended to the multivariate
case.

It is also possible to give an upper bound for the half space depth. In fact, a maximum may
be given, under a couple of conditions. Firstly, an upper bound will be given in the following
lemma:

Lemma 1. For any probability P with a density we have DH(z) ≤ 1
2 for any z ∈ Rd.

The proof may be found in appendix A. Furthermore, the following theorem provides a
maximum halfspace depth:

Theorem 2. If P has a density and is angularly symmetric about µ, then

max
z
DH(z) = DH(µ) =

1

2
.

The proof may be found in appendix A. Note that Theorem 1 is in line with both Lemma
1 and Theorem 2. Furthermore, it is stated in [7] that any probability P without further
assumptions (e.g. does not need a density) has a lower bound for the maximum depth: 1

n+1 ,
where n is the number of observations.
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2.3 Sample simplicial depth

The sample simplicial depth is a way to measure depth based on simplices. It may be used for
data which has an unknown distribution function. The simplicial depth was proposed by Liu in
1990 [4].

2.3.1 Bivariate observations

To explain this method, the bivariate case is considered. Let X1, . . . , Xn be a bivariate data
set, i.e. Xi ∈ R2 for all 1 ≤ i ≤ n. Graphically, this is a two-dimensional field of points. For
all 1 ≤ i, j, k ≤ n, where i, j and k are unequal, a triangle can be created. The total number
of these triangles is equal to the amount of combinations of three out of a set of n elements.
Thus, in total there are

(
n
3

)
such triangles. In such a triangle, there may or may not be other

observations contained. For every point x ∈ R2 the number of triangles that contain x can be
determined. The event that a triangle formed out of the points Xi, Xj and Xk contains x is
denoted by x ∈ ∆(Xi, Xj , Xk). Now, let I be the indicator function, i.e. I(A) = 1 if event
A occurs and I(A) = 0 otherwise. The total number of triangles that contain x may now be
expressed as ∑

1≤i,j,k≤n
I(x ∈ ∆(Xi, Xj , Xk))

In sake of completeness, we say that if an observation is an angle of a triangle, then it is
contained in that triangle, in other words, all triangles are closed. The number of triangles that
contain a point x can be scaled into [0, 1] by dividing it by the total number of triangles. We
then get

D̂S(x|X1, . . . , Xn) =

(
n

3

)−1 ∑
1≤i,j,k≤n

I(x ∈ ∆(Xi, Xj , Xk)) (2)

This is called the sample simplicial depth. Intuitively, it is a measure of the deepness of an
observation in a data set. That is because when an observation is contained in many triangles,
it is surrounded by many other observations, so it is near the median and hence it lies deep in
the data.

2.3.2 Multivariate observations

The bivariate case has been considered because the concept may then be visualized easily. The
method works analogously for multivariate cases (i.e. in Rd with d ≥ 2).

Let X1, . . . , Xn be a multivariate data set in Rd. For d + 1 observations a simplex can be
created with these observations as vertices. This simplex is indicated as S(Xi1 , . . . , Xid+1

). In
the bivariate case (d = 2), the simplex was a triangle. For d = 3, the simplex is a tetrahedron.
The total number of simplices that can be created with n observations is

(
n
d+1

)
. The scaled

number of simplices that contain x ∈ Rd may now be expressed as

D̂S(x|X1, . . . , Xn) =

(
n

d+ 1

)−1 ∑
1≤i1<...<id+1≤n

I(x ∈ S(Xi1 , . . . , Xid+1
))

When implementing this function, a problem will arise. How does one verify whether a point
x ∈ Rd is contained in a simplex S(X1, . . . , Xd+1)? This can be obviously observed by the
human eye, however with an implementation it is a little harder.
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This is a problem in the geometry and may be solved through linear algebra. Consider the
following system of linear equations:{

x = α1X1 + · · ·+ αd+1Xd+1;
α1 + · · ·+ αd+1 = 1.

Solving this system of d+ 1 equations with d+ 1 unknowns (the alphas) provides a unique
solution if the simplex is nondegenerate [4]. Then the following theorem holds: x is contained
in the simplex if and only if all α1, . . . , αd+1 are positive.

2.4 Population simplicial depth

For the theoretical simplicial depth, it is assumed that the data has a known distribution func-
tion. Note that D̂S(x) as in the sample simplicial depth is the depth based on a sample. It is in
fact the empirical version of the probability

DS(x|F ) = PF (x ∈ S(X1, . . . , Xd+1)),

where X1, . . . , Xd+1 are i.i.d. with continuous cdf F . DS(x) is simply called the simplicial depth.
It is desired to express the depth in terms of cdf F . Only the univariate case will be treated

here, by the following theorem:

Theorem 3. Let X1, X2 ∈ R1 be i.i.d. with univariate continuous cdf F and let X1X2 be the
line segment connecting X1 and X2. The simplicial depth will then be

DS(x|F ) = PF (x ∈ X1X2) = 2F (x)(1− F (x)).

Moreover, the depth is maximized in the median with maximum value 1
2 .

The proof may be found in appendix A. For the multivariate case, the depth won’t be
expressed in terms of F . Instead, other properties and consequences of the multivariate simplicial
depth will be treated.

Theorem 4. If F is absolutely continuous and angularly symmetric about the origin, then
DS(αx|F ) is a monotone nonincreasing function in α ≥ 0 for all x ∈ Rd.

The proof is given in [4]. Note that because of property P1, as stated in Section 2.1, the
above theorem may be generelized about any point in Rd, instead of just the origin. The next
theorem provides a maximum of the simplicial depth for any Euclidean space:

Theorem 5. If F is an absolutely continuous distribution on Rd and it is angularly symmetric
about µ ∈ Rd, then DS(µ|F ) = 2−d.

The proof is given in [4]. From both Theorem 4 and 5, it follows that if F is an angularly
symmetric (about µ) distribution, then the maximum is attained at µ with D(µ) = 2−d, hence
for any z ∈ Rd we have D(z) ≤ 2−d. Moreover, Theorem 3 is in line with this property.

Both the sample and the theoretical simplicial depth have been considered. However, they
lack a connection at this point. Therefore, another theorem is considered: the uniform consis-
tency of D̂S(x).

Theorem 6. If X1, . . . , Xn are i.i.d. with absolutely continuous cdf F and if its density f is
bounded, then

sup
x∈Rd

|D̂S(x|X1, . . . , Xn)−DS(x|F )| → 0 a.s. as n→∞.

The proof is given in [4]. Note that a.s. stands for almost surely.
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2.5 Contours

So far, two depth functions have been discussed, including some of their properties. It is clear
from the properties stated in section 2.1 that these depth functions provide a kind of center-
outward ordering of data. This may be visualized through contours.

Consider a bivariate data cloud. We are interested in visualizing the data depth of the data
cloud. One way to do this is to associate every observation with its depth. Observations with
the same depth may be connected with each other. In that way, several curves around the
highest depth observation will arise. These curves are called contour lines or simply contours,
since they join every point with the same depth value. This may be extended and formalized to
the multivariate case.

