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Transport of silica encapsulated DNA microparticles in controlled 
instantaneous injection open channel experiments 
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A B S T R A C T   

Surface water tracing is a widely used technique to investigate in-stream mass transport including contaminant 
migration. Recently, a microparticle tracer was developed with unique synthetic DNA encapsulated in an 
environmentally-friendly silica coating (Si-DNA microparticle). Previous tracing applications of such tracers 
reported detection and quantification, but a massive loss of tracer mass. However, the transport behavior of these 
DNA-tagged microparticle tracers has not been rigorously quantified and compared with that of solute tracers. 
Therefore, we compared the transport behavior of Si-DNA microparticles to the behavior of solute NaCl in 6 
different, environmentally representative water types using breakthrough curves (BTCs), obtained from labo
ratory open channel injection experiments, whereby no Si-DNA microparticle tracer mass was lost. Hereafter, we 
modelled the BTCs using a 1-D advection-dispersion model with one transient storage zone (OTIS) by calibrating 
the hydrodynamic dispersion coefficient D and a storage zone exchange rate coefficient. We concluded that the 
transport behavior of Si-DNA microparticles resembled that of NaCl in surface-water relevant conditions, evi
denced by BTCs with a similar range of D; however, the Si-DNA microparticle had a more erratic BTC than its 
solute counterpart, whereby the scatter increased as a function of water quality complexity. The overall larger 
confidence interval of DSi-DNA was attributed to the discrete nature of colloidal particles with a certain particle 
size distribution and possibly minor shear-induced aggregations. This research established a solid methodolog
ical foundation for field application of Si-DNA microparticles in surface water tracing, providing insight in 
transport behavior of equivalent sized and mass particles in rivers.   

1. Introduction 

Environmental pollution poses an unprecedented burden over sur
face water quality and aquatic ecosystems. Between terrestrial and 
marine ecosystems, rivers are the major dispersal vectors both to 
distribute nutrient and to transport detrimental contaminants (Nantke 
et al., 2019). A comprehensive understanding of riverine mass transport 
is a prerequisite for pollution control. Solute and particle tracers are 
widely used in surface water tracing experiments to characterize in- 
stream transport of solutes and particulates. Most of such studies use 
solute tracers, such as to track sources and migration pathways of pol
lutants, sediment-water interactions, and transient storages (Bencala 
et al., 2011; Haggerty et al., 2008). Particle tracers, however, were used 
only in a few studies, e.g., micron-sized fluorescent microspheres, bac
teriophages/bacteria, and natural clay/sediment particles (Göppert and 
Goldscheider, 2008; Jamieson et al., 2005; Schiperski et al., 2016; 

Spencer et al., 2011; Wyer et al., 2010). In these studies and as far as we 
know, particles smaller than ≤1 μm were only used once due to practical 
limitations (Goeppert and Goldscheider, 2019). However, colloids, 
defined as materials between 10 nm and 10 μm (McCarthy and Zachara, 
1989), in the aquatic environment are of significant interest due to their 
sizes, surface areas, and mass: as nutrients in phosphorus related colloids 
(Guo and Macdonald, 2006; Heathwaite and Dils, 2000; Jarvie et al., 
2012; Stolpe et al., 2010), as carriers for contaminants (Lead and Wil
kinson, 2006; H. Wang et al., 2015), and, when smaller than ~30 nm, 
their -limited- sizes may cause enhanced biological and chemical re
activities (Auffan et al., 2009; Azimzada et al., 2021). These aquatic 
colloids include naturally occurring biocolloids (e.g., viruses, bacteria, 
extracellular polymeric substances, etc.), geocolloids (e.g., clay, metal 
oxides and hydroxides), anthropogenic engineered nanomaterials (e.g., 
titanium dioxide nanoparticles and carbon nanotubes) and microplastics 
(Alimi et al., 2018; H. Wang et al., 2015; Xu et al., 2020; Zhu et al., 
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2021). Besides, traditional tracer tests have several disadvantages: 1) a 
limited number of distinguishable artificial tracers is available, 2) tracer 
detections often have background noise with dilution limitations, and 3) 
practical constraints limit the application of a proper tracer (e.g., strict 
regulations for uranine or rhodamine or being very expensive like flu
orobenzoic acid) (Bencala et al., 2011; Choi et al., 2000; Stern et al., 
2001; Whitmer et al., 2000; Wilderer, 2011). 

