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1
Introduction

Compliant mechanisms transfer motion, force or energy by using elastic deformation of its flexure joints
[3]. In conventional rigid-body mechanisms, motion is accomplished by rolling or sliding contacts between
different rigid bodies. Compliant mechanisms have many advantages over conventional rigid-body mecha-
nisms, such as the lack of friction, backlash, wear, need for lubrication and assembly. These benefits make
them especially attractive for applications where precision and accuracy is needed.

Compliant mechanisms are primarily implemented for quasi-static applications. However, above ben-
efits make them also attractive for applications where besides precision and accuracy, speed is desired. A
specific example is a high-speed positioning stage in a cleanroom environment, or a pick-and-place robot
in food industry. In these environments lubrication is undesired, and the monolithic nature of compliant
mechanisms make them more suitable for cleaning with fluids.

However, the implementation of compliant mechanisms in dynamic applications is not always straight-
forward. Where conventional mechanisms have near zero on-axis and near infinite off-axis stiffness, com-
pliant transmissions have nonzero on-axis stiffness and finite or even low off-axis stiffness. Often, this intro-
duces lower resonance frequencies. Furthermore, the kinematics are less defined due to the off-axis compli-
ance.

Despite their attractiveness, still little research has been done into the dynamics of compliant mecha-
nisms. Only a view straightforward but unsophisticated analysis methods exist to analyse their dynamic be-
haviour. Common numerical methods such as finite element analysis can be used, but these are cumbersome
and do not directly give the designer a clear insight in influential parameters. Furthermore, as a designer of-
ten desires certain kinematics, this wish is harder to fulfil when kinematics are ill defined. This all hinders the
implementation of compliant mechanisms in dynamic applications.

A field of mechanisms in which dynamics cannot be neglected is that of rotational couplings. Here, a
rotational coupling is defined as a mechanism which transfers rotational motion and power from one rotating
body or shaft to another. The axis of rotation of both bodies are not collinear. Their misalignment can be

(a) Design of a compliant universal coupling for
large misalignments from within the PME de-
partment [1]

(b) An industrial compliant coupling for small
misalingments [2]

Figure 1.1: Examples of compliant rotational couplings
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2 1. Introduction

parallel as well as angular. The presence of inertial forces on the rotating bodies, even at steady motion, make
this a specific dynamic application.

A branch of couplings in which compliance can be especially beneficial due to its lack of friction and
backlash, is that of the constant velocity (CV) coupling. The goal of a CV coupling is to transfer the rotational
motion one-to-one between the axis, without introducing a velocity error. Emergence of such an error can
introduce vibrations and high stress levels, and is thus undesired. Common examples of CV couplings are the
double Hooke coupling for angular misalignments, or the Oldham coupling for parallel misalignments.

At the department of Precision and Microsystem Engineering compliant versions of both examples given
above were already designed. However, it was observed that these couplings do not perform well in a dynamic
environment. Only low velocities can be achieved before yield or fracture would occur in internal members.
Also, velocity error was expected due to internal resonances. To the authors knowledge, no compliant CV
couplings for large misalignments, suitable for dynamic applications, yet exist.

As indicated earlier, little research has been done into the dynamics of compliant mechanisms. To the
authors knowledge, no work at all exists about the dynamics of large misalignment compliant CV couplings.

The goal of this work is to fill in this knowledge gap. This is the first step towards the design of compliant
rotational couplings for dynamic applications. The scope is narrowed down to the family of couplings with
Oldham kinematics, suitable for parallel misalignment only. The movement of its centre of mass during op-
eration makes it particularly interesting for dynamic analysis. Furthermore, a compliant Oldham design is
available within the department already on which can be elaborated. Moreover, the planar design facilitates
2D analysis. In this work, its dynamic performance will be analysed, predicted, evaluated and optimized.

The to be found knowledge will improve the designer’s understanding of the coupling’s dynamics. Meth-
ods to predict and optimize the coupling’s performance will be presented. This will ease the design process
and make implementation more attractive. Moreover, this work can serve as a stepping stone for analysis of
other compliant rotational couplings as well as an inspiration for the analysis of compliant mechanisms in
general.

The main body of this thesis consists of the paper ’The Dynamics of a compliant parallel rotational power
transmission’. This paper is to be submitted to Elsevier’s journal of Mechanisms and Machine Theory. In
this paper, the dynamics of the Oldham family of couplings is analysed and predicted. Also, a case study is
executed for a specific design, for which performance is evaluated and optimized. This case study serves as a
validation of the proposed analysis and prediction methods. Then, a discussion and conclusion for the whole
thesis project will be given.

More detailed work can be found in the appendices. In appendix A, the above indicated knowledge gap
was first indicated in a brief literature review, and potential dynamic problems within a compliant coupling
where indicated. In appendix B the used ANSYS finite element model and its results are given. Then, in
appendix C the proposed analysis method based on multibody dynamics is discussed elaborately. Some
more detailed modelling results are given here as well. Furthermore, in appendix D the used experimental
evaluation method is discussed. During this project a experimental testing setup was designed and built to
evaluate the dynamic performance of any (compliant) rotational coupling. Moreover, in appendix E a first
orientation into the redesign of a compliant Oldham coupling is given. Finally, a short reflection on the thesis
project can be found in appendix F.
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In this work, a first step is taken in the dynamic anal-
ysis of large misalignment compliant rotational couplings.
For this, the dynamic performance of the family of compliant
Oldham couplings is analysed and predicted. A straightfor-
ward generic analysis method for this family of couplings
is proposed, based on multibody dynamics. Predictions can
now be given of 1) the maximum attainable velocity before
instability due to centrifugal forces occurs, 2) the lower res-
onance modes originating from the used flexure mechanisms,
and 3) the characteristics of the resulting velocity error.

A case study is performed on an existing design within
this family, validating the proposed modelling techniques.
Its dynamic performance is evaluated experimentally and
its failure mechanisms are indicated. Based on the gained
knowledge, the design was optimized, expecting a 198% in-
crease of its maximum velocity. This work facilitates the de-
sign and implementation of compliant Oldham couplings in
dynamic applications.

1 Introduction
Compliant mechanisms have many advantages over con-

ventional rigid-body mechanisms, such as the lack of fric-
tion, backlash, wear, need for lubrication and assembly.
These benefits make them especially attractive for applica-
tions where precision and accuracy is needed, such as po-

sitional stages [1] or motion transmission. Several compli-
ant universal joints already exist in the state of the art [2] .
Machekposhti et al. proposed designs for compliant trans-
mission mechanism between parallel [3], as shown in figure
1, and angular [4] axis, for applications where a precise rota-
tional constant velocity (CV) transmission is needed.

However, the compliant nature of these transmissions
often leads to dynamic problems, due to which most of
these mechanisms are not yet applicable for dynamic ap-
plications in which considerable rotational speed is needed.
Where conventional mechanisms have near zero on-axis and
near infinite off-axis stiffness, compliant transmissions have
nonzero on-axis stiffness and finite or even low off-axis
stiffness. This can introduce dynamic problems and makes
analysis more complicated. In the whole field of compli-
ant mechanisms (with large deformation), little research has
been done into their dynamic behaviour and overcoming dy-
namic problems.

Often, common finite element analysis (FEA) tech-
niques are used for modelling, of which some examples are
[5]. These methods are well understood and offer the use
of many standard methods. However, modelling is cumber-
some and does not lead to quick insight in influential design
parameters.

Other work is based on the pseudo-rigid-body model
(PRBM), in which flexures are represented as binary rigid
links with torsional springs at the joints. Examples for four

4 2. Paper: Dynamics of a Compliant Parallel Rotational Power Transmission
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Fig. 1. Prototype of an compliant Oldham coupling as designed by
Machekposhti, using two perpendicular DP-DP flexures.

bar linkages are [6] in which the PRBM is used directly,
or [7] in which dynamic equivalents of flexure stiffness and
inertia are implemented. This method is very straightfor-
ward, but as the rigid model still has only one degree of free-
dom (DOF), much of the dynamics is neglected and only one
eigenfrequency can be predicted.

In the field of compliant rotational transmissions with
large deformations particularly little research has been done.
Flexible couplings for small angular or parallel misalignment
such as bellow or flexible beam couplings [8] are already
frequently used in industry, and some works are available
about their dynamic performance and effect on connected ro-
tor systems [9, 10, 11, 12, 13, 14].

However, the dynamics of flexure based CV couplings
accommodating large misalignments is different due to
among others significantly larger displacements, low off-axis
stiffness and internal bodies suspended compliantly. To the
authors knowledge, this family of couplings has not been
studied yet. The lack of understanding of the dynamics hin-
ders their implementation, despite the potential benefits men-
tioned. In this work a start is made in filling in this knowl-
edge gap.

In this work, the dynamic performance of the family of
Oldham-based constant velocity compliant transmissions be-
tween parallel rotational axis is analysed, predicted, evalu-
ated and optimized in a generic way. For this first step in
filling in the knowledge gap, this family is chosen as anal-
ysis can be done in the planar domain. Emphasis will lie
on the motion transmission and the dynamic aspects of vary-
ing output loads is not studied. With the gained knowledge,

design and implementation will be facilitated. Furthermore,
this work can be a starting point in the dynamic analysis of
other families of rotational compliant couplings.

First, a generic modelling method is proposed to gain in-
sight in the dynamics of an Oldham coupling using any type
of internal compliant prismatic joints. Then, a case study of
a specific design as suggested by Mashekposhti [3] is given
in which the results of the generic model will be compared
with FEA and experimental results. In the discussion section
design improvements for dynamic application are suggested.

2 Background
In figure 2 a kinematic representation of a rigid-body

conventional Oldham coupling [15] can be seen (from here
on ’coupling’). It has three movable bodies being the in-
put axis with crank (2), the output axis with crank (4) and
the coupler body (3). The coupler connects to both input
and output via two perpendicular prismatic joints. Two fixed
and fully rotating revolute joints connect the input and output
axis to the ground (1) with a mutual distance of l1 which is
the parallel axle offset.

If the input (2) rotates through some angle, then both
coupler (3) and output shaft (4) rotate through the same an-
gle, making it a constant velocity coupling.

For a full cycle motion of the input link, the centre of
the coupler (3) moves along the dotted circular path twice,
with diameter l1 and centre of rotation midway between
input and output axis, at l1/2.

Prismatic joints A conventional prismatic joint has one
degree of freedom (1DOF) being linear translation. Ne-
glecting friction, this translation motion direction is normally
modelled as having zero stiffness. All other five directions
form the degrees of constraint (5DOC). Assuming the two
bodies are rigid, the 5DOC, also known as the bearing direc-
tions, can be seen as infinitely stiff.

In the case of the compliant Oldham coupling which
uses compliant prismatic joints, these assumptions are no
longer valid. Compliant mechanisms transfer motion, force
or energy by using elastic deformation of its flexure joints
[2]. Such a joint can thus be described by a stiffness in each
direction, having a motion stiffness which should be orders
of magnitude lower than the bearing stiffnesses. Especially
for flexure based joints, non-constant and non-linear bearing
stiffness are common which can be highly dependent on the
motion direction displacement [16, 17].

3 Method
In this section, first dynamic performance criteria are de-

fined. Then, the proposed analysis method is given. Based
on this method, the performance prediction methodology is
explained.
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Fig. 2. Conventional rigid-body kinematics of an Oldham coupling
[3].

Motion
Bearing

Angular
(b)(a) (c)

ub

Kb

ua

um
Km

KaFlexures

Fig. 3. Planar schematic of (a) a conventional rigid-body prismatic
joint, (b) its compliant counterpart, (c) a PRBM of a compliant pris-
matic joint, indicating the decoupled stiffnesses K and displacements
u in motion, bearing and angular direction, indexed with m, b and a
respectively.

3.1 Dynamic performance criteria
To assess the performance of the coupling, two criteria

are defined. As the objective of the coupling is to transfer
motion between input and output one-to-one, the first crite-
rion is the dimensionless velocity transfer error as defined
by equation 1 (’velocity error’). The second criterion is the
maximum operational velocity without permanently damag-
ing the coupling (’operational limit’) .

εvelocity =
ωin −ωout

ωin
(1)

3.2 5DOF generic multibody model
Analysis in this work will be done in the planar domain,

reducing a prismatic joint to one DOF in motion direction
and two DOC in translational bearing and angular bearing
directions. In figure 3 a planar schematic of both a conven-
tional and compliant prismatic joint is given, together with a
pseudo-rigid-body model.

Two of these joints in series and perpendicular form
the Oldham coupling as will be studied in this work. The
full cycle revolute joints of the input and output axles re-
main as conventional rigid-body revolute joints. In figure 4
a schematic representation of the coupling is given, which is
the compliant counterpart of figure 2. The same three mov-

θ2

θ3

θ4

θc

r

u2,m
u2,b

u4,m

u4,m

K4,...

K2,...

X

Y

(Xc,Yc)

m4, I4

m3, I3

m2, I2

Fig. 4. Dynamic multibody model of a compliant Oldham coupling.
The stiffnesses of both prismatic joints are symbolised by two ran-
domly formed coil springs. Each of these consist of three decoupled
stiffness directions as depicted in figure 3c. Translational deforma-
tions of these stiffnesses are depicted in blue. Rotational deforma-
tions are not depicted, but are simply the difference in body rotation.
The three rigid bodies are depicted in red, with their centre of mass
(COM) represented as a black dot. The dashed circle represents the
path a rigid-body Oldham coupling will describe.

ing rigid bodies discussed earlier can be recognised, but are
now connected elastically.

Based on figure 4 a planar parametric dynamic multi-
body model is built which is applicable to the whole family
of compliant Oldham couplings.

The input axis is chosen as the origin of the inertial ref-
erence frame (X ,Y ), with angles Θ measured counterclock-
wise from the positive X-axis. In this frame, the 3 · 3 body
coordinates XXX and their inertias MMM are defined.

XXX = [X2,Y2,Θ2,X3,Y3,Θ3,X4,Y4,Θ4]
T (2)

MMM = diag[m2,m2, I2,m3,m3, I3,m4,m4, I4] (3)

The two revolute joints (axle bearings) constrain the
axles to X2 = Y2 = X4 = 0 and Y4 = l1. Five DOF remain,
being [Θ2,X3,Y3,Θ3,Θ4]

T. (Xc,Yc) is the centre point of the
circular path described by the coupler in the case of a rigid-
body Oldham coupling. Due to the now finite stiffness in
bearing directions, the coupler does not describe a perfect
circle anymore.

6 2. Paper: Dynamics of a Compliant Parallel Rotational Power Transmission



To both axles, a reference frame (xn,yn) is connected,
rotated with Θn, which defines the ’ground’ of the two pris-
matic stages. The coupler link is the ’motion stage’ for both.
The two sets of three decoupled stiffnesses KKK are deformed
by elastic deformations uuu. The subscripts give the corre-
sponding ’ground’ axle number followed by ’m’ for motion
direction, ’b’ for translational bearing direction and ’a’ for
angular bearing direction, similar to figure 3. The deforma-
tions can be seen as projections of the coupler body coordi-
nates on the two moving reference frames, resulting in the
following (see also figure 4):

uuu = [u2,m,u2,b,u2,a,u4,b,u4,m,u4,a]
T (4)

=




(X3 −X2)cosΘ2 +(Y3 −Y2)sinΘ2
−(X3 −X2)sinΘ2 +(Y3 −Y2)cosΘ2

Θ3 −Θ2
−(X4 −X3)cos(Θ4)− (Y4 −Y3)sin(Θ4)
(X4 −X3)sin(Θ4)− (Y4 −Y3)cos(Θ4)

Θ4 −Θ3




(5)

KKK = diag[K2,m,K2,b,K2,a,K4,b,K4,m,K4,a] (6)

To describe the dynamic behaviour of the coupling, a set
of generalised coordinates qqq is chosen, in which the quasi-
circular path of the coupler is described more naturally using
polar coordinates r and θc.

qqq = [θ2,θc,r,θ3,θ4]
T with: (7)

Θ2 = θ2 (8)
X3 = Xc + r sin(θc) (9)
Y3 = Yc − r cos(θc) (10)
Θ3 = θ3 (11)
Θ4 = θ4 (12)

Forming the equations of motion Using the body coor-
dinates XXX and inertias MMM the system’s kinetic energy T can
be computed, as well as the potential energy V using defor-
mations uuu and stiffnesses KKK. The conservative equations of
motion (EoM) are formed using the Lagrange equations as
given below:

d
dt

(
∂T
∂q̇qq

)
− ∂T

∂qqq
+

∂V
∂qqq

−QQQs = 000 (13)

The first and last element of the forcing vector QQQs represent
the external torque at input and output axle respectively:

QQQs = [Tin, 0, 0, 0, Tout]
T (14)

Resulting in the five individual EoM:

I2θ̈2 +
∂V
∂θ2

−Tin = 0 (15)

m3r2θ̈c +2m3rṙθ̇c +
∂V
∂θc

= 0 (16)

m3r̈−m3θ̇2
cr+

∂V
∂r

= 0 (17)

I3θ̈3 +
∂V
∂θ3

= 0 (18)

I4θ̈4 +
∂V
∂θ4

−Tout = 0 (19)

In all equations, the first term represents an inertial force
opposing acceleration in the specific direction. The partial
derivatives of potential energy represent the elastic forces, as
the stiffness profiles are still general. Equation 15, 18 and 19
describe the three body rotations, also showing an external
torque in case of the axles. Equation 16 (unit torque) and
17 (unit force) describe the translation of the coupler. Due
to the polar coordinate system, two more inertial forces arise
as the second term, being the Coriolis and centrifugal force
respectively for both equations.

3.3 Performance predictions
Based on the EoM, the effect of different parameters on

the dynamic behaviour can already be observed. In specific,
effective radial stiffness and velocity error content will be
discussed.

Effective radial stiffness The effective stiffness in radial
direction r of the coupler body during rotation equals the
partial derivative of EoM 17 at steady motion when r̈ = 0.
It consists of a positive elastic and negative inertial part re-
sulting from centrifugal force and can be expressed as:

Kradial = Kradial,el − Kradial,cent (20)

=
∂2V
∂r2︸︷︷︸

elastic

− m3θ̇2
c︸ ︷︷ ︸

centrifugal

(21)

When the effective stiffness approaches zero or even be-
comes negative, r will grow boundlessly and instability will
occur. In practice, significant increase of r can lead to inter-
nal parts of the prismatic joints interfering with each other
or with the surrounding (support) structure, or flexure yield,
ultimately leading to failure. Thus, for proper working of the
coupling, Kradial � 0. Notice that the stiffness decreases with
θ̇2

c (polar angle of path velocity) which is equal to (2θ̇2)
2 (in-

put axis velocity) during steady motion.

Constant elastic stiffness In the case of constant stiffness
values and if Tin +Tout = 0 (constant system energy), steady
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motion rotation can exist in the form of:

q̇qq = [θ̇2,2θ̇2,0, θ̇2, θ̇2]
T (22)

Then, all inertial forces vanish except for the centrifugal
force. For the input and output axle, the elastic components
equilibrate the external torque. For the coupler body rota-
tion and polar angle the net elastic force is zero. In radial
direction, the centrifugal force equilibrates the elastic force.
If both compliant prismatic joints have an equal set of stiff-
ness profiles, Kradial simplifies as given below, with which
also the constant radius r for steady motion as function of
velocity can be formulated:

Kradial,constant = Km +Kb −m3θ̇2
c (23)

r =
(Km +Kb)r0

(Km +Kb)−m3θ̇2
c

(24)

In this again θ̇2
c =(2θ̇2)

2, and r0 is the radius at static equilib-
rium. In the last equation, it can be clearly seen that r goes to
infinity when the denominator (radial stiffness) goes to zero.

Non-constant elastic stiffness When the stiffness profiles
are non-constant and state dependent, steady motion rotation
does not always exist. When Kradial is not constant, this re-
sults in a oscillating radius during rotation. This also makes
the point of zero stiffness dependent on the state (system an-
gles for example), and it will first occur at the minimum of
Kradial,el.

Radius change ṙ will result in a Coriolis force in θc-
direction (equation 16), which in turn, together with possible
changes in the tangential elastic component ∂V /∂θc, leads
to a non-constant tangential velocity θ̇c. Peaks in θ̇c can lead
to peaks in centrifugal force and zero radial stiffness at an in-
put axle velocity lower than expected based on the equations
for steady motion.

Velocity error frequency content Resonance modes con-
taining rotation of the output axle θ4 can, if excited, con-
tribute to the velocity error (equation 1). Two rotational res-
onance modes can be estimated using the rotational stiffness
of each compliant prismatic joint, being the one at input side
combined with inertias I3 and I4 (equation 25) and the one at
output side with inertia I4 (equation 26). For this, the input
axle is seen as the fixed world. When the angular stiffness
Kn,a is non-constant, these frequencies can also be depen-
dent on the state of the system. Note that output inertia I4
not only consists of the output link and axle, but also of the
inertia load of the coupling in application, which thus influ-
ences these frequencies.

frot, input side =
1

2π

√
K2,a

I3 + I4
(25)

frot, output side =
1

2π

√
K4,a

I4
(26)

3.4 Modal analysis
In order to gain insight in the resonance frequencies and

stability of the system at certain rotational velocities, a modal
analysis can be done at several steady motion equilibrium
configurations. The input axis angle θ2 and velocity θ̇2 are
prescribed resulting in a 4DOF system, in order to remove
the else arising rigid body mode. For simplicity, the external
forcing QQQs is neglected, no damping is applied. At the pre-
scribed conditions for θ2 and θ̇2, a numerical approximation
of the equilibrium configuration is found using a Newton-
Raphson scheme starting from an initial guess and iterating
to a steady motion point for which q̈qq = 000, q̇qq = q̇qqeq,qqq = qqqeq.
Notice that in the case of non-constant stiffness this equilib-
rium is only valid at this specific point, and will change with
changing stiffness.

Around the equilibrium configuration, the linearised
system matrices can be built:

KKK =
∂( fff V + fff T )

∂qqq

∣∣∣qqq=qqqeq
q̇qq=q̇qqeq
q̈qq=000

(27)

CCC =
∂ fff T
∂q̇qq

∣∣∣qqq=qqqeq
q̇qq=q̇qqeq
q̈qq=000

(28)

MMM =
∂ fff T
∂q̈qq

∣∣∣qqq=qqqeq
q̇qq=q̇qqeq
q̈qq=000

(29)

resulting in the linearised EoM with respect to the linearisa-
tion point:

MMM ¨̃qqq+CCC ˙̃qqq+KKKq̃qq = 000 (30)
qqq = qqqeq + q̃qq, q̇qq = q̇qqeq + ˙̃qqq (31)

The four second order differential equations of equation
30 can be written as a set of eight first order equations 32 as
given by [18], using state vector zzz and system matrices AAA and
BBB.

