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Information diffusion backbones in 
temporal networks
Xiu-Xiu Zhan   , Alan Hanjalic & Huijuan Wang   

Progress has been made in understanding how temporal network features affect the percentage of 
nodes reached by an information diffusion process. In this work, we explore further: which node pairs 
are likely to contribute to the actual diffusion of information, i.e., appear in a diffusion trajectory? 
How is this likelihood related to the local temporal connection features of the node pair? Such deep 
understanding of the role of node pairs is crucial to tackle challenging optimization problems such as 
which kind of node pairs or temporal contacts should be stimulated in order to maximize the prevalence 
of information spreading. We start by using Susceptible-Infected (SI) model, in which an infected 
(information possessing) node could spread the information to a susceptible node with a given infection 
probability β whenever a contact happens between the two nodes, as the information diffusion process. 
We consider a large number of real-world temporal networks. First, we propose the construction of 
an information diffusion backbone GB(β) for a SI spreading process with an infection probability β on a 
temporal network. The backbone is a weighted network where the weight of each node pair indicates 
how likely the node pair appears in a diffusion trajectory starting from an arbitrary node. Second, we 
investigate the relation between the backbones with different infection probabilities on a temporal 
network. We find that the backbone topology obtained for low and high infection probabilities 
approach the backbone GB(β → 0) and GB(β = 1), respectively. The backbone GB(β → 0) equals the 
integrated weighted network, where the weight of a node pair counts the total number of contacts in 
between. Finally, we explore node pairs with what local connection features tend to appear in GB(β = 1), 
thus actually contribute to the global information diffusion. We discover that a local connection feature 
among many other features we proposed, could well identify the (high-weight) links in GB(β = 1). This 
local feature encodes the time that each contact occurs, pointing out the importance of temporal 
features in determining the role of node pairs in a dynamic process.

Both online social networks like Facebook, Twitter and LinkedIn and physical contact networks facilitate the 
diffusion of information where a piece of information is transmitted from one individual to another through 
their online or physical contacts or interactions. Information diffusion processes have been modeled by, e.g., 
independent cascade models1, threshold models2 and epidemic spreading models3–7. Social networks have been 
first considered to be static where nodes represent the individuals and links indicate the relation between nodes 
such as whether they have ever contacted or not8. Information is assumed to propagate through the static links 
according to the aforementioned models. Recently, the temporal nature of contact networks has been taken into 
account in the spreading processes, i.e., the contacts between a node pair occur at specific time stamps (the link 
between nodes is time dependent) and information could possibly propagate only through contacts (or temporal 
links)9–13. Consider the SI (Susceptible-Infected) spreading process on a temporal network3,5. Each individual can 
be in one of the two states: susceptible (S) or infected (I). A node in the infected (susceptible) state means that it 
has (does not have) the information. A susceptible node could get infected with an infection probability β via each 
contact with an infected node. An infected individual remains infected forever.

Progress has been made in the exploration of how temporal network features14–18 and the choice of the source 
node19,20 influence a diffusion process especially its diffusion size, i.e., the number of nodes reached. However, we 
lack foundational understanding of which kind of node pairs are likely to contribute to an actual information dif-
fusion process, i.e., appear in an information diffusion trajectory. Such understanding is essential to explain and 
control the prevalence of information spread (e.g., which node pairs should be stimulated to contact at what time 
in order to maximize the prevalence?). The contact frequency between nodes, as typically used in static networks, 
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is not the only factor that would affect the appearance of a node pair in an information diffusion trajectory, as we 
need to consider the time stamps of the contacts as well21–24. For instance, the node pairs with a lot of contacts that 
only happen before the information starts to diffuse are of no importance for the diffusion process.