In search of new tracer substances, synthetic DNA (deoxyribonucleic 
acid) was introduced as a hydrological tracer. Laboratory synthesis en
ables a virtually unlimited number of synthetic DNA sequences to be 
produced, and these can be identified by target specific quantitative 
Polymerase Chain Reaction (qPCR), with a theoretical detection limit 
down to one DNA molecule per qPCR well (Watson et al., 1992). Such 
DNA tracers have been employed to identify pathways of sediments and 
solutes in various environmental conditions (Aquilanti et al., 2013, 
2016; Dahlke et al., 2015; Foppen et al., 2011, 2013; Mahler et al., 1998; 
McCluskey et al., 2021; Pang et al., 2017; Ptak et al., 2004; Sabir et al., 
1999, 2000; Viccione et al., 2014). However, these ‘naked’ DNA tracers 
showed attenuation up to 80–90% of injected mass, which was mainly 
attributed to adsorption, attachment and biological uptake (Dahlke 
et al., 2015; Foppen et al., 2013). Besides, DNA strands are subject to 
breakdown and degradation in the natural environment due to extra
cellular enzymes, abundant microbial activity, or elevated temperatures 
(Lindahl, 1993; Sabir et al., 1999; Tsuji et al., 2017). 

Such DNA mass loss may be overcome by using a ‘cover’ to protect 
the DNA strands from the hostile environment. So far, silica-coated 
DNA-encapsulated microparticles (Si-DNA microparticles) and similar 
variants have been applied in hydrological tracing experiments as proof 
of concept (Garnett et al., 2009; Liao et al., 2020; Pang et al., 2014; 
Paunescu et al., 2013; Puddu et al., 2014; A. Sharma et al., 2021; A. N. 
Sharma et al., 2012). In multiplexed tracing experiments in streams and 
rivers, DNA-tagged microparticles were traceable at greater distances 
compared to solute tracers and exhibited similar breakthrough behavior 
(Garnett et al., 2009; Pang et al., 2020; A. N. Sharma et al., 2012). 
However, the transport behavior of these DNA-tagged microparticle 
tracers has not been rigorously quantified and compared with that of 
solute tracers. A mass balance accounting for sources and sinks is 
required for the understanding of Si-DNA microparticles in transport 
behavior. Furthermore, between DNA-tagged microparticles and ubiq
uitous natural substances in the aquatic environment (i.e., organic and 
inorganic particles), possible interactions should also be considered 
when necessary. Such knowledge is essential when selecting appropriate 
tracers for hydrological investigations. 

Therefore, the objective of this paper was to understand and quantify 
the transport behavior of Si-DNA microparticles in surface water tracing 
experiments. Our hypothesis was that, when in colloidal stable condi
tions, Si-DNA microparticles have a transport behavior comparable to 
solute tracers in surface water injection experiments. Hereto, we con
ducted a series of controlled injection experiments in 6 environmentally 
representative water types and compared the breakthrough curves 
(BTCs) and hydrodynamic dispersion coefficient DSi-DNA of Si-DNA mi
croparticles to that of NaCl, a solute tracer (DNaCl). Besides, these 
laboratory-scale experiments are vital for successful field-scale tracing 
experiments, for which a well-developed methodology including reli
able sample-handling technique is indispensable (Mikutis et al., 2018). 
This paper contributes to understanding the behavior of such novel 
DNA-tagged microparticle and anticipates the application potential in 
large-scale tracing experiments, providing insight in transport behavior 
of equivalent sized and mass particles in rivers. 

2. Material & methods 

2.1. Si-DNA microparticles and primers 

The Si-DNA microparticles were the same as used in the study by 
Mikutis et al., 2018 (provided by ETH Zurich). The synthesized Si-DNA 

microparticles were spheres with a narrow and unimodal size distribu
tion. The surface of Si-DNA microparticles represents SiO2 properties 
and no interference with DNA chemistry is expected (Paunescu et al., 
2013). DNA and primer sequences are given in the Supporting Infor
mation (Table S1 in the SI). 

2.2. Hydrodynamic radius and zeta potential of Si-DNA microparticles 

The hydrodynamic radius (RhDLS) of Si-DNA microparticles in each 
water type (~500 ppb) was measured by Dynamic Light Scattering 
(DLS), and the zeta potential (ζ) of Si-DNA microparticles was calculated 
by using Smoluchowski’s equation from their electrophoretic mobility 
measured on a NanoSizer (Nano Series, Malvern Instrument Ltd., Wor
cestershire, United Kingdom). To assess if aggregations of Si-DNA mi
croparticles took place within the time frame of the injection 
experiment, in each water type the RhDLS was measured as a function of 
time in quiescent and in mixing conditions, respectively. Thereto, in 
each water type, Si-DNA microparticles were suspended to reach a final 
concentration of ~500 ppb of 2 mL in duplicate. Each sample tube was 
sonicated to reach a homogenous suspension before the first measure
ment. After the first measurement of RhDLS, one sample was allowed to 
stand still while the other sample was mixed at 1500 rpm until the next 
measurement in 2 h. 