ÃAAżzz+ B̃BBzzz = 000 with: (32)

ÃAA =

[
MMM 000
000 KKK

]
, B̃BB =

[
CCC KKK
−KKK 000

]
(33)

The eigenvalue problem 34 can then be formed with λλλ being
the roots and VVV the matrix of eigenvectors, which could be
solved numerically:

λλλÃAAVVV =−BBBVVV (34)

The mode shapes can then be represented in the original gen-
eralised coordinates qqq, being the sum of the found modes and
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the linearisation point:

zzz =
[

∆q̇qq
∆qqq

]
=VVV eλt =VVV

(
eℜ(λ)t · eℑ(λ)i t

)
(35)

=VVV
(

eℜ(λ)t(cosℑ(λ)t + isinℑ(λ)t)
)

(36)
[

q̇qq
qqq

]
=

[
∆q̇qq
∆qqq

]
+

[
q̇qqeq
qqqeq

]
(37)

For the conservative system without damping, the imaginary
part of a λ at a certain linearisation point gives the reso-
nance frequencies of the system. A positive real part of λ
indicates instability of the coupling and results in an expo-
nentially growing (unbounded) motion, as for example at the
point of zero effective radial stiffness.

3.5 Time integration
The found EoM can be integrated in time to get insight

in the motion of the different bodies during rotation. With
this, also the velocity error can be computed. Explicit nu-
merical ordinary differential equation solvers can be used,
for which the EoM often need to be written as two sets of
first order equations. As a time step a value smaller than the
period time of the highest eigenfrequency should be used.
Integration can become unstable due to build-up of numer-
ical errors or approach of instabilitypoints such as the zero
radial stiffness point at higher velocities. Some damping can
be added to the system to overcome this. A straightforward
damping model is proportional or Rayleigh damping where
the damping matrix is a function of stiffness and mass, in
which α and β are scalar constants of proportionality:

CCCint = αMMM+βKKK (38)

This can be further simplified by only taking the diagonal
terms of MMM and KKK, which eliminates coupling between the
coordinates via the damping matrix. The proportionality
constants are often determined empirically [19] or just tuned
until integration is stable. The resulting damping ratio can be
evaluated as a function of resonance frequencies using:

ζ =
1
2

(
α
ωn

+βωn

)
(39)

As a comparison, empirical damping ratios for flexure mech-
anisms can be found in for example [6].

As initial conditions for integration, static of steady mo-
tion equilibria can be used, which can be found using a
Newton-Raphson iteration scheme.

4 Results: case study of the DP-DP design
In this section, a case study is shown of a specific com-

pliant Oldham coupling design based on [3] as an example of

the suggested modelling method. The goal is firstly to val-
idate the proposed analysis and prediction method and sec-
ondly to evaluate the dynamic performance of this specific
design. In this section, only results will be given; further
interpretation can be found in the discussion section.

First, the used compliant prismatic joints and overall de-
sign implementation are described. Then, an extension of
the proposed modelling method is given for this specific de-
sign. Moreover, the used experimental setup is described.
Furthermore, results from the multibody model, FEA and
experiment are given and compared. The results are firstly
categorised by the scenarios of zero and maximum axle mis-
alignment, and secondly by the dynamic performance crite-
ria.

4.1 Compliant design

The design is based on [3] as depicted in figure 1 which
uses two DP-DP compliant prismatic joints [17,16] and is de-
signed for a maximum parallel axle misalignment of 20 mm.

In one DP-DP layer, flexures connect the axle bodies,
via two intermediate bodies (from here on ’shuttles’), to the
coupler body. All bodies are made from PMMA and are
seen as rigid in the multibody model. Design parameters
are depicted in figure 1 and scalar values are given in table
1. The degree of compliance distribution a0 = 1/2 is con-
sidered for the flexures (distributed compliance). AISI316L
stainless steel is used as flexure material with Young’s mod-
ulus E = 193GPa, glued into slits in the PMMA bodies. An
aluminum sheet metal ring is glued between the two DP-DP
layers to increase resonance frequencies within/stiffness of
the coupler body, as we are interested in the dynamics of the
flexure mechanism only, not in the dynamics of the support-
ing bodies.

In equation 41, 40 and 42 the stiffness formulation of
the DP-DP prismatic joints is given in motion, bearing and
angular direction respectively [17]. As can be seen, the bear-
ing and angular stiffness depend on motion deformation um
squared. For zero misalignment no motion direction defor-
mation is present and as a result all stiffness values are con-
stant, if deformation due to dynamics is neglected.
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Table 1. Design parameters.

l[mm] h[mm] t[mm] w1[mm] w2[mm]

50 5 0.2 14 28

Km =
2EI
l3 k0

11 (40)

Kb =
2EI
l3

k33(
1+ k33

(
g(1)11 +

(
k(1)11

)2

k(0)11

)
( um

2l

)2

) (41)

Kθ =
2EI
l3

4w2
1w2

2(
w2

1 +w2
2

) k33(
1+ k33g(1)11

( um
2l

)2
) (42)

where:

k(0)11 =
6

(3−6a0 +4a2
0)a0

(43)

k(1)11 =
3(15−50a0 +60a2

0 −24a3
0)

(3−6a0 +4a2
0)a0

(44)

g(1)11 =
2a3

0(105−630a0 +1440a2
0 −1480a3

0 +576a4
0)

175(3−6a0 +4a2
0)

(45)

k33 =
6l2

a0t2 (46)

I =
ht3

12
(47)

4.2 Evaluation method
Below, parameters are given for the suggested 5DOF

model, and an extension to a 17DOF model is given for this
specific compliant design.

4.2.1 Multibody model
The above discussed stiffness formulation of the DP-DP

prismatic joint can be used directly in the proposed 5DOF
model. In table 2 the used inertia values are given, which
match input and output axle inertia of the experimental setup.
Furthermore, the shuttle and flexure inertia is distributed over
the coupler and axis bodies equally, as the shuttle bodies are
not modelled.

Extension to 17DOF model Especially for zero deforma-
tion in motion direction, the four shuttles are underconstraint
and encounter low stiffness in plane, perpendicular to the
flexures. As for ease of implementation of any prismatic
joint, the generic 5DOF model only uses the stiffness profiles
of the entire joints. The dynamics of internal masses such as
the shuttles are neglected however. As an comparison, an
extended model is proposed incorporating the dynamics of
these shuttles. For this all four shuttles si (i = 1 · · ·4) are
modelled as a rigid body with planar freedoms Xs,i,Ys,i,Θs,i,
adding 4 · 3 = 12 freedoms, resulting in a 17DOF model.

φs,1

rs,1

θs,1

Input axle (2)Coupler (3)

Shuttle 1 (s1)

Fig. 5. Generalised coordinates of a shuttle body as used in the
17DOF model, for one shuttle of one DP-DP layer.

Similar to the coupler body, the shuttle centres of mass can
also be described in polar coordinates φs,i,rs,i, with as the
origin the axle connected to that specific layer. In figure 5
one shuttle and its generalised coordinates is depicted.

As can be seen in figure 5, four beam flexures are con-
nected to each shuttle; two towards the axle and two towards
the coupler body. Each pair can be modelled as a parallel-
ogram flexure system (P-flexure). The stiffness profiles of
such a P-flexure as given by [17] are used. Stiffnesses in mo-
tion, bearing and angular direction are given in equation 48,
48 and 50 respectively.

Km =
2EI
l3 k0

11 (48)

Kb =
2EI
l3

k33(
1+ k33g(1)11

( um
2l

)2
) (49)

Kθ =
2EI
l3 w2 k33(

1+ k33g(1)11

( um
2l

)2
) (50)

Parameters E, I, l,k(0)11 ,k
(1)
11 ,k33 and g(1)11 remain as stated be-

fore. The parameter w is the distance between the two flex-
ures of each P-flexure. For the inner pair w = w1, for the
outer w = w2, as given in table 1. In total, the four shuttles
with each two P-flexures results in 4 ·2 ·3 = 24 stiffness and
deformation terms. Inertia values for each body are given
in table 2, for which shuttle inertia obviously is no longer
distributed over the coupler and axle bodies.

Using the P-flexure stiffness formulation, a problem
arises as due to the decoupling of the three stiffness direc-
tion in one parallelogram flexure, displacement in motion
direction will not lead to displacement in bearing direction.
Flexure arclength then is not conserved. A modelling im-
provement can be made by enforcing the pseudo-rigid-body
kinematics of a fixed-guided beam as given by Howell [20].
Then, the bearing direction displacement is a function of the
motion direction displacement (equation 51 and figure 6), us-
ing γ = 0.8517.
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Table 2. Body inertias.

I2[kgm2] m3[kg] I3[kgm2] I4[kgm2] ms,i[kg] Is,i[kgm2]

5DOF 1.6032×10−3 5.4047×10−2 2.7358×10−4 5.4502×10−6 - -

17DOF 1.6032×10−3 4.5992×10−2 2.3677×10−4 5.4502×10−6 4.0273×10−3 1.2925×10−5

γl(1−γ)l
2

(1−γ)l
2

γl(1− γ)l um

ub,constraint

Fig. 6. PRBM of two fixed-guided beams as given by [20] forming a
prismatic joint, showing the kinematics leading to the bearing direc-
tion displacement for motion direction displacement.

ub,constraint = γl −
√

(γl)2 −u2
m (51)

This constraint can be enforced via the deformation expres-
sion uuu by adding the relative bearing displacement from the
constraint ub,constraint to the original bearing displacement ub:

u∗b = ub +ub,constraint (52)

This way, bearing direction stiffness is felt when deviating
from the PRBM kinematics, but deviation still is possible.

Matching the experimental setup To be able to compare
the multibody model results with the experiments, the bear-
ing frictions on both input and output axles are modelled as
linear increasing with velocity. Two constant friction torques
are added to the forcing vector QQQs. Two velocity depended
torques are implemented via a second damping matrix CCCext
with only two non-zero terms, on the diagonal, for θ̇2 and
θ̇4. Those four parameters are then estimated by calculating
the motor torque using its motor constants and the measured
current for two reference measurement. The first is done by
accelerating the input axle only, disconnected from coupling
and output axle, giving the input side parameters. In the sec-
ond, the coupling is reconnected and the whole system is ac-
celerated. Subtracting the first friction torques from the latter
gives the output parameters.

4.2.2 Finite element analysis
The described multibody modal analysis does not con-

tain elastic deformation of the coupling’s bodies. To asses
the multibody models and to find potential elastic body

modes, a finite element analysis is executed using AN-
SYS APDL. All bodies and flexures are modelled using
BEAM188 elements and the two DP-DP layers are con-
nected together using MPC184 constraint elements. The out-
put axle inertia is added matching the setup using MASS21.
All beam flexures are divided in 50 elements, the bodies
are modelled with an element length of 2 mm. A perturbed
modal analysis is done for multiple coupling angles and axle
misalignments. Only relevant results will be discussed.

4.2.3 Experimental setup

An experimental setup is built to study the dynamic be-
haviour of the coupling during rotation, as depicted in figure
7. The input and output axles are guided by conventional
bearings. The upper (output) bearing and support structure
can be translated horizontally to apply axle misalignment.

To study the velocity error, Baumer EIL580P incremen-
tal optical encoders are connected to both axles giving 2048
pulses as well as a single reference pulse per rotation. Fur-
thermore, motor current and voltage is measured with which
motor torque can be estimated.

To get insight in the planar motion during rotation, an
IDT NX4S1 high speed camera system is used. White
marker points on the bodies of the coupling (figure 7) are
tracked during motion using IDT Motion Studio.

Reference measurement To identify possible setup reso-
nances, a reference measurement is done using a Huco stain-
less steel 34 mm OD bellow coupling instead of the com-
pliant coupling, at zero axle misalignment. The frequency
content of the velocity error is shown in a Campbell dia-
gram in figure 8. The diagonal lines of increased amplitude
starting from the origin represent excitations being the nth
multiple of the rotational frequency (nth order). Dominant
orders 1 (unbalance), 2 (misalignment), and multiples of 8
(8-pole DC motor) can be indicated. Resonance frequencies
will appear as vertical lines, of which one can be seen around
980 Hz. Hand calculation of the output axle inertia oscillat-
ing in the angular stiffness of the bellow coupling yields a
frequency of circa 2100 Hz. Coupling and output axle iner-
tia oscillating in the angular stiffness of the whole input axle
yields a frequency of circa 1110 Hz. It is expected that the
experimentally found frequency is a combination of bellow
coupling and axle stiffness and inertias. All other resonances
found in the next measurements can be allocated to the cou-
pling prototype or its effect on the setup.
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Output axle encoder

Strobe light
High speed camera

Input axle encoder
Coupling prototype

DC motor
Flexible beam coupling
Flywheel

Fig. 7. Measurement setup used for the experimental evaluation.
The input axle is driven by a Crouzet 82 800 0 brushed DC motor,
coupled by an aluminum flexible beam coupling. To the input axle
a flywheel is fixed to smoothen the input velocity. For sensor data
acquisition and analysis a Müller-BBM PAK system is used.
The camera has a perpendicular view on the coupling, through the
transparent upper axle support structure. A resolution of 1024 ×
1024 of a 300mm area yields a measuring resolution of circa 0.3mm,
at 1000 frames per second.

Fig. 8. Campbell diagram of the velocity error frequency content
for a ramp up in rotational velocity of the industrial bellow coupling,
with zero axle misalignment. The colour indicates the velocity error
amplitude.

4.3 Evaluation results
In this section, evaluation results are given, divided in

two operational scenarios; at zero and at maximum (20 mm)
axle misalignment. For both scenarios, the coupling’s res-
onance modes are discussed first, which characterise its be-
haviour. Then, results for the two performance, criteria being
velocity error εvelocity and the operational limit velocity, are
given for the multibody model, FEA and experiment.

4.3.1 Zero axle misalignment
As with zero axle misalignment the compliant prismatic

joints remain undeformed during rotation, the stiffness and
thus resonance frequencies do not depend on the input axle
angle.

Mode shapes In this section, the first eight resonance
modes resulting from the 17DOF multibody model are dis-
cussed. These are compared with the 5DOF model and FEA.
In table 3 the frequencies resulting from each are given.

In the 17DOF model, the first four modes originate from
the low stiffness of the shuttles along their length axis. The
mode shape does not contain output axle rotation, and are
thus not expected to have a significant contribution to the ve-
locity error. The FEA yields a similar result. In the 5DOF
model the intermediate shuttles are not modelled individu-
ally.

Around 490 Hz a rotational mode of the coupler body
and output axle is found, in which both oscillate in the an-
gular stiffness of the input side DP-DP layer. The 5DOF
model yields similar results, as does equation 25. However,
the FEA gives a mode shape containing similar input layer
angular deflection at 89 Hz already. Here, significant defor-
mation of the intermediate shuttles is present as well, result-
ing in a much lower frequency. It is expected that this mode
contributes significantly to the velocity error, as the output
axle rotation is significant in this shape.

Translational oscillation of the coupler body in two di-
rections occurs around 2000 Hz in the 17DOF model. The
5DOF model yields somewhat lower frequencies. These
modes contain the radial motion of the coupler body, which
becomes unbounded at zero effective radial stiffness. In the
FEA only the first 50 modes reaching to circa 1 kHz are anal-
ysed. Several (translational) modes at lower frequencies are
present resulting from body deformations.

The 17DOF model gives oscillation of the output axle in
the angular stiffness of the output DP-DP layer at 4460 Hz,
being significantly higher than the first rotational mode as
I4 � I3 for this setup. Again, the 5DOF model yields a some-
what lower frequency, as well as Equation 26.

These higher frequency flexure modes are not expected
to contribute significantly to the velocity error due to internal
damping and bearing friction. Furthermore, the FEA yields
many resonance modes below 1 kHz already, which thus also
contain body deformations. Two of those are expected to
contribute to the velocity error due to a significant output
axle rotation, and are given in the last two rows of table 3.
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Table 3. Resonance frequencies of the coupling for zero axle misalignment at standstill, as computed with different models. The mode
number of the specific model is indicated with a ’#’. Furthermore, in the last column resonance frequencies as found in the experiment are
given together with an error relative to the FEA results.

Mode description and frequency
[Hz]

Multibody model Eq. 25, 26 FEA Experimental

17DOF 5DOF

Modes originating from flexure deformation

Shuttle translation 39 (#1-4) - - 39.7-40.7 (#1-4) 39 (-3%)

Output and coupler rotation (I3
and I4)

494 (#5) 496 (#5) 488 89 (#7) 92 (+3%)

Coupler translation 2011 (#6-7) 1897 (#2-3) - - -

Output rotation (I4) 4460 (#8) 3584 (#4) 4240 - -

Modes originating from deformation of both flexure and supporting bodies

Output rotation due to coupler,
intermediate shuttle and flexure
bending

Elastic body deformation is
not incorporated in the

multibody models.

356 (#18) 327 (-9%), 365 (+3%)

Output rotation due to output
layer intermediate shuttles and
flexure bending (I4?)

751 (#45) 832 (+11%)

Velocity error In figure 9 the experimental frequency con-
tent of the velocity error is given for a ramp up of the com-
pliant joint from standstill to 600 min−1. Apart from the en-
gine orders, five resonance frequencies can be distinguished
as vertical bands at a constant frequency, with different am-
plitudes. Frequency values are given in table 3 including the
relative difference with respect to adjacent FEA results.

The first resonance at 39 Hz matches with the transla-
tional shuttle modes from table 3, which was not expected
to introduce a significant velocity error however. The second
resonance matches the 7th FEA mode, which was indeed ex-
pected to be dominant in the velocity error. The third and
fourth resonance are close to FEA mode 18, the fifth reso-
nance is closest to FEA mode 45, but all three with a signifi-
cant difference.

Operational limit For zero axle misalignment, a velocity
of circa 800 min−1 is reached in the experiments without fail-
ure. The operational limit thus is not identified, but exceeds
this value.

Without axle misalignment, in theory the COM of the
coupler body remains in line with both input and output axle
during rotation. There thus is no nett centrifugal force which
can give a negative contribution to the radial stiffness. How-
ever, due to manufacturing tolerances the coupler body COM
can be slightly off-centre. The bearing stiffness of the DP-
DP flexures in undeformed case is more than three orders of
magnitude larger than at its maximum deflection of 20 mm.
Even if the coupler COM will be off centre due to manufac-
turing tolerances, it is not likely that the decrease in radial

Fig. 9. Campbell diagram of the velocity error frequency content for
a ramp up in rotational velocity of the compliant coupling, with zero
axle misalignment. The color indicates the velocity error amplitude.

stiffness will determine the operational limit.
Looking at the mode shapes, the first resonance occurs at

circa 40 Hz. In was observed that this frequency increased in
amplitude at intersection with the 8th order excitation com-
ing from the DC motor. It is expected that at intersection
with the stronger second order at around 1200 min−1 this res-
onance can lead to failure.

4.3.2 Maximum axle misalignment
For the case of l1 = 20mm axle misalignment, the defor-

mation in motion direction um of each prismatic joint varies
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sinusoidally every rotation with an amplitude of l1 and a
phase difference of 90◦ between the two joints. Bearing and
angular stiffness depend on motion deformation um squared,
and thus vary with an periodicity of half a revolution of the
coupling. As a result, resonance frequencies now change
dramatically with the input axle angle.

Mode shapes First, resonance modes at standstill will be
discussed (solid lines in figure 10), after which modes which
significantly change with velocity are given (dashed lines in
figure 10). In the upper graph of figure 10 the first five reso-
nance frequencies resulting from the 17DOF modal analysis
are given for varying input axle angles at standstill. This
frequency path is passed through twice per rotation. At zero
input angle, the first four resonance shapes are again originat-
ing from the low stiffness of the intermediate shuttles along
their length axis. At that point, one DP-DP layer is unde-
formed resulting in two shuttle modes at 39 Hz similar to the
zero axle misalignment case. The other layer however is de-
formed by the maximum 20 mm, resulting in two modes; the
shuttles moving in opposite direction at 360 Hz and in equal
direction at 25 Hz. The latter also contains motion direction
deformation of the other DP-DP layer, resulting in a tangen-
tial motion of the coupler body with respect to its circular
path. From zero up to 90 degrees input angle, the defor-
mation is gradually transferred from one to the other DP-DP
layer interchanging the frequencies.

A static FEA modal analysis is done at 0◦, 45◦ and 90◦,
of which the results are given in the upper graph of figure 10
as marker points. For the first two modes, results are close
to the 17DOF model. The third and fourth mode are close
as well at their minima, at their maxima similar mode shapes
cannot be found unambiguously however.

In the lower graph the first three modes of the 5DOF
model are shown. The lowest frequency represents the same
tangential coupler motion as that of the 17DOF model. The
second mode represents radial coupler body motion, and the
third rotational motion as discussed in the next alinea.

The rotational mode of I3 and I4 oscillating in the angu-
lar stiffness of the input side DP-DP layer is found at 488 Hz
for zero input angle for the 17DOF model. As this angu-
lar stiffness decreases with motion direction deformation, the
frequency drops to 75 Hz at 90 degrees when the first layer
is totally deflected. The 5DOF yields a similar frequency,
being the third frequency line at zero angle. The extrema
of this resonance frequency also result from equation 25 for
the extreme stiffness values: 75Hz ≤ frot, input side ≤ 494Hz.
The FEA however gives significantly lower values (62Hz ≤
frot, FEA ≤ 87Hz) for this mode as was already observed in
the zero misalignment scenario, as body deformations also
contribute to this mode. However, the FEA frequency also
shows a minimum at 90◦.

Similar to the zero misalignment scenario, two other
modes with a significant output axle rotation contribution
are found in the FEA; 330 Hz and 470 Hz at zero angle,
304 Hz and 741 Hz at 90◦.

Some modes furthermore depend on the rotational ve-

locity significantly. As described in the method section, the
effective radial stiffness consists of an elastic part and a part
originating from the centrifugal forces. The elastic part has
its minimum at 45◦ when both DP-DP layers are equally de-
flected and both bearing stiffnesses K2,b and K4,b are rela-
tively low. The centrifugal forces rise with the rotational ve-
locity squared, resulting in a decrease of effective radial stiff-
ness. In the upper graph of figure 10 the first two modes at
650 min−1 are given as dashed lines, in which the first clearly
approaches zero every 45+n ·90◦. This mode shape is mo-
tion in radial direction of the coupler body, in combination
with motion of all four intermediate shuttles, and is expected
to determine the operational limit of this design.

