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Preface

This thesis on “Modelling of a Flexible Inflatable Floater” has been written for obtaining the
master’s degree in Marine Technology with the specialisation of Ship and Offshore Structures at
the University of Technology Delft in corporation with TNO. The research was performed under
supervision of Dr. ir. L. Pahlavan (TU Delft), H. M. Verhelst, MSc. (TU Delft), Ir. A. J. W. van
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the weekly meetings with the SHM group. Those weekly meetings helped me to get a clear view on
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Abstract

Over the past decades, a transition has taken place from fossil fuel towards renewable energy to
mitigate the green house gasses and eventually the global warming effect. One type of renewable
energy source is solar energy. The conversion of solar energy into electricity is called photovoltaics.
Currently, floating photovoltaics (FPVs) generate more interest. For FPVs, an uncommon type
of offshore structure is considered, which is very flexible and deforms with the motion of the
waves. In this research, the bending characteristics of an drop-stitch floater is analysed, which is
an inflatable panel. By inflating the drop-stitch floater to a low air pressure, it obtains a flattened
shape and the ability to support the flexible solar panels, while still retaining flexibility to deform
with the motion of the waves.

The bending characteristics of a drop-stitch floater are more complex than common offshore
structures due to different non-linearities: wrinkling, hyperelastic material behaviour and internal
pressure-volume work. Getting a better understanding in the bending response is important to
eventually determine the response and limit states in offshore conditions. Most research into
drop-stitch panels has been focusing on high pressurised panels. Research into the failure modes
of drop-stitch panels has not been conducted yet. In this thesis, an evaluation of the bending
characteristics and failure modes has been conducted.

A finite element (FE) model has been developed in ABAQUS to analyse the structural response
in a three point bending load case. The effect of wrinkling is incorporated with a perturbation
method. The internal air pressure creates an initial deflection, which is sufficient to incorporate
wrinkling effects in combination with a fine mesh. The internal air volume is modelled as an ideal
gas using a surface based fluid cavity to take into account the pressure-volume work. An uniaxial
tensile test with the strip method has been conducted to analyse the material behaviour. The
experimental results has been used to fit different material models. The results of the FE model
has been compared with a three point bending experiment. Also, a parametric analysis with
different yarn distances, face sheet thicknesses and internal air pressures has been analysed. Two
FE models are established: a quarter model, which models only a quarter of the drop-stitch panel,
and a strip model, which does not include the edges and has the width of one yarn spacing. Good
agreement has been found between both models, which suggests that simplifying the drop-stitch
panel to a strip suffices for uniaxial load cases.

The polyester fiber coated with PVC was shown the be an orthotropic hyperelastic material. A
linear elastic orthotropic, Holzapfel-Gasser-Ogden and Fung orthotropic material model has been
fitted. The different material models do have effect on the response of the drop-stitch panel. It
appeared to be difficult to describe the hyperelastic orthotropic material behaviour exactly, but it
has shown to have little influence on the global response.

Two different failure modes are observed: a local folding and global wrinkling failure mode. For
low internal air pressures, small yarn distance and large face sheet thickness the local folding mode
is initiated and the global wrinkling mode for high internal air pressures, large yarn distance and
small face sheet thickness. This suggests that the bending stiffness in the face sheets and internal
air pressure is significant for the failure mode initiation and propagation.
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Chapter 1

Introduction

Since the industrial revolution, the climate has changed rapidly due to global warming. It is
essential to limit the global warming to ensure a bright and prosper future for the next generations.
The Intergovernmental Panel on Climate Change (IPCC) is a panel of the United Nations, who
is working on science related strategies to mitigate global warming [2, 3]. They have shown that
the warming of the climate system is unequivocal based on observations. The energy transition to
clean and renewable energy (RE) is one of the key elements to reduce the greenhouse gas emissions
(GHG) and eventually the global warming. Consequently, there is a huge demand for research
and innovative solution to make this transition possible. Different mitigation pathways have been
investigated to get to a global warming of 1.5◦C pre-industrial level, which is the preferred limit
set by the Paris Agreement [4]. These mitigation pathways of the IPCC showed that the share
of primary energy sources from renewables should increase in the upcoming years tremendously
to reach this global warming limit goal [5]. The parties who have agreed on the Paris Agreement
shall aim to limit the global warming to 2◦C and preferably to 1.5◦C pre-industrial level by 2050.
Some parties such as the Netherlands even set more ambitious goals. The Dutch Climate Act aims
to have 100% RE and 95% less CO2 emission by 2050, hence research and innovation is needed to
reach these goals. So, it is of utter importance to make this increase of RE sources possible [6].

Bio energy, direct solar energy, geothermal energy, hydro power, ocean energy and wind energy
are considered as RE sources [7]. There are multiple benefits of RE besides the decrement of
GHG emissions such as: RE is a resource sufficient energy supply, so it creates energy security;
The decrement of air pollution is good for health, wildlife, landscape and the ecosystem; It has a
positive local employment impact [7]. There is no specific dominant RE source, so a mix of RE
developments should be investigated which suits local areas. IPCC considered solar energy as one
of the primary RE source, which has the highest technical potential. The technical potential
is defined as “the amount of RE output obtainable by full implementation of demonstrated
technologies or practices” [7]. Even though, there are some concerns which could limit the technical
potential such as the availability of critical metals, it is a topic of high interest for research and is
a key element in reaching a global warming limit of 1.5◦C pre-industrial level by 2050.

Figure 1.1: Global installed FPV capacity between 2007 and 2018 [8]

1



Photovoltaics (PV) on land have intense land requirements [9]. Especially in densely populated
countries such as the Netherlands, land is scarce and expensive, so offshore floating solar panels is
very promising. According to DNV, an offshore floating PV (FPV) energy farm in the North Sea
may produce 10GW in 2050, which could potentially supply 10 million households with electricity
[10]. Combined with aquatic biomass and wind energy, an energy farm in the North Sea may even
reach 22GW. Nowadays, that may still sound like science fiction, but recent efforts by industry
leaders have greatly reduced the costs and increased the efficiency and knowledge of PVs [11].
Figure 1.1 clearly shows the increased capacity of FPVs, which are mostly inshore, between 2007
and 2018 [8]. Golroodbari et al. analysed the average annual output energy of PVs at land and sea
and showed that the PV at sea have significantly higher energy output than at land due to natural
cooling [12]. Also, FPVs and offshore wind are highly complementary [13]. Between offshore wind
turbines, there are large open spaces, at which vessels are not allowed to sail. Therefore, it is
an ideal location for offshore FPVs. In the summer months, the solar irradiation is higher and
the average wind speed is lower, so more solar energy will be produced and less wind energy.
In contrary to the summer months, the winter months generally have a higher average wind
speed and lower solar irradiation, so more wind energy and less solar energy will be produced.
Throughout a year, the RE production will be more stable, if solar and wind energy are combined
into one energy farm. The positive and negative impact of FPVs on ecosystems is currently being
investigated [14]. Early studies showed that the effect of light deficit on plankton production is
negligible [15] and increase water quality by reducing algal blooms and evaporation rate [9, 16].

Figure 1.2: A photograph after the completion of
the floating solar power plant at the Yamakura
Dam, Japan [17]

Recently, multiple large and small scale
floating solar farms have been deployed
[18–21]. Especially Japan, China and
South-Korea are currently leading regarding
the amount of MW produced by FPVs. In
2020, a disaster struck at the largest FPV
installation of Japan at the Yamakura Dam
[22], shown before the accident in figure
1.2. Due to a typhoon, a few mooring
lines failed, which caused an uplift of the
floaters caused by the wind and the FPVs
collapsed. Consequently, an electrical fire
occurred and about two third of the solar
farm at the Yamakura Dam was damaged.
This event showed that floating solar farms
are vulnerable and the structural mechanics
should be investigated to guarantee the safety
of FPVs.

1.1 Motivation
In the project consortium Solar@Sea II, a detailed design of a flexible inflatable floating
configuration is developed to carry PVs [23], figure 1.4. It aims to raise the technology readiness up
to the proof of concept for a solar energy farm. The solar energy farm will consist of several FPVs
that are partly built onshore, transported to an offshore environment and interconnected with a
mooring system. In cooperation with TNO, a structural analysis of the floaters, which carry the
flexible PVs, is performed in this thesis. The floaters are made out of drop-stitch panels. To the
best of the author’s knowledge, limited research has been performed into the stiffness behaviour
and finite element analysis (FEA) of low pressurised drop-stitch panels. The internal air pressure of
the drop-stitch panel significantly contributes to the bending stiffness. A low internal air pressure
and flexible solar panels, result in a flexible drop-stitch panel, which is one of the aims of the
Solar@Sea II project.
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Figure 1.3: An example of a polyester drop-stitch fabric with coated rubber skins [24]

A drop-stitch panel consist of two cloths made out of double woven fabric coated with PVC, which
are connected with vertical threads, figure 1.3. Between those two cloths an internal air pressure
is created to obtain bending stiffness. Due to the vertical threads, the panel will maintain its
flat shape. These panels have already been used for different applications as shown in figure 1.5.
One of the benefits of drop-stitch panels is that if one deflates them, it is possible transport them
compactly. So, one can produce them onshore and transport them to offshore/inshore/nearshore.
The World Bank Group subdivided [25] FPVs into three applications: above water, on water,
and submerged. The FPV of the Solar@Sea II project will be an “above water” application.
The “above water” application is currently more common, since “above water” applications such as
pontoons are easier to manufacture and maintain than the others. MARIN showed in a preliminary
study that the second order wave force decreases for a flexible floater compared to a rigid floater
[26]. The second order wave force is a dominant component of the wave loads and has major
contribution to the mooring loads. Also, the uplift on the floaters created by wind tends to be
lower if the floaters deform with the waves. If the characteristic length of a structure is much
smaller than the dominant wave length, the structure can be considered a very flexible floating
structure. These type of structures have stronger hydro-elastic interaction between the waves and
structure, which has the advantage of transforming wave energy into kinetic and potential energy
instead of slamming against a more rigid structure [27]. Assuming a linear bending stiffness would
be insufficient at large deformations, since the bending response is non-linear due to different
structural aspects: hyperelastic material stiffness properties; wrinkling; the internal air pressure,
which exerts a pressure normal to the internal surface; axial forces becoming more dominant at
high deflections [24].

Figure 1.4: A photograph of the drop-stitch floaters of the Solar@Sea II project (courtesy of TNO).
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(a) An airtrack, which is a low pressure and
flexible drop-stitch panel [28]

(b) A transverse cross section of a stand up
paddling board, which is a high pressure and
stiff drop-stitch panel [29]

Figure 1.5: Examples of applications of flexible and stiff drop-stitch panels

1.2 Goal
More insight in the non-linear bending behaviour is needed to properly model the structural
response drop-stitch floaters. This research has been performed to get more insight in the bending
stiffness and modelling of a flexible drop-stitch panel using FEA and experiments.

To the best of the author’s knowledge, there is limited research performed into flexible low pressure
drop-stitch panels. Recommendations on the design, development and operation of FPVs have
been developed by DNV [30]. DNV considers multiple environmental and site conditions which
should be taken into account for FPVs: wind, waves, currents, snow and ice accreation, fouling,
ecology et cetera. In their report, they consider inshore/near-shore, high stiffness and linear elastic
floaters, so this could be inadequate for drop-stitch floaters in offshore environment. Previous
research on drop-stitch panels has performed a modal analysis and four point bending test of a
high pressurised drop-stitch panel using an experimental and FEA [24, 31, 32]. For the numerical
four point bending test, Davids et al. have considered the drop-stitch panel as a beam. The
non-linear approach of Davids et al. has good aggreement between the experiments and numerical
model [32]. The numerical modal analysis performed by Hulton et al. has been performed with
a 3D FEA [31]. However, the documentation on how to numerically model a drop-stitch panel
using a 3D finite element model is limited. Also, the internal air pressure range used in most
research is significantly higher compared to what is desired for the application of flexible floaters.
The analytical approach of Cavallaro [24] assumes a linear force-deflection relationship and did
not take the decay of the bending stiffness into account due to wrinkling. Research into the failure
mechanism of drop-stitch panels has not yet been performed.

Getting insight in the bending response is important to eventually determine the limit states of the
floater in offshore condition and failure mechanism. Waves will introduce a pressure distribution
on the floater, which will among other things bend the floater. For the offshore application of
FPVs, the bending characteristics are highly important to evaluate the response due to waves.

The goal of this research is to get more insight in the bending characteristics of low
pressurised drop-stitch panels.
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1.3 Research questions & Scope
From the goal and knowledge gap, the main research questions are formulated. The main research
questions is defined as:

What are the bending characteristics of low pressurised drop-stitch panels using an
FEA and experimental analysis?

Only quasi-static bending load cases are considered in this thesis. This means that the kinetic
energy is minimised and velocities should be close to zero. A dynamic, buckling and modal analyses
are not considered. To answer the main question, different sub-questions are addressed:

1. How could a drop-stitch panel be modelled using 3D FEM?

Drop-stitch panels are complex to model due to its non-linear stiffness behaviour mentioned
in section 1.1. The assumptions made during the modelling of a drop-stitch panel could have
significant influence on the results of a model and should be handled with care. To develop
a proper FE model, several aspects should be investigated using literature and experiments
to support the assumptions. A material model should be implemented in the FE model to
correctly describe the stress-strain behaviour of the yarns and fabric, shown in figure 1.3.
This stress-strain behaviour will be evaluated using experiments. The FE model should also
include the influence of wrinkling, since this is expected to be significant. Due to volume
changes inside the drop-stitch panel, the internal air pressure changes, which could also
influence the bending stiffness and should be evaluated.

2. What is the influence of internal air pressure, thickness of the face sheet and
yarn distance on the bending and wrinkling response of a drop-stitch panel?

Since the structural characteristics of drop-stitch panels are relatively unknown compared
to other structures used in offshore applications such as steel panels or beams, a study into
the influence of the internal air pressure, yarn distance and thickness will be performed.
The total thickness of a drop-stitch floater and internal air pressure are expected to be
dominant factors in the bending stiffness. Of course, the width and length also influences the
structural characteristics significantly, but their influences are not considered in this study.
In most steel structures, the bending stiffness is dominated by the thickness of the structure.
Drop-stitch floaters are a bit more unique in that sense, since the internal air-pressure also
highly influences the bending stiffness.

3. What is material behaviour of the face sheets?

The drop-stitch panel is made out of a polyester fiber coated with PVC. This is a complex
material to model, since it is expected to be an orthotropic hyperelastic material. Whether
the orthotropy and hyperelasticity is significant, should be investigated. A tensile test is
performed to analyse the stress-strain behaviour and different material models are evaluated.
The material models are implemented in a FE model of a drop-stitch panel to analyse the
difference in response of the drop-stitch panel.

4. What is the mechanism behind the bending behaviour?

Prior research has already shown that wrinkling is an important factor in the non-linear
bending stiffness and eventual collapse of the drop-stitch panel. More research should be
performed into the initiation and propagation of wrinkling to obtain a better understanding
of the bending behaviour and failure mechanism. This can eventually be used to determine
limit states of a drop-stitch floater. Also, it could be usable to establish realistic predictions
of the structural response of a drop-stitch floater.
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1.4 Outline
The performed literature study is evaluated in chapter 2. It gives an overview of the basics
and state-of-the-art of research related to the structural characteristics and a basis for all the
considerations and assumptions made in this report. Chapter 3 gives the theoretical background
of the ABAQUS FE model. This shows an evaluation of the procedures used in ABAQUS. Only the
procedures that are considered during the research, has been mentioned in this chapter. Chapter
4 shows the result of a load controlled three point bending test performed on a drop-stitch floater.
It gives insights in the bending characteristics of drop-stitch floaters and is used as validation
experiment. The material behaviour is discussed in chapter 5. It discusses the hyperelastic and
orthotropic behaviour of the polyester fiber coated with PVC. An uniaxial tensile test has been
performed to establish a material model. Chapter 6 shows a description of the 3D FE model of
the drop-stitch floater and its results. Different air pressures, material models, yarn distances and
face sheet thicknesses are evaluated. The 3D FEM is also compared to the experiments performed
in chapter 4. Finally, the conclusion of this research can be found in chapter 7, which gives the
answers to the research questions. Further recommendations for research is elaborated in chapter
8.
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Chapter 2

Literature

In this chapter, the relevant literature is presented to show the current state of research,
give background information and substantiate the methodology. First, an overview of relevant
characteristics of the (flexible) drop-stitch panels are presented in section 2.1. The relevant
characteristics are the characteristics that have influence on the structural behaviour such as
the shape, used materials, air pressure and non-linearities. A brief evaluation of the mechanical
characteristics of flexible solar panels can be found in section 2.2. Afterwards, the methodologies
to implement wrinkling of a thin membrane in a FE model are discussed in section 2.3. The
modelling of pressurised membranes is discussed in section 2.4. Finally, structural models are
discussed in section 2.5.

2.1 Drop-Stitch Panels
The idea of drop-stitch panels originates from the aerospace industry. In 1933, Taylor McDaniel
had the idea to develop a glider entirely of an air-inflated rubber tubing, which he believed
would make aircrafts safer, cheaper and lighter [33], shown in figure 2.1. A few decades later
in 1957, Goodyear Aircraft [34] developed an one-place collapsible pneumatic aircraft, which can
be considered as one of the earliest documentations of drop-stitch panels to the best of the author’s
knowledge. Goodyear Tire and Rubber Company developed the ”Airmat”, which is described as:
”A pneumatic structural material consisting of two layers of fabric restrained, when inflated, by
continuous tie yarns dropped from one layer of fabric to the other at the time of weaving.”[34]
With this ”Airmat”, they have developed the Inflatoplane, shown in figure 2.2. A preliminary
study showed that this airplane could also be collapsed into a package, dropped from an airplane
by a parachute and prepared for flight by one person. This sounded very promising and it was all
possible due to a new structure called the ”Airmat”.

Figure 2.1: A photograph of the rubber
glider of Taylor McDaniel [35].

Figure 2.2: A photograph of the Goodyear
Inflatoplane [35].

Drop-stitch panels are used for different purposes nowadays in marine structures such as Rigid
Inflatable Boats and Stand Up Paddle boards [31, 36]. They basically consists out of two fiber
cloths with an internal air pressure and a numerous amount of vertical or diagonal yarns, which
connect the upper and lower cloth, figure 2.3. The edges of the panels are round, which creates
a transverse cross-section with an obround shape. The internal air pressure contributes to the
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stiffness and the vertical threads gives the panel a flat shape [34]. Due to the fact that most of
the stiffness is established by air pressure, drop-stitch panels are lightweight. By changing the
air-pressure, the bending stiffness can be adjusted.

Figure 2.3: Sketch of the transverse cross section of a drop-stitch panel

2.1.1 Research into drop-stitch panels
To the best author’s knowledge, few research have been performed on low pressure drop-stitch
panels. many research has been focused on the high pressure inflatable beams/plates [24, 31, 32,
37–42]. Cavallaro [24] performed a four point bending test, which gives some insight in the bending
stiffness behaviour of a drop-stitch panel at different internal air pressures ranging from 5 - 30 psig,
which is roughly 35-207 kPa. The intended drop-stitch panels used as flexible inflatable floater
are in the range of 5-20 kPa, so considerably lower. Cavallaro [24] showed that the deflection
behaves non-linearly with increasing bending load, so assuming a linear beam/plate model would
be insufficient at higher deflections. At the wrinkling onset, which is the bending load at which
the cloth starts to wrinkle, the bending stiffness decreases significantly. The wrinkling onset
increases for increasing internal air pressures. The internal air pressure creates a pretension as
shown in figure 2.6. It will increase due to a loss in a volume at the wrinkling onset [43], so the
pressure-volume work should be taken into account [38]. Figures 2.4 and 2.5, shows the results
of the four point bending test performed by Cavallaro [24] in which a drop-stitch panel is tested
until it reached a mid span deflection of around 6 inches (≈152 mm).

Figure 2.4: Results of 4 point bending tests of
Cavallaro [24] converted to SI units using an
internal air pressure of 35kPa

Figure 2.5: Results of 4 point bending tests of
Cavallaro [24] converted to SI units using an
internal air pressure of 207kPa
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Figure 2.6: A sketch of the pretension (the hoop and axial stresses) created by the internal air
pressure. Note that the yarns are not included in this sketch.

There are a couple of non-linearities, which influences the response of a drop-stitch floater. The
non-linear components of the stiffness are divided into four types:

• Material: For larger strains, the material stiffness of the double woven fabric (DWF)
coated with PVC changes due to mechanical phenomena such as plastic deformation and
hyperelasticity. This will be further elaborated in chapter 5.