2.3. Injection experiments 

Injection experiments of tracers are widely conducted to obtain BTCs 
to understand transport behavior because they are simple to carry out 
and give good and reliable results (Leibundgut and Seibert, 2011). A 
series of pulse-injection experiments with Si-DNA microparticles was 
performed in 6 water types in a horizontally-placed PVC box (Fig. 1). 
The channel was 20 cm long, 10 cm wide, and 3 cm deep. Tracers were 
injected by a peristaltic pump. The injection experiment had a flow rate 
of ~18 mL/min and a duration of approximately 100 min (hydraulic 
retention time was ~28.5 min). For each experiment, a 10 mL suspen
sion of ~5 ppb Si-DNA microparticles was injected. Due to the low flow 
rate, a magnetic stirrer was set close (~2 cm) to the inlet point to 
enhance cross-sectional mixing of tracer mass. We assumed that tracer 
mass was mixed rapidly, but not instantaneous, over the entire cross- 
section, so that the impact of the mixing in the so-called initial period 
on the transport in the investigated reach was negligible (Rieckermann 
et al., 2005), whereby the mixing was not represented by the 1-D 
advection-dispersion process. A solute fluorescent dye tracer was 
added once to visualize mixing conditions and the transport pathway of 
the injected tracer mass in the box (see details in the SI). Sampling was 
carried out at the outlet. The sampling interval progressively increased 
from 1 to 5 min (see Table S2 in the SI). From each of the sample bottle, 
500 μL of sub-sample was taken (in duplicate) for sample analysis. 
Sample bottles were vortexed for 1 to 2 min before taking sub-samples, 
ensuring that Si-DNA microparticles were homogeneously distributed 
over the entire sample volume. Each injection experiment was per
formed three times. The 1st and 2nd injection experiments were 
sequentially performed with a break of 0.5 h to rinse the set-up to 
remove possible residual substances from the previous experiment. The 
3rd injection experiment was performed later. After each experiment, 
extra water samples were analyzed for any residual tracer in the PVC box 
(see Fig. 1). 

First, a pulse-injection experiment of NaCl (5.0 mM, EMSURE®, 
Merck KGaA), a solute tracer, was performed in triplicate for reference. 
The BTC of NaCl was measured by an electrical conductivity (EC) meter 
(Multi 3620 IDS, Xylem Analytics Germany GmbH, Germany), and mass 
recovery was calculated (see the standard curve on Page S5 in the SI). 
Similarly to the NaCl injection experiment, Si-DNA microparticle tests 
were conducted in 6 representative water types. Demi water was chosen 
as a ‘blank’ control. Furthermore, we used a 5.0 mM NaH2PO4⋅H2O 
solution (J.T. Baker), and a 1.67 mM CaCl2⋅2H2O (EMSURE®, Merck 
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KGaA) solution to anticipate the effects of monovalent (Dalas and 
Koutsoukos, 1990; Ji et al., 2020) and divalent cations (Liu et al., 2010). 
This group of synthetic chemical solutions were prepared in the labo
ratory. Tap water was used as a transition water type, which was more 
complex than the synthetic chemical solutions, but less complex than 
natural water in the sense that various natural or anthropogenic nano
particles, colloidal particles or particulate matter (>5 μm) could still be 
part of that water. Also, two natural surface water samples were 
collected from a canal in Delft, one of which was filtered (5-μm cellulose 
nitrate filters; referred to as “Filtered natural water”), and the other was 
not (referred to as “Natural water”). The canal receives its water from 
both Rhine River and Meuse River. In this way, we tested for the effect of 
particulate matter. Concentrations of major cations and anions of Tap 
water and Natural water samples were measured by ion chromatog
raphy (Methrohm AG). When performing the 3rd series of replicate 
experiments, the organic matter content of the water types was 
measured as dissolved organic carbon (DOC, in mg-C/L) using the 
combustion technique with a total organic carbon analyser (TOC-VCPN 
(TN), Shimadzu, Japan). 

Before the injection experiments, to assess if the PVC material could 
be a possible sink for DNA mass loss during injection experiments, the 
concentration of Si-DNA microparticles in Demi water was determined 
as a function of time in batch experiments for 7 days (an extended period 
was designed as an extreme condition). The suspension of Si-DNA mi
croparticles in Demi water was kept in PVC containers and protected 
against daylight at room temperature. No mass loss of Si-DNA micro
particles was observed (results shown in Fig. S3 in the SI). 

