
SCIPoC: Semantic Classification of Indoor Point Cloud
A study into the possibilities of classifying indoor

point cloud using a Deep Learning approach

Mels Smit
m.smit-6@student.tudelft.nl

Delft Univertisy of Technology

Xiaoai Li
x.li-49@student.tudelft.nl

Delft Univertisy of Technology

Zhaiyu Chen
z.chen-26@student.tudelft.nl

Delft University of Technology

Mihai-Alexandru Erbasu
m.a.erbasu@student.tudelft.nl
Delft Univertisy of Technology

Yustisi Ardhitasari Lumban Gaol
YustisiArdhitasariLumbanGaol@student.tudelft.nl

Delft University of Technology

Abstract

With the constantly evolving range of applications for technology the quality and
amount of data constantly increases as well. In this growing data environment,
there is a constant search to provide more value to all data that is available for as
little effort as possible. Our research tries to add such additional value by diving
into the concept of classifying point cloud by using deep learning, specifically in
the indoor environment. This is done by first doing a neural network comparison
and then doing a case study. In the neural network comparison, a look is taken
into which of the neural networks that are capable of working with point clouds is
best suited for our experiments in the indoor scene, based on the training speed,
accuracy, ease of use concerning training on external datasets and setting up the
network and space efficiency. After the comparison, we chose to continue with
the PointCNN network during the case study. The case study is performed on
data the NS (Nederlandse Spoorwegen) provided to us and all test results we got
from our experiments can be visualized using the web application we developed
along with this project. The purpose of the case study is to add extra value to the
indoor LiDAR point cloud the NS has captured from Amersfoort Station by using
deep learning to automatically classify assets present in their data. The value is
in purposes, such as asset management, where the data does not need possibly
hundreds of man-hours to be labelled. This saves a lot of time and also money each
time a scan is made. In the case study we found through 4 different experiments
that unbalanced data makes for bad results, but when a scene is labelled correctly
very good results can be found in a local scene.

Keywords: Point Cloud, Deep Learning, Machine Learning, Neural Network, Indoor Environment,
Data Labeling, Semantic Classification, Visualization, Comparison, Case Study, Web Application

TU Delft Geomatics Synthesis Project (2020).

1 Introduction

This paper was written by a team of Geomatics students from the Faculty of Architecture and the
Built Environment from the Delft University of Technology as part of a Synthesis Project. This
was developed with the intent of allowing first-year students to apply the knowledge accumulated
throughout the year in a project which has real-world applications. Moreover, deep neural networks
are still not part of the Geomatics curriculum so in this case, we extended our knowledge, skills, and
insight far upon what was offered in Geomatics. Finally, this paper is expected to give an overview of
those knowledges and possible applications regarding deep neural network and point clouds.

1.1 Problem Definition

Over the last few years, technology has been evolving constantly. New techniques for all kinds of
applications kept popping up and with the constant growth of computational power also ideas from
long times ago have resurfaced to finally show their worth completely. With this constant growth of
information, the collection of data has also increased as well as the detail with which this has been
captured. This gave way to techniques that can use this data to learn from input and can apply this
knowledge for the classification of other data. This principle also called machine learning has been
tested in many environments and has proven to get some very great results. This paper strives to test
one of the forms of machine learning called deep learning in an environment which is still somewhat
less unexplored, namely the indoor scene. Compared with the outdoor scene, the indoor scene is
more complex to parse since it is more costumed and the variety of the indoor features surpasses that
of the outdoors. Nevertheless, it does not imply that the indoor scene is inferior than the outdoor
scene. To the contrary, the indoor scene is closer to the human habitat which is worthy of exploring
equally, if not more. It will also focus on a point cloud data format which is currently less explored
than the traditional image-based machine learning. To do this we will test multiple available neural
networks who are capable of deep learning based on point clouds, to see what the potential is for this
approach. This potential will be tested in a case study in which the neural network(s) will classify
unlabeled data and say where certain objects can be found in the captured point cloud data. This
can be of great importance for our clients Esri Nederland and the NS (Nederlandse Spoorwegen) as
automatically classifying features in data adds a lot of value to the data that is already being captured
in the indoor environment. The NS can, for instance, save hundreds of hours of manual labelling of
data, if not more, after scans of stations have been made [Kudinov, 2019]. These labelled scans can
then be used for all sorts of applications like for instance asset management, where the data can be
used to see where objects have been positioned, how many of them were there and to identify if new
assets need to be ordered, or directly for exploitative visualization and analysis [Poux, 2019].

To make sure the research we performed was focused on one consistent subject we formulated the
following research question:

Which of the available Deep Neural Networks is best suited to syntactically classify individual points
in a point cloud (also called semantic segmentation), which captures an indoor environment and
which training approaches are best suited to improve performance of the networks?

We took this research question as it focuses on the most core principle on what we want to do which
makes our results suitable also for different applications than the case study we performed in this
paper. To make sure this research question could be properly answered we also defined some partial
research questions as shown below:

• What is the performance for the currently available Neural Networks?
• How does the selection of training features affect the performance of the network?
• What are the characteristics of the indoor environment?
• What are the characteristics of point clouds?

2

1.2 Development of applications based on deep learning

Development of applications based on deep learning Deep learning is a breakthrough in the field
of artificial intelligence with the extraordinary performance in a wide range of applications such as
image recondition and self-driving vehicles [Wang et al., 2018].

Esri, as an international supplier of geographic information system (GIS) applications, is investing
heavily in the intersection of deep learning and GIS. ArcGIS is the representative software of Esri
which allows ford spatial data creation, management and analysis. Machine learning has been
deployed in ArcGIS to solve three main problems: classification, clustering, and prediction [Singh,
2019]. Recently, Esri has collaborated with NVIDIA & Cisco Systems on running large GPU
workloads in ArcGIS Pro [Brown, 2019]. It is very important and useful for applications based
on deep learning because GPU allows for a faster artificial neural network by implementing the
matrix multiplication of a neural network [Oh and Jung, 2004]. Currently, ArcGIS Pro allows for
data preparation (labelling) for deep learning and then deploying trained neural networks for feature
classification. However, the applications related to deep learning are limited to 2D images in the
existing products of Esri. In ArcGIS Pro, deep learning module is part of Image Analyst extension
where users can label datasets, train neural networks and get predicted results.

In this paper, we propose a web application of deep learning for semantic classification of indoor
point cloud. The main functions are divided into file uploading/downloading, segmentation and
visualization. Like ArcGIS Pro, the web application integrates the deep learning to fix geographical
problems.

1.3 Organisation of the paper

In section 2, we introduce deep learning with an emphasis on the neural networks, as the background
knowledge of the paper. Section 3 lists the related work on point cloud features, feature learning on
3D data, and feature learning from irregular domains. In section 4, several deep neural networks are
discussed in detail which are to different degree used in this project. Based on the evaluation of these,
we select the most suitable pipeline for further experiments in the case study discussed in section 5.
A RESTful web application is implemented, the detail of which is addressed in section 6. Section 7
draws the conclusion and section 8 proposes the future research.

2 Theoretical Background

This section presents an introduction to deep learning and fundamentals of neural networks. This
theoretical background is required for a better comprehension of the rest of this paper.

2.1 Introduction to Deep Learning

Deep learning is a part of machine learning methods which can select and extract features from the
data automatically. There are various algorithms in machine learning, e.g., Support Vector Machines
[Chang and Lin, 2011], Random Forest [Liaw et al., 2002], neural networks, etc. In general, machine
learning is divided into supervised and unsupervised manners. Both are algorithms that learn from
the data, but one requires labelled data for training (supervised) and the other one does not have a
labelled input. As for deep learning, it refers to a Deep Neural Network that has deep hidden layers.

Deep learning algorithms, such as recurrent neural network and convolutional neural network, have
been applied to diverse fields including computer vision, speech and audio recognition, bioinformatics,
and geospatial. In the geospatial sector, many researcher and organisation investigate and apply
this algorithm for automatic object detection or to create a digital twin [Zhu et al., 2017]. Those
applications are important for efficient local government operations, urban planning and design,
utility or asset management, and safety.

3

2.2 Fundamentals of Neural Networks

As the smallest unit of information processing in the nerve system, neurons can transmit and aggregate
information. In 1943, Warren McCulloch and Walter Pitts proposed the McCulloch-Pitts model (M-P
model) to simulate biological neurons [McCulloch and Pitts, 1943], whose structure is shown in
Figure 1.

Figure 1: Neural structure in McCulloch-Pitts model

There are many similarities between the structure of the M-P model and actual biological neurons. In
Figure 1, x1,2,...,n represents the input and wij represents the weight. The Σ function is to integrate
and accumulate all input signals, and F is the activation function. If the model output value Oj is
positive, the neuron is activated, otherwise the neuron is resting. The neuron represented by the M-P
model uses a certain weight to accumulate the input signal, and then outputs the current state of the
neuron. Note besides wij , there is another parameter called the bias in the model denoted as θj . This
model can be expressed by

Oj = F (

i=1∑
n

wijxi(j)− θj) (1)

In 1974, Werbos first proposed the multi-layer feedforward neuron network error backpropagation
theory [Werbos, 1974]. Later, Rumelhart and McClelland developed and perfected this theory
[McClelland et al., 1986]. The backpropagation algorithm splits the training process of the neural
network into two stages: the forward propagation stage and the backpropagation stage. In forward
propagation, the signal starts at the input layer and reaches the output layer via the hidden layer.
When there is a difference between the output value and the true value of the label, the error is
reversed from the output layer to the middle hidden layer, and the weight and bias parameters of each
layer of neurons are updated layer by layer. The back-propagation model intuitively describes the
problem of iterative optimization of multi-functions in artificial neural network, that is, to minimize
the corresponding loss function (loss function) as the optimization goal, iterative calculation through
gradient descent algorithm, adjust the neural network The weights and bias parameters of the elements
enable the network to spontaneously "learn" the optimal mapping between input and output.

Convolutional neuron network is a kind of feed-forward neural network. It was first proposed by
Hubel and Wiesel in the study of animal visual cortex electrophysiology [Hubel and Wiesel, 1959].
A Convolutional neural network is usually composed of an input layer, convolutional layer, pooling
layer and fully connected layer. Unlike general neural networks, neurons in convolutional neuron
networks often only have local connection structures, that is, local receptive fields, which means that
convolutional neuron networks can use shared weights to reduce the number of parameters, thereby
reducing the complexity of the network.

4

Since its introduction, convolutional neuron networks have been mainly used in image parsing tasks
such as image recognition. In 1989, Lecun et al. used a backpropagation algorithm to implement a
convolutional neural network for handwritten digit recognition [LeCun et al., 1989]. The research
then was applied to the handwritten digit recognition of US postal codes, which greatly improved the
efficiency of the postal system, and fully proved the adaptability of the convolutional neuron network
in image recognition. After the improvement, the LeNet-5 model has greatly improved the efficiency
of character recognition [LeCun et al., 1998], becoming a classic model of convolutional neuron
network. Alexnet proposed by Krizhevsky et al. [2012] achieved first place with a crushing advantage
in the 2012 ILSVRC competition, and the accuracy rate was 10.9% higher than the second-place
algorithm, which proved that deepening the network architecture level can be achieved to a certain
extent higher recognition accuracy. In these models, the size of the input image to the convolutional
neuron network needs to be fixed, which may cause image distortion and distortion. In response to
this limitation, He et al. proposed a spatial pyramid pooling structure that enables the network to
adapt to image input of different sizes [He et al., 2015].

3 Related Work

Point Cloud Features Point cloud data is inherently embedded in 3D space and has rich semantic
representations [Poux, 2019]. Point cloud features should reflect certain statistical properties that
are invariant to certain transformations. Generally the features can be divided into two categories:
the intrinsic features [Bronstein and Kokkinos, 2010, Sun et al., 2009, Aubry et al., 2011] and the
extrinsic features [Rusu et al., 2009, Ling and Jacobs, 2007, Rusu et al., 2008]. These handcrafted
features, if fully exploited for certain types of point cloud data, could possibly fit the task. However,
being explicitly designed with human’s understanding in mind, these features are limited in certain
simple tasks and thus lack the capability to generalise to complex scenarios.

Feature Learning on 3D Data Compared with handcrafted features, the features implicitly learnt
by deep neural networks are more robust. Besides the point cloud data, many other types of 3D
data can be handled by the neural networks, including voxels and meshes. Volumetric CNN’s apply
3D convolutions on the voxelised shapes, instead of processing the raw 3D data which are often
unordered and anisotropically distributed and unsuitable for a typical CNN to handle [Wu et al.,
2015, Maturana and Scherer, 2015, Qi et al., 2016]. However, these pipelines are constrained by its
resolution due to the sparsity of the voxel representations. Multi-view CNNs are another type of
workaround which render 3D point cloud or shapes into 2D images and then apply 2D convolution
operations to classify them [Su et al., 2015, Qi et al., 2016]. Though these workarounds to some
extent can tackle the many-to-one mapping problems such as the classification of a whole scene
from the point cloud where only 1 label is required for the point set, they can not generalise to the
many-to-many mapping problem such as the semantic segmentation where each point in the set needs
to be assigned a label [Qi et al., 2017a]. Moreover, spectral CNN’s use of spectral CNNs on manifold
meshes while it is currently not feasible to apply the spectral CNNs on point cloud data [Masci et al.,
2015].

Feature Learning from Irregular Domains Point cloud is a type of unordered, anisotropically
distributed data from irregular domains. Recently there are researches on learning features from these
domains. PointNet [Qi et al., 2017a] and Deep Sets [Zaheer et al., 2017] achieve order invariance of
input points using a symmetric function over inputs. PointNet++ [Qi et al., 2017b] and SO-Net [Li
et al., 2018a] improve the feature learning process by applying PointNet hierarchically to capture the
local structures among the point set. PointCNN [Li et al., 2018b] simultaneously learns the weighting
of the input features associated with the point and the permutation of the points by applying an
X -transformation from the input points. Moreover, with the fact that graph structures are proven to
be successful in deep learning [Battaglia et al., 2018, Zhou et al., 2018, Tran, 2018], deep neural
networks on point cloud analysis also use graph structures to facilitate the feature learning [Landrieu
and Simonovsky, 2018, Wang et al., 2019b]. With this project, we employ several typical neural
networks for feature learning from irregular domains.