• Load: The internal air pressure exerts a load normal to the inner surface. Especially with
local loads, this could have an influence. Air is a compressible fluid, so if a local load
exerts onto the drop-stitch panel, a local indent/outdent could occur. Also, observations of
a preliminary experiment of TNO showed that an indentation on one side of the drop-stitch
panel, results in an outdent on the opposite side. The pressure-volume work should also
be taken into account as load non-linearity. Pressurised membranes are further discussed in
section 2.4.

• Geometry: A geometry non-linearity arises due to wrinkling/slack, which is a local buckling
phenomenon. It relaxes a thin membrane from compressive stress due to a lack of bending
stiffness. A drop-stitch panel is a pretensioned structure. The pretension is developed by the
air pressure, which creates hoop stresses within the fiber cloths. If the pretension is nullified,
wrinkling might be initiated. Wrinkling is further discussed in section 2.3.

2.1.2 Limit States
Setting limits to the deflection, curvature, strains and stresses, is very important to prevent failure
of the structure and ensure its reliability. The types of failures or limits can be divided into four
categories from the viewpoint of structural design [44]:

• The serviceability limit state (SLS)
• The ultimate limit state (ULS)
• The fatigue limit state (FLS)
• The accidental limit state (ALS)

FLS and ALS will not be discussed in this report. FLS represents the occurrence of fatigue cracking
due to damage accumulation, which is needed to ensure the design life time. ALS ensures that
the structure can withstand accidental local loads. FLS and ALS are not further evaluated in this
research.

SLS is based on the limits of deflections or vibrations for normal use. The minimum bending radius
to avoid plastic deformation of the solar cells, which is discussed in section 2.2, can be considered
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as a serviceability limit state. The structure does not collapse yet, when the solar cells are plastic
deformed, but it does influence the workability of the solar cells. Cavallaro et al. and Davids et
al. showed that wrinkling cause a decrement in bending stiffness. If the wrinkles develop, the
bending stiffness decrease and the drop-stitch floater collapses. This reduces the workability of
the drop-stitch floater, so this might be an important limit state. The phenomenon wrinkling will
be discussed further in section 2.3.

To prevent plastic collapse or surpassing the ultimate strength, an ULS is set as a design criteria.
The face sheets can withstand a limited amount of tensile stress. At some point, the face sheets will
rupture due to tensile stress. It is expected that wrinkling relaxes the face sheets from compressive
stresses, so compressive stresses might not be significant for drop-stitch panels on a local level.
This does not imply that global compressive load are insignificant. Global compressive loads
can cause local tensile loads due to buckling. Also, it could increase the air pressure within the
drop-stitch floater, which could cause rupture. Ultimate limit states are not further investigated
in this research.

DNV proposed a comprehensive set of requirements, recommendations and guidelines for the
design, development, operation and decommissioning of FPV systems [30]. They considered
multiple environmental and site conditions which should be taken into account for FPVs: wind,
waves, currents, snow and ice accreation, fouling, ecology. In their report on the design,
development and operation of FPVs, they have mostly focused on high stiffness and linear elastic
floaters, so this is not fully applicable to flexible and non-linear elastic floaters.

Figure 2.7: The numerical moment-deflection response path of the inflated beam under bending
[45].

Few research has been performed on the limit states of drop-stitch panels. Liu et al. has performed
research into the bending wrinkling behaviour of an inflated cylindrical beam using a model based
on a Fourier series [45]. They divided the bending response into three stages: the pre-buckling,
post-buckling and failure stage. This does give some insight in the response path, but it is unknown
whether this is also applicable for drop-stitch panels. Drop-stitch panels have a different geometry
and contain yarns. Considering the application as FPV, the drop-stitch panel is considered to be
failed in the post-buckling region II as shown in figure 2.7, where the bending stiffness is small. The
failure region III in figure 2.7 is not considered in this research. Veldman [46] analysed the bending
response of different inflatable braided cylindrical beams. Fichter [47] derived the global buckling
load for inflatable thin-walled cylindrical beams, which are further evaluated and compared with
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a structural model by Davids et al. [38]. However, in this thesis buckling loads are not further
investigated.

2.2 Mechanical behaviour of flexible Solar Panels
Over the last decades, thin and flexible solar panels have improved. Thin-film solar cells were first
used to power hand-held calculators in the 1970s and now cars are developed, which are powered
by thin and flexible solar cells [48]. This indicates the fast development of thin-film solar cells.
From a structural perspective, the solar panels could give an additional stiffness contribution
to the drop-stitch panels. Also the bending radius of a flexible solar panels is limited, so the
curvature of the floaters should be limited accordingly as shown in the brochure of MiaSolé, which
is a manufacturer of lightweight, flexible and thin solar cells [49]. Otherwise, plastic deformation
or cracks will occur in the solar panels. The flexibility of a solar panel is highly dependent on
the substrate used. The types of substrates can be divided into metals, ceramic and plastics. A
qualitative review of these substrates is shown in figure 2.8 [48]. It clearly shows that there is not
one material which is the best in everything. A proper trade-off should be made to decide which
material to use. The definition of the five key material properties are:

• Flexibility: The ability to bend without mechanical failure;
• Portability: The oxygen and water vapour transmission rates, which indicates the ability of

oxygen and water vapour to traverse the substrate. A high portability could decrease the
efficiency of flexible solar panels. [50];

• Thermal stability: The ability to withstand high temperatures, which depends on the
thermal expansion rate;

• Optical stability: The optical transmittance or reflectance;
• Environmental stability: The resistance to environmental chemical attacks.

Figure 2.8: A qualitative review of metal, ceramic and plastic substrates and the common five key
material properties for flexible solar panels [48]

The nominal structural behaviour of a solar cell depends on the components used within the solar
cell, figures 2.9 and 2.10 [51]. This shows that the mechanical behaviour of solar panel is quite
complex and difficult to predict and is highly dependent on the components used. The influence
of a solar panel on the stiffness of the entire structure will not be evaluated further in this thesis.

2.3 Wrinkling models of membranes
The wrinkling phenomenon affects the stiffness of the drop-stitch panels. It relaxes a shell
element from compressive stresses and affects the global bending stiffness [24, 32]. Wrinkling of a
membrane can be introduced by different load conditions as long as compressive stresses/strains
are introduced. In this thesis the decay of global bending stiffness of a drop-stitch floater due to
wrinkling is analysed, so the wrinkled regions and directions need to be taken into account. A local
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Figure 2.9: An example of a nominal
stress-strain curve of full cell packaging [51] Figure 2.10: An example of a stress-strain curve

per component of full cell packaging [51]

decay of bending stiffness due to wrinkling could introduce a hinge at large deflections as shown
in figure 2.7. Two types of wrinkling are distinguished: material and structural wrinkles. Material
wrinkles are permanent out-of-plane deformations due to imperfections in the manufacturing
process and structural wrinkles are caused by localised buckling due to compressive stresses [52].
Material wrinkles will not be evaluated in this report. Also, wrinkles in elastic-plastic sheets are
not evaluated, since the wrinkling propagation may differ from (hyper)elastic sheets.

The wrinkling regions and direction are dependent on material properties such as fiber direction
and degree of orthotropy [53, 54]. The degree of orthotropy is defined as the ratio between the
Young’s modulus of the transverse and longitudinal fiber direction. Liu [53] showed that the
wrinkling deformation decreased for lower degrees of orthotropy for a hyperelastic membrane
loaded in uniaxial tension. Material properties will be further discussed in chapter 5.

Pocivavsek et al. and Jambon-Puillet et al. provided scaling laws for wrinkles and folds of thin
elastic membranes supported on a fluid [55, 56]. Their scaling law is based on a balance between
internal bending and potential energy generated by fluid. For the face sheets of the drop-stitch
floater, the pretension generated by the internal air pressure is something to take into account
to develop such scaling laws. Cerda et al. established a scaling law for thin elastic sheets under
uniaxial tension [57, 58]. They used an energy minimisation function of the bending and strain
energy. Developing such scaling laws for the face sheets of drop-stitch floaters might be a bit more
complicated, since multi-axial loads are applied to the face sheets. There are out of plane loads
due to the air pressure and yarns and in plane loads due to the pretension and compression.

Two methodologies to include wrinkles in FEM are evaluated further in this section: tension
field and perturbations. Also, the determination of the wrinkling onset moment as described by
Cavallaro et al. is assessed [24].

2.3.1 Tension field theory
Miller [59] provided an iterative approach to determine the wrinkled/slack regions based on a
stress criterion. After a few load increments, they have adjusted the stiffness properties locally
with the strain criterium of table 2.1 with σn is the stress and εn strain in a certain direction.
Using this methodology, one will model a fictitious membrane instead of a wrinkled membrane
as shown in figure 2.11 in which Fc is a compressive load and ∆L the axial deformation. The
fictitious membrane discards the exact wrinkled geometry and represents an averaged smoothed
surface. It is also known as the tension field theory. Roddeman [60] proposed a wrinkling model
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in which the deformation gradient tensor in wrinkled regions is modified to produce this fictitious
membrane as shown in figure 2.11. Kang [61] reported a new iterative scheme, which uses a mixed
stress-strain criteria. Wang [62] proposed a new approach for the judgement of wrinkling state
shown in table 2.2. This solved a specific judgement error by considering the previous state of the
previous iteration, which caused a slack state erroneously be judged as wrinkled state [62]. Table
2.2 shows that if the previous state of a iteration is a taut state, the current state is determined
using a principal stress criterion. If the previous state is a wrinkled or slack state, the principal
strain criterion is used to judge the current state of a iteration. Note that his methodology assumes
that a membrane is very thin and therefore has no compressive stiffness, since it will easily buckle.
This will not provide detailed information about wrinkling deformation. However, it is sufficient to
analyse the global stiffness behaviour of drop-stitch panels. Performing a post wrinkling analysis,
is not necessarily needed to analyse the global deformation of a drop-stitch panel, since it will
only assess the local wrinkling deformations and not influence the global deformation as shown
in figure 2.11. A few references on post wrinkling analysis of membranes for different load cases
include [57, 58, 63, 64]. In these references, they have analysed the wrinkling patterns of a thin
membrane due to a shear, uniaxial and biaxial tension load. Nakashino et al. [65] implemented
the mixed stress-strain criterion of table 2.2 and the wrinkling model of Roddeman et al. [60].
They have analysed large folds in an airbag type structure. Better mesh convergence rates were
observed with the tension field model than the non tension field model. Also, large compressive
stresses remain in the non tension field model in some parts of the airbag, which is also mentioned
by Iwasa et al. [66]. Iwasa et al. also mentions that it is better to deal with the membrane instead
of a plate if the characteristic length to thickness ratio is larger than 1000.

Figure 2.11: Depiction of the initial membrane without compression load, fictitious membrane
with compression load and wrinkled membrane.

Table 2.1: Different criteria of the state of a membrane mentioned by Wang et al. [62]

State of membrane Principal stress criterion Principal strain criterion Mixed criterion
Taut σ2 > 0 ε2 > 0 σ2 > 0
Wrinkling σ2 ≤ 0 and σ1 > 0 ε2 ≤ 0 and ε1 > 0 σ2 ≤ 0 and ε1 > 0
Slack σ1 ≤ 0 ε1 ≤ 0 ε1 ≤ 0

Table 2.2: The judgement approach of wrinkling state proposed by Wang et al. [62]

Case Previous state Current state Conditions Comments
1 Taut Taut σ2 > 0 Principal Stress Criterion
2 Wrinkled σ2 ≤ 0 and σ1 > 0
3 Slack σ1 ≤ 0
4 (7) Wrinkled (Slack) Taut νε1 + ε2 > 0 Principal Strain Criterion
5 (8) Wrinkled νε1 + ε2 ≤ 0 and ε1 > 0
6 (9) Slack ε1 ≤ 0
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ABAQUS has the option to apply a no-compression material property for linear elastic and isotropic
hyperelastic materials. A no-compression material property is obtained by first solving the
principal stresses assuming linear elasticity and then setting the appropriate principal stress values
to zero using the principle stress criterion of table 2.2. The associated stiffness matrix components
in the wrinkling direction will also be set to zero. The no-compression material property is not
history dependent, so the proposed methodology by Wang [62], which takes into account the
previous taut/wrinkling/slack-state, is not adopted. Wong et al. [67] observed poor convergence
by using the *NOCOMPRESSION option of ABAQUS. Their observations are not elaborated extensively,
so the reason for the poor convergence is unclear.

2.3.2 Initial perturbations
Another methodology to model wrinkling behaviour is to introduce geometrical imperfections or
perturbations [67–71]. This method has been used to determine the wrinkles of an airbag [62].
Wong et al. [67] explained this this methodology thoroughly. First the FE model is defined and a
small pretension as initial condition is applied. In step II, they have performed a buckling analysis
and used the resulting modes as perturbations. In the final step they increased the load and used
a stabilisation function to achieve convergence. Lavaerts [72] showed that it could be difficult
to obtain the first buckling mode for some geometries and the post-buckling behaviour is highly
dependent on the perturbations used. Also, this methodology costs significantly more calculation
time than the principal stress/strain criterion methodology.

2.3.3 Wrinkling onset
Cavallaro et al. [24] determined the wrinkling onset moment of a drop-stitch panel with high
internal air pressure. They have determined a bending moment needed to nullify the pretension
created by the internal air pressure. Equation 2.1 shows the wrinkling onset moment, Monset ,
with P is the internal air pressure, B width of the panel and H the height. They did not include
the mass of the panel, so this might be corrected especially for flexible drop-stitch panels. The
maximum moment was predicted with Mmax = 2Monset, which showed good correlation at high
internal air pressures. However, at lower internal air pressures (≤ 60 kPa) it became inaccurate.

Monset =
P

16
H (P )

2 (4B (P )− 4H (P ) + πH (P ))
2

(2B (P )− 2H (P ) + πH (P ))
(2.1)

2.3.4 Concluding remarks
There are two methodologies to take into account wrinkling: initiate perturbations or assume a
tension only material property. Initiating a initial perturbation models the full wrinkling pattern,
which gives a more detailed description of the wrinkles. It is expected that initial air pressure
and yarns initiate sufficient initial perturbations for a bending load case and a modal analysis as
Wong et al. did [67] to determine an initial deflection is not needed. A tension only material
property models the wrinkles by assuming no compressive stiffness. Both methodologies give
accurate predictions for the wrinkling response. The analytical approach used by Cavallaro et al.
seems to accurately predict the wrinkling onset moment [24]. The analytical maximum moment
formulation is inaccurate for the intended internal air pressure range of this research.

The initial perturbations method requires a finer mesh, since it is expected that the wrinkling
pattern is dependent on the yarn distance. If one would model a large panel with a small yarn
distance, a large amount of elements are needed, which increases the calculation time. Assuming
tension only/no compression material property, could result in convergence issues. However, a
coarser mesh could be used, since the full wrinkle deformation does not needed to be modelled.
In this research, the perturbation model is used, since it develops a better understanding in the
wrinkling initiation and propagation.
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2.4 Pressurised membranes
The internal air pressure is a significant variable in the bending stiffness behaviour of the
drop-stitch panels [32, 43]. A higher internal air pressure increases the linear bending stiffness
and wrinkling onset and also influences the post wrinkling bending stiffness. Hulton et al. [31]
assumes the Ideal Gas Law for air 2.2 and the compression cycle of a gas can be treated as a
polytropic process. Polytropic processes are thermodynamic processes that obey equation 2.3.
For isothermal processes, nheat = 1 and equations 2.3 becomes the ideal gas law of equation 2.3.
This could be used to formulate an idealised total energy balance for an air-inflated structure,
equation 2.4 [43]. In equations 2.2-2.4, P is the internal air pressure, V the volume, Rgas the gas
constant, Ngas the amount of substance of gas in moles, T the temperature, nheat the ratio of
specific heats, C a constant value for two states of a polytropic process, F an externally applied
force, δ the deflection at point of loading, Estrain the sum of the elastic and plastic strain energies,
Ekinetic kinetic energy of the system mass, Edissipative dissipated energy through damping and
viscous effects. The ∆ denotes the difference between the initial (after inflation) state and the
state after a load has been exerted on a inflatable structure.

PV = NgasRgasT (2.2)
PV nheat = C (2.3)∫
Fdδ = ∆Estrain + ∆Ekinetic + ∆Edissipative + ∆

∫
PdV + ∆

∫
V dP (2.4)

As mentioned, pretension created by the internal air pressure influences the wrinkling onset. The
pretension can be separated into transverse hoop stresses and axial stresses as shown in figure 2.6.
For thin and isotropic obround shapes, the hoop stresses could be estimated using equation 2.5
at locations A, B and C of figure 2.12 according to the ASME[73]. A Thickness of less than one
tenth of the radius is considered to be thin [74]. The parameters of equation 2.5 are shown in
figure 2.12. Cavallaro et al. assumes that the pretension is uniformly distributed over the cross
sectional area in axial and transverse direction instead of determining a non-uniform pretension as
ASME did[24]. Using that assumption, they accurately determined the wrinkling onset moment
as discussed in section 2.3. The inflation pressure is multiplied with the longitudinal projected
area and divided by the circumferential area of the obround shape, equations 2.6-2.7. However,
Hulton et al. [31] showed that the maximum principal stresses in the corners of a drop-stitch panel
are non uniform, figure 2.13. Of course, maximum principal stresses and membrane stresses are
not the same, but it shows that equation 2.5 should be used carefully. Note that the influence
of the yarns on the pretension is not taken into account. Between the yarns, small bumps are
introduced by the yarn spacing and internal air pressure, figure 2.14. It is expected that these
bumps decreases for smaller yarn spacing.

(σh)B = PR/t1 , (σh)C = P (R+ L2) /t1 , σh = PR/t2 (2.5)

σx =
Flongitudinal

(2 (B −H) + πH) tface
with Flongitudinal = P

(
(B −H)H + π

H2

4

)
(2.6)

σy =
Fhoop

(2 (L−H) + πH) tface
with Fhoop = P

(
(L−H)H + π

H2

4

)
(2.7)
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Figure 2.12: Cross section of obround
pressure vessel [73]

Figure 2.13: Maximum principal stress (in PA)
of the drop-stitch panel skin at 20 psi (138 kPA)
inflation pressure [31].

Figure 2.14: The small bumps between each yarn due to the internal air pressure.

Taffetani et al. [75] modelled a pressurised spherical elastic shell in ABAQUS. They used a surface
based fluid cavity as air chamber. Their simulation was conducted in two steps: first an inflation
step to reach the desired pressure with a static solver and afterwards an indentation step to apply
a desired indention into the spherical elastic shell using a dynamic implicit solver. By introducing
a Rayleigh damping proportional to the mass, the solution was stabilised. Hulton et al. [31] took
the adiabatic expansion of the enclosed air volume into account, which Taffetani et al. did not.
The Shomate equation is used to determine the molar heat capacity, equation 2.8 with ã, b̃, c̃, d̃, ẽ
are gas constants [76]. The molar heat capacity is the amount of heat needed to add to amount of
mass to increase the temperature with a certain amount. Adiabatic means “without heat transfer”,
so there is no heat transfer with its surroundings [77]. It should be taken into account for rapid
volume changes such as the compression in a cylinder of an engine. The internal air pressure of a
drop-stitch panel is influenced by wind gusts according to preliminary observations made by TNO,
which suggests that the internal temperature is mainly influenced by the environment. Taffetani
et al. did not take into account temperature changes due to volume changes and assumed an
isothermal process.

c̃p = ã+ b̃ (T0 − T1) + c̃ (T0 − T1)
2

+ d̃ (T0 − T1)
3

+
ẽ

(T0 − T1)
2 (2.8)
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2.4.1 Concluding remarks
There are two options to analytical determine the pretension: an uniform or a non-uniform
formulation over the cross sectional area. Cavallaro et al. acquired accurate results for the
wrinkling onset using the assumption that the pretension is uniformly distributed over the cross
sectional area, so this suggests that it is not necessary to determine a non-uniform pretension to
determine the wrinkling onset analytically. For the FEM model, The internal air volume should
be modelled as a surface based fluid cavity in ABAQUS. The panel should first be inflated and
afterwards the load case should be applied. Taking into account the adiabatic heating effect of
the enclosed air volume, is not necessarily needed.

2.5 Structural models
Simplifying structures to analyse its response to certain load conditions, is the main purpose of
structural models. If certain dimensions are significantly smaller than others, a beam or plate
model could be adopted. Beams are one dimensional elements that could be used if the thickness
and width are smaller than the length. Plates can be adopted if the thickness is atleast one-tenth
smaller than the in-plane dimensions [78].

The governing equations of structural models are stated in section 2.5.1. An evaluation of different
beam and plate models are presented in sections 2.5.2 and 2.5.3 respectively. Implementations of
structural models on drop-stitch panels are evaluated in section 2.5.4

2.5.1 Governing equations
To preserve a static equilibrium, equation 2.9 should be obeyed at every location in the model
with F is a force and moment tensor, K a stiffness tensor and u a DoF tensor. This assumes that
there is no velocity in the system.