2.4. Sample analysis 

Quantitative Polymerase Chain Reaction (qPCR) was used to quan
tify DNA concentrations of the samples from the injection experiments. 
Prior to qPCR analysis, samples were centrifuged, washed and re- 
suspended before dissolving silica-coating. After extensive testing, 
some adjustments were made to the original protocol in Paunescu et al. 
(2013), such as increasing centrifugal force and duration, washing 
samples with Demi water, and enhanced mixing (see Centrifugation 

procedure and quality control in the SI.). To minimize manual errors, a 
high-precision pipetting robot (QIAgility benchtop instrument) was used 
to mix reagents. The silica-coating was dissolved within 10 min by 
adding 1 μL Buffered Oxide Etch (BOE) solution (2.3 g of NH4FHF 
(Sigma Aldrich) and 1.9 g of NH4F (J.T.Baker) in 10 mL water to achieve 
a final concentration of 2500 ppm F- ions). After the silica-coating had 
dissolved, the sample was directly used for qPCR reaction without pu
rification. qPCR was performed using KAPA SYBR Green based master 
mixes (Roche Sequencing and Life Science) on a Bio-Rad MiniOpticon. 
The details of qPCR reaction setup and cycling parameters are provided 
in the SI. The qPCR readings (i.e., Cq) were converted into DNA con
centration (mg/mL) and plotted against time to produce a BTC (Fig. 1). 
The conversion equation and mass recovery calculations are provided in 
the SI. Hereafter, we compared the obtained BTCs of Si-DNA micro
particles with that of NaCl. 

2.5. Analysis of BTCs 

The physical transport of solutes and Si-DNA microparticles in the 
injection experiments can be described by a one-dimensional advection 
and dispersion equation with a first-order mass transfer transient stor
age. We used the One-dimensional Transport with Inflow and Storage 
model (OTIS) to model the curves (Runkel, 1998). OTIS was chosen 
because our experimental set-up mimics 1-D steady uniform flow in a 
main channel with a storage-zone without lateral inflow. Besides, DNA 
mass was conserved during injection experiments, since no source or 
sink of DNA mass was observed in our experimental channel. Therefore, 
no mass-loss term was considered in the OTIS modelling. The goals were 
to fit the observed BTC and to quantify DSi-DNA of the Si-DNA micro
particles. The fitting was carried out using Nonlinear Least Squares by 
requiring an input of observed BTC (see details in the SI), which was 
implemented in OTIS-P. In a modelling case where mass is conserved, 
the injected mass should equal to the recovered total mass, which is the 
area under the observed BTC. In spite of no mass loss, this total recov
ered DNA mass calculated from the observed BTC can differ from the 
measured injected DNA mass to some extent (see more discussion in 
3.2). To resolve the imbalance of input/output mass, we scaled the mass 

Fig. 1. Schematic of injection experiment and sample analysis procedure (figure inspired by Mikutis et al., 2018). (1) Injection experiment plot: after a pulse in
jection of Si-DNA microparticles into the PVC box (20 cm × 10 cm × 3 cm), the particles were transported along with the water flow from left to right. (2) pre and 
post qPCR procedure: the silica layer is dissolved before qPCR analysis. The qPCR readings are converted into DNA concentration and plotted as a function of time 
resulting in a BTC. 
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recoveries to 100% by linearly correcting the initial injection mass 
before OTIS modelling. This linear correction of the injected mass has no 
influence on the characteristics of the BTCs (Pang et al., 2017) and can 
be used for dispersion estimation in OTIS-p. 

∂C
∂t

= −
Q
A

∂C
∂x

+
1
A

∂
∂x

(

AD
∂C
∂x

)

+α(CS − C) (1)  

dCS

dt
= α A

AS
(C − CS) (2)  

Where A is the main channel cross-sectional area [m2], AS the storage 
zone cross-sectional area [m2], C the main channel solute concentration 
[g/m3], CS the storage zone solute concentration [g/m3], D the disper
sion coefficient [m2/s], Q the volumetric flow rate [m3/s], t time [s], x 
distance [m], and α the storage zone exchange coefficient [1/s]. 

In OTIS-P, D and α were fitted while other parameters were fixed. 
Best-fit estimates of DNaCl and αNaCl from NaCl injection experiments 
were used as initial estimates of Dsi-DNA and αsi-DNA. 