This first mode resulting from the 5DOF model is shown
in the lower graph as well, having a similar course. However,
for this model the point of zero stiffness occurs at 620 min−1

already.
Due to the shown significant shifts in frequencies for

both angle and velocity, it is expected that the frequency con-
tent of the velocity error no longer consist of clear individual
resonance frequencies, but of broader frequency regions of
increased amplitude.

Velocity error In figure 11 the experimental frequency
content of the velocity error is given for this scenario. It is
clear that velocity error amplitude is significantly higher over
the whole spectrum than for the zero misalignment case. As
expected, less clear resonance lines are visible, as frequency
now varies with angle and velocity. Especially from 0 up to
circa 500 Hz error amplitudes are increased. Some specific
increases in amplitude can be seen at 20-40Hz, 60-100Hz,
170 Hz, 285 Hz and 350 Hz. At low velocity, vaguely a
zigzag pattern can be seen in the first two regions showing
the varying frequencies. This will be discussed in more de-
tail later. At higher velocities this representation only gives
the average frequency over multiple rotations, and the zigzag
is not observable anymore.

The first band of increased amplitude at 20-40Hz
matches the range of frequencies expected for the first two
shuttle modes as in figure 10. The 60-100Hz range matches
the FEA results for the first rotational mode. The three other
peaks cannot be matched unambiguously to the modelling
results, yet the second rotational FEA mode at 304-330 Hz is
in the vicinity of the peaks at 285 and 350 Hz.

At velocities where an engine order intersects a res-
onance frequency, further increase in amplitude is visible.
For example the second order is clearly visible for 500-
600min−1 at which it produces an excitation of around 17-
20Hz which excites the first mode. A second example is the
eighth order, which crosses the 60 to 100Hz region at around
550min−1.

Angle dependency of velocity error In figure 12 a wa-
terfall diagram of the velocity error is given for rotation at
a constant velocity of circa 50 min−1. Here, the zigzagging
frequencies during a revolution are more clear. In the dia-
gram, red lines indicate whole revolutions, at 0◦ input axle
rotation. It is observed that indeed the shift in frequencies
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Fig. 10. Resonance frequencies of the coupling at an maximum
axle misalignment of 20 mm, on a logarithmic scale, as a function
of the input axle angle. This behaviour repeats every 180◦. Upper
graph: 17DOF model results, first six static resonance frequencies
and first two at maximum velocity, as well as static FEA results at
several points. Lower graph: 5DOF model results, first three static
resonance frequencies and the first at maximum velocity.

is periodic with half a rotation, as expected, most clear in
the 60-100 Hz region. At the start of a revolution amplitude
is high around 89 Hz, and then shifts in time to 62 Hz at a
quarter rotation after which it starts increasing again. Fur-
thermore, a similar but more vague behaviour is seen at 290-
310 Hz in the vicinity of the second rotational FEA mode
at 304-330 Hz. The intermediate shuttle resonances in the
20-40 Hz as seen at higher velocities in figure 11 are not sub-
stantial here.

Changes in the velocity error as a function of the input
angle are even more clear in figure 13, where the error am-
plitude is shown for a ramp up in velocity (vertical), with on
the horizontal axis input axle angle. Again a pattern repeat-
ing every 180◦ is visible. For higher velocities, amplitudes
increase and the pattern shifts to the right (occurs at larger
angle).

In figure 14 the characteristics of the absolute time do-

Fig. 11. Campbell diagram of the velocity error frequency content
for a ramp up in rotational velocity of the compliant coupling, with
20 mm axle misalignment. On the horizontal axis frequency and
on the vertical axis rising rotational velocity. The color indicates the
velocity error amplitude.

Fig. 12. Waterfall diagram of the velocity error frequency content
at a constant rotational velocity of circa 50 rpm of the compliant
coupling, with 20mm axle misalignment. On the horizontal axis fre-
quency and on the vertical axis time. The color indicates the velocity
error amplitude. The beginning of each revolution (zero input angle)
are given as red lines.

main error signal are given for both experiment and time inte-
gration results of the multibody models. This for three con-
stant velocities. It is expected that time integration results
give a poor representation of the error. It was observed that
friction and damping parameters are highly influential on the
results, yet cannot be determined with high accuracy from
the experimental setup.

Operational limit In the method section it is predicted that
instability and unbounded motion in radial direction will oc-
cur when the effective radial stiffness approaches zero. The
mode shape containing this radial motion of the coupler body
is already discussed above. The velocity at which zero stiff-
ness occurs can be predicted using this modal analysis and
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Fig. 13. Velocity error ε, with on the horizontal axis the input axle
angle and on the vertical axle rotational velocity. The error color scale
is saturated to make the behaviour more clear, so the maximum val-
ues are not correct.

Fig. 14. Absolute value of the dimensionless velocity error ε at
three constant rotational velocities, resulting from experiment (black),
5DOF (red) and 17DOF (blue) model. For the 5DOF model, at 100
and 300 RPM no proportional damping was needed for integration
stability. However, at 500 RPM no trustworthy integration results were
obtained at all. For the 17DOF model, stiffness proportional damping
with β = 6.5 ·10−7 was applied. On each box, the centre mark indi-
cates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to
the most extreme data points not considered outliers, and the outliers
are plotted individually using the ’+’ symbol.

occurs at the emergence of a positive real root. For this,
multiple linearisation points are formed for incremental in-
creasing velocity θ̇2. Input angle θ2 is set at π/4, the point of
minimum elastic radial stiffness. Velocity θ̇2 and radius r at
first occurrence of a positive real root are shown in table 4,
for both 5 and 17DOF model.

The zero stiffness point can also be predicted using the
radial stiffness expressions given in the method section. As
bearing direction stiffness is state dependent, r and therefore
θ̇c (due to Coriolis force) are non-constant. Equation 23 thus
does not hold. However, an estimation can be made by pre-
tending that steady motion for the 5DOF model does exist
at:

qqq = [π/4,π/2,r,π/4,π/4]T (53)

q̇qq = [θ̇2,2θ̇2,0, θ̇2, θ̇2]
T (54)

Two free coordinates remain: r and θ̇c. Equation 17 then
simplifies to equation 55, which partial derivative to r gives
the effective radial stiffness. Solving this set of two equations
(equation 55 and 56) gives an estimation of the input axle
velocity and radius at the point of zero radial stiffness, which
is given in table 4:

∂V
∂r

−4m3θ̇2
2r = 0 (55)

Kradial =
∂
∂r

(
∂V
∂r

−4m3θ̇2
2r
)

= 0 (56)

The behaviour at decreasing radial stiffness is studied
experimentally using the motion tracking. In figure 15 the
path of the coupler body (showing radius r) is given for ex-
periments at several velocities θ̇2. In the same graph, similar
paths resulting from time integration of the 17DOF model
are shown. Markers indicate the coupler body location at
θ2 = n ·90◦ for counterclockwise rotation. For the two lower
velocities the time integration and experimental data lie close
together. At the highest velocity however, the deviation is
larger. Furthermore, a discrepancy can be seen in the coupler
body location markers. In the experimental data the coupler
body has a larger ’path lag’, θc lags its quasi-static location
of θc = 2θ2.

Experimentally, the failure point is hard to define. At a
certain velocity it can be heard that the shuttles hit the cou-
pler body, but failure does not occur immediately. At that
point impulses can be seen in the velocity error frequency
data, and the velocity error increases significantly. In most
cases, shuttle breakage only occurred when velocity is in-
creased even further. In table 4 the experimentally found ve-
locities are given for the point that collision is heard first and
the point fracture occurred.

5 Discussion
5.1 Proposed modelling method

The proposed 5DOF model is able to predict the first
static resonance frequency within 14% with respect to the
FEA. For maximum misalignment, the found frequency
range matches the increased amplitudes found in the experi-
ment. Furthermore, the operational limit is predicted as 6%
lower than the experimental fracture velocity.

The extended 17DOF furthermore reflects the dynamics
of the four internal shuttles of the specific case study design.

1The collision velocity is an average of four measurements, the frac-
ture velocity results from a single measurement with rapid acceleration until
fracture occurred.
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Table 4. Velocities and radii at the operational limit. For the models, the given point is at zero radial stiffness. For the experiment, two
velocities are given: at first notice of internal collision and at fracture of one of the intermediate shuttles.

Eq. 55, 56 Multibody model Experiment 1

5DOF 17DOF Collision Fracture

θ̇2,lim [rpm] 624 621 652 580 660

rlim [mm] 15.2 15.1 14.1

−1.5 −1 −0.5 0 0.5 1 1.5

·10−2

0

0.5
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1.5

2
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x [m]

y
[m

]

55 rpm
309 rpm
559 rpm

Fig. 15. Path of the coupler body during rotation at different veloc-
ities. The dotted lines represent the experimental data, the dashed
lines the 17DOF EoM time integration.

For zero axle misalignment, the first four resonance frequen-
cies originating from those shuttles are predicted within 4%
error of the FEA, and 1% error of the experiment. For max-
imum axle misalignment, the first two resonances match the
FEA results at standstill within 9%, for higher velocities the
predicted range of frequencies is reflected by the experiment.
The operational limit is predicted at an 2% lower velocity
than the experimental fracture velocity.

As shown in the result section, the first rotational mode
of the coupling, which as expected is dominant in the veloc-
ity error, is not predicted correctly by both multibody mod-
els. Shuttle and coupler body deformation plays a significant
role in this mode, which was not expected at first. It can be
seen that at 90◦ input axle angle, when angular stiffness of
the input side DP-DP layer is minimal, the model results are
within 20% of the FEA and 21% of the experiment. How-
ever, away from this angle the stiffness of the DP-DP rises,
and shuttle and coupler body becomes dominant, which is
not represented by the multibody models. When the pro-
posed modelling method is used, care thus has to be taken
that results only are accurate when the deformation of the
modelled flexures is dominant.

Looking at the modal analysis, used for resonance mode
and operational limit prediction, several remarks can be
made. Firstly, no damping or load is implemented, where the

damped natural frequencies are lower for an underdamped
system. Secondly, the steady motion equilibria used for lin-
earisation are only valid for the specific stiffness values at
that point (which vary significantly), and are likely to be
never reached during higher velocity rotation due to the in-
ertia. This explains the too large radii predicted at the opera-
tional limit. Thirdly, as seen in the experiments, collision of
the shuttles occurs at a velocity well before the radial stiff-
ness becomes zero, as the decrease of radial stiffness already
introduces too large radial and shuttle displacements.

Furthermore, prediction of the velocity error via time
integration turned out inaccurate. Several potential causes
can be indicated. Firstly, some bearing, encoder and air fric-
tion is inherent to the model. Estimating these effects via
the motor current and voltage is inaccurate, and are further-
more depended on bearing alignment, axial play and lubri-
cation. Secondly, the explicit integration method is sensitive
for error accumulation, and for some higher velocity imple-
mentation of stiffness proportional damping was needed to
remain integration stability. Thirdly, the internal damping in
the coupling, for example in the glued connections, is hard
to determine and is not modelled.

The effect of a high torque load on the coupling is
not studied in this work. However, the proposed modelling
method does incorporate the transmission torque. Further-
more, using two perpendicular compliant prismatic joints in
the Oldham kinematics yields a statically balanced mecha-
nism [3], so that the use of high stiffness prismatic joints
does not affect the actuation torque.

5.2 Experimental
A few flaws in the experimental evaluation can be in-

dicated. Firstly, no prober way to measure the bearing fric-
tion of the setup was found. The used method via the motor
current is inaccurate as exact motor efficiency is not known,
and is impractical for measuring individual bearing. Further-
more, at the output axle a journal bearing is used for which
friction can be altered by changing the axial play. This to
be able to apply some output load to the coupling. However,
adjusting this play is cumbersome and badly repeatable, as
again friction can not be measured accurately. The use of a
precise torque sensor would is preferable, which are expen-
sive however.

Secondly, not all resonance frequencies found in the ex-
periments can be matched with modelling results unambigu-
ously. As only rotational sensor data is available, the modal
displacement in other directions is not known and the exact
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mode shape cannot be determined. Use of accelerometers
placed on different bodies can give more insight. However,
especially for the smaller bodies, a significant mass will be
added, and data transfer from the rotating structure to the
fixed world is cumbersome. Another option is to attempt to
extract frequency data from the motion tracking. However,
only frequencies up to circa 250 Hz can be observed due to
the frame rate, and only large amplitudes are visible due to
the resolution.

Finally, a higher input axle stiffness is preferred. Al-
though 12 mm stainless steel is used, its relative long length
results in a reasonably low stiffness of 714 Nmrad−1, where
the minimum angular stiffness of one DP-DP layer is
62 Nmrad−1. A shorter or thicker axle will result in higher
stiffness. Implementing the axle elasticity in the FEA can
give insight in its effect.

5.3 Suggested optimization
Within the current design using the DP-DP flexure

mechanism, some design improvement suggestions will be
proposed categorised by inertia and stiffness changes, show-
ing the effect on the performance criteria.

Inertia By looking at the relation for the effective radial
stiffness (55 and 56), the parameters to increase the velocity
at zero stiffness can be indicated directly. Decreasing m3 can
be done by choosing other materials or shape for the cou-
pler body. More beneficial however is to invert the DP-DP
design, connecting the outer ring to the axle resulting in the
middle body being the coupler body, significantly lowering
mass m3 and inertia I3, with only a marginal increase of I2
and I4. The 5DOF modal analysis yield a improved oper-
ational limit at a rotational speed of 19.9Hz = 1193min−1,
the 17DOF gives 34.5Hz= 2069min−1; a minimal improve-
ment of 198 %. As in the 5DOF model the internal inertia
of the DP-DP flexure is distributed over the three bodies as
an approximation, this model gives a significantly lower and
less realistic value.

The inverted design furthermore gives an increase in
some of the eigenfrequencies. The first eigenfrequency re-
sulting from the 17DOF model is slightly increased from
25 Hz to 33 Hz. The first rotational mode with its original
minimum at 75 Hz in increased to 174 Hz (232 % increase).

Stiffness Obviously, the stiffness characteristics of the
compliant prismatic joints, in the current design the DP-DP
flexure, are highly influential on the performance criteria.
Within this design, parameters can be optimized for specific
objectives. Material and geometric beam parameters as E,
I and l have effect on all stiffness directions, as does the
compliance distribution parameter a0. The effect of a0 on
the bearing/motion stiffness ratio is further analysed in [17],
indicating that the decrease of a0 only gives a significant in-
crease of this ratio for small motion direction displacement
values.

Two characteristic stiffness values of the coupling, being
actuation and rotational stiffness, have to be looked at before

changing parameters.

The actuation stiffness of the transmission is the stiff-
ness felt changing the axle misalignment. The energy needed
is stored in the coupling, during rotation no actuation energy
is needed as the coupling is statically balanced. However, the
bearing forces and thus bearing frictions at both axles also
increase with this stiffness. The actuation stiffness depends
on motion and bearing stiffness of the two DP-DP flexure
mechanisms in series, and as the motion stiffness is orders of
magnitude lower this one is dominant.

The rotational stiffness of the coupling indicating its
static load bearing capabilities is formed by the angular stiff-
ness of both DP-DP layers in series.

Without increasing the actuation stiffness the rotational
stiffness can be increased by increasing parameters w1 and
w2. However, the footprint will increase with it. The differ-
ence between w1 and w2 gives a maximum for the stroke in
motion direction and thus the maximum axle misalignment,
which is furthermore limited by the flexure stress.

More improvement can be gained by choosing different
prismatic compliant joints than the DP-DP. The undercon-
straint of the shuttles in the DP-DP flexure contributes to the
low bearing to motion stiffness ratio and low internal res-
onance frequencies. Several strategies to decrease or elimi-
nate this underconstraint are given in literature [21], resulting
in improved prismatic joints. Most improvements however
limit the motion range to a certain extent.

6 Conclusion
In this work, a straightforward generic analysis method

for the family of compliant Oldham couplings is proposed,
based on multibody dynamics. Predictions can now be given
of 1) the maximum attainable velocity before instability due
to centrifugal forces occurs, 2) the lower resonance modes
originating from the used flexure mechanisms, and 3) the
characteristics of the resulting velocity error.

The analysis and prediction method is validated with a
case study for a specific coupling design. For this design, the
operational limit and the velocity error are evaluated. Within
this design, performance is optimized. For this, a 198% max-
imum velocity increase and a 232% first rotational frequency
increase are expected.

For this family of couplings in general, three important
characteristics are indicated which need attention during de-
sign. Firstly, as the coupler body COM will always describe
a circular path, resulting in centrifugal forces, sufficient ra-
dial stiffness is needed for stability. Secondly, the first ro-
tational resonance mode originating from the used flexure
mechanism needs to be sufficiently high and is likely to be
dominant in the velocity error. Thirdly, the use of under-
constraint internal bodies must be prevented, as it is demon-
strated that their vibration can contribute to the velocity error.
Low resonances, both rotational and internal, can, if excited
by dominant engine orders, potentially lead to failure.
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3
Discussion

In this section, discussion will be given about the complete project. Shortcomings and remarks within ful-
filling the four sub-objectives will be given. Then, some general comments about the complete project are
stated. Finally, possible future work is suggested. A reflection on the process of this project is given in ap-
pendix F. In this discussion, there will be some overlap with the paper presented earlier.

Within this project To analyse and predict the performance of the Oldham coupling, use of a multibody
model is proposed. In the resulting models, some shortcomings are indicated. First of all, the numerical
time integration of the equations of motion, which can give insight in the coupling’s motion in time, is prob-
lematic. Without implementation of damping, integration often becomes unstable, primarily for higher ro-
tational velocities. Furthermore, results sometimes appear to be heavily dependent on small changes in the
initial conditions. In future work, implementation of an implicit solver could overcome this problem. More
information can be found in appendix C.

Secondly, matching the multibody models with the experimental setup is ambiguous. For this, values for
the friction torque arising from the bearings and encoders are needed, which vary with velocity. In the exper-
imental setup, all friction is estimated by measuring the DC-motor current. Using the motor parameters, the
torque can then be calculated. In future work, use of a dynamic torque sensor can be considered, with which
ideally torque variations within a revolution can be measured as well.

As for the time integration implementation of damping is needed in some cases, it would be interesting
to know the actual damping within the coupling. More time could be invested to experimentally determine
the damping characteristics. Damping is now assumed to be stiffness proportional, which then also can be
validated.

Furthermore, a modal analysis was done to find the resonance frequencies with respect to the coupling’s
angle and velocity. A clear limitation of the multibody model is that all bodies are rigid. Only mechanisms
for which the flexure deformations are dominant can be studied properly. For many flexure based compliant
mechanisms this is the case however, certainly for the lower and most interesting eigenfrequencies. Nev-
ertheless, body deformation had a significant influence on the first rotational resonance of the case study’s
design.

It was shown that the results of the finite element analysis (FEA) were in good accordance with the ex-
perimental results. For further use of the mutlibody models, a possible procedure can be to first perform
a relatively straightforward static modal analysis with FEA software to determine the contribution of elastic
body deformations. Then, if the flexure deformations prove to be dominant, further dynamic analysis can be
done using the proposed mutlibody modelling.

Despite the straightforwardness of the proposed multibody technique, it would be interesting to compare
it with other methods. Both accuracy and easy of modelling can be compared. Where FEA is more complex,
it is not limited to available stiffness profiles for flexure mechanisms. Another more easy option is multibody
dynamics simulation software such as Adams. However, the manual implementation in Matlab or any other
programming language gives the designer direct insight in the underlying physics and mathematics.
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22 3. Discussion

Some further remarks can be made with respect to the experimental setup and the chosen evaluation
method. Several are already given in the paper. One shortcoming being the non-observability of certain mode
shapes will be discussed more elaborate next. More detailed information about the setup and experimental
method can be found in appendix D.

The primary goal of the setup is to determine the velocity error caused by a coupling, which is done using
two optical encoders on both input and output axles. Secondly, using high speed footage, the motion during
rotating can be studied. With this, low frequency high amplitude mode shapes in the planar domain can be
indicated. However, other mode shapes cannot be determined, as was already discussed in the paper. In
future work, other techniques to determine these mode shapes during rotation should be explored. A shaker
measurement determining the modes at standstill can furthermore be a good validation of both the mutli-
body models and the FEA, and might also give insight in the damping characteristics of the coupling.

Optimization of the coupling’s dynamic performance forms one of the sub-objectives. In the paper, sev-
eral properties influencing its performance are indicated, and several design improvements are suggested.
An orientation into the redesign of the coupling is furthermore given in appendix E.

In the paper it was already indicated that besides improving the effective radial stiffness, more improve-
ment can probably be gained by optimizing the compliant prismatic joints used. Future work can focus on
the design of a more suitable flexure mechanism, without internal underconstraints as with the current in-
termediate shuttles. Several alternatives are already found in literature (see appendix E), but there still is a
challenge in maintaining the needed large range of motion within these more properly constrained designs.

Furthermore, dynamically balancing the design could be explored, eliminating the effects of the con-
stantly moving centre of mass of the coupler body. Also, the use of other kinematics besides the current
Oldham kinematics can be investigated, which might benefit the dynamic performance.

Beyond this project Beyond the scope of this project, some future challenges or recommendations can be
indicated.

In this work, the effect of the loading on the compliant coupling is not analysed. For most applications,
the transmissions of some amount of rotational power is desired. In future works the effect of loading should
be investigated. For the experimental evaluation, a method to apply a specified and controlled amount of
torque should be developed. Use of a second electric motor in combination with a dynamic torque sensor is
a possibility.

During this project, the scope was narrowed down to the family of compliant Oldham couplings. In the
literature review, a first orientation of potential dynamic problems in any kind of compliant couplings was
performed. It would be interesting to validate these findings and extend the found methods into other com-
pliant couplings or mechanisms. The compliant universal coupling as designed by Farhadi Machekposhti [1]
would be a challenging candidate, as it cannot be analysed in the planer domain any more.

The research into compliant rotational couplings would be more valuable if a specific application would
be chosen. Potential benefits of the compliant designs over conventional couplings can then be quantified.
Furthermore, the designs can then be further optimized for that specific application, which might bring along
new challenges.

Moreover, for practical implementation in any kind of application the manufacturing process has to be
improved. For complicated designs, additive manufacturing can be attractive, for which attaining suitable
material properties might still be a challenge. For the planar designs, more conventional techniques such as
wire EDM, water jet or laser cutting are available.

A potential field of application is that of Microelectromechanical systems (MEMS). Here, the planar de-
signs consisting of a minimum amount of layers are most attractive from a production point of view. At this
scale, the dynamics will behave differently than on the studied macro scale. Investigating the specific dy-
namics of compliant rotational couplings at this scale might be very interesting for future work. Multiple
challenges such as the experimental validation can be indicated.



