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Abstract: Microwave heating has been shown to be an effective method of heating asphalt concrete
and in turn healing the damage. As such, microwave heating holds great potential in rapid (1–3 min)
and effective damage healing, resulting in improvement in the service life, safety, and sustainability
of asphalt pavement. This study focused on the microwave healing effect on porous asphalt concrete.
Steel wool fibres were incorporated into porous asphalt to improve the microwave heating efficiency,
and the optimum microwave heating time was determined. Afterwards, the microwave healing
efficiency was evaluated using a semi–circular bending and healing programme. The results show
that the microwave healing effect is largely determined by the steel fibre content and the mix design
of the porous asphalt concrete.. Besides, the uneven heating effect of microwave contributes to an
unstable damage recovery in the asphalt mixture, which makes it less efficient than induction heating.
However, microwaves exhibited the ability to penetrate further into the depth of the test specimen
and heat beneath the surface, indicating deeper damage recovery prospects.

Keywords: self-healing asphalt; microwave heating; porous asphalt; semi-circular bending

1. Introduction

Asphalt pavement, throughout its service life, has the ability to repair its own damage
and recover its strength and fatigue life autonomously during rest periods [1–5]. Research
has demonstrated that temperature is the dominant factor influencing the self-healing
properties of asphalt concrete, which means that an increase in the test temperature not only
increases the self-healing rate but also shortens the total time needed for full healing [6,7].
Based on this concept, methods including induction heating and microwave heating are
developed to achieve self-healing in asphalt concrete by increasing the temperature [8,9].

As a promising extrinsic asphalt healing method, induction heating heats up asphalt
mixture containing conductive particles with a high-frequency alternating electromagnetic
field generated by an induction coil [10–13]. However, the gradient temperature distribu-
tion, the induction heating speed, and the availability of a large-scale induction vehicle
limit the widespread application of this technique in the field [14].

Similar to induction heating, microwave heating is also considered an effective extrin-
sic technique to promote the self-healing of bituminous materials. Due to their advantages
in heating, such as their fast speed, good uniformity, and energy-saving potential, mi-
crowaves are widely used in our daily life, as well as in the food industry, medicine
production, and other fields [15]. During the heating process, microwave radiation applies
alternating electromagnetic fields with a higher frequency than induction, in the order of
megahertz, causing a change in the orientation of polar molecules, which results in internal
friction and increases the material temperature [16]. In this way, the bitumen begins to
flow, and the damages get healed.
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Norambuena-Contreras et al. [8] found that microwave heating increased the tem-
perature of the binder, not the aggregates, and as such normal asphalt mixture can be
heated with microwave heating energy. González et al. [16] also indicated that asphalt
mixtures with aggregates that were naturally heated with microwave radiation could
be crack–healed.

However, with some additives, the microwave heating speed can be accelerated
significantly. The ferrous particles are the most common materials used to enhance the
microwave heating effect in asphalt mixture, because they can absorb and conduct more
thermal energy than other mixture components. Zhao et al. [17] indicated that addition of
ferrite particles can largely increase the microwave heating speed in asphalt concrete.

Steel wool fibres are usually used to enhance the microwave healing effect in as-
phalt mixture. In a microwave crack healing study, Gallego et al. [18] incorporated steel
wool fibres into an asphalt mixture, and found these steel wool fibres made it more sus-
ceptible to the energy of the microwaves. Gallego et al. indicated that the microwave
heating requires much less steel fibre content and energy consumption, but shows higher
heating efficiency in contrast to the induction heating. Similar results were reported by
Norambuena-Contreras et al. [19]. In another study, Norambuena-Contreras et al. [8] com-
pared the healing effects from induction heating and microwave heating, which confirmed
the higher healing efficiency of the microwave heating, but indicated that microwave
heating could result in a change in the air voids’ structure.

In a microwave technique application study, Gao et al. [20] found that steel slag
possesses a higher microwave heating capacity in contrast to limestone aggregate, which
is due to the higher hyperactive (Fe3O4) and active (Fe2O3 and FeS) content in steel slag.
Phan et al. [21] used coarse steel slag to replace normal aggregate, which also showed an
improved microwave healing effect in asphalt mixture. Wang et al. [22] reported similar
findings and used a numerical model to simulate the microwave heating of asphalt mixture,
which showed a good correlation with laboratory test results.