3. Results & discussion 

3.1. BTCs of Si-DNA microparticles and the effect of water quality & 
hydrodynamics 

Water quality (pH, EC, DOC, TSS and major chemical compositions) 
of 6 water types used for the injection experiments are given in Table 1. 
The zeta potential of the Si-DNA microparticles was between − 17 ± 7.1 
mV and − 49.8 ± 5.9 mV, and the mean RhDLS was between ~237 ± 81 
nm and ~ 299 ± 129 nm (measured before the injection experiments, 
Table 1). In the quiescent condition and as a function of time, the mean 
RhDLS and PDI of Si-DNA microparticles remained constant for each 
water type (Fig. 2 a). A one-way ANOVA revealed that there was no 
significant difference (p = 0.3, at 95% significance level) among mean 
RhDLS and PDI of Si-DNA microparticles. However, when mixing, the 
RhDLS and PDI significantly increased (p values <0.05, at 95% signifi
cance level) in CaCl2, Tap water, filtered and unfiltered Natural water, 
while in Demi water and in Phosphate solution the RhDLS and PDI 
remained constant as a function of time (Fig. 2 b). 

Generally, the BTCs of the Si-DNA microparticles in all water types 
showed a close resemblance to the BTCs of NaCl (Fig. 3, S7). The C/C0 
(%) of the NaCl BTC demonstrated a sharp increase and then reached a 
peak of roughly 2% (at ~4th minute), which was followed by a slow 
decline (~ 1% at ~24 min; Fig. 3). When compared with Si-DNA mi
croparticles, the C/C0 of Si-DNA microparticles were ‘noisier’ than the 
NaCl BTC. Moreover, comparing Si-DNA BTCs within the group of lab
oratory prepared waters, the BTCs in CaCl2 were slightly ‘noisier’ than 
those in Demi and NaH2PO4. Also, the Si-DNA BTCs were more scattered 
in Tap water, Filtered natural water, and Natural water. In other words, 
the observed relative concentrations of Si-DNA microparticles around 
the peaks were more scattered as compositions of solution became more 
complex, exhibiting higher peak values than those of NaCl tracers. In 
particular, the Si-DNA BTCs in the Filtered natural water and Natural 
water were most scattered with the largest discrepancy among the 
triplicates. 

Water quality including ionic strength, natural organic matter 
(NOM) content, and suspended solids are important factors determining 
the fate of engineered nano- and micro-particles in water bodies (Shevlin 
et al., 2018). In our experiments, the ionic strength of used water types 
was in the range of 1–25 mM, based on the measured concentrations of 
known cations and anions (Table 1). Note that compared to studies 
which focused on the effect of ionic strength on colloidal interactions 
(Ledin and Karlsson, 1993; J. F. McCarthy et al., 2002; Nocito-Gobel and 
Tobiason, 1996; Torkzaban et al., 2008; Zhao et al., 2021), the ionic 
strength of water types used in this paper was in the low range. In such 
solution chemistry, Si-DNA microparticles remained colloidally stable, 

evidenced by a constant hydrodynamic radius over 4 h (Fig. 2. a). This 
indicated that the solution chemistry alone was unfavorable for aggre
gation of Si-DNA microparticles (Metin et al., 2014). Specifically, the 
calculated total energy barriers based on Classical DLVO theory (Der
jaguin and Landau, 1993; Verwey, 1947) for Si-DNA microparticles in 
Demi and NaH2PO4 solution were relatively high (≥50 kT, with negli
gible secondary minima, see table S3 in the SI for the details of DLVO 
energy calculations). Such high repulsive energy would prevent aggre
gation of Si-DNA microparticles in the solution chemistry. 

In CaCl2, Tap, Filtered natural and Natural waters, the reduction of 
zeta potentials (Table 1) can be explained by the compression of the 
electric double layer, indicating a likely lower total energy barrier 
(Elimelech et al., 2013). In contrast to the quiescent condition (no shear 
force), after 2 h of mixing, the increase of RhDLS in CaCl2, Phosphate, 
Tap, filtered and unfiltered natural water (Fig. 2 b) indicated shear- 
induced aggregation (i.e., orthokinetic flocculation) (Barthelmes et al., 
2003; Hijnen and Clegg, 2014; Spicer, 1997). Moreover, when a flow 
field acts on the suspension, the hydrodynamic force (e.g. shear force) is 
responsible for bringing the particles together and would likely domi
nate the particle collisions (Elimelech et al., 2013; Frungieri et al., 2020; 
Zaccone et al., 2009). Thus, it is reasonable to imply that shear-induced 
aggregation might have taken place during the injection experiments. 
However, we argue that the effect of aggregation is likely minor, as the 
coupled effect of shear rate and volume friction (Gregory, 2005) in our 
experiments was orders of magnitude lower than that in our batch 
mixing experiments. 

