
Individually fair optimal decision trees
Using a dynamic programming approach

Chrysanthos Kindynis1

Supervisor(s): Emir Demirović1, Koos van der Linden1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 21, 2023

Name of the student: Chrysanthos Kindynis
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Koos van der Linden, Burcu Özkan

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
In this paper, we tackle the problem of creating de-
cision trees that are both optimal and individually
fair. While decision trees are popular due to their
interpretability, achieving optimality can be diffi-
cult. Existing approaches either lack scalability or
fail to consider individual fairness. To address this,
we define individual fairness as a separable opti-
mization task by analyzing the fairness gained and
lost within a sub-tree. Using the Streed framework,
we implement an algorithm that constructs opti-
mal decision trees with the lowest misclassification
score and individual fairness value above a certain
threshold. Our algorithm has been tested on var-
ious datasets, demonstrating its effectiveness and
scalability. This research is a significant step to-
wards creating fair decision trees that are optimal,
fair, and scalable.
Keywords: optimal decision trees, individual fair-
ness, dynamic programming, separability.

1 Introduction
A decision tree is a helpful machine learning model that
provides classification or numerical predictions on data. It
achieves this by repeatedly asking questions about the data
characteristics, making it easy for humans to understand its
logic. Due to its interpretability, it has become one of the
most commonly used techniques for classification problems
[3].

Today, machine learning models are increasingly used to
assist decision-making processes. This has led to the search
for optimal decision trees, i.e. trees that can globally max-
imize their objective under a specified size limit. However,
finding such optimal decision trees is an NP-hard problem
[10], making it a difficult challenge to overcome.

Common approaches for constructing optimal decision
trees, such as Mixed-Integer-Programming (MIP) [18],
Boolean Satisfiability (SAT) [11] and Constraint Program-
ming (CP) [17], use general-purpose solvers that try to face
the problem as a whole. These appear flexible in incorporat-
ing various objectives but do not scale beyond depth three.
On the other hand, a Dynamic Programming (DP) approach
[6] [12] explores the recursive structure of the tree, which
along with other algorithmic enhancements such as caching
and use of bounds, allows the performance to be several or-
ders of magnitude better. These approaches, however, lack
generalizability in incorporating various objectives and con-
straints.

The wide application of such models has raised concerns
about their fairness properties [2] [13]. Research on “fair”
machine learning has introduced various ways to ensure fair-
ness [4], with a focus on group-based fairness [1] [9] [20]
[16]. Notably, among these studies, the “Streed” generalized
DP framework [16] for constructing optimal decision trees
was introduced, allowing for a wider variety of optimization
objectives to be included in the dynamic programming ap-
proach. The only condition for using this framework lies

in the ability to calculate the objective of two subtrees sep-
arately. By contrast to the focus of the research, Dwork et
al. [7] showcase that even if group fairness is established
in a model, the outcome can still be unfair for the individ-
uals. Therefore, establishing individual fairness by ensuring
similar outcomes for similar individuals [7] is important. Re-
search has explored individual fairness in decision trees using
Abstract Interpretation [14], but the developed model does
not guarantee optimality.

In this research, we aim to answer the following questions:
Can the Streed DP framework [16] be utilized to create op-
timal classification decision trees that are fair to the individ-
ual? If yes, how does its performance scale across different
data sets and depth limits? Using the Streed framework en-
sures that the model is optimal, which differs from the exist-
ing individual fairness solution. Additionally, we aim to take
advantage of the DP approach’s scalability benefits instead of
relying on the general purpose solver’s scalability capabili-
ties. Furthermore, we address the limitations of group fair-
ness models by incorporating individual fairness constraints.

Our findings include achieving the separability condition
by arguing about individual fairness lost and gained within a
subtree. The experiment results show the algorithm’s scala-
bility across the three parameters of the number of instances,
features and similar individuals. We found that the algorithm
can solve problems with a depth limit of two within millisec-
onds, while a depth limit of three can often be solved. In cases
with few similar individuals, even depth four can be solved.

Overall, we have three main contributions: 1) Definition of
an optimization task which considers the accuracy and indi-
vidual fairness while meeting the separability conditions; 2)
Implementation of its algorithm, utilizing the ”Streed” frame-
work, which constructs optimal decision trees with the lowest
miss classification score and individual fairness value above
a certain threshold 3) Scalability and performance analysis
which shows that the depth limit of 3 is well within this algo-
rithm’s abilities.