In this paper, we address the question of which kind of node pairs are likely to contribute to the diffusion of 
information, considering the SI diffusion process as a start. Specifically, we explore how the probability that a 
node pair appears in a diffusion trajectory is related to local temporal connection features of the two nodes. First, 
we propose the construction of an information diffusion backbone GB(β) for a SI spreading process with an infec-
tion probability β on a given temporal network. The construction is based on a large number of information dif-
fusion trajectories. The resultant backbone is a weighted network where the weight of each node pair indicates 
how likely the node pair contributes to a diffusion process that starts from an arbitrary node. We consider a large 
number of empirical temporal networks. For each network, we construct diffusion backbones for diverse infec-
tion probabilities and study the relationship between these backbones. We find that backbone topology varies 
from β β= ∆ →G G( 0) ( 0)B B  (which equals the integrated weighted network) when the spreading probability β 
is small to GB(β = 1) when the infection probability is large. The difference between the two extreme backbones 
GB(β = 0) and GB(β = 1), suggests the extent to which the backbones with diverse infection rates may vary. Finally, 
we investigate further which local connection feature of a node pair may suggest its high weight in the backbone 
GB(β = 1). One of the features that we proposed incorporates only the time stamps when contacts occur between 
a node pair. It outperforms other classic features of a node pair including those derived from the integrated net-
work, which points out the importance of temporal information in determining the role of a node pair in a diffu-
sion process. The computational complexity of GB(β = 1) is high. Our finding of the relation between local 
temporal features of a node pair and its global contribution to information diffusion allows the approximation of 
the information backbone by computing a local temporal feature that is of low computational complexity.

The paper is organized as follows. In Section Materials and Methods, we first introduce how to represent 
a temporal network and then explain the process of constructing the information diffusion backbone for a SI 
diffusion process on a temporal network. Finally, we illustrate a set of empirical temporal networks that will be 
used in the following experiments. In Section Results, we present our comparative analysis of the constructed 
backbones for different infection probabilities and for different networks. At the end of this section, we evaluate 
which local connection features of a node pair, including the measures we proposed, can identify whether the 
node pair will be connected in the backbone GB(β = 1) and with a high weight or not. A discussion concludes the 
paper in Section Discussion.

Materials and Methods
Representation of a Temporal Network.  A temporal network can be measured by observing the con-
tacts between each node pair at each time step within a given time window [0, T] and represented as = ( , )G N L . 
Here,   is the node set, with the size = | |N   representing the number of nodes in the network, and 
L N= ∈ ∈l j k t t T j k{ ( , , ), [0, ], , } is the contact set, where the element l(j, k, t) indicates that the nodes j and k 
have a contact at time step t. A temporal network can also be described by a three-dimensional binary adjacency 
matrix  × ×N N T, where the elements =j k t( , , ) 1  and =j k t( , , ) 0  represent, respectively, that there is a con-
tact or no contact between the nodes j and k at time step t.

An integrated weighted network N L=G ( , )W W  can be derived from a temporal network  by aggregating the 
contacts between nodes over the entire observation time window T. In other words, two nodes are connected in 
GW if there is at least one contact between them in . Each link l(j, k) in W  is associated with a weight wjk count-
ing the total number of contacts between node j and k in . The integrated weighted network GW can therefore be 
described by a weighted adjacency matrix AN×N, with its element

∑=
=

A j k j k t( , ) ( , , )
(1)t

T

1


counting the number of contacts between a node pair. An example of a temporal network  and its integrated 
weighted network GW are given in Fig. 1(a) and (b), respectively.

Information Diffusion Backbone.  We propose to characterize how node pairs are involved in diffusion 
processes by constructing information diffusion backbones. We will construct a backbone for the SI diffusion 
process with a given infection probability β on a temporal network defined above. We start with the simplest case 
when β = 1. At time step t = 0, the seed node i is infected and all the other nodes are susceptible. The trajectory of 
the SI diffusion on  can be recorded by a diffusion path tree  β( )i . The diffusion path tree  β( )i  records the union 
of contacts, via which information diffuses. We define the diffusion backbone β β=G ( ) ( , ( ))B BN L  as the union 
of all diffusion path trees, i.e., ∪

=i

N

1
  β( )i , that start at each node as the seed node. The node set of GB(β) is  , and 

nodes are connected in GB(β) if they are connected in any diffusion path tree. Each link in  β( )B  is associated with 
a weight wjk

B , which denotes the number of times node pair (j, k) appears in all diffusion path trees. An example of 
how to construct the diffusion backbone is given in Fig. 1(c) and (d) for β = 1. The ratio w

N
jk
B

 indicates the proba-
bility that the node pair (j, k) appears in a diffusion trajectory starting from an arbitrary seed node.