4
Conclusion

In this thesis, a straightforward generic analysis method for the family of compliant Oldham couplings is
proposed, based on multibody dynamics. Stiffness is implemented using already available stiffness char-
acteristics of flexure building blocks. Using this method, predictions can now be given of 1) the maximum
attainable velocity before instability due to centrifugal forces occurs, 2) the lower resonance modes originat-
ing from the used flexure mechanisms and 3) the characteristics of the resulting velocity error. Key dynamic
bottlenecks being zero effective radial stiffness and internal underconstraints are indicated.

The analysis and prediction method is validated with a case study for a specific coupling design. For this
design, the operational limit and the velocity error are evaluated. For this, a universal test setup suitable for
parallel as well as angular misalignment couplings was designed and fabricated. Within the case study design,
improvements are suggested which are expected to significantly increase the dynamic performance. Further-
more, an orientation towards a complete redesign of a compliant Oldham coupling for dynamic applications
is executed.

Using the proposed methods, a designer can now analyse, understand and predict the dynamic perfor-
mance of a compliant Oldham coupling in a straightforward manner. Furthermore, key performance bottle-
necks are indicated as well as the handles to elevate those. This all makes implementation of a compliant
Oldham coupling in a dynamic application more feasible and attractive. Within this field, the benefits of
compliant mechanisms no longer have to be abolished by dynamic problems.

This work is a first step in filling the knowledge gap of the dynamics of compliant rotational couplings. It
paves the road for dynamic analysis of other compliant rotational couplings. The proposed modelling tech-
niques can be adapted to other flexure based couplings as well as other flexure based mechanisms. Indicated
(potential) dynamic problems can inspire and aid future research.
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A
Literature review towards the dynamic

analysis of compliant rotational couplings

A.1. Introduction
Mechanical rotation power couplings are used to transmit a rotational motion from one direction to another.
More concrete a coupling is made between two misaligned axles, in which the misalignment can be parallel,
angular or both. Many designs exist, of which the Hooke’s universal or cardanic coupling for angular mis-
alignments is the most well-known. However, this coupling does not transit the velocity between the two
axles constantly. The introduced error increases with misalignment angle, and can cause dynamic problems
and increased stresses in the couplings bodies.

A constant velocity (CV) or homo-kinetic coupling however transmits this motion with a 1:1 ratio during
the whole cycle of rotation: the velocity transfer is constant. Also, many of these designs exist. Common ex-
amples are the ball-and-groove homo-kinetic couplings used in cars. Also other types based on linkages exist.
However, these are all conventional rigid-body mechanisms, with mutual sliding or rolling contacts. Disad-
vantages such as backlash, friction, wear and need for assembly, maintenance and lubrication are inherent
to these mechanisms [4].

Compliant mechanisms in which motion originates from elastic deformation of a monolithic body only
do not possess these disadvantages. Already, quite some compliant designs for rotational couplings exist [3].
In industry, compliant couplings for small misalignments are already frequently implemented [5]. However,
when large misalignments are needed, the use of compliant couplings still is less common.

Mashekposhti designed two compliant rotational couplings for respectively large parallel and angular
misalignments, which both offer a CV transfer [1, 6]. A true constant velocity coupling with the advantages
of a compliant mechanisms can be attractive for high precision applications due to their lack of backlash
and wear, of for application in a clean or vacuum environment as no maintenance or lubrication is needed.
Mashekposhti however indicated that the dynamic performance of these mechanisms is poor, which is the
direct motive for this work. A first observation was that the lack of stiffness in certain directions, inherent to
a compliant design, lead to problems at higher velocities. For example, in testing on the Monocup compliant
universal joint [1] done by a group of bachelor students, flexure yield occurred at around 400 min−1 already.
Furthermore, the constant velocity transfer is questionable at higher velocities, as vibrations or distorted
kinematics are expected.

Compliant couplings behave differently from conventional rigid body couplings. A rigid body revolute
joint for example has very low on-axis stiffness and high off-axis stiffness. A leaf spring used as a compliant
revolute joint does have on-axis stiffness and a relative low off-axis stiffness. Especially this different stiffness
characteristic gives rise to problems when compliant couplings are used in a dynamic environment. As in
rotational transmissions operating at some speed dynamic forces always are present, the dynamics of such
a transmission can not be ignored. Large deformations and vibrations caused by dynamic forces can lead to
distortion in the coupling’s kinematics and ultimately in plastic deformation.

This leads to the goal of this literature review, which is firstly to identify dynamic phenomena potentially
deteriorating the performance of compliant rotational couplings, and secondly to review existing methods to
model the dynamic behaviour of these couplings. This towards dynamic analysis of the existing compliant
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Figure A.1: Schematic classification of CV universal joint kinematics [3]

couplings, and moreover towards the (re)design of compliant rotational couplings, suitable for large mis-
alignments and dynamic applications (significant rotational velocities and accelerations). The performance
is defined twofold, firstly being the velocity error generated by the coupling and secondly the maximum op-
erational conditions in terms of angular velocity and acceleration before permanent damage is done to the
coupling.

In the first section, the kinematic requirements for a CV joint are discussed, as well as the kinematics used
for the compliant designs at hand. In the next section, relevant common dynamic knowledge is summarised.
Then, the state of the art in the dynamic analysis of conventional rigid-body couplings and rotor systems is
discussed. Finally, already available work in the field of the dynamics of compliant couplings is reviewed,
followed by dynamic modelling methods used in the whole field of compliant mechanisms. At the end, a
schematic overview of potential dynamic problems for compliant rotational couplings is given in the form of
a flowchart.

A.2. Literature review
A.2.1. Kinematics of (conventional) rotational couplings
In this section, the kinematics needed for a constant velocity transfer coupling are discussed. Furthermore
the kinematics of a cardan and Oldham coupling will be discussed in more detail, as the compliant designs
at hand possess their kinematics.

Hunt constructed a general theory for the kinematic design of a CV coupling, both for angular or parallel
misalignments [7]. He concluded that a symmetric configuration with respect to the so called homo-kinetic
plane is essential for CV transfer. This plane intersects both axle perpendicularly. In case of a coupling be-
tween parallel axles, this plane thus lies at infinity and one must ensure that the design is non symmetric near
the coupling.

An overview of rigid-body CV universal joints using different kinematics is given in [3], as a review towards
the design of a compliant universal joint. A division is made between different strategies as depicted in figure
A.1. As the ball and roller type has several shortcomings among others being difficult to convert to a compli-
ant design due to the rolling contacts, the linkage class is seen as being more suitable. This class can further be
divided in spherical and spatial linkages. In the first any point is limited to move in within a set of concentric
spherical surfaces. The kinematics of different linkage type joints is analysed, and schematically organised
based on the internal kinematic pairs. Strategies for conversion to a compliant design are discussed. This
overview finally led to the design of a compliant CV rotational coupling for large misalignments, based on the
double Hooke kinematics [1].

A common design of a CV coupling between parallel axles is the Oldham coupling, names to the Irish
engineer John Oldham who invented it in 1821. This coupling is a RPPR mechanism which; two revolute
joints at supporting each axle and two prismatic joints in between transferring the rotation. Conventionally,
the prismatic joints are formed by grooves in the two axle members, and an intermediate body or coupler
having matching projections. Sliding contact occurs between grooves and projections. The two grooves are
perpendicular, resulting in a CV coupling.

During rotation, the intermediate member describes a circular path in the plane perpendicular to both
axles, crossing the centres of the axles. The centre of this path is midpoint between the two axles. This path
is passed through twice per rotation, and the angular velocity of the coupler around the centre of the path is
twice the input axle velocity. The circular motion of the centre of mass of the coupler body creates a dynamic
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imbalance.
The imbalance can also be used as an advantages. Tsai proposes a second-harmonic balancer which

by properly arranging two Oldham couplings can eliminate second-harmonic shaking forces, moments of a
combination of both [8]. As the angular velocities of all bodies within the system, besides the friction torque
no input torque is required. Due to the circular motion of the coupler body, a rotating nett centrifugal force
is present, which is used for the balancing purposes. By varying the rotation direction and phase of the two
couplings, a nett force or moment can be created with a frequency of twice the input axle frequency.

A generalised design of the Oldham coupling is given and discussed by Freudenstein [9]. He proposes a
more general design in which the phase transmission can be altered by changing the straight grooves of the
prismatic joints into groves with a certain radius. By altering these radii a desired phase change per rotation
can be obtained.

General dynamics In this section, different dynamic phenomena are described. First, all inertia forces act-
ing on a rotating system are given, which is based on Hibbeler [10]. Then, the effect of resonance frequencies
and their excitation is investigated. Finally, some instability phenomena are introduced.

Inertia Inertia is the resistance of a mass against its change of motion. In an inertial frame of reference,
inertia can be described by Newton’s second law of motion: "the vector sum of the forces F on an object is
equal to the mass m of that object multiplied by the acceleration a of the object".

F = ma (A.1)

When looking into rotating systems, it is more convenient however to use a rotating (non-inertial) refer-
ence frame, which is accelerating with respect to the inertial frame. To explain the motion of a mass in such a
reference frame, fictitious or inertial forces must be introduced to account for the observed motion.

Figure A.2: Translating and rotating non-inertial reference frame i j k

In figure A.2 a general non-inertial reference frame i j k is shown, which can both translate and rotate
from the inertial frame I J K . The acceleration of point B can be expressed in the inertial reference frame as:

aB = a A +Ω̇× r B/A +Ω× (Ω× r B/A)

+2Ω× (v B/A)x y z + (aB/A)x y z (A.2)

Seen from the moving reference frame, the forces upon the body are
∑

F = m(aB/A)x y z . Here, the sum of
the forces consists of the external forces on the body and the fictitious forces due to the acceleration of the
reference frame.
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m(aB/A)x y z =
∑

F ext −m[a A +Ω̇× r B/A

+Ω× (Ω× r B/A)+2Ω× (v B/A)x y z ] (A.3)

On the right hand side, the sum of the external forces and the four inertial forces are seen. From left to
right: the force caused by the rectilinear acceleration, the Euler force, the centrifugal force and the Coriolis
force. These forces and their impact on rotational joints will now be discussed shortly. For this, the origin
of the moving reference frame (A) will be chosen on the axis of rotation of the joint, which is assumed to be
fixed to the inertial frame. The joint and thus the reference frame rotates with angular velocityΩ and angular
acceleration Ω̇.

As the axis of rotation if assumed fixed, the moving reference frame has no rectilinear acceleration, a A = 0.
The Euler force is the cross product of angular acceleration Ω̇ and position vector (radius) r B/A . It is thus

perpendicular to both. Due to the minus sign in front of all inertial forces, the Euler force acts in the opposite
direction of the transverse acceleration of point B. The force counteracts the angular acceleration.

The centrifugal force is dependent on the angular velocity squared and the radius of point B. It’s direction
is determined by the double cross product, which always makes it pointing radially outward. IfΩ and Ω̇ are
co-linear, which is the case for a rotational joint, this force is perpendicular to the Euler force. It counteracts
the acceleration in normal direction caused by the angular velocity.

The Coriolis force is non-zero when point B has a non-zero velocity v B/A)x y z in the moving frame. It then
acts in a direction perpendicular to Ω and v B/A)x y z . If point B for example has a velocity radially outward
from A, the Coriolis force acts in the transverse direction. In an complaint coupling, this force could come
into play when a flexible part moves radially outward due to the earlier described centrifugal force.

The inertial forces can have a periodic nature due to the rotation, which will cause vibrations.

Resonance frequencies and mode shapes If the frequency of an applied force is close to a natural frequency
of a undamped system, resonance occurs and the amplitude of vibration and stress levels can increase con-
siderable. In compliant mechanisms, the resonance frequencies are often reasonably lower than in rigid
body mechanisms (except from the rigid body modes with ωn = 0) and thus more likely to be excited. First,
the determination of the resonance frequencies will be described. Secondly the possible excitations are in-
vestigated.

In an undamped one degree of freedom (DOF) system with stiffness k and mass m4 the first natural fre-
quency can be written as:

ωn =
√

k

m
(A.4)

An example of a 1-DOF system is a revolute joint, which has one DOF being a single axis rotation. Rigid
body versions typically have neglectable stiffness in this DOF (on-axis) and high stiffness in other directions
(off-axis). If as a replacement a rectangular compliant revolute joint is used (essentially a cantilever beam),
this joint has some on-axis stiffness, being the bending of the beam along its length. This stiffness is typically
desired as low as possible. The lowest resonance mode then is this bending and thus acts in the DOF of the
joint. At higher frequencies, higher order bending modes can also occur. Although these modes are in the
desired on-axis direction, excitation can still lead to unwanted (excessive) vibration in the joint.

Where in the rigid joint the off-axis directions are very stiff, this is typically not the case for the compliant
beam. Due to this lack in stiffness, off-axis resonance modes will occur at lower frequency. Examples are
bending modes in other planes, twisting modes or stretching modes (figure A.3).

When more complex compliant transmission mechanisms are designed using the Rigid-Body Replace-
ment method, compliant revolute joints, modelled as torsion springs, are used to replace the rigid body rev-
olute joints. A mechanisms build up from the above described complaint revolute joints has on-axis stiffness
and on-axis resonances, but also off-axis stiffnesses and resonances. Both can distort the transmission’s be-
haviour. Determination of the resonance frequencies of such composed mechanisms is less straightforward.
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Figure A.3: Different mode types of a fixed-free beam

Several methods will be given in the next sections.

Excitation of natural frequencies Due to the lower natural frequencies of complaint mechanisms, it is likely
that these are excited in the working range of the mechanism. Several excitation causes are described now.
Most of the excitations are related to the rotational velocity ω of the transmission (not to be confused with
the natural frequency ωn). The most obvious one is an unbalance in one of the bodies of the rotating system.
Then there are multiple possible excitations coming from the mechanical setup the coupling is attached to.
Furthermore, shock can excite resonances. Finally, some less obvious phenomena leading to excitation are
given at the end of the next section.

Unbalance When the COM of a body of the transmission system lays not on the axis of rotation, vibra-
tions can occur with a frequency of an integer multiple of the angular velocity. A simple unbalanced rotating
body will generate an excitation with a frequency equal to the rotational velocity of that body, so a first order
excitation. These excitations with a frequency proportional to the rotational velocity are called (engine) or-
ders. Compliant transmissions often have multiple parallel linkage chains, and each chain typically has an
off-centred COM. Below, several of these excitations are described.

Periodic centrifugal force, whirling When the COM of a body in the transmission lays outside in the axis of
rotation, the resultant centrifugal force causes a vibration withω. This vibration can excite a resonance mode
when the frequency ratio r = ω

ωn
→ 1. The rotational speed at which this happens is also called the critical

speed [11].

Take for example a shaft with some bending stiffness k and a bending mode natural frequency ωn =
√

k
m .

Near critical speed, the shaft’s bending mode is excited. Deflection increases the distance to the axis of ro-
tation which increases the centrifugal forces. The shaft undergoes large deflections and bearing failures can
occur due to the large forces transmitted. This phenomena is called whirling [11]. The bending mode ’rotates’
with the axle, not necessarily at the same ω, phase lag can occur.

Periodic centrifugal force can also used as an opportunity. Tsai describes an second-harmonic balancer
using the 2ω vibration caused by the coupler link in an Oldham coupling [8].

Periodic torque of gravity If an axis of rotation of a transmission system is horizontal, gravity can cause
vibrations on the system. The gravitational acceleration g exerts a force on an excentred mass m. As this mass
is placed at a radius r from the axis of rotation this force will exert a torque on the rotational system, periodic
with the angular rotation θ. This torque thus induces a vibration with frequency ω.

τ= r B/A × mg (A.5)

τ= rB/A mg sinθ (A.6)

Higher order excitations Multiple excitations can originate from the setup to which the coupling is at-
tached. Unbalance is already discussed as a first order excitation. Looking at the mechanical setup, bearing
can potentially cause an excitation. Roller bearings can give excitations with a frequency matching the ro-
tational path velocity of the roller elements, which normally is no integer order. Furthermore, all sorts of
excitations can come from the driving of the coupling. Examples are the number of motor poles of an electric
motor, the number of teeth of a geared transmission within the drive, or combustion in case of an engine.
Integer multiples of these orders can sometimes also cause excitations.

Shock A shock is a sudden acceleration, for example caused by a hammer impact. A shock has a broad
frequency range, and thus can excite many natural frequencies.
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A.2.2. Dynamics of conventional rotational couplings
Numerous studies into the dynamics of conventional rotational couplings and their effect on rotor systems
have been done. In the following, only some work regarding linkage type couplings is discussed. As men-
tioned earlier, the linkage type couplings are more attractive to convert to compliant. Analysis of conventional
couplings can serve as an inspiration for the future analysis of compliant versions, and potential problems
can be indicated.

The dynamics of the Cardan joint (also universal or Hooke joint) is a frequent topic of analysis, as it is
a commonly implemented coupling and as it gives rise to velocity difference increasing with misalignment
angle. Placing two couplings with equal angle and 90 deg phase difference in series cancels out this error.
However, the intermediate shaft still has an oscillating velocity and loads are non-constant.

An elaborate work into the dynamics of the universal joint is done by Chen [12], in which the dynamic (re-
action) forces are expressed. To also incorporate manufacturing tolerances, the revolute joints are modelled
as cylindrical joints, changing the mechanism from RRRR to RCCC. Results are applicable for both steady-
state as transient case. Acceleration in floating and output link due to the non-constant velocity transfer at
misalignment results in significant radial forces in output link, which also give rise to axial torque on output
joint.

Ota and Kato studied the dynamics of rotor systems driven by a universal joint [13–15]. Several domains of
unstable vibration are indicated. A coupling between the torsional and lateral vibrations is indicated, caused
by the universal joint. The angular velocity fluctuations in the rotor system are governed by the misalignment
angle. When the shaft vibrates laterally at a critical velocity, this joint angle changes due to this bending and
rotating speed deviates, coupling the lateral to the torsional vibrations. The vibrations become unstable at
’nearly half the sum of the natural angular frequency for the lateral vibration and the one for the torsional
vibration’. A summed parametric vibration occurs, consisting of both the lateral and torsional frequency.

Instability in rotor systems driven by a universal joint is further analysed by Mazzei [16], indicating in-
stabilities such as flutter, parametric and forced. Very light damping moves flutter instabilities outside the
working range of the coupling. Parametric and forced instabilities however were found to occur within the
working range. For the first, an increase in bearing damping will stabilize the system and move the zones of
parametric instability out of the working range. Forced instability occurred when rotational velocity reaches
a systems natural frequency divided by two.

Liu describes an overconstrained Hooke type joint with flexible parts [17], which sort of forms the bound-
ary between a conventional and a compliant coupling. The moving revolute joints in a normal universal joint
are replaced by cylindrical joints (RCCR), and the intermediate body (the middle cross in a normal universal
joint) is replaced by a flexible plastic part. The flexibility of this part permits the overconstrained coupling
to work. The overconstraint turns out to be beneficial, compensating dynamic effects and reducing force
magnitudes.

Summary of found phenomena Two instability phenomena found in the above literature are explained in
a general sense in this section.

Parametric instability Oscillations can be driven by a varying system parameter in time. This is called
parametric oscillation. A common example of this behaviour is the child standing on a swing, standing and
squatting periodically [18]. By doing this, he changes the moment of inertia of the swing and thus its reso-
nance frequency. This then drives the oscillation. An initial amplitude is needed to start this phenomena.
If the parameters vary with twice the natural frequency of the swing, the amplitude of oscillation can grow
exponentially if no energy dissipation mechanism is present. The phase between parameter change and os-
cillation is constant then.

Parametric excitation is different from the case of a forced or driven oscillator, is then amplitude grows
linearly, and no initial amplitude is needed.

Flutter An interpretation of flutter is the energy transfer between adjacent mode shapes, and can thus only
occur at coinciding mode frequencies and shapes [19]. One mode absorbs energy and feeds it to the other.
This phenomena is mainly known as the interaction between an elastic structure and a fluid flow, such as on
an air plane wing. Here, the elastic structure undergoes a harmonic motion at a point of zero nett damping.
The nett damping is the sum of the damping in the elastic structure itself and the negative effect of the fluid
forces. Negative nett damping will further exite the mode.
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In the case of a shaft driven by an universal joint, similar self excited vibrations can thus occur when the
fluctuating torque is in phase with the (lateral) velocity of the shaft. Lateral mode shapes can then be excited.

A.2.3. Dynamics of compliant rotational couplings
In this section, first already existing literature about the dynamics of compliant couplings is given. Then,
dynamic analysis methods used on other types of compliant mechanisms are discussed.

In the work of Xu [20, 21] the dynamic effect of shaft misalignment and rotor unbalance of a motor-flexible
coupling-rotor system is studied and modelled. The model is validated with experimental results.

As perfect alignment between driving and driven machine is almost impossible to achieve and maintain
during operation, often flexible couplings are used to accommodate for small misalignments.

Results show that rotor unbalance generates vibrations of the first order, while shaft misalignment gener-
ates second order content. Misalignment effects may not be apparent if the second order is not close to one
of the systems natural frequencies. The use of flexible couplings can change these natural frequencies.

In the study of Al-Hussain [22], the effect of angular misalignment of two rigid rotors connected through
a flexible mechanical coupling is analysed. Dimensionless stability criteria as function of misalignment, cou-
pling and bearing properties are given. It is shown that as the angular misalignment or coupling stiffness
terms increase, the stability regions increase accordingly.

Other compliant fields Lyon et al. used the same PRBM used for design and displacement analysis to pre-
dict the first resonance frequency of several parallel-guiding and straight-line flexure mechanisms [23]. The
flexures are thus modelled as rigid links, with torsional springs at each end. Experimental testing on those
was done as a verification. The modelled resonance frequencies match the experimental results for each
mechanism with an error less than 9 percent.

Boyle et al. also used the PRBM to study the dynamic response of compliant constant-force compression
mechanisms [24]. The results in these studies show the possibility of using the pseudo-rigid-body model in
the dynamics of compliant mechanisms.

In the work of Yu a dynamic model of compliant (flexure) mechanisms is proposed, based on the pseudo-
rigid-body model and dynamic equivalence [25]. The dynamic equivalent rotational stiffness is given for
different loading scenarios. Flexure inertia is modelled as dynamic equivalent lumped mass at the connection
points to the motion stage. This results pseudo-rigid-body dynamic model (PRBDM). Using the equivalent
stiffness and inertia, potential and kinetic energy is formulated. Substituting these in the Lagrange equation
yield the equation of motion, with which the first natural frequency of the system can be calculated. Results
are within a few percent accuracy compared to FEA for different case studies.

The methods based on the pseudo-rigid-body models have only one degree of freedom and therefore only
one, normally the first, frequency can be predicted.