5

4 Deep Neural Networks on Point Cloud Classification

As addressed in section 3, feature learning from irregular domains is capable of capturing the
anisotropic features for analysing point cloud data. Therefore, in this section, we further discuss a
few relevant pipelines namely PointNet, PointNet++, Superpoint Graphs, PointCNN, DGCNN, and
VoteNet which are to different degree used in this project. An evaluation of these methods is offered,
based on which we select the most suitable pipeline for further experiments in section 5.

4.1 PointNet and PointNet++

PointNet exploits features by extracting a global feature from all point cloud data, which substantially
neglect the local embedding of the point features [Qi et al., 2017a]. Nevertheless, it is considered as
the fundamental work of point cloud analysis with deep learning. Inspired by CNN’s’ layer-by-layer
abstraction of local features, Qi et al. [2017b] propose PointNet++, which can extract local features
at different scales and obtain deep features through a multi-layer network structure. Figure 2 shows
the architecture of the PointNet and Figure 3 shows the architecture of the PointNet++.

Figure 2: PointNet Architecture. Taken from Qi et al. [2017a].

Figure 3: PointNet++ Architecture. Taken from Qi et al. [2017b].

For PointNet, the input is a collection of all point cloud data in one scan, expressed as an N × 3
2-dimensional tensor (i.e., a N × 3 matrix), where N represents the number of point clouds, and 3
corresponds its spatial coordinates. The mapping of a point set is expressed by:

RN
3

−→ RN (2)

where N is the number of points.

The input points are first aligned by multiplying a transformation network called T-Net, which
resembles a mini PointNet and encodes the geometric transformation upon the point set by learning
the conversion matrix to ensure the invariance of the model. After extracting the features of each
point cloud through multiple multi-layer perceptrons (MLPs), a T-Net is used again to align the
features. Then max-pooling operations are performed on each dimension of the feature to get the
final global feature. For classification tasks, the global features are predicted by an MLP to predict
the final classification score; for segmentation tasks, the global features are concatenated with the

6

previously learned local features of each point cloud to encode the per-point features, and then the
classification results of each data point are obtained by another MLP.

For PointNet++, the input data are not constrained to be in N × 3 dimension, but a k-dimensional
vector encoding other geometric attributes, such as the normals and curvatures. The mapping from
the input to the output can be expressed by:

RN
K

−→ RN (3)

where N is the number of points, and K is the dimension of the feature vector.

PointNet++ consists of the following key modules:

Sampling Lidar can have up to 100k data points in a single frame. If we extract local features for
each point, the amount of calculation is tremendous. Therefore, an algorithm that Qi et al. [2017b]
propose, farthest point sampling (FPS), is performed to sample the data points first, which works
by repeatedly placing the next sample point in the middle of the least-known area of the sampling
domain. Compared with random sampling, this sampling mechanism can better cover the entire
sampling space.

Grouping To extract the local features of a point, the “locality” of a point is defined as the points
within certain Manhattan distance around it, which is usually determined by the size of the convolution
kernel of the convolution layer. Similarly, the locality of a point in the point cloud data is partially
composed of other points in the spherical space drawn by a given radius around it. The role of the
combined layer is to find all the points that make up its neighbourhood after passing through the
sampling layer, to facilitate the subsequent feature extraction for each local spatial neighbourhood.

Feature learning Because PointNet provides a feature extraction network based on point cloud
data, we can use PointNet to extract features from each part of the combined layer to obtain local
features. It is worth noting that though each part given by the combined layer may be composed of a
different number of points, after passing PointNet, the characteristics of consistent dimensions are
determined by the value of K.

The above layers constitute the basic processing module of PointNet++. If multiple such processing
modules are cascaded together, PointNet++ can get deep semantic features from shallow features like
CNNs. For segmentation tasks, it is also necessary to upsample the features after downsampling, so
that each point in the original point cloud is assigned with corresponding features. This upsampling
process is obtained by interpolation calculation of the nearest K neighbouring points.

4.2 PointCNN

For a typical convolution operation, the output changes with the order of the input points, which
is an undesired property. Therefore, the input order of the points in the point cloud is the main
problem that hinders the operation of convolution. To address the issue, Li et al. [2018b] define
a transformation matrix X , which can process the input points with an arbitrary order to obtain a
feature that is order-independent. Figure 4 details the X -Conv operator, where P = (p1, p2, ..., pk)T

is the neighbouring points with F = (f1, f2, ..., fk)T as their features. K represents the convolution
kernel and p represents the representative points. The operation can also be expressed more concisely
with

Fp = X − Conv(K, p,P,F) = Conv(K,MLP (X − p)× [MLPρ(X − p),F]. (4)

With the X -Conv operation as building blokes, PointCNN can perform convolutions on the unordered
point set, similar to that of 2-dimension grids, as illustrated in Figure 5.

4.3 Superpoint Graphs based Segmentation

Superpoint graphs (SPG) can be used for large-scale point cloud semantic segmentation [Landrieu
and Simonovsky, 2018]. SPG is a structure that can well represent the topology of point clouds,
and can well express the contextual relationship of images. The point cloud of a typical scene has
millions of points, but SPG can downsample them to hundreds of points while maintaining rich
feature representations, so that it can be processed with pipelines such as PointNet.

7

Figure 4: X -Conv operator. Taken from Li et al. [2018b].

Figure 5: Hierarchical convolution on regular grids (upper) and point clouds (lower). Taken from Li
et al. [2018b].

The essence of SPG is a generalized directed graph where nodes represent simple shapes, and edges
describe rich edge features to express adjacency relationships. The key steps of using SPG in large-
scale point cloud semantic segmentation are as follows: first geometrically segment the original
point cloud to get the superpoints. This process is an unsupervised process with high efficiency.
Then the SPG can be calculated with the result of geometric segmentation. Finally, the point cloud
has compressed from millions to hundreds. The obtained SPG is provided to some contextual
segmentation methods where, for instance, PointNet is used. The individual steps in the pipeline are
visualised in Figure 6.

Figure 6: Visualization of individual steps in using SPG for large-scale point cloud semantic segmen-
tation. Taken from Landrieu and Simonovsky [2018]

4.4 Dynamic Graph CNN for Learning on Point Clouds

Graphs, as a topology structure, are capable of imposing relational inductive bias in data, i.e., the
prior knowledge on the problem-solving [Nickel et al., 2015]. The EdgeConv proposed by Wang
et al. [2019a] is suitable for CNN-based high-level tasks on point clouds including classification
and segmentation. Compared to pipelines operating on each point independently (e.g. PointNet),
EdgeConv has advantages incoorporating local neighbourhood information and can be stacked or

8

recurrently applied to learn global information. As shown in Figure 7, from a point pair xi and xj , the
edge feature eij is computed. The output of EdgeConv is calculated by aggregating the edge features.

Figure 7: Left: Computing an edge feature. Right: The EdgeConv operation. Taken from Wang et al.
[2019a].

Unlike graph CNNs, the proposed Dynamic Graph CNN (DGCNN) is dynamically updated after
each layer of the network where the k-nearest neighbours of a point changes from layer to layer,
which leads to the diffusion of information non-locally throughout the whole point cloud.

4.5 VoteNet

The VoteNet proposed by Qi et al. [2019] is a point cloud 3D detection framework that directly
processes raw point cloud data which does not rely on any 2D detector. This detection network is
inspired by the generalized Hough voting process for object detection. Provided the point cloud of the
3D scenario, VoteNet votes for object centres and then groups and aggregates the votes to estimate
3D bounding boxes and semantic classes of objects, as shown in Figure 8.

Figure 8: 3D object detection in point clouds with a deep Hough voting model. Taken from Qi et al.
[2019].

The pipeline of VoteNet is shown in Figure 8. The entire network can be divided into two parts: one
part processes existing points to generate votes; the other part processes virtual points (i.e., the votes)
to detect and classify objects.

Given an input point cloud containing N points and (X,Y, Z) coordinates, a backbone network
(implemented using PointNet++) learns the depth characteristics of these points, and output a subset
of M points, which is considered as seed points. Each seed independently generates a vote through
the voting module. Then the votes are grouped into clusters and processed by the proposal module to
generate the final proposal.

4.6 Network Comparison

To select the proper network for indoor feature classification on our dataset (see section 5), the
performance of these networks are evaluated on the Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS) [Armeni et al., 2016], among which the visualisation of predictions from PointNet++
and PointCNN are shown in Figure 10. The evaluation results are shown in Table 1. Note that
since PointNet is overpassed by PointNet++ with improved architecture design, only PointNet++ is

9

Figure 9: VoteNet Architecture. Taken from Qi et al. [2019].

evaluated. Also, due to the VoteNet requires bounding boxes annotation in the training data which is
incompatible with the S3DIS, it is not evaluated and also excluded from further experiments.

(a) Ground Truth (b) PointNet++ Prediction

(c) PointCNN Prediction

Figure 10: Point Classification Result on S3DIS Dataset

Based on the evaluation results and the level of complexity regarding the configurations for different
neural networks, we select PointCNN for further experiments in section 5.

Network Training Time Training
Epoch

OA CA IoU

PointNet++ 20h 12 0,791 0,600 0.516
PointCNN 16h 94 0,893 0,794 0.714
DGCNN pretrained pretrained 0.864 0.711 0.601
SPG pretrained pretrained 0.880 0.818 0.714

Table 1: Evaluation of different neural networks on S3DIS dataset. OA means overall accuracy, CA
means class accuracy, IoU means Intersection over Union. See section 5.2 for more details on these
metrics.

10

5 Case Study

To test our research, we have been in contact with Esri Nederland and the NS for a use case in the
indoor environment. This section will explain the steps taken in this experiment and the problems
encountered in the real-world environment where we tested. After this the results for our experiment
are presented in two stages, the first being the initial results and the second being the improved results
by modifying the training data.

5.1 The experiment

During the neural network comparison part of our research, our contact at Esri Nederland had been
working to get in contact with companies that would be interested in providing data for our testing
phase. The company that ended up providing this data was the NS. What we got from them was a
point cloud captured the inside of Amersfoort Central Station (see Figure 11). This point cloud was
an unlabeled LiDAR point cloud with photographic information placed on the points so the points
also have an RGB value. The goal of the experiment was to add extra value to the data the NS had
captured in this station and potentially also to add value to data captured at other locations that would
have similar features. The way deep learning can add value to these datasets is in the classification
of features present in the scene. This information can be used for a lot of different purposes but the
most prevalent one in our opinion is for asset management, which is also why this experiment was
set up in the first place. For the NS it is of high value to be able to know where their assets are in
the station and how many of them are present. This is needed as a lot of workers from the NS are
not bound to a single station and therefore are not always in an environment they are familiar with,
therefore information on where the security cameras are placed, how many garbage cans need to be
emptied and how many vending machines need to be refilled for instance is of value for different NS
personnel. As the environment in a station is also not necessarily a static one it also happens that
these assets are moved to different locations, that a restructuring of the station happens or that some
assets break and are removed from the scene for instance. In these kinds of situations, the moment a
new scan of the station is made, the assets can also be re-identified from this data within the hour by
running a neural network on it, reducing the amount of work when keeping track of the assets.

11

Figure 11: Top: overview of Amersfoort railway station raw data from NS; bottom: sample of point
clouds data inside the station. These data was acquired on October 2019 in 19 different scan locations
inside the station. File format in .e57 with size around 15GB.

5.2 Workflow

The workflow that we used during the experiment can be divided into three main flows: data pre-
processing, data processing, and evaluation (see Figure 12). As for data pre-processing, we use
LASTools [Isenburg et al., 2006], ArcGIS Pro [Environmental Systems Research Institute (ESRI),
2012], CloudCompare [clo, 2020], and batch codes for converting, editing, and labeling the data. The
raw data file is in .e57 format so we need to do the conversion to produce the generate the .las files.
We consider using .las format to handle the data due to our knowledge of that file format from our
previous courses in GEO1004, GEO1015, and GEO1016.

After we obtain point clouds in .las format, we split it into several scenes because the raw files are
too large to handle (around 18GB). We divided the scenes into blocks based on x and y values (see
Table 8 and Figure 55 in Appendix C). The output file size of cut scenes are varied from 9MB to
600MB. Then, we identify over all objects in the station and narrow our objects for the experiment.
At the beginning, we only focus on six objects (yellow eggs, garbage cans, couches, ticket machine,
vending machines, and entrance gates). Due to our evaluation of the initial results, where we get poor
accuracy with unbalanced points, we grow our class number so we ended up having 19 classes. The
list of our initial class number is provided in section 5.3 and the final class in section 5.1.

Based on our interest objects, we identify all scenes having that objects and only focus on those. Next,
the editing process to segment or remove some noisy points is needed, followed by manual labelling.
More detailed about this task is described in section 5.3. With the manual labelling, we obtain the
classified point clouds and convert it into text files containing XYZ, RGB, and class code information
in one file using LASTools. Then, we develop a batch file to separate xyzrgb and class code into
two different text files that follow some arrangements and extension (detail in the Appendix). In
this study, we used XYZ and RGB values for training. Besides, we can modify our attributes, for
example, if we want to use XYZ only or we add intensity attribute to be learned in the training.

12

Figure 12: Research workflow

Using the latest files, we can prepare our data sets ready for data processing to correspond to the
networks. PointNet++ require the input for training in the numpy (.npy) format containing XYZ,
RGB, and class code. So, we develop a python code to convert the text files into numpy format.
Then, we adapt some parts of the original code to make it compatible with our class number. As
for PointCNN, the input for training is in HDF (.h5) format containing all points and labels within
blocks (see section 4.2). PointCNN provides data conversion code, but we need to adjust some parts
according to our data. Since the latest files are intentionally developed for PointCNN, we can directly
apply the adjusted data conversion.

Next, we distribute the data into training, validation, and testing sets. For the initial experiment, we
use two networks which are PointNet++ and PointCNN based on the comparison overview on the
previous section. For each, we leave the training run for about 6 hours. For the following experiments,
we only use PointCNN with running time varied from 1 to 6 hours. The phase for each network is
similar. Once we start the training, the network begins to process the input data within the epoch
setting. At a certain stage, e.g. after 500 iterations, it will calculate the accuracy, loss value, and save
the model as one checkpoint. Then, it will continue to learn the data. In this case, after we start our
network, we monitor the training progress based on the accuracy and loss values. After some time, we
can stop the training process when the accuracy value get stagnant shown by the flat curve in the graph.

The model generated from the training is used for testing, a reversed process. In the training stage,
we have all the information and try to find the optimum model. In the testing stage, the model is
used to obtain the classification code for all points. To evaluate the results, we use accuracy and
Intersection over Union (IoU) by comparing predicted and ground truth values.