When 0 < β < 1, the diffusion process is stochastic. In this case, the backbone can be obtained as the average 
of a number of realizations of the backbones. Per realization, we run the SI process starting from each node serv-
ing as the seed for information diffusion, obtain the diffusion path trees and construct one realization of the dif-
fusion backbone. The weight wjk

B  of a link in GB(β) is the average weight of this link over the h realizations. The 
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computational complexity of constructing GB(β) is N Th( )3 , where T is the length of the observation time win-
dow of the temporal network.

Empirical Networks.  Description and basic features.  For the construction and analysis of diffusion back-
bones, we consider a large number of temporal networks that capture two types of contacts, i.e., physical and 
virtual contacts. We collect the datasets Reality mining25,26, Hypertext 200927,28, High School 201129, High School 
201229, High School 201330, Primary School31, Workplace32, Haggle33,34 and Infectious28 that record the face-to-face 
physical contacts of individuals at MIT, ACM Hypertext 2009 conference, a high school, a primary school, a 
workplace and the Science Gallery, respectively. We also consider virtual contact datasets recording the mailing 
and message behavior, including Manufacturing Email35,36, Email Eu37, DNC Email38 and Collegemsg39. The list of 
the datasets used and their detailed statistics are given in Table 1. We consider only the temporal network topol-
ogies measured at discrete time steps in these datasets, whereas the duration of a time step differs among these 
datasets. We have removed the time steps without any contact in order to consider the steps that are relevant for 
information diffusion and to avoid the periods that have no contact due to technical errors in measurements.

Observation time windows.  We aim to understand which node pair is likely to be connected in the backbone, 
thus to contribute to a diffusion process and how such connection in the backbone is related to this node pair’s 
temporal connection features. However, real-world temporal networks are measured for different lengths T of 
time windows as shown in Table 1. If a diffusion process has a relatively high spreading probability or the tem-
poral network has a relatively long observation time window, almost all the nodes can be reached within a short 
time. The temporal contacts happened afterwards will not contribute to the diffusion process. Hence, we will 
select the time windows such that all contacts within each selected time window could possibly contribute, or 
equivalently, are relevant to a diffusion process. On the other hand, we will consider several time windows for 
each measured temporal network. This will allow us to understand how the time window of a temporal network 
may influence the relation between the backbones of different spreading probabilities and relation between a node 
pair’s local connection features and its connection in a backbone. We select the observation time windows for 
each measured temporal network within its original time window [0, T] as follows. On each measured temporal 
network with its original observation time window [0, T], we conduct the SI diffusion process with β = 1 by set-
ting each node as the seed of the information diffusion process and plot the average prevalence ρ at each time step, 
as illustrated in Fig. 2. The time steps are normalized by the original length of observation window T. The average 
prevalence at the end of the observation t/T = 1 is recorded as ρ(t = T). The time to reach the steady state varies 
significantly across the temporal networks. For networks like RM, HT2009, the diffusion finishes or stops earlier 
and contacts happened afterwards are not relevant for the diffusion process. However, the prevalence curves ρ 
of the last four networks (i.e., Haggle, Infectious, DNC and Collegemsg) increase slowly and continuously over the 
whole period. Actually, we observe these four networks are more heterogeneous than the other networks in terms 
of the degree distribution of the integrated static network, which are shown in Fig. 3.

For each real-world temporal network with its original length of observation time window T, we consider the 
following lengths of observation time windows: the time Tp% when the average prevalence reaches p%, where 

Figure 1.  (a) A temporal network  with N = 5 nodes and T = 8 time steps. (b) The integrated weighted 
network GW, in which a link exists between a node pair in GW as long as there is at least one contact between 
them in . The weight of a link in GW is the number of contacts between the two nodes in . (c) Diffusion path 
tree  β( )i , where node i is the seed and infection rate is β = 1. (d) Diffusion backbone GB(1), where the infection 
probability β = 1 in the SI diffusion process. The weight on the node pair represents the number of times it 
appears in all the diffusion path trees.
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p ∈ {10, 20, …, 90} and p% < ρ(t = T). For a given measured temporal network = ( , )G N L , we consider maxi-
mally 9 observation time windows. For each length Tp%, we construct a sub-temporal network, = ( , )p p% %G N L , 
in which p%  includes contacts in  that occur earlier than Tp%. The lengths of observation time window Tp% for 
the empirical networks are shown in Table S1 in the APPENDIX A. For a network like RM, we can get 9 
sub-networks and for network like Infectious, we can only obtain 5 sub-networks. In total, 106 sub-networks are 
obtained. Contacts in all these sub-networks are relevant for SI diffusion processes with any spreading probability 
β. Without loss of generality, we will consider all these sub-networks with diverse lengths of observation time 
windows and temporal network features to study the relationship between diffusion backbones and temporal 
connection features.