Given a distribution F in Rd, a point x ∈ R and some depth function D(x|F ). For α > 0,
the boundary of the set {x ∈ Rd| D(x|F ) ≥ α} defines a contour for which all observations have
depth α. The region

Dα(F ) := {x ∈ Rd| D(x|F ) ≥ α}

is defined [6] as the α-trimmed region and its boundary

∂Dα(F ) := {x ∈ Rd| D(x|F ) = α}

as the α-contour. It is analogously defined for sample depth functions.
All trimmed regions and contours are related to each other. From Theorem 4 it follows that

Dα(F ) ⊂ Dβ(F ) if α ≥ β > 0 and hence the contours are nested within eachother. They move
further and further away from the center as α decreases. Moreover, from this it follows that
every Dα(F ) is connected.

The contours can be made for density functions instead of depth functions as well. Then
they consist of every point with the same density value, so the density contours are curves with
a constant density value. These density contours are called isodensity lines or isodensanes. For
special distributions such as the elliptical distribution, depth contours posess the same shape as
the isodensity lines. This is proved in Theorem 7.

Firstly, elliptical distributions are defined. A distribution F in Rd is elliptically distributed
with location-scatter parameter (µ,Σ) if its density f is of the form

f(x) = c|Σ|−
1
2h((x− µ)TΣ−1(x− µ)).

where µ ∈ Rd, Σ is a positive definite p × p−matrix, c is a constant and h is some univariate
function. It is denoted as F ∼ Ed(h;µ,Σ). The isodensity lines for these distributions are
ellipses [8].

Theorem 7. Suppose that F ∼ Ed(h;µ,Σ) and that D(x|F ) is a depth function for which
properties P1 and P2 (with maximum value µ) hold. Then:

1. D(x|F ) is of form
D(x|F ) = h((x− µ)TΣ−1(x− µ))

for some nonincreasing function h, and Dα(F ) is of form

Dα(F ) = {x ∈ Rd| (x− µ)TΣ−1(x− µ) ≤ r2
α}

for some rα.

2. D(x|F ) is strictly decreasing on any ray originating from the center if and only if

{x ∈ Rd| D(x|F ) = α} = {x ∈ Rd| (x− µ)TΣ−1(x− µ) = r2
α}
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3. If, moreover, F is normally distributed and D denotes the halfspace depth, then rα =
Φ−1(1− α).

The proof is given in [6]. From Theorem 7, it follows that for elliptical distributions the
depth contours coincide with the isodensity lines. Therefore, the shape of depth contours provide
information about the density of the observations.

So far, we have seen that depth functions provide a good way to order multivariate data.
Property P3. from section 2.1 makes sure that observations have lower depth when moving away
from the median and that is exactly what we desire from depth functions.

Furthermore, contours are very useful for visualization of the depth in a data cloud. With
these contours it is possible to create a region in which all data has a minimal depth and therefore
a region with all data which has a maximal depth as well. In this way, outliers can be classified.

Firstly, the data are formally ordered. Let X1. . . . , Xn be observations in Rd and let
Xb1c, . . . , Xbnc be the same data, but ordered from high depth to low depth (with Xb1c as
the highest and Xbnc as the lowest depth). Outliers are ordered exactly the other way around.
An outlyingness function is proposed in [9], defined as follows:

Out(z|F ) =
1

D(z|F )
− 1.

Points outside the region Dα(F ) having outlyingness greater than 1
α − 1 can be regarded as

outliers of a specified level α. For the halfspace depth, we have that OutH : Rd → [1,∞). For
the simplicial depth, we have that OutS : Rd → [2d − 1,∞). Since the range differs for every
depth function, it is not possible to compare the outlyingness for different depth functions. Of
course, the ordering of a data set for different depth functions can be compared.

In sake of visualization, an example is used [9]. Consider a bivariate data set with the
variables governmental debt as a percentage of the GDP (general domestic product) and unem-
ployment rate of EU-27 countries in 2011. In figure 1 one can see these variables plotted against
each other. The contours are given as well, and with these one can easily verify that there are
5 outliers with respect to the outer drawn contour: Estonia, Luxembourg, Austria, Spain and
Greece.

Figure 1: Governmental debt (in % of GDP) on the x-axis vs. the unemployment rate (in %)
on the y-axis. Some contours of the halfspace depth are drawn [9].
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3 Simulation with multivariate distributions

In this section the theory from Section 2 is applied by simulating, i.e. generating a lot of
random samples from some distribution. The idea is to compute simulations from a particular
multivariate distribution and verify the results found in Section 2 for both depth functions.
Simulations will be performed in the statistical programming language R.

3.1 Bivariate Normal distribution

The first distribution being considered is the multivariate normal distribution. It is defined
[10] as follows: A random vector X = [X1, . . . , Xd]

T ∈ Rd is said to have a multivariate normal
distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d if its probability density function
is given by:

f(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

for some x ∈ Rd. It is denoted as X ∼ Nd(µ,Σ). The covariance matrix Σ should be a
positive definite d × d-matrix (i.e., Σ = ΣT and xTΣx > 0 for all x ∈ Rd such that x 6= 0). If
we just focus on the bivariate case, let X = [X,Y ]T and

µ =

(
µX
µY

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

If Σ is a diagonal matrix, then X and Y are uncorrelated and therefore independent [10].

3.1.1 Independent variables

The first example will be a bivariate normal distribution with independent variables. Let

µ1 =

(
1
1

)
, Σ1 =

(
1 0
0 1

)
.

Note that Σ1 is the identity matrix and is therefore positive definite. Firstly, n = 1000 random
samples are drawn from X = [X,Y ]T ∼ N2(µ1,Σ1). Every paired sample is denoted as zi =
(xi, yi), where i ∈ {1, . . . , n}. Their ranges are xi ∈ [−2.005; 4.231] and yi ∈ [−1.936; 4.001]. For
every pair, both the halfspace and simplicial depth may be computed (denoted respectively as
DH(zi) and DS(zi)), as defined in equations 1 and 2. See table 4 in appendix B for both depth
values for specific samples. These include all samples with the lowest halfspace depth and the
10 samples with the highest halfspace depth.

In figure 2, all samples are plotted. Moreover, all samples from table 4 are highlighted with
either red colors (all smallest halfspace depth values) or green colors (10 largest halfspace depth
values). The blue lines represent the means of the variables and they cross each other in the
center. One can see that the red samples are far away from the center and that the green samples
are near the center, exactly what would be expected.

The halfspace depth values range from 0.001 to 0.481. This is in line with the theory.
The smallest halfspace depth value should be at least 1/n = 0.001, because there could be a
halfspace which contains no points other than the point itself. There are 10 such points. The
highest halfspace depth value should be at most 0.5. However, this will almost never be attained
when sampling. Instead, the highest halfspace depth value is a tiny bit smaller. The simplicial
depth values range from 0.003 to 0.253. This is not completely in line with the theory. The
smallest simplicial depth value should be at least the number of simplices that contain some

8



point divided by the total number of simplices, i.e. 1
2(n− 1)(n− 2) ·

(
n
3

)−1
= 3

n = 0.003. So the
smallest value is correct. However, the largest value exceeds the upper bound given in Theorem
5, which is 2−2 = 0.25. This will be discussed in Section 6. The smallest depth values match
both depth functions. However, for larger depths not all depth values match anymore, but
they differ not much either. For instance, the fourth highest halfspace depth corresponds to the
second highest simplicial depth. In conclusion, both depth functions provide a different kind of
ordering.