The overall accuracy describes the ratio between the numbers of points that are equal to truth values
with the total number of points. The class accuracy depicts the ratio between the number of points
that are equal to true values with the number of points classified for each class. In this study, we set
an accuracy of 60% as the threshold for a test to be called successful. Overall accuracy and class
precision can be calculated as follows:

OA =
(TP + TN)

(TP + TN + FP + FN)
(5)

13

and the class precision:

CP =
TP

(FP + TP)
(6)

where OA is the overall accuracy, CP is the class precision, TP is the total number of true
positive (e.g. if labelled yellow egg predicted as a yellow egg), TN is the total number of true
negative (e.g. if labelled non-yellow egg predicted as a non-yellow egg), FP is the total number
of false positive (e.g. when labelled non-yellow egg predicted as a yellow egg), and FN is the
total number of false negative (when labelled yellow egg predicted as a non-yellow egg). The
concept of TP , TN , FP , and FN are depicted in Figure 13. In the overall accuracy, the sum of
the numerator is equal with the total number of predicted values that classified correctly in each
class, while the sum of the denominator, in this case, is equal to the total number of ground truth points.

On the other hand, IoU expresses the ratio of the overlapping area and the union area between the
predicted and the ground truth (see Figure 14). Since point clouds are anisotropically distributed,
the concept of overlapping is downgraded from area level to point level. This means that instead of
looking at the overlapping areas from two sets in respect to the union of the two sets, we instead look
at the number of points which are classified the same in both sets in respect to the union of the two
sets. The value range from 0 to 1 or 0 to 100 (in percentage) where 1 or 100 means the prediction
matches the ground truth and 0 means the opposite.

Figure 13: Illustration for True Positive, False Positive, False Negative, and True Negative [Olson
et al., 2015]

14

Figure 14: Illustration of Intersection over Union in 2D (Wikipedia [2020]).

5.3 Data labeling

Aside from this preparation work explained in the workflow in section 5.2 there is also the data itself
that needs to be prepared for good results. The first data we got from the client was an unlabeled point
cloud, meaning no points have been classified as of yet. This is a problem for the training process as
the neural networks learn based on the classification of the points and their spatial neighbourhood, so
the data needed to be labelled manually. To do this we first decided in consultation with the NS on
some of the assets they would be interested in to recognize for the testing of the method, where the
quantity and distribution of the points are taken into consideration.

The following assets were chosen:

• Yellow Eggs (a type of security camera used at the stations)
• Garbage Cans
• Benches
• Ticket Machines
• Vending Machines
• Entrance Gates

The objects that are NS specific can also be seen in Figure 15.

Figure 15: On the left a yellow egg can be seen, in the middle there are some ticket machines and on
the right there are entrance gates

15

The labelling of these assets has been done in ArcGIS Pro. Here we could close in on the feature
we wanted to label using the profile viewing option, then we could select the points we wanted to
label and we could modify the class code belonging to those points to the ones we decided that would
represent our objects. As the neural networks we are working with want a continuous numbering in
the training data this meant moving away from the standard classification numbers that are used in
ArcGIS and using them in a way more suited for our purpose (e.g. classification number 2 normally
represents ground in ArcGIS but in our results, it represents garbage cans). This process of labelling
has been done for all chosen assets leaving everything that was not one of these assets as unclassified.
This turned out not to necessarily be the best option, but more on that in section 5.5.

There were also some harder decisions to make in the labelling process. As the data was captured
from different points in the station the points do not always align properly. This can be due to distance
errors, reflection in glass or other reflecting objects, people walking through scanned areas, occlusion
by other objects etc. An example of this can be seen in Figure 16, here there is a pretty dense capture
of the yellow egg camera in the middle of the image but to the right there is also a shade that captures
the same object but does not place it at the right place in space. Now we need to choose to label these
misplaced points either as a yellow egg or unclassified, or possibly even remove them. All of these
actions have a different impact on the training result.

Figure 16: The yellow egg is split into two parts

Another problem in the labelling process was that of misplaced colours that were added to the scene.
As mentioned in Section 5.1, the data used in this experiment is LiDAR which is enhanced with image
data to provide colour. This was however not always done most optimally as some moving objects
in the scene, most people, are draped onto points that should not be that colour. These issues are
to be expected in a scene filled with constantly moving individuals, but they can nevertheless make
training harder as the RGB information is not always a trustable factor as can be seen in Figure 17.
Once again the choice to add or not add this data is something that influences the result.

16

Figure 17: The man standing in the image is also draped onto the floor corrupting the colour of the
floor points

5.4 Initial results

With the initial labelled data sets on Amersfoort, we use PointNet++ and PointCNN as our network
for training. The initial results show that the networks cannot converge (see Figure 18). Based on
the evaluation, the overall accuracy is higher than 80% for both of the networks. However, the class
accuracy for all classes, except unclassified, are nearly zero. It turns out that the high overall accuracy
occurs due to abundant unclassified points and it affects the other classes. From this intermediate
result, we find some drawbacks as follows:

1. The number of points belong to each classes are not balance. After the labelling process, we
still have unlabeled points more than 90%.

2. The geometry of many objects are not fully covered by point clouds. For example, points on
a ticket machine are only captured from one side, couches are mostly occluded by people,
etc.

Concerning those issues, we rearrange the possibility for our experiments as follows:

1. For data pre-processing:
(a) re-label the scenes by adding more class to reduce the number of unclassified points;
(b) remove noisy points such as people, floating objects, objects with less points, etc.

2. For data processing:
(a) try to train and test on the labelled data in a small scene. From this we can expand the

experiments to even larger scenes and distribute the data into training and testing sets;
(b) assign different weights for each class. Classes with less points are considered to have

higher weight, vice versa;
(c) try to exclude RGB values or add intensity in the data for training.

We applied some improvements based on those possibilities and discuss the results in the following
section.

17

Figure 18: Loss and accuracy values based on validation.

5.5 Improved results

The results acquired in the initial results seemed to depend heavily on the way the data was labelled.
As we have seen in the results the overall accuracy was quite high, but when looking at the classes
separately it became quite clear immediately that they were all hugely under-represented. The
remaining unclassified points in our scene where about 99% of the data, this meant all points of
interest shared a bit more than 1% for the training. As a consequence of this unbalance it seemed that
the network mostly learned that it is best to almost always guess unclassified. As already discovered
in some investigation done by Esri (Kudinov [2020]) unbalanced classes can cause very bad results in
machine learning. The classical approach to get rid of such a problem would most often be adding
more training data. Unfortunately, in our case, we see such a mismatch in features of interest and
data available in a station that adding a station or two would probably not solve this issue.

So we came up with different ways to compensate for this problem in the data which we have put to
the test to see which worked best in our indoor scene.

The first idea was making the training scene a lot smaller and more focused on wanted assets than
unclassified ones, to reduce the data that is unclassified making the training data more balanced. For
the results see section 5.5.1.

The second idea was to split the unclassified data into more classes, while still keeping all data. This
would reduce the impact of the unclassified data but would not increase the percentage our wanted
features were in the total data scheme. For the results see section 5.5.2.

The third idea was something similar to what is also done in the investigation done by Esri (Kudinov
[2020]), meaning focusing on one object during training in local neighbourhoods of that object and
only using the class for the neighbourhood and an others class. This would increase the percentage of
available data of interest for a specific feature but will reduce the total training data by a lot. For the
results see section 5.5.3.

5.5.1 Training on the small scenes

Based on the experiences on the initial results, we changed our approach to now trying to train on
several small scenes. These scenes were clipped to focus on wanted assets and noise in the scene
such as people, floating objects, etc. was removed (see Figure 20). To reduce the influence of the
unclassified class we added new classes, which are floor, SOS pole, and advertisement board on the
ground. For this experiment, we did not separate the data for training and validation at first to try
whether we can get some results or not. This is because in the initial result even using the network on
that what it had been trained on produced bad results. Afterwards, we adapt the experiment to have
separate sets for training, validation, and testing. For this smaller experiment, we trained the network
for almost two hours (see Figure 19). The results depicted a promising model. After we tested on the
same data sets, the overall accuracy and mean IoU are 0.98 and 0.86 respectively, with unclassified
now being the worst-performing class instead of the best performing class. Table 2 shows more
detailed metrics accuracy and IoU for each of the classes.

18

Figure 19: Loss and accuracy values of training and validation in four small scenes.

Figure 20: Smaller and cleaned datasets.

As we can see in Figure 21 and Figure 22, the results depict almost identical classes between
predicted and ground truth points. Entrance gates were detected correctly even though it is a complex
shape. As for the floor, we could not label the class perfectly due to the way the objects were placed
such as the couch in Figure 20 so some points were classified wrongly in the training process. Thus,

19

Metrics /
Classes

UnclassifiedGarbage
can

Couch Entrance
gate

Floor SOS pole Info
boards

Class Ac-
curacy

0.77 0.97 0.98 0.99 0.98 0.99 0.99

Class
IoU

0.26 0.96 0.91 0.98 0.97 0.99 0.96

Table 2: Metric results from several small scenes using PointCNN.

we can see that some points of the floor in ground truth are classified as unclassified points. However,
the predicted results interpret these points correctly as floor. Due to this, our metric results are in
some places even better than is now shown as the ground truth is also mistaken in some percentages.
We can notice this issue mostly in the metric of the unclassified class where the accuracy and IoU
values are lower than other classes.

Figure 21: Visualisation result of predicted (left) and ground truth, so what we manually labeled
(right) point clouds.

Figure 22: Visualisation result of predicted (left) and ground truth, so what we manually labeled
(right) point clouds. Some points on the ground truth are mislabeled, but detected as the correct class.

Next, we tested our trained model to another data set which was not included in our training. This
scene had a couch, a garbage can, floor, and unclassified points. The model as shown on the left in
Figure 23 gives a reasonable output for the floor even though in this class we had not yet added the
floor to the data itself. The result for the garbage can is also fairly accurate as well as the couch.
The accuracy for the garbage can and couch are 0.92 and 0.62 respectively, from which the lower
result with the couch is understandable as labelling this is once again fairly hard to accurately do so
some points were already misclassified. Based on the results, we have some points wrongly classified
as entrance gate (155), SOS pole (20), and advertisement board (10,286), but these numbers are

20

fairly low in comparison to the whole scene. As for both the floor and the unclassified points, we
cannot calculate the accuracy correctly due to the unavailable label for the floor on this scene, but
the classification seems reasonable as the number of points classified as floor is 3,882,214 in the
prediction and the number of unclassified points in the testing data is 3,940,379 which are fairly
close.

Metrics/
Classes

Un-
classified

Garbage
can

Couch Entrance
gate

Floor SOS pole Info
boards

Number
of points

3,940,379 742,483 116,940 - - - -

Positive 7,938 788,479 110,710 155 3,882,214 20 10,286
True Pos-
itive

7,027 734,884 87,552 - - - -

Class
Precision

0.89 0.93 0.79 0.00 0.00 0.00 0.00

Class
IoU

0.00 0.92 0.62 0.00 0.00 0.00 0.00

Table 3: Evaluation of testing a different data set using pretrained model in the small scenes.

As can be seen by the results shown in Table 3 this approach performs substantially better, so a better
balanced and more cleaned dataset seems to work quite nicely to improve the results.

Figure 23: Visualisation result of predicted (left) and ground truth (right) point clouds. In the ground
truth in this example, the floor was still labeled as unclassified. Thus, the accuracy for unclassified
and floor did not represent correct values.

5.5.2 Training on the large scenes

In our second idea for a possibly better result, we take a similar approach as in the first idea, but
deploy it on a larger scale. We now take a way larger and higher scene and label a total of 18 different
classes (see Table 4), while also removing a lot of noise from the scene. Some of the more notable
new classes are the ceiling, walls and information monitor classes. We then trained a new network on
these new data sets and fully separate the training and testing data, for a more fair validation set.
We trained with the PointCNN network for about four hours with the same setting as the previous
experiments.

For this experiment, we take three larger scenes, which are about 4-8 times as big, along with the
smaller scenes from the previous experiment. These sets are separated into a training and a testing set.
Two of the larger scenes are included in the training and one is included for testing. However, when
we training the network, we got unrealistic values for both the learned accuracy as well as the loss
value. While the training process gave an accuracy above 0.90, the validation value showed very low
accuracy and there was a very high loss value (see the orange lines in Figure 24). This data reflected
that our network has some overfitting issues (see Figure 49), so we tried a different approach. We
now removed one larger scene and re-trained our data. Surprisingly, the network improved but the
values are still unreasonable with an overfitted model (the accuracy was stagnant around 0.3-0.4). So,
when checking our data once more, we learned that there are some areas which were not completely

21

Index Class Index Class
0 Unclassified 9 Advertisement boards on the ground
1 Yellow eggs 10 Pillars
2 Garbage cans 11 Walls and Posters
3 Couches 12 Digital info monitoring
4 Ticket machines 13 Station ceiling
5 Vending Machines 14 Escalator
6 Entrance gates 15 Lamps
7 Floor 16 Stairs
8 SOS poles 17 Info signs in the air

Table 4: Classification code used in the experiments.

labelled correctly. This was influencing the result more in this larger scene that it seemed to do in
the smaller scene but to be sure that it would not influence the result further we removed this large
scene from the training set as well, making it so we are training with only one large scene. After
retraining the network once more we finally had a reasonable value with loss below 4 and accuracy
around 0.6 (see the red lines in Figure 24). Even though the values are improved, the graph still
shows overfitting. After four hours of training, the accuracy was not improved, so we stopped the
training to see the result.

Figure 24: Loss and accuracy values of validation on the full and reduced data sets.

This trained model that had an accuracy of 0.63 and a loss of 3.79, was then put to the test and our
two larger scenes which were excluded for training were now used as testing data. Figure 25 depicts
the result of one larger scene near the main entrance. Most of ceiling and floor points were classified
correctly but, most of the other objects were not. For instance, yellow eggs are visible in this scene.
When we take a closer look (see Figure 26), we found that yellow eggs were misclassified as well,
with a lot of differently classified points close to each other. We suspect this is due to the small
number of points that represented the yellow eggs in the training data once more showing a similar
result as in section 5.4. Another reason might have also been that the geometry affected the results,
as in this case, we did not have full yellow eggs to train with.