Li and Kota used existing finite element modelling techniques to study the dynamic behaviour of com-
pliant mechanisms [26]. Planar frame elements are used to model the flexures. Basic formulations are given
for building the equations of motion, time integration and damping implementation, frequency spectrum
analysis and sensitivities are given. The sensitivity analysis form the basis for dynamic synthesis for com-
pliant mechanisms. As a case study, a stroke amplification mechanism is analysed, in which the benefit of
sensitivity analysis is made clear.

As in the finite element approach flexures are modelled using many DOF, the dynamic behaviour can be
analysed more in depth than using the often 1DOF PRBM methods. However, building a FE model is more
cumbersome, and needs the design to be more established already. Using the PRBM method, the resulting
equation of motion is easily understandable and the influence of different parameters is directly clear.

A.3. Results: potential failure chart
The found potential dynamic problems are summarized in the form of a flowchart, in figure A.4. On the left
side, the key properties of a coupling are stated. Certain properties then can lead to certain phenomena,
which are all given in the middle section. These problems can be the cause of a failure, of which the failure
modes and their effect are given on the right side.

In the grey boxes, questions about certain properties are given. If this property holds for the design at
hand, then the following (white) boxes indicate potential problems. It however is no guarantee that this
problem will indeed occur.
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It is not claimed that this flowchart is complete and contains all possible dynamic problems. It is however
an schematic overview of the problems found and deduced in this work.

A.4. Conclusion
In this work potential dynamic problems for compliant rotational couplings were indicated. General dy-
namics of rotational bodies were summed up. It is expected that (inertial) centrifugal and Coriolis forces are
potentially harmful when compliance is high in those directions. Furthermore, the origin of resonance and
their possible excitations are discussed. In compliant couplings, motion directions will likely have a non-
zero resonance frequency, and bearing direction a far from infinite frequency, as opposed to conventional
mechanisms. The lower frequencies are more likely to be excited during operation.

In the work about the dynamics of conventional couplings, several instability phenomena were indicated.
Parametric instability can occur when system parameters are periodically changing with a frequency match-
ing integers (sub)multiples of a resonance frequency of the system. Flutter instability is a phenomena in
which one mode absorbs energy and feeds it to a mode with coinciding mode shape and frequency.

For the case of the dynamcis of compliant couplings, work was found concerning the dynamics of rotor
systems driven by small misalignment industrial flexible couplings. It was indicated that the flexible cou-
plings can change the natural frequencies of the rotor system. Furthermore, coupling stiffness can increase
stability.

A flowchart indicating different potential dynamic phenomena deteriorating the performance of a com-
pliant coupling was build, in which a first relation is given between the couplings characteristics and its per-
formance. It is based on the found phenomena in literature as well as common dynamics knowledge.

Secondly, to the writers knowledge the dynamics of large misalignment compliant rotational couplings
has not been studied yet. Research has been done in the field of small misalignment flexible couplings fre-
quently used in industry. This work is not applicable to large misalignment couplings as among others stiff-
ness values are significantly higher. For compliant mechanisms in general, dynamics have primarily been
studied using PRBM methods and FEA. The former is straightforward but only gives little insight, while the
latter gives more insight but is labour-intensive. Furthermore, in FEA it is less straightforward to gain insight
in influential design parameters.

It can thus be concluded that there exists a knowledge gap for the dynamics of (flexure based) large mis-
alignment compliant rotational couplings. This gap hinders design and implementation, despite the poten-
tial benefits of a compliant mechanism.
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Figure A.4: ’Flow chart’ of potential dynamic problems in compliant rotational transmissions, with input angular velocityΩ.





B
Finite Element Modal Analysis

B.1. Description of the model
In this appendix, the Ansys finite element analysis (FEA) model used to find the static resonance frequencies
and mode shapes of the compliant Oldham coupling as proposed in [6] is described. A modal analysis is
conducted for the undeformed coupling and for some characteristic deformed cases is done.

The goal of this model is twofold. In the first place the goal is to find the resonance frequencies and mode
shapes of this coupling under several conditions. These give insight in the stiffness of the whole coupling,
and weak points leading to low resonances can be improved. Furthermore the results can be compared with
the results from the experiments.

In the second place it is used to compare with the results from the multibody models. Both resonance
frequencies and mode shapes can be compared. As the multibody models only incorporate the dynamics of
the flexure mechanism, and not of its supported bodies, comparison gives an indication of the applicability of
the multibody models. If deformation of the plastic structure is dominant, the multibody models do not give
an complete representation of the dynamics of the coupling. In that case, FEA is more suitable, or dominant
support body stiffnesses should be incorporated in the multibody model, or the design should be alterd in
such a way that the support bodies deformations are no longer dominant.

Furthermore, to determine if the multibody models give a correct representation of the flexure dynamics,
an altered FEA is done. In that analysis the plastic (PMMA) and aluminium bodies of the flexure mechanisms
are given a stiffness many orders higher than their physical values and of the flexure mechanism. This results
in the lower mode shapes only originating from the flexure mechanism, which than is a good comparison to
the multibody model.

The build Ansys model can also be a starting point for further FEA of the Oldham coupling. From the cur-
rent model already stress and strain values for certain prescribed deformations or forces can be determined.
Furthermore, the model can be a basis for dynamic analysis, such as a transient dynamic analysis.

B.1.1. Build up of the model
The model of the Oldham coupling mostly consists of BEAM188 (Timoshenko) beam elements, in which shear
deflections are included. The cross sections of different elements are defined using the SECTYPE command.
The 16 AISI316L stainless steel 16 beam flexures are modelled with a Young’s modulus E = 193GPa, and a den-
sity of ρ = 7557kg/m3. The PMMA bodies with E = 3.3GPa, and a density of ρ = 1023kg/m3, the aluminium
reinforcement ring between the two outer PMMA bodies with E = 70GPa, and a density of ρ = 2476kg/m3.
The densities of the bodies are tuned such that the match the weight of the separate bodies of the prototype.
For all materials a Poisson ratio ν= 0.3 is used.

The model is build parametrically so that different design parameter can be changed easily. At the begin-
ning of the code, also the angle (over the Z-axis) of the coupling can be chosen, as the stiffness depends on
this angle when axle misalignment is present. The key points and lines are then constructed automatically
in different loops. As the design consists of two DP-DP flexure mechanism layers placed perpendicular onto
each other, these loops are executed twice in two different perpendicular coordinate systems. Then, lines
representing different elements with different cross sections are categorised, after which the mesh is gener-
ated over these different categories (LMESH). For the beam flexures a fixed number of 50 elements per beam is

35
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Figure B.1: Mesh of the Oldham coupling

chosen. For the PMMA and aluminum bodies, an fixed element size of 2 mm. Effect of element size is checked
by both increasing and decreasing the element sizes, which did not cause significant changes in the results.

In the prototype, the PMMA outer (coupler) body is glued to the aluminium reinforcement ring. This is
modelled using 2×16 MPC184 (multi point constraint) elements (this number can easily be enlarged in the
code, the constraints are built in a loop). These elements constrain different nodes at different locations
rigidly to each other. By doing so, the two PMMA layers and the intermediate aluminium are connected
rigidly to each other, and the glue connection is thus modelled as being rigid.

In figure B.1 the mesh before analysis is shown. The input and output axle will be along the Z-axis, but are
not modelled in the mesh. The XY-plane is the plane of the DP-DP flexure mechanisms. For the goal of the
modal analysis, the input axle connection point (middle body on the foreground) is fixed to the world and
thus constrained in all 6 DOF. In case of axle misalignment, the input axle is constraint to a chosen negative Y
value. The output axle connection point (middle body in the background) lies at the origin of the coordinate
system and is free to rotate along its axis (Z-axis) and constrained in all other directions. The output axle
inertia has a significant effect on the couplings rotational mode shapes, and thus is incorporated in the model
via a MASS21 element. As only the rotation around the Z-axis is free, only the mass moment of inertia along
this axis has to be incorporated.

The analysis itself consists of two parts. In the first part, which is a static analysis, the chosen axle mis-
alignment is applied and static equilibrium is found for this scenario. The second part, the actual modal
analysis can then be done of the deformed (prestressed) coupling, a so called ’linear perturbation modal
analysis’. ’The purpose of the first phase is to re-establish a snapshot of the stiffness matrices at the specified
restart point. The second phase, ending with the second SOLVE command, is for the actual linear perturba-
tion analysis.’ (Ansys Manual).

The actual used code is given in the next section.
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B.2. Ansys Mechanical APDL Code
Main code:

! F i n i t e Element Model Of The COMPLIANT OLDHAM COUPLING As Designed By Davood Farhadi Machekposhti
! Based on s t a t i c analysis written by Davood Farhadi Machekposhti , 2016
! Rewritten for perturbed modal analysis and altered to coupling design as used for experiments by Henri van der Deij l ,

2017

FINISH
/CLEAR
/OUTPUT

pi = 3 . 14159265359

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

System_RotZ = 0 ! rotation of whole system , default 90 , 45=135
Axle _ Offset _X = 0 ! output axi s o f f s e t ( misalignment )
Axle _ Offset _Y = 0 ! output axis o f f s e t ( misalignment )
Axle _ Offset _RotZ = 270 ! r e l a t i v e rotation between two l a y e r s

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

x1 = 0
y1 = 0
x2 = 0
y2 = 0
RotZ2 = Axle _ Offset _RotZ
LOCAL, 11 , 0 , x1 , y1 , 0 , RotZ2 + System_RotZ , 0 , 0 ! build coord sys 11 , at input axle
LOCAL, 12 , 0 , x2 , y2 , 0 , System_RotZ , 0 , 0 ! build coord sys 12 , at output axle

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! FEA Parameters ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

n_elements = 50 ! number of elements per f l e x u r e
frame_ e l _ s i z e = 2e−3 ! element s i z e for PMMA and Alu parts
substeps = 10 ! Substeps for s t a t i c analysis
nModes = 50 ! Number of mode shapes to compute

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Geometry ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! Cross sections
Flexure _ t = . 2e−3 ! f l e x u r e thickness
Frame_ t = 5e−3
Fixture _ t = 12e−3
Shuttle _ t = 6e−3
Axle _ t = 12e−3
Spacer_ t = 10e−3

! Geometry
length = 50e−3 ! f l e x u r e length
stroke = 28e−3
layerThickness = 5e−3
spacerThickness = . 5e−3
nMPC = 1

a = 6e−3 ! x distance from center to begin f l e x u r e
b = a + length ! x distance from center to end f l e x u r e
c = 66e−3 ! x distance from center to center of outer ring

d = stroke / 2 ! y distance from center to f i r s t f l e x u r e
e = d + stroke ! y distance from center to second f l e x u r e

f = c + ( Spacer_ t−Frame_ t ) /2 ! center ’ radius ’ of spacer sheet

t = layerThickness
u = spacerThickness

! Output axle
I a x l e = 5 . 4502e−6 ! i n t e r t i a of short IDT camera setup output axle

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Constants ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! density with correction f a c t o r to match measured mass
E1 = 193e9 ! RVS
v1 = 0 . 3
rho1 = 7930* . 953 ! 7990 = s t a i n l e s s steel , o r i g i n a l l y 2320
Mu1 = 0 . 14

! E2 = 3300e6 ! PMMA
E2 = 100e12 ! assume r i g i d
v2 = 0 . 3
rho2 = 1180* . 867 ! PMMA
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Mu2 = 0 . 14

! E3 = 70e9 ! ALU
E3 = 100e12 ! assume r i g i d
v3 = 0 . 3
rho3 = 2700* . 917
Mu3 = 0 . 14

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Element types and cross sections ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

/PREP7
ET, 1 ,BEAM188
ET, 4 ,MPC184, 1 ! r i g i d beam
ET, 5 ,MASS21

/ESHAPE, 1 ! SCALE=1 ( use r e a l constants and section defenitions )

SECTYPE, 1 ,beam,RECT ! ( f l e x u r e ) SECID , Type , Subtype , Name, REFINEKEY
SECDATA , Flexure _ t , t ! B, H, Nb, Nh (N = number of c e l l s )

SECTYPE, 2 ,beam,RECT ! ( frame ) SECID , Type , Subtype , Name, REFINEKEY
SECDATA ,Frame_ t , t ! B, H, Nb, Nh (N = number of c e l l s )

SECTYPE, 3 ,beam,RECT ! ( f i x t u r e , f l e x u r e support ) SECID , Type , Subtype , Name, REFINEKEY
SECDATA , Fixture _ t , t ! B, H, Nb, Nh (N = number of c e l l s )

SECTYPE, 4 ,beam,RECT ! ( shutt le ) SECID , Type , Subtype , Name, REFINEKEY
SECDATA , Shuttle _ t , t ! B, H, Nb, Nh (N = number of c e l l s )

SECTYPE, 5 ,beam,RECT ! ( axle ) SECID , Type , Subtype , Name, REFINEKEY
SECDATA , Axle _ t , t ! B, H, Nb, Nh (N = number of c e l l s )

SECTYPE, 6 ,beam,RECT ! ( axle ) SECID , Type , Subtype , Name, REFINEKEY
SECDATA , Spacer_ t , u ! B, H, Nb, Nh (N = number of c e l l s )

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Material property defenition ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! Material properties 1
MP, EX, 1 , E1 ! Young ’ s modulus
MP, PRXY, 1 , v1 ! Poisson ’ s r a t i o
MP,DENS, 1 , rho1 ! Density
!MP,Mu, 1 ,Mu1

! Material properties 2
MP, EX, 2 , E2 ! Young ’ s modulus
MP, PRXY, 2 , v2 ! Poisson ’ s r a t i o
MP,DENS, 2 , rho2 ! Density
!MP,Mu, 2 ,Mu2

! Material properties 3
MP, EX, 3 , E3 ! Young ’ s modulus
MP, PRXY, 3 , v3 ! Poisson ’ s r a t i o
MP,DENS, 3 , rho3 ! Density
!MP,Mu, 3 ,Mu3

! Material properties 4 (MPC)
MP,DENS, 4 , 0 ! Density

! Added i n e r t i a
R, 5 , 0 , 0 , 0 , 0 , 0 , I a x l e

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Keypoints ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

kp = 100 ! 100 keypoints reserverd per layer

! ! Two l a y e r s

*DO, I , 0 , 2 , 2
CSYS,11+ I /2 ! chose coord sys
n= I *100 ! layer number range
z = I * ( t +u) /2 ! z value for current layer

K,1+n, 0 , 0 , z
K,20+n , c , c , z ! X+
K,30+n , c,−c , z ! Y+
K,40+n,−c,−c , z ! X−
K,50+n,−c , c , z ! Y−

K,25+n , c , 0 , z ! X+
K,35+n,0 ,−c , z ! Y+
K,45+n,−c , 0 , z ! X−
K,55+n, 0 , c , z ! Y−

*DO, J , 1 ,nMPC ! intermediate constrain keypoints
K,20+ J +n , c , J * ( c / (nMPC+1) ) , z
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K,25+ J +n , c,− J * ( c / (nMPC+1) ) , z
K,30+ J +n , J * ( c / (nMPC+1) ) ,−c , z
K,35+ J +n,− J * ( c / (nMPC+1) ) ,−c , z
K,40+ J +n,−c,− J * ( c / (nMPC+1) ) , z
K,45+ J +n,−c , J * ( c / (nMPC+1) ) , z
K,50+ J +n,− J * ( c / (nMPC+1) ) , c , z
K,55+ J +n , J * ( c / (nMPC+1) ) , c , z

*ENDDO

*DO, JJ , 0 , 3
x = −e+ J J * stroke
nn = J J *10
K,60+nn+n , x , b , z
K,61+nn+n , x , a , z
K,62+nn+n , x , 0 , z
K,63+nn+n , x,−a , z
K,64+nn+n , x,−b , z

*ENDDO

*ENDDO

! ! Intermediate layer
CSYS,11 ! chose coord sys
z = ( t +u) /2 ! z value for current layer
n = 100

K,1+n, 0 , 0 , z
K,20+n , f , f , z ! X+
K,30+n , f ,− f , z ! Y+
K,40+n,− f ,− f , z ! X−
K,50+n,− f , f , z ! Y−

K,25+n , f , 0 , z ! X+
K,35+n,0 ,− f , z ! Y+
K,45+n,− f , 0 , z ! X−
K,55+n, 0 , f , z ! Y−

*DO, J , 1 ,nMPC ! intermediate constrain keypoints
K,20+ J +n , f , J * ( f / (nMPC+1) ) , z
K,25+ J +n , f ,− J * ( f / (nMPC+1) ) , z
K,30+ J +n , J * ( f / (nMPC+1) ) ,− f , z
K,35+ J +n,− J * ( f / (nMPC+1) ) ,− f , z
K,40+ J +n,− f ,− J * ( f / (nMPC+1) ) , z
K,45+ J +n,− f , J * ( f / (nMPC+1) ) , z
K,50+ J +n,− J * ( f / (nMPC+1) ) , f , z
K,55+ J +n , J * ( f / (nMPC+1) ) , f , z

*ENDDO

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Lines ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

*GET, Line_ 0 ,LINE , 0 ,NUM,MAXD ! gets hightest (MAXD) l i n e number defined

! ! FLEXURE

*DO, I , 0 , 2 , 2
CSYS,11+ I /2 ! chose coord sys
n= I *100 ! layer number range

*DO, J , 0 , 3 , 1
L,60+ J *10+n,61+ J *10+n
L,63+ J *10+n,64+ J *10+n

*ENDDO

*ENDDO

*GET, Line_ flexure , LINE , 0 ,NUM,MAXD

! ! FRAME

*DO, I , 0 , 2 , 2
CSYS,11+ I /2 ! chose coord sys
n= I *100 ! layer number range

*DO, J , 0 , 7
nn=20+ J *5+n

*DO, JJ , 1 ,nMPC
L , nn+ JJ −1,nn+ J J ! 20−21, 25−26, . . .

*ENDDO

*ENDDO

*DO, J , 0 , 6
nn=20+ J *5+n
L , nn+nMPC, nn+5 ! 21−25, 26−30 tm 51−55

*ENDDO
L , nn+5+nMPC,20+n ! 56−20

*ENDDO

*GET, Line_frame , LINE , 0 ,NUM,MAXD

! ! FIXTURE

*DO, I , 0 , 2 , 2
CSYS,11+ I /2 ! chose coord sys
n= I *100 ! layer number range
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*DO, J , 0 , 1
nn = 60+ J *30+n
L , nn+1 ,nn+2
L , nn+2 ,nn+3

*ENDDO
L,62+n,45+n
L,92+n,25+n

*ENDDO

*GET, Line_ f i x t u r e , LINE , 0 ,NUM,MAXD

! ! SHUTTLE

*DO, I , 0 , 2 , 2
CSYS,11+ I /2 ! chose coord sys
n= I *100 ! layer number range

*DO, J , 0 , 2
nn = 60+ J *10+n
L , nn, nn+10
L , nn+4 ,nn+4+10

*ENDDO

*ENDDO

*GET, Line_ shuttle , LINE , 0 ,NUM,MAXD

! ! AXLE

*DO, I , 0 , 2 , 2
CSYS,11+ I /2 ! chose coord sys
n= I *100 ! layer number range

*DO, J , 0 , 1
nn = 70+ J *10+n
L , nn+1 ,nn+2
L , nn+2 ,nn+3

*ENDDO
L,72+n,1+n
L,82+n,1+n

*ENDDO

*GET, Line_ axle , LINE , 0 ,NUM,MAXD

! ! Intermediate sheet
CSYS,11 ! hose coord sys
n=100 ! layer number range

*DO, J , 0 , 7
nn=20+ J *5+n

*DO, JJ , 1 ,nMPC
L , nn+ JJ −1,nn+ J J

*ENDDO

*ENDDO

*DO, J , 0 , 6
nn=20+ J *5+n
L , nn+nMPC, nn+5

*ENDDO
L , nn+nMPC,20+n

*GET, Line_spacer , LINE , 0 ,NUM,MAXD

! ! MPC between sheets
! f i r s t layer
n = 100

*DO, I , 0 , 1
L,20+n,20+ I *210 ! corner /middle constraint l i n e s
L,30+n,30+ I *210
L,40+n,40+ I *210
L,50+n,50+ I *170
L,25+n,25+ I *210
L,35+n,35+ I *210
L,45+n,45+ I *210
L,55+n,55+ I *170

*DO, J , 1 ,nMPC ! intermediate constraint l i n e s
L,20+ J +n,20+ J + I *210
L,25+ J +n,25+ J + I *210
L,30+ J +n,30+ J + I *210
L,35+ J +n,35+ J + I *210
L,40+ J +n,40+ J + I *210
L,45+ J +n,45+ J + I *210
L,50+ J +n,50+ J + I *170
L,55+ J +n,55+ J + I *170

*ENDDO

*ENDDO

*GET, Line_MPC, LINE , 0 ,NUM,MAXD

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Meshing ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! FLEXURE
TYPE, 1 ! element type beams ( f l e x u r e s )
SECNUM, 1 ! Sets the element section a t t r i b u t e pointer
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MAT, 1 ! Sets the element r e a l constant set a t t r i b u t e pointer
LSEL , S , LINE , , Line_0+1 , Line_ f l e x u r e ! s e l e c t l i n e s by number, between Line_ID1+1 and Line_ID2
LESIZE , ALL , , ,n_elements ! Define number of elements per l i n e
LMESH, ALL

*GET,ELEM_FLEXURE,ELEM, 0 ,NUM,MAXD

! FRAME
TYPE, 1 ! element type frame
SECNUM, 2
MAT, 2
LSEL , S , LINE , , Line_ f l e x u r e +1 , Line_frame
LESIZE , ALL , frame_ e l _ size , , , ! element s i z e
LMESH, ALL

*GET,ELEM_FRAME,ELEM, 0 ,NUM,MAXD

! FIXTURE
TYPE, 1 ! element type frame
SECNUM, 3
MAT, 2
LSEL , S , LINE , , Line_frame+1 , Line_ f i x t u r e
LESIZE , ALL , frame_ e l _ size , , , ! element s i z e
LMESH, ALL

*GET,ELEM_FIXTURE,ELEM, 0 ,NUM,MAXD

! SHUTTLE
TYPE, 1 ! element type frame
SECNUM, 4
MAT, 2
LSEL , S , LINE , , Line_ f i x t u r e +1 , Line_ shutt le
LESIZE , ALL , frame_ e l _ size , , , ! element s i z e
LMESH, ALL

*GET,ELEM_SHUTTLE,ELEM, 0 ,NUM,MAXD

! AXLE
TYPE, 1 ! element type frame
SECNUM, 5
MAT, 2
LSEL , S , LINE , , Line_ shutt le +1 , Line_ axle
LESIZE , ALL , frame_ e l _ size , , , ! element s i z e
LMESH, ALL

*GET,ELEM_AXLE,ELEM, 0 ,NUM,MAXD

! SPACER
TYPE, 1 ! element type frame
SECNUM, 6
MAT, 3
LSEL , S , LINE , , Line_ axle +1 , Line_spacer
LESIZE , ALL , frame_ e l _ size , , , ! element s i z e
LMESH, ALL

*GET,ELEM_SPACER,ELEM, 0 ,NUM,MAXD

! MPC
TYPE, 4 ! element type MPC
MAT, 4
LSEL , S , LINE , , Line_spacer +1 , Line_MPC
LESIZE , ALL , , ,1 ! Define number of elements per l i n e
LMESH, ALL

! Input i n e r t i a
TYPE, 5
REAL, 5
KMESH, 1 , 1

! Mass output per component
! esel , s , elem , , 1 , 1 0
! /SOLU
! i r l f ,−1
! antype , s t a t i c
! solve
! eresx ,−1
! FINISH
! * get , massele , elem , S , mtot , x

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Constraints ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

DK, 1 , ALL ! output axle constraint in a l l DOF
DK,1+2*kp , ALL ! input axle constraint in a l l DOF

DK,1+2*kp , ux , Axle _ Offset _X ! misalignment of input with 20mm in y
DK,1+2*kp , uy , Axle _ Offset _Y ! −20e−3

!DK,1+2*kp , ux , 0 . 01414 ! misalignment of input with 20mm in x and y
!DK,1+2*kp , uy , 0 . 01414
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DKDELE, 1 , RotZ ! freeing the r o t a t i o n a l DOF of the output axle

/ solu ! Output mass properties in t x t f i l e
/output , mass_output , t x t
psolve , elform
/output
f i n i s h

/SOL
/ESHAPE, 1
OUTRES, ALL , ALL
SOLCONTROL,ON,ON
AUTOTS,ON

! ! ! ! ! ! ! ! ! ! Step 1 : s t a t i c analysis : prestress ! ! ! ! ! ! ! ! ! ! ! !