The use of fine ferrous particles in microwave healing was also investigated. Li et al. [23]
tested the microwave healing effect of asphalt mixture with steel slag fillers and found that,
under microwave irradiation, steel slag fillers based asphalt mastics could release more heat
than limestone fillers based asphalt mastics. Li et al. explained this with the higher relative
complex permittivity, relative complex permeability, and reflection loss of steel slag filler
than of limestone filler. In another study, Zhao et al. [17] tested the microwave heating with
three types of filler additives in asphalt mixture and indicated that NiZn ferrite powders
have an excellent microwave absorbing capacity, and an increase in the NiZn ferrite content
resulted in a significant increase of the heating speed of asphalt mastic, asphalt matrix, and
asphalt concrete.

Except for ferrite particles, carbon-based materials have also been investigated in
asphalt mixture for microwave healing. Wang et al. [24] reported that carbon fibre, as
a modifier, could increase the thermal conductivity and fracture strength due to fibre
reinforcement. Wang et al. also indicated that the addition of carbon fibres could achieve
superior microwave healing performance in the fracture–healing cycles. Karimi et al. [25]
proposed activated carbon as a potentially viable and robust binder-based conductive
component for the microwave-induced heating and healing of asphalt concrete.

The literature review indicates that microwave healing is a promising damage healing
method for asphalt mixture, with an excellent heating speed, fewer additive requirements,
and less energy consumption compared to induction heating. As such, this study looked
into the microwave healing prospect of porous asphalt concrete (PAC). Firstly, PAC samples
with three different mixture designs were prepared, and then a proper microwave heating
time was determined. Afterwards, a semi-circular bending (SCB) and healing programme
was carried out to investigate the microwave healing efficiency on these PAC samples.
Finally, the test results were compared with the healing efficiency of other asphalt self-
healing systems in the authors’ previous work [26,27].
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2. Materials and Methods
2.1. Materials

In this study, the microwave healing effect was investigated in porous asphalt, which
is prone to ravelling. Steel Wool Fibres (SWF) were incorporated into the asphalt mix to
improve its electromagnetic response, and, therefore, a higher microwave heating efficiency.
The SWF had a density of 7.6 g/cm3, an average length of 1.4 mm, a diameter of 40 µm,
and a resistivity of 7 × 10−7 Ω·cm. Table 1 shows the three mix compositions of the PAC
used in this study, which were designed and verified based on porous asphalt structures
in field applications by Heijmans in the Netherlands. The mix constituent indicates the
diameter of the sieve mesh to distinguish the aggregate sizes. PA1 and PA2 were designed
following the standard PA 0/8, while PA3 was designed following the standard PA 0/11,
and the void content was 20% for the asphalt mixtures in this study. Two different SWF
contents were used in the asphalt mixtures, in which 3% SWF (by volume of bitumen) was
applied in PA1, while 6% SWF was applied in PA2 and PA3.

Table 1. The mix compositions of the asphalt mixture.

Mix Constituent
% Content in Mix

PA1 PA2 PA3

16 mm - - 7.97
11.2 mm 8.21 8.12 62.00

8 mm 42.68 42.18 7.97
5.6 mm 29.13 28.79 1.78
2 mm 7.85 7.74 9.86
63 µm 5.61 5.55 4.22

Bitumen 5.34 5.27 4.32
Steel Fibres 1.18 2.33 1.88

The asphalt mixtures were mixed with a laboratory drum mixer and then compacted
into slabs with a roller compactor. Afterwards, the semi-circular asphalt samples with the
dimensions shown in Figure 1 were prepared by drilling and cutting from these slabs for
the SCB tests. The detailed asphalt slab production and cutting of the SCB samples can be
referred to the authors’ previous publication [28].
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2.2. Testing Methods
2.2.1. X-ray Computed Tomography

SWF can largely enhance the conductivity and microwave heating speed of asphalt
mixture, but it can gather into clusters during asphalt mixing, which not only absorbs too
much bitumen and decreases the mechanical properties of the mixture, but also causes
uneven heating or overheating on the cluster region. X-ray computed tomography (XCT)
was used to investigate the SWF distribution in the PA mix. To this aim, a Phoenix Nanotom
CT scanner was employed, and the resolution was set as 20 µm.
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2.2.2. Semi-Circular Bending Test

In this study, the SCB test was employed to investigate the fracture resistance of the
PAC. The test was performed according to European norm EN 12697-44. The detailed
test settings and the calculation of the maximum stress at failure can be referred to the
previous work [26].