Another scene from the results is shown in Figure 27, where we have the same scene as in Figure 21
but now with the noise prevalent. The left figure depicts the predicted in the large scene, which we
clipped to show the same extent as the others, the middle is the ground truth without noise and the
right one is the result in the small scene. We learned through this experiment that even though our
data shows the same scene with a training set that had no training data removed from it but only
added extra data, that the results can still differ. We do expect a lot of the clutter that appears in the
large scene to the left can be because of the noise, so the network performance is affected by this
condition.

22

Figure 25: Visualisation result of predicted (left) and ground truth (right) point clouds from testing
based on new trained model in the larger scenes.

Figure 26: Yellow egg classified as floor. Top: predicted, bottom: ground truth.

Figure 27: Various classification on one objects. Left: predicted (large scene), middle: ground truth,
right: predicted (small scene).

23

5.5.3 Training focused on one object

In this experiment, we focus more on the yellow eggs so other objects were clipped out and we limit
the bounding box only to the yellow eggs. We notice that we have several yellow eggs inside the
training. Thus, we separate them into training, validation, and testing set. At the first trial, the train
and validation accuracy could reach above 80%. However, the accuracy values from testing are 0.29
for yellow egg and 0.83 for unclassified. Considering the yellow egg is a small object, we try to
change the block size of our data set in the preparation stage before training. The original setting
is 1.5 and we change it to 0.5. We do not have any reference in this choice, purely trial and error.
After we re-train, the output have improved. For each train and validation accuracy are now 0.99 and
0.97 respectively. As for evaluation, we obtain 0.87 for yellow egg and 0.96 for unclassified. The
difference result between the first and second trial is depicted in the Figure 28 where the shape of the
yellow egg is detected much better in the second trial than the first one. For this, we are still unsure
how the block size affects the accuracy results.

Figure 28: Results of yellow egg only.

Within this model from the yellow egg only, we test on a large scene. The output (Figure 29) illustrates
that all objects become yellow egg. We suspect this might due to our training set is not varied enough
and the area is too small, so it will only learn a little information.

Figure 29: Test on a large scene using the model from yellow egg only.

24

6 RESTful implementation of a web application

The web application is developed for clients to get the semantically segmented datasets in a more
friendly way. The neural networks have high requirements for the computer where they run including
the operation system, GPU, memory size, Cuda and cuDNN. Therefore, compared to desktop or
offline apps, web apps are better choices for projects based on deep learning which do not require
any installation and only run on the browser. Besides, the computation part can be delivered to a
high-performance server where the results can be generated more efficiently.

From section 4 we can see that PointCNN can provide better training performance and take less
training time compared to other neural networks like PointNet++ and DGCNN. Therefore PointCNN
is adopted in this web application to provide clients with more accurate segmentation results in an
efficient way.

6.1 Architecture

Figure 30: The technical architecture of the web application

The web application is written in JavaScript and Python. Figure 30 shows the technical architec-
ture of the web application.

For the frontend part, V ue is used as the main frontend javascript framework. There are three reasons
why we choose V ue: first, it is a progressive framework which enables you to write an app very
quickly; second reusable components are used which can reduce code redundancy and make the code
structure clearer and more logical; finally, the documentation of V ue is constantly being improved
and updated which is very friendly to programmers especially for the beginners. To make the web
pages highly responsive Bootstrap is used as the Front-end CSS Framework.

For the backend part, we use Flask which is a lightweight web application framework. One of
Flask’s greatest strengths is that it is based on Python which makes Flask flexible and extensible
by using a wide range of external libraries and add-ons. Besides, the neural network PointCNN is

25

implemented by Python. Therefore, integrating PointCNN into our backend is easier. SQLite3 is
used as our database. It is lightweight and does not require a separate server process. Compared to
the traditional file system storage, using the database can build relationships between different files
and can better handle concurrent access using some forms of locking. Besides, when we set sessions
in our database, some intermediate and useless datasets can be deleted automatically. Because of
its minimalism and simplicity SQLite is usually used to prototype an application. Considering that
deep learning usually requires massive datasets for better training performance, a larger database
such as PostgreSQL or Oracle will be needed. But at the prototype stage, using SQlit is a better
choice.

Figure 31: Communication between front and back ends

To send data between clients and the server, we use Axios to connect the frontend and the backend.
Figure 31 shows an example of the communication between the front and back ends. Axios is one of
the most popular libraries for HTTP communications (GET, POST, PUT, etc.) because of its ease of
use. REST stands of Representational State Transfer. It’s an architecture of standard design between
computers, making communication more easier for systems [Abidi, 2019]. Flask −RESTful as
an extension for Flask allows for quickly building RESTful APIs.

6.2 Functionality

The web app is designed for users to carry out semantic segmentation and view the results in an easier
and interactive way. Figure 32 shows the home page of the web app. The web app provides three
main functions: dataset uploading/downloading, semantic segmentation and result visualization.

6.2.1 Dataset Uploading/Downloading

Figure 33 shows the function of dataset uploading. The format of the datasets are constrained to .zip
files. One reason for the zip constraint is that we can have all files in a single zip archive. Another
reason is that the datasets can be compressed to reduce storage which allows for faster and easier
transmission on the web. After the prediction process is finished, users can choose to download the
semantically segmented datasets.

26

Figure 32: Home page of the web app

Figure 33: Dataset uploading

6.2.2 Semantic Segmentation

Figure 34 shows the function of semantic segmentation. It includes several steps: Tensorflow sample
compile, dataset conversion and dataset training. After finishing each small step, the timeline will be
recorded. And the segmentation results are in .obj format.

6.2.3 Visualization

For 3D point cloud visualisation, a cross-browser JavaScript library ThreeJS is used due to its
simplicity. It shows webGL’s great capability without the requirements of learning WebGL. First,
the .obj file is parsed. The 3D vertices and colours are stored in two different arrays. Then all 3D
vertices are used to get the centre (average) coordinate of the current point cloud to set the camera.

27

Figure 34: Semantic segmentation

Figure 35: One good result of semantic segmentation

After the camera setting, each point is rendered as a small square with a fixed area and attached
the corresponding semantics to present the label. Basic 3D scene operation is implemented like
rotation, zooming in and zooming out. These interactive operations can offer the users an insight to
“understand” the indoor scene. Figure 35 shows one good semantic segmentation result while the
result in Figure 36 is a little messy with many different kinds of entities in the scene.

28

Figure 36: One bad result of semantic segmentation

7 Conclusion

Point cloud data are inherently embedded in 3D space and has rich semantic representations. However,
they are often unordered and anisotropically distributed thus unsuitable for a typical CNN to handle.
Recently, with the advancement of feature learning from irregular domains, several deep neural
networks are available for point cloud analysis.

In this study, we have compared several neural networks for semantic segmentation of point cloud
data and implemented one of them to an indoor scene, namely the Amersfoort railway station. Based
on the initial comparison, PointCNN and Superpoint Graph give a better result when compared to
the other networks. From the user perspective, PointCNN is more flexible to modify and adapt.
PointCNN also has better training performance and takes less training time compared to other neural
networks like PointNet++ and DGCNN. Thus, we use PointCNN as our network for Amersfoort case
study and web application development.

Amersfoort railway station consists of objects like the entrance gates, ticket machines, couches,
information boards, etc. These objects are different from the S3DIS indoor scene that we used for the
neural network comparison; where the objects mostly are table, board, chair, and other stuff inside
an office room. This meant that our data needed to be labelled separately and used to train a new
network as indoor features differ a lot more than outdoor features. In total, we split the unclassified
data in 18 different classes.

This study has explored several experiments. From the initial experiment, an unbalanced number
of points for each class downgrades the training accuracy significantly. To improve this result new
experiments are done. In the next experiment, we use subsets from the data, remove the noise from
these, and re-train again without separating the training and testing set. The results indicate that
PointCNN works can work very well in a smaller environment with less noise and a more balanced
class distribution. However, in the third experiment, we have a low accuracy in the larger scenes due
to harder to label data, more complex environments and more choice in classes.

Based on these experiments, the quality of the data, the labelling task, and the proportion of the number
of points per class can all affect the network significantly. We also noticed in these experiments that
the results are very dependent on the training location. This means that the network is pretty well
adjusted to the scene it is trained on but as indoor scenes differ a lot in furniture and overall aesthetic
it makes a trained network for one location less suited to use in another location. For instance, a
network that is trained on a station would be of little use in a hospital as the features it has to recognize
are simply too different.

29

Additionally, we built a web application to integrate part of our research results into a workable
application. Users can upload their initial datasets through the web interface then get the semantically
segmented results after the segmentation process is done. Besides, we also provide the visualization
function in this web app where users can look into the results in a more direct way.

8 Future Research

There are some parts for improvement. First, training a neural network always takes more than 10
hours. It would be better if users can look into the training process through the monitoring interface.
Second, only one neural network is adopted. Although in general PointCNN has better performance
than other neural networks, some neural networks like DGCNN could provide better results in some
specific cases. Third, the web app is currently not connected to the products of Esri. Lastly, our
pipeline for semantic segmentation does not inherently support object-level detection from the point
cloud which requires post-processing such as clustering, while the possibilities of other end-to-end
pipelines for directly extracting objects from the point cloud need to be explored.

9 Acknowledgements

For the research done in this paper, we would like to thank Niels van der Vaart from Esri Nederland
for guiding the tools from Esri and for providing us with the ArcGIS Pro Beta version we used during
the project. We also want to thank Remco Bunder from the NS for providing us with the opportunity
and the data to perform a practical use case on Amersfoort railway station. Last but not least we
also want to thank our mentors from the TU Delft, Edward Verbree, Jesús Balado Frias and Martijn
Meijers, for providing us with guidance and help throughout the whole project.

References
CloudCompare (version 2.10.2) [GPL software], 2020. URL http://www.cloudcompare.org/.

S. Abidi. Tutorial: Building a RESTful API with Flask - Kite Blog, 2019. URL https://kite.com/
blog/python/flask-restful-api-tutorial/.

I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and S. Savarese. 3d semantic
parsing of large-scale indoor spaces. In Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition, 2016.

M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel signature: A quantum mechanical
approach to shape analysis. In 2011 IEEE international conference on computer vision workshops
(ICCV workshops), pages 1626–1633. IEEE, 2011.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261, 2018.

M. M. Bronstein and I. Kokkinos. Scale-invariant heat kernel signatures for non-rigid shape recogni-
tion. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 1704–1711. IEEE, 2010.

R. Brown. Running Versatile GPU Workloads in ArcGIS Pro Virtualized Environments with
NVIDIA Tesla T4, 2019. URL https://www.esri.com/arcgis-blog/products/arcgis-
pro/3d-gis/running-versatile-gpu-workloads-in-arcgis-pro-virtualized-
environments-with-nvidia-tesla-t4/.

C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. ACM transactions on
intelligent systems and technology (TIST), 2(3):1–27, 2011.

Environmental Systems Research Institute (ESRI). Arcgis pro release 2.5.1, 2012.

K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks
for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 37(9):
1904–1916, 2015.

30

http://www.cloudcompare.org/
https://kite.com/blog/python/flask-restful-api-tutorial/
https://kite.com/blog/python/flask-restful-api-tutorial/
https://www.esri.com/arcgis-blog/products/arcgis-pro/3d-gis/running-versatile-gpu-workloads-in-arcgis-pro-virtualized-environments-with-nvidia-tesla-t4/
https://www.esri.com/arcgis-blog/products/arcgis-pro/3d-gis/running-versatile-gpu-workloads-in-arcgis-pro-virtualized-environments-with-nvidia-tesla-t4/
https://www.esri.com/arcgis-blog/products/arcgis-pro/3d-gis/running-versatile-gpu-workloads-in-arcgis-pro-virtualized-environments-with-nvidia-tesla-t4/

D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex. The
Journal of physiology, 148(3):574–591, 1959.

M. Isenburg, Y. Liu, J. Shewchuk, J. Snoeyink, and T. Thirion. Generating raster dem from mass
points via tin streaming. In International Conference on Geographic Information Science, pages
186–198. Springer, 2006.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

D. Kudinov. Pointcnn: replacing 50,000 man hours with ai, 2019. URL https://medium.com/
geoai/pointcnn-replacing-50-000-man-hours-with-ai-d7397c1e7ffe.

D. Kudinov. Object extraction from mobile lidar point clouds with machine learn-
ing, 2020. URL https://medium.com/geoai/object-extraction-from-mobile-lidar-
point-clouds-with-machine-learning-cb15fcbb5597.

L. Landrieu and M. Simonovsky. Large-scale point cloud semantic segmentation with superpoint
graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4558–4567, 2018.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551,
1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

J. Li, B. M. Chen, and G. Hee Lee. So-net: Self-organizing network for point cloud analysis. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9397–9406,
2018a.

Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn: Convolution on x-transformed points.
In Advances in neural information processing systems, pages 820–830, 2018b.

A. Liaw, M. Wiener, et al. Classification and regression by randomforest. R news, 2(3):18–22, 2002.

H. Ling and D. W. Jacobs. Shape classification using the inner-distance. IEEE transactions on pattern
analysis and machine intelligence, 29(2):286–299, 2007.

J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst. Geodesic convolutional neural networks
on riemannian manifolds. In Proceedings of the IEEE international conference on computer vision
workshops, pages 37–45, 2015.

D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for real-time object
recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 922–928. IEEE, 2015.

J. L. McClelland, D. E. Rumelhart, P. R. Group, et al. Parallel distributed processing. Explorations in
the Microstructure of Cognition, 2:216–271, 1986.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115–133, 1943.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine learning for
knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2015.

K. S. Oh and K. Jung. GPU implementation of neural networks. Pattern Recognition, 37(6):
1311–1314, jun 2004. ISSN 00313203. doi: 10.1016/j.patcog.2004.01.013.

N. Olson, S. Lund, R. Colman, J. Foster, J. Sahl, J. Schupp, P. Keim, J. Morrow, M. Salit, and J. Zook.
Best practices for evaluating single nucleotide variant calling methods for microbial genomics.
Frontiers in genetics, 6:235, 07 2015. doi: 10.3389/fgene.2015.00235.

F. Poux. The smart point cloud - structuring 3d intelligent point data. page 268, 2019.

31

https://medium.com/geoai/pointcnn-replacing-50-000-man-hours-with-ai-d7397c1e7ffe
https://medium.com/geoai/pointcnn-replacing-50-000-man-hours-with-ai-d7397c1e7ffe
https://medium.com/geoai/object-extraction-from-mobile-lidar-point-clouds-with-machine-learning-cb15fcbb5597
https://medium.com/geoai/object-extraction-from-mobile-lidar-point-clouds-with-machine-learning-cb15fcbb5597

C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas. Volumetric and multi-view cnns for
object classification on 3d data. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5648–5656, 2016.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 652–660, 2017a.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets
in a metric space. In Advances in neural information processing systems, pages 5099–5108, 2017b.