Results
Relationship between Diffusion Backbones.  We explore the relationships among the backbones GB(β) 
with different spreading probabilities β ∈ [0, 1] on the same temporal network. When the infection probability 
β → 0, the backbone GB(β → 0) approaches the integrated weighted network GW if the network is finite regarding 
to its size and the number of contacts. This can be understood as follows. When an arbitrary node i is the seed 
node, the probability that the information diffuses to any other node j within a given observation time window of 
length T is β β− − = − ∼ − ∼β β− −e e w1 (1 ) 1 1w w log w

ij
(1 )ij ij ij , where wij is the number of contacts between 

Network N T | |C | |W Contact Type

Reality Mining (RM) 96 33,452 1,086,404 2,539 Physical

Hypertext 2009 (HT2009) 113 5,246 20,818 2,196 Physical

High School 2011 (HS2011) 126 5,609 28,561 1,710 Physical

High School 2012 (HS2012) 180 11,273 45,047 2,220 Physical

High School 2013 (HS2013) 327 7,375 188,508 5,818 Physical

Primary School (PS) 242 3,100 125,773 8,317 Physical

Workplace (WP) 92 7,104 9,827 755 Physical

Manufacturing Email (ME) 167 57,791 82,876 3,250 Virtual

Email Eu (EEU) 986 207,880 332,334 16,064 Virtual

Haggle 274 15,662 28,244 2,124 Physical

Infectious 410 1,392 17,298 2,765 Physical

DNC Email (DNC) 1866 1,8682 37,421 4,384 Virtual

Collegemsg 1899 5,8911 59,835 13,838 Virtual

Table 1.  Basic features of the empirical networks. The number of nodes (N), the original length of the 
observation time window (T is number of time steps), the total number of contacts ( | |), the number of links in 
GW (| |W ) and contact type are shown.

Figure 2.  Average prevalence ρ of the SI spreading process with β = 1 on each original empirical temporal 
network over time. The time steps are normalized by the corresponding observation time window T of each 
network.
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nodes i and j within the observation time window. Assume that i and j have contact(s), i.e., wij > 0, and node k has 
no contact with the seed i but has contact(s) with node j. The probability that the information initiated by the seed 
i diffuses further from j to k is smaller than β βw w wij jk ij

2 . In other words, the probability that the information 
diffuses via a second hop node pair (j, k) relative to the seed i (from the view of the integrated network) is negligi-
bly small compared to the first hop node pair (i, j). Hence, the information diffusion tree approaches a tree whose 
root is the seed node and the leaves are the nodes that have contacts with the seed. The information diffusion 
backbone, which is the union of the diffusion trees rooted at each node, has the same topology as the integrated 
network. The weight wij

B of each link in the backbone is β∼w w2ij
B

ij . When the network is infinite in size or 
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Figure 3.  Degree distribution of GW and GB(1) for empirical networks with longest observation window.

https://doi.org/10.1038/s41598-019-43029-5


6Scientific Reports |          (2019) 9:6798  | https://doi.org/10.1038/s41598-019-43029-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

the number of contacts, β → ∼G G( 0)B W  is not necessarily true also because a node pair can be a second hop 
pair relative to many seed nodes.

We denote β β= ∆ → =G G G( 0) ( 0)B B W  except that the weight of each node pair in the two networks is 
scaled. When the infection probability β is small, node pairs with more contacts are more likely to appear in the 
backbone. The backbone GB(β) varies from GB(0) = GW when β → 0 to GB(1) when β = 1.

Overlap in Links between Backbones.  We investigate first how different these backbones with different spreading 
probabilities β ∈ [0, 1] are and whether GB(β) with a small and large β can be well approximated by GW and GB(1) 
respectively.