The BTCs of Si-DNA microparticles in filtered and unfiltered natural 
water showed similar characteristics with a degree of scatter in the peaks 
(Fig. 3), despite the variations in water quality parameters between the 
third and the preceding two series of experiments (Table 1, there was a 
time gap between the first two series and the third series). The in
teractions between natural particulates and nanoparticles were exten
sively studied in literature (Lead et al., 2018; Oney and Nason, 2021; 
Peijnenburg et al., 2015; Petosa et al., 2010; Praetorius et al., 2020; Quik 
et al., 2013; Velzeboer et al., 2014; Xu et al., 2020). For example, Quik 
and co-workers found that natural particulates played a key role in the 
increased hetero-aggregation and sedimentation of nanomaterials by 
comparing filtered and unfiltered natural water samples (Quik et al., 
2013). However, the effect of particulate matter content (≥ 5 μm) on the 
transport characteristics of Si-DNA microparticle was not clearly 
observed in our injection experiments. 

3.2. D and colloidal stability 

After re-scaling mass recoveries to 100% without changing the BTC 
behavior, we modelled the BTCs of all injection experiments to deter
mine D and α (Fig. 4 and Table 1). The rising and falling limbs of NaCl 
BTCs were modelled almost perfectly (Fig. 3 panel a, R2 = 99.8%), and 
the peaks of NaCl BTCs were slightly underestimated. This showed that 
the OTIS conceptualization (1D ADE with one transient storage) was 
well capable of mimicking the experimental set-up even though there 
was a small discrepancy between the schematisation of OTIS and 
experimental set-up. In the 1D representation in OTIS the tracer mass is 
uniformly distributed over the cross-sectional area. We used a stirrer to 
achieve cross-sectional mixing, and the time required to achieve this was 
not incorporated in our OTIS modelling. Meanwhile, stirring enhanced 
the extent of the interaction between tracers and the storage zone, so 
that tracer spreading caused by storage exchange reached an equilib
rium stage soon after tracers entered the channel (Harvey and Wagner, 
2000). This storage contribution was visible in the long tail of the BTCs, 
indicating a diffusion limited steady-state storage. Moreover, the 
calculated Damkohler number (DaI is ~10, see Eq. (S6) in the SI) also 
suggested the dominance of the storage process, caused by enhanced 
mixing. Thus, fitting the resultant long tail using a higher exchange rate 
compromised the fitting of the peak (details of OTIS model imple
mentation are provided in the SI). This effect could also be seen in the 
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Table 1 
Water quality, ζ, RhDLS, mass recoveries, and D & α of Si-DNA microparticles in 6 water types for injection experiments in triplicate.  

Water types pH EC DOC TSS Na+ K+ Ca2+ Mg2+ Cl− NO3
− PO4

3− SO4
2− ζ RhDLS

1 M.R. α D × 10− 3   

[μS/cm] [mg-C/L] [mg/L] [mV] [nm] [%] [1/ 
s] 

95% C.L. 
[±] 

[m2/ 
s] 

95% C.L. 
[±] 