C. R. Qi, O. Litany, K. He, and L. J. Guibas. Deep hough voting for 3d object detection in point clouds.
In Proceedings of the IEEE International Conference on Computer Vision, pages 9277–9286, 2019.

R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Aligning point cloud views using persistent
feature histograms. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3384–3391. IEEE, 2008.

R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (fpfh) for 3d registration. In
2009 IEEE international conference on robotics and automation, pages 3212–3217. IEEE, 2009.

R. Singh. Deep Learning + GIS = Opportunity, 2019. URL https://www.esri.com/about/
newsroom/arcuser/deep-learning/.

H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neural networks for
3d shape recognition. In Proceedings of the IEEE international conference on computer vision,
pages 945–953, 2015.

J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably informative multi-scale signature
based on heat diffusion. In Computer graphics forum, volume 28, pages 1383–1392. Wiley Online
Library, 2009.

P. V. Tran. Learning to make predictions on graphs with autoencoders. In 2018 IEEE 5th International
Conference on Data Science and Advanced Analytics (DSAA), pages 237–245. IEEE, 2018.

J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu. Deep learning for smart manufactur-
ing: Methods and applications. Journal of Manufacturing Systems, 48:144–156, 2018. doi:
10.1016/j.jmsy.2018.01.003. URL https://doi.org/10.1016/j.jmsy.2018.01.003.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph cnn for
learning on point clouds. ACM Transactions on Graphics (TOG), 2019a.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph cnn for
learning on point clouds. ACM Transactions on Graphics (TOG), 38(5):1–12, 2019b.

P. Werbos. Beyond regression:" new tools for prediction and analysis in the behavioral sciences. Ph.
D. dissertation, Harvard University, 1974.

Wikipedia. Jaccard index, 2020. URL https://en.wikipedia.org/wiki/Jaccard_index.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep representation
for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1912–1920, 2015.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep sets.
In Advances in neural information processing systems, pages 3391–3401, 2017.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural networks: A
review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F. Fraundorfer. Deep learning in remote
sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing
Magazine, 5(4):8–36, 2017.

32

https://www.esri.com/about/newsroom/arcuser/deep-learning/
https://www.esri.com/about/newsroom/arcuser/deep-learning/
https://doi.org/10.1016/j.jmsy.2018.01.003
https://en.wikipedia.org/wiki/Jaccard_index

Appendices
A Project plan

In this section, we will explain the plan we have to follow during the Project. This entails the project
overview which we revised twice since the PID report, the structure of the project, including the roles
that each of us has fulfilled in the team and our meeting schedule, a revision of our MoSCoW, our
updated planning for the project and the updated rich picture.

A.1 Project overview

During our project, the end goal gradually evolved bit by bit. At first, the main idea we presented in
the PID report was to have the focus of the project on testing the multiple prevalent point cloud-based
neural networks and to integrate these into ArcGIS via a web application. This then after the third
week of the project turned into a project where we would first test the neural networks and then
afterwards take the best performing one and use it on a use case which would be provided by a third
party. This research would then have the documentation needed for third parties to use our code via
an ArcGIS integration which was still being developed. Then the third evolution of our project came
to be as the data provider became the NS and the data provided was an unlabeled set which showed
how most clients of Esri usually collect their data. This gave us an environment where we could test
our code in a real live test case and first hand with potential clients. This did, however, introduce
a factor which we initially introduced as a won’t-have in the MoSCoW for the project, which now
became a must-have to produce results. So the final version of our project, in the end, became a
neural network comparison for the first half of the project which after that was tested on a manually
labelled dataset which had a lot of noise and irregular point quality as well as a complex environment.
This introduced a lot of problems on the way but as can be seen in section 5.5 we were able to get
some promising results even in this kind of scene as well as get some results on bad practices in this
kind of environment.

A.2 Project Structure

The structure also had some changes during the project which were mostly in the platforms we used
for sharing data. The task division and roles also in practice changed somewhat and the meetings we
held also got a bit bigger at the end of the project. In this section, we will go over all these changes in
the project structure and the reasons as to why this happened.

A.2.1 Platforms used

Originally the main platform we would use for sharing code and data was going to be GitHub. In the
end, this turned out to be quite redundant for our workflow so it gradually phased out of our project.
Github is a great platform for sharing code and reviewing it with each other but our project turned
out to be less coding than we initially thought. This is because a lot of deep learning code is done
by the implementation, instead of by the programmers that use a framework for it. We still needed
to do a lot of data pre-processing and we needed to get everything to work on our computers which
took a lot of time but all of this had to be done locally meaning the code made was useless for the
others of the team if they did not install all the specific requirements as well. This made our workflow
change from sharing everything with everyone to a dedicated set-up which we made mobile on itself
or kept installed at the pc Zhaiyu dedicated to this project which we could access remotely using
teamviewer1. This saved us a lot of time with hard installations and lengthy downloads, as well as
saving performance as most of our laptops were performing worse than the dedicated pc. The set-ups
we made mobile themselves were hosted using google colab which made a remotely accessible cloud
hosted computer which ran our code on a server hosted by Google. As already said GitHub was used
less and less for code sharing but also for file sharing we moved away from GitHub. This happened at
the moment we got access to more and more data, which we needed to be accessible and transferable
between our members for the pre-processing steps. As GitHub is not a platform that is made for
sharing, big datasets and binary files we decided to switch to google drive which is suited for this

1https://www.teamviewer.com/

33

purpose. This is also because we needed the data to be hosted on google drive to be able to use it with
google colab so this came as a natural transition from one platform to the other. After this transition
the only reason we used GitHub was for the scrum board which we now simply managed separately
during the meetings as the start of the day, making GitHub completely redundant.

Another platform that we used a lot during this project which was not previously mentioned in
documentation was our discord server. This has been used for our meetings with the team as well as
with the clients, for sharing papers, lectures and other background information and for presenting
demo’s to the client among other purposes. So this has also been a very valuable asset to us in these
days as our main platform for communication with the team as well as with the clients.

A.2.2 Task Division and Roles

During the project, each of the team members had their own role which gave them responsibility
for a certain part of the project, to make sure actions were taken efficiently and to make it clear for
the team members and the mentors and clients who they needed to contact for which subject. The
division was as follows during the project:

• Project Manager (Mels Smit): The Project Manager has the task to manage the project
as the role suggests. This means fulfilling tasks like making the minutes for the meetings,
keeping people on track during the meetings, setting the priorities for sprints, maintaining
the scrum board, etc.

• External Manager (Mihai-Alexandru Erbas, u): The External Manager has the task to
manage the contact with the client and the mentors. This means external communication
will (most often) go through one person for the team making the communication and asking
of questions more structured.

• Technical Leader (Zhaiyu Chen): The Technical Leader has the task of managing the
technical project. This means having the final say in which software is used, being up to
date with what libraries other members are using, checking if the software used by members
is compatible with each other, etc.

• Quality Analyst (Yustisi Ardhitasari Lumban Gaol): The Quality Analyst has the task
of controlling and continuously checking the preliminary and final work. This means testing
the results of the code as well as going over the final version of the report, presentations and
demos to ensure their quality.

• Product Manager (Xiaoai Li): The Product Manager has the task of ensuring the final
product is what the client wants. This means formulating a concrete view of the wanted
product, putting in work for user satisfaction, having final say in user interface based
decisions, etc.

During the projects, these roles did not mean that the members did not have an obligation to help
with other tasks instead, a lot of members did work belonging to other roles throughout the whole
project. For instance, Mels and Mihai-Alexandru both helped with ensuring the quality by preparing
data for the training phase, Yustisi had a lot of influence in the technical department due to being
involved in the training of the networks, Xiaoai had a lot of contact with the client from Esri and
Zhaiyu helped a lot with the people management in the more technical discussions. So everyone was
involved a lot in all tasks to make everything go smooth during the project.

A.2.3 Meetings

The meeting schedule during the project has been fairly consistent. Every Monday, Wednesday and
Friday we had a meeting at the start of the day at 9:00. During these meetings, we would discuss
what everyone had been doing since the last meeting, any problems that might have arisen and what
everyone would be picking up for the next day. We would also keep each other informed about
personal problems so everyone knew what was going on in each others lives in these weirder times.
On Friday we were joined by the client and Mentors at 10:00 to give them an update on what was
done this week and to discuss the steps for the week after. From the start of June onwards these
Friday meetings were also joined by Remco Bunder the representative from the NS. In the last week
of the project, the meetings were increased to every day of the week to finish the project in time.

34

A.3 Revision of the MoSCoW

MUST SHOULD
- Output: semantic point cloud
- Indoor features: the most common objects
in our data set
- 1x neural network approach
- Input: unlabeled point cloud
- Training set: already labeled
- The result quality must be measured
using the accuracy of the confusion matrix,
at least 60%

- Compute the result in a reasonable time
- Disseminating the Labelled Point Clouds on the web
- Output: literal object (instance level)
- Indoor features: other objects
- Should try on different ML algorithms
- The result quality should get 75%

COULD WON’T
- Output: meshes, LoD representations
- Could implement the code as ArcGIS add-in
- ArcGIS output

- Label the training

Table 5: Outdated MoSCoW Prioritization of Requirements and Objectives

In our project, we had decided to use the MoSCoW prioritization technique to determine the objectives
of this project. This method considers 4 different subdivisions which show the importance of certain
objectives:

- MUST is the category of objectives which mandatorily need to be achieved by the end of the project
- without accomplishing these goals, the project may be considered as incomplete;
- SHOULD represents those tasks which are extremely nice to complete and which we will put a
great emphasis on. While we desire to accomplish all of the mentioned SHOULDs there may be the
case that we cannot achieve them all, but the project would still be considered complete;
- COULD are the objectives which would be nice to have, but we shall only try to accomplish them if
and should we be done with the MUSTs and SHOULDs;
- the last category is represented by WON’T, which contains a list of tasks which we won’t deal with
throughout this project. While they might have been nice to do, we usually add here objectives which
are outside our scope or which couldn’t be accomplished in the already-set time frame.

Throughout our project, some of these MoSCoW priorities came to be under a lot of pressure due to
the change in direction our project has taken. As a consequence, some priorities switched places in
the MoSCoW ordering and some new priorities came to life as well. On the next page we will go
over the MoSCoW table as shown in Table 5 to go over the categories one by one, explaining what
the initial priority meant at the start of the project and how it changed over the project afterwards.
We will also talk about the newly added priorities and the whole discussion will be summarized in
Table 6 showing the MoSCoW requirements at the end of the project.

MUST SHOULD
- Output: semantic point cloud
- Indoor features: the most wanted assets for the NS
- 1 fully implemented neural network approach
- Input: unlabeled point cloud
- Training set: already labeled
- Labeling the NS data for experiments

- The result quality must be measured
using the accuracy of the confusion matrix,
at least 60%
- Compute the result in a reasonable time
- Indoor features: other objects
- Should try on different ML algorithms

COULD WON’T
- Disseminating the Labelled Point Clouds on the web
- Output: literal object (instance level)
- Output: meshes, LoD representations
- Could develop an web application to visualize the results
- ArcGIS output

Table 6: Updated MoSCoW Prioritization of Requirements and Objectives

35

1. MUST
• Output: semantic point cloud - We would like that our output is in the form of a point

cloud, where every point has a semantic label, representing one of the object categories
which we define in our software;
This priority stayed rather similar to the initial version. For some more concrete
information, we decided upon 18 different classes which could be used for semantic
classification and the output is not one point cloud of the whole scene but several
smaller ones which when joined still show the whole scene.

• Indoor features: the most common objects in our data set - We would like our neural
network to recognize a few of the most common objects which can be found inside of
a building, such as chairs, tables, doors, walls, and a few more others;
The indoor features we wanted to find at first have completely changed at the end of
the project. The features we are now looking into are the assets wanted by the NS. This
meant less available training samples and more complex shapes so to say we need to
find the most common objects is not good enough anymore, therefore the requirement
which still is a must-have is to classify indoor features which are wanted assets from
the NS.

• 1x neural network approach - We would like to have (at least) one fully functioning
neural network, so we need to carefully analyze which neural network would be the
most suited for our 3D application;
This also stayed the same. It was a must-have to have 1 neural network that could work
for the whole process and it still is.

• Input: unlabeled point cloud - Upon training the neural networks using deep learning
techniques, we would like to input an unlabeled point cloud in our software. This
unlabeled point cloud should have a labelled counterpart, which would allow us to
check for the quality of our classification process. It should be noted that, should a
point cloud contain RGB information for its points as well (if the point cloud was
generated from photogrammetry, for example), it will be considered as a property of
the point (so each point will have different values for the different colours), and not as
a label.
This priority also stayed the same as this is what the networks will be tested against in
the end.

• Training set: already labelled - We will perform the training for our neural network
using only labelled data sets, which we need to gather and then check the quality for
each data set individually;
This is the same as this is the only data you can feasibly use for training, however, the
underlying thought with this was that we would not be labelling the data ourselves
which in the end needed to be done to make the project feasible to get any results at all.
• The result quality must be measured using the accuracy and precision of confusion

matrix; at least 60% - We would like to ensure that our software manages to classify
unlabeled point clouds with an accuracy of at least 60%. Anything less would be
considered as a not successful result.
This priority in the end became an almost unfeasible one. As we worked with unlabeled
data from a complex scene with a relatively low amount of training samples, a lot of
noise in the data, corrupted colours and incomplete captures of objects we could simply
not guarantee good results. This must-have was completely based on the idea of a clean
cohesive and balanced training set, which in the end we did not get to use so the strive
to an accuracy of at least 60% became a should-have not a must-have in our project.

2. SHOULD
• Compute the result in a reasonable time - We will try to achieve a result which has all

other properties mentioned in this document in less than 5 minutes, for a point cloud
representing the interior of an entire building;
Taking the training not into account as this has to be done beforehand, the classification
process takes about 5-15 minutes on the sizes we used for testing depending on the
density of points, the extends of the area and the metrics needed to be computed. For
the whole station, this once again takes longer so within 5 minutes is not a result we
can achieve with this dataset. This does however heavily depend on the number of

36

points that make up the scene as close to scan locations the point density is suddenly
in the order of millions for quite little extra information. As a consequence the NS
data set is a lot larger than it needs to be at about 860 million points which all have to
be processed and processing more than a hundred million points in a neural network
within a minute is simply unrealistic to ask from our laptops, so the initial goal was too
ambitious.