Figure 2: 1000 random samples from N2(µ1,Σ1), with all smallest halfspace depth values in red
and the 10 largest halfspace depth values in green.

The red points in figure 2 are somewhat far distanced from the center. All of these are more
or less connected by a circle. Since these points have the same depth, they should indeed all
be on an ellipse (or specifically a circle [6]). Generally, every halfspace depth contour should
coincide with isodensities according to Theorem 7, and the following equality holds for the
halfspace depth:

{x ∈ Rd| DH(x|F ) = α} = {x ∈ Rd| (x− µ1)TΣ−1
1 (x− µ1) = (Φ−1(1− α))2}

In order to match a contour of level α with an isodensity of the same distribution, one must
take the following level for an isodensity: 1

2π exp(−1
2(Φ−1(1− α))2). This follows directly from

the definition of the density function. In figure 3 the samples are again plotted, but now with
halfspace and simplicial depth contours and isodensities. For both depths, there are five levels
of contours plotted: α ∈ 1

n{1, 5, 20, 50, 100}. Five levels of isodensities are plotted as well, with
constant values 1

2π exp(−1
2(Φ−1(1 − α))2). Unfortunately, it is unknown for which values the

contours of the simplicial depth and the isodensities coincide (at least unknown to the author).
The contours are nevertheless plotted, because the shape of these contours is still interesting.
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Figure 3: 1000 random samples from N2(µ1,Σ1), with halfspace depth contours in red solid
lines, simplicial depth contours in green solid lines and isodensities in dashed blue lines.

All of the contours (and isodensities as well) are nested within each other. This is in line with
Theorem 4. The outer contour of the halfspace depth is the least shaped as a circle. That makes
sense, since the least data is located there. As the contour level rises, the contours become more
shaped like circles and coincide with the isodensities better. For the simplicial depth contours,
only their shape can be compared to the simplicial depth contours and the isodensities. Apart
from the outer contour, all contours are more or less shaped as circles again. For the outer
contour, one can see that it is shaped as a circle with shoot outs to points with the lowest depth
values. Initially, this would just be a circle. Assume that there is a point just outside this circle,
call it zout, and let zin be some point on the circle which is very close to zout, zin. The inclusion
of zout makes the depth of zin rise, because it creates a lot of triangles in which zin is contained.
This is not the case for points on the circle further away from zout, and hence the outer contour
contains some shootouts to outliers.

3.1.2 Dependent variables

The second example will be a bivariate normal distribution with dependent variables. Let

µ2 =

(
1
1

)
, Σ2 =

(
1 ρ
ρ 1

)
.

Almost the same µ and Σ are taken as the previous example, with one exception: X and Y
are not uncorrelated anymore. Obviously, ρ 6= 0 in order to be dependent, so another ρ must be
chosen. However, there should be another condition: Σ2 should still be positive definite. Let’s
first compute the eigenvalues of this matrix:
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det(Σ2 − λI) = (1− λ)2 − ρ2 = 0 ⇐⇒ λ = 1± ρ.
It follows that the eigenvalues are positive if and only if −1 < ρ < 1. If this holds, then,

keeping in mind that Σ2 is a real symmetric matrix, Σ2 is positive definite [11]. Thus, any
|ρ| < 1 may be chosen. Take for example ρ = 0.5.

Again, n = 1000 random samples are drawn, now from N2(µ2,Σ2). Every paired sample is
denoted again as zi = (xi, yi), where i ∈ {1, . . . , n}. Their ranges are now xi ∈ [−2.511; 4.180]
and yi ∈ [−2.109; 4.543]. See table 5 in appendix B for both depth values for the same kind of
samples as before.

Figure 4 is generated analogously to Figure 2. The halfspace depth values range from 0.001
to 0.481. This is in line with the theory. The simplicial depth values range from 0.003 to 0.253.
This is not completely in line with the theory, for the same reason as before. The smallest depth
values still match both depth functions. This is not the case for larger depths, however the
difference is not high.

So far, the normal distribution with dependent variables provides the same results as the
normal distribution with independent variables. The only difference is that now, the samples
are not scattered around the center in circles, but in ellipses.

Figure 4: 1000 random samples from N2(µ2,Σ2), with all smallest halfspace depth values in red
and the 10 largest halfspace depth values in green.

The red points in figure 4 are not equally distanced from the center, but there is a pat-
tern. All of these are more or less connected by a ellipse. The same equality holds for the
halfspace depth contours and the isodensities. However, different isodensity levels should be
taken, because the density function is slightly different. In order to match a contour of level α
with an isodensity of the same distribution, one must take the following level for an isodensity:
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1
2π|Σ|1/2 exp(−1

2(Φ−1(1 − α))2). See figure 5 for all of these contours and isodensities, with the

same α levels (for the contours) as before. Also in this case one can only compare the shape
of the simplicial depth contours with the other contours/isodensities. The result is very similar
as with independent variables, but instead of circles the contours are ellipses. Again, the halfs-
pace depth contours have the same shape as the isodensities. Note however, that they seem to
coincide less better than with the independent variables, especially the inner contour. This is
discussed in Section 6.

Figure 5: 1000 random samples from N2(µ2,Σ2), with halfspace depth contours in red solid
lines, simplicial depth contours in green solid lines and isodensities in dashed blue lines.

3.2 Bivariate Student’s t-distribution

The second distribution being considered is the multivariate Student’s t-distribution. It is
commonly defined [12] as follows: A random vector X = [X1, . . . , Xd]

T ∈ Rd is said to have
a multivariate Student’s t-distribution with parameters the mean µ ∈ Rd, the scale matrix
Σ ∈ Rd×d and the degrees of freedom ν ∈ N if its probability density function is given by:

f(x|µ,Σ, ν) =
Γ
(
ν+d

2

)
Γ
(
ν
2

)
(νπ)d/2|Σ|1/2

(
1 +

1

ν
(x− µ)TΣ−1(x− µ)

)−(ν+d)/2

for some x ∈ Rd. Note that in general, Σ is not the covariance of X. It is denoted as X ∼
tν(µ,Σ). The Student’s t-distribution is related to the normal distribution, because the latter is a
special case of the first. If the degrees of freedom ν tends to infinity, the t-distribution converges
to a normal distribution [13]. Despite this relation, there are some differences. Firstly, a t-
distribution has a different tail behavior than the normal distribution: it has heavy tails [13].
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As a consequence, the t-distribution is better to generate outliers. Furthermore, dependency
behavior works differently for these distributions. It was already stated in this subsection that
whenever Σ is a diagonal matrix, the variables of a normal distribution are uncorrelated and
therefore by default independent. This is not the case for arbitrary t-distributions.

Here, we will only consider the bivariate distribution with 1 degree of freedom (ν = 1):

f(x|µ,Σ, ν = 1) =
1

2π|Σ|1/2
(
1 + (x− µ)TΣ−1(x− µ)

)−3/2
.

Note that Γ
(

3
2

)
/Γ
(

1
2

)
= 1

2Γ
(

1
2

)
/Γ
(

1
2

)
= 1

2 .
It is desired to look into two independent Student’s t-distributions with 1 degree of freedom.