This paper is organized as follows: We begin by reviewing
previous research in this field. Next, we provide the neces-
sary background information and notation in the preliminar-
ies section. Our main contributions are presented, followed
by the experimental results demonstrating our proposed ap-
proach’s performance and scalability. Finally, we summarize
the key findings, discuss the implications, and suggest areas
for future research.

2 Related Work
At the beginning of the search for high-quality decision trees,
heuristic methods like Cart [5] and C4.5 [15] were used due
to the difficulty of finding optimal ones. These methods are
built by optimizing a local objective function, such as infor-
mation gain or entropy. Although the resulting decision trees
are of high quality and calculated quickly, they do not guar-
antee optimality in their objective.

On the other hand, Mixed Integer Programming is a stan-
dard method for constructing optimal decision trees. The
problem is formulated as a mixed integer program, where
linear functions model the objectives and constraints. Off-

the-shelf software is then utilized to find the optimal decision
tree by calculating the values of the variables that satisfy all
constraints and maximize the objective. Separating these two
steps allows this method to optimize for various objectives
and constraints.

In this field of study, my research relates to Aghaei et al.’s
work [1], where they are developing fair models that mini-
mize discrimination against people of a protected category.
A protected characteristic (e.g. race) is described as a so-
cially sensitive characteristic based on which discrimination
is forbidden by the law [8]. The decision trees developed by
Aghaei et al. [1] minimize a linear loss function, including a
discrimination regularizer responsible for twisting the trade-
off between accuracy and fairness. Note that none of the two
fairness metrics corresponds to individual fairness. They in-
stead refer to direct and indirect discrimination based on pro-
tected features. Notably, while MIP guarantees the creation
of a decision tree that minimizes the defined loss function,
the analysis of its runtime performance [1] could be in much
more detail. For example, analyzing the training runtime for
various tree depths and data set sizes would be helpful since
this would enable us to discuss scalability and usability within
available resources and compare alternative approaches.

Moreover, dynamic programming is an alternative ap-
proach to constructing optimal decision trees. By contrast,
dynamic programming does not attempt to solve the prob-
lem as a monolith. However, it exploits the recursive struc-
ture of decision trees by looking at sub-trees as individual
sub-problems. It also enhances its performance by pruning
based on estimated lower and upper bounds and caching sub-
solutions. This approach requires that all the features in the
data are binary. If not, a binarisation method is applied as a
pre-processing step, transforming the features into binary.

Additionally, Demirovic et al. [6] implemented the DP ap-
proach we just introduced. The MurTree algorithm they im-
plemented can generate an optimally accurate decision tree
for a classification task, with a much faster (and therefore
scalable) performance compared to the MIP algorithms im-
plemented so far. However, this algorithm is unsuitable for
achieving individual fairness as it focuses solely on accu-
racy and does not accommodate different objectives and con-
straints.

Furthermore, the research by Linden et al. [16] attempts to
push the limits of dynamic programming by generalizing the
MurTree algorithm to optimize for any separable objective.
The paper introduces necessary and sufficient conditions for
the separability of an objective or constraint and suggests that
any task with such objectives can be implemented using dy-
namic programming. Their algorithm called “Streed” (Sep-
arable Trees with Dynamic programming), highly influenced
my research since it offers a general DP framework and has
promising results on scalability.

Additionally, the ethical aspect of the algorithm includes
individual fairness, a principle introduced by Dwork et al.
[5], who also noted that a distance metric is necessary to
define similarity between individuals. This distance metric
(strictly) only requires the following properties: d(x, y) ≥ 0,
d(x, y) = d(y, x), and d(x, x) = 0. One way to differ-
entiate between group and individual fairness is that group

fairness involves maintaining statistical parity, which means
that the demographics of those who receive positive or nega-
tive classifications are the same as those of the entire popula-
tion. On the other hand, individual fairness does not consider
this aspect. Additionally, Dwork et al. [5] argue that even if
group fairness is achieved, individuals may still perceive the
outcome as unfair, highlighting the significance of individual
fairness. This research exclusively focuses on ensuring indi-
vidual fairness in the developed models since group fairness
has already been resolved through a dynamic programming
approach in [16].