When 0 < β < 1, every contact has a none zero probability to diffuse the information, especially taking into 
account the fact that every node could be the seed of the information. Therefore, the topology of GB(β) without 
considering the link weight is the same as that of GW and we have  β| | = | |( )B W  when 0 < β < 1. However, note 
that the observed topology of GB(β) obtained from the simulation which is composed of a limited number of 
iterations of the spreading process can be a sub-graph of the topology of GW. We illustrate how the number of 
iterations affects the ratio of links in the observed GB(β) to | |W  in Figure S1(d–f) in the APPENDIX B. It shows 
that with the increased number h of iterations,  β| |( )B  is getting close to | |W  for networks with a large observa-
tion time window. For networks with a small observation time window like RM−T10%, β| |( )B  tends to approach 
| |W  at a small number of iterations h. For GB(1), we have | | < = | |(1)B W  , which is reflected in Fig. 5 (a) where 
the number of links in GB(0) and GB(1) are compared.

The similarity between two backbones or two weighted networks in general can be measured by their overlap 
in links or node pairs with a high weight. For each backbone GB(β), links in β( )B  are ordered according to their 
weights in the backbone in a descending order. Thus the links in the relatively top positions are more likely to be 
used in the diffusion process. Therefore, for any backbone with β ∈ [0, 1], we consider the top | |(1)B  links from 
 β( )B , which are denoted as  β⁎( )B . The similarity or overlap between two backbones like GB(β) and GB(β = 0) can 
be measured by the overlap between β⁎( )B  and ⁎(0)B , defined as

 
 


∩β β

β
β

= =
| |

| |
⁎ ⁎

⁎ ⁎

⁎r r( , 0) ( ( ), (0)) ( ) (0)
( )

,
(2)B B

B B

B

For each temporal network, we construct each backbone GB(β), where β = 0.25,0.5,0.75,1, as the average of 
h = 100 iterations of the SI spreading processes starting from each node as the seed, based on the method illus-
trated in Section Materials and Methods (The validation that 100 iterations are enough to get a stable backbone 
is given in Figure S1 in the APPENDIX B). The backbone GB(β = 0) equals GW. The overlap between backbones 
for dataset RM are shown in Fig. 4 as an example. More examples are given in Figure S2 in the APPENDIX C). 
The overlap r(β, 0) tends to decrease with the increase of β and GB(β = 0) well approximates the backbones with 
a small β. Similarly, GB(1) well approximates the backbones with a large β. When the observation time window 
of a temporal network is small, the backbones with different β are relatively similar in topology. In this case, a 
diffusion path tree tends to have a smaller average depth (The average depth of a tree is the average number of 
links in the shortest path from the root to another random node in the tree) and a node pair with a large number 
of contacts is likely to appear or connect in the backbone, which explains why GW approximates all the backbones 
including GB(1). These observations motivate us to explore the two extreme backbones GB(0) and GB(1) regarding 
to how much they differ from or relate to each other.

Figure 4.  (a) Overlap r(β, 0) between GB(β) and GB(0) as a function of β in (sub)networks derived from dataset 
RM; (b) Overlap r(β, 1) between GB(β) and GB(1) as a function of β in (sub)networks derived from dataset RM. 
Diffusion backbones (0 < β < 1) are obtained over 100 iterations.
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Degree of a Node in Different Backbones.  From now on, we focus on the two extreme backbones GB(0) = GW and 
GB(1). A node pair that has contact(s) may not necessarily contribute to a diffusion process. Hence, the degree 
of a node in GB(0) is larger or equal to its degree in GB(1). The comparison of the number of links in GB(0) and 
GB(1) in Fig. 5 shows that GB(1) indeed has less links than GB(0), especially when the observation time window 
is large. As explained earlier, GB(1) and GB(0) are similar to each other in topology when the observation time 
window is small.

Furthermore, we explore the degree of a node in GW = GB(0) and GB(1) respectively. Interestingly, a universal 
finding is that the degree of a node in these two backbones tends to be linearly and positively correlated in all the 
empirical networks. Table S2 in the APPENDIX E provides the Pearson correlation coefficient between the degree 
of a node in GW and in GB(1), which is above 0.7 for all the networks. Since the topology of GB(1) is a subgraph of 
GW, the degrees of a node in these two networks tend to be linearly correlated if these two networks have a similar 
number of links. This explains the high degree correlation when the temporal networks have a short observation 
window. Figure 6 shows the scatter plot of the degree of each node in GW and GB(1) respectively for the network 
with the longest observation window when their backbones GW and GB(1) differ much in the number of links 
derived from two datasets respectively. The strong degree correlation in all these cases suggests that a node with 
a high degree in GW tends to have a high degree in GB(1). A node that has contacts with many others tends to be 
able to propagate the information directly to many others.