F = Ku (2.9)

For linear elastic material, the stress σ and strain ε vectors are related with a material stiffness
matrix C [79]:

σ = Cε with σ =


σx
σy
σz
σxy
σyz
σxz

 and ε =


εx
εy
εz
γxy
γyz
γxz


The normal and shear strains can be determined by the calculating the derivatives of the in its
respective directions:

εx = ∂u
∂x , εy = ∂v

∂y , εz = ∂w
∂z ,

γxy =
(
∂u
∂y + ∂v

∂x

)
, γyz =

(
∂v
∂z + ∂w

∂y

)
, γxz =

(
∂u
∂z + ∂w

∂x

)
2.5.2 Beam models
One could analyse the response of a structure in two dimensions by adopting a beam theory.
Beam theories assume that the displacements in y-direction and rotations in x- and z-direction
are zero. The deformations u and w are only described as functions of the x and z coordinates.
The Euler-Bernoulli beam theory is considered to be the simplest beam theory. It assumes that
shear deformation in xz-plane is negligible, so that u can be described as function of w and z [78]:
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u(x, z) = −z
dw0

dx
, w(x, z) = w0(x)

with w0 is the mid-thickness deflection as shown in figure 2.15. Note that the deformations
described in sections 2.5.2 and 2.5.3 are for pure bending cases without in plane deformations.
It implies a displacement u, which can be described as a straight line normal to the midplane
deflection w. For thicker beams and larger deflections, shear deformation becomes more significant,
so it should be included. Timoshenko [80] included the shear deformation of a beam by adding
the angle φ:

u(x, z) = zφ(x), w(x, z) = w0(x)

This still assumes u can be described as a straight line to the midplane deflection. However, the
straight line is not normal to the midplane deflection as shown in figure 2.15. Higher order shear
theories such as a second third order (also known as the Reddy Beam Theory), further relaxes
the straightness assumption [78]. The higher order theories adds unknowns, which are difficult to
interpret in physical terms. The accuracy gained with higher than 3rd order is little. The second
order beam theory is described as:

u(x, z) = zφ(x) + z2ψ(x), w(x, z) = w0(x)

and the third order as:

u(x, z) = zφ(x) + z2ψ(x) + z3 + u0θ(x), w(x, z) = w0(x)

Figure 2.15: Deformation of a typical transverse normal line in various beam theories [78]. EBT
is the Euler-Bernoulli Beam Theory, TBT the Timoshenko Beam Theory and RBT the Reddy
Beam Theory.

2.5.3 Plate models
Similar to the beam models, plate models also consists of simple models, which neglect shear
deformation, and n-order shear deformable plate theories. The difference between plate and beam
theories is the deformation in y-direction that is included.
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The Classical (Kirchoff) Plate Theory is an extension of the Euler-Bernoulli beam theory to two
dimensions [79]. It neglects, similar to the Euler-Bernoulli beam theory, the shear deformation,
so:

u(x, y, z) = −z ∂w0

∂x , v(x, y, z) = −z ∂w0

∂y , w(x, y, z) = w0(x, y)

The Mindlin plate theory assumes first-order shear deformation plate theory. It is an extension of
the classical plate theory by including transverse shear deformation:

u(x, y, z) = zφx(x, y) v(x, y, z) = zφy(x, y) w(x, y, z) = w0(x, y) (2.10)

The higher order plate theories adds additional unknown. The second-order plate theory can be
described as:

u(x, y, z) = zφx(x, y) + z2ψx(x, y) v(x, y, z) = zφy(x, y) + z2ψy(x, y) w(x, y, z) = w0(x, y)

(2.11)

and the third-order plate theory as:

u(x, y, z) = zφx(x, y)− αz3
(
φx + ∂w0

∂x

)
v(x, y, z) = zφy(x, y)− αz3

(
φy + ∂w0

∂y

)
w(x, y, z) = w0(x, y)

(2.12)

with α = 4
3h2 . It reduces to the first order shear deformable plate if α = 0.

Laminated composites are inhomogeneous in the thickness direction. A common analytical
approach used for laminated composites to determine the structural response is the classical
laminate theory (CLT) [81]. CLT is based on the classical plate theory [79]. Using CLT, one
can analyse the multi-axial responses of structures with direction dependent stiffness properties
and loaded by multi-axial loads. CLT makes the following assumptions:

1. The plate consists of orthotropic laminae bonded together with their principal material axes
of the orthotropic laminae orientated in the x-y plane.

2. The thickness of the plate is much smaller than any characteristic dimension (the length and
the width) (defined by the Kirchhoff hypothesis).

3. The displacements u, v and w are small compared with the thickness (geometrical linearity).
4. The in-plane strains εx, εy and γxy are small compared with unity, so each ply obeys Hooke’s

law (material linearity).
5. Transverse shear is negligible (plane stress in each ply) (defined by the Kirchhoff hypothesis).
6. Displacements u and v are linear functions over the thickness (defined by the Kirchhoff

hypothesis).

Using the assumptions of CLT for flexible drop-stitch panels, gives multiple issues. First of all,
assumption 3 can not be assumed for a very flexible panel, since large displacements are expected.
Assumption 4 should be handled with care, since materials could become non-linear at certain
strains. Transverse shear is expected at high deformations, so assumption 5 is invalid. This
implies that the CLT can not (directly) be used. If one would be interested in using the CLT for
drop-stitch floaters, a modified non-linear CLT should be devised.

The constitutive relation of the CLT is shown in equation 2.13, which relates the forces and
moments per unit length to strain and curvature [79, 82]. The stiffness matrix of this equation
is referred to as the ABD-matrix. The components of the ABD-matrix can be determined using
equations 2.14-2.16 in which k is the ply number, zk is the outer fiber distance of a ply from a
reference axis and zk−1 the inner fiber distance of a ply. Equations 2.14-2.16 assumes constant
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thickness over the laminate. The reduced stiffness matrix, Q̄(k)
ij , can be determined using equation

2.17. [T ](k) is the transformation matrix of equation 2.18, which relates the orthogonal fiber
directions to the global cartesian coordinate system using the ply direction θ. [L] relates the
tensorial shear strain to the engineering shear strain in equation 2.19. The stiffness matrix of one
linear elastic orthogonal ply is determined using 2.20, which is based on Hooke’s law. ν is the
Poisson’s ratio, Gnm the shear modulus in nm-direction, E the Young’s modulus.{

{N}
{M}

}
=

[
[A] [B]
[B] [D]

]{ {
ε0
}{

κ0
} } (2.13)

Aij =

Nplies∑
k=1

(
Q̄

(k)
ij (zk − zk−1)

)
(2.14)

Bij =

Nplies∑
k=1

1

2

(
Q̄

(k)
ij

(
z2k − z2k−1

))
(2.15)

Dij =

Nplies∑
k=1

1

3

(
Q̄

(k)
ij

(
z3k − z3k−1

))
(2.16)

Q̄
(k)
ij =

(
[T ](k)

)−1

[Q](k)[L][T ](k)[L]−1 (2.17)

[T ](k) =

 c2 s2 2cs
s2 c2 −2cs
−cs cs c2 − s2

(k)

with

{
c = cos(θ)

s = sin(θ)
(2.18)

[L] =

 1 0 0
0 1 0
0 0 2

 (2.19)

[Q](k) =

 E1

1−ν12ν21
ν12E2

1−ν12ν21 0
ν12E2

1−ν12ν21
E2

1−ν12ν21 0

0 0 G12

(k)

(2.20)

A methodology to determine the ABD-matrix could be to analyse the stress-strain and
moment-curvature diagrams of the drop-stitch panel in different directions at different locations.
Liew et al. [83], have analysed moment-curvature-thrust relationships for inelastic and
geometrically non-linear structural problems involving a combined axial load and bending. The
thrust is the axial load. They described the relation between external applied moment M and
internal resting moment ĒIκ by the differential equation 2.21. In this equation Ē is the effective
Young’s modulus, which is described by adopting a bi-linear material model, κn the large deflection
curvature and I the moment of inertia. Although this model is meant for concrete beams, two
dimensional beam models and a different load case, the methodology to use an effective Young’s
modulus could be adopted to include wrinkling. Due to wrinkling, the bending stiffness decreases,
which could be done by decreasing the effective Young’s modulus. The effective Young’s modulus
needs to be determined by establishing a relationship between curvature, strain and Young’s
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modulus. Ibrahim et al.[84] has used an effective moment of inertia instead of a effective Young’s
modulus to describe non-linear bending behaviour of cracked concrete walls. A local crack in a
concrete beam would decrease the effective thickness that could be used to take stresses. Wrinkling,
which is expected to be one of the main non-linear components of the moment-curvature-diagram,
influences the local material properties in the wrinkling direction. It would be incorrect physically
to implement an effective thickness in the stiffness matrix, since the thickness that could take
stresses does not decrease. Using an effective Young’s modulus would be more appropriate than
an effective moment of inertia.

ĒIκ = ĒI
d2v
dx2[

1 +
(

dv
dx

)2] 3
2

= −M (2.21)

Wang [85, 86] has analysed the bending modulus of carbon nanotubes taking into account rippling
deformations. Using a ninth-order polynomial, discrete points are fitted in the moment curvature
diagram to capture the non-linear bending stiffness behaviour [86]. If a higher order polynomial
would be implemented in the constitutive relation of the CLT (equation 2.13), it would change to
a higher order polynomial as shown in equation 2.22 with i is the polynomial order.{

{N}
{M}

}
=

[
[A1] [B1]
[B1] [D1]

]{
{ε}
{κ}

}
+

[
[A2] [B2]
[B2] [D2]

]{ {
ε2
}{

κ2
} }+[

[A3] [B3]
[B3] [D3]

]{ {
ε3
}{

κ3
} }+ ...+

[
[Ai] [Bi]
[Bi] [Di]

]{ {
εi
}{

κi
} } (2.22)

The internal air pressure generates pretension in the fiber cloth. This pretension effect should
be included as a residual stress/strain in the classical laminate theory, since it does affect the
through thickness stress distribution and the wrinkling onset of the drop-stitch floater. Shokrieh
et al. [81] mentioned a modified CLT, equation 2.23, which takes into account the residual strain
εres. The total strains at any point may be related to laminate reference plane and curvature as
equation 2.23. This formulation could be used to incorporate the prestrain caused by the internal
air pressure.

ε
(k)
x

ε
(k)
y

γ
(k)
xy

 =


ε0x
ε0y
γ0xy

+ z

 κx
κy
κxy

−


εresx
εresy
γresxy

 (2.23)

2.5.4 Implementation of structural models on drop-stitch panels
The research that has been performed on implementing structural models on drop-stitch panels is
limited. Structural models for high pressure, isotropic and linear tensile elastic inflatable panels
have been derived using a Timoshenko beam model. Cavallaro et al. and Wielogsz et al. assumed
a linear relation between bending load and deflection, so post-wrinkling deflections cannot be
analysed with these structural models [24, 87]. Wielogz et al. [87] only studied low deflections
(maximum is 8 cm) and linear deformations. Cavallaro et al. [24] used a simple approach, which
effectively estimates the wrinkling loads. Cavallaro and Wielogz did not take into account the
following influences: pressure volume work, wrinkling and the effect of the yarns. Davids et al.
has included these influence using the Timoshenko beam model for a bending only load case [32,
88]. Each of these influences Davids et al. included are evaluated separately. They have assumed
a linear elastic pure bending case, where the cross sectional area remains constant over the length
of the beam. Also, small deformations and shear angles are assumed. The general virtual work
equilibrium statement is given by:∫

Mδκdx+GAs

∫
γδγdx+ p

∫
d(δ∆V ) =

∫
qδv dx
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The first two terms are the work due to bending and shear. The third term is the work done
by the pressure-volume relation. The last term is the external work introduced by an external
distributed load q. A brief description of how wrinkling, pressure-volume work and the yarns are
implemented in the model of Davids et al., is described in the continuation of this section.

Wrinkling

Wrinkling has been included by assuming the beam as a tension only structure. A tension only
structure that it cannot withstand compressive stresses, which is implemented by assuming for
ε > 0 σ = Eε and for ε ≤ 0 σ = 0. The total strain at any point in the beam for a certain
curvature κ can be determined by:

ε = ε0 + κ(ȳ − y)

with ȳ is the neutral axis as depicted in figure 2.16.

Figure 2.16: The through thickness strains at a certain curvature and pretension (adapted and
reproduced) [88]

The force equilibrium can be used to determine ȳ numerically by using a solver such as the
Newton-Raphson solver. The horizontal force equilibrium is as follows:∑

F =

∫
A

σdA− P = 0

with A is the cross sectional area and P is the force generated by the internal air pressure, which
is P = pπr2 for a cylinder and P = p

(
π
(
h
2

)2
+ hB

)
for an obround shape. If the ȳ is known, the

internal bending moment can be determined by:

M =

∫
A

σ(y − ȳ)dA

This internal bending moment does not include the bending moment the internal air pressure can
withstand. So, the effective internal bending moment is determined by:

Me = M + P (y − ȳ)

Now the moments are known and a moment curvature relation can be established, which shows
the influence of wrinkling in a pure bending load case, figure 2.17.

Pressure-volume work

It has been assumed that the pressure remains constant and the volume changes due to shear and
bending rotations, which results in a pressure-volume work due to the changing volume. The total
pressure volume work is the summation of the volume change due to shear and bending. Due to
shear, the virtual volume change for small shear angles can be described as:

d(∆V )s = Adx (cos (γ)− 1) ≈ −γ
2

2
Adx
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Figure 2.17: Moment curvature relation for an inflatable cylindrical tube with p = 50 kPa, r = 50
mm, E = 0.625 N/m [32]

The volume change as a result of the curvature is determined by:

d(∆V )f = −A(y − ȳ)κdx

The total virtual pressure-volume work can now be expressed as a summation of the shear and
curvature components:

d(∂∆V ) = d(∂∆V )f + d(∂∆V )s = −A(y − ȳ∂κ+ γ∂γ)dx

Influence of the yarns

The yarns provide an additional shear stiffness besides retaining a flat shape. Figure 2.18 shows
a sketch of the influence of the drop yarns, which is used to formulate a force equilibrium:

T cos γ = PBdx

Using the force equilibrium statement, coupling between shear moment and amount of shear can
be determined, which is used to define the additional shear stiffness generated by the yarns.

dMγ

dx
= PBhγ

Figure 2.18: Kinematics of the yarns under shear deformation [32]
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2.5.5 Concluding remarks
Different structural models could be adopted to model a drop-stitch panel. Most models of
drop-stitch panels used a Timoshenko beam model. Davids et al. included the non-linear bending
behaviour of drop-stitch panels. This gives some insight in the characteristics of drop-stitch panels,
which are significant for the response. Davids et al. developed a structural model, which takes
into account the non-linear bending response. The face sheets are assumed to be a tension only
material, so it can not withstand compressive stresses due to wrinkling. Volume changes due to
shear and curvature is taken into account in the total energy balance. The yarns add shear stiffness
besides retaining a flat shape.
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Chapter 3

Background of FE model

In this chapter, the theoretical background is given of the procedures and governing equations
used in the ABAQUS FE model of the drop-stitch floater. This will provide a basic understanding
of the procedures and their assumptions. Also the considerations of the procedures used in this
research are evaluated. Only the governing equations of different procedures used in this research
are discussed.1 Unless otherwise mentioned, the equations stated in this chapter are from the
ABAQUS manual [76]. Note that material models are discussed in chapter 5.

This chapter is subdivided into five sections: Section 3.1 elaborates on the used element and its
assumptions; The implementation of the yarns is discussed in section 3.2; Section 3.3 discusses the
modelling of the internal air pressure; The contact procedure used to model the three point bending
load case is discussed in section 3.4; Section 3.5 evaluates the solver used for time integration.

3.1 Element
Keeping in mind the small thickness of the fabric, two element types are considered: shell and
membrane elements. Shell elements can be used to model structures in which one dimension, the
thickness, is significantly smaller than the other dimensions [76]. Membrane elements are used
to represent thin elements that offer strength in the plane of the element, but have no bending
stiffness. The bending stiffness of the fabric is small due to its thickness, so it might be neglected.
Hulton et al used membrane elements to model a drop-stitch panel to perform a modal analysis
[31]. However, they did not take into account wrinkling. It is expected that the bending stiffness
can not be neglected for the wrinkling initiation and propagation [89, 90], so shell elements are
adopted. The effect of bending stiffness on the wrinkling initiation and propagation is further
evaluated in chapter 6. Quadratic shell elements might cause slower convergence rates in models
involving contact than linear shell elements [76]. To prevent slow convergence rates, linear elements
are adopted.

Linear shell elements are three dimensional elements with a plane stress conditions, σ33 = 0. For
linear elastic isotropic shell elements the change in thickness is a function of the Poisson’s ratio ν
and the in-plane strain:

ε33 = − ν

1− ν
(ε11 + ε22) (3.1)

For hyperelastic materials, ABAQUS assumes the material is incompressible, which implies that the
multiplication of the principal stretches in the three directions should be equal to 1, λ1λ2λ3 = 1.
In the through thickness direction, two integration method are considered: the Simpson rule or
the Gauss quadrature integration method. Gauss quadrature integration requires less integration
points than the Simpson rule for a certain polynomial order of integration and is therefore chosen.
To integrate linearly over the through thickness direction, two integration points for the Gauss
quadrature method and three for the Simpson rule are needed.

1For the readers interested in the numerical implementation or the derivation of the mentioned equations, it is
suggested to read the ABAQUS theory guide [76] or the references mentioned in this chapter.

25



(a) S4R element (b) S4 element

Figure 3.1: A depiction of the integration points of fully integrated linear shell element (S4) and
reduced integrated shell element (S4R) [76].

Shell elements in the in-plane direction can be fully or reduced integrated as shown in figure
3.1. Reduced integration reduces the amount of integration points. However, this could result
in hourglassing. Hourglassing is a phenomenon where a shell element fails to detect strain [91].
It remains strainless in certain deformation modes as shown in figure 3.2. This results in a sort
of zigzag pattern, which has the length of one element. Fully integrated linear shell elements on
the other hand could have issues with a phenomenon known as shear-locking. The straightness
assumption of the edges of a linear elements assumes an element does not have any curvature [92].
It tends to model a linear element subjected by a bending moment too stiff as shown in figure 3.3.
Reduced integrated shell elements are chosen in this research to reduce the amount of DoF and
computational time. This does imply that hourglassing effects should be kept in mind.

Reduced linear integration Full linear integration

Integration point

Element node

Figure 3.2: A depiction of a fully and reduced integrated shell element subjected by a moment.
The reduced integrated shell element fails to notice a shear strain, since the change in length of
the line from the integration point to the edge is zero. This phenomenon is called hourglassing.

Shear locked element

Integration point

Element node
Ideal curved element 

Figure 3.3: A depiction of a fully shell element subjected by a moment. Due to the straightness
assumption of the edges, the element tends to be too stiffly modelled. This is called shear locking.
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3.2 Yarns
For the yarns, two procedures can be used: mesh (in)dependent fasteners with axial connector
elements; truss elements as Hulton et al did [31]. Both can only translate in the axial direction and
do not have any bending stiffness. Truss elements need to be meshed, though axial connectors do
not. In this research axial connectors are used to model the yarns. Axial connectors are connectors
with a single degree of freedom, 3.4. The length of the axial connectors with xa and xb are the
nodal coordinates is defined as:

l = ‖xb − xa‖

The current length l is subtracted by the reference length lref , which is the initial length, to
determine the displacement:

u1 = l − lref

The axial force in one axial connector is defined as:

faxial = f1q, where q =
1

‖xb − xa‖
(xb − xa)

The force and displacement are assumed to be linearly related, which assumes a linear isotropic
material for the yarns.

faxial = D11u1 where D11 =
EA

lref1

(3.2)

where E is the Young’s modulus of the yarns and A the cross-sectional area of the yarns. The
hyperelastic behaviour of the polyester yarns is not taken into account. The material stiffness of
the yarns mainly affect the eventual thickness of the drop-stitch panel and shear stiffness [32].
Hyperelasticity could influence the eventual thickness, since a constant Young’s modulus can not
be assumed. However, if the yarn spacing is small, the strain within the yarns will decrease,
which reduces the influence of the hyperelasticity. One yarn can easily buckle, so the compressive
stiffness is expected to be negligible.

If one would use axial connector elements, one could use a mesh dependent or independent grid
for the attachment points of the axial connector elements. The attachment points connects the
axial connector elements to the face sheets. It could coincide with the nodes of the mesh or not.
If one would use a mesh independent fastener, a grid of attachment points are projected on the
upper and lower face sheets of the drop-stitch floater, which results in fastening points as shown
in figure 3.5. Between those projected attachment points, an axial connector element is modelled.
A linear weighting method is used to smear out the coupling constraints of the mesh independent
fastener. It couples the nodes of the shell elements with the attachment points. Hourglassing
issues arised when imposing a mesh dependent attachment grid, which could be due to the fact
that the coupling between the axial connector and a shell element is strictly at one node. By
smearing the coupling out over multiple nodes, hourglassing issues might be solved.
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Figure 3.4: Depiction of an axial connector
element between two points a and b [76]. Figure 3.5: The fastener configuration [76].