Ranzato et al. [14] used Abstract Interpretation to research
individual fairness in decision trees. They proposed the in-
dividual fairness metric of the proportion of fair data points,
with a data point being considered fair if it has the same la-
bel as every other data point close to it. Additionally, they
consider similarity based on distance in the input space, not
distance in the data set (e.g. k-nearest). Moreover, they op-
timize for a linear loss function, a weighted sum of the 0.9
miss-classification score and 0.1 individual fairness metric.
Although their approach may generate models that are fairer
than state-of-the-art methods, it is still possible for them to
produce sub-optimal loss values. Therefore, optimality can-
not be guaranteed.

3 Preliminaries
This section introduces necessary decision tree notation, de-
fines the optimization task problem, introduces the require-
ment of separability and provides the dynamic programming
framework.

3.1 Decision tree notation
We use F to represent the set of features and K to represent
the set of labels that describe a data instance. Let D, be a
data set consisting of data instances, each described by a fea-
ture vector x ∈ {0, 1}|F | a label k ∈ K. We use f (and
f) to denote that a feature is present (or not) in a data in-
stance. By present, we refer to the feature value 1. Similarly,
let Df describe the set of instances in D that satisfy feature
f , and Df the set of instances that do not. For each data point
dp ∈ D, we can access its actual label and predicted label
through dp.k, dp.k̂ respectively. Additionally, the decision
tree’s maximum depth is represented by d.

3.2 Optimization task
We adopt the definition of an optimization task from [16],
which involves a state space S and a solution space V, and
consists of six components:

1. A cost function g : S × (F ∪K) → V that returns the
cost of action a ∈ F ∪K in state s ∈ S, where the action
is either branching on feature f ∈ F or assigning label
k ∈ K.

2. A transition function t : S×F × 0, 1 → S that provides
the next state after branching left or right on feature f ,
denoted by f or f ∈ F × 0, 1.

3. A comparison operator ≻: V ×V → 0, 1 that determines
Pareto dominance.

4. A combining operator ⊕ : V × V → V that combines
solution values into one value.

5. A constraint c : V × S → 0, 1 that determines the feasi-
bility of a given solution v and state s.

6. An initial state s0 ∈ S.

In both our optimization task and the ones presented in
[16], the state s can be defined by ⟨D,F ⟩, with F the branch-
ing decisions made in parent nodes and the D dataset con-
taining the relevant data. The transition function is defined
as t(⟨D,F ⟩, f, 1) = ⟨Df , F ∪ f⟩ and t(⟨D,F ⟩, f, 0) =
⟨Df , F ∪ f⟩, ensuring that the data transfer to the next state
adheres to the current branching feature. The initial state s0
is defined as ⟨D, ∅⟩.

3.3 Separability
An optimization task is deemed separable when the optimal
solutions to subtrees can be computed independently of other
subtrees. For example, in the tree in Figure 1, the optimal
label L1 should be independent of the branching decision F3
and labels L3 and L4. Feature F2 should be independent of
F3.

Figure 1: Example of a decision tree of depth two, with three branch-
ing nodes (F1, F2, F3), and four leaf nodes (L1, L2, L3, L4)

The formal definition of a “separable” task found in [16]
is the following: “An optimization task is separable if and
only if the optimal solution to any subtree can be determined
independently of any of the decision variables that are not
part of that subtree or the parent nodes’ branching decisions”.

For example, the optimization task of accuracy in a deci-
sion tree can be considered separable. We can calculate the
misclassification cost in a leaf node by checking which data
points end up in that leaf and counting the amount of misclas-
sified data points. In a branching node, we can combine two
solutions by adding their misclassification scores, represent-
ing the amount of misclassification in their subtrees. Further-
more, we can compare two solutions and argue about dom-
inance by numerically comparing the two misclassification
scores. Since none of these operations depends on informa-
tion about other sub-trees, the optimization task of accuracy
can be considered separable.

3.4 Streed: Dynamic Programming Framework
The general DP framework under the name “Streed” (Sepa-
rable Trees with Dynamic Programming), introduced in [16]
and used for calculating the cost of a decision tree given the
state s and the depth limit d, is presented here.