• Disseminating the Labeled Point Clouds on the web - It also ranks with high priority
for us the task of segmenting the point cloud into objects (so one group of points
would represent a single object, such as a chair, or a table), which in the end could be
displayed on a web-application (or perhaps an ArcGIS StoryMap), on which a user has
the possibility of selecting and turn on or off each available object;
This issue, in the end, did not get picked up all that much. With the shifting priorities
in the project, the focus kept returning to properly classifying the points we had been
given so less and less time was left for processing these points afterwards as well. As
a result, this issue was pushed back somewhat to the level of a Could have for our
project.

• Output: literal object (instance level) - We would like if we can group multiple points
such that one grouping represents a singular, atomic object (so besides the classification
we’d also have an object id);
As said for the previous priority as well the further processing of points became more
and more a Could have in the project so this underwent the same change.

• Indoor features: other objects - Should we have extra time available, we can try to
introduce other indoor objects which could be detected by the software
With the addition of the NS data, the classification of other objects stayed a very
welcome feature as it meant additional balancing of the datasets and it could be picked
up during the training of the network without much additional work once the data has
been properly labelled. So this issue stayed a Should have, which we also fulfilled in
some of our experiments.

• Should try different machine learning algorithms - At first we shall focus on only one
machine learning methodology, but it would be extremely useful if we’d manage to
compare multiple machine learning algorithms and to conclude which would be more
suited for our application;
During the project, we have continuously kept multiple networks up to date to work
with the data we had at the current state of the project, so this continuously stayed a
high priority in our project which is why this kept on being a Should have throughout
our whole project.

• The result quality should get 75% - Improving the quality from an average of 60% to
75% would mean a much more accurate identification of features, which in turn would
give a much more trustworthy result.
With the reduced priority for achieving a 60% accuracy rate the 75% accuracy rate also
reduced in importance. In the end, it was still something that would be nice to strive
towards but it was never a priority for us anymore which is why we removed it from
the MoSCoW entirely.

3. COULD
• Could implement the code as ArcGIS plugin - We will start by creating a piece of

software which takes a PC and labels it, but it would be amazing if we could integrate
this piece of software as a plugin in ArcGIS, which would drastically improve the
usability and would allow Esri users use our software in their specific applications.
We had multiple reasons of why we chose to go with ArcGIS instead of other similar
pieces of software, besides the fact that a client for this project is Esri: it is one of
the most used programs in practice and, because it requires a paid subscription, it is
well maintained and updated (as compared to Open-Source projects, which are mainly
maintained by community volunteers). At the same time, Esri constantly provides
up-to-date data to all its customers, and the GUI is easy to use and understand;
In the end, this task became less of a focus for our project. The integration with ArcGIS
turned out to be a quite labour intensive process, so the decision was made to visualize
our results as a web application instead which was advised by one of our mentors.

37

Using this web application our process could still be easily visualizable for clients of
our service and the output data is fully compatible with ArcGIS. So the task itself was
modified somewhat but it still stayed a Could have.

• ArcGIS output - adapting the result such that it complies with the ArcGIS standards;
As said in the previous point the output data we produce is fully compatible with
ArcGIS so this Could have has been fulfilled and stayed a Could have.

• Output: meshes, LoD representations - Applying multiple methods of transforming the
groups of point clouds (grouped by individual objects) into either triangulation meshes,
or perhaps even trying to reconstruct the object as a representation having a certain
Level of Detail.
This idea kept in our heads but in the end, there was simply no time to complete it, so
it stayed a Could have.

4. WON’T

• Label the training - we believe that labelling the training data ourselves might be too
difficult, and would require a lot of time and effort, so we have decided to try and find
only already-labelled data in our training process.
This changed drastically during the project. At first, we did not want to do this for
reasons shown above, then we changed this line of thought when we got the NS data
and wanted to only label the assets we were interested in to reduce the amount of time
spent on this task as well as the difficulty of it in general, but after results with this line
of thinking, we needed to switch to different labelling approaches for different kinds of
experiments which indeed was both difficult and time-consuming. In the end our only
WON’T have become one of our most needed MUST have’s.

A.4 Work Plan

As already said our project didn’t entirely go as planned initially due to more chances arising and
shifting of directions for the project. This meant that the work plan we set up at the start of the project
(see Figure 37) was not going to hold up anymore. This planning was originally already not holding
up because we had expected to have some data from a third party to use in our experiments by the
end of sprint 3, but due to COVID 19 this process was delayed a lot causing the third party to change
into the NS and the data was only available to us since sprint 6. As a result, our project became very
busy in the last weeks to make sure everything still went according to plan. These changes of our
planning are shown in Figure 38. Both of these schematics follow a similar colour coded structure as
can be seen in the legend. When looking at this planning the changes in our project can be seen quite
well in the blocks that suddenly introduced a lot of new issues after the midterm presentation and
once again in sprint 6. This meant fewer opportunities for demo’s and a lot more research as well.
The planning at the end of the project, therefore, became a lot busier than initially thought as well
which caused some long evenings but in the end, the team managed to pull through.

Figure 37: The Gantt Chart that visualizes our originally thought timeline during the project

38

Figure 38: The updated Gantt Chart that visualizes our project actually went

A.5 Rich Picture

To explain the scope of this project comprehensively, we have created a rich picture diagram. It
depicts the relationship between the parties involved in the project, the problem case that needs
to be solved, the expectation of the different parties, the processes that need to be done, and also
the possible obstacles during the project. In the rich picture (see Figure 39), our project is defined
by three stakeholders: the team members, the clients, and the mentors. Together, we want to do
research focusing on indoor point cloud classification using deep learning algorithms. The interests
and concerns of each party are stated in the different colours in the diagram. Firstly, our team will
be focusing on the processing algorithm and the web development. Secondly, the client-side will
provide supporting materials needed for this project, such as data sets and learning materials. Finally,
the mentors will guide us with the knowledge to trigger our creativity to work on this project.

Throughout the project, this rich picture has stayed fairly consistent as the parties have all upheld
their parts in the project. The only change made was to the clients part as the third party, the NS, was
introduced into our project. This added a question from their side about the possibilities for asset
management into our project.

Figure 39: Rich picture

39

B Limitations

This section describes some results encountered during the workflow, including the hardware, the
usability of ArcGIS Pro Beta, ArcGIS Pro integration, issue with third party data, and Coronavirus
pandemic.

B.1 Hardware

For this project, only one PC was available for all tasks since Google Colab does not work efficiently
for all tasks. Installation in Google Colab often experienced incompatible packages. Google Colab
itself already provides almost all requirement for the neural networks, but the version is often too
up-to-date. Some packages can indeed be changed manually, but some others are too complicated to
edit. For example, when setting up PointCNN in Google Colab, the user should downgrade both the
TensorFlow and the CUDA version which leads into an unsatisfied path directory, leading into yet
another error. Besides, it is also difficult to debug in Google Colab.

As an input for the next deep learning project, it is better to have more than one PC since the training
process takes time. Also, the labelling process requires more suitable hardware due to heavy data set
to be visualised at a time, even though the data had been truncated into smaller blocks.

B.2 Problems with ArcGIS Pro for Labeling

During the project, we had to label quite a lot of data in the end. To do this we were allowed to use the
beta version of ArcGIS 2.6. ArcGIS allowed us a lot of freedom in carefully classifying points and
modifying class codes in batches for instance, but not everything went smoothly during the process.
The laptops we were using to run ArcGIS Pro were all at recommended settings or just a bit lower for
version ArcGIS 2.5 so the performance should be smooth, but we experienced that when visualizing a
dense patch of points which have a lot of points very close to each other or when visualizing just a lot
of points in general spread over a bigger area that some problems started arising. Firstly the graphic
cards we have in our laptop could simply not keep up with the visualization, even when changing the
settings of ArcGIS Pro to the lowest possible ones from a visualization point of view. This resulted in
long loading times to see your selection for labelling at certain moments and sometimes crashed the
program as a whole. Because of the intensity on which our GPU’s were running it also caused some
of our laptops to overheat at times. We also experienced the issue of not all points being visualized at
times, which caused some selection during manual classifications to be inaccurate as some points
which had to be labelled were not shown and therefore fell outside of the selection range. This caused
some badly labelled objects in our initial results, but after finding them they have been fixed. Another
problem was with the loading of the datasets. As our data from the NS was about 18 GB it was too
large to efficiently visualise in ArcGIS Pro, we only learned about this later during a meeting with
the client so this caused some delay in our work. To make sure this became less of an issue we split
the dataset into 26 parts initially and afterwards we split these in 5 by 5-meter tiles to greatly reduce
the amount of data loaded into ArcGis at the same time.

B.3 Poor Results

This section provides some results from other experiments besides the one we delivered in the main
text. The TensorBoard plots are smoothed to give an understanding for training in general.

40

Figure 40: Result of applying pretrained model from S3DIS directly to Amersfoort data set. We
notice that the pretrained model is not compatible to be used in our data set since the objects are
totally different.

Figure 41: First try on Amersfoort data using PointCNN. Entrance gates is the only labeled object
in this scene. As we can see, the prediction detect the other side of the entrance gate. After this
experiment, we decided to label entrance gate for both side.

Figure 42: Rough loss and accuracy during training and validation process in the initial running.

41

Class Ac-
curacy

UnclassifiedGarbage
can

Couch Entrance
gate

Floor SOS pole Info
boards

PointNet++ 0.94 0.00 0.07 0.00 0.00 0.00 0.00
PointCNN 0.83 0.00 0.00 0.00 0.00 0.00 0.00

Table 7: Initial result of Amersfoort data set using PointNet++ and PointCNN. All classes barely
have true predictions, except unclassified.

Figure 43: Visualisation of the initial result on the couch. No couch detected in the prediction model.
Some parts are predicted as garbage can.

Figure 44: Visualisation of the initial result on the entrance gate, but no entrance gate classified
correctly in the prediction.

42

Figure 45: Visualisation of the initial result on the garbage can. Prediction result depicts some yellow
eggs on the floor and ceiling.

Figure 46: Visualisation of the initial result on the vending machine. Most points are predicted as
ticket machines.

43

Figure 47: Loss and accuracy during training and validation process using only one small scene
having entrance gate, floor, SOS pole, and advertisement board on the ground.

Figure 48: Visualisation of the first trial. Training only on one scene with additional class: floor,
SOS pole, and advertisement board on the ground. Notice that the shadow shown in the raw data are
represented in the prediction result.

44

Figure 49: Loss and accuracy during training and validation process on the large scenes with a full
data set.

45

Figure 50: Visualisation of the prediction of other results in the large scenes. Some parts of garbage
can are predicted as entrance gate and some parts of couch are detected as garbage can. There is color
difference in the floor due to unlabeled floor in the ground truth.

Figure 51: Visualisation of the predictions of other results in the large scenes. As we can see,
prediction for ceiling is quite well and also floor. The model could predict parts of entrance gate
correctly. However, most walls are predicted as ceiling and other objects are classified randomly.

46

Figure 52: Loss and accuracy during training and validation process focused only on the yellow egg.

Figure 53: Loss and accuracy during training and validation process focused only on the yellow egg.

47

Figure 54: The open-source projects using arcgis.learn module in GitHub

B.4 ArcGIS Pro Integration Problems

• ArcGIS API for Python: the arcgis.learn module provides functions that support machine
learning and deep learning with spatial data. Currently, the learning module focuses on re-
mote sensing satellite imagery. But they do include PointCNN for point cloud segmentation.
However, various required python libraries and dependencies must be installed to compile
the PointCNN framework. It also requires Visual C++14 and CUDA Toolkit.
Python environment:

1 conda create -n pytorcharcgis conda activate pytorcharcgis
conda install -c conda -forge requests -toolbelt requests_ntlm
conda install -c esri -c fastai -c pytorch arcgis fastai

=1.0.54 pytorch =1.1.0 cudatoolkit =10 scikit -image pillow
=6.2.1 fastprogress =0.1.21 --no -pin

2

3 conda install -c esri -c plotly -c owlas laspy =1.6.0 plotly
=4.5.0 plotly -orca psutil h5py =2.10.0 transforms3d pip
install --no-binary torch -cluster ==1.4.5 torch -cluster
==1.4.5 --no-cache -dir pip install --no-binary torch -sparse
==0.4.3 torch -sparse ==0.4.3 --no -cache -dir pip install --no-
binary torch -scatter ==1.4.0 torch -scatter ==1.4.0 --no -cache -
dir pip install --no-binary torch -geometric ==1.3.2 torch -
geometric ==1.3.2 --no -cache -dir

4

In order to avoid some underlying conflicts, xiaoai Li reinstalled the operation system of her
PC. Then she followed all the instructions. But the compiling of PointCNN framework still
failed.

• ArcGIS Pro version conflicts: another option of using ArcGIS API for Python is to copy
the python environment of the installed ArcGIS Pro. At the start, the ArcGIS Pro with the
old version (2.0) was used. However, the ArcGIS Pro with version 2.6 is already in beta
stage. The Python environment from ArcGIS Pro 2.0 was not updated which results in a lot
of conflicts.

• Few related study materials: the module of arcgis.learn is relatively newly added, espe-
cially for the PointCNN framework. There are few tutorials about how to use this learn
module. In GitHub there is nearly no open-source project using arcgis.learn module (see
Figure 54).

• Operation system conflicts: PointCNN framework in ArcGIS API for Python has some
unfixed problems for use. But we have already had a workable PointCNN neural network
which is available to use. The workable PointCNN runs on Linux system including some
Linux-specific Cuda and cuDNN configuration. To use this neural network, Xiaoai Li
installed the Linex system on her PC. However, developing an add-on in ArcGIS Pro
becomes impossible since ArcGIS Pro only has a Windows version.