3.3 Internal air pressure
The surface based hydrostatic fluid cavity models the air chamber within a drop-stitch panel. An
ideal isothermal gas has been assumed. ABAQUS’ fluid cavity procedure creates hydrostatic fluid
elements, also named F3D4/F3D3 elements, between the cavity reference node and shell elements
as shown in figure 3.6 assuming a pyramid shape between an shell element and the fluid cavity
reference node. The ideal gas equation is given as:

P + PA = ρRgas
(
T − TZ

)
(3.3)

where P is the gauge pressure, PA the atmospheric pressure, ρ the density of the fluid, Rgas the
gas constant, T the current temperature and TZ the absolute zero temperature. The gas constant
is defined as:

Rgas =
R̃

MW

with R̃ is the universal gas constant and MW the molecular weight. The actual volume of the
fluid cavity V should be equal to the volume derived from the pressure, temperature and mass V :

V − V (P, T,m) = 0

From equation 3.3, the volume pressure relation is derived:

dV

dP
= −m

ρ2
dρ

dP
= −

mRgas
(
T − TZ

)
(P + PA)

2

Fluid mass can be inserted into or extracted out of the fluid cavity, which is used to describe the
volume changes:

∆V (P, T ) = ∆m/ρ(P, T )

The actual volume V is the summation of the volume of the hydrostatic fluid elements (F3D4/F3D3
elements), figure 3.6. From the cavity reference node, an F3D4/F3D3 is projected on a shell
element facet. It has pyramid shape, which is used in the actual volume integration of the fluid
cavity. The volume of one F3D4 element becomes:

V e =

∫
V e

dV =

∫ +1

−1

∫ +1

−1

1

3
(xR − x) ·

(
∂x

∂g
× ∂x

∂h

)
dgdh

with xR is the position of the fluid cavity reference node, x the nodal coordinates and g and h are
the parametric coordinates.

(
∂x
∂g ×

∂x
∂h

)
is the normal direction of the base of the F3D4 element.

The pressure-volume work is then included in the virtual work equilibrium.
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Figure 3.6: Hydrostatic fluid element (F3D4) [76]

3.4 Contact
A hard contact between the drop-stitch floater and the support/load beam has been defined with
finite sliding. A contact interaction procedure is chosen instead of a line load/displacement, since
the contact area due to compression of the drop-stitch panel and low bending stiffness of the fabric
changes. Defining a line load/displacement on the face sheet would introduce a singularity at the
transition region from fabric to closing edge. The pressure on the beams pcontact is a function of
the overclosure hoc, which is the interpenetration of the beams and the drop-stitch floater. If there
is a distance between the beam and the floater, hoc is less than zero, so the following conditions
are used:

pcontact = 0 for hoc < 0 (open), and

pcontact > 0 for hoc = 0 (closed).

A surface-to-surface contact discretisation has been used to determine the locations and conditions
of the contact between the analytical rigid beams of the load/support beam and shell elements
of the drop-stitch floater. It improves the contact pressure accuracy in some cases compared to
node to surface discretisation by averaging the contact conditions over regions of the nearby slave
nodes. A node-to-surface discretisation procedure enforces the contact conditions at individual
nodes.

The state-based tracking algorithm is used, since it is the only tracking algorithm available for
finite sliding contact interaction with analytical rigid surfaces in ABAQUS. Tracking algorithms are
needed to calculate the relative motion between different bodies and determine whether a slave
element is in contact with the master surface. The contact pressure interpenetration work is
included in the virtual work equilibrium.

3.5 Solver
For the three point bending load case, a static or a quasi-static dynamic solver could be adopted.
In static solvers, the kinetic energy is assumed to be zero and in quasi-static dynamic solvers the
kinetic energy is minimised. It might be difficult to obtain a static solution if there is a sudden shift
in stiffness due to wrinkling. A quasi-static dynamic solver is therefore chosen in this research.

Dynamic solvers can be divided in explicit and implicit solvers. Explicit determine values at t+∆t
solely based on the values at t in which t is a time and ∆t a time increment [76]. Implicit solvers
obtain values at t+ ∆t based on quantities at t and t+ ∆t. Explicit solvers generally need smaller
time increments to obtain a stable result than implicit solvers and are conditionally stable, which
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means that there are certain conditions for time increments. In ABAQUS, the stable time increment
is determined by dividing the characteristic element length Le with the dilatational wave speed cd
[76]:

∆t = min

(
Le
cd

)
(3.4)

The dilatational wave speed per element is determined by:

cd =

√
(λ̂+ 2µ̂)

ρ
(3.5)

with λ̂ and µ̂ are the effective Lamé’s constants and ρ is the density. λ̂ and µ̂ are determined
each user defined increment. Since the stiffness is strain-dependent for hyperelastic materials, it
should be done multiple times within the simulation. If a material has a higher density or less
stiffness, the dilatational wave speed decrease, which increases the stable time increment. Also, if
one would use a coarser grid, the stable time increment decreases. This is a conservative estimate
of the stable time increment, since boundary conditions and contact interaction can affect the the
stiffness of the model and eventually the stable time increment.

Implicit solvers can use larger time increments and are unconditionally stable. They need to
invert the global stiffness matrix [93], which can become computational intensive depending on
the amount of DoF’s. In this research ABAQUS’ dynamic implicit solver is chosen. Generally,
for static and low-frequency dynamic analysis a implicit solver is recommended [93, 94]. The
quasi-static procedure of ABAQUS is adopted.

The main focus of ABAQUS’ quasi-static dynamic implicit solver is a final static response by
regularising unstable behaviour by introducing inertia effects. If possible, large time increments
are taken to minimise computation time. Every iteration, the half increment residuals are checked
to determine whether a cutback in time increment needs to be performed or not. It is checked
a posteriori that the kinetic energy is insignificant compared to the total energy to ensure the
solution is quasi-static. As rule of thumb, the amount of kinetic energy should be atleast less than
10% of the strain energy [75]. The dynamic implicit solver of ABAQUS is based on methodologies
introduced by Hibbit and Karlsson [95] and Hilber et al [96, 97].
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Chapter 4

Three Point Bending Test

A three point bending test has been conducted to get insights in the bending characteristics of a
drop-stitch floater and the maximum load that could be applied at low internal air pressures. The
maximum load is the load at which the structure fails to resist the applied load and collapses. At
the failure load, the bending stiffness is too small to resist the exerted load.

The test setup is discussed in section 4.1. In section 4.2, the performed measurements and results
are evaluated. The conclusion of these experiments is shown in section 4.3. Note that in appendix
A, a table with the performed measurements and measured deflections are shown.

4.1 Test setup
A drop-stitch floater is placed on two supports, which are placed with a 3.05 m offset from the
edges and has a height of 0.903 m as shown in figure 4.1. Its dimensions are 13 × 7.1 × 0.335 m
(L×B×H). For the support and load lines, trusses are used. The truss weights 51 kg and the
drop-stitch floater itself 346 kg. On top of the load truss, an equal number of weights are placed
on both sides of the floater. The deflection is measured using a gauge rods every metre between
0.5 and 12.5 m as shown in figure A.1. The internal air pressure is regulated and checked every
measurement with a pump and pressure gauge. The effect of hysteresis is measured by performing
one load and unloading measurement to evaluate the difference between both pathways.

Figure 4.1: A schematic drawing of the three point bending tests setup. The floater is supported
by two trusses over the entire width. The mid span load is also exerted over the entire width by
adding weights on top of the mid span truss. (courtesy of TNO).

For five different internal air pressure, the deflections are measured, which are shown in table A.1
in appendix A. As the internal air pressure increases, the floater became stiffer due to an increased
pretension, which is in correspondence with prior research [24, 32, 38, 88]. So, more weight needs
to be applied to analyse the deflections around the maximum load. The measured weights are also
shown in table A.1. The panel is unloaded from the largest load to zero load. Note that all the
loads including zero load consists of a gravity and support load.
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4.2 Results
The measured deflection over the length of the drop-stitch floater at different air pressures and
loads is shown in appendix A. The midspan force displacement curves for different air pressures
is shown in figure 4.2. The measurements were performed until the panel collapsed except for the
20 kPa internal air pressure load case. So, the experimental maximum load of the 20 kPa load
case is unknown. Figure 4.2 also shows that the initial deflection due to gravity decreases with
higher internal air pressure. Also, the stiffness at higher internal air pressures increases. At the
maximum applied load, a clear wrinkle over the full width was observed as shown in figure 4.4.
The measuring point of P=7 kPa at 500 N shows different behaviour. The difference in deflection
between a load 500 N and 0 N is much smaller compared to higher internal air pressures, which can
also be seen in figure A.2. This behaviour could be due to measuring inaccuracy or the tangential
friction of the supports. The tangential friction is larger at lower air pressures, since the panel
becomes more flexible. This results in a larger contact area at the supports, which increases the
tangential friction eventually.
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Figure 4.2: The force deflection curves for the load controlled three point bending experiment with
7, 10, 12, 15 and 20 kPa air pressure. The deflection is measured midspan. An initial deflection is
caused by the gravity load.

Figure 4.3 shows the loading and unloading path. The loading and unloading path of the three
point bending test is not the same, which suggests that there is a hysteresis effect, figure 4.3. It is
expected that the tangential friction between the trusses and panel causes a hysteresis effect. The
maximum difference between the loading and unloading path is 4 cm, which is at 260.9 kN in the
middle of the panel.
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Figure 4.3: Hysteresis effect of loading and unloading path for an internal air pressure of 10kPa

4.3 Conclusions
A decrement in bending stiffness at high deflections is observed, which is in accordance with
the expectations based on prior research. For increasing air pressure, the bending stiffness and
maximum load increases of the drop-stitch panel. Also, at large deflections a clear wrinkling
pattern can be distinguished over the full width as shown in figure 4.4. A local change in
curvature is observed in figure 4.4 due to a local change in stiffness, which suggests that the
the bending stiffness of the face sheets can not be neglected for the post wrinkling behaviour.
Assuming membrane elements, which neglects the bending stiffness, as Hulton et al [31] used in
their drop-stitch FEM model to perform a modal analysis, is insufficient for analysing the post
wrinkling structural response of drop-stitch panels subjected to a load case. Note that this does
not imply that membrane elements are incorrect for the modal analysis performed by Hulton et al
[31], since their research was in the pre-wrinkling phase. The performed experiments will be used
to validate the FEM model of chapter 6. There are some remarks on these experiments:

• The effect of hysteresis affects the response of the drop-stitch floater. A maximum difference
in deflection between the unloading and loading path of 4 cm was observed, which is quite
significant compared to a maximum deflection 35-40 cm. To minimise the effects of hysteresis,
roller supports should be used or a lubricant to reduce the tangential friction of the supports
on the floater. For the validation of the simulations of the drop-stitch panel, the tangential
friction of the support and loads should be taken into account.

• A displacement controlled three point bending experiment could be used to analyse the
wrinkling behaviour more thoroughly. It would give data for a larger set of displacements,
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which could be used to get more insight in the post-wrinkling phase and eventual failure
mechanism. Due to the size of the panel, a load controlled three point bending test has been
performed, since it required a smaller test setup than a displacement controlled three point
bending test.

• The deflections are measured by using gauge rods which resulted in a measuring accuracy of
±1 cm. Using a distance measurer or digital image correlation could give better results. Due
to the size of the floater, digital image correlation might be difficult, since it could introduce
3D effects. On the other hand, DIC gives the possibility to analyse the full displacement
field including the wrinkles, which might be interesting for further analyses of the failing
mechanism.

Figure 4.4: A photograph of the wrinkles that arose over the width of the drop-stitch panel. The
red boxed area marks the wrinkles. The black boxed area shows a change in wrinkling induced
curvature due to a strip, which locally increases the bending stiffness of the face sheets.
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Chapter 5

Material model

As mentioned in section 2.1, there are multiple non-linearities that influence the structural response
in drop-stitch floaters of which the material non-linearity could be one. Describing the material
elasticity correctly of polyester fiber coated with PVC could be more complex, if hyperelasticity
is significant for the global response of a drop-stitch panel. The influence of hyperelasticity has
not been investigated yet in prior researches on drop-stitch panels.

The effect of material hysteresis is not taken into account, since it is strain rate dependent. For
(quasi-)static load cases, the strain rate is (close to) zero and the effect of material hysteresis is
negligible. If one would perform dynamic simulations, material hysteresis might be considered.
The asymmetric layup of the face sheets causes an out of plane deformation. If a tensile load is
applied on a composite with an asymmetric layup, shear deformations occur. The out-of-plane
deformations of the drop-stitch panel’s face sheets are influenced by: the external loads, vertical
threads, air pressure and out of plane shear deformation introduced by the asymmetric layup.
For the global response of the drop-stitch panel, shear deformations due to a asymmetric layup
are expected to have negligible influence on the response. The other out-of-plane deformation
components of the face sheets cause significantly higher out-of-plane deformations. For the
quasi-static calculations of this thesis, low strains are expected around 2.5%, which is comparable
with the strain range considered by Davids et al. [32]. This expectancy is evaluated in chapter 6.
This will be within the elastic region, so plastic deformations are not examined.

An uniaxial tensile test in different specimen direction for the face and edge fabric using the strip
method following the ASTM standard D 3039/D 3039M and D3518 /D3518M has been performed
[98, 99]. The yarns or the vertical threads are cutted of the face sheets to disconnect the upper
and lower face sheet. Different hyperelastic material models are evaluated. A least-square fitting
approach is used to determine the variables of the hyperelastic material model.

The setup and results of the uniaxial tensile tests are discussed in section 5.1. Different material
models are evaluated and fitted using the measurement data in section 5.2.

5.1 Uniaxial tensile tests
The goal of these experiments is to establish the force-displacement curves of the polyester fabric
coated with PVC, which can be used to determine the material properties of a hyperelastic
material model. Biaxial/uniaxial tensile, grab and bursting tests are common procedures [100]
to determine the material properties of a composite/fabric. Also more innovative methodologies
such as ultrasonic guided waves might be an option to determine the material properties [101].

In this thesis an uniaxial tensile test using the strip method has been performed due to the
availability of an uniaxial tensile machine. The tests will be performed following the ASTM
standard D 3039/D 3039M [98] for the in-plane principal tensile properties and D3518 /D3518M
[99] for in-plane shear properties. HEYtex provided material samples of the face sheets and closing
edges, figures 5.1 and 5.2. The face sheet has an average thickness of 0.7 mm and the closing edge
0.6mm. Note that the double weave creates an irregular surface, so the thickness differs slightly
over the surface, but that has not been evaluated in this research.
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Polyester fiber coated with PVC is a composite material consisting of: a polyester fiber layer,
which has a weave, weft and yarn direction, and a PVC layer. The face sheets and closing edge as
depicted in figure 2.3 are fabricated from two different types of layup: The face sheets are coated
with PVC on a single side and the closing edges on both sides. The fiber material of the face
sheets and closing edges used in this research are shown in figures 5.1 and 5.2. The PVC layers
are used to keep the drop-stitch floater airtight.

The test methodology is discussed in section 5.1.1. The results of the experiments are shown
in section 5.1.2. Finally, the conclusion of the experiments is evaluated in section 5.1.3

Figure 5.1: Sample material of the face
sheets

Figure 5.2: Sample material of the closing
edges

Figure 5.3: Sketch of test setup of the
uniaxial tensile test.

5.1.1 Methodology
An Instron 8854i MT 250 kN/2000 Nm
axial/torsion apparatus is used. Rectangular
strips of 250 mm × 25 mm are used as specimens.
The remnants of the yarns in the face sheets are left
within the specimens of the face sheet. Since the
minimum gripping thickness was larger than the
specimen thickness, aluminium plates were placed
between the grips and the specimens, figure 5.3.
The lower grips remained static and the upper grips
moved upwards. The distance between the grips
was 155mm. According to the ASTM standard D
3039/D 3039M a tensile test should take between 1
to 10 minutes from start to failure of specimen to
ensure the experiments are within the quasi-static
regime. A displacement rate of 0.2 mm/s is used to
ensure the testing time is within that range. Five
specimens are tested for each specimen direction
(0, 45, 90 degrees) and each material type (face
sheet/edge). The specimens are cut by hand with
scissors. A list of the specimen numbers and their
respective specimen direction and material type is
shown in table B.1 in appendix B.
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5.1.2 Results
The raw data of the experiments is shown in figures B.1-B.6 in appendix B. This already shows
that the force-displacement behaviour is non-linear. The raw data contains noise, which needs to
be reduced to determine an average force-displacement curve per specimen direction for the face
sheets and closing edges to fit the material models. Also, the raw data is translated to filter the
region where the specimen is slack and set at 0 kN as initial condition.

The Savitsky-Golay filter of the Python Scipy package has been used to reduce the noise of
the output signals [102]. It fits a polynomial curve within a window range using a least-square
procedure [103]. The force values of all the specimens per specimen direction and edge/face
material are averaged at every displacement value to get an average force-displacement curve.

The results of the specimens are shown in figure 5.4. Figures 5.4a-5.4c shows the filtered results of
the face sheet material and 5.4d-5.4f of the edge. It clearly shows that within the aforementioned
strain range of 2.5%, which is around 4 mm displacement assuming a gauge length of 155mm, the
stress-strain behaviour in the 0◦ and 90◦ specimen direction are non-linear. In the 45◦ specimen
direction, the stress-strain behaviour is close to linear for the face sheets and closing edges. Also,
the force observed in the 45◦ specimen direction for the face sheets and closing edges is relatively
low in the strain range considered in figures 5.4a-5.4f compared to the 0◦ and 90◦ specimen
direction. This indicates that the in-plane shear stiffness might be low. Specimen 9 showed
different behaviour in the 90◦ specimen direction of the face sheet than other specimens in the
respective direction and fabric.
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(a) Force-displacement results for face sheet
fabric in 0◦ specimen direction. The dashed
lines are the filtered curves of each specimen and
the solid line is the average of the specimens.
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(b) Force-displacement results for face sheet
fabric in 45◦ specimen direction. The dashed
lines are the filtered curves of each specimen and
the solid line is the average of the specimens.
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(c) Force-displacement results for face sheet
fabric in 90◦ specimen direction. The dashed
lines are the filtered curves of each specimen
and the solid line is the average of the
specimens. Note that specimen 9 showed
completely force-displacement behaviour than
the other four specimens, which suggests that it
is an outlier and it is not taken into account for
the average curve. The reason for the difference
in stress-strain behaviour is unknown.
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(d) Force-displacement results for edge sheet
fabric in 0◦ specimen direction. The dashed
lines are the filtered curves of each specimen and
the solid line is the average of the specimens.
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(e) Force-displacement results for edge sheet
fabric in 45◦ specimen direction. The dashed
lines are the filtered curves of each specimen and
the solid line is the average of the specimens.
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(f) Force-displacement results for edge sheet
fabric in 90◦ specimen direction. The dashed
lines are the filtered curves of each specimen and
the solid line is the average of the specimens.

Figure 5.4: The filtered force-displacement curves per specimen direction for the face sheets and
closing edges. The (nominal) strain is determined by ε = u/L0 with u is the displacement and L0

the gauge length.

38



5.1.3 Conclusion
The goal of these experiments to get more insight in the force-displacement of the polyester fiber
coated with PVC and establish a force-displacement curve, which can be used to fit material
models. Rectangular strips are cut out of the face sheet and closing edge material in different
specimen directions and an uniaxial tensile test has been performed. The force-displacement
clearly shows that the face sheets and closing edges are hyperelastic and anisotropic. Since the
fibers have a double woven orthotropic weaving pattern, orthotropic behaviour is assumed. The
influence of hyperelasticity on the response of drop-stitch floaters should be investigated further.
Low forces are observed in the 45◦ specimen direction, which suggest that the in plane shear
stiffness is low compared to the in-plane stiffness in the weave and weft direction. There are some
remarks on these results:

• The Instron 8854 MT 250 kN/2000 Nm axial/torsion apparatus is meant for larger steel
specimens, which withstand much larger forces in the order of kilonewtons. It is harder
to measure small load differences due to the sensitivity of the sensor. Especially in the 45◦
specimen direction, low forces are observed, which resulted relatively more noise compared to
the other specimen directions. A smaller tensile machine meant for lower axial forces would
be more appropriate to analyse the force-displacement behaviour in the order of newtons.