T (s, d) = opt

 ⋃
k̂∈K

{g(s, k̂)}, s

 if d = 0

T (s, d) = opt (⋃
f∈F

merge (T (t(s, f, 1), d− 1),

T (t(s, f, 0), d− 1), s, f) , s) if d > 0

Let θ describe a set of possible solutions; we show the link
between the notation of the framework and the notation intro-
duced in the optimization task 3.2 by attaching the following
formulas from [16]:

feas(θ, s) = {v ∈ θ | c(v, s) = 1} ,

nondom(θ) = {v ∈ θ |∄ v′ ∈ θ(v′ ≻ v)} ,
opt(θ, s) = {nondom(feas(θ, s))} ,

merge(θ1, θ2, s, f) = {v1⊕ v2⊕ g(s, f) | v1 ∈ θ1, v2 ∈ θ2} .
We explain the framework using the decision tree example

in Figure 1. This model determines the cost of a decision tree
(T (s, d)) based on the current depth limit d and the state s of
the tree. The state s of the tree is determined by ⟨D,F ⟩, with
D the data set reaching current node and F the branching
features of the parent nodes (e.g. F1 and F3 for L4). When
we reach a leaf node (d = 0), e.g. L4, we calculate the cost
g(s, k̂) of assigning each possible label to the leaf. We add
the cost of each to our set of solutions, and finally, we use our
comparison operator ≻ to select the optimal solution(s).

While we are in a branching node (d > 0), for every possi-
ble feature, we recursively calculate the cost of the sub-trees
T (t(s, f), d−1), T (t(s, f), d−1) that result from branching
on the current feature. We merge the 2 solutions in one (us-
ing our combining operator ⊕) and we add it (∪) to the set of
solutions. We then pick the optimal (according to our com-
parison operator ≻) solution(s). Depending on whether or not
the comparison operator can provide strict dominance for any
pair of solutions, the Pareto Front calculated by the algorithm
contains either a single or multiple optimal solutions.

The use of this framework has been proven [16] to find the
Pareto front of optimal solutions for any optimization task
that is separable.

4 Problem Definition
This research paper focuses on classification decision trees
that minimize misclassifications in the training set while ad-
hering to the principle of individual fairness.

We introduce a measurement for individual fairness, based
on the definition proposed by Dwork et al. [7], as the propor-
tion of similar data pairs classified identically. Hence, the
individual fairness metric takes values in the [0, 1] range, and

high values reflect the equitable treatment of similar individ-
uals. We determine the similarity between data points using
the Hamming distance metric, which fulfils the conditions of
non-negativity, symmetry, and reflexivity. Our similarity as-
sessment is also based on the input space, much like other
research on individual fairness [14]. We present:

sim(dp1, dp2) =

{
1 if hamming distance < 1

0 otherwise,
(1)

sc(dp1, dp2) =

{
1 if dp1.k̂ == dp2.k̂

0 otherwise.
(2)

Equation 2 checks for the same classification of two data
points. The individual fairness index is thus defined as fol-
lows:

IF =

∑|D|
i=1

∑|D|
j=i+1(sim(dpi, dpj) ∗ sc(dp1, dp2))∑|D|
i=1

∑|D|
j=i+1(sim(dpi, dpj))

(IFindex)
Given the “Streed” dynamic programming framework

(3.4), IFindex and an IF threshold, the task is to define
and implement a separable (3.3) optimization task ⟨g, t,≻
,⊕, c, s0⟩ (3.2) that globally minimizes misclassification
score while having an individual fairness value above the
IF threshold.

5 Main Contributions
Our approach uses Equation IFindex, and considers the indi-
vidual fairness gained or lost within each subtree to create a
separable strategy.

To calculate the individual fairness gained in a subtree of
state ⟨D,F ⟩, we divide the number of close pairs in D that
are classified the same by the total number of close pairs.

IFgained(D) =

∑|D|
i=1

∑|D|
j=i+1(sim(dpi, dpj) ∗ sc(dp1, dp2))∑|D|
i=1

∑|D|
j=i+1(sim(dpi, dpj))

(IFgained)
On the other hand, to calculate the individual fairness lost

in a subtree of state ⟨D,F ⟩, we divide the number of close
pairs in D that are classified differently by the total number
of close pairs.