The problem is that this pdf is not easily expressed for independent variables. Therefore, another
definition of the Student’s t-distribution is used. Consider the joint pdf for n independent, zero-
mean (location parameter µ = 0) Student’s t pdfs with shape parameter ν, as defined in [14]:

f(x|ν) =
n∏
i=1

Γ
(
νi+1

2

)
Γ
(
νi
2

)√
πνi

(
1 +

x2
i

νi

)− νi+1

2

.

For ν = 1, and d = 2, we have that

f(x, y|ν = 1) =
(Γ(1))2

π(Γ(1
2))2

(
1 + x2

)−1 (
1 + y2

)−1
=

1

π2(1 + x2)(1 + y2)
,

since Γ(1) = 1 and Γ(1/2) =
√
π. In figure 6, some depth contours and isodensities are

drawn for this density function. The depth contours are drawn with levels α ∈ 1
n{5, 10, 20, 50},

where n = 1000 is the sample size. In [7], it is stated that the shapes of the isodensities are in
fact squares, and the shapes of the halfspace depth contours are shown to be a kind of star with
four ends. The shapes of figure 6 are in line with this.

Figure 6: 1000 random samples from the bivariate Student’s t-distribution with independent
variables. Halfspace depth contours are drawn in red, isodensities in blue.
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3.3 Higher dimension simulation

We want to make sure that depth functions still work in higher dimensions. Take for instance
d = 5 and suppose that Xi ∈ R5 and are distributed Xi ∼ N5(µ,Σ) with µ = 1 and Σ = I for
all 1 ≤ i ≤ n, where n = 5000 is the number of samples. The halfspace depth and density can
be computed for every observation.

The depth range is DH ∈ [2 · 10−4; 0.436], which is nicely in line with Lemma 1. Moreover,
if the mean of the distribution is computed, i.e. 1, then the depth is 0.4838. This is almost
in line with Theorem 2. Practically, it is impossible to reach the maximum of 0.5, because a
number of random samples are drawn, so it seems to be right that it is almost reached. The
density range is f ∈ [1.033 · 10−9; 0.010]. Although we cannot compare these two ranges, we can
however modify the depth range (the density range as well, but this is less natural) such that
the two ranged coincide. This follows from the known fact that depth contours coincide with
normal density contours. From Theorem 7, it follows that if DH(x) = α, then for d = 5:

f(x|µ = 1,Σ = I) =
exp(−1

2(Φ−1(1− α))2)

(2π)5/2
.

In figure 7 this relationship is plotted. All points follow the line y = x, so it follows that the
contours would indeed coincide.

Figure 7: Density vs. depth of 5000 random normal fifthdimensional samples. The depth is
modified such that it should coincide with the density.
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4 Application in the weather

In this section the theory from Section 2 is applied to real-world data, specifically to data of the
weather in the Netherlands. This data can be attained through the KNMI (Royal Netherlands
Meteorological Institute), who keep track of all data regarding the weather. The KNMI has
weather stations all across the country, with its headquarters in De Bilt. All data used in this
section is about the weather station in De Bilt, see [15] for this data.

4.1 Temperature in July

The first data set to be researched concerns the temperature. The KNMI has been measuring
the temperature since 1901 in De Bilt. The minimal, maximal and average temperature on every
day since 1901 is available. The total amount of days from 1901 to 2018 sums up to 43099. Only
the maximal temperature on a day will be researched in this report.

Working only with daily temperatures would mean that univariate data is researched. To
apply the data to the theory in this report, it needs to be converted to multivariate data. One
could see every year as an observation, which means the data would have a dimension of 365.
There are two reasons why this is not a good idea. First of all, since we have a leap year every
four years, this would mean that not every observation has the same dimension. Secondly, the
dimension is too high to work with (this will be reasoned later on).

A second idea would be to work only with temperatures of a specific month. One of the
motivations to write this report was to look into the July temperature of 2018, and find out
how outlying it would be compared to the other July months. The dimension will now be 31,
without observational exceptions, so every day of July is a variable.

The first thing to do after collecting the data is to make a quick analysation. Let T (y,m, d)
denote the maximum temperature on year y, month m and day d and let T (y,m) denote the
average maximum temperature of year y and month m, both in centigrades. In figure 8, the
average maximum temperature of July is plotted against every year with a smooth curve. This
curve indicates a rise in this kind of temperature.

Figure 8: Average maximum temperature (in ◦C) of July plotted against every year, with a
smooth curve, which denotes the trend.
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The highest average maximum temperature was attained in 2006, with T (2006, 7) = 28.7.
2018 is the third highest, with T (2018, 7) = 26.8, and the lowest was attained in 1954, with
T (1954, 7) = 17.8. All maximum temperatures in July range from T (1903, 7, 7) = 11.1 to
T (2006, 7, 19) = T (2018, 7, 26) = 35.7.

Unfortunately. it is not possible in R to compute the simplicial depth for dimensions higher
than 2, so only the halfspace depth will be used. However, the halfspace depth brings problems
too. When computing the halfspace depth for every year with every day in July as a variable,
all except four have the same value: 1

118 ≈ 0.0085. Note that in this case we have used 118
observations of dimension 31. Obviously this is not a desired result: the dimension is still too
high, and moreover the number of observations is too little for this dimension. Another idea is
required.

The third and last idea is to investigate smaller parts of July. We will look into observations
of dimension 7: exactly a week. There are 25 such weeks in July: 1 to 7, 2 to 8 etc. until 25
to 31. So actually we now have 25 data sets, and for every year the depth can be computed 25
times: all corresponding to some week in July. All these depths together range from 0.0085 to
0.27. The minimum is as expected, because it is actually 1/118. The maximum is also inside
the range of 0 and 0.5, and 0.5 would almost never be reached because of the small number of
observations.

There are four years which will be investigated. The first three are mentioned before: 1954
(lowest T (y, 7)), 2006 (highest T (y, 7)) and 2018 (third highest T (y, 7)). Another year of interest
would be a very common year. One could pick the year for which the range in maximum
temperature for all days is the smallest: it turns out to be 1974.

The depths range from 0.0085 to 0.11 for these four years. When visualizing the depths for
these years, it is useful to use the outlyingness function, as defined in Subsection 2.5, since the
depth is very dense and therefore the outlyingness will be more distinguishable. In figure 9 the
outlyingness for four years is plotted against the 25 7-day intervals in July.

Figure 9: Maximum temperature (in ◦C) outlyingness plotted against 25 7-day intervals of July,
for the years 1954, 1974, 2006 and 2018. A number on the x-axis corresponds to the week
starting on that number.
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One can see that the years 1954 and 2006 are more outlying than the other years. What
does a high outlyingness mean in this case? It corresponds to a small depth, which means that
the data is less deep or central in the data, and thus it is less common. But that does not mean
that we can exclude such a week from being relatively cold or hot. Either one of the two is true.
Indeed, in 1954 it was relatively cold, and in 2006 it was relatively hot, as can be established by
looking to their mean and standard deviation, see table 1.

Furthermore, the years 1974 and 2018 seem to be a bit common, in the sense that they have
lower outlyingness and higher depth. For 1974, this is true for all 7-day intervals. Although
the mean of this year’s maximum temperatures is not same as the mean of all year’s maximum
temperatures, it is close and moreover, its standard deviation is very low. This means that most
maximum temperatures lie around the mean and therefore do not deviate much from the mean,
so we would expect it to have a higher depth. For 2018, most of the 7-day interval depths have
relatively high depth, except for the last part. If we look into the temperatures there, one can
see that it has high outliers on the 26th and 27th of July, as they both are higher than 35.