• It appeared to be difficult to properly align a flexible fabric vertically between the
grips. This introduced out of plane deformations. The misalignment does influence the
force-displacement behaviour. Usually, the procedure of a uniaxial tensile test for stiff
specimens is to first clamp the specimen with lower grips and afterwards in the upper. This
made alignment more difficult due to the flexibility of the fabric. Therefore, the specimen was
clamped with upper grip and thereupon the lower grip. This solved some of the alignment
issues, but not all of them as shown for an excessive misalignment case in figure 5.7. A lot
of specimens broke near the grips, figure 5.6, which could indicate an alignment issues, too
high grip forces or sharp edges at the grip according to ASTM standard D 3039/D 3039M
[98]. Due to safety regulations, it was not possible to adjust the alignment by hand during
the clamping procedure. A different type test setup could solve the misalignment issues.
Another testing setup that is less prone to misalignment than an uniaxial tensile test is
advised to use.

• According to Becarelli et al. [100] and Cavallaro et al. [24], a biaxial tensile test machine
is preferred to characterise the biaxial material response due to biaxial loads. Such machine
was not available during this research.

• The toe region (< 3 mm displacement) of the force displacement curve is difficult to describe
for polyester fibers with a double weaving pattern. In the first few percentages of strain,
the slack and alignment of the specimen is taken up and there are crimp effects. The initial
curvature of the double weaving pattern of the polyester fiber is crimp as shown in figure
5.5 [104]. Due to a loading, the yarns will straighten and the curvature will decrease, which
results in a higher stiffness. Quantifying the influence of crimp and slack/alignment taken
up is difficult and is important to investigate to get a more accurate representation of the
force-displacement curves at small displacements. A toe region compensation, as described
in ASTM standard D638-14 meant for plastics, might be used, if it appears that the effect
of crimp is negligible [105].
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Figure 5.5: Depiction of a load-elongation curve during an uniaxial tensile loading with (b) is the
crimp region, (c) the elastic region, (d) the non-linear failure region and (e) the post-peak region
[106]. Note that this the force-elongation curve is for a double layer woven fabric made of basalt
and glass yarns and is only shown in this report to show the effect of crimp. The load-elongation
behaviour for the elastic, non-linear failure and post-peak region is not representative for polyester
fabric coated with PVC.

Figure 5.6: An example of a specimen
broken near the grips

Figure 5.7: A severe case of misalignment
issues during the experiments. Note that
this an extreme case and that it was adjusted
before performing the tensile test of this
specific specimen.
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5.2 Material models
Depending on the material type and strain range of the structure, different material models could
be used. In this research, orthotropic linear elastic and hyperelastic material models are evaluated.
A least square fitting procedure on the average measurement data of section 5.1 is performed to fit
the material model variables. The result of the different material models is compared to analyse
the difference between the models. In chapter 6, the material models are implemented in the FE
model of the drop-stitch panel.

First, the considered material models and their assumptions are evaluated in section 5.2.1.
Afterwards, the fitting procedure is shown in section 5.2.2 and the results in section 5.2.3. Section
5.2.4 concludes obtained results.

5.2.1 Evaluation of material models
This section gives a brief description of the governing equations of the material models and their
assumptions. It will set a basis for the limitations of the material models, which should be taken
into account. In this research, only material models implemented in ABAQUS 2022 are considered.
A lot of hyperelastic material models originates from research into the stress-strain behaviour
of biological tissues. Biological tissues are complex heterogeneous composite materials made of
different media such as epithelial, connective, muscular, neuronal etcetera. This results in a
non-linear and anisotropic material behaviour. Chagnon et al. [107] gave an excessive review of
different hyperelastic material models used for biological tissue. For isotropic hyperelastic material,
the following models could be used among others ranging from low strain and low complexity to
high strain high complexity [108]:

• Saint-Venant Kirchoff
• Neo-Hookean
• Mooney-Rivlin
• Ogden

Reference works for these models include [109–112]. Peele [113] reviewed the Mooney-Rivlin
model, Ogden and a bi-linear model for fiber reinforced elastomers. The six-coefficient Ogden
model was chosen to represent the non-linear stiffening and softening stiffnesses. Note that Peele
did not include anisotropic material models, which should be taken into account as discussed in
section 5.1.3. Two types anisotropic hyperelastic material models are implemented in ABAQUS: the
Holzapfel-Gasser-Ogden (HGO) and the Fung orthotropic (FO) model. Following, the governing
equations and assumptions of the linear elastic orthotropic, Linear elastic orthotropic, FO and
HGO models are evaluated.

Linear Elastic Orthotropic Model

The linear elastic orthotropic material model assumes a linear stress-strain relation, which might
be acceptable within a certain strain range. At larger strains, the stress-strain behaviour becomes
non-linear as shown in section 5.1.2. The linear elastic orthotropic material model also assumes
that the tensile stiffness is equal to the compressive stiffness. For plane stress elements such as
the shell elements, it is assumed that σ33 = 0 and ε33 is a function of the Poisson’s ratio ν12 and
in-plane Young’s moduli E1 and E2, equation 3.1. The constitutive equation is stated as:

ε11
ε22
γ12
γ13
γ23

 =


1/E1 −ν21/E2 0 0 0
−ν12/E1 1/E2 0 0 0

0 0 1/G12 0 0
0 0 0 1/G13 0
0 0 0 0 1/G23




σ11
σ22
σ12
σ13
σ23

 .
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For material stability, the stiffness matrix needs to be positive definite, so it needs to be symmetric
and have positive eigenvalues. This results in the following constraints for the variables:

E1, E2, G12, G13, G23 > 0

|ν12| < (E1/E2)
1/2

Fung Orthotropic Model

The FO model is purely phenomenological and strain based [76, 114]. The generalised Fung form
has the form of equation 5.1 with U is the strain energy, c and D are temperature dependent
material parameters and Je` is the elastic volume ratio. The red boxed part of equation 5.1 is the
compressibility term, which is neglected for incompressible materials. Je` becomes 1 according
to equation 5.2 for incompressible materials assuming the thermal volume ratio, Jth, is 1 for an
isothermal load cases. For shell elements, the compressibility term is neglected. Q is defined as
equation 5.3, where b is a dimensionless symmetric stiffness tensor of the anisotropic material and
ε̄G is the modified Green strain tensor.

U =
c

2
(exp(Q)− 1) +

1

D

((
Je`
)2 − 1

2
− ln Je`

)
(5.1)

Je` =
J

J th
= λ1λ2λ3 = 1 (5.2)

Q = ε̄G : b : ε̄G = ε̄Gij bijklε̄
G
kl (5.3)

To obtain numerical stability, the initial deviatoric elasticity tensor D0 in equation 5.4 should be
positive definite in unloaded configuration [76, 115]. This implies that constraints 5.5-5.7 should
be satisfied. Since plane stress elements are used in the FEM model, the influence of the bijkl
terms in the thickness direction are neglected (encircled with red in equation 5.4).

D0 =
c

2


b1111 b1122 b1133 0 0 0
b1122 b2222 b2233 0 0 0
b1133 b2233 b3333 0 0 0

0 0 0 b1212 0 0
0 0 0 0 b1313 0
0 0 0 0 0 b2323

 (5.4)

b1111b2222 − b21122 > 0 (5.5)(
b1111b2222 − b21122

)
b3333 − b1111b22233 + 2b1122b2233b1133 − b2222b21133 > 0 (5.6)

c > 0, b1111 > 0, b2222 > 0, b3333 > 0, b1212 > 0, b1313 > 0, b2323 > 0 (5.7)

Holzapfel-Gasser-Ogden Model

The HGO model is meant for transverse isotropic material [116–118]. A laminate with plies
consisting of transverse isotropic material stacked with a [0, 90]S stacking sequence, could model
the stress strain behaviour of an orthotropic material. The strain energy formulation is invariant
based instead of strain based, equation 5.8. It consists of three terms. The blue boxed term is
the isotropic matrix term, which is based on the Neo-hookean strain energy formulation. For shell
elements, the compressibility term boxed with red in equation 5.8 is neglected in ABAQUS. The
contribution by the fiber reinforcement is captured inside the black box. Since the strain energy
component Ēα is surrounded by Macauley brackets, the fibers do not have any contribution to the
strain energy function if the strain is zero or negative. The Macaulay brackets are implemented
as 〈x〉 = 1

2 (|x| + x). Note that the Macauley brackets are not implemented originally in HGO
model as described by Holzapfel et al. [116]. C10, D, k1, k2 and κ are temperature-dependent
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material variables, which need to be fit for each ply. N is the amount of fiber families and C10 can
be used to tune the matrix stiffness and compressive stiffness of the material. If one would model
a tension only material, C10 should be close to zero. The Fung orthotropic/anisotropic material
model can not model tension only materials. k1 and k2 are the stiffness components of the fibers.
κ (0 ≤ κ ≤ 1

3 ) describes the dispersion of the fibers as shown in figure 5.8. For κ = 0, the fibers
are unidirectional, so there is no dispersion. For κ = 1/3, the fibers are randomly distributed, so
the material becomes isotropic.

U = C10

(
Ī1 − 3

)
+

1

D

((
Je`
)2 − 1

2
− ln Je`

)
+

k1
2k2

N∑
α=1

{
exp

[
k2
〈
Ēα
〉2]− 1

}
(5.8)

with

Ēα = κ
(
Ī1 − 3

)
+ (1− 3κ)

(
Ī4(αα) − 1

)
Ī1 and Ī4(αα) are the first strain invariant and the fourth strain pseudo-invariant respectively.
Strain invariants are used to describe inhomogeneous deformation without consideration of the
principal directions of the geometry [119]. Ī1 is a function of all principal stretches and Ī4(αα) is
dependent on the principal stretches in the fiber direction.

Figure 5.8: A sketch of the dispersion parameter κ in a 2D domain ranging from no preferred fiber
direction to a single fiber direction (κ = 1/3)(a), (κ = 1/6)(b), (κ = 1/12)(c), (κ = 0)(d) [120]

5.2.2 Fitting procedure
To fit material models, a least squares fitting approach has been used. The governing minimisation
equation is shown in equation 5.9 with J(θ) is the cost function (the function that will be
minimised), rn (yn, f (xn, θ)) is the residuals function. The residuals function is as described
in equation 5.10 with θ is an array containing the unknown variables of a material model and
yn and xn are the force and displacement measurement data points respectively. The function
f (xn, θ) is the resulting force function of an ABAQUS FE model.

J(θ) =
1

2

N∑
n=1

rn (yn, f (xn, θ))
2 (5.9)

rn (yn, f (xn, θ)) = f (xn, θ)− yn (5.10)

An FE model in ABAQUS of the strip specimens as described in section 5.1 is built. A rectangular
strip has been modelled of 155x25 mm consisting of shell elements, S4R, with a global element
size of 2.5 mm, figure 5.9. A displacement control has been used to increase the load exerted on
the strip with a static solver.

Figure 5.10 shows a flowchart of the fitting procedure. The material models parameters has been
adjusted in an ABAQUS input file by the least_squares function of the Python package Scipy
[121]. The default tolerances of this least_squares function has been used.
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Figure 5.9: A visualisation of the FE model used to fit the material models. A strip is modelled
with a length of 155 mm and width of 25 mm. The left edge of the strip is fully clamped and the
right edge is connected to a reference point (RP-1) with rigid beam connectors. RP-1 is translated
to tension the strip.
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Figure 5.10: Flowchart of the least squares fitting procedure

5.2.3 Results
The fitted material models are shown in figure 5.11. Figures 5.11 only depicts 5 mm displacement,
which corresponds to 3.2% strain assuming ε = u/L0 with u is the displacement and L0 the gauge
length. The variables resulted from the fitting procedure are shown in appendix B.2.

Two linear elastic orthotropic material models are fitted. The linear elastic orthotropic 1 (LEO 1)
material model is fitted in the toe region (until 1.3% strain) and linear elastic orthotropic 2 (LEO
2) material model is fitted for larger strains (until 3.2% strain). It can be noticed that the LEO
1 material model underestimates the material stiffness in the 0◦ and 90◦ at strains larger than
approximately 1%, but provide an accurate estimate at strains smaller than 1%. LEO 2 provides
a more averaged stiffness representation until 3.2% strain. The stiffness of the FO material model
is lower than the measurements in the 90◦ direction. Furthermore, the FO model simulates the
material stiffness in the 0◦ lower until around 2.7% strain and higher at strains above 2.7% strain.
The HGO model has a better fit in the 90◦ specimen direction than the FO model. It has a
slightly higher stiffness than the FO model in the 0◦ specimen direction. A significant difference
can be observed in the force displacement behaviour in the 45◦ direction. The HGO model does
not model the material stiffness in the 45◦ direction correctly, since it has no stiffness in that
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direction. All the anisotropic hyperelastic material models, which are implemented in ABAQUS,
are not able to model the S-shape in the 0◦ specimen direction. Due to the fact the strain energy
formulations are exponential functions as shown in equation 5.1 for the FO model and 5.8 for the
HGO model, it will not be possible to model the S-shape.
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(a) The force-displacement curves of the face
sheets in the 0◦ specimen direction for the
material models and measurements.
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(b) The force-displacement curves of the face
sheets in the 45◦ specimen direction for the
material models and measurements.
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(c) The force-displacement curves of the face
sheets in the 90◦ specimen direction for the
material models and measurements.
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(d) The force-displacement curves of the edges
in the 0◦ specimen direction for the material
models and measurements.
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(e) The force-displacement curves of the edges
in the 45◦ specimen direction for the material
models and measurements.
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(f) The force-displacement curves of the edges
in the 90◦ specimen direction for the material
models and measurements.

Figure 5.11: The force-displacement curves of the fitted material models compared with the
measurements.

5.2.4 Conclusions
The FO, HGO and linear elastic orthotropic material models are fitted using the SciPy
least_squares function. The uniaxial tensile test of section 5.1 is modelled in a ABAQUS FE
model to fit the variables of the material models. The force-displacement behaviour of the different
models is compared with the measurement data.

All the material models are not able to exactly model the material stiffness. LEO 1 and LEO
2 provides a linear estimate of the material stiffness, which might suffice within a certain strain
range. LEO 1 provides an accurate estimate of the material stiffness for strains lower than 1%
and LEO 2 a more averaged estimate of the strains lower than 3.2%.

The stiffness in the 45◦ of the HGO model is negligible small. Due to the assumption that the
material stiffness is solely provided by the fibers within the polyester fibers coated with PVC,
the in-plane shear stiffness is too small. Relaxing this assumption by increasing the values of C10

and/or κ, would increase the matrix stiffness and result in more realistic results. The HGO model
is not further used in this research, since it is expected to result in low convergence rates due to
the small matrix stiffness.

The FO uses an exponential function to model the material stiffness. In most specimen directions
it provides a more accurate estimate representation than the LEO 1 and 2 model for a 3.2%.
However at the face sheet in the 0◦ it overestimates the stiffness. The FO model’s variables are
dependent. This implies that changing a parameter might result in a better fit in one direction,
but worsens the fit in other directions. The fits may be further optimised. The influence of the
different material models on the structural response is further evaluated in chapter 6.

Depending on the strain range found in chapter 6, a material model is adopted for the validation
of the FE model of the drop-stitch panel. The strain range and influence of the material models
on the global structural response of the drop-stitch panel is further discussed in section 5.2.1.
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There are some remarks on the results of:

• Getting an exact fit using the considered material models is difficult, since the S-shape in
0◦ specimen direction can not be described with an exponential strain energy function or a
linear stress-strain relation. Moreover, due to the exponential function, the stiffness goes to
infinity, which creates an unrealistic high stiffness and convergence issues for high strains. A
different kind of function to describe the non-linear stress-strain behaviour of the anisotropic
hyperelastic material model should be established. Implementing discontinuous stress-strain
functions as Chen et al. [122] proposed for Uretek3216A fabric, a polyester fiber coated with
polyvinyl fluoride (PVF), might be used. It divides the stress-strain curve in five distinct
regions as shown in 5.12. In regions OA, BC and DE a linear function is adopted, AB a
logarithmic and CD an exponential function. By subdividing the stress-strain curve into
regions, a discontinuous stress-strain function is formulated, which could cause issues with
convergence.

• The HGO model does not model the material stiffness in the 45◦ direction correctly. This is
due to the fact that it is assumed that only unidirectional fibers contribute to the stiffness
and the isotropic matrix does not. This assumption is too strict. If one would use this
model, the isotropic matrix stiffness should be taken into account to provide shear stiffness.
The HGO model is not further considered in this research.

• The SciPy least square function is meant for independent variables. As mentioned, the
variables are dependent of the FO and HGO models. This implies that there are multiple
local minima for the cost function 5.9 and that finding the global minimum is difficult using
the SciPy least squares function. The local minimum found by the least squares function is
affected by the initial guess and the boundaries of the variables. A different solver is advised
to investigate, whether the resulting minimum is the global minimum.

Figure 5.12: The five distinct regions Chen et al. used to describe the stress-strain behaviour of
Uretek3216A fabric [122].
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Chapter 6

Drop-stitch Panel Model

To get more insight in the bending characteristics of a drop-stitch panel, a three point bending
load case is modelled using a three-dimensional finite element model. The FEM model is build in
ABAQUS 2022. It will give a better understanding in the failure mechanism of a drop-stitch panel
and wrinkling initiation and propagation. Note that if the drop-stitch has negligible bending
stiffness, the drop-stitch panel is considered to be failed.

The wrinkling onset load is the load from which wrinkling occurs and the force-displacement curve
of the load beam becomes non-linear. This gives some insight in the wrinkling onset load, which
is the minimum load from which wrinkling occurs and the bending stiffness becomes non-linear.
Section 6.1 gives a description of the geometry and parameters used to model drop-stitch panel.
Note that the assumptions and background theory of the procedures in ABAQUS are discussed
in chapter 3. The results of the FEM model are assessed in section 6.2. Section 6.3 concludes
and discusses the results of the FEM model. Note that the appendices contains the following
supplementary material: In appendix C an analytical model based on the method of Cavallaro et
al. [43] is derived, which is used to estimate the wrinkling onset load; In appendix D the stress in
xx-direction for 20 and 30 mm yarn distance is shown using the quarter model; and in appendix
E the analytical perturbation model is derived.

6.1 FE Model
The FEM model should give insight in the bending characteristics and failure mechanism of a
drop-stitch panel subjected by a three point bending load case. Two drop-stitch models are
generated and compared with each other as shown in figure 6.1: a quarter model and strip model.
Since the drop-stitch panel is subjected by a three point bending load case, two symmetry planes
can be used, so only modelling a quarter of the drop-stitch panel should suffice. The response the
drop-stitch panel seemed uniform over the width for the three point bending test, so it is expected
that a strip model should suffice as further discussed in section 6.2.2. The drop-stitch panel is also
modelled as a strip, which assumes the structural characteristics are solely influenced by the face
sheets and are uniform over the width.

The geometry of the quarter and strip model are discussed in section 6.1.1. The material, fluid
cavity and other properties of the FEM model are discussed in section 6.1.2. The loads and
boundary conditions used in the FEM model are discussed in 6.1.3. Finally the mesh and the
mesh convergence analysis is evaluated in section 6.1.4.

6.1.1 Geometry
A smaller panel than the experiments performed in chapter 4 has been modelled comparable to
the dimensions used by Davids et al. [32]. As shown in figure 6.1, the quarter and strip models
are simplifications of the full drops-stitch panel to reduce computational time.
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Figure 6.1: A depiction of the full quarter and strip models of the drop-stitch panel.

Quarter model

In figure 6.2, the geometry, origin and symmetry planes are depicted. The quarter model has a
length of 3.05 m, width of 0.72 m and height of 0.174 m. Note that these are dimensions of the
quarter panel including the closing edges. The cross sectional area has a half obround shape. The
support beam is placed at 1.1 m offset of the edge and load beam at x = 0. The support and load
have a cylindrical shape with a radius of 2 cm and is assumed to be rigid. The face sheets are 0.7
mm thick and the closing edges 0.6 mm based on information provided by the manufacturer of
the drop-stitch panels of chapter 4. Two symmetry planes are are defined as shown in figure 6.2
to impose boundary conditions, which will be further discussed in section 6.1.3.