IFlost(D) =
∑|D|

i=1

∑|D|
j=i+1(sim(dpi,dpj)∗(1−sc(dp1,dp2)))∑|D|

i=1

∑|D|
j=i+1(sim(dpi,dpj))

(IFlost)
Remember that each tree is described by state s : ⟨D,F ⟩,

with D being the data set that reaches the tree’s root. The
solution object v ∈ V of any (sub)tree in our task includes
the following attributes:

• mc: number of miss-classifications in D

• lb: lower bound on individual fairness → IFgained

• ub: upper bound on individual fairness → (1 - IFlost)

To calculate the lower and upper bounds at branch nodes, it
is efficient 1 to use the already calculated bounds of the solu-
tions of the two sub-trees. To accurately estimate the current
bounds, we need to enhance the bounds of the two sub-trees
with information about IFindex that the two sub-trees were
unaware of. This is captured by similar data points that are
being merged in this branching node. Figure 1 is used to il-
lustrate this concept. Note that L1 and L2 can calculate the
IFlost and IFgained for every close pair present in the data
of the leaf. We can get an almost accurate estimation by nu-
merically adding the IFlost and IFgained of L1 and L2 for
F2’s bounds. However, the only information missing comes
from close pairs, with one data instance in L1 and the other in
L2. Therefore, to obtain precise bounds for a branching node,
we need to enhance the result of the numerical addition of the
sub-tree bounds, with IFlost and IFgained in the close pairs
being merged in the current node 2. However, to determine
whether the identification of just merged close pairs is a gain
or loss of individual fairness, we need to know their classi-
fication. We have added the following field to the solution
object to address this.

• labels: contains the classification of data points in D
close to those not present in the current sub-tree.

We now go through the six components ⟨g, t,≻,⊕, c, s0⟩
of the optimization task (3.2) and define them all in a separa-
ble (3.3) way. The transition function and initial state compo-
nents are simply adopted from [16] as introduced in 3.2.

Firstly, we present the cost function g with g(⟨D,F ⟩, k̂) →
V returning the cost of assigning label k̂ in a leaf node. We
denote Dk̂ as the data set of the given state D, concatenated
with the predicted label k̂. The lower bound is computed as
v.lb = IFgained(Dk̂). Individual fairness is never lost in a
leaf node since any similar pair present in the leaf will never
get a different label; hence the upper bound v.ub is fixed at
1. The misclassification score v.ms counts the number of
data points in Dk̂ whose label differs from k̂. The v.labels
contains the classification of the data points that have been
split with a close pair in a parent node.

Secondly, the comparison operator sol1 ≻ sol2 deter-
mines Pareto dominance. It is important to note that we can-
not guarantee that a solution will eventually satisfy the fair-
ness threshold unless the lower bound is already above it.
Therefore, we cannot determine dominance solely based on
a higher missclassification score.

sol1 ≻ sol2 if and only if:
((sol1.lb > sol2.ub OR sol1.lb > IF threshold)

AND sol1.ms < sol2.ms) .

Notably, this strict dominance criterion ensures that opti-
mal solutions are never excluded from our search space, en-
abling the identification of the global optimal Pareto front of
solutions.

1faster than computing IFgained and IFlost using the complete
dataset D of the subtree, which comes with O(|D|2) time complex-
ity.

2explicit notation for is provided in the explanation of combining
operator ⊕.

Thirdly, the combining operator ⊕ takes two solutions,
sol1 and sol2 ∈ V , which describe the cost of their re-
spective sub-trees, and combines these costs into a single
solution sol. The two misclassification scores are added as
sol.mc = sol1.ms+ sol2.mc. We define

Dm = sol1.labels ∪ sol2.labels,

containing information about the classification of “split and
close” data points of the two sub-trees. The lower bound of
the new solution is calculated as

new sol.lb = sol 1.lb+ sol 2.lb+ IFgained(Dm),

while the upper bound is given by

new sol.ub = 1−(1−sol 1.ub)(1−sol 2.ub)−IFlost(Dm).

These equations update the bounds based on the number of
close pairs merged in the current node. The sol.labels subset
of Dm only includes labels with close data points in other
sub-trees.

As we move up the decision tree, we learn about the classi-
fication of more similar data point pairs. This leads to tighter
bounds on the individual fairness value and brings us closer
to its global value. At the top of the tree, we have complete
knowledge of the classifications of similar data points, which
allows us to calculate the exact value of individual fairness.