One last note is that a lot of outlyingness numbers are 117. This corresponds to the lowest
depth value of 1

118 .

Table 1: Mean and standard deviation of the maximum temperatures (in ◦C) in July for four
years.

Year Mean Standard deviation

1954 17.80323 1.905515

1974 19.09032 1.642428

2006 28.68065 3.107241

2018 26.77742 3.339831

All 21.71178 3.847131

4.2 Precipitation and wind speed

The second data set to be researched concerns both the precipitation and the wind speed. To
be specific, for precipitation the highest amount of precipitation in an hour of the day is used,
and for the wind speed the highest average wind speed of an hour of the day is used. With
these variables, severe weather (e.g. heavy storm and rainfall) can be researched. The KNMI
has been measuring the wind speed since 1904 and the precipitation since 1906 in De Bilt. As
we will work with both data, only data from 1906 will be researched. From this year to 2018
corresponds with 41242 days.

At first, we will work with the bivariate dataset with 41242 observations. Obviously, this is
a lot of data so there are limitations, which will be discussed later on. Again, there will be a
quick analysation of the data. In figure 10, the highest hourly precipitation is plotted against
the highest average wind speed in an hour for all days. In table 2, one can find the five dates
with the lowest halfspace depth. These are also plotted in figure 10, indicated as red stars. The
green star indicates the point with the highest depth.

Let β(y,m, d) = (w(y,m, d), p(y,m, d)) denote the observation of the highest average wind
speed w in an hour and the highest amount of percipitation p in an hour on year y, month m
and day d. Let D(β) denote the halfspace depth of β(w, p). A first thing to notice about figure
2 is that the wind speed data is discrete (at least more discrete than precipitation). Next, some
ranges are given:

• w ∈ [0.0; 26.8] (in m/s);
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• p ∈ [0.0; 44.1] (in mm);

• D ∈ [2.425 · 10−5; 0.404].

All boundaries of the ranges of w and p are contained in table 2. The depth range is within
the theoretical range (maximum of 0.5) as stated in Lemma 1. The minimal depth is in fact
1
n , where n = 41242 is the number of observations. The maximal depth occurs 91 times in
the point µ = (5.7; 0.3), hence µ is the halfspace depth median. There are observations worth
noting. Firstly, β(1962, 12, 5) = (0.0; 0.0), which is the only observation with w = 0. It means
that on every hour of that day, the average wind speed was 0 m/s. Another notable observation
is β(1953, 6, 13) = (4.6; 44.1), which has the highest value of p. So on the 13th of June in 1953,
there was an hour for which there was 44.1 mm precipitation. If one compares this with the fact
that the average precipitation in De Bilt in June is 66 mm [16], it is quite shocking.

Figure 10: Highest amount of precipitation in an hour (in mm) vs. the highest average wind
speed in an hour (in m/s) for all days since 1906. The smallest halfspace depths are indicated
in red and the highest halfspace depth is indicated in green.

Table 2: Dates, wind speed, precipitation and depth for all observations with the highest halfs-
pace depth. Data used since 1906.

Year Month Day Wind speed (m/s) Precipitation (mm) Depth

1921 11 6 26.8 5.1 2.425 · 10−5

1930 1 13 24.2 0.0 2.425 · 10−5

1949 3 1 25.2 1.7 2.425 · 10−5

1953 6 13 4.6 44.1 2.425 · 10−5

1962 12 5 0.0 0.0 2.425 · 10−5

It is desirable to draw contours in this data set. However, because of the high number of
observations, it takes statistical programming language R too long to compute these contours.
Therefore, we need to work with less observations. To this end, let’s take observations from
2012 onwards. There are now 2557 observations left.

In figure 11, the highest hourly precipitation is plotted against the highest average wind
speed in an hour for all days since 2012. In table 3, one can find the five dates with the highest
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halfspace depth.

Figure 11: Highest amount of precipitation in an hour (in mm) vs. the highest average wind
speed in an hour (in m/s) for all days since 2012. The smallest halfspace depths are indicated
in red and the highest halfspace depths are indicated in green. The red lines are the halfspace
depth contours.

Table 3: Dates, wind speed, precipitation and depth for all observations with the highest halfs-
pace depth. Data used since 2012.

Year Month Day Wind speed (m/s) Precipitation (mm) Depth

2013 10 28 14 3.1 3.91 · 10−4

2014 2 15 12 0.0 3.91 · 10−4

2016 6 23 4 33.3 3.91 · 10−4

2016 12 3 1 0.0 3.91 · 10−4

2018 1 18 14 2.0 3.91 · 10−4

Ranges are:

• w ∈ [1; 14] (in m/s);

• p ∈ [0.0; 33.3] (in mm);

• D ∈ [0.0003910833; 0.3793508].

All boundaries of the ranges of w and p are again contained in table 3. The depth range is
within the theoretical range (maximum of 0.5) as stated in Lemma 1. The minimal depth is in
fact 1

n , where n = 2557 is the number of observations. The maximal depth occurs 12 times in
the point µ = (5; 0.4), hence µ is the halfspace depth median.

Because the number of observations is now more passible, halfspace depth contour lines
can be computed. These are also implemented in figure 11, with levels α ∈ 1

n{1, 3, 9, 20}.
The contour lines provide useful information about the distribution of the data. With just a
twodimensional plot, it is not possible to see how much data there is near low precipitations (i.e.
near zero precipitation). Since the contours are so close to each other at the bottom, it must be
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the case that the data is extremely dense near 0 precipitation. Furthermore, the contours are
nested within each other, which is in line with Theorem 4. Note that the wind speed data being
discrete has influence on the contour shapes. The left and right edges of the contours are near
the discrete observations.
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5 Conclusion

The main goal of this report was to find a way to measure data depth in multivariate data.
Depth functions provide a solution to this problem. We desire from these depth function that
they order data from central observations to outliers. The halfspace depth of a point is the
smallest ratio of points in some halfspace which contains that point. For central points, there
are a lot of points around, so every halfspace contains lots of points, and therefore it has high
depth. Outliers are situated far away from other data, so there probably exists a halfspace for
which there are no other observations, and therefore it has low depth. The simplicial depth
of a point is the ratio of simplices (with observations as vertices) which contain that point.
Central points are surrounded by all other points, so they are contained in a lot of simplices,
and therefore has high depth. Outliers are probably only contained in simplices for which the
outlier is a vertex itself, so it has low depth. In conlusion, both depth functions provide a good
notion of ordering multivariate data.

But which of these is better? Theoretically speaking, none of them is better than the other.
To illustrate, we have looked into the differences between the simplicial and halfspace depth
for the bivariate normal distribution. It turns out that the ordering is almost the same, with
some rotation between a couple of observations. Their order did not differ much from each
other. Practically speaking, the halfspace depth is better. First of all, this depth function is
more common, so it has less limitations in programming language R than the simplicial depth
function. Moreover, we saw that for the bivariate normal distribution, the contours are less
shaped as circles/ellipses than the halfspace depth.