2.2.3. Microwave Healing

The microwave healing was performed on the damaged PAC samples with a mi-
crowave oven with the power of 1000 Watts at the frequency of 2.45 GHz, and the mi-
crowave oven had the inner size of 330 × 325 × 200 mm. An infrared camera was used to
investigate the temperature profile of the specimen after microwave heating. The optimum
microwave heating time needed to be determined before the healing test. To this aim,
five SCB specimens (PA3) were heated in a microwave oven for 30, 45, 60, 75, and 90 s,
respectively, and the highest surface temperatures of the heated specimens were recorded.

2.2.4. Bending and Healing Programme

Figure 2 shows images of an SCB specimen (PA1) after healing test and after bending
test. An SCB bending and microwave healing programme was designed to evaluate the
healing efficiency of each specimen:

1. First, the original mechanical properties of the specimen were studied with an SCB test.
2. Second, the fracture faces of the bent specimen were closed and heated in the mi-

crowave oven, and then conditioned at 23 ◦C for 20 h (Figure 2a).
3. Subsequently, the next SCB test was performed to acquire the regained mechanical

properties of the specimen after microwave healing (Figure 2b).
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Afterwards, step 2 and 3 were repeated, which were considered as a bending and
healing cycle. The testing programme was completed after 6 bending and healing cycles,
or when the peak load of the healed specimen was below 200 N. The microwave healing
efficiency of each SCB specimen can be evaluated with the healing index (HI) calculated
with the peak load acquired during the bending and healing programme in Equation (1):

HI =
Cx

C1
× 100 (1)

where HI is the healing index (%), C1 is the initial peak load (N), and Cx is the peak load
measured from the x testing cycle (N). In this study, the healing efficiency of the microwave
healing system can be compared with the other asphalt self-healing systems, including the
calcium alginate capsules healing system, the induction healing system, and the combined
healing system.
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3. Results and Discussion
3.1. X–CT Test Results

Figure 3 presents the SWF distribution in a PAC sample with mixture PA3, where the
yellow particles in the CT scan image (on the right) illustrate the positions of the steel fibres
in the PA cylinder (on the left). This indicates that when 6% steel fibres are added, they are
homogeneously distributed in the PA mix, since no significant cluster is found.
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3.2. Microwave Heating Effect

Figure 4a shows the highest surface temperature of the microwave heated specimens
with mix PA3 after different heating times. It was found that a microwave heating period
of 75 s leads to the highest surface temperature at 84 ◦C, which almost reaches the opti-
mum temperature for thermally induced crack-healing behaviour [14], and as such the
microwave heating time was determined as 75 s. Figure 4b shows the average temperature
measured from the infrared camera during all microwave healing cycles. The dash lines in
Figure 4b show the average healing temperatures of SCB specimens from groups PA1, PA2,
and PA3, which are 60.4, 97.3, and 77.1 ◦C, respectively. The specimens in group PA2 had
the highest microwave heating temperature, which might be due to it having the greatest
steel fibre content among the three test groups. For the same reason, PA3 showed a higher
microwave heating temperature than PA1.
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5b,c). Besides, it is noticed that the temperature inside the sample can be much higher than 
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tially achieve damage healing beneath the surface of the asphalt mixture. 
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maximum temperature during healing cycles.

Figure 5 illustrates the temperature distribution of SCB specimens with different
mixture types after microwave heating. Although PA1 (Figure 5a) showed a lower heating
temperature than PA2 and PA3, its temperature was more evenly distributed and did
not show a temperature concentration area, as was presented in the other two groups
(Figure 5b,c). Besides, it is noticed that the temperature inside the sample can be much
higher than on the surface, and this is found in both Figure 5b,c, where some areas behind
the surface aggregate exhibit brighter colours. As such, the microwave heating technique
can potentially achieve damage healing beneath the surface of the asphalt mixture.
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3.3. Fracture Properties of the Porous Asphalt Concrete with Capsules