B

H

Symmetry 
XZ-plane

Symmetry 
YZ-plane

Z

X

Y

𝐿𝑠𝑢𝑝

Figure 6.2: A depiction of the geometry of the quarter model. The length, L, and width, B,
include the closing edges. The radius of the edges is equal to halve of height of the panel, H.
On the lower face sheet at the intersection of the XZ- and YZ-symmetry planes, the origin of the
model is located. Coloured with red and orange, the XZ- and YZ-symmetry planes are marked
respectively. Note that the symmetry YZ-plane is over the full with, so it also includes the circular
closing edge. Lsup is the support offset, which is defined from the end of the panel including the
closing edge to the middle of the support beam.
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Strip model

The strip model is a simplification of the quarter model, which does not include the full width
and the edges of the panel. Depending on the yarn distance, the width of the strip model is
changed as shown in figure 6.3. The length of the model is 3.05, which is equal to the full length
of the quarter model including the closing edges. The length of the closing edges is not excluded
to ensure the mass of the strip model does not deviate too much from the quarter model, which
would cause differences in the initial deflection due to the gravity. To enclose the fluid cavity,
shell elements with a low Young’s modulus and thickness are used. For the enclosing edges, an
isotropic material is assumed with a Young’s modulus of 100 Pa, Poisson’s ratio of 0 and thickness
of 0.6 mm. Their contribution to the global bending stiffness is insignificant compared to the face
sheets, since the Young’s modulus of the edges is much smaller than Young’s modulus of the face
sheets. It is ensured that the edges stay flattened by using a coarse mesh with a length equal to
the height of the panel and width equal to the mesh size of the face sheets. The displacements of
the face sheets’ nodes are coupled with the edges’ nodes. So, the displacements of the edges are
mostly affected by the displacements of the nodes of the face sheets. The face sheets’ thickness is
0.7 mm and Lsup is 1.1 m.

𝛿𝑦𝑎𝑟𝑛

H

Z

X

Y

Figure 6.3: A depiction of the strip model with L is the length, δyarn the yarn distance, which is
equal to the width of the model and H the height. The origin of the model is located on the lower
face sheet at the intersection of the XZ- and YZ-symmetry planes. The XZ- and YZ-symmetry
planes are coloured with red and orange respectively. Note that length L does not include the
closing edge.

6.1.2 Material, yarn and fluid cavity properties
Three types of properties are defined: the material, yarn and fluid cavity properties. The material
properties are discussed in chapter 5. The fluid cavity is assumed to be an ideal gas. Its properties
are based on the properties of air as shown in table 6.1 [77].

Table 6.1: Properties of fluid cavity [77].

Variable Definition Value
pA Ambient pressure 101325 Pa
θ Temperature 20◦

θZ Absolute zero temperature −273.15◦

MW Ideal gas molecular weight 0.02896 kg
mol

R̃ Universal gas constant 8.314 J
K ·mol

The yarn properties are based on the yarn properties used by Hulton et al. [31]. An evaluation
of the yarn properties has not been performed in this research. It is assumed that the yarns

50



have a negligible small buckling load, so the compressive stiffness is neglected. Two axial
force-displacement data points are used as input in ABAQUS with constant extrapolation and linear
interpolation to model the linear elastic stiffness and tension only material properties. Figure 6.4
shows a sketch of the force displacement behaviour with the two data axial force-displacement
data points. It is ensured that the strain of the yarns is equal for different yarn distances.

uaxial

F a
xi

al

(0,0)

(uaxial,Faxial)

Tensile regionCompressive region

Figure 6.4: A sketch of the axial force
deformation curve for the yarns. In the left
region, the yarn is under compression and
in the right under tensile. Two data points
at (0, 0) and (uaxial, Faxial) with linear
interpolation and constant extrapolation are
used.
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𝑡𝑓𝑎𝑐𝑒

Yarn

Figure 6.5: A section of the face sheet with
the size of one yarn spacing. The internal
air pressure is depicted with blue arrows. A
yarn is depicted vertically in the middle of
the segment with a black line between the
upper and lower face sheet.

The cross sectional area of the yarns has been scaled for different yarn distances assuming the
section depicted in figure 6.5. This result in the following equation:

Faxial =
EA

L0
Uaxial with Faxial = Pδ2yarn

The axial strain of the yarn is set equal for all yarn distances:

Uaxial
L0

=
Uaxial,ref
L0,ref

(6.1)

Uaxial,ref and L0,ref are the reference axial deformation and initial length of the yarn respectively,
which are the values of Hulton et al. [31]. This results in the scaling law for the cross sectional
area of the yarns

A =
δ2yarn

δ2yarn,ref
Aref

with δyarn,ref = 6.35 mm, Aref = 0.00167 mm2 and E = 7.24 GPa based on the values of Hulton
et al. [31]. For different yarn spacings, the force at a certain displacement can now be determined.
For Uaxial = 0.02 m and L0 = 0.174 m, results in the Faxial values of figure 6.6 for different yarn
spacings, which is used as input data in ABAQUS.
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Figure 6.6: Axial force exerted by the yarns for different yarn distances with E = 7.24 GPa,
L0 = 0.174 m, δyarn,ref = 6.35 mm, Aref = 0.00167 mm2 for an axial displacement of 2 cm.

6.1.3 Loads and boundary conditions
The FEM simulation is divided into four load steps as shown in figure 6.7: the initial, inflation,
gravity and three point bending load step. During each of these loads steps loads, contact
interactions and boundary conditions are changed.

Initial Inflation Gravity Three point bending

Figure 6.7: A flowchart of the load steps of the FE model.

In the initial step, the initial conditions of the drop-stitch panel are defined. Two symmetry
boundary conditions in the XY- and YZ-plane are applied at x=0 and y=0 as shown in figures
6.2 and 6.3. The translations in the z-direction are constrained at the origin (x,y,z)=(0,0,0). The
load and support beams are fully clamped. The contact interactions between the load and support
beams and the drop-stitch panel are not activated yet during the initial step.

During the inflation step, the fluid cavity is inflated to a desired initial air pressure. All the
boundary conditions set in the initial step are propagated during this step.

Afterwards, the weight is added during the gravity step. A gravity load is added to the face sheets
and closing edges. Note that it is assumed that the yarns do not have any mass. The contact
interactions for the support on the drop-stitch panel is added during this step. The z-constraint
and fluid cavity boundary conditions are inactivated. The z-constraint is not needed anymore
during this step, since the drop-stitch panel is constrained in the Z-direction by the support beam.
The fluid cavity boundary condition is inactivated to initiate pressure-volume work.

Finally, the three point bending test is performed. The contact interaction between the load beam
and the drop-stitch panel is activated and the load beam is translated in the z-direction downwards
to a desired translation. Table 6.2 gives a visualisation of the boundary conditions per load step.

6.1.4 Mesh
As discussed in 3.1, S4R/S3R elements are used. Figure 4.4 shows that the bending stiffness
might be significant for the wrinkling response of the face sheets, so membrane elements are not
considered further in this research. It is expected that the element length is dependent on the
wrinkles and bumps due to the internal air pressure that arise, as sketched in figure 2.14. The
face sheets edges need to be able to develop wrinkles. A coarse mesh could lead to an inaccurate
prediction of local stress concentrations, which develop due to the yarns and wrinkling. It is
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Table 6.2: A visualisation of the boundary conditions which are activated, inactivated or modified
during each load step. The green cells means the boundary condition is activated, red cells
inactivated and yellow cells modified.

Step

Boundary condition Initial Inflation Gravity
Three point
bending

Symmetry XZ-plane
Symmetry YZ-plane
z-constraint
Fluid cavity
Load beam
Support beam
Gravity load

expected that the length of the wrinkles/bumps is approximately equal to the yarn distance, so
the mesh convergence study is performed by dividing the yarn distance with the global element
length:

τglobal =
δyarn

hglobal

with τglobal is the non-dimensionlised element length, hglobal the global element length and δyarn
the yarn distance. τglobal gives an indication of the amount of elements between each yarn distance.
The quarter model with a δyarn = 60 mm, linear elastic orthotropic material model 1 and P = 15
kPa has been used for the mesh convergence. The force displacement of the load beam has been
compared for different global element lengths, figure 6.8 for τ = [5, 10, 15]. τ = 5 is a bit stiffer
than τ = 10 and τ = 15 at larger deflections. Also, the simulation did not converge for large
deflection that might be caused by a local stress concentrations as shown in figure 6.9, which
suggests that τ = 5 is too coarse. τ = 10 and τ = 15 resulted in similar force displacement
curves, so τ = 10 is considered to be a sufficient element length and will be used in this research.
Local mesh refinements at the wrinkled region(s) to reduce the amount of elements, has not been
investigated thoroughly, since it is difficult to predict the region affected by wrinkles beforehand.
The tension field theory might able the usage of a coarser mesh, but as mentioned in 2.3 it is not
considered.
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Figure 6.8: Force displacement curves for τglobal = [5, 10, 15] using the quarter model, δyarn = 60
mm, LEO1 and P = 15 kPa. It shows that τglobal = 5 did not fully converge and is slightly stiffer
than τglobal = [10, 15]. τglobal = 10 and τglobal = 15 seems to result in similar results. The initial
deflection is due to the gravity load. Note that a small discontinuity in the force-displacement
curve is observed at the initial deflection due to the impact of the load beam on the drop-stitch
floater.

(a) τglobal = 5 (b) τglobal = 10

Figure 6.9: A local stress concentration in the XY-direction in the load region is observed at
τglobal = 5. A top view of the XY-plane is shown in figures (a) and (b). The left edge of the
panels is the region where the load beam is located in the quarter model as depicted in figure 6.2.
The figures shows the drop-stitch panel with a δyarn = 60 mm, linear elastic orthotropic material
model 1 and P = 15 kPa around a displacement of 0.23 m. At τglobal = 10 a more uniform pattern
over the load region is observed.
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6.2 Results
Two different failure modes with distinct behaviour has been observed: a global wrinkling and a
local folding failure mode. Both have distinct behaviour. More insight in the initiation of these
failure modes and distinct characteristics is obtained by performing a parametric analysis. Three
parametric analyses have been performed to get more insight in the bending characteristics and
wrinkling behaviour of drop-stitch panels. For different yarn distances, face sheet thicknesses, air
pressures FEA are performed, which provides a better understanding in their influences. Also, the
global response of the different material models are evaluated.

First, a description of the failure modes is given in section 6.2.1. The influence of the yarn distance
has been evaluated in section 6.2.2. This also provides an evaluation of the difference between
the strip and quarter model. the influence of the face sheet thickness, internal air pressure and
material model has been evaluated in section 6.2.3, 6.2.4 and 6.2.5 respectively. Finally, the strip
model is validated using the results of the three point bending test of chapter 4.

6.2.1 Failure modes
A local folding and a global wrinkling mode are observed during the FE analysis. In the local fold
failure mode, a downwards deflection is generated as shown in figure 6.10a. The initial deflection
as shown in figure 2.14 generated by the air pressure has vanished locally and downwards fold is
initiated. In the global wrinkling mode, an upwards deflection is generated as shown in figure 6.10b.
The initial deflection generated by the internal air pressure is intensified locally. In the folding
failure mode, one or multiple yarns in the region in contact with the load beam get compressed,
whereas in the global wrinkling mode they stay tensioned.

(a) The local folding failure mode with a yarn
spacing of 20 mm.

(b) The global wrinkling failure mode with a
yarn spacing of 30 mm.

Figure 6.10: Depiction of the failure modes using the strip model with an internal air pressure of
15 kPa, LEO1 material model and face sheet thickness of 0.7 mm at an displacement of 0.4 m.
The upper face sheet at the region near the load beam is shown.

6.2.2 Influence of the yarn distance
The strip and quarter model has been used with LEO 1 material model of chapter 5, an internal
air pressure of 15 kPa and different yarn distances. Due to the reduction of width in the strip
model, the bending stiffness is smaller compared to the quarter model, which results in a lower
force output. Nratio is a correction for the reduction in bending stiffness. The force output of the
strip model has been corrected with a factor Nratio to coincide with the quarter model:

Fcor = NratioFstrip (6.2)
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Figure 6.11 shows the force displacement curves of the load beam for the strip and quarter model
with different yarn spacings. It clearly shows that the yarn distance affects the bending stiffness.
The initial deflection due to gravity does not differ significantly for the different yarn distances.
At the initial deflection, a small peak is observed due to the impact force of the drop-stitch panel
on the load beam. Due to issues with computational power, the quarter model for δyarn < 20 mm
has not been evaluated.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
|w| [m]

0

50

100

150

200

250

300

350

400

|F
|[

N
]

Strip model 60.0 mm
Strip model 50.0 mm
Strip model 40.0 mm
Strip model 30.0 mm
Strip model 20.0 mm
Strip model 10.0 mm
Strip model 6.0 mm

Quarter model 60.0 mm
Quarter model 50.0 mm
Quarter model 40.0 mm
Quarter model 30.0 mm
Quarter model 20.0 mm
Analytical wrinkling onset load

Figure 6.11: Force displacement curves of the strip and quarter model for different yarn. The
x-axis shows the absolute displacement and the y-axis the absolute load of the load beam. The
initial displacement is due to the gravity load. The analytical wrinkling onset load is determined
as described in section C.

A transition between failure modes is observed between 20 and 30 mm yarn spacing. In figure
6.11, δyarn ≥ 30mm are of the global wrinkling failure mode and δyarn < 30mm local folding
failure mode as shown in figure 6.10. For both of these failure modes different formulations of
Nratio were needed to correlate the results of the strip model to the quarter model:

Nratio =
Iyy,face

Iyy,strip
→ Global wrinkling failure mode

Nratio =
Exx,faceIyy,face + Exx,edgeIyy,edge

Exx,faceIyy,strip
→ Local folding mode
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with Iyy,face = 2(B − h
2 )tface(

h
2 )2, Iyy,strip = 2tface(δyarn − h

2 )(h2 )2 and Iyy,edge = πtedge(
h
2 )3. As

shown in figure 6.1-6.3, the strip model only models the face sheet with a width equal to the yarn
spacing. This results in a lower force output compared to the quarter model, which should be
corrected to be able to compare both models.

𝛿𝑦𝑎𝑟𝑛
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Attachment 
point yarn 𝑤0,𝐴
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Figure 6.12: The locations at which w0,A and
w0,B are evaluated in the FE model.

A slight difference in the force-displacement
behaviour at 20 mm between the strip and
quarter model is observed, which might be due
to the difference in contact area. For smaller
yarn spacings, the initial deflection due to the
pressurisation decreases. Figure 6.13 shows
the initial perturbation of the face sheets due
to pressurisation for different yarn distances
for the FEA and analytical perturbation
model, which is derived in appendix E. The
displacement of the analytical uniaxial tensile
model is based on the following equation:

2ux

δyarn
=

PH

tfaceExx

w0,A is determined at a distance of halve a yarn distance from the yarn attachment point as
shown in figure 6.12 and w0,B is the maximum perturbation measured at 1/2

√
2δyarn distance.

The decrement of the initial perturbation results in a more flattened panel. Also, a change in
longitudinal tension is observed for different yarn spacings. The analytical perturbation model
shows comparable perturbation with the FE model for small yarn spacings. At large yarn spacings,
the perturbation is overestimated by the analytical perturbation model, which is probably due to
an underestimation of the longitudinal displacement. For large yarn spacings, the length of the
panel decreases due to inflation, since the distributed pressure load on the face sheet causes
a negative displacement, and for small yarn distances vice versa in the analytical perturbation
model. This decrement in longitudinal displacement can also be observed in the FEA, but it is
overestimated in the analytical perturbation model. This might be due to the assumption of an 1D
model, which neglects the Poisson’s effect and the pretension generated in the transverse direction.
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Figure 6.13: The initial perturbation w0 and longitudinal strain over one yarn distance 2ux

δyarn
after

inflation for different yarn spacings using the analytical perturbation model and FEA of the strip
model with an internal air pressure of 15 kPa,tface = 0.7 mm and LEO1 material model. The
derivation of the analytical perturbation model can be found in appendix E.

At a yarn distance of ≤ 20 mm, the edges have a higher initial deflection than the face sheets,
which results in a different contact pressure, which is less uniform over the width as can be seen
in figure 6.14. The assumption of the geometry of the cross sectional area probably influences this
contact area. For this research an obround shape is assumed. This does not fully correspond to
the edges of the drop-stitch panel in the experiments performed in chapter 4. The edges of the
drop-stitch panel used in the experiments are flatter. The strip model neglects the effect of the
non-uniform contact pressure over the width. Note that contact areas similar to figure 6.14a were
observed for yarn spacing above 30 mm for the quarter panel. This could be one of the reasons
that the slight difference in force-displacement response between the quarter and strip model as
shown in figure 6.11.
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(a) 30 mm yarn spacing (b) 20 mm yarn spacing

Figure 6.14: Contact area of quarter model with yarn spacings of 20 and 30 mm around 0.3 m
displacement.

In appendix D, the stresses in the xx-direction are shown at the load region of the quarter model
for δyarn is 20 and 30 mm. At the folding failure mechanism, a downwards fold is at larger
displacements generated. This can also seen in figures D.1-D.4. At some deflection, an almost
uniform compressive stress over the width in the xx-direction appears, which is the upward fold
left of the downward fold in figure 6.10a. The downwards fold does not arise at a yarn spacing
of 30 mm as shown in figures D.5-D.8, which illustrates a significant difference between the local
folding and global wrinkling failure mode clearly.

The force-displacement curves for δyarn = [6, 10] mm are similar. It is expected that this is due
to the fact that the initiation and propagation of the fold is comparable. Figure 6.15 shows that
the folding pattern is comparable. This folds are probably affected by the scaling method used for
the yarn properties as discussed in section 6.1.2.

(a) δyarn = 6 mm (b) δyarn = 10 mm

Figure 6.15: The folds generated in the load region using the strip model with LEO 1 material
model, P = 15 kPa, tface = 0.0007 and δyarn = [6, 10] mm. It shows that the wrinkling length
is quite similar, which could be the reason that 6 and 10 mm force-displacement curves are
corresponding in figure 6.11.
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6.2.3 Influence of the face sheet thickness
To evaluate the influence of the face sheet’s thickness on the global bending stiffness and failure
modes, a set of face sheet thickness has been evaluated with the strip model. In section 6.2.2, a
transition has been observed between a yarn distances 20 and 30 mm, so in this section a yarn
distance of 20 and 30 mm will be used to evaluate whether the face sheet thickness has influence on
the failure mode. Note that only the face sheet’s thickness and yarn distance have been changed
and that the rest of the parameters are as in section 6.2.2. This will give insight in the influence
of the face sheet thickness on the bending stiffness and failure mechanism. The force displacement
curves are shown in figure 6.16 and 6.17.

A difference in failure mode is observed for different face sheet thicknesses. In figure 6.16, the 1 and
0.7 mm thick face sheets has a folding failure mode and the 0.7 and 0.5 a global wrinkling failure
mode. In figure 6.17, the 1 mm thick face sheets has a folding failure and the 0.7 and 0.5 global
failure mode. This suggests that the face sheet thickness does influence the failure mode, since
it increases the bending stiffness of the face sheet. The initial displacements differs for different
thicknesses, since the mass is changed by changing the thickness of the face sheet. The density
has not been adjusted for different face sheet thicknesses.
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Figure 6.16: Force-displacement curves of strip model’s load beam with δyarn = 20 mm, P = 15
kPa and LEO1 material model for different face sheet thicknesses.
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Figure 6.17: Force-displacement curves of strip model’s load beam with δyarn = 30 mm, P = 15
kPa and LEO1 material model for different face sheet thicknesses.

6.2.4 Influence of the internal air pressure
A set of internal air pressures has been evaluated for the 20 and 30 mm yarn distance strip models.
This gives a better understanding in their influence on the structural response and failure modes.
Note that only the internal air pressure and yarn distance have been changed and that the rest of
the parameters are as described in section 6.2.2. An internal air pressure of 7, 15 an 30 kPa has
been evaluated. This resulted in the force displacement curves as shown in figure 6.18 and 6.19.

It clearly depicts that the internal air pressure influences the bending stiffness. At low internal
air pressures, the folding failure mode is initiated as can be observed in the 7 and 15 kPa for the
20 mm yarn spacing and 7 kPa for the 30 mm yarn spacing models. The global wrinkling mode
is initiated at higher internal air pressures, whereas the local folding failure mode is initiated at
lower internal air pressures.
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Figure 6.18: Force-displacement curves of strip model’s load beam with δyarn = 20 mm, tface = 0.7
mm and LEO1 material model for different internal air pressures.
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Figure 6.19: Force-displacement curves of strip model’s load beam with δyarn = 30 mm, tface = 0.7
mm and LEO1 material model for different internal air pressures.
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6.2.5 Influence of the material model
The influence of the orthotropic linear elastic material models 1 and 2 and FO model of chapters
5 on the structural response has been compared for an internal air pressure of 15 kPa and yarn
distances of 20 and 30 mm. The other parameters of the strip model are as described in section
6.1. The force-displacement results are shown in figure 6.20 and 6.21. It shows that the bending
stiffness is highly dependent on the material model. A change in failure mode is not observed for
these material models. This does not imply that the initiation of a failure mode is independent
of the material model. The linear elastic orthotropic material model 1 is significantly stiffer than
linear elastic orthotropic material model 2. Strains around 3.4% are observed, which is slightly
higher than expected in chapter 5. So, LEO1, which is fitted in the toe region, does not suffice for
validation, since it underestimates the material stiffness.