Is this because the degree distribution in GW is highly heterogeneous that overrules the temporal orders of 
the contacts in determining how many other nodes a node is able to reach directly? Fig. 3 shows the degree 
distributions in GW and GB(1) respectively for each temporal network dataset with its longest observation win-
dow as given in Table S1 in APPENDIX A when these two backbones differ the most. We find that the degree 
distributions in these two backbones respectively indeed share a similar shape, which again support the strong 
linear correlation between the degrees of a node in these two backbones. However, not all networks GW have a 
power-law degree distribution. The strong degree correlation between GW and GB(1) exists even when GW has a 
relatively homogeneous degree distribution. This observation motivates us to explore whether a node pair with 

Figure 5.  The relationship between the number of links in GW and GB(1) for (a) all the networks with 
observation windows given in Table S1 in APPENDIX A; (b) the networks with the longest observation 
windows in each dataset.

-10 0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

0 10 20 30 40 50

0

5

10

15

20

25

30

35

PS_T90% I

N
od
e
de
gr
ee
in
G
B
(1
)

Infectious_T50% I

Node degree in GW

Figure 6.  Degree correlation between GW and GB(1) for networks PS and Infectious with the longest observation 
window respectively.

https://doi.org/10.1038/s41598-019-43029-5


8Scientific Reports |          (2019) 9:6798  | https://doi.org/10.1038/s41598-019-43029-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

a high degree product in GW thus also in GB(1) tends to be connected in GB(1) in Section Relationship between 
Local Features and the Diffusion Backbone GB(1).

The degree of a node j in GB(1) tells maximally how many nodes it could propagate the information directly to 
given that each node is possibly the source of the information, but not necessarily how frequently this node con-
tributes or engages in an information diffusion process when β = 1. The latter is reflected from the node strength 
of a node in GB(1): β∑ == w ( 1)k

N
jk
B

1 .

Link Weight Variance in Different Backbones.  The standard deviation of link weights in a backbone indicates 
how much the links differ in their probability of appearing in a diffusion process. We compare the standard devi-
ation of a link weight normalized by its mean =cv

W
W

Var[ ]
E[ ]

B

B
 (which is called the coefficient of variation) in GB(1) 

and GB(0). Figure 7 shows that the link weights in GB(0) or equivalently GW are more heterogeneous than those in 
GB(1) for almost all the networks we considered. The relatively homogeneous link weights in GB(1) implies that 
predicting which node pairs tend to have a high weight in GB(1) can be challenging.

Identifying the Diffusion Backbone GB(1).  In this section, we investigate how to identify the (high 
weight) links in the backbone GB(1) based on local and temporal connection features of each node pair. The key 
objective to understand how a node pair’s local and temporal connection features are related to its role in the 
global diffusion backbone GB(1). Our investigation may also allow us to approximate the backbone, whose com-
putational complexity is high ( N T( )3 ) base on local temporal features whose computational complexity is low.

We propose to consider systematically a set of local temporal features for node pairs and examine whether 
node pairs having a higher value of each feature/metric tend to be connected in the backbone GB(1). Some of 
these features are derived from the integrated network GW whereas the feature Time-scaled Weight that we will 
propose encodes also the time stamps of the contacts between a node pair. These node pair features or metrics 
include:

•	 Time-scaled Weight of a node pair (j, k) is defined as

∑φ α =












α

= t
( ) 1

(3)
jk

m

n

jk
m

1
( )

where n is the total number of contacts between j and k over the given observation window and tjk
i( ) is the time 

stamp when the i-th contact occurs and α is the scaling parameter to control the contribution of temporal infor-
mation. For the node pairs that have no contact, we assume their temporal weights to be zero. This metric is 
motivated by the intuition that when each node is set as the seed of the diffusion process at time t = 0, the contacts 
that happen earlier have a higher probability to be used for the actual information diffusion, thus appear in GB(1). 
When α = 0, φ β= =w(0) ( 0)jk jk