/ solu ! enter solution module
antype , 0 ! specify s t a t i c analysis type
nlgeom , 1 ! turn on large def lect ion e f f e c t s ( nonlinear )
pstres , on ! turn on prestress e f f e c t s for subsequent modal
nsub , substeps , substeps , substeps ! specify substep range
save ! save the database
solve ! solve the nonlinear s t a t i c prestress case
f i n i s h ! leave the solu
tion module

! ! ! ! ! ! ! ! ! ! Step 2 : modal analysis ! ! ! ! ! ! ! ! ! ! ! !

/ solu ! re−enter solution so we can do a new analysis
antype , , r e s t a r t , 1 , substeps , perturb ! specify r e s t a r t option for l i n e a r perturbation
! from l a s t substep in t h i s case
perturb , modal ! specify modal as next analysis
solve , elform ! calculate element formulation with solve command
modopt, subsp , nModes ! specify modal options for solution
mxpand, nModes, , , YES ! specify number of modes for r e s u l t s calc
solve

! ! ! ! ! ! ! ! ! ! ! Postprocessing

/ post1 ! enter general postprocessor
INRES , ALL ! make sure we read in a l l r e s u l t s from f i l e
FILE , ’ PerturbedModal ’ , ’ rstp ’ ! specify special r e s u l t s f i l e for modal r e s u l t s
! r s t s f i l e : modal analysis with s e t s being modes
! r s t f i l e : the s t a t i c prestress r e s u l t s with s e t s being substeps
SET , LIST ! L i s t solutions

! ! ! ! ! ! ! ! ! ! ! Plot mode shapes

/RGB, INDEX,100 ,100 ,100 , 0
/RGB, INDEX, 80 , 80 , 80 ,13
/RGB, INDEX, 60 , 60 , 60 ,14
/RGB, INDEX, 0 , 0 , 0 ,15

SET , , , , , , ,20
! PLDISP , 0 ! 0 only deformed , 1 def + undeformed
PLNS,EPTO,EQV ! nodal Von Misses s t r a i n

/ESHAPE, 1 ! SCALE=1 ( use r e a l constants and section defenitions )

! /VIEW, 1 , 1 , 1 . 3 ,3 ! Window number, XV, YV , ZV
! /VIEW, 1 , 0 , 0 , 1 ! Window number, XV, YV , ZV
/VIEW, 1 , 1 , 2 , 3 ! Window number, XV, YV , ZV

! /REP, FAST
/REPLOT

ANMODE,10 ,0 . 10 , ,0 ! Animate mode shape , ANMODE, NFRAM, DELAY, NCYCL, KACCEL
!ANMODE,50 ,0 . 05 , ,1 ! Animate mode shape , ANMODE, NFRAM, DELAY, NCYCL, KACCEL

! /ANFILE , SAVE, ’ 2 0mm_0deg_Mode17’ , ’ ’ , ’ ’ ! save mode shape animation in avi f i l e

Code to animate selected mode shapes and to save images of multiple mode shapes:

! ! ! ! ! ! ! ! ! ! ! Plot mode shapes
/RGB, INDEX,100 ,100 ,100 , 0
/RGB, INDEX, 80 , 80 , 80 ,13
/RGB, INDEX, 60 , 60 , 60 ,14
/RGB, INDEX, 0 , 0 , 0 ,15

SET , , , , , , ,1
! PLDISP , 0 ! 0 only deformed , 1 def + undeformed
PLNS,EPTO,EQV ! nodal Von Misses s t r a i n

/ESHAPE, 1 ! SCALE=1 ( use r e a l constants and section defenitions )
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/VIEW, 1 , 1 , 1 . 3 ,3 ! 3D view (Window number, XV, YV , ZV)
! /VIEW, 1 , 0 , 0 , 1 ! Perpendicular view
! /VIEW, 1 , 1 , 2 , 3 ! 3D view Window number, XV, YV , ZV

/REPLOT

ANMODE,10 ,0 . 10 , ,0 ! Animate mode shape , ANMODE, NFRAM, DELAY, NCYCL, KACCEL

! /ANFILE , SAVE, ’ 2 0mm_0deg_Mode17’ , ’ ’ , ’ ’ ! save mode shape animation in avi f i l e

! ! ! ! ! ! ! ! ! Save PNG of multiple mode shapes
i _=1

*do , i _ ,1 ,50 ,1 ! loop for i from 1 to 50 per 1

SET , , , , , , , i _ ! Select nth mode shape ( set )

! PLDISP , 0 ! 0 only deformed , 1 def + undeformed
PLNS,EPTO,EQV ! nodal Von Misses s t r a i n

/ESHAPE, 1 ! SCALE=1 ( use r e a l constants and section defenitions )
/GFILE , 2400
/SHOW,PNG

/VIEW, 1 , 1 , 1 . 3 ,3 ! 3D view (Window number, XV, YV , ZV)
! /VIEW, 1 , 0 , 0 , 1 ! Perpendicular view
! /VIEW, 1 , 1 , 2 , 3 ! 3D view Window number, XV, YV , ZV
/REPLOT

i _= i _+1
/SHOW,CLOSE

*ENDDO

B.3. Mode shapes

In this section the results of the modal analysis for multiple axle misalignments and angles is given. Per
scenario, first images of the first 20 mode shapes will be given, after which a description of these mode shapes
is given in a table. Thereafter, specific modes of interest are then discussed in more detail. Mode shapes
shown have an arbitrary amplitude. For some figure this results in bodies hitting each other, this has no
influence on the model, contact is not modelled.
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B.3.1. Zero axle misalignment - zero angle

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10 (k) Mode 11 (l) Mode 12

(m) Mode 13 (n) Mode 14 (o) Mode 15 (p) Mode 16

(q) Mode 17 (r) Mode 18 (s) Mode 19 (t) Mode 20

Figure B.2: Mode shapes for zero axle misalignment - zero angle
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Table B.1: Description of mode shapes for zero axle misalignment - zero angle

# Freq
[Hz]

Dominant motion Direction of motion Origin of deformation

1 43.47 shuttles translation flexures, first bending mode
2 44.53 shuttles translation flexures, first bending mode
3 44.53 shuttles translation flexures, first bending mode
4 44.56 shuttles translation flexures, first bending mode
5 66.35 coupler X rotation flexure connection points of out-

put and coupler body
6 67.49 coupler Y rotation flexure connection points of input

and coupler body
7 88.54 coupler and output Z rotation input and input layer shuttles

bending, flexure bending
8 101.86 coupler Z translation flexure connection points of cou-

pler
9 147.49 coupler coupler, torsion in X and Y
10 172.75 coupler XY translation shuttle (and flexure) bending
11 173.44 coupler XY translation shuttle (and flexure) bending
12 262.94 coupler, reinforcement

ring
Z translation coupler reinforcement ring bend-

ing
13 285.64 input layer shuttles Z translation flexure connection points of input

and coupler body
14 286.03 output layer shuttles Z translation flexure connection points of out-

put and coupler body
15 326.46 coupler, flexure con-

nection points
Z translation (flexure connection points of)

coupler body
16 327.46 coupler, flexure con-

nection points
Z translation (flexure connection points of)

coupler body
17 342.53 coupler, flexure con-

nection points
Z translation (flexure connection points of)

coupler body, shuttles
18 355.85 output, coupler Z rotation input and shuttles bending, cou-

pler body shear, flexure bending
19 366.49 shuttles, coupler Z translation flexure connection points of input,

output and coupler body, flexure
bending

20 398.05 shuttles X and Y rotation flexure connection points of cou-
pler body
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Three modes are specially interesting, as their mode shape possesses a large amount of output axle rota-
tion, and are thus likely to cause significant velocity error between input and output axle when excited. This
is mode 7 at 88.54 Hz, mode 18 at 355.85 Hz and mode 45 at 751.34 Hz. Detailed figures of these mode shapes
are given below.

(a) Mode 7
(b) Mode 7 - perpendicular view

(c) Mode 18
(d) Mode 18 - perpendicular view

(e) Mode 45
(f) Mode 45 - perpendicular view

Figure B.3: Mode shapes with a potentially large effect on the velocity error
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B.3.2. 20mm axle misalignment - zero angle

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10 (k) Mode 11 (l) Mode 12

(m) Mode 13 (n) Mode 14 (o) Mode 15 (p) Mode 16

(q) Mode 17 (r) Mode 18 (s) Mode 19 (t) Mode 20

Figure B.4: Mode shapes for 20 mm axle misalignment - 0° angle
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Table B.2: Description of mode shapes for 20 mm axle misalignment - 0° angle

# Freq
[Hz]

Dominant motion Direction of motion Origin of deformation

1 27.88 coupler (and output
layer shuttles)

X translation (tangen-
tial)

flexures

2 44.30 input layer shuttles X translation (tangen-
tial)

flexures, first bending mode

3 45.54 input layer shuttles X translation (tangen-
tial)

flexures, first bending mode

4 55.03 coupler Y rotation flexure connection points of input,
output and coupler body

5 59.24 coupler X rotation flexure connection points of input
and coupler body

6 87.51 coupler and output Z rotation input and input layer shuttles
bending, flexure bending

7 89.77 coupler Z translation flexure connection points of cou-
pler, flexures

8 141.88 coupler coupler, torsion in X and Y
9 164.09 coupler Y translation shuttle (and flexure) bending
10 203.13 output layer shuttles Z translation flexure connection points of out-

put and coupler body, flexure tor-
sion

11 216.97 output layer shuttles Z translation, X rotation lower connection point of coupler
body, flexure torsion

12 226.21 output layer shuttles Y translation output layer flexures, shuttles
13 250.19 output layer shuttles Y translation output layer flexures, shuttles
14 266.26 coupler, reinforcement

ring
Z translation coupler reinforcement ring bend-

ing
15 278.80 output layer shuttles Z translation, X rotation flexure connection points of input

and coupler body
16 299.16 output layer shuttles Z translation, X rotation flexure connection points of out-

put and coupler body
17 323.65 input layer shuttles,

coupler connection
points

Y rotation flexure connection points of cou-
pler, input, flexure torsion

18 330.46 output Z rotation output layer flexures, shuttles
19 332.26 output layer shuttles Z translation, X rotation flexure connection points of out-

put and coupler body
20 349.16 input layer shuttles Z translation coupler body, input, flexures over

stiff side

Again, a few modes which possess a large amount of output axle rotation, and are thus likely to cause
significant velocity error between input and output axle when excited.
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(a) Mode 6
(b) Mode 6 - perpendicular view

(c) Mode 18
(d) Mode 18 - perpendicular view

Figure B.5: Mode shapes with a potentially large effect on the velocity error
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B.3.3. 20mm axle misalignment - 45° angle

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10 (k) Mode 11 (l) Mode 12

(m) Mode 13 (n) Mode 14 (o) Mode 15 (p) Mode 16

(q) Mode 17 (r) Mode 18 (s) Mode 19 (t) Mode 20

Figure B.6: Mode shapes for 20 mm axle misalignment - 135° angle

Again, a few modes which possess a large amount of output axle rotation, and are thus likely to cause signifi-
cant velocity error between input and output axle when excited.
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(a) Mode 5 (b) Mode 5 - perpendicular view

(c) Mode 19 (d) Mode 19 - perpendicular view

Figure B.7: Mode shapes with a potentially large effect on the velocity error
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Table B.3: Description of mode shapes for 20 mm axle misalignment - 135° angle

# Freq
[Hz]

Dominant motion Direction of motion Origin of deformation

1 31.65 coupler (Y (tangential))
and shuttles (all in same
rotational direction)

flexures, some shuttle
deformation as well

2 34.94 coupler (X (radial)) and
shuttle (in opposite ro-
tational direction)

flexures, some shuttle
deformation as well

3 52.14 coupler X/Y rotation flexure connection points of out-
put and coupler body, flexures

4 53.78 coupler X/Y rotation flexure connection points of input
and coupler body, flexures

5 71.22 coupler and output Z rotation input and input layer shuttles
bending, flexure bending

6 87.28 coupler Z translation flexure connection points of cou-
pler, shuttles, flexures

7 140.42 coupler coupler, torsion in X and Y
8 160.75 shuttles in shuttle motion di-

rection (in opposite
rotational direction per
layer)

shuttles, flexures

9 160.97 shuttles in shuttle motion di-
rection (in opposite
rotational direction per
layer)

shuttles, flexures

10 218.89 shuttles (in opposite
rotational direction
per layer), coupler (Y
(tangential))

in shuttle motion di-
rection (in opposite
rotational direction per
layer)

shuttles, flexures

11 223.97 coupler (X (radial)) and
shuttles

shuttles, flexures

12 233.13 shuttles Z translation flexure connection points of cou-
pler, input, output, flexure torsion

13 235.76 shuttles Z translation flexure connection points of cou-
pler, input, output, flexure torsion

14 257.60 coupler, reinforcement
ring

Z translation coupler reinforcement ring bend-
ing

15 261.57 shuttles Z translation flexure connection points of cou-
pler, input, output, flexure torsion

16 269.95 coupler (reinforcement
ring), shuttles

Z translation coupler reinforcement ring bend-
ing, flexure connection points of
coupler, input, output, flexure tor-
sion

17 309.69 coupler, flexure con-
nection points, shuttles

Z translation (flexure connection points of)
coupler body

18 311.98 coupler, flexure con-
nection points, shuttles

Z translation (flexure connection points of)
coupler body

19 313.40 coupler and output Z rotation flexure (buckling), coupler body
shear

20 355.48 shuttles X/Y rotation flexure connection points coupler
body, shuttles, flexure torsion
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B.3.4. 20mm axle misalignment - 90° angle

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10 (k) Mode 11 (l) Mode 12

(m) Mode 13 (n) Mode 14 (o) Mode 15 (p) Mode 16

(q) Mode 17 (r) Mode 18 (s) Mode 19 (t) Mode 20

Figure B.8: Mode shapes for 20 mm axle misalignment - 90° angle
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Table B.4: Description of mode shapes for 20 mm axle misalignment - 90° angle

# Freq
[Hz]

Dominant motion Direction of motion Origin of deformation

1 27.80 coupler (and input layer
shuttles)

X translation (tangen-
tial)

flexures

2 42.43 output layer shuttles X translation (tangen-
tial)

flexures, first bending mode

3 45.54 output layer shuttles X translation (tangen-
tial)

flexures, first bending mode

4 55.94 coupler Y rotation flexure connection points of input
and coupler body

5 58.02 coupler X rotation flexure connection points of out-
put and coupler body

6 62.19 coupler and output Z rotation input and input layer shuttles
bending, flexure bending

7 90.15 coupler Z translation flexure connection points of cou-
pler, flexures

8 141.61 coupler coupler, torsion in X and Y
9 164.11 coupler Y translation shuttle (and flexure) bending
10 203.45 input layer shuttles Z translation flexure connection points of input

and coupler body, flexure torsion
11 216.99 input layer shuttles Z translation, X rotation upper connection point of coupler

body, flexure torsion
12 226.28 input layer shuttles Y translation input layer shuttle (and flexure)

bending
13 250.08 coupler body (X (tan-

gential)) and input layer
shuttles (Y)

input layer shuttle (and
flexure) bending

14 261.23 coupler, reinforcement
ring

Z translation coupler reinforcement ring bend-
ing

15 278.84 shuttles Z translation, X rotation flexure connection points of out-
put and coupler body

16 301.17 shuttles Z translation, X rotation flexure connection points of out-
put and coupler body

17 304.25 coupler and output Z rotation flexure (buckling), coupler body
shear

18 323.40 coupler, flexure con-
nection points, shuttles

Z translation (flexure connection points of)
coupler body

19 331.99 shuttles X rotation flexure connection points coupler
body (input layer), shuttles, flex-
ure torsion

20 350.42 output layer shuttles Z translation coupler body at output side, out-
put

Again, a few modes which possess a large amount of output axle rotation, and are thus likely to cause signifi-
cant velocity error between input and output axle when excited.
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(a) Mode 6
(b) Mode 6 - perpendicular view

(c) Mode 17
(d) Mode 17 - perpendicular view

Figure B.9: Mode shapes with a potentially large effect on the velocity error
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B.3.5. Check of multibody models - rigid support bodies

A modal analysis is done using ’near infinite’ values for the E-modulus of the PMMA and aluminium support
bodies making them rigid, in order to easily check the results of the Matlab multibody models. Of course,
these results are less realistic. In the previous sections it can clearly be seen that, also for some lower modes,
the elasticity of the PMMA and aluluminium parts can be dominant. Below, the FEA equals of the first five
modes of the 16DOF Matlab multibody model are given. The first four modes represent the motion of the
shuttles in their underconstraint direction. In fifth multibody mode which is the rotational mode shape of
the coupler body and output axle, is actually the 24th mode in the FEA. All modes between the fourth and
24th consist of higher order flexure bending modes.

Table B.5: Description of mode shapes for zero axle misalignment - zero angle - with rigid support bodies

# Freq
[Hz]

Dominant motion Direction of motion Origin of deformation

1 44.61 flexures and shuttles underconstraint direc-
tion of shuttles

flexures first bending mode

2 44.63 flexures and shuttles underconstraint direc-
tion of shuttles

flexures first bending mode

3 44.63 flexures and shuttles underconstraint direc-
tion of shuttles

flexures first bending mode

4 44.63 flexures and shuttles underconstraint direc-
tion of shuttles

flexures first bending mode

24 531.33 coupler and output Z rotation (buckling of) input layer flexures
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 24 (f) Mode 24 - perpendicular view

Figure B.10: Interesting mode shapes for zero axle misalignment - zero angle - with rigid support bodies





C
Theoretical model

C.1. Description of the Oldham coupling
In this section the working of the conventional Oldham coupling is explained. From there on, the conversion
to the compliant counterpart is illustrated. The following is based on [6].

In figure C.1b a conventional Oldham coupling can be seen. The rigid-body Oldham coupling is a specific
type of four-bar linkage [9]. It has three movable bodies, one coupled to the input shaft, one coupled to the
output shaft, and a middle component which is connected to the first two parts by two prismatic joints. In the
design analysed in this research, the two prismatic joints are perpendicular to each other. A kinematic repre-
sentation of the mechanism is shown in figure C.1a. It has two fixed and fully rotating frame joints which act
as bearings for two parallel axes. Crank 2 and 4 are rigidly connected to these axis. If the input link, 2, rotates
through some angle, then the coupler link, 3, rotates through the same angle. This in turn rotates the output
shaft, 4, through the same angle. Therefore, the two links, 2 and 4, rotate together and the velocity ratio re-
mains constant at 1:1 throughout the rotation. Link 1 is the ground link with length L1 which actually is the
offset between input link 2 and output link 4. The two prismatic joints intersect each other perpendicular at
point P, the centre of coupler link 3. For a full cycle motion of the input link, the point P moves along a circular
path with the diameter L1 twice. Therefore, the range of motion of each prismatic joint in both directions in
each cycle is exactly the distance between the two parallel axes or the offset. The centre of this circular path
lies in between the input and output axis, at L1/2.

(a) Ideal kinematics of Oldham coupling [6]

(b) Conventional Oldham coupling [6]

Figure C.1: The conventional Oldham coupling

61
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Figure C.2: Planar schematic of (a) a conventional rigid-body prismatic joint, (b) its compliant counterpart, (c) a PRBM of a compliant
prismatic joint, indicating the decoupled stiffnesses K and displacements u in motion, bearing and angular direction, indexed with m,
b and a respectively.

C.1.1. Conversion to a compliant design

The two conventional prismatic joints have certain disadvantages, such as backlash, friction and wear [4],
which do not benefit the precision of the rotational transmission. One way to overcome these disadvantages,
is to replace the two conventional prismatic joints by compliant counterparts. The difference between these
two types of joints is discussed first. Then, a general description of a compliant Oldham coupling will be
given.

A prismatic joint, also known as a slider or translational stage, is a one degree of freedom (1DOF) kine-
matic pair. The DOF is a linear translation. All other five directions should be constrained, creating five
degrees of constraint (5DOC). In the conventional rigid-body version, these rigid bodies can translate with
respect to each other. Neglecting friction, the translation motion direction is normally modelled as having
zero stiffness. Assuming the two bodies are rigid, the 5DOC, also known as the bearing directions, can be
seen as having infinite stiffness.

In a compliant prismatic joints, these assumptions are not valid anymore. Compliant mechanisms trans-
fer motion, force or energy by using elastic deformation of its flexure joints [3]. This results in finite stiffnesses
in all directions. The motion stiffness however should be order of magnitude smaller than the bearing stiff-
nesses. Especially for flexure based joints, non-linear bearing stiffness are common and can depend on the
motion direction displacement.