Figure 6 presents the development of the maximum stress of SCB specimens during
the bending and healing cycles. Figure 6a shows that PA1 and PA2 have much higher initial
maximum stress than PA3, which indicates porous asphalt mixture with finer aggregates
has a higher fracture resistance. During the SCB bending and healing tests, some specimens
from group PA1 could not gain any strength from microwave healing after the third bending
test, and the maximum stress of these specimens was regarded as 0 MPa in the following
cycles, which caused scattered results of group PA1 from cycle 4. The same situation was
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also found in group PA3, where some specimens could not be healed after the 5th cycle. In
comparison, all specimens from group PA2 could regain a maximum stress around 0.3 MPa
after all the microwave healing cycles. Moreover, the regained strength in PA1 after cycle 2,
was significantly lower than that in PA2 and PA3, and this finding might be related to the
microwave heating temperature shown in Figure 5b, as well as the steel fibre content in the
PA mix (Table 1). Figure 6b presents the healing index of all three testing groups during
the bending and healing test cycles, which shows a similar trend as the maximum stress. It
was found that PA1 had the lowest healing efficiency, and PA3 showed a rapid decrease
of healing index at the 6th cycle, which might be due to the unrecoverable specimens in
group PA3.
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3.4. Characteristics of the Microwave Healing System

Figure 7 shows the side effects of microwave heating on the healed specimens.
Figure 7a shows the image of SCB specimen from group PA2 whose bitumen overflowed
out of the surface after microwave heating, which might be due to the heat concentration
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inside of the asphalt mixture. Figure 7b summarises the vertical deformation of all the
specimens after all the bending and healing cycles. Specimens from group PA3 contained
larger particles in the mix and showed the highest vertical deformation. The deformation
of specimens in group PA2 was higher than those in PA1, which might be because of the
higher microwave heating temperature for specimens in PA2. A change in asphalt structure
during microwave heating was also reported by Norambuena-Contreras et al. [8].
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after all testing cycles.

Figure 8 shows the crack healing efficiency of microwave healing systems in com-
parison with other healing systems reported in previous works [26,27]. In Figure 8, the
healing index of specimens from group PA3 is used to represent the healing efficiency of
microwave healing systems, which followed the same mix design principle—gradations,
void content, bitumen type, etc.—as the other healing systems. This indicates that when
heated up to the same surface maximum temperature, the microwave healing showed
lower efficiency than the induction healing when tested on the same mix without laboratory
ageing. Moreover, this microwave healing efficiency was lower than the induction healing
system and combined healing system with laboratory aged mixture in most of the healing
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cycles. This might be due to the uneven heating effect from microwaves, which means
the damaged area is not always covered by the high-temperature region from microwave
heating, and this uneven heating could further change the void distribution in the PA mix.
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Figure 9 shows the infrared images of a PAC specimen during induction heating, which
indicates that although the induction heating has a gradient heating effect, the temperature
distribution is more homogeneous than that of microwave heating. Accordingly, the
induction healing effect is more stable [29].
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However, since the microwave heating technique can heat up the asphalt structure
below the surface, it is believed that if the microwave is guided to focus on the damaged
site, the microwave healing system can be an effective supplement for induction healing to
achieve deeper damage repairing in asphalt.

4. Conclusions

This study investigated the healing effect of the microwave heating method on three
different porous asphalt mixes. The results show the great potential of microwave healing;
however, the results also highlighted some side effects of this asphalt healing method. The
following conclusions are drawn:

• The optimum microwave heating time may differ for different asphalt mixes, which is
related to the mixture type and the steel fibre content. It is possible to raise the surface
temperature of the standard porous asphalt 0/11 incorporating 6% steel fibres to
around 80 ◦C in 75 s. The temperature profiles of the asphalt specimens also indicate
that, in the same microwave heating condition (power, frequency, time, etc.), the
heating temperature is proportional to the steel fibre content.

• Microwave heating contributes to the crack healing in PAC, but it can also change the
void structure of the PAC. This also indicates that larger aggregates or higher steel
fibre contents may lead to a higher vertical deformation after microwave heating.

• Microwaves could also have an uneven heating effect on the asphalt mixture, which
may lead to a heterogeneous temperature distribution of the tested specimen, and
could even cause bitumen to flow out of the asphalt mixture due to overheating.
However, this finding proves that microwaves can heat up the inner part of the
asphalt structure and therefore repair damage at deeper sites.

• Aimed at the same maximum surface heating temperature, the microwave healing
system is less efficient than the induction healing system.

In general, as an induced healing method, microwave heating can achieve fast heating
and effective crack healing in asphalt concrete. However, due to its negative effects, such
as uneven heating, change in void structure, and causing the bitumen to flow out, the
current microwave heating technique can hardly be used as the prime asphalt self-healing
mechanism. As such, it is suggested to use microwave healing as a supplement for the
combined healing system to solve the potential practical problems from induction healing—
i.e., limited heating depth and heating speed.
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