48

B.5 Third party data

Another setback during the project has been the third party to some extent. There have been a lot of
delays when it came to this data, from the expected sprint 3 to sprint 6 which essentially is a third of
the project later. This delay made our planning quite hard to do as this delay kept happening gradually.
The initial thought had been that we would be able to work with data provided by Schiphol in sprint
3 so we planned on this. This was then pushed to a week later, then it became unsure if this could be
an option, so other options were considered, this then also took another week to become clear until
the NS was finally chosen. This is obviously part of working with external companies and we fully
understand this but it was still a setback in our project which caused quite a delay. Another downside
of this third party data was afterwards that the data was not labelled when we eventually got it. This
made the experience we got and the workflow we had to take closer than would usually be the case
when working with a company, but this caused us to have to pick up the labelling ourselves, which is
something we put in our won’t haves for the project initially as we believed this would take way to
much time to do properly. In the end, it can indeed be seen in our results that this is the case if no
special precautions are taken. This is also a nice conclusion to have at the end of the project but it
was still something that we had rather not seen happen in the project as the cleaning of the data so
late in the project gave us a significant amount of extra pressure we had to deal with.

B.6 Travel Issues

Due to the current worldwide situation caused by the Coronavirus pandemic, one member of the
team (Mihai-Alexandru Erbas, u) lost a few working days. While trying to get home, his flight was
cancelled and rescheduled a few times, sometimes with less than 12 hours notice, time which could
have been spent on the project. Also, besides the days spent on preparing for the flight (even though
it was cancelled in the end), another full working day was lost on the travelling day itself.

C Data Preparation

Convert .e57 to .las

1 e572las -v -i Amersfoort.e57 -o Amersfoort.las

Split the data into several blocks.

1 las2las -i amersfoort.las -keep_xy -5 20 25 30 -o merged_1.las

-keep_xy -5 20 25 30 (res is in merged_1) -keep_xy 25 20 55 30 (res is in merged_14)
-keep_xy -5 10 25 20 (res is in merged_2) -keep_xy 25 10 55 20 (res is in merged_15)
-keep_xy -5 0 25 10 (res is in merged_3) empty result -keep_xy 25 0 55 10 (res is in merged_16)
-keep_xy -5 -10 25 0 (res is in merged_4) -keep_xy 25 -10 55 0 (res is in merged_17)
-keep_xy -5 -20 25 -10 (res is in merged_5) -keep_xy 25 -20 55 -10 (res is in merged_18)
-keep_xy -5 -30 25 -20 (res is in merged_6) -keep_xy 25 -30 55 -20 (res is in merged_19)
-keep_xy -5 -40 25 -30 (res is in merged_7) -keep_xy 25 -40 55 -30 (res is in merged_20)
-keep_xy -5 -50 25 -40 (res is in merged_8) -keep_xy 25 -50 55 -40 (res is in merged_21)
-keep_xy -5 -60 25 -50 (res is in merged_9) -keep_xy 25 -60 55 -50 (res is in merged_22)
-keep_xy -5 -70 25 -60 (res is in merged_10) -keep_xy 25 -70 55 -60 (res is in merged_23)
-keep_xy -5 -80 25 -70 (res is in merged_11) -keep_xy 25 -80 55 -70 (res is in merged_24)
-keep_xy -5 -90 25 -80 (res is in merged_12) -keep_xy 25 -90 55 -80 (res is in merged_25)
-keep_xy -5 -100 25 -90 (res is in merged_13) -keep_xy 25 -100 55 -90 (res is in merged_26)

Table 8: Area division based on xy values.

After all the data has been cut into several areas as shown in Table 8 it was then cut in 5 by 5 meters
blocks. The result was a scene cut in a lot of small cubes which can be seen in Figure 55.

49

Figure 55: An overview from the top of how the station has been cut up into pieces for easier data
processing

50

Figure 56: List of identified objects per class per scene.

Two parts below are intentionally developed according to input format for PointCNN data preparation,
but we make it compatible with PointNet++ and DGCNN as well.

1 # Convert .las to text file format having xyz , rgb , and label
information.

2 las2txt -i amersfoort.las -o amersfoort.txt -sep space -parse xyzRGBc
-scale_rgb_down

1 # Separate text files into .txt (xyzrgb) and .labels (class codes).
2 #!/bin/sh
3 ls *.las | sed -e ’s/.las//g’ > flist
4

5 for f in ‘cat flist ‘
6 do
7 echo Processing $f ...
8 /mnt/c/programs/LAStools/bin/las2txt.exe -i $f.las -o $f.txt -sep

space -parse xyzRGBc -scale_RGB_down
9 awk ’NF -=1’ $f.txt > $f_xyzrgb.txt

10 awk ’{print $(NF)}’ $f.txt > $f_xyzrgb.labels
11 rm $f.txt
12 echo $f DONE
13 done
14 mv *.txt ../ prepare_xyzrgb_labels
15 mv *. labels ../ prepare_xyzrgb_labels

51

D Data Labeling

First you install ArcGIS obviously and start it. Then we follow the following steps:

1. Make a new project (using a local scene for instance (note different scenes or maps have
different properties)).

2. In the catalogue on the right navigate to the “Folders” folder and right-click, then navigate
to the folder containing the wanted data and add it to the project.

3. In this folder, you can then make a LAS Dataset if this is wanted to combine multiple LAS
Files into one. This can also give them a joined Coordinate Reference system (both for a
horizontal and vertical projection (in our case these were RD New and NAP))

4. Then you can right-click on the dataset you wanted and add it to the current map or scene.
5. Now the data will be displayed on the middle screen which allows you to interact with the

scene itself.
6. To make classification of points easier you can then click on the left on the 3d las layer which

gives you the LAS Dataset Layer options in the ribbon, here you can go to classification and
click on “Create” in the profile viewing section.

7. Once this option has been selected you can then start reclassifying the points by zooming in
on the points and selecting them using the select tool in the classification tab.

E Setting Up the Environment for Neural Networks

E.1 How to setup PointNet++

Requirements:

1 ubuntu 16.04
2 python 3.6.7
3 pytorch 1.1.0
4 plyfile

Data Preparation

For PointNet++, make the following changes to take the new dataset:

1. In file S3DISDataLoader.py change the class number: search and replace every 13 with 7;
replace every 14 with 8.

2. In file train_semseg.py change the class name list: used to be 13 classes; change into 7
classes, optionally change the names.

3. In file train_semseg.py change the –npoint argument: make sure the number is less or equal
with the minimal number of points in one scene.

4. Change the npy filenames with area index, e.g., Area_1_somename, so that the code knows
whether it should be used for training or testing.

5. In file train_semseg.py change the –test_area argument: make it compatible with the area
partition of our dataset.

52

Code:

1 import os
2 import sys
3 import numpy as np
4

5 base_dir = "/media/zhaiyu /7 CF2DC06F2DBC296/Datasets/Amersfoort"
6 filenames_train = os.listdir(’/media/zhaiyu /7 CF2DC06F2DBC296/Datasets/

Amersfoort/train ’)
7 filenames_train_data = [filename for filename in filenames_train if

filename.endswith(’.txt’)]
8 filenames_train_label = [filename [: -11] + ".labels" for filename in

filenames_train_data]
9 filenames_output = [filename [:-4] + ’.npy’ for filename in

filenames_train if filename.endswith(’.txt’)]
10

11 # only for training dataset
12 for filename_data , filename_label , filename_output in zip(

filenames_train_data , filenames_train_label , filenames_output):
13 print("processing " + filename_data)
14 if os.path.exists(os.path.join(base_dir , ’data_pointnet2 ’,

filename_output)):
15 print("skipping existing file")
16 continue
17 train_label = np.loadtxt(os.path.join(base_dir , "train",

filename_label)).reshape([-1, 1])
18 train_data = np.loadtxt(os.path.join(base_dir , "train",

filename_data))
19 # merged_15_4 has only 1 point
20 if len(train_label) < 2:
21 print("skipping the file with #point <2")
22 continue
23 npy_data = np.concatenate ([train_data , train_label], axis =1)
24 np.save(os.path.join(base_dir , ’data_pointnet2 ’, filename_output),

npy_data)

Run

1 ## Check model in ./ models
2 ## E.g. pointnet2_ssg
3 python train_semseg.py --model pointnet2_sem_seg --test_area 5 --

log_dir pointnet2_sem_seg
4 python test_semseg.py --log_dir pointnet2_sem_seg --test_area 5 --

visual
5

6 Visualization results will save in log/sem_seg/pointnet2_sem_seg/
visual/ and you can visualize these .obj file by MeshLab.

7 Visualization Using show3d_balls.py
8

9 ## build C++ code for visualization
10 cd visualizer
11 bash build.sh
12 ## run one example
13 python show3d_balls.py

53

E.2 How to setup Superpoint Graph

I followed the installation guide they provided on their GitHub when installing the network. This
guide is found at https://github.com/mlpc-team/superpoint_graph in the readme section.
My pc is running windows as well btw so this section is based on the windows system.

First I went and installed Conda via Miniconda, which is a free minimal Conda installer found
at https://conda.io/en/latest/miniconda.html, as this was needed in a later step anyway.
After installing this please make sure that the miniconda3 folder and the
Scripts folder are added to your PATH found in your environment variables. (After adding these to
your environment variables you might have to restart your computer).

For the conda environment, I made a new environment at the location I wanted by running the
command

1 conda create --prefix=yourEnvName python=x.x

(with yourEnvName as the name you want to use and x.x as the correct version of python, in my case
these were sp_graph_env and 3.7)

I then ran the following command to activate the correct environment to work in.

source active sp_graph_env/

and then I used cd sp_graph_env/ to enter this folder.

Although I did make a fork the installation of the cut-pursuit submodule did not go as expected on
the forked repo and failed so, therefore, I advise to use the cloning approach they advise on their own
repo. That means running the command:

1 git clone --recurse -submodules https :// github.com/loicland/
superpoint_graph

2 Here the --recurse -submodules command makes sure cut -pursuit is
installed correctly , making sure you can skip step 4 of their own
installation guide.

The installation guide then says to run the command
1 pip install git+https :// github.com/pytorch/tnt.git@master

To install PyTorch and torchnet which need to be installed as a requirement. My computer, however,
had a problem with this as it did not have the module named tools.nnwrap. So I installed the
framework in another way. I ran the command

1 conda install pytorch torchvision cudatoolkit =10.0 -c pytorch
2 (cudatoolkit =10.0 as we discussed this during the meeting on

15 -05 -2020)
3 Not the newest install
4 pip install torch ===1.5.0 torchvision ===0.6.0 -f https :// download.

pytorch.org/whl/torch_stable.html

Which I found on the PyTorch website https://pytorch.org/get-started/locally/ when I
filled in my system specs and my package manager as pip. This takes a while to install.

For torchnet I went to https://pypi.org/project/torchnet/#modal-close and under down-
load files I downloaded the “torchnet-0.0.4.tar.gz” file and then I ran the command

1 pip install file :///C:\Users \\ TUDelftSID \\ Downloads \\torchnet -0.0.4.
tar.gz

Where the last part is an absolute path to the tar.gz file on my pc.

It then asks to download some additional python packages with the command
1 pip install future python -igraph tqdm transforms3d pynvrtc fastrlock

cupy h5py sklearn plyfile scipy
2 In my case , however , cupy didn ’t want to install directly so I removed

this one from the install command and manually installed it doing
the following.

54

https://github.com/mlpc-team/superpoint_graph
https://conda.io/en/latest/miniconda.html
https://pytorch.org/get-started/locally/
https://pypi.org/project/torchnet/#modal-close

Then I ran the command:

1 conda install -c anaconda cupy

Then some more packages needed to be installed via conda with the command

1 conda install -c anaconda boost; conda install -c omnia eigen3; conda
install eigen; conda install -c r libiconv

And then you run the following command to make the cmake dependencies. Make sure the -
DPYTHON_LIBRARY points to your local python library file, -DPYTHON_INCLUDE_DIR points
to your local python version and -DEIGEN3_INCLUDE_DIR to your eigen3 clone.

1 cd partition/ply_c; cmake . -DPYTHON_LIBRARY =/usr/lib/x86_64 -linux -gnu
/libpython3 .6m.so -DPYTHON_INCLUDE_DIR =/usr/include/python3 .6m -
DBOOST_INCLUDEDIR =/usr/include -DEIGEN3_INCLUDE_DIR =/usr/include/
eigen3; make; cd ..; cd cut -pursuit; mkdir build; cd build; cmake
.. -DPYTHON_LIBRARY =/usr/lib/x86_64 -linux -gnu/libpython3 .6m.so -
DPYTHON_INCLUDE_DIR =/usr/include/python3 .6m -DBOOST_INCLUDEDIR =/
usr/include -DEIGEN3_INCLUDE_DIR =/usr/include/eigen3; make;

Then to use their own pretrained network use the following code for which you manually pass the
–S3DIS_PATH which is the path to the data you want to pass to the network and the –odir which
should be where you want to store the output from the network.

1 for FOLD in 1 2 3 4 5 6; do \
2 CUDA_VISIBLE_DEVICES =0 python learning/main.py --dataset s3dis --

S3DIS_PATH /content/gdrive/My\ Drive/mlpc -team/Neural\ Networks/
superpoint_graph --cvfold $FOLD --epochs -1 --lr_steps ’[275,320]’
\

3 --test_nth_epoch 50 --model_config ’gru_10_0 ,f_13 ’ --ptn_nfeat_stn 14
--nworkers 2 --pc_attribs xyzrgbelpsvXYZ --odir "results/s3dis/
pretrained/cv${FOLD}" --resume RESUME; \

4 done

55

E.3 How to setup PointCNN

Environment for PointCNN is based on Github: https://github.com/yangyanli/PointCNN.
We adapted some parts of codes for the compatibility within our NS data sets. All modified code for
NS is available in https://github.com/mlpc-team/PointCNN-NS.

Requirements / packages:

1 tensorflow -gpu 1.8 with CUDA 10.x
2 matplotlib
3 plyfile
4 scipy
5 tqdm
6 transforms3d

Folder structure in PointCNN (based on semantic3d data structure):

.
PointCNN

data
amersfoort

filelists
test

amersfoort_area3_xyzrgb.txt
amersfoort_area3_xyzrgb.labels
amersfoort_area4_xyzrgb.txt
amersfoort_area4_xyzrgb.labels

train
amersfoort_area1_xyzrgb.txt
amersfoort_area1_xyzrgb.labels
amersfoort_area2_xyzrgb.txt
amersfoort_area2_xyzrgb.labels

val
amersfoort_area3_xyzrgb.txt
amersfoort_area3_xyzrgb.labels

test_files.txt
train_data_files.txt
val_data_files.txt

other data sets

Data preparation for NS data (adapted from semantic3d data preparation)

1 #1 Input .txt and .labels containing xyzrgb and class codes
respectively. Distribute the data into training , validation , and
testing sets according to folder structures.