Demi water 6.4 ±
0.25 

0.5 ±
0.01 

0.73 
±0.01 

– – – – – – – – – − 38 ±
5.3 

242 ± 81 91 1.99 1.12 3.96 1.17 
93 1.31 0.56 3.36 1.18 

− 30 ±
6.2 

243 ± 79 97 1.03 0.18 2.81 0.51 

CaCl2 5.8 ±
0.01 

427 ± 7 0.51 
±0.01 

– – – 68 ±
1.5 

– 117 ±
0.5 

– – – − 21 ±
4.5 

288 ± 103 102 1.60 0.81 3.91 1.26 
111 1.97 1.20 4.54 1.38 

− 22 ±
5.4 

259 ± 93 N. 
D.* 

1.29 0.39 2.81 0.76 

Pho 7.2 ±
0.05 

787 ± 5 0.57 
±0.01 

– 170 ±
3 

– – – 14 ±
0.5 

– 478 ±
5 

– − 50 ±
5.9 

259 ± 111 80 1.66 1.19 4.44 1.88 
84 1.63 0.53 3.48 0.75 

− 49 ±
5.6 

284 ± 128 98 1.22 0.16 3.10 0.37 

Tap water 8.1 ±
0.1 

522 ± 5 – – 40 ±
0.5 

46 ±
1 

49 ±
2.5 

7 ±
0.5 

61 ± 8 9 ±
0.1 

– 47 ± 5 − 24 ±
4.5 

237 ± 81 94 3.44 1.41 4.91 0.69 
88 0.96 0.18 2.30 0.54 

2.94 
±0.01 

− 18 ±
5.4 

261 ± 108 N. 
D.* 

1.36 0.72 3.26 1.32 

Filtered natural 
water2 

8.0 ±
0.2 

780 ± 3 – – 60 ± 2 73 ±
1 

73 ± 2 15 ± 1 94 ± 2 2 ±
0.5 

1 ± 0.2 47 ± 1 − 19 ±
5.2 

267 ± 100 103 1.32 0.84 2.69 1.49 
94 1.90 1.20 3.11 1.20 

8.5 ±
0.2 

1084 ±
5 

13.32 
±0.02 

0.4 
±0.2 

69 ± 2 10 ±
1 

127 ±
2 

18 ± 2 101 ± 1 5 ±
0.5 

1 ± 0.3 113 ±
2 

− 21 ±
6.9 

288 ± 123 94 1.24 0.46 4.25 1.21 

Natural water2 7.6 ±
0.2 

777 ± 2 – – 60 ± 2 75 ±
1 

75 ± 2 15 ± 1 94 ± 2 2 ±
0.4 

1 ± 0.1 46 ± 1 − 18 ±
4.7 

283 ± 119 97 2.02 2.90 5.46 3.57 
98 2.09 1.76 4.65 1.82 

8.5 ±
0.2 

1029 ±
3 

13.05 
±0.1 

6.6 
±1.3 

69 ± 2 10 ±
1 

127 ±
2 

18 ± 2 101 ± 1 5 ±
0.3 

1 ± 0.1 113 ±
2 

− 17 ±
7.1 

299 ± 129 N. 
D.* 

1.52 0.80 3.62 1.31               

Reference 
13 

98 2.01 0.31 4.07 0.32               

Reference 2 100 1.66 0.15 3.89 0.22               
Reference 3 104 1.38 0.11 3.25 0.20  

1 RhDLS was measured before injection experiments. 
2 For filtered natural water and natural water, all the data are listed in two rows because experiment 3 was conducted 2 years later than experiment 1&2 and natural water quality for experiment 3 differed from the 

previous 1&2. 
3 Reference 1–3 are the simulations of NaCl injection experiments in Demi water. 
* N.D. Not determined, due to erroneous initial concentrations (C0). 
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Fig. 2. RhDLS of Si-DNA microparticles in 6 water types as a function of time (a. quiescent condition and b. mixing condition). The error bar represents the standard 
deviation of the size distribution. Polydispersivity index (PDI) is equal to the square of standard deviation of the size distribution divided by the square of the mean. 

Fig. 3. Observed and simulated BTCs of Si-DNA microparticles in 6 water types plotted in relative concentration C/C0 [%].The observed data are shown as solid 
circles in purple, orange, and blue for the 1st, 2nd, and 3rd replicate experiment, respectively. The corresponding simulated BTC is shown as line in purple, orange, 
and blue for 1st, 2nd, and 3rd replicate experiment, respectively. The observed and simulated BTCs of NaCl are shown for reference in plot a. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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rest of BTCs of Si-DNA microparticles. 
Regardless of solution chemistry and colloidal stability, mean DSi-DNA 

was essentially similar across 6 water types and was comparable to DNaCl 
(Fig. 4). The same was observed for the mean αSi-DNA. The size of the 
confidence intervals of DSi-DNA and αsi-DNA were directly related to BTC 
noisy behavior. When we plotted the variations against relative con
centration, we observed that uncertainties were more associated with 
tails than peaks of BTCs in all water types, of which natural waters 
(filtered and non-filtered) had the largest coefficient variations (Fig. S8). 
In natural waters, co-transporting with NOM and the likely presence of 
inorganic particles of various size ranges, Si-DNA microparticles were 
also subject to more complicated interactions such as steric, acid-base 
forces, etc. (Grasso et al., 2002), likely resulting in some random 
attachment and detachment (e.g., flocculation and breakage due to 
shear forces). This could possibly contribute to a more “irregular” or 
noisier Si-DNA BTC, resulting in a larger confidence interval/uncer
tainty of DSi-DNA in natural waters. 

Likewise, Schiperski et al. also showed a similar range of dispersion 
estimations of silica fluorescent particles of micron-size to those of so
lute tracers in a karst river drainage system, despite differences in the 
surface properties of the particle tracers (Schiperski et al., 2016). The 
effect of hydrodynamics on colloidal particle transport in subsurface 
environments is widely studied (Elimelech et al., 2013; Sasidharan et al., 
2014; Torkzaban et al., 2007). However, in surface waters, less research 
focuses on quantitatively comparing colloids in the size range of 
200–400 nm such as Si-DNA microparticles to that of solutes. Recently, 
DNA-tagged alginate-coated microparticles with a similar negative 
surface-charge in stream injection experiments showed to behave simi
larly to solute tracers in rising limb and peak of BTCs, albeit without 
quantification (Pang et al., 2020). Besides, among the few studies, most 
used particles of much larger size (such as natural organic/inorganic 
particulates, fluorescent latex particles, E.coli, and titanium-dioxide 
particles), and focused on distribution and fate without quantification 
of dispersion behavior (Drummond et al., 2014; Jamieson et al., 2005; 
Karwan and Saiers, 2009; Newbold et al., 2005; Phillips et al., 2019; 
Spencer et al., 2011; Wyer et al., 2010). 