B  degenerates to the weight of the node pair in GW. Larger α implies the node 
pairs with early contacts have a higher time-scaled weight.
•	 Degree Product of a node pair (j, k) refers to β β= ⋅ =d d( 0) ( 0)j k , the product of the degrees of j and k in the 

integrated network GW. If two nodes are not connected in GW, their degree product is zero. The motivation for 
this measure is as follows. Given the degree of each node in GB(1) and if the links are randomly placed, the 
probability that a node pair (j, k) is connected in GB(1) is proportional to β β= ⋅ =d d( 1) ( 1)j k . We have 
observed in Section Relationship between Diffusion Backbones that the degrees of a node in GW and GB(1) are 
strongly and positively correlated. Moreover, only node pairs connected in GW are possible to appear or be 
connected in GB(1). If the connections in GB(1) are as random as in the configuration model40, node pairs 
with a high degree product dj(β = 0)⋅dk(β = 0) tend to appear in GB(1).

Figure 7.  The relationship between the coefficient of variation cv of the weight distribution in GW and GB(1) 
for (a) all the networks with observation windows given in Table S1 in APPENDIX A; (b) all the networks with 
longest observation windows.
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•	 Strength Product of a node pair (j, k) refers to sj(β = 0)⋅sk(β = 0), the product of the node strengths of j and k 
in the integrated network GW, where the node strength β = = ∑ ∈s A j i( 0) ( , )j i  of a node in GW equals the 
total weight of all the links incident to this node41,42. If two nodes are not connected in GW, their strength 
product is zero. This measure is an extension of the degree product to weighted networks.

•	 Betweenness of a link in GW counts the number of shortest paths between all node pairs that traverse the link. 
The distance of each link, based on which the shortest path is computed, is considered to be 

β =w
1

( 0)jk
B

, inversely 

proportional to its link weight in GW, since a node pair with more contacts tend to propagate information 
faster43,44. Node pairs that are not connected in GW have a betweenness 0. Betweenness is not local, but con-
sidered here as a benchmark feature that has been widely studied.

We explore further whether these node pair features could well identify the connection of node pairs in GB(1). 
According to the definition of the aforementioned centrality metrics, a higher value of a metric may suggest the 
connection of the corresponding node pair in GB(1). According to each metric, we rank the node pairs and the 
| |(1)B  node pairs with the highest values are identified as the links in GB(1). The identification quality of a metric, 
e.g., the time-scaled weight φjk(α), is quantified as the overlap r(φjk(α),1) between the identified link set and the 
link set  (1)B  in GB(1), as defined by Eq. (2).

Before we compare all the metrics in their identification powers, we examine first how the scaling parameter α 
in the time-scaled weight φjk(α) influences its identification quality. Figure 8 and Figure S3 in the APPENDIX D 
show that the quality differs mostly when 0 ≤ α ≤ 2 and remains relatively stable when α ≥ 2 in all the temporal 
networks. Hence, we will confine ourselves to the range 0 ≤ α ≤ 2.

The quality r by using each metric versus the ratio | |
| |
(1)B

W




 of the number of links in GB(1) to that in GW are plot-

ted in Fig. 9 for all the empirical temporal networks, with different lengths of the observation time windows. The 
diagonal curve = | |

| |
r (1)B

W




 corresponds to the quality of the random identification, where | |(1)B  links are ran-
domly selected from the links in GW as the identification for the links in GB(1). Degree product, strength product 
and betweenness perform, in general, worse than or similarly to the random identification. Even if the connec-
tions in GB(1) were random given the degree of each node in GB(1), the quality r of identifying links in GB(1) by 
using the degree product is close to that of the random identification, if the distribution of the degree product is 
relatively homogeneous or if the 


| |
| |

(1)B

W
 is large. The degree distribution in GB(1) is indeed relatively homogeneous 

α

Figure 8.  The quality of identifying links in GB(1) by using the time-scaled weight φjk(α) as a function of α in 
temporal networks derived from datasets (a) RM, (b) HT2008, (c) HS2011 and (d)HS2012.
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and | |
| |

(1)B

W




 is large in most empirical networks. This explains why the degree product performs similarly to the 
random identification.