The current optimization task does not penalize branching
on features, therefore the cost function g for assigning fea-
tures g(⟨D,F ⟩, f) → V is initialized with the numb values
(ms: 0, lb:0, ub: 1, labels: {}) that do not affect the result
when combined (⊕) with another solution.

Last but not least, the constraint c determines a solution
v ∈ V as feasible if and only if: v.ub ≥ IF threshold,
with IF threshold being the minimum value the individual
fairness metric value of the constructed decision tree is al-
lowed to have. In contrast with the related research [14], we
decided to include individual fairness as a hard constraint to
have more control over the individual fairness value we want
our model to have.

Overall, we defined and implemented individual fairness
as a separable optimization task, and to make it efficient, we
only incorporated the minimum necessary computations.

6 Experimental Setup and Results
In this section, the goals of the experiments, their set-up and
results are presented.

6.1 Goals
Our goal for the experiments is to investigate the scalabil-
ity of the algorithm. We found that the data set’s number of
instances, features, and close pairs are important factors for
its runtime performance. To analyze their effects, we plan to
vary the values of each parameter while keeping the other two
fixed. This way, we can determine the impact of each factor
on the algorithm’s scalability. Notably, such information can
shine a light on the effectiveness of the dynamic program-
ming approach in constructing optimal decision trees, even
for objectives that do not appear separable at first glance.

To the best of our knowledge, this is the only research
on optimal decision trees that incorporate individual fairness.
Therefore, we do not immediately compare our scalability re-
sults to an alternative approach. However, we use our knowl-
edge of the scalability limits of common approaches to argue
about the significance of our approach.

6.2 Set Up
We now present the setup of the experiments conducted to
evaluate the scalability of the algorithm. The experiments
aimed to examine the impact of three parameters: the number
of instances, the number of features, and the number of close
pairs in synthetic datasets, on the runtime performance of the
algorithm. When testing for a specific parameter, the other
two parameters were set to their default values, as follows:

• Default number of instances: 150.
• Default number of features: 20.
• Default number of close pairs: 50.
To facilitate these experiments, we generated random

datasets with varying characteristics, specifically:
• Number of instances ∈ [50, 100, 250, 500, 750, 1000,

1500, 2000, 2500].
• Number of binary features ∈ [10, 20, 35, 50, 75, 100,

125].
• Number of close pairs ∈ [0, 10, 20, 40, 60, 80, 100, 150,

200].
Please remember that using the Hamming distance as the

similarity metric provides flexibility in combining these pa-
rameters. For example, constructing a dataset containing
2000 instances and only 50 close pairs is possible.

For this scalability study, synthetic datasets were used be-
cause they offer better flexibility and control over the data’s
characteristics. The default parameters can be found in real
datasets while minimizing added workload. This approach
allows us to analyze the scaling effect of our testing parame-
ters.

All experiments were conducted on a single-threaded
AMD Ryzen 7 4800H 2.90 GHz CPU, 16 GB of RAM, and a
timeout limit of 900 seconds. We constructed five datasets for
each data set configuration and ran the algorithm considering
the depth limits: 1, 2, 3 and 4. For each configuration, we
present both the average and the confidence interval.

6.3 Results
The performance of the algorithm was evaluated based on the
runtime required to solve the decision tree problem for dif-
ferent parameter configurations. Runtime performance above
900 seconds is not present in the graphs since that corre-
sponds to the timeout limit of our experiments.

Number of instances
By looking at our algorithm’s performance across different
instances (Figure 2), we notice an efficient, in the magnitude
of milliseconds, performance in the depth limits of 1 and 2. It
is observed that when the depth limit was set at 3, the optimal
solutions were discovered within the time limit of 15 min-
utes for instances below 500. By looking at the curves of the

figure, we also verify the linear correlation between runtime
performance and the number of instances.

0 1000 2000
Number of instances

10 2

10 1

100

101

102

103

Ru
nt

im
e

(s
)

instances
Depth

1
2
3

Figure 2: Runtime performance of the optimal decision tree solver
for different number of data instances across different depth limits

Number of features
In addition, we analyzed the runtime performance of our al-
gorithm for various feature values. As shown in Figure 3,
the algorithm for depth limit of 1 and 2 performed efficiently,
completing in the magnitude of seconds, when provided with
data sets of any amount of binary features in the given range.
We also found that a depth limit of 3 is reachable for many
features, as the algorithm found the optimal decision tree
within the time-out limit for up to 75 binary features. Again,
we verify the positive correlation between the number of fea-
tures and the runtime performance of our algorithm.