Finally, some real-world data was researched. For the maximal temperature, we have looked
into four specific years: 1954 (lowest T ), 1974 (smallest T range), 2006 (highest T ) and 2018
(third highest T ). Both 1954 and 2006 had high outlyingness, and 1974 had a relatively low
outlyingness, so far as expected. However, 2018 had a high depth for the first 15 7-day intervals.
This is not really expected as 2018 had the third highest average maximum temperature. This
is a consequence of the extreme high temperatures on the last 10 7-day intervals. We have also
looked into the combination of heavy wind and precipitation. The depth is computed and some
outliers originated. With the depth contours, we can qualify how outlying this data is, and
therefore it gives an idea of how to define severe weather. Moreover, the frequency of severe
weather can be estimated. This is something which can be investigated more in another research.
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6 Discussion

During the process of this research, there were some difficulties. Firstly, the depth functions could
not be expressed in terms of distribution functions for higher dimensions. If these were known,
then computing the depth would be a lot easier. For the univariate case however, they were
found and in fact have been proven in this report. In the computation of the depth of bivariate
normal observations, it followed that the highest simplicial depth exceeded the maximum of
0.25. I propose two reasons for this: there are not enough observations and the computation of
the simplicial depth is not 100% waterproof. Obviously, if there are not enough observations,
then computations are less exact. However, if more observations were used, then the simplicial
depth contained negative values and values higher than 30 for instance. Therefore, I think
that the simplicial depth function in R is not completely correct. Another notable phenomenon
was found in the case of dependent bivariate normal variables. The halfspace depth contours,
from outside to inside, first seem to coincide more and more with the isodensities, but from the
inner contour on they just coincided less. I have not yet figured out why this occurs, so this is
definitely something for future research. Also, I wanted to create contours for threedimensional
observations. These would be spheres. However, I was not able to do so, as I have tried many
functions in R, but unfortunately none of them worked. Furthermore, for the temperature data,
the idea was to compute the depth for every year, where every year was an observation of all days
in July. That means that the dimension would be 31, with 118 observations. The dimension
unfortunately was too high to make accurate calculations. The conclusion that 2018 was not
very outlying was alsog not very satisfying, because it was the year with the third highest average
maximum temperature of July. The reason is that there are not enough observations. With
more observations, the last ten intervals could have more potential for high outlyingness than
other years. Finally, the depth orders data and specifically detects outliers. In our real-world
data, we expect outliers to be extreme weather situations. However, when computing the depth
there are mild weather situations with very low depth, in which we are not interested. Think of
the lowest July temperature, or the observation of zero average wind speed in an hour.
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A Proofs

Beneath, the proofs of lemmas and theorems can be found.

Theorem 1. If F is a distribution in R1, then

DH(z) = min{F (z), 1− F (z)} ∈
[
0,

1

2

]
.

Moreover, the depth is maximized in the median µ with maximum value 1
2 .

Proof. For computation of the halfspace depth, it may be assumed that the boundary of a closed
halfspace H which contains z and minimizes P (H) passes through that point z. Thus, for the
univariate case, only two halfspaces are left: {x ∈ R1| x ≤ z} and {x ∈ R1| x ≥ z}. The
probabilities of these halfspaces are respectively F (z) and 1− F (z), and therefore we have that

DH(z) = min{F (z), 1− F (z)}.

Now, since F (z) ∈ [0, 1], it immediately follows that DH(z) ∈
[
0, 1

2

]
. Moreover, since F (µ) = 1

2
per definition, it follows that maxzDH(z) = DH(µ) = 1

2 .

Lemma 1. For any probability P with a density we have DH(z) ≤ 1
2 for any z ∈ Rd.

Proof. Let Hz be some closed halfspace with its boundary passing through z and let H−z :=
Hc
z ∪ ∂Hz. Then H−z is a closed halfspace with its boundary passing through z as well, and

Hz ∩H−z = ∂Hz, so this is the hyperplane passing through z. Then we have

P (Hz) + P (H−z ) = P (Hz ∪H−z ) + P (Hz ∩H−z ) = 1,

since the probability of a hyperplane is zero (because P has a density). From this, it follows
that min{P (Hz), P (H−z )} ≤ 1

2 . At any z we now have

DH(z) = inf P (Hz) = inf min{P (Hz), P (H−z )} ≤ 1

2

Theorem 2. If P has a density and is angularly symmetric about µ, then

max
z
DH(z) = DH(µ) =

1

2
.

Proof. By Lemma 1 it is sufficient to show that DH(µ) = 1
2 . Because P has a density, the

hyperplane ∂Hµ has zero probability. Therefore, P (Hµ) = P (int(Hµ)). By angular symmetry,
it follows that P (int(Hµ)) = P (int(H−µ )) and hence P (Hµ) = P (H−µ ). Both equal 1

2 by the

proof of lemma 1. This is true for every halfspace passing through µ, hence DH(µ) = 1
2 .

Theorem 3. Let X1, X2 ∈ R1 be i.i.d. with univariate continuous cdf F and let X1X2 be the
line segment connecting X1 and X2. The simplicial depth will then be

DS(x|F ) = PF (x ∈ X1X2) = 2F (x)(1− F (x)).

Moreover, the depth is maximized in the median with maximum value 1
2 .
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Proof. Define the events A := X1 ≤ x ≤ X2 and B := X2 ≤ x ≤ X1. We have that {x ∈
X1X2} ⇐⇒ A ∪B, hence

P (x ∈ X1X2) = P (A ∪B) = P (A) + P (B)− P (A ∩B) = P (A) + P (B)− 0 = 2P (A)

The latter equation follows from X1 and X2 being identically distributed. For the probabilty of
event A we have

P (A) = P (X1 ≤ x ≤ X2) = P (X1 ≤ x, x ≤ X2) = P (X1 ≤ x)P (x ≤ X2),

since X1 and X2 are independent. Finally, because X1, X2 ∼ F , it follows that

D(x) = 2P (X1 ≤ x)(1− P (X2 ≤ x)) = 2F (x)(1− F (x)).

Now that the simplicial depth is expressed in terms of F , the deepest point in the data set
can explicitly be found. The deepest point, or the median µ, is the observation for which D is
maximized, thus

µ := arg max
x∈R1

D(x) = arg max
x∈R1

2F (x)(1− F (x))

One way to maximize this is through differentiating:

D′(x) = 2F ′(x)(1− F (x)) + 2F (x) · −F ′(x) = 2f(x)(1− 2F (x))

D′(x) = 0 ⇐⇒ 1− 2F (x) = 0 ⇐⇒ F (x) =
1

2
.

Note that f(x) = F ′(x) is the density function of F (x). Per definition, F (µ) = 1
2 for median µ,

so D(x) is indeed maximized by the median. In conclusion, maxx∈R1 D(x) = D(µ) = 1
2 .
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B Data

Table 4: Random samples from N2(µ1,Σ1) with their halfspace and simplicial depths
xi yi DH(zi) DS(zi)

-0.35615523 4.00089943 0.001 0.003000000

1.71681764 3.87372861 0.001 0.003000000

-1.43443828 3.68583033 0.001 0.003000000

3.83327294 3.03635224 0.001 0.003000000

4.23115697 1.98202156 0.001 0.003000000

-2.00492196 0.63533572 0.001 0.003000000

4.17306860 -0.72755655 0.001 0.003000000

-1.23203868 -1.76603419 0.001 0.003000000

2.13909391 -1.93266328 0.001 0.003000000

0.99863469 -1.93578445 0.001 0.003000000
...