The FO model with a yarn spacing of 20 mm is a less stiff than the linear elastic orthotropic 2
material model, but slightly stiffer after the maximum load has been applied. Probably due to the
exponential behaviour of the FO model, the face material stiffness becomes stiffer than the linear
elastic orthotropic 2 material model due to an increase in strain the wrinkled region. Convergence
issues arose for the Fung Orthotropic material model with a yarn spacing of 30 mm. The local
strains are slightly higher than the expected strain range of chapter 5, which was 2.5%. The
maximum observed nominal strain in the simulations with the Fung Orthotropic material model
and a yarn distance of 30 mm is 2.8% in the x-direction and 3.2% in the y-direction. For 20 mm
yarn spacing, the maximum nominal strain is 2.6% in the x-direction and 3.2% in the y-direction.
This still seems reasonable, so high strains are not the reason for the convergence issue. The exact
reason for the convergence issue is unknown.
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Figure 6.20: Force-displacement curves of strip model’s load beam with a δyarn = 20 mm, tface =
0.7 mm and P = 15 kPa for different material models.
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Figure 6.21: Force-displacement curves of strip model’s load beam with a δyarn = 30 mm, tface =
0.7 mm and P = 15 kPa for different material models.

6.2.6 Validation
The experiments of chapter 4 are used to validate the numerical model. The strip model has been
used with a yarn spacing of 6 mm, face sheet thickness of 0.7 mm, air pressure of 15 kPa and
linear elastic orthotropic 2 material model. The dimensions are used are based on the geometry
shown in figure 4.1. Figure 6.22 shows the numerical model used for validation.

0.29 m

0.145 m

3.575 m

0.335 m

2.95 m

Figure 6.22: Geometry of the numerical model used compare with the experiments of chapter 4
based on the geometry depicted in figure 4.1

As mentioned in chapter 4, the tangential friction might have influenced the results. The model
with tangential friction and without tangential friction has been compared with each other. The
tangential friction is dependent on the strain rate, contact materials, pressure and temperature
[123]. The strain rate in a quasi-static load case is close to zero, so the friction is independent
of the strain rate. Friction might also be direction dependent [124]. The PVC layer of the face
sheets is in contact with the trusses, which results in a friction between a steel and PVC layer.
The tangential friction behaviour depends on the type of PVC and steel used [125]. Since the
exact materials are unknown, a exact tangential friction model can not be implemented in the FE
model. So, a tangential friction µ = 0.5 has been assumed comparable with the values of Xinwu
et al. [125].

The comparison between the experimental and numerical results for P = 15 kPa is shown in figure
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6.23. The slope force-displacement of the strip model with µ = 0.5 shows good agreement. The
slope of the force-displacement without tangential friction is slightly lower than the measurements.
This means that the bending stiffness pre-failure is similar to the experiments. The initial deflection
of the strip model differs from the experiments. The initial deflection of the experiments was
influenced by the tangential friction as discussed in chapter 4. A difference of ±4 cm is observed
during the hysteresis assessment, which is comparable to the difference in initial deflection in figure
6.23. This implies that depending on how the drop-stitch panel is placed on the support trusses,
the initial deflection differs. The maximum load applied during the experiments was close to the
failure load. The strip model did not wrinkle around 0.5 m displacement, which suggests that the
stiffness overestimated.
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Figure 6.23: The experimental and numerical force-displacement behaviour for P = 15 kPa. The
strip model with µ = 0 is aborted preliminary.

The force-displacement curve for P = 10 kPa and µ = 0.5 is shown in figure 6.24. It shows that the
drop-stitch floater of the FEA collapses at a higher displacement than the measurements, which
suggests that the pretension or stiffness is overestimated.
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Figure 6.24: The experimental and numerical force-displacement behaviour for P = 10 kPa and
µ = 0.5.
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6.3 Conclusions
A three point bending test on a drop-stitch panel has been conducted using FEA. The yarn spacing,
face sheet thickness, material model and internal air pressure have been adjusted to gain insight
in the bending characteristics and structural response. Two types of models has been evaluated:
a strip and a quarter model. The quarter model assumes the drop-stitch panel has two symmetry
planes in the xz- and yz-plane in a three point bending load case, which results in the assumption
that only a quarter has to be modelled. The strip model is a simplification of the quarter model.
It consists of an upper and lower face sheet with the width of one yarn spacing. The influence of
the closing edges of the drop-stitch panel and non-uniform response over the width is neglected.
Good correlation between both models is found.

The FEA showed that there are two failure modes for a three point bending test: a global wrinkling
and a local folding failure mode. Both failure modes shows distinct behaviour. The global
wrinkling failure mode has a wrinkling length of one yarn spacing and the folding failure mode of
one or multiple multiple yarn spacings. The folding failure mode is initiated at low air pressures,
large thicknesses and small yarn spacings. This suggest that the pretension, compressibility of the
fluid, bending stiffness and characteristic length of the face sheets is significant for the initiation
of the failure modes.

The bending stiffness of the face sheets is important. Especially, the initiation of failure modes is
dependent on the face sheets’ bending stiffness. Neglecting the bending stiffness by assuming
membrane elements, would be incorrect. For very large yarn spacing and small thicknesses,
membrane elements might suffice, if it appears that the bending stiffness is negligible for the
global wrinkling failure mode. The influence of membrane elements is not evaluated during this
research.

The yarn stiffness is scaled with the yarn distance to ensure that the drop-stitch panel maintains
approximately the same thickness. It can be noticed that at small yarn spacings, the stiffness
of the yarn spacings decreases and the length of the folds is more than one yarn spacing. This
shows that the yarn stiffness might influence the results as the wrinkling amplitude is dependent
on the yarn stiffness. An evaluation of the material properties of the yarns should be performed
to ensure a realistic wrinkling behaviour. For the global wrinkling failure mode, it is not expected
to have a significant influence on the wrinkling amplitude as the wrinkling length is equal to one
yarn distance. A change in yarn stiffness affects the thickness of the panel, which might influence
the initiation of the global wrinkling failure mode.

The correction factor Nratio to correlate the results of the strip model to the quarter model differs
per failure mode. A correction factor is established based on the difference in bending stiffness.
For the global wrinkling failure mode, a correction factor is established based on the assumption
that the bending stiffness is solely dependent on the contribution of the face sheets. The strip
model showed similar force-displacement behaviour for the global wrinkling failure mode using
this correction factor. For the folding failure mode, the bending stiffness contribution of the
edges is taken into account, which gives a better correlation between the strip and quarter model.
However, this has only been verified for one case, which is for 20 mm yarn spacing, 15 kPa internal
air pressure and LEO1 material model. As mentioned in this load case, the load beam first contacts
the edges instead of the face sheets, so this could have influenced the results. More cases should
be investigated whether this assumption is true and/or more accurate correction factors can be
established.

The material models showed a significant influence on the structural response. The assumption of
a maximum of 2.5% strain of chapter 5 is too strict, since locally higher strains around 3.4%
are observed. Using LEO2 material model for the validation resulted in a good agreement
with the measurements for the pre-failure region of the force-displacement curves. The failure
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force-displacement behaviour has not been measured, so it is not possible to validate the failure
region.

The stiffness of the FE model shows a good agreement with the experiments performed in chapter
4. A difference in initial deflection is observed, which is probably due to the tangential friction
of the supports. The way the drop-stitch floater is placed on the supports might have influenced
the initial deflection. Also, the face sheets in the FEA are too stiffly implemented, since they
do not wrinkle around the maximum load applied during the experiment. Increasing the initial
perturbation might give more realistic result. Changing the yarn distance, could be a methodology
to increase the initial perturbation. This behaviour is similar to column buckling simulations. If
one would perform a column buckling analysis, an initial deflection needs to be applied to obtain
realistic results as shown in figure 6.25.

Figure 6.25: Typical equilibrium paths of a column without initial imperfections and of a real
structure with initial imperfections [126].
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Chapter 7

Conclusions

In this research, the bending characteristics of drop-stitch floaters are analysed. It provides more
insight in the bending response of drop-stitch floaters. The amount of research performed on the
structural characteristics of drop-stitch floaters is is limited. Especially, low pressurised drop-stitch
floaters has not been researched yet to the best of the author’s knowledge. This results in the
main question of this research:

What are the relevant bending characteristics of a low pressurised drop-stitch panel?

The bending stiffness is influenced by four types of non-linearities: a load, geometrical, deformation
and material non-linearity. This research mainly focused on obtaining insight in the material
non-linearity due to hyperelasticity and geometrical due to wrinkling. A structural analysis of
a drop-stitch panel subjected by a three point bending load case has been performed using an
experimental and FE analysis. Following, the subquestions are answered, which are needed to
answer the main questions:

1. How could a drop-stitch panel be modelled using 3D FEM?

A drop-stitch panel is modelled as a quarter and a strip. The strip model does not take
into account the effects of the edges of the panel and assumes an uniform response over
the width of the panel. The results of the strip model corresponds with the quarter
model, which suggest that for a uniaxial bending load case the strip model suffices. To
incorporate wrinkling effects, the initial air pressure combined with the yarns provide enough
perturbation to initiate wrinkling. It has been shown that the bending stiffness of the face
sheets is significant for the wrinkling initiation and propagation, so the usage of membrane
elements is incorrect and shell elements should be used. A tension field theory has not been
investigated to model the influence of wrinkling. The force-displacement of the FE model
shows good agreement with the experiments. A difference in the initial deflection has been
observed. It is expected that this is mostly due to the tangential friction of the support
trusses during the experiments. Also, the FE model did not fail around the maximum load
of the experiments, which suggests that the FE model is too stiffly model. Applying a larger
initial perturbation could give more realistic results.

2. What is the influence of internal air pressure, thickness of the face sheet and
yarn distance on the bending and wrinkling response of a drop-stitch panel?

The internal air pressure, thickness of the face sheet and yarn distance influences the
bending stiffness and wrinkling behaviour. Highly pressurised drop-stitch panels have a
larger bending stiffness and collapse with a global wrinkling failure mode. Lower internal air
pressures tend to have a lower bending stiffness and a folding failure mode. The internal air
pressure influences the pretension in the face sheets and the work required to compress the
internal air volume. The higher the internal air pressure, the higher pretension and work
required to compress the internal air volume.

An increase in the thickness of the face sheets, increases the bending stiffness of the face
sheets predominantly. This results in a higher global stiffness, but also in a difference in
failure mode. At larger face sheet thicknesses, the face sheet is able to withstand the internal
air pressure and initiate a downwards fold.
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The yarn distance changes the characteristic length and yarn properties in the FE model.
At larger yarn distances, more work is required to withstand the internal air pressure and
initiate a downwards fold.

3. What is material behaviour of the face sheets?

The stress-strain behaviour of polyester fiber coated with PVC has shown to be an
orthotropic hyperelastic material. Different material models (linear elastic and hyperelastic)
have been evaluated. Better fits can be obtained, but would require establishing and
implementing a new material model or a different fitting procedure. The FEA showed a
good agreement with a linear elastic orthotropic material model, so whether hyperelasticity
is significant for the global response can be argued. It slightly influences the global bending
stiffness, but for engineering purposes a linear orthotropic material model might suffice for
low pressurised drop-stitch panels.

4. What is the mechanism behind the bending behaviour?

The bending stiffness of a drop-stitch panels is influenced by four non-linearities:
hyperelasticity, pressure-volume work, hyperelasticity and a displacement non-linearity at
large deflections. Pressure-volume work and the displacement non-linearity has shown to
be significant by prior research. Hyperelasticity does not influence the bending stiffness
significantly, so a linear stiffness approximation might suffice. Wrinkling has already been
shown to be a significant non-linearity in prior research. A clear distinction between
wrinkling pattern has not been made yet. This research has shown that two different types of
wrinkling initiate a different failure mode: a local folding and a global wrinkling failure mode.
In the local folding failure mode a downward fold is initiated and in the global wrinkling
failure mode the initial perturbations due to the internal air pressure are increased.

So, the relevant bending characteristics of a low pressurised drop-stitch panel are dependent on
the bending stiffness of the face sheets, yarn spacing, internal air pressure and material model.
These parameters have shown to influence the eventual bending behaviour. A low pressurised
drop-stitch panel has shown to have a non-linear elastic bending stiffness at large displacements
due to wrinkling, pressure-volume work and large deflections. Hyperelasticity has not shown to
have a significant influence on the global response in a three point bending load case and a linear
approximation of the material stiffness might suffice. Two different failure modes are possible in a
pure bending load case: a local folding and a global wrinkling failure mode. The initiation of the
two failure modes depends on the bending stiffness of the face sheets, yarn spacing and internal
air pressure.
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Chapter 8

Recommendations

In this chapter, recommendations for future research are suggested. The recommendations are
subdivided into fundamental research, which focuses on gaining knowledge on a topic, and applied
research, which covers research into the practical usage of drop-stitch panels in an offshore
environment.

8.1 Fundamental research
During this research, a knowledge gap has been observed on the following topics: the material
behaviour, limit states and scaling laws, structural models and fluid-structure interaction (FSI).

8.1.1 Material behaviour
The material behaviour of polyester fibers coated with PVC is very complex to describe, since it
is orthotropic and hyperelastic at low strains. This research did not investigate the interaction
in stress-strain behaviour in different directions, which should be measured to accurately analyse
the material behaviour. Performing a biaxial tensile test provides more information about the
multiaxial stress-strain behaviour. Digital image correlation could be useful to analyse the full
strain field. Applying strain gauges is difficult at large strains and does not provide the full strain
field.

Current material models can not describe the stress-strain relation in different directions exact.
A combination material models might be able to model the material stiffness more accurate.
However, this a blunt approach, since one would lose the physical meaning of the variables of the
material models. Also, the interaction between stress-strain in different directions might be difficult
to accurately fit, if one would use a combination of different material models. The Ogden model
does model higher order non-linear stress-strain relations accurately, but it lacks a directional
dependence and interaction. On the other hand, the HGO and FO model models the directional
dependence properly, but lacks the higher order non-linear stress-strain relations. Establishing a
higher order material model with directional dependence should be further investigated. Probably,
this does create extra variables, which makes the fitting procedure more difficult. The least squares
fitting procedure might become insufficient, since the found minimum is highly dependent on the
boundary conditions variables. So, the found minimum does not have to be global minimum. An
exact optimisation technique such as the Newton’s or gradient method should be used to guarantee
finding the global minimum [127].

8.1.2 Limit states and scaling laws
Obtaining more insight in the limit states is needed to ensure the reliability of drop-stitch floaters
in offshore conditions. In this research, a folding and global wrinkling failure mode has been
observed. A combination of energy formulations used to analyse folds in membranes supported
by a fluid and wrinkling in membranes subjected by an uniaxial load might be usable [55, 56, 58]:

U = Us + Ub + Up
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with Us is the strain energy, Ub the bending energy and Up the potential energy of the fluid. It
has been shown in this research that these three energy components might be influential for the
failure mode. The potential energy of the yarns might also need to be included in this formulation.

A non-dimensionalised pressure-bending energy ratio Cpb might be used to predict the eventual
failure mode. The usage of scaling laws can be a methodology to evaluate the initiation of failure
modes. A possible methodology to establish Cpb is shown in appendix F. This resulted in:

Cpb =
Pλ3

1
2

Exxt3face
√
H

with P is the internal air pressure, λ the wrinkling length, Exx the Young’s modulus in the
xx-direction, tface the face sheet thickness and H the height of the panel. This already shows
that the global wrinkling failure mode is initiated at Cpb ≥ 1.12 and the folding failure mode at
Cpb ≤ 1.08 as shown in figure 8.1. Between 1.08 and 1.12 there might be a transition of failure
modes.
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Figure 8.1: The non-dimensional pressure-bending energy ratio Cpb for the global wrinkling and
folding failure mode.

Figure 8.1 shows that it has a potential interesting result. Whether this scaling law holds for
all cases and is correct, should be further evaluated. Especially, the influence of the height of
the panel has not been investigated in this research, so it is not clear whether Cpb should scale
with 1/

√
H and λ3

1
2 . There are different possibilities to establish a pressure-bending energy ratio.

Developing a Cpb which is correct for all cases, creates a better understanding in the initiation of
the failure modes.

The force of the load beam seems to scale with the wrinkling length among other things by
F ∼

√
λ as shown in figure 8.2 with λ is the wrinkling length, which is equal to the yarn distances

for δyarn ≥ 20 mm in the cases investigated in this research. The exact derivation, reason and
correctness for this scaling should be further evaluated. This scaling might be usable to establish a
limit state of the drop-stitch panel. The limit state might be a function of the initial perturbation,
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which can be easily estimated with methodology described in appendix E. It seems that there are
two different limit states for both failure modes according to figure 8.2. For the global wrinkling
failure mode (30 mm ≤ δyarn ≤ 60 mm), there seems to be one limit for F

√
λ, which does not

differ for the different yarn spacings. For the folding failure mode, a change of w at which the
drop-stitch floater collapses and a slight change of maximum F

√
λ is observed.
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Figure 8.2: The force displacement curves for different yarn using the strip model with data of
figure 6.11 and the force multiplied with λα with λ is the wrinkling length and α is a coefficient

8.1.3 Structural models
Establishing a structural model that is able to model the non-linear bending stiffness of a
drop-stitch panel creates a fundamental understanding of the response in load cases and can
greatly reduce calculation times. Davids et al. [32] made an FE model based on a modified
version of the Timoshenko beam model, which is able to capture the response in uniaxial load
cases of high pressurised drop-stitch panels. Their assumptions regarding wrinkling effects might
difficult to extrapolate to a plate model. They assumed a tension only material property, integrated
over a constant cross sectional area to determine the stress distribution over the thickness and
establish a moment-curvature relation. Assuming a constant cross sectional area, might not suffice
in multiaxial load conditions. More research should be performed to formulate structural models
usable for drop-stitch panels.

Davids et al. [32] acquired a good agreement with experiments for the force-displacement
behaviour by assuming a Timoshenko beam. However, assuming a homogeneous beam/plate
might underestimate the stresses occurring in the face sheets, since the stress is distributed over
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the full height of the panel instead of solely the face sheets’ thickness. A possibility to establish a
structural model of the drop-stitch floater might be adopting the classical laminate theory (CLT).
The original CLT is evaluated in section 2.5. Especially for small yarn distances (6 and 10 mm),
internal air volume and yarns seems to act as a core material, since they give a certain height
to drop-stitch panel, an additional stiffness and a flat shape. For large yarn spacings, it might
be difficult to use the CLT, since a flat shape can not be assumed anymore. A modified CLT
might be established to take into account transverse shear, wrinkling, pressure-volume work and
the influence of the yarns. Following, a few suggestions for the modified CLT are elaborated. Note
that these suggestions are not verified/validated, so it is unknown whether they will work out.

First of all, transverse shear should be taken into account by modifying the kinematics of the
original CLT model. Yang et al. [128] established a two dimensional linear theory for heterogeneous
plates, which has been further investigated by Whitney and Pagano [129]. Reddy et al. [130] took
into account a parabolic shear strain distribution. Whether a parabolic shear strain distribution
generates significantly more accurate results, is unknown for a drop-stitch floater. For the
suggestions, a linear shear strain distribution is assumed. The transverse shear stress is added to
the constitutive equation of each layer [129]: σx

σy
τxy

 =

 c11 c12 c16
c12 c22 c26
c16 c26 c66

 εx
εy
γxy


[
τyz
τxz

]
=

[
c44 c45
c45 c55

] [
γyz
γxz

]
where cij are the elastic stiffness components in the global direction of a ply. The kinematics are
as described according the Mindlin plate theory as [128]:

u = u0(x, y, t) + zψx(x, y, t)

v = v0(x, y, t) + zψy(x, y, t)

w = w(x, y, t)

The ABD-matrix is modified by including the transverse shear stiffness components:

Nx
Ny
Qy
Qx
Nxy
Mx
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Mxy


=



A11 A12 A14 A15 A16 B11 B12 B16
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A66 B16 B26 B66

D11 D12 D16

Sym. D22 D26

D66





ε0x
ε0y
ε0yz
ε0xz
ε0xy
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κxy


The contribution of the face sheets in the pre-wrinkling phase to the ABD-matrix can be derived
by equations 2.14-2.20 except for the transverse shear stiffness components. It is expected that
the internal air pressure and yarns do not provide any in-plane stiffness in the underformed state.
However, if shear arises in the drop-stitch panel, the yarns might influence the in-plane stresses
as shown in figure 2.18, since an inplane stress component arises, which is transmitted to the face
sheets. Also, the yarns do contribute to the transverse shear stiffness. It is expected that the
transverse shear stiffness is mainly dependent on the yarn’s Young’s modulus, cross sectional area
and spacing.