2 #2 Go to /data_preparation and run prepare_ns_data_xyzrgb.py to
convert input files into HDF format (.h5) within six data
dimension (xyzrgb). If user wish to use XYZ only or add intensity ,
then run prepare_ns_data_xyz.py or prepare_ns_data_xyzirgb.py

3 #3 Run prepare_ns_filelists.py to create a list of files having
distributed data.

User may adjust parameter setting for training. The file located under
pointcnn_seg/ns_x8_2048_fps.py. The parameter used in this study follows the semantic3d
setting, but adapted at some parts as follow:

1 num_class = 18
2 batch_size = 4
3 num_epochs = 1024
4 decay_steps = 5000
5 data_dim = 6

56

https://github.com/yangyanli/PointCNN
https://github.com/mlpc-team/PointCNN-NS

Setup PointCNN for NS:
1 # Compile sampling; make sure that CUDA version and tensorflow path

directory alredy satisfy tf_sampling_compile.sh. This step is only
taken once for initial setup. Afterwards , directly go to the next
step.

2 cd PointCNN/sampling
3 bash tf_sampling_compile.sh
4 # Prepare dataset , put all input according to folder structure in

PointCNN/data/
5 cd PointCNN/data_conversions
6 python prepare_ns_data.py --folder ../../ data/amersfoort/
7 mkdir filelists
8 python prepare_ns_filelists.py --folder ../../ data/amersfoort/
9 #Run train and val

10 cd ../
11 python train_val_seg.py --filelist data/amersfoort/train_data_files.

txt
12 --filelist_val data/amersfoort/val_data_files.

txt
13 # Run test
14 python test_general_seg.py --filelist data/amersfoort/test_files.txt
15 --load_ckpt models/seg/pointcnn_seg_ns/

ckpts/iter -
16 # Run evaluation
17 cd evaluation/
18 # Merge files
19 python ns_merge.py --datafolder ../ data/amersfoort/test
20 # Calculate accuracy and IoU
21 python eval_ns.py --data ../ data/amersfoort/test
22 # Additional: convert numpy format (.npy) to text file
23 python ns_npy2obj.py --data ../ data/amersfoort/test

Code: ns_npy2obj.py
1 #!/usr/bin/python3
2

3 from __future__ import absolute_import
4 from __future__ import division
5 from __future__ import print_function
6

7 import argparse
8 import os
9 import numpy as np

10

11

12 DEFAULT_DATA_DIR = ’../ data/amersfoort_xyzrgb_v1/test/’
13

14 p = argparse.ArgumentParser ()
15 p.add_argument(
16 "-d", "--data", dest=’data_dir ’,
17 default=DEFAULT_DATA_DIR ,
18 help="Path to S3DIS data (default is %s)" % DEFAULT_DATA_DIR)
19

20 args = p.parse_args ()
21

22 label2color = [[50,50,50] , #clutter
23 [255 ,255,0] , #yellow egg
24 [0,255,0], #garbage can
25 [255,0,0], #couch
26 [255 ,0 ,255] , #ticket machine
27 [0,255 ,255] , #vending machine
28 [0,0,255], #entrance gate
29 [200 ,200 ,100] ,#floor
30 [100 ,100 ,255] ,#other machine
31 [200 ,100 ,100] ,#adv board

57

32 [200 ,100 ,200] ,#pillars
33 [100 ,255 ,255] ,#walls
34 [100 ,255 ,100] ,#digital info monitor
35 [170 ,120 ,200] ,#station ceiling
36 [170 ,200 ,120] ,#escalator
37 [120 ,170 ,200] ,#lamps
38 [120 ,200 ,170] ,#stairs
39 [200 ,120 ,170] ,#info signs in the air
40 [200 ,170 ,120]]#people
41

42 path = args.data_dir
43

44 categories_list = [filename [:-4] for filename in os.listdir(args.
data_dir) if filename.endswith(’.txt’)]

45 print(categories_list)
46

47 for category in categories_list:
48 path_pred_label = os.path.join(args.data_dir , category+’_pred.npy’)
49 path_gt_label = os.path.join(args.data_dir , category+’.labels ’)
50 path_scene = os.path.join(args.data_dir , category+’.txt’)
51

52 pred = np.loadtxt(path_pred_label)
53 gt = np.loadtxt(path_gt_label)
54 scene = np.loadtxt(path_scene)
55

56 fout = open(os.path.join(args.data_dir , category+’_pred.txt’), ’w’)
57 fout_gt = open(os.path.join(args.data_dir , category+’_gt.txt’), ’w’)
58

59 for j in range(scene.shape [0]):
60 color = label2color[int(pred[j])]
61 color_gt = label2color[int(gt[j])]
62 fout.write(’%f %f %f %d %d %d\n’ % (scene[j, 0], scene[j, 1],

scene[j, 2], color[0], color [1], color [2]))
63 fout_gt.write(’%f %f %f %d %d %d\n’ % (scene[j, 0], scene[j, 1],

scene[j, 2], color_gt [0], color_gt [1], color_gt [2]))
64

65 fout.close ()
66 fout_gt.close ()

E.4 How to setup DGCNN (in Google Colab)

1. Connect to GPU in Collab
2. Change runtime to GPU
3. Unzip the zipped archive (in sample_data, for example)
4. Create data folder in dgcnn
5. Put the lower Standford 3d dataset in data
6. After it loads for a bit, we get an error: what we should to do solve it, is copy

the contents of indoor3d_sem_seg_hdf5_data into a new folder, which we will call in-
door3d_sem_seg_hdf5_data_test. Run it again one more time

7. The results will now be saved to the folder checkpoints.

58

F Web application

The code is hosted in GitHub and the code structure in depth of 4 is as follows:

.
babel.config.js
package.json
public

favicon.ico
index.html

README.md
server

app.py
db.sqlite
scipoc

data_conversions
prepare_s3dis_data.py
prepare_s3dis_filelists.py
prepare_s3dis_label.py

data_utils.py
evaluation

eval_s3dis.py
s3dis_merge.py

__init__.py
pointcnn.py
pointcnn_seg

s3dis_x8_2048_fps.py
test_s3dis.sh
train_val_s3dis.sh

pointcnn_seg.py
pointfly.py
s3dis_npy2obj.py
sampling

LICENSE
tf_sampling_compile.sh
tf_sampling.cpp
tf_sampling_g.cu
tf_sampling_g.cu.o
tf_sampling.py
tf_sampling_so.so

train_val_seg.py
src

App.vue
assets

cover.jpg
components

Segmentation.vue
Upload.vue
ViewPointCloud.vue

main.js
router

index.js
views

Home.vue
PointCloudView.vue
SegmentationView.vue
UploadView.vue

vue.config.js

59

https://github.com/xiaoai-li/scipoc-vue-app

The required Python environment:

1 name: scipoc
2 channels:
3 - anaconda
4 - conda -forge
5 - defaults
6 dependencies:
7 - _libgcc_mutex =0.1= main
8 - _tflow_select =2.1.0= gpu
9 - absl -py =0.9.0= py36_0

10 - astor =0.8.0= py36_0
11 - blas =1.0= mkl
12 - c-ares =1.15.0= h7b6447c_1001
13 - ca-certificates =2020.4.5.1= hecc5488_0
14 - certifi =2020.4.5.1= py36h9f0ad1d_0
15 - click =7.1.2= py_0
16 - cudatoolkit =9.0= h13b8566_0
17 - cudnn =7.6.5= cuda9.0_0
18 - cupti =9.0.176=0
19 - cycler =0.10.0= py36_0
20 - dbus =1.13.14= hb2f20db_0
21 - expat =2.2.6= he6710b0_0
22 - flask =1.1.2= py_0
23 - flask -cors =3.0.8= py_0
24 - fontconfig =2.13.0= h9420a91_0
25 - freetype =2.9.1= h8a8886c_1
26 - gast =0.3.3= py_0
27 - glib =2.63.1= h3eb4bd4_1
28 - grpcio =1.27.2= py36hf8bcb03_0
29 - gst -plugins -base =1.14.0= hbbd80ab_1
30 - gstreamer =1.14.0= hb31296c_0
31 - icu =58.2= he6710b0_3
32 - intel -openmp =2020.1=217
33 - itsdangerous =1.1.0= py36_0
34 - jinja2 =2.11.2= py_0
35 - jpeg=9b=h024ee3a_2
36 - kiwisolver =1.2.0= py36hfd86e86_0
37 - ld_impl_linux -64=2.33.1= h53a641e_7
38 - libedit =3.1.20181209= hc058e9b_0
39 - libffi =3.3= he6710b0_1
40 - libgcc -ng =9.1.0= hdf63c60_0
41 - libgfortran -ng =7.3.0= hdf63c60_0
42 - libpng =1.6.37= hbc83047_0
43 - libprotobuf =3.11.4= hd408876_0
44 - libstdcxx -ng =9.1.0= hdf63c60_0
45 - libuuid =1.0.3= h1bed415_2
46 - libxcb =1.13= h1bed415_1
47 - libxml2 =2.9.9= hea5a465_1
48 - markdown =3.1.1= py36_0
49 - markupsafe =1.1.1= py36h7b6447c_0
50 - matplotlib =3.1.3= py36_0
51 - matplotlib -base =3.1.3= py36hef1b27d_0
52 - mkl =2020.1=217
53 - mkl -service =2.3.0= py36he904b0f_0
54 - mkl_fft =1.0.15= py36ha843d7b_0
55 - mkl_random =1.1.1= py36h0573a6f_0
56 - ncurses =6.2= he6710b0_1
57 - numpy =1.18.1= py36h4f9e942_0
58 - numpy -base =1.18.1= py36hde5b4d6_1
59 - openssl =1.1.1g=h516909a_0
60 - pcre =8.43= he6710b0_0
61 - pip =20.0.2= py36_3
62 - plyfile =0.7.2= pyh9f0ad1d_0
63 - protobuf =3.11.4= py36he6710b0_0

60

64 - pyparsing =2.4.7= py_0
65 - pyqt =5.9.2= py36h05f1152_2
66 - python =3.6.10= h7579374_2
67 - python -dateutil =2.8.1= py_0
68 - python_abi =3.6=1 _cp36m
69 - qt =5.9.7= h5867ecd_1
70 - readline =8.0= h7b6447c_0
71 - setuptools =47.1.1= py36_0
72 - sip =4.19.8= py36hf484d3e_0
73 - six =1.14.0= py36_0
74 - sqlite =3.31.1= h62c20be_1
75 - tensorboard =1.9.0= py36hf484d3e_0
76 - tensorflow =1.9.0= gpu_py36h02c5d5e_1
77 - tensorflow -base =1.9.0= gpu_py36h6ecc378_0
78 - tensorflow -gpu =1.9.0= hf154084_0
79 - termcolor =1.1.0= py36_1
80 - tk =8.6.8= hbc83047_0
81 - tornado =6.0.4= py36h7b6447c_1
82 - transforms3d =0.3.1= py_0
83 - werkzeug =1.0.1= py_0
84 - wheel =0.34.2= py36_0
85 - xz =5.2.5= h7b6447c_0
86 - zlib =1.2.11= h7b6447c_3
87 prefix: /home/xiaoaili/anaconda3/envs/scipoc

61

The JavaScript dependencies:

1 {
2 "name": "scipoc -vue -app",
3 "version": "0.1.0",
4 "private": true ,
5 "scripts": {
6 "serve": "vue -cli -service serve",
7 "build": "vue -cli -service build",
8 "lint": "vue -cli -service lint"
9 },

10 "dependencies": {
11 "axios": "^0.19.2",
12 "bootstrap": "^4.5.0",
13 "bootstrap -vue": "^2.15.0",
14 "core -js": "^3.6.5",
15 "esri -loader": "^2.14.0",
16 "jquery": "^3.5.1",
17 "three": "^0.117.1",
18 "three -orbitcontrols": "^2.110.3",
19 "tween": "^0.9.0",
20 "vue": "^2.6.11",
21 "vue -router": "^3.2.0"
22 },
23 "devDependencies": {
24 "@vue/cli -plugin -babel": "~4.4.0",
25 "@vue/cli -plugin -eslint": "~4.4.0",
26 "@vue/cli -plugin -router": "~4.4.0",
27 "@vue/cli -service": "~4.4.0",
28 "@vue/eslint -config -airbnb": "^5.0.2",
29 "babel -eslint": "^10.1.0",
30 "eslint": "^6.7.2",
31 "eslint -plugin -import": "^2.20.2",
32 "eslint -plugin -vue": "^6.2.2",
33 "vue -template -compiler": "^2.6.11"
34 },
35 "eslintConfig": {
36 "root": true ,
37 "env": {
38 "node": true
39 },
40 "extends": [
41 "plugin:vue/essential",
42 "@vue/airbnb"
43],
44 "parserOptions": {
45 "parser": "babel -eslint"
46 },
47 "rules": {}
48 },
49 "browserslist": [
50 "> 1%",
51 "last 2 versions",
52 "not dead"
53]
54 }

62

	Introduction
	Problem Definition
	Development of applications based on deep learning
	Organisation of the paper

	Theoretical Background
	Introduction to Deep Learning
	Fundamentals of Neural Networks

	Related Work
	Deep Neural Networks on Point Cloud Classification
	PointNet and PointNet++
	PointCNN
	Superpoint Graphs based Segmentation
	Dynamic Graph CNN for Learning on Point Clouds
	VoteNet
	Network Comparison

	Case Study
	The experiment
	Workflow
	Data labeling
	Initial results
	Improved results
	Training on the small scenes
	Training on the large scenes
	Training focused on one object

	RESTful implementation of a web application
	Architecture
	Functionality
	Dataset Uploading/Downloading
	Semantic Segmentation
	Visualization

	Conclusion
	Future Research
	Acknowledgements
	Appendices
	Project plan
	Project overview
	Project Structure
	Platforms used
	Task Division and Roles
	Meetings

	Revision of the MoSCoW
	Work Plan
	Rich Picture

	Limitations
	Hardware
	Problems with ArcGIS Pro for Labeling
	Poor Results
	ArcGIS Pro Integration Problems
	Third party data
	Travel Issues

	Data Preparation
	Data Labeling
	Setting Up the Environment for Neural Networks
	How to setup PointNet++
	How to setup Superpoint Graph
	How to setup PointCNN
	How to setup DGCNN (in Google Colab)

	Web application