50 100
Number of binary features

10 2

10 1

100

101

102

103

Ru
nt

im
e

(s
)

features
Depth

1
2
3

Figure 3: Runtime performance of the optimal decision tree solver
for different number of binary features in the data across different
depth limits

Number of close pairs
We gained valuable insights by analyzing the runtime perfor-
mance of our algorithm with varying numbers of close pairs

in the dataset (Figure 4). Our algorithm performs efficiently
in milliseconds for depth limits up to 2, regardless of the num-
ber of close pairs. For a depth limit of 3, our algorithm can
construct the optimal decision tree for up to 65 close pairs.
Notably, we achieved a depth limit of 4 within the time-out
limit for close pair values of 0 and 10 for the first time. We
attribute this success to the efficient implementation of the
“split and close” labels, which allows the algorithm to com-
bine solutions without iterating through all data points, but
only through the limited amount of data points with a close
data point in another sub-tree. Therefore, this performance
enhancement greatly benefits sparse, in terms of similarity,
data sets.

0 50 100 150 200
Number of close pairs

10 2

10 1

100

101

102

Ru
nt

im
e

(s
)

pairs
Depth

1
2
3
4

Figure 4: Runtime performance of the optimal decision tree solver
for different number of similar pairs in the data across different depth
limits

Remarks
To the best of our knowledge, this is the only research that
has developed decision trees that are both optimal and indi-
vidually fair, so we cannot make a direct comparison to alter-
native approaches. However, it is observed [16] that general-
purpose solvers, such as MIP, have difficulty scaling when
faced with datasets containing more than a few thousand in-
stances or depth limits beyond 3. On the other hand, our algo-
rithm successfully found optimal solutions for depth limits of
3 and even 4 in some cases, within the not-so-long time-out of
15 minutes. Therefore, our dynamic programming approach
offers a promising and competent performance against possi-
ble alternative approaches.

7 Responsible Research
The experiments conducted in the previous section adhere to
the FAIR Guiding principles for scientific data management,
as outlined in Wilkinson et al. [19]. These principles aim to
enhance the Findability, Accessibility, Interoperability, and
Reusability of digital assets. We address each of these princi-
ples below to demonstrate our compliance with them.

• Findable: In order to make our research data easily
searchable, we have made the synthetic datasets acces-

sible on the same repository as the code. This will allow
for the replication of the experiments presented in this
paper, as researchers will be able to obtain and utilize
the datasets.

• Accessible: Once the code repository proposed by Lin-
den et al. [16] becomes public, everyone will be able to
access both the code and the synthetic datasets without
authentication.

• Interoperable: The data is stored in a common CSV for-
mat, with descriptive file names, making it interopera-
ble.

• Reusable: Each data file is also structured in the same
way, making it reusable. Each row represents one data
point, and starts with the actual label of a data point fol-
lowed by binary features.

Our goal is to improve the usability of the data collected for
our research by following these four standards. By doing so,
we can facilitate further experiments in the research field and
enhance our understanding of performance related to optimal
decision trees.

Notably, the algorithm is implemented to incorporate dif-
ferent distance metrics for defining similarity between indi-
viduals. Upon applying this algorithm to real-world cases,
we suggest getting advice from an expert about the appropri-
ate distance metric and values to incorporate into the applica-
tion.

8 Conclusions and Future Work
In summary, we have successfully defined individual fair-
ness as a separable optimization task that globally minimizes
miss-classification scores while having an individual fairness
value above a certain threshold. We implement the algorithm
that constructs optimal decision trees for this optimization
task through the ”Streed” framework. Our scalability anal-
ysis has shown promising results, with optimal decision trees
constructed up to a depth limit of 3 and, in some cases, 4.

We recommend exploring alternative approaches for indi-
vidual fairness in optimal decision trees, as their significance
seems unnoticed. We also suggest comparing the scalability
and performance of our method to any upcoming alternatives.
We hope this research can contribute valuable insights to the
pursuit of fair and optimal decision trees.

References
[1] Sina Aghaei, Mohammad Javad Azizi, and Phebe

Vayanos. Learning optimal and fair decision trees for
non-discriminative decision-making. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 33, pages 1418–1426, 2019.