Wrinkling might be incorporated in a structural model by assuming the tension field theory for
the face sheets. Davids et al. [32, 88] assumes that a wrinkled face sheet does not contribute
to the stiffness and causes a shift of the neutral axis. Determining the shift of the neutral axis
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caused by the wrinkled face sheet in a plate model is more difficult than in a beam model, since
the stress/strain state differs over the width/cross-sectional area. How to determine the change
in neutral axis in a 2D model, should be further investigated. It might be possible to incorporate
wrinkling without the implementation of a shift of the neutral axis by decreasing the stiffness
contribution of the wrinkled face sheet to the ABD-matrix. This would require a further analysis
of the bending response of drop-stitch panels and establish non-linear moment-curvature and
force-strain relations, which could be implemented in the ABD-matrix.

The internal air creates a pretension in the face sheets and causes a pressure-volume work
contribution in the virtual work balance. The pretension might be added as a residual stress
in the constitutive equation of the face sheets as: σx

σy
τxy

 =

 σx,1 + σx,0
σy,1 + σy,0
τxy,1 + τxy,0


where σx,0, σy,0, τxy,0 are the stresses in the initial state caused by the pretension and σx,1, σy,1,
τxy,1 the stresses induced by a load case. The pressure-volume work should be included in the
virtual energy work balance. The virtual pressure-volume work as described by Davids et al. [32,
88] and discussed in section 2.5 might be extrapolated to 2D by including the shear in the yz-plane
and curvature in the y-direction.

8.1.4 FSI
A fluid-structure interaction analysis will provide more information on the response of drop-stitch
floaters in wave conditions. It gives more knowledge about the load conditions and deformations
in offshore conditions. This might be used to evaluate the limits in an offshore environment
of drop-stitch floaters. Also, the interaction between multiple drop-stitch floaters, mooring and
slamming effects should be analysed.

Xu et al. established an FSI model based on a Euler Bernoulli-von Kármán beam model and
potential flow fluid to model large scale scale FPVs [131]. However, their assumption of an Euler
Bernoulli beam is not applicable for drop-stitch floaters, since shear deformations can be significant
and wrinkling effects should be incorporated at larger deformations for low pressurised drop-stitch
panels. Also, they have assumed a membrane type structure, which is not applicable for drop-stitch
floaters, since the bending stiffness is significant.

A coupled CFD-FEM simulation is possible, but it is expected to be computationally intensive.
Especially if one is interested in analysing the response of a drop-stitch floater in multi-axial wave
conditions, it is expected to very computationally intensive, since it is not possible to analyse the
response using the strip method used in this research. Structural plate models as described in this
chapter could reduce the computation times.

8.2 Applied research
The applied research recommendations focuses on the practical application drop-stitch floaters in
an offshore environment as an FPV. The following recommendations are discussed: experiments
in an offshore environment, influence of solar panels and engineering approaches.

8.2.1 Experiments in offshore environment
The performance of drop-stitch panels in an offshore environment are currently unknown.
Drop-stitch floaters are expected to be a very efficient structure, since their stiffness mostly
generated by air, which has a low density. Also, the transportation of drop-stitch floaters is
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expected to be very efficient, since they can be transported in a deflated state. So, it is a very
promising structure for the usage as FPV. The response of drop-stitch floaters in offshore conditions
is not tested yet and should be evaluated to ensure the reliability. Also, the efficiency of the solar
panels needs to be investigated in an offshore condition using drop-stitch floaters. Water provides
a cooling effect to the PV system, which increases the efficiency of an FPV compared to a land
based PV system [132]. The influence of this cooling effect for drop-stitch floaters is unknown.
Also, the influence of accretion and heat generated by the PV system should be investigated on
the structural response and PV system. The PV system influences the stiffness of the face sheets
and also adds mass to the drop-stitch floaters. This might influence the bending response.

8.2.2 Regulations and engineering approaches
Current regulations provided by DNV for FPV systems do not suffice for drop-stitch floaters, since
it assumes a rigid FPV system [30]. Low pressurised drop-stitch floaters are flexible floaters, so the
regulations have to be revised to ensure the reliability of the FPVs. This is usable for engineers to
evaluate whether their drop-stitch floater design is considered to be safe and reliable for the usage
as FPV. To accomplish new regulations, engineering approaches might help to quickly perform a
feasibility study on a concept design. Engineering approaches can be analytical, empirical or a
simplified FEA. The strip model has proven to be an accurate simplified FE model, but it might
be further simplified. Applying a tension field theory might result in shorter calculation times,
since coarser meshes can be used. However, low convergence rates are observed using the *NO
COMPRESSION material property in ABAQUS, so this was not investigated in this research.
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Appendix A

Performed measurements and resulting
deflection three point bending experiments

Figure A.1: A photograph of the test setup showing the gauge rods (courtesy of TNO).

Table A.1: Performed measurements three point bending test

Measurement nr. Pressure [kPa] Load [N] Measurement nr. Pressure [kPa] Load [N]
1 7 0 21 20 0
2 7 499 22 20 1382
3 7 1088 23 20 1971
4 7 1677 24 20 2854
5 7 1971 25 20 3688
6 10 0 21 20 0
7 10 794 22 20 1382
8 10 1383 23 20 1971
9 10 1971 24 20 2854
10 10 2559 25 20 3688
11 12 0 26 10 794
12 12 1088 27 10 1382
13 12 1677 28 10 1971
14 12 2559 29 10 2559
15 12 3050 30 10 2854
16 15 0 31 10 2559
17 15 1382 32 10 1971
18 15 1971 33 10 1382
19 15 2854 34 10 794
20 15 3688
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Figure A.2: Measured deflection of the three point bending test at different longitudinal
coordinates for an internal air pressure of 7 kPa
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Figure A.3: Measured deflection of the three point bending test at different longitudinal
coordinates for an internal air pressure of 10 kPa

85



0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5
Position [m]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

De
fle

ct
io

n 
[m

]

Deflection at measuring points for P=12 kPa

0.0 kN
1.09 kN
1.68 kN
2.56 kN
3.05 kN

Figure A.4: Measured deflection of the three point bending test at different longitudinal
coordinates for an internal air pressure of 12 kPa
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Figure A.5: Measured deflection of the three point bending test at different longitudinal
coordinates for an internal air pressure of 15 kPa
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Figure A.6: Measured deflection of the three point bending test at different longitudinal
coordinates for an internal air pressure of 20 kPa
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Appendix B

Results tensile test

B.1 Measurements

Table B.1: Specimen numbers with their respective fiber direction and material.

Fiber direction [deg] 0 45 90
Face sheet [16, 17, 18, 19, 21] [27, 70, 71, 72, 73] [2, 3, 4, 7, 9]

Edge [33, 34, 36, 37, 40] [65, 66, 67, 68, 69] [46, 48, 50, 52, 53]

0 5 10 15 20 25 30 35
Displacement [mm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fo
rc

e
[k

N
]

Specimen 16
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0.0 3.2 6.5 9.7 12.9 16.1 19.4 22.6
Strain [%]

Figure B.1: Raw force-displacement results for the face sheet fabric in 0◦ fiber direction. The
respective filtered force-displacement results are shown in figure 5.4a
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Figure B.2: Raw force-displacement results for the face sheet fabric in 45◦ fiber direction. The
respective filtered force-displacement results are shown in figure 5.4b
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Figure B.3: Raw force-displacement results for the face sheet fabric in 90◦ fiber direction. The
respective filtered force-displacement results are shown in figure 5.4c. Specimen 9 shows different
stress-strain behaviour and is considered to an outlier.
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Figure B.4: Raw force-displacement results for the edge sheet fabric in 0◦ fiber direction. The
respective filtered force-displacement results are shown in figure 5.4d
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Figure B.5: Raw force-displacement results for the edge sheet fabric in 45◦ fiber direction. The
respective filtered force-displacement results are shown in figure 5.4e

90



0 10 20 30 40 50
Displacement [mm]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fo
rc

e
[k

N
]

Specimen 46
Specimen 48
Specimen 50
Specimen 52
Specimen 53

0.0 6.5 12.9 19.4 25.8 32.3
Strain [%]

Figure B.6: Raw force-displacement results for the edge sheet fabric in 90◦ fiber direction. The
respective filtered force-displacement results are shown in figure 5.4f
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B.2 Material models

Table B.2: Fitted variables of LEO1 material model

Fabric E1 [MPa] E2 [MPa] ν12[−] G12 [MPa] G13 [MPa] G23 [MPa]
Face 202 111 0.29 12 1 1
Edge 213 105 0.29 7.5 1 1

Table B.3: Fitted variables of LEO2 material model

Fabric E1 [MPa] E2 [MPa] ν12[−] G12 [MPa] G13 [MPa] G23 [MPa]
Face 300 144 0.29 11.6 1 1
Edge 390 129 0.29 8.4 1 1

Table B.4: Fitted variables of HGO model

Fabric Ply nr. [-] Fiber direction [deg] C10 [Pa] D [Pa] κ [-] k1 [MPa] k2 [Pa]
Face 1 0 10 0 0 99.6 268

2 90 10 0 0 51.1 133
Edge 1 0 10 0 0 104.9 265

2 90 10 0 0 44 161.2

Table B.5: Fitted variables of FO model

Fabric b1111 [Pa] b1122 [Pa] b2222 [Pa] b1212 [Pa] c D
Face 703 -124 330 31 319651 0
Edge 628.91 -115.487 240.667 19 388964 0
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Appendix C

Analytical Wrinkling Onset Load

The wrinkling onset load is determined, which gives an estimation from which load the bending
stiffness becomes non-linear. Drop-stitch panels can be considered as a pretensioned structure.
Cavallaro et al [43] determined the wrinkling onset moment as mentioned in section 2.3, which
did not include the mass. For low pressurised drop-stitch panels, it is expected that the bending
stiffness decreases and the initial deflection resulting from the gravity becomes more significant.
Cavallaro et al [43] found good correlation between the experimental and analytical wrinkling onset
load. To determine the wrinkling onset load of a three point bending test, the wrinkling onset
moment should be equal to the internal bending moment created by the mass m and wrinkling
onset load Fonset:

Monset = Mint (m,Fonset) (C.1)

The wrinkling onset momentMonset is the moment needed to nullify the pretension created by the
internal air pressure. The longitudinal tension load in the face sheets is determined by multiplying
the internal air pressure with the transverse projected area, equation C.2 with P is the pressure,
B the width and H the thickness of the drop-stitch panel. Dividing Fx by the circumferential
area, results in the longitudinal stress, equation C.3 with tface is the thickness of the face sheets.
The section modulus is determined by assuming the face sheet is very thin, so that the moment
of inertia of the edges is Iyy,edge ≈ π

(
H
2

)3
tface and the upper and lower facesheets Iyy,face ≈

2(B −H)tface
(
H
2

)2. Dividing the moment of inertia with the outer fiber distance results in the
section modulus, equation C.4.

Fx = P

(
(B −H)H +

πH2

4

)
(C.2)

σx =
Fx

tface (2 (B −H) + πH)
= P

H

4

((4B − 4H) + πH)

tface (2 (B −H) + πH)
(C.3)

W =
Htface

4
((4B − 4H) + πH) (C.4)

The shear force, V , as function of x for the three point bending test load case of the experiments
as described in chapter 4 is shown in equation C.5 for 0 < x < 1

2L. Since the load condition is
symmetric, only the distribution within the range 0 < x < 1

2L is established. The result moment
and shear force diagram is shown in figure C.2.

Vint(x) =


−
mg

L
x ∀ x ∈ [0, Lsup]

−
mg

L
x+

mg + Fmid

2
∀ x ∈ [Lsup,

L
2 ]

(C.5)

Mint(x) =

∫
Vint(x)dx =


−
mg

2L
x2 ∀ x ∈ [0, Lsup]

−
mg

2L
x2 +

mg + Fmid

2
(x− Lsup) ∀ x ∈ [Lsup,

L
2 ]

(C.6)
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Solving the maximum mid span load Fmid at which the internal bending moment is equal to the
wrinkling onset bending moment, equation C.1, results in the wrinkling onset load Fonset. Figure
C.1 shows the maximum applied during the experiments in chapter 4 for different air pressure and
the analytical wrinkling onset load. It shows a linear relation between the wrinkling onset and
internal air pressure.
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Figure C.1: Experimental maximum load
and the wrinkling onset load. Note that the
maximum applied load of the 20 kPa is not
close the failure load as discussed in chapter
4. For the other measurement points, the
maximum applied load is close to the failure
load.
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Figure C.2: Internal bending moment and
shear force diagram for the three point
bending test performed in chapter 4 with a
midspan load of 1 kN.
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Appendix D

Stress in xx-direction for 20 and 30 mm yarn
spacing of FEA

Figure D.1: Stress in xx-direction of the quarter model with a yarn spacing of 20 mm at the initial
displacement (with gravity included). Note that the load beam is on the left edge as depicted in
figure 6.2.
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Figure D.2: Stress in xx-direction of the quarter model with a yarn spacing of 20 mm at a
displacement of 0.23m. Note that the load beam is on the left edge as depicted in figure 6.2.

Figure D.3: Stress in xx-direction of the quarter model with a yarn spacing of 20 mm at a
displacement of 0.32m. Note that the load beam is on the left edge as depicted in figure 6.2.
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Figure D.4: Stress in xx-direction of the quarter model with a yarn spacing of 20 mm at a
displacement of 0.4m. Note that the load beam is on the left edge as depicted in figure 6.2.

Figure D.5: Stress in xx-direction of the quarter model with a yarn spacing of 30 mm at the initial
displacement (with gravity included). Note that the load beam is on the left edge as depicted in
figure 6.2.
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Figure D.6: Stress in xx-direction of the quarter model with a yarn spacing of 30 mm at a
displacement of 0.21m. Note that the load beam is on the left edge as depicted in figure 6.2.

Figure D.7: Stress in xx-direction of the quarter model with a yarn spacing of 30 mm at a
displacement of 0.324m. Note that the load beam is on the left edge as depicted in figure 6.2.
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Figure D.8: Stress in xx-direction of the quarter model with a yarn spacing of 30 mm at a
displacement of 0.4m. Note that the load beam is on the left edge as depicted in figure 6.2.
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Appendix E

Analytical perturbation model

The initial perturbation due to the inflation is analytically derived as discussed in section 6.2.2.
A one-dimensional beam has been assumed, which inflates in a circular shape as shown in figure
E.1.

𝛿𝑦𝑎𝑟𝑛 𝑢𝑥𝑢𝑥

𝑏 𝛼 𝑅
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𝐸𝑥𝑥, 𝑡𝑓𝑎𝑐𝑒

𝑃
𝐴 𝐵

𝑥

𝑦

Figure E.1: A sketch of the model used to determine the perturbation analytically. It is assumed
that the face sheets inflate with a circular shape that can be described with the function y(x) =√
R2 − x2 − b. R is the radius of the circle, P the internal air pressure, Fp the tension load, b the

distance between the centre of the circle and chord of the circle, α the half central angle of the
circle segment, Exx the Young’s modulus in the longitudinal direction, tface the thickness of the
face sheets, δyarn the yarn distance and ux the horizontal displacement. The face sheet is hinged
supported in points A and B.

An energy balance between external and internal energy is formulated as a function of the angle
α and displacement ux. The minimisation energy function is divided into four components:

U = Um + Ub − UP − UFp = 0

with Um is the internal membrane strain, Ub the internal bending strain, UP the external
distributed pressure load and UFp the pretension load energy. U has been minimised by using
the fact that:

∂U

∂α
= 0 and

∂U

∂ux
= 0

The Newton-Raphson solver of the SciPy Python package has been used [133]. The degrees of
freedom α and ux are bounded by the values [0, 12π] rad and [−0.04, 0.04] m respectively. By solving
the minimisation energy function, the initial perturbation can be determined with w0 = R − b.
Following the energy components are derived.

Internal membrane strain

For the internal membrane strain energy Um, an isotropic linear elastic material model without
Poisson’s effect is used. Um can be derived by:

Um = Exxtface

∫ L

0

ε2ds = Exxtfaceε
2δyarn
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with ε is the strain in the face sheet and L the initial length of the face sheet is equal to δyarn.
The strain in the face sheets is determined by assuming the face sheet is flat with a length equal
to δyarn in the initial state and circular in the final state. This results in a change in length, which
can be expressed in an analytical strain function as:

ε =
2Rα− δyarn

δyarn

with

R =
2ux + δyarn

2 cos(α)

Internal bending strain

Due to the constant curvature of the face sheet over the length in the analytical model, the
integration of the bending strain energy is simple. It is derived by:

Ub = ExxIzz

∫ L

0

κ2dl = ExxIzz

∫ L

0

(
1

R

)2

dl

with κ is the curvature and Izz is the moment of inertia of the face sheet, which is Izz = t3

12 .

External distributed pressure load

The distributed pressure generates a deformation, which is described by the function y(x) as shown
in figure E.1. This can be described as:

Up = P

∫ L

0

y(x)dx = PA

with A is the area of the circle segment as shown in figure E.1. The area of the circle segment can
be determined by:

A = 2R2α− b(δyarn + 2ux)

with

b =
δyarn + 2ux

2 tan(α)

External pretension load

The internal air pressure generates a pretension in the face sheets, which can be described with:

Fp =
PH

2

with H is the height of the drop-stitch panel. Only one face sheet is considered in the analytical
perturbation model, so this results in a division by two. The pretension introduces a energy
component in the x-direction:

UFp
= Fpux =

PHux
2
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Appendix F

Derivation of the pressure-bending energy
ratio

The derivation of the scaling law used in section 8.1.2 is based on the methodology proposed by
Pocivavsek et al [55]. It is based on an energy balance of the potential energy of a fluid Uk and
internal bending energy of a membrane Ub to analyse localised folds.

Ub ≈
B

2

∫ L

0

dlÿ2 ∼ BL(A/λ2)2

with B is the bending stiffness B = Exxt
3
face/12, L the length of the membrane, ÿ the second

derivative of the displacement, A the amplitude of the wrinkle and λ the length of the wrinkle. The
potential energy of the fluid is different from Pocivavsek et al, since the pressure of the internal
air volume is relatively constant and does not increase linearly with increasing draft as a liquid
fluid. It can be described as:

Up = P

∫ L

0

dly ∼ PAL

Using the inextensibility constraint of Pocivavsek et al [55], which assumes that the length of a
folded membrane stays constant, the scaling of the wrinkling amplitude can be derived:

∆ =

∫ L

0

dlẏ2 ∼ L(A/λ)2 → A ∼ λ
√

∆/L

with ∆ is the compressive displacement of the membrane. In a pure bending load case, ∆ scales
with the height. Assuming a linear strain distribution over the height, the scaling for ∆ becomes:

∆ ∼ Hφ

with H is the height of the panel and φ is the angle of the linear displacement distribution as
discussed in section 2.5, which denotes the rotation of the cross section [78]. The scaling law for
the pressure-bending energy ratio can now be derived by:

Up

Ub
∼

Pλ3
√
L

Exxt3face
√
H

√
φ

The non-dimensional pressure-bending energy ratio Cbp can now be derived. It is assumed that
the length of the membrane scales with the wrinkling length, so L ∼ λ. Also it is independent of
the load case, so the angle φ is not taken into account. This results in:

Cpb =
Pλ3

1
2

Exxt3face
√
H

102


	Preface
	Abstract
	List of Abbreviations
	Introduction
	Motivation
	Goal
	Research questions & Scope
	Outline

	Literature
	Drop-Stitch Panels
	Research into drop-stitch panels
	Limit States

	Mechanical behaviour of flexible Solar Panels
	Wrinkling models of membranes
	Tension field theory
	Initial perturbations
	Wrinkling onset
	Concluding remarks

	Pressurised membranes
	Concluding remarks

	Structural models
	Governing equations
	Beam models
	Plate models
	Implementation of structural models on drop-stitch panels
	Concluding remarks


	Background of FE model
	Element
	Yarns
	Internal air pressure
	Contact
	Solver

	Three Point Bending Test
	Test setup
	Results
	Conclusions

	Material model
	Uniaxial tensile tests
	Methodology
	Results
	Conclusion

	Material models
	Evaluation of material models
	Fitting procedure
	Results
	Conclusions


	Drop-stitch Panel Model
	FE Model
	Geometry
	Material, yarn and fluid cavity properties
	Loads and boundary conditions
	Mesh

	Results
	Failure modes
	Influence of the yarn distance
	Influence of the face sheet thickness
	Influence of the internal air pressure
	Influence of the material model
	Validation

	Conclusions

	Conclusions
	Recommendations
	Fundamental research
	Material behaviour
	Limit states and scaling laws
	Structural models
	FSI

	Applied research
	Experiments in offshore environment
	Regulations and engineering approaches


	Performed measurements and resulting deflection three point bending experiments
	Results tensile test
	Measurements
	Material models

	Analytical Wrinkling Onset Load
	Stress in xx-direction for 20 and 30 mm yarn spacing of FEA
	Analytical perturbation model
	Derivation of the pressure-bending energy ratio