...
...

...

1.0016427 1.0915449 0.439 0.2499906

0.8878813 1.0727613 0.443 0.2484072

0.8985231 1.0031238 0.449 0.2509111

0.9593943 1.0691585 0.455 0.2509392

0.9653366 0.9019999 0.456 0.2509568

0.9402226 0.8940368 0.456 0.2503058

1.0053278 1.0005656 0.470 0.2524526

0.9709936 0.9425479 0.471 0.2522974

0.9671003 0.9500382 0.473 0.2524496

0.9899894 0.9767099 0.481 0.2526816
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Table 5: Random samples from N2(µ2,Σ2) with their halfspace and simplicial depths
xi yi DH(zi) DS(zi)

2.10877815 4.54321643 0.001 0.003000000

2.92077753 4.27693276 0.001 0.003000000

3.84713079 3.13031316 0.001 0.003000000

-0.81826951 2.18665245 0.001 0.003000000

4.18016925 1.34689630 0.001 0.003000000

3.46603410 0.23487713 0.001 0.003000000

-2.51147522 -0.27943654 0.001 0.003000000

-1.54314657 -1.54178126 0.001 0.003000000

1.09042644 -2.08264216 0.001 0.003000000

-0.97021394 -2.10930786 0.001 0.003000000
...

...
...

...

1.0801015 1.0784589 0.439 0.2499906

1.0069538 1.1190725 0.443 0.2484072

0.9519668 1.0534437 0.449 0.2509111

1.0395902 1.0801959 0.455 0.2509392

0.8783445 0.9381219 0.456 0.2503058

0.8977977 0.9324611 0.456 0.2509568

1.0031537 0.9978259 0.470 0.2524526

0.9357418 0.9647482 0.471 0.2522974

0.9402820 0.9731817 0.473 0.2524496

0.9748249 0.9848355 0.481 0.2526816
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C Code in R

Simulation with multivariate distributions

library(abind);library(depth);library(dplyr);library(MASS);library(Matrix);

library(mvtnorm);library(plot3D);library(plotly);library(RColorBrewer);

library(reshape2);library(tidyr);library(laGP); library(ContourFunctions);

library(fMultivar);

# Bivariate normal distribution 1, independent variables

set.seed(127)

n <- 1000

mu <- c(1,1)

Sigma <- diag(2)

x <- mvrnorm(n, mu, Sigma)

dpt_tukey <- numeric(n)

for (i in 1:n){dpt_tukey[i] <- depth(x[i,],x,method="Tukey")}

dpt_liu <- numeric(n)

for (i in 1:n){dpt_liu[i] <- depth(x[i,],x,method="Liu")}

md <- data.frame(v1=x[,1],v2=x[,2],tukey_depth=dpt_tukey,liu_depth=dpt_liu)

outliers <- md %>% filter(tukey_depth==min(md$tukey_depth))

non_outliers <- filter(md, row_number(desc(tukey_depth)) <= 10)

#1e plot

plot(md[,1:2],xlab="X",ylab="Y")

points(outliers$v1,outliers$v2,pch=8,cex=1.5,col="red")

points(non_outliers$v1,non_outliers$v2,pch=8,cex=1.5,col="green")

abline(h=mean(md[,2]),v=mean(md[,1]),lwd=1,col="blue")

#2e plot

isodepth(md[,1:2],dpth=c(1,5,20,50,100),colcontours="Red")

#isodensities

N <- 100

x.points <- seq(-4,6,length.out=N)

y.points <- x.points

z <- matrix(0,nrow=N,ncol=N)

for (i in 1:N) {for (j in 1:N) {z[i,j] <-

dmvnorm(c(x.points[i],y.points[j]),mean=mu,sigma=Sigma)}}

lvls = 1/n * c(1,5,20,50,100)

adj_lvls <- exp(-(qnorm(1-lvls))^2/2)/(2*pi)

contour(x.points,y.points,z,levels=adj_lvls,lty=2, lwd=2,add=TRUE,col="blue")

Liu_dpt <- perspdepth(md[,1:2],method="Liu",output=TRUE)

contour(Liu_dpt[["x"]],Liu_dpt[["y"]],Liu_dpt[["z"]],

levels=lvls,lwd=2,add=TRUE,col="green3")

# Bivariate normal distribution, dependent variables

set.seed(127)

n <- 1000

mu <- c(1,1)

rho <- 0.5
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Sigma <- matrix(c(1,rho,rho,1),2,2)

x <- mvrnorm(n, mu, Sigma)

dpt_tukey <- numeric(n)

for (i in 1:n){dpt_tukey[i] <- depth(x[i,],x,method="Tukey")}

dpt_liu <- numeric(n)

for (i in 1:n){dpt_liu[i] <- depth(x[i,],x,method="Liu")}

md <- data.frame(v1=x[,1],v2=x[,2],tukey_depth=dpt_tukey,liu_depth=dpt_liu)

outliers <- md %>% filter(tukey_depth==min(md$tukey_depth))

non_outliers <- filter(md, row_number(desc(tukey_depth)) <= 10)

#1e plot

plot(md[,1:2],xlab="X",ylab="Y")

points(outliers$v1,outliers$v2,pch=8,cex=1.5,col="red")

points(non_outliers$v1,non_outliers$v2,pch=8,cex=1.5,col="green")

abline(h=mean(md[,2]),v=mean(md[,1]),lwd=1,col="blue")

#2e plot

isodepth(md[,1:2],dpth=c(1,5,20,50,100),colcontours="Red")

#isodensities

N <- 100

x.points <- seq(-4,6,length.out=N)

y.points <- x.points

z <- matrix(0,nrow=N,ncol=N)

for (i in 1:N) {for (j in 1:N) {z[i,j] <-

dmvnorm(c(x.points[i],y.points[j]),mean=mu,sigma=Sigma)}}

lvls = 1/n * c(1,5,20,50,100)

adj_lvls <- exp(-(qnorm(1-lvls))^2/2)/(2*pi*sqrt(det(Sigma)))

contour(x.points,y.points,z,levels=lvls,lty=2, lwd=2,add=TRUE,col="blue")

Liu_dpt <- perspdepth(md[,1:2],method="Liu",output=TRUE)

contour(Liu_dpt[["x"]],Liu_dpt[["y"]],Liu_dpt[["z"]],

levels=lvls,lwd=2,add=TRUE,col="green3")

# dimension 5

set.seed(127)

n <- 5000

mu <- rep(1,5)

Sigma <- diag(5)

x <- mvrnorm(n, mu, Sigma)

head(x)

dpth5 <- numeric(n)

dens5 <- numeric(n)

for (i in 1:n){dpth5[i] <- depth(x[i,1:5],x[,1:5],approx=TRUE)}

for (i in 1:n){dens5[i] <- dmvnorm(x[i,1:5],mean = mu,sigma = Sigma)}

matr5 <- cbind(x,dpth5,dens5)

depth(numeric(5)+1,x[,1:5],approx = TRUE)

plot(dpth5,dens5,xlab="Depth",ylab="Density")

dpth5_mod <- exp(-(qnorm(1-dpth5))^2/2)/(2*pi)^(5/2)

plot(dpth5_mod,dens5,xlab="Modified depth",ylab="Density")
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#student t distribution

set.seed(127)

n <- 1000

nu <- 1

x <- rt(n, df = nu)

set.seed(141)

y <- rt(n, df = nu)

isodepth(cbind(x,y),dpth=c(5,10,20,50),col="Red")