[2] Solon Barocas and Andrew D Selbst. Big data’s dis-
parate impact. California law review, pages 671–732,
2016.

[3] Dimitris Bertsimas, Jack Dunn, Emma Gibson, and
Agni Orfanoudaki. Optimal survival trees. Machine
Learning, 111(8):2951–3023, 2022.

[4] Reuben Binns. On the apparent conflict between indi-
vidual and group fairness, 2019.

[5] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen.
Classification and Regression Trees. Taylor & Francis,
1984.

[6] Emir Demirović, Anna Lukina, Emmanuel Hebrard,
Jeffrey Chan, James Bailey, Christopher Leckie, Kota-
giri Ramamohanarao, and Peter J Stuckey. Murtree: op-
timal classification trees via dynamic programming and
search. arXiv preprint arXiv:2007.12652, 2020.

[7] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer
Reingold, and Richard Zemel. Fairness through aware-
ness. In Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference, ITCS ’12, page
214–226, New York, NY, USA, 2012.

[8] Equality and Human Rights Commission. Protected
characteristics, 2021.

[9] Vincent Grari, Boris Ruf, Sylvain Lamprier, and Marcin
Detyniecki. Achieving fairness with decision trees: An
adversarial approach. Data Science and Engineering, 5,
06 2020.

[10] Laurent Hyafil and Ronald L. Rivest. Constructing op-
timal binary decision trees is np-complete. Information
processing letters, 5(1):15–17, 1976.

[11] Mikoláš Janota and António Morgado. Sat-based en-
codings for optimal decision trees with explicit paths. In
Theory and Applications of Satisfiability Testing – SAT
2020: 23rd International Conference, Alghero, Italy,
July 3–10, 2020, Proceedings, page 501–518, Berlin,
Heidelberg, 2020. Springer-Verlag.

[12] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin,
and Margo Seltzer. Generalized and scalable optimal
sparse decision trees. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pages 6150–6160.
PMLR, 13–18 Jul 2020.

[13] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena,
Kristina Lerman, and Aram Galstyan. A survey on bias
and fairness in machine learning. ACM Comput. Surv.,
54(6), jul 2021.

[14] Francesco Ranzato, Caterina Urban, and Marco Zanella.
Fairness-aware training of decision trees by abstract in-
terpretation. In Proceedings of the 30th ACM Inter-
national Conference on Information Knowledge Man-
agement, CIKM ’21, page 1508–1517, New York, NY,
USA, 2021. Association for Computing Machinery.

[15] Steven L. Salzberg. C4.5: Programs for machine learn-
ing by j. ross quinlan. Machine Learning, 16(3), 1994.

[16] Jacobus G. M. van der Linden, Mathijs M. de Weerdt,
and Emir Demirović. Optimal decision trees for separa-
ble objectives: Pushing the limits of dynamic program-
ming, 2023.

[17] Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant,
Claude-Guy Quimper, and Pierre Schaus. Learning op-
timal decision trees using constraint programming (ex-
tended abstract). In Christian Bessiere, editor, Proceed-
ings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI-20, pages 4765–
4769. International Joint Conferences on Artificial Intel-
ligence Organization, 7 2020. Sister Conferences Best
Papers.

[18] Sicco Verwer and Yingqian Zhang. Learning optimal
classification trees using a binary linear program formu-
lation. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):1625–1632, Jul. 2019.

[19] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan
Aalbersberg, Gabrielle Appleton, Myles Axton,
Arie Baak, Niklas Blomberg, Jan-Willem Boiten,
Luiz Bonino da Silva Santos, Philip E Bourne, et al.
The fair guiding principles for scientific data man-
agement and stewardship. Scientific data, 3(1):1–9,
2016.

[20] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez
Rodriguez, and Krishna P. Gummadi. Fairness beyond
disparate treatment & disparate impact. In Proceed-
ings of the 26th International Conference on World Wide
Web. International World Wide Web Conferences Steer-
ing Committee, apr 2017.

	Introduction
	Related Work
	Preliminaries
	Decision tree notation
	Optimization task
	Separability
	Streed: Dynamic Programming Framework

	Problem Definition
	Main Contributions
	Experimental Setup and Results
	Goals
	Set Up
	Results
	Number of instances
	Number of features
	Number of close pairs
	Remarks

	Responsible Research
	Conclusions and Future Work