Thus, in the spatial domain, a compliant prismatic joint can be described with six stiffness values of func-
tions. In the following sections, the coupling will be modelled in the planar domain. In figure C.2 a planar
schematic of both a conventional and a compliant prismatic joint are given, indicating the different direc-
tions. The stiffness of the compliant joint can be described by three decoupled stiffnesses (one motion, two
bearing), as depicted.

Two perpendicular compliant prismatic joints can form an Oldham coupling, as will be studied in this
work. The full cycle revolute joints of the input and output axes remain as conventional rigid-body revolute
joints. The prismatic joints will be connected to these input and output shafts. .

C.1.2. Specific design used in the case study

In the design used for the case study, two double paired parallelogram flexure mechanisms (DP-DP) are used,
of which one is shown in figure C.3a. Let’s first have a look at one of these prismatic joints:

The three stiffnesses of one DP-DP mechanism are given in equation C.1, C.2 and C.3 [27].

In this mechanism the motion stage can move easily in motion direction Y with respect to the ground.
The mechanism is stiff in the so called bearing directions X and rotation θ.
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In the above equations k(0)
11 , k(1)

11 , g (1)
11 and k33 are geometrical constants. E is the Young’s modulus of the

flexure material and I1 the second moment of inertia of the flexures. L1,W1 and W2 are again geometrical
constants, depicted in figure C.3a.

The motion stiffness is constant, and depends on the flexure material and the mechanisms geometry. The
bearing stiffnesses however are non-linearly dependent on the displacement in motion direction. The bear-
ing stiffnesses decrease quadratically with the displacement, and thus have a maximum at zero displacement.

(a) The double paired parallelogram flexure mecha-
nism (DP-DP) [27]

(b) Compliant Oldham coupling consisting of two DP-
DP flexure mechanisms [6]

Figure C.3: The compliant Oldham design used for the case study

To implement the DP-DP flexure, the input axis actually is coupled on the motion stage. The ’ground’ in
figure C.3a becomes the coupler link 3. This forms the first prismatic joint. A second DP-DP flexure then is
rotated 90 degrees with respect to the first one, with its ’ground’ connected to this coupler link and the output
shaft to its motion stage.
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Figure C.4: Dynamic multibody model of a compliant Oldham coupling. The stiffnesses of both prismatic joints are symbolised by two
randomly formed coil springs. Each of these consist of three decoupled stiffness directions as depicted in figure C.2c. Translational
deformations of these stiffnesses are depicted in blue. Rotational deformations are not depicted, but are simply the difference in body
rotation. The three rigid bodies are depicted in red, with their COM represented as a black dot. The dashed circle represents the path a
rigid-body Oldham coupling will describe.

C.2. Finding the equations of motion
To study the dynamic behaviour of the compliant Oldham coupling, a planar dynamic multibody model
based on the PRBM (C.4) can be build. In the model, three moving rigid bodies can be distinguished, be-
ing the input crank (input, body 2), the coupler link (coupler, body 3) and the output crank (output, body 4).
The input intersects the origin of a fixed (inertial) reference frame X ,Y , resulting in the body coordinates:

X = [X2,Y2,Θ2, X3,Y3,Θ3, X4,Y4,Θ4, ]T (C.9)

A schematic of the coupling is given in figure C.4.
Angles are measured counter clockwise from the positive X -axis. Two conventional zero stiffness revolute

joints connect the input and output to the fixed world, body 1. The parallel offset between input and output
axis is defined as Y4 −Y1 = l1. The two revolute joints thus give the (holonomic) constraints X2 = Y2 = X4 = 0
and Y4 = l1. In between input and output axis lies the centre point Xc ,Yc of the circular path described by the
coupler in the case of a rigid-body Oldham coupling.

Five degrees of freedom remain. Input (2), coupler (3) and output (4) can rotate with respectively angles
Θ2,Θ3,Θ4. The coupler (3) can also translate in plane with coordinates X3,Y3.

The coupler is only connected to input and output by the two compliant prismatic joints. These joints
are described by two sets of three decoupled stiffnesses. Each set consists of two perpendicular translational
stiffnesses and one rotational stiffness, as described in the previous section about compliant prismatic joints.
To each body, a reference frame xn , yn can be connected, rotated with Θn . These rotating reference frames
will be used to express the elastic deformations between the rigid bodies, which will be given in the next
section.

As the compliant prismatic joints have a finite stiffness in bearing directions, the coupler does not de-
scribe a perfect circle any more.

C.2.1. Elastic deformations
To calculate the elastic deformation of each prismatic stage, the input and output are defined as the ’ground’
for respectively the first and second prismatic stage. The coupler functions as the ’motion stage’. The defor-
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mations are then defined as in figure C.2. As input and output rotate, all deformations are functions of the
body angles.

To clearly distinguish the different stiffness directions, the two translations will be called ’motion’ and
’bearing’. The input (2) is connected to the coupler (3) by the stiffnesses K2,motion,K2,bearing and K2,angular.
Similarly, the coupler is connected to the (4) by K4,motion,K4,bearing and K4,angular.

The six elastic deformations are given below. As input and output are defined as the ground of both pris-
matic stages, the deformations are expressed in the moving reference frames connected to input and output.
The angular deformation simply is the difference between the body rotations. A graphical representation of
the translational deformations is given in figure C.5.

Figure C.5: Translational elastic deformations. The bearing and motion direction are perpendicular and decoupled.

u2,moti on = (X3 −X2)cos(Θ2)+ (Y3 −Y2)sin(Θ2) (C.10)

u2,bear i ng =−(X3 −X2)sin(Θ2)+ (Y3 −Y2)cos(Θ2) (C.11)

u2,ang ul ar =Θ3 −Θ2 (C.12)

u4,bear i ng =−(X4 −X3)cos(Θ4)− (Y4 −Y3)sin(Θ4) (C.13)

u4,moti on = (X4 −X3)sin(Θ4)− (Y4 −Y3)cos(Θ4) (C.14)

u4,ang ul ar =Θ4 −Θ3 (C.15)

C.2.2. Kinetic and potential energy

The kinetic energy of the joint can be broken down into three parts, being the transport, mutual and relative
kinetic energy. The transport energy is the part that remains when all q are zero. The relative energy however
only consists of the relative motion of q .

The three kinetic energies:
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T = T0 +T1 +T2 (C.19)

M = diag[ m2,m2, I2,m3,m3, I3,m4,m4, I4 ] (C.20)

Here, mi are the masses of the individual bodies, and Ii their second moment of inertia.

The potential energies can be computed using the deformations and stiffness profiles given in the previ-
ous part:

V = uT K u

2
with: (C.21)

u = [u2,moti on ,u2,bear i ng ,u2,ang ul ar ,u4,bear i ng ,u4,moti on ,u4,ang ul ar ]T (C.22)

K = diag[ K2,motion,K2,bearing,K2,angular,K4,motion,K4,bearing,K4,angular ] (C.23)

C.2.3. Lagrange
Using the Lagrange equation, the equations of motion can be formulated using the system’s energies. For
this, first a set of generalised coordinates q has to be chosen, in which the motion of the mechanism will be
represented. In the next sections several sets of generalised coordinates will be discussed. For now, lets keep
them general as the row vector q . Without damping the Lagrange equation is defined as:

d

d t

∂T

∂q̇
− ∂T

∂q
+ ∂V

∂q
−Q s = 0 (C.24)

Here, Q s is a forcing vector, which will consist of an input and output torque on the shafts of the coupling:

Q s = [Tinput,0,0,0,−Toutput]
T (C.25)

C.2.4. Choice of generalised coordinates
For the generalised coordinates q the five free body coordinates in the inertial reference frame could be used,
resulting in q = [Θ2, X3,Y3,Θ3,Θ4]T .

However, as the coupler describes a close-to-circular path around [Xc ,Yc ], the inertial reference frame is
not the most suited coordinate system to study the behaviour. Different sets of generalised coordinates q can
be chosen to represent the motion of the coupling, which will now be discussed.

Polar coordinate system The close-to-circular path of the coupler could be described using polar coordi-
nates, using the path radius r and angle θc with origin [Xc ,Yc ]. The remaining freedoms of the model would
be the original body rotations. The body coordinates can be written as a function of these new generalised
coordinates q , and can be seen in figure C.6a:

q = [θ2,θc ,r,θ3,θ4]T (C.26)

Θ2 = θ2 (C.27)

X3 = Xc + r sin(θc ) (C.28)

Y3 = Yc − r cos(θc ) (C.29)

Θ3 = θ3 (C.30)

Θ4 = θ4 (C.31)
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Forces in the r and θc direction represent the centrifugal and Coriolis force. Interpretation of these forces
is more natural than the rectilinear inertial forces which would arise of the translation of the coupler would
be analysed in the inertial reference frame [X ,Y ].

If a specific compliant design leads to a non-linear set of equations, linearisation can be needed. The
linearisation then is done around an equilibrium point. In this set of generalised coordinates, a steady motion
equilibrium can be expressed with constant values. In the global coordinate system this is impossible as X3

and Y3 are constantly changing.

(a) Global body coordinates and generalised (polar)
coordinates describing circular-like path.

(b) Generalised coordinates as deviation from quasi-
static path.

Figure C.6: Two different sets of generalised coordinates describing the five degrees of freedom of the coupling.

’Steady motion’ coordinate system With the set of coordinates given below, a suitable steady motion lin-
earisation point can be described by one coordinate only, being the input rotation and its velocity. For steady
motion, all other generalised coordinates and their time derivatives are zero. This eases the linearisation pro-
cess. The coordinates can be seen as the deviation from the circular path of the coupler described earlier (see
figure C.6b).

The body coordinates can be written as a function of the new generalised coordinates q . The translation
of the coupler again is described in some sort of polar coordinate system, for which the radius r is composed
of a equilibrium radius req and a deviation dr . Similarly, the polar angle consists of an equilibrium part 2φ1

(as the polar angle of the coupler is twice the input body angle in case of steady motion), and a deviation φ3.

q = [φ1,φ2,φ3,φ4,dr ]T (C.32)

Θ2 =φ1 (C.33)

X3 = Xc + (req +dr )sin(φ3 +2φ1) (C.34)

Y3 = Yc − (req +dr )cos(φ3 +2φ1) (C.35)

Θ3 =φ1 +φ2 (C.36)

Θ4 =φ1 +φ4 (C.37)

Prescribed motion or torque To study the dynamic behaviour of the Oldham coupling, some forcing must
be applied on the mechanisms. An input axis motion can be prescribed in time, resulting in one less DOF.
Prescribing the input motion, for example the behaviour of the coupling can be studied at a constant input
velocity:
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Θ2 =Θ2,0 +ωt (C.38)

Θ̇2 =ω (C.39)

Θ̈2 = 0 (C.40)

By doing this, the input inertia is neglected, or is assumed infinite. However, this input inertia can influ-
ence the dynamic behaviour of the system. Furthermore, the effect of input acceleration is also neglected.

Applying a torque on the input body is a closer resemblance to a real application of the coupling. By doing
this, no DOF is removed. Eventually, the model will be compared with data from an experimental setup. As
in this setup the input also has a finite inertia to which a torque is applied, torque prescription is chosen.

17DOF model As was already described in the main body of this thesis, an extended version of the 5DOF
model was made for comparison. In this model, the four intermediate shuttles are modelled as well, having
three degrees of freedom in plane. This results in a total of 17DOF. A short explanation of this model is given in
the paper in chapter 2, including the stiffness and inertia values used. All methods discussed in this appendix
can be applied on this model in a similar way. In section C.7 the used Matlab code is given. In the following
result sections, results for this model will be shown as well.

C.3. Analysis of the equations of motion
In this section, the equations of motion are studied in the polar coordinate system, for prescribed torque.

Using the Lagrange equation, the five equations of motion (EoM) for the system in the directions q can
be formed as a function of the system energies. As the expressions of the elastic forces ∂V

∂q are lengthy, they
are represented as these partial derivatives for now.

I2θ̈2 + ∂V

∂θ2
−Ti n = 0 (C.41)

m3r 2θ̈c +2m3r ṙ θ̇c + ∂V

∂θc
= 0 (C.42)

m3r̈ −m3θ̇
2
c r + ∂V

∂r
= 0 (C.43)

I3θ̈3 + ∂V

∂θ3
= 0 (C.44)

I4θ̈4 + ∂V

∂θ4
−Tout = 0 (C.45)

The individual terms of the EoM can now be studied. As the COM of body 3 is described in the polar
coordinate system around (Xc ,Yc ), inertial forces are present in these directions due to the rotation, which
will be further clarified.

The first equation gives the input axle rotation, in which the inertial force, elastic force and applied torque
equilibrate each other.

The second equation represents coupler motion in tangential direction as seen from the origin of the
circular path at (Xc ,Yc ). The first term is the torque generated by the acceleration m3θ̈c r . This is a function
of the acceleration in tangential direction of the body θ̈c r , resulting in a moment m3θ̈c r 2. The second term
represents the moment caused by the Coriolis force 2m3ṙ θ̇c , which only exists if the radius r changes in time.
The third term represents the tangential component of the elastic forces.

The third equation represents coupler motion in radial direction. The first term is the force m3r̈ originat-

ing from rectilinear acceleration in radial direction. The second term is the centrifugal force, m3r θ̇c
2

. The
third term represents the radial component of the elastic forces.

The fourth and fifth equation represent the body rotation of body 3 and 4 respectively. The acceleration
torque balances the elastic torque (and the output torque for the output shaft).

An example of the elastic forces ∂V
∂q is given below for the two polar coordinates. As the bearing and an-

gular stiffness depend on the motion displacement, also partial derivatives of the stiffness to the generalised
coordinates q are present.
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∂V

∂θ2
= ... (terms with all three K2,..) (C.46)

∂V

∂θc
= 1

2

(
K2,m

∂u2
2,m

∂θc
+K2,b

∂u2
2,b

∂θc
+ ∂K2,b

∂θc
u2

2,b +K4,m

∂u2
4,m

∂θc
+K4,b

∂u2
4,b

∂θc
+ ∂K4,b

∂θc
u2

4,b

)
(C.47)

∂V

∂r
= 1

2

(
K2,m

∂u2
2,m

∂r
+K2,b

∂u2
2,b

∂r
+ ∂K2,b

∂r
u2

2,b +K4,m

∂u2
4,m

∂r
+K4,b

∂u2
4,b

∂r
+ ∂K4,b

∂r
u2

4,b

)
(C.48)

∂V

∂θ3
= ... (terms with all six K..,..) (C.49)

∂V

∂θ4
= ... (terms with all three K4,..) (C.50)

C.3.1. Radial balance
As the COM of body 3 describes a circular path, problems are expected in radial direction for higher velocities,
as the centrifugal force rises with θ2

c . The elastic forces ∂V
∂r have to counteract these centrifugal forces. In

figure C.7a the radial component of the elastic forces are plotted for varying r and θc , at an axis offset l1

of 20 mm. The rotations are for now taken as in the rigid-body Oldham coupling: θ̇2 = θ̇3 = θ̇4 = θ̇c /2. At
static equilibrium (or quasi static rotation) the elastic forces are close to zero, which will occur at a radius r of
around 10 mm. When velocity and centrifugal force rise, the radius r and with it the elastic force will increase
until the balance is restored.

Looking at angle θc in figure C.7a, the radial component of elastic force is minimal at every (90+n ·180)°.
These points are of interest to study the balance with the centrifugal force. In figure C.7b both forces in radial
direction are plotted as a function of rotational velocity Θ̇2 and radius r at θc = 2Θ2 = 90°. At the intersection of
the two planes, the elastic force balances the centrifugal force, and no radial acceleration is present, resulting
in steady motion (for this coordinate at least). It can be seen that the centrifugal force linearly rises with r and
quadratically with θ̇c . The elastic force depends on r . It can be seen that for velocities above Θ̇2 ≈ 10.4Hz,
there exists no radius for which the forces are in balance. Thus, for higher velocities an unbounded positive
radial acceleration occurs, causing instability.

The effective radial stiffness thus consists of an elastic and a centrifugal contribution:

Kradial = Kradial,el −Kradial,cent (C.51)

= ∂2V

∂r 2︸︷︷︸
elastic

− m3θ̇
2
c︸ ︷︷ ︸

centrifugal

(C.52)

A positive definite radial stiffness is needed for stability. Some more formulations for the effective radial
stiffness were already given in the paper in the main body of this thesis.

The rise and fall of the radial component of elastic force can be explained by looking at the stiffness and
deflection of the flexure mechanisms. In figure C.8, again the radial forces are plotted, at θc = 90°. In the
same graph, the elastic deflections and stiffness values of the DP-DP flexures are given. It can be seen that
the radial displacement of body 3 results in translational deflections in both motion and bearing direction
of both DP-DP flexures. As the deflections in motion direction u..,y increase (absolutely) with the radius, the
bearing stiffnesses K..,x drop (note the logarithmic scale). Motion stiffnesses K..,y remain constant. This drop
results in a maximum radial elastic force at r ≈ 22mm after which the drop in stiffness has a larger influence
than the rise in deformation.

C.4. Modal analysis
In order to gain insight in the resonance frequencies and stability of the system at certain rotational velocities,
a modal analysis can be done at several steady motion equilibrium configurations. The input axis angle θ2

and velocity θ̇2 are prescribed resulting in a 4DOF system, in order to remove the else arising rigid body mode.
For simplicity, the external forcing Q s is neglected, and no damping is applied.



70 C. Theoretical model

(a) Radial component of the elastic force on the coupler
body, as a function of its planar location, θc and r .

(b) Radial component of the elastic force and the centrifu-
gal force on the coupler, as function of input axle rotational
velocity ω and the radial coordinate of the coupler body r .

Figure C.7: Radial force balance of the coupler body

Figure C.8: Radial forces, elastic deformation and stiffness for increasing polar path radius r of the coupler body.
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At the prescribed conditions for θ2 and θ̇2, a numerical approximation of the equilibrium configuration is
found using a Newton-Raphson scheme starting from an initial guess and iterating to a steady motion point.
As initial guess the motion a conventional Oldham coupling would make is used:

q = [θ2,2θ2,L1/2,θ2,θ2]T (C.53)

q̇ = [θ̇2,2θ̇2,0, θ̇2, θ̇2]T (C.54)

The steady motion point has the form q̈ = 0, q̇ = q̇ eq, q = q eq. Notice that in the case of non-constant
stiffness this equilibrium is only valid at this specific point, and will change with changing stiffness.

For nonzero axle misalignment L1 the stiffness of the coupling both depends on its orientation or angle
and on its rotational velocity. Eigenfrequencies will thus change accordingly. Therefore, the modal analysis
will be executed at multiple linearisation points for varying angles θ2 and increasing rotational velocity θ̇2.

Around such an equilibrium configuration, the linearised system matrices can be built:

K = ∂( f V + f T )

∂q
(C.55)

Here, f T represent the inertial forces forces, the first two terms of the Lagrange equation. f V represent
the elastic forces, the third term within Lagrange. This now results in the linearised EoM with respect to the
linearisation point:

M ¨̃q +C ˙̃q +K q̃ = 0 (C.56)

q = q eq + q̃ , q̇ = q̇ eq + ˙̃q (C.57)

The four second order differential equations of equation C.56 can be written as a set of eight first order
equations C.58 as given by [28], using state vector z and system matrices A and B .

Ãż + B̃ z = 0 with: (C.58)

Ã =
[

M 0
0 K

]
, B̃ =

[
C K
−K 0

]
(C.59)

The eigen value problem C.60 can then be formed with λ being the roots and V the matrix of eigen vectors,
which could be solved numerically:

λÃV =−BV (C.60)

The mode shapes can then be represented in the original generalised coordinates q , being the sum of the
found modes and the linearisation point:

z =
[
∆q̇
∆q

]
=V eλt =V

(
eℜ(λ)t ·eℑ(λ)i t

)
(C.61)

=V
(
eℜ(λ)t (cosℑ(λ)t + i sinℑ(λ)t )

)
(C.62)[

q̇
q

]
=

[
∆q̇
∆q

]
+

[
q̇eq

q eq

]
(C.63)

For the conservative system without damping, the imaginary part of a λ at a certain linearisation point gives
the resonance frequencies of the system. A positive real part of λ indicates instability of the coupling and
results in an exponentially growing (unbounded) motion, as for example at the point of zero effective radial
stiffness.

C.4.1. Description of the results
In this section, results will be shown for both 5DOF and 17DOF model, as well as for different axle misalign-
ments L1. First, all eigenfrequencies will be given for varying angle and velocity. Also, the real part of the roots
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λ of the eigenvalue problem will be shown for increasing velocity, giving an indication of the stability of the
system.

Secondly, a representation of the eigenvectors or mode shapes is given as bar plots for the different gen-
eralised coordinates. Again, these are given for several angles and velocities.

Finally, the behaviour of the first eigenfrequency, which will become zero at instability, is given in a col-
ormap for varying angle and velocity.

At the point of instability, the effective radial stiffness becomes zero as discussed earlier. At this point, the
eigenfrequency or the imaginary part of the first root λ drops to zero. The mode shape no longer contains os-
cillating motion, eℑ(λ)i t = 1. The root λ changes from purely imaginary to purely real and positive. The mode
shape thus changes from oscillatory to exponentially increasing. In practice, this results in an unbounded
outward radial motion of the coupler body.

Beyond the instability point, no longer a steady motion equilibrium exist, due to the exponential growth
of radial motion. The Newton-Raphson scheme thus no longer converges. This results in incorrect results
beyond this point, as can be seen in the noise values.

For the eigenvectors, the magnitude is given. This as there can arise a phase difference between the differ-
ent coordinates for rising velocities. In practice, this means that different coordinates move asynchronously
and reach their extremes at different points in time. Damping can also introduce such phase differences. As
an example the complex representation of the eigenvectors is given for a few scenarios.

The bar plots of the eigenvectors are furthermore scaled, so that angles are given in radians and transla-
tions (radial for example) in centimetres. This because of the dimensions of the mechanism.
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C.4.2. Results
Results of the modal analysis. Some notes can be found in the previous section.

5DOF model, 20mm axle misalignment The modal analysis of the 5DOF model for which the input axle
angle and velocity are prescribed. 4DOF remain.
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Figure C.9: Eigenfrequencies and real part of eigenproblem roots λ for varying input axle angles θ2 and input axle velocities θ̇2.
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Figure C.10: Magnitude of the eigenvectors of the coupling at standstill, for three different input axle angles θ2.
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input axle angles θ2.
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17DOF model, 20mm axle misalignment The modal analysis of the 17DOF model for which the input axle
angle and velocity are prescribed. 16DOF remain.
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Figure C.15: Magnitude of the eigenvectors of the coupling at standstill, for three different input axle angles θ2.
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Figure C.16: Magnitude of the eigenvectors of the coupling near the instability point at a rotational velocity of 10.87 Hz, for three different
input axle angles θ2.
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Figure C.17: Colormap of the first eigenfrequency for varying input axle angles θ2 and input axle velocities θ̇2. Zero frequency indicates
instability.
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C.5. Time integration
To get insight in the motion of the different bodies during rotation, the found equations of motion can be
integrated in time numerically. This way, scenario’s for different velocities, accelerations, loads, damping,
bearing friction etcetera can be analysed. In this section, the method for and results of the time integration
are discussed.