N <- 100

x.points <- seq(-100,100,length.out=N)

y.points <- x.points

z <- matrix(0,nrow=N,ncol=N)

for (i in 1:N) {for (j in 1:N) {z[i,j] <-

1/(pi^2*(1+x.points[i]^2)*(1+y.points[j]^2))}}

lvls = 1/200000*c(1,10,100)

contour(x.points,y.points,z,levels=lvls,lty=2, lwd=2,add=TRUE,col="blue")

Application on temperature

setwd("D:/Documenten/TU Delft schoolwerken/Bacherlorproject") #workspace

x <- read.table("KNMI_all_temp.txt",sep = ",")

n <- nrow(x)

yr <- 1:n; mn <- 1:n; dy <- 1:n; temp <- 1:n;

for (i in 1:n){

yr[i] <- strtoi(substring(x[i,2],1,4),base=10)

mn[i] <- strtoi(substring(x[i,2],5,6),base=10)

dy[i] <- strtoi(substring(x[i,2],7,8),base=10)

temp[i] <- x[i,3]/10

}

mydata <- data.frame(year = yr, month = mn, day = dy, temperature = temp)

#maandgemiddelde van input(maand) voor elk jaar, trendlijn

maand = "Jul" #first three letters of the month, with first letter as capital

yrs <- 1901:2018; month_avg <- 1:118

for (i in yrs){

workdata <- subset(mydata, year==i & month ==match(maand,month.abb),

select=temperature)

month_avg[i-1900] <- mean(workdata[,])}

#data analyseren

scatter.smooth(yrs,month_avg,xlab="Year",ylab="Temperature")

July_data <- subset(mydata, month ==match(maand,month.abb))

View(July_data)

View(month_avg)

#depth berekenen met 118 observaties in dimensie 31: werkt niet
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maand = "Jul"

data_wide <- spread(mydata[ which(mydata$month ==match(maand,month.abb)), ]

, day, temperature)

depth_matrix <- as.matrix(data_wide[1:118,3:33]) #118 observaties van dimensie 31

depth_obs <- matrix(nrow=118,ncol=1)

for (j in 1:118){ depth_obs[j] <-

depth(depth_matrix[j,],depth_matrix,approx = TRUE) }

#depth berekenen met 118 observaties in dimensie 7

maand = "Jul"

data_wide <- spread(mydata[ which(mydata$month ==match(maand,month.abb)), ]

, day, temperature)

weekly_depth <- matrix(nrow=118,ncol=25)

for (i in 1:25){

k <- i+2

l <- i+8

depth_matrix <- as.matrix(data_wide[1:118,k:l])

for (j in 1:118){

depth_point <- as.numeric(depth_matrix[j,])

weekly_depth[j,i] <- depth(depth_point,depth_matrix,approx=TRUE)

}

}

min(weekly_depth)

max(weekly_depth)

#mogelijkheid: plot voor elk interval (25 totaal) de diepte en verbind de punten.

#1: bepaal het jaar waarvoor geldt dat de range in max temperatuur

# in heel juli het laagst is (1974)

u<-numeric(118);

for (i in 1:118){u[i]<-max(data_wide[i,3:33])-min(data_wide[i,3:33])};

which.min(u)

weekly_outl <- 1/weekly_depth - 1

years <- c(1954,1974,2006,2018) #niet meer dan 6

k <- length(years)

colors <- rev(brewer.pal(k,"Dark2"))

M <- 1.4*max(weekly_outl)

for (i in 1:k){

if (i == 1){

yr <- years[i]-1900

plot(xlab="First day of a week",ylab="Outlyingness",1:25,weekly_outl[yr,]

,ylim=c(0,M),col=colors[i],type = "l",lty=i,lwd=2)

}

else{

yr <- years[i]-1900

par(new=TRUE)

plot(xlab="First day of a week",ylab="Outlyingness",1:25,weekly_outl[yr,]

,ylim=c(0,M),col=colors[i],type = "l",lty=i,lwd=2)

}

}
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legend(x=21.5,y=M,legend=years,col=colors,lty=1:k,lwd=2)

#lijkt dit te kloppen?

for (k in years){

print(k)

print(mean(July_data[July_data$year==k,4]))

print(sd(July_data[July_data$year==k,4]))

}

mean(July_data[,4])

sd(July_data[,4])

Application on precipitation and wind speed

#data formatteren

setwd("D:/Documenten/TU Delft schoolwerken/Bacherlorproject") #workspace

x <- read.table("KNMI_all_2.txt",sep = ",")

m <- nrow(x)

yr <- 1:m; mn <- 1:m; dy <- 1:m; wd <- 1:m; rn <- 1:m; dp <- 1:m

for (i in 1:m){

yr[i] <- strtoi(substring(x[i,2],1,4),base=10)

mn[i] <- strtoi(substring(x[i,2],5,6),base=10)

dy[i] <- strtoi(substring(x[i,2],7,8),base=10)

wd[i] <- x[i,3]/10 #unit: m/s

rn[i] <- x[i,4]/10 #unit: mm

}

mydata <- na.omit(data.frame(year = yr, month = mn, day = dy, wind = wd

, rain = rn, dpth = dp))

#wind vanaf 1904, regen vanaf 1906

n <- nrow(mydata)

for (i in 1:n){

if (mydata[i,5]<=0){

mydata[i,5]<-0 #er zijn dagen waarop de neerslag negatief is gezet ipv op 0

}

}

#depth voor alle observaties:

n <- nrow(mydata)

for (i in 1:n){mydata[i,6] <- depth(mydata[i,c(4,5)],mydata[,c(4,5)])}

outliers1 <- mydata %>% filter(dpth==min(mydata$dpth))

non_outliers1 <- mydata %>% filter(dpth==max(mydata$dpth))

plot(mydata[,4:5],xlab="Wind speed",ylab="Precipitation")

points(outliers1$wind,outliers1$rain,pch=8,cex=1.5,col="red")

points(non_outliers1$wind,non_outliers1$rain,pch=8,cex=1.5,col="green")

#cf_data(mydata[,4],mydata[,5],mydata[,6])

#observaties vanaf 2012 (2557 obs)

md2000 <- mydata[mydata$year>2011,]

n <- nrow(md2000)

for (i in 1:n){md2000[i,6] <- depth(md2000[i,c(4,5)],md2000[,c(4,5)])}
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outliers <- md2000 %>% filter(dpth==min(md2000$dpth))

non_outliers <- md2000 %>% filter(dpth==max(md2000$dpth))

isodepth(md2000[,4:5],dpth = c(1,3,9,20),mustdith = TRUE,colcontours="Red"

,xlab="Wind speed",ylab="Precipitation")

points(outliers$wind,outliers$rain,pch=8,cex=1.5,col="red")

points(non_outliers$wind,non_outliers$rain,pch=8,cex=1.5,col="green")

#perspdepth(md2000[,4:5])
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