3.3. Mass recovery and data uncertainty 

The mass recovery of each injection experiment is of fundamental 
importance for quantifying transport behavior of Si-DNA microparticles. 
We analyzed all samples and randomly performed lab duplicates. The 
mass recovery of Si-DNA microparticles with known initial concentra
tion was calculated and ranged between 88% and 118% (Table 1). In 
Demi water, where minimal impurity or interfering ion was present, the 
mass recoveries of Si-DNA microparticles ranged between 91 and 97%. 

In such case, the Si-DNA mass was considered fully recovered. A mass 
ambiguity of less than 10% is well within the expected mass ambiguity 
range ~ ±20% which is due to the accuracy of qPCR reading and un
certainty of particle concentration (Foppen et al., 2013; Paunescu et al., 
2015). qPCR technology is only accurate on a logarithmic- scale. From 
our experimental data, the difference of Cq values between replicates 
varied from ~0.07 to ~0.2, which resulted in a concentration difference 
of ±5% (= 20.07) to ±14.8% (= 20.2). Such variation/error of Cq values 
was inevitable because errors may propagate from pipetting or intrinsic 
variances of enzymatic efficiency due to minor temperature differences 
in the qPCR apparatus (Foppen et al., 2013). Besides, a variety of factors 
including the water quality of samples could also influence the enzy
matic activity (Gibson et al., 2012; Zipper et al., 2003). Moreover, 
subsampling is required when transferring a large environmental sample 
size into a much smaller sample size for qPCR analysis. When taking 
subsamples, the sample volume has to contain a sufficient number of 
particles such that variations are statistically insignificant (Crowe, 
2012). In samples with diluted Si-DNA microparticles, up to a 20% 
difference in particle concentration between two samples can arise from 
a few particles difference, resulting in qPCR signal variations when 
subsamples and replicates were taken for qPCR assay (Kittilä et al., 
2019). This is most likely to encounter for samples collected from large- 
scale environmental water bodies. However, in our laboratory experi
ments, such quantification uncertainty associated with particle con
centration was trivial, as the qPCR amplification result as a function of 
the particle concentration (the 10-fold dilution curve in the SI) sug
gested that the particle quantification by amplifying DNA was consistent 
over a range of particle concentration down to 10− 8 mg/mL. Addition
ally, we speculate that the discrete nature of such heavier-than-fluid 
particles with a certain spread of size distribution might be the origin 
of the fluctuations in BTCs (Won et al., 2019). It would be very conve
nient if the size distribution was very limited such that every particle is 
essentially subject to the identical transport characteristics. Future 
research is warranted to assess the possible impact of particle size dis
tribution on Si-DNA microparticle transport in surface waters. 

The differences in fluctuations of Si-DNA BTCs may arise from par
ticle characteristics (e.g., particle size distributions), environmental 
conditions (e.g., hydrodynamic forces) and qPCR analytical methods, 
contributing to the overall more “irregularities” in Si-DNA BTCs than 
NaCl BTCs A similar trend of fluctuations in Si-DNA BTC was also re
ported, even more evidently, in recent studies on DNA-tagged micro
particles and their tracing applicability in environmental and 
hydrological investigations (e.g., (Pang et al., 2020; C. Wang et al., 
2019)). Nevertheless, increasing the injected tracer mass and up- 
concentrating from a larger sample volume into a smaller sample vol
ume could be beneficial for obtaining better quality BTCs (Kittilä et al., 
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2019). 

4. Conclusion 

We concluded that the transport behavior of Si-DNA microparticles 
resembled that of NaCl in surface-water relevant conditions, evidenced 
by BTCs with a similar range of D. With special attention paid to mass 
balance, the Si-DNA microparticles as colloids had overall more erratic 
BTCs than solute tracers, whereby the scatter increased a function of 
water quality complexity. The overall larger confidence interval of DSi- 

DNA we contributed to the discrete nature of colloidal particles with a 
certain particle size distribution and possible minor shear-induced ag
gregation. This research established a solid methodological foundation 
for field application of Si-DNA microparticles in surface water tracing. 
Despite the fluctuations of signals in BTCs, Si-DNA microparticles 
possess promising potential as surrogates for colloids of sub-micron size 
in surface water tracing experiments. 
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