The link weight in GW, equivalently, φjk(α = 0), outperforms the random identification, whereas the 
time-scaled weight φjk(α) with a larger α performs better. Node pairs with many contacts that occur early in time 
tend to contribute to the actual information propagation, i.e., be connected in GB(1). This observation suggests 
that the temporal information is essential in determining the role of nodes in a spreading process.

We investigate also whether these metrics can identify the links with the highest weights in GB(1). The quality 
r, as defined earlier, of identifying the top f fraction of links with the highest weight in GB(1) is plotted in Fig. 10. 
We choose the top | |⁎f (1)B  node pairs according to each metric as the identification of the top | |⁎f (1)B  links 
in GB(1) with the highest weights. We consider the networks with the longest observation window from each 
dataset. The diagonal curve 


= | |

| |
⁎r f (1)B

W
 corresponds to the quality of the random identification. Similar to the 

identification of all the links in GB(1), the time-scaled weight φjk(α) with a large α performs the best in identifying 
highly weighted links in GB(1), emphasizing again the important role of the temporal information of contacts.

Discussion
Much effort has been devoted to understand how temporal network features influence the prevalence of a diffu-
sion process. In this work, we addressed the further question: node pairs with what kind of local and temporal 
connection features tend to appear in a diffusion trajectory or path, thus contribute to the actual information 
diffusion? We consider the Susceptible-Infected spreading process with an infection probability β per contact on a 

α α α α α

Figure 9.  The quality of identifying links in GB(1) by using each metric for (a) all the networks with observation 
windows given in Table S1 in APPENDIX A; (b) all the networks with longest observation windows. The time-
scaled weight with different α values are considered.

α α α α α

Figure 10.  The quality r of identifying top weighted links in GB(1) by using each metric for all the networks 
with longest observation windows in each dataset. The time-scaled weight with different α values are 
considered.
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temporal network as the starting point. We illustrate how to construct the information diffusion backbone GB(β) 
where the weight of each link tells the probability that a node pair appears in a diffusion process starting from a 
random node. We unravel how these backbones corresponding to different infection probabilities relate to each 
other with respect to their topology (overlap in links), the heterogeneity of the link weight, and the correlation 
in node degree. These relations point out the importance of two extreme backbones: GB(1) and the integrated 
network GB(0) = GW, between which GB(β) varies. We find that the temporal node pair feature that we proposed 
could better identify the links in GB(1) as well as the high weight links than the features derived from the inte-
grated network. This universal finding across all the empirical networks highlights that temporal information 
is crucial in determining a node pair’s role in a diffusion process. A node pair with many early contacts tends to 
appear in a diffusion process. We have also used rank correlation like Kendall and Spearman to evaluate the qual-
ity of time-scaled weight in identifying the precise weight ranking of all the links in GB(1). However, we found that 
the time-scaled weight when α = 0 performs the best, which means the temporal node pair feature is not ideal to 
identify the exact importance of the links in the backbone GB(1). Therefore, how to predict the ranking of the link 
weights in the backbone remains as an interesting future question.

This work reminds us the studies a decade ago about the information transportation via the shortest path on 
a static network. How frequently a link appears in a shortest path thus contributes to the transportation of infor-
mation is reflected by the weight of the link in the backbone or overlay, the union of shortest paths between all 
node pairs45. This weight equals the betweenness, which has a high computational complexity, thus motivated the 
exploration of how a node pair’s local connection features are related to its betweenness.

The study of information diffusion paths on a temporal network is more complex due to the extra dimension 
of time. Our finding that early contacts with a quadratic decay in weight over time indicates the appearance of a 
node pair in a diffusion path, suggests the possibility to identify the appearance of a node pair in a diffusion path 
in a long period based on its early contacts within a short period, an interesting follow-up question. This work 
opens new challenging questions like which nodes tend to be reached early and more likely by the information, 
how such heterogeneous features at node or link level are related to local temporal connection features. In addi-
tion, other spreading models like social contagions and coevolution spreading models can be further considered 
beyond the SI spreading model studied here1,2,46–49. Our findings may inspire the exploration of optimization 
problems such as which node pairs or contacts should be stimulated (e.g. added) in order to maximize the prev-
alence of an information diffusion process. Stimulating early contacts seems essential but adding them between 
which node pairs and when is non-trivial.
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