C.5.1. Method
To be able to compare the results with the experimental data, several terms have to be added to the EoM:

d

d t

(
∂T

∂q̇

)
− ∂T

∂q
+ ∂V

∂q
+C internal q̇ +C friction q̇ −Q s = 0 (C.64)

The added terms, being the internal damping C internal q̇ , the damping coming from the setup’s bearings
C friction q̇ and the forcing vector Q s will be discussed individually now.

To prevent numerical integration instability, proportional or Rayleigh damping is added to the system. In
this damping model, the damping matrix is a linear combination of the mass and stiffness matrix. It thus is
assumed that damping is proportional to these. Mass and stiffness matrices are multiplied by the propor-
tionality constants α and β respectively:

C int =αM +βK (C.65)

This results in modal damping ratios ζ which depend on their eigenfrequency in the following manner:

ζ= 1

2

(
α

ωn
+βωn

)
(C.66)

The mass proportional term dampens the low resonance frequencies and the stiffness proportional term
the high frequencies. The scalar proportionality constants are normally determined empirically. As a starting
point, a damping ratio of 0.1 % can be taken for flexure mechanisms [23], which then can be tuned. In figure
C.18 a random example of the resulting damping ratio as function of the resonance frequency is given.
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Figure C.18: Damping ratio’s for mass and stiffness proportional damping for two random proportionality constants.

As for the coupling at the EoM are non-linear, first a proper linearisation point has to be chosen, at which
the mass and stiffness matrices can be computed. Linearisation is done in a similar way as for the modal
analysis. For now, as a linearisation point static equilibrium at θ2 = 45° is chosen. Looking at the results
from the modal analysis, it can be seen that at that point most eigenfrequencies are at the middle of their
range. Therefore, this point is considered to be an average representation of the systems stiffnesses. However,
the result is that at configurations with a higher stiffness, the resulting mode shape will experience a lower
damping ratio, and vice versa. The damping matrix at linearisation point:
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Figure C.19: Rotational velocity (upper figures) and applied motor torque (lower figures) as measured with the experimental setup. The
left two figures show a measurement with only the input axle connected to the motor. The right two figures show a ’normal’ measure-
ment, in which a compliant coupling at maximum misalignment connects input and output axles.

Linearization point: q 0 = static equilibrium at 45deg, q̇ 0 = q̈ 0 = 0 (C.67)

C internal =α M |q0,q̇0
+β K |q0,q̇0

(C.68)

Damping force: =C internal∆q̇ =C int(q̇ − q̇ 0) =C int q̇ (C.69)

Furthermore, to prevent coupling between the coordinates, only the diagonal terms of the resulting damp-
ing matrix are used, setting all off diagonal terms to zero. This as coupling between the coordinates can some-
times lead to unexpected results.

The friction torque resulting from the bearings and encoders in the experimental setup is modelled as
being linearly depended on the rotational velocity. The torque at input and output axle can then be written
as:

Tinput axle = Tmotor −Tbearing,in − cbearing,in ωin (C.70)

Toutput axle =−Tbearing,out − cbearing,out ωout (C.71)

(C.72)

Or, using the vectors as given in the EoM:

C friction = [cfriction,in 0 0 0 cfriction,out]
T (C.73)

Q s = [Tmotor −Tfriction,in 0 0 0 −Tfriction,out]
T (C.74)

The friction parameters Tfriction,in, Tfriction,out, cfriction,in and cfriction,out can then be determined using the
experimentally measured torque. A simple schematic is given in figure C.19 in which the applied motor
torque is given for a scenario with only a disconnected input axle, and a normal measuring scenario with
the compliant coupling between input and output axle at maximum misalignment. In the figure, the con-
stant and velocity depended friction torque can be indicated. A line can be fitted through the torque data,
from which in combination with the rotational velocity from the upper figures the needed parameters can be
computed. The left figure gives input axle values. If these vales are then subtracted from the values from the
right figures, the output axle parameters result.

In this method it thus is assumed that all motor torque is absorbed by the friction of bearing and encoders
and acts at the input and output axle. In reality also some energy will be dissipated in the coupling itself due
to internal material damping, and by air friction on the rotating bodies of the coupling.
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For executing the numeric time integration, the ODE solvers from MATLAB are used. For this, the EoM
has to be written as a first order ODE ẏ = f (y , t ). This is done in the following manner:

M = ∂ f T

∂q̈
(C.75)

F v =−
(

d

d t

(
∂T

∂q̇

)
− ∂T

∂q
+ ∂V

∂q
+C internal q̇ +C friction q̇ −Q s − M q̈

)
(C.76)

q̈ = M−1F v (C.77)

y =
[

q
q̇

]
(C.78)

ẏ = f (y, t ) =
[

q̇
M−1F v

]
(C.79)

Furthermore, some initial conditions are needed for the time integration. For this, an equilibrium as
found by a Newton-Raphson scheme is used. A static equilibrium as well as a steady motion equilibrium at
some velocity can be used. Furthermore, a driving motor torque Tmotor has to be chosen. These can be based
on the measured torques in the experiments.

C.6. Time integration results
Using the described method for time integration, multiple simulations were executed, of which the results
were analysed in multiple ways. As indicated earlier, the time integration as performed did not give trust-
worthy results. However, some results will be given to show the behaviour of the models. At the end of the
section, some recommendations will be given for possible improvement of the time integration results.

Especially at higher velocities, results often give a build up of oscillations, which sometimes leads to ex-
cessive unbounded displacements. It is expected that these problems have a numerical origin. Within the
explicit ODE solvers used, numerical error can cumulate, resulting in incorrect results. Implementation of
proportional damping is used in an attempt to overcome this problem. However, by doing this elements are
added to the model which do not resemble reality.

C.6.1. 5DOF model
At velocities up to circa 300min−1, no damping is needed to maintain integration stability for the 5DOFmodel.
Therefore, the results shown will be at a rotational velocity of circa 300min−1, without any damping. The
introduction of non realistic behaviour caused by damping implementation then is prevented.

5DOF model, 300 RPM, no internal damping The parameters for this set of results are:
• Maximum axle misalignment of L1 = 20mm

• No internal damping: α= 0, β= 0

• Motor torque Tmotor of 4.660×10−2 Nm, based on experimental values

• Input friction torque Tfriction,in of 3.4713×10−2 Nm, based on experimental values

• Input friction damping cfriction,in of 0 Nmrad−1

• Output friction torque Tfriction,out of 0 Nm

• Output friction damping cfriction,out of 3.7837×10−4 Nmrad−1, which equilibrates the effective input
torque at 300min−1

• Matlab ODE15s solver used with a maximum time step of 1×10−5 s
Here, all experimentally determined input axle friction at this velocity is subtracted from the motor torque.

On the output axle, only the velocity depended friction term is used, and set to equilibrate the resultant input
torque at the desired velocity of 300min−1.

5DOF model, multiple velocities, no inernal damping Below, the velocity error for two other velocities is
given.
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Figure C.20: Velocity error, velocity, and polar coordinates of coupler body. As the polar coupler body angle θc is continuously increasing,
2θ2 is subtracted to show only the deviation from its ’conventional Oldham kinematics’ path.
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Figure C.21: Path of the coupler body in time. In green, some points at the start of the simulation are given, at which the radius still is
low. In red, the path at the end of the simulation is shown, when the maximum speed is reached, in when the radius is larger. The black
dashed line gives a circle through input and output.
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Figure C.22: Body angles of the coupler body and output axle, again given as a deviation from the input axle angle. For both the negative
values indicate that they lag the input axle angle
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Figure C.23: Elastic deformation and stiffness of the two sets of DP-DP flexures (from input to the coupler body, and from coupler body
to output). Given in the three decoupled stiffness directions, being motion, bearing and angular. To show more detail, only the last part
of the simulation time is shown.
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Figure C.24: All forces acting on the different bodies in the direcitons of the five generalised coordinates. From the upper graph, in which
the input axle angle is given, the orientation of the coupling can be derived. Note that in the input axle rotational direction θ2 the sum of
the forces is nonzero. This resultant gives the motor torque, which is not shown in this graph. Furthermore, the firction torque at output
is represented by the damping force (as it was modelled to be proportional to rotational velocity) in the output axle angle direction θ4.
To show more detail, only the last part of the simulation time is shown.
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Figure C.25: Comparison of the dimensionless velocity error as resulting from an experiment, and the results from time integration. The
error is given as function of the input axle angle. Both for a rotational velocity of circa 300 RPM. In both graphs, three non adjacent duty
cycles are shown, in the different colors. In the experimental data, is can be seen that all three duty cycles are similar. The black line
in the experimental data shows the 1000Hz low-pass filtered data. For the time integration data however, there is quite some difference
between each duty cycle, as is also visible in figure C.20. Furthermore, in the experimental data clearly a repeatable pattern is visible,
with peaks at 90 and 270 degree. In the experimental data this can not be seen.
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Figure C.26: Dimensionless velocity error and input and output axle velocity at circa 100 rpm. The error is larger than at 300 rpm.
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Figure C.27: Dimensionless velocity error and input and output axle velocity at circa 500 rpm. It can be seen that the integration becomes
unstable around 400 rpm. No trustworthy results were found for the 5DOF modal above this velocity.
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C.6.2. 17DOF model
For the 17DOF model, no stable results were achieved without the implementation of proportional damping.
Some results including proportional damping are given below.

17DOF model, multiple velocities, sensitivity to damping In the next figures, the influence of the stiffness
proportional damping is shown. An integration is executed, starting from standstill, accelerating to respec-
tively 100, 300 and 500 rpm. For each velocity, the results for six different values of the stiffness proportional
damping parameter β are shown. The parameters β are varied within the region that yielded the best results.
However, the results at 500 rpm are still far from realistic.

The other parameters used are:
• Maximum axle misalignment of L1 = 20mm

• Varied stiffness proportional damping: α= 0, β= 6×10−7...6.5×10−7

• Input axle torque Tin: (set to yield the desired velocity) 6.2152×10−2 Nm for 100 rpm 1.5017×10−1 Nm
for 300 rpm 2.4220×10−1 Nm for 500 rpm

Input friction damping cfriction,in of 1.6237×10−4 Nmrad−1 (based on experimental values)

• Output friction torque Tfriction,out of −1.8114×10−2 Nm (based on experimental values)

• Output friction damping cfriction,out of 3.5801×10−4 Nmrad−1 (based on experimental values)

• Matlab ODE45 solver used with a maximum time step of 1×10−5 s
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Figure C.28: Dimensionless velocity error and output axle velocity for varying values of β as shown in the legend.

17DOF model, multiple velocities, sensitivity to input torque In the next figures, the influence of a slight
change in input torque is shown. All other parameters are kept constant.

The other parameters used are:
• Maximum axle misalignment of L1 = 20mm

• Stiffness proportional damping: α= 0, β= 6.5×10−7

• Input axle torque Tin as given in the legend of the figures

• Input friction damping cfriction,in of 1.6237×10−4 Nmrad−1 (based on experimental values)

• Output friction torque Tfriction,out of −1.8114×10−2 Nm (based on experimental values)
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Figure C.29: Dimensionless velocity error and output axle velocity for varying values of β as shown in the legend.
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Figure C.30: Dimensionless velocity error and output axle velocity for varying values of β as shown in the legend.
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• Output friction damping cfriction,out of 3.5801×10−4 Nmrad−1 (based on experimental values)

• Matlab ODE45 solver used with a maximum time step of 1×10−5 s
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Figure C.31: Dimensionless velocity error and input and output axle velocity for two slightly different input torques as shown in the
legend.
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Figure C.32: Dimensionless velocity error and input and output axle velocity for two slightly different input torques as shown in the
legend.
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Figure C.33: Dimensionless velocity error and input and output axle velocity for two slightly different input torques as shown in the
legend.
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In the next figures, the time integration results for the velocity error will be compared with the experimen-
tally measured velocity error. The applied friction parameters in the model are based on the same series of
measurements.

• Maximum axle misalignment of L1 = 20mm

• Stiffness proportional damping: α= 0, β= 6.5×10−7

• Input axle torque Tin: (set to yield the desired velocity) 6.38×10−2 Nm for 100 rpm 1.540×10−1 Nm for
300 rpm 2.493×10−1 Nm for 500 rpm

Input friction damping cfriction,in of 1.6237×10−4 Nmrad−1 (based on experimental values)

• Output friction torque Tfriction,out of −1.8114×10−2 Nm (based on experimental values)

• Output friction damping cfriction,out of 3.5801×10−4 Nmrad−1 (based on experimental values)

• Matlab ODE45 solver used with a maximum time step of 1×10−5 s
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Figure C.34: Comparison of the dimensionless velocity error as resulting from an experiment, and the results from time integration. The
error is given as function of the input axle angle. Both for a rotational velocity of circa 100 RPM. In both graphs, three non adjacent duty
cycles are shown, in the different colors. The black line in the experimental data shows the 1000Hz low-pass filtered data.
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Figure C.35: Comparison of the dimensionless velocity error as resulting from an experiment, and the results from time integration. The
error is given as function of the input axle angle. Both for a rotational velocity of circa 300 RPM. In both graphs, three non adjacent duty
cycles are shown, in the different colors. The black line in the experimental data shows the 1000Hz low-pass filtered data.

Figure C.36: Comparison of the dimensionless velocity error as resulting from an experiment, and the results from time integration. The
error is given as function of the input axle angle. Both for a rotational velocity of circa 500 RPM. In both graphs, three non adjacent duty
cycles are shown, in the different colors. The black line in the experimental data shows the 1000Hz low-pass filtered data.
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C.6.3. Suggested improvements
It is obvious that the current time integration results are not trustworthy. It is shown that among other things
the results depend heavily on the amount of damping applied, the initial conditions and on the applied
torque. Some recommendations for future improvement are given:

• Currently, explicit Matlab ODE solvers are used. All available explicit solvers within Matllab are tested
on the unstable scenarios, without success. In explicit solvers, numerical errors can build up, which can
be the cause of the instability. Use of an implicit solver can potentially give an improvement. For this,
the EoM have to be rewritten in another format however.

• For the explicit solvers, it is important to use the proper step size. For most simulations, a step size of
1×10−5 s was used, which should represent the highest eigenfrequencies of 1×104 Hz well. Smaller step
sizes are tried and did not lead to significant improvement.

• For the Matlab ODE solvers, a relative tolerance of 1×10−3 was set. The absolute tolerance was set to
the maximum expected output values, multiplied by 1×10−3. Smaller tolerances were tried as well, but
the enforced maximum step size seemed to be dominant already in the reached accuracy.

• The applied friction conditions are based on experimental data, via the measurement of the motor cur-
rent. As discussed in other parts of this thesis, this method is inaccurate. This can contribute to the
mismatch between model and experiment. Furthermore, the method in which the friction torque is
modelled might not be the most realistic representation.

• More attention should be paid to the cause of the excessive motions and instability within the integra-
tion results. When the cause is understood better, the search for improvements will be more focussed.
Several properties of the model which might contribute to the excessive motions are already indicated:

– First of all, the EoM are heavily non-linear. Not only the stiffnesses can vary more than an order of
magnitude, also geometrical relations introduce non-linearities.

– A quasi-static rotation, the path radius r of the coupler body is equal to L1/2 when it intersects
both axles. Away from these points, the radius decreases. The radius then thus r ≤ L1/2. At higher
velocities, the centrifugal force pulls the coupler body outwards, and the radius increases. At some
point the sign of the radial deflection changes and r ≥ L1/2. At this sign inversion, often instabilities
were found in the integration results. What exactly causes this problem remains unknown however.

– Furthermore, toward the point that the coupler COM crosses one of the axles, one of the bearing
stiffnesses increases tremendously. This forces the radius r towards L1/2, what often causes high
frequency oscillations of the coupler body towards this point. Moreover, in some occasions, the
intersection points is not even reached, and the path direction is reversed (the sign of θ̇c changes),
which off course is unrealistic. It seems to be that the integration finds ’a path of lower potential
energy’ away from the intersection point and the high stiffness.

– Finally, as discussed in the method section of this appendix, a linearisation point had to be chosen
for the construction of the proportional damping. For this, static equilibrium at 45° input axle
angle was chosen, at which most stiffness values are midway their range. However, when stiffness
increases from this point onward, less damping is experienced. Therefore, the stiffness maxima
experience relatively little damping, which can explain the high frequency oscillations. This effect
can be quite significant, as stiffness values vary more than an order of magnitude. Improvements
can be made by making the damping matrix state depended as well. Some attempts have been done
to implement this, but it did not result in improvement right away. Alternatively, other damping
models can be tried and implemented.
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C.7. Matlab code
The following Matlab scripts are used to generate the results. Furthermore, multiple scripts are used to plot
the results, which are not given here.

• Building the equations of motion:

– eom_runner.m: Runs all the subfiles, and saves the resulting functions

– eom_constants.m: Loads constants, formulates inertia and stiffness values

– eom_coordsys.m: Builds the chosen coordinate system

– eom_deformation.m: Formulates the elastic deformations

– eom_eom.m: Finally formulates the equations of motion using Lagrange

– f_DP_stiffness.m: Function for determination of DP-DP flexure stiffness characteristics (5DOF
model)

– f_DP_stiffness.m: Function for determination of P-flexure stiffness characteristics (17DOF model)

• findequilibrium.m: Function containing Newton-Raphson scheme to find steady motion equilib-
rium. Is used in multiple files.

• modal.m: Modal analysis, can be executed when the EoM function files are available after running
eom_runner.m.

• integration.m: Time integration, can be executed when the EoM function files are available after run-
ning eom_runner.m.

eom_runner.m

% Runner

% With t h i s f i l e , the time integrat ion can be run for d i f f e r e n t scenario ’ s
% ( can be chosen via the ’ para ’ ( parameter ) variable )

% For e f f i c i e n c y , equations for a l l scenarios are saved in the l i b r a r y f i l e
% ’ functions . mat ’

% I f the EoM functions then are generated :
% − a modal analysis can be executed with modal .m
% − time integrat ion can be exccuted with integrat ion .m

% close a l l
i f e x i s t ( ’ f ’ , ’ var ’ )

c learvars −except f
save ( ’ functionsbackup . mat ’ , ’ f ’ )

e lse
clear a l l
t r y
load functions . mat
save ( ’ functionsbackup . mat ’ , ’ f ’ )
catch
end

end

% Parameter choice :
para = { 2 ; % Presciption of : 1 = motion , 2 = torque

1 ; % Deformation calculat ion : 1 = torsion : input /output , 3 = symbolic , 4 = multidof ,
% 6 = multidof + PRBM constraint

1 ; % I n e r t i a : 1 = SolidWorks , 3 = symbolic , 4 = multidof
3 ; % Damping : 1 = none , 3 = proportional damping
1 ; % S t i f f n e s s : 1 = nonlinear , 2 = l inear , 3 = symbolic , 4 = multidof
2 } ;% Coord sys : 1 = q_equi =0 , 2 = polar , 3 = global , 4 = multidof global , 5 = multidof polar

eom_constants % load needed constants

eom_coordsys % build chosen coordinate system

eom_deformation % formulate e l a s t i c deformations

writefun =1; % 1 = build functions , 0 = dont
eom_eom % compute EoM with Lagrange

disp ( ’ Saving ’ )
save ( ’ functions . mat ’ , ’ f ’ )
disp ( ’ Finished ’ )
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eom_constants.m

% F i l e containing geometrical constants , i n e r t i a and s t i f f n e s s
disp ( ’ Loading constants ’ )

%% Parameters
% input axis location :
x1 = 0 ;
y1 = 0 ;

% output axis location :
x3 = 0 . 0 0 ;
y3 = 0 . 0 2 ;

l 1 = sqrt ( ( x3−x1 ) ^2 + ( y3−y1 ) ^2 ) ; % p a r a l l e l axle o f f s e t

cent = [ ( x3−x1 ) / 2 ; ( y3−y1 ) / 2 ] ; % centre between axles

%% Physical constants [m]
% input
d2=20e−3; % diameter
lz2 =5e−3; % layer height in z

% output
d4=d2 ;
lz4=lz2 ;

% main frame
lx3 =134e−3; %length of outer body 3 in l o c a l x , [m]
ly3=lx3 ; %length of outer body 3 in l o c a l y , [m]
tx3=4e−3; %thickness of outer body 3 in l o c a l x , [m]
ty3=tx3 ;
lz3 =5e−3; %thickness of outer body 3 in l o c a l z , [m]

% s h u t t l e s
l x s = 90e−3; % shutt le length in l o c a l x , [m]
l y s = 6e−3; % shutt le height in l o c a l y , [m]

% Input Output i n e r t i a properties :
daxle = 12e−3;
l a x l e = 220e−3;

m. axlein = 0.17102552;
m. axleout = 0.07455692;
m. flywheel = 0.92707883;
m. clamp = pi *(28 e−3^2−12e−3^2)/4*11e−3*7800;
m. a x l e s h u t t l e = 0.00220218;
m. hub = 0.00626699;

I . axlein = 2.98E−06;
I . axleout = 1.42e−006;
I . flywheel = 0.0015816;
I . clamp = 1/2*m. clamp * ( ( 2 8 e−3/2)^2−(12e−3/2) ^2) ; % huco clamps
I . motorclamp = 4.12E−06; % f l e x i b l e beam coupling
I . motor = 1.05e−5; % motor i n e r t i a
I . a x l e s h u t t l e = 0.00000030;
I . hub = 2.80E−07;

% Default setup axle i n e r t i a
m. in = m. a x l e s h u t t l e + m. hub + m. axlein + m. clamp + m. flywheel ;
m. out = m. a x l e s h u t t l e + m. hub + m. axleout + m. clamp ;

I . in = I . a x l e s h u t t l e + I . hub + I . axlein + I . clamp + I . flywheel . . .
+ I . motorclamp + I . motor ; % a l l default input axle i n e r t i a

I . out = I . a x l e s h u t t l e + I . hub + I . axleout + I . clamp ;

switch cell2mat ( para ( 3 ) )
case 1

% I n e r t i a SolidWorks
% Main frame : 2x main frame + 0.5 of a l l intermediate s h u t t l e s and
% 0.5 of a l l f l e x u r e s
m. mainframe = 0.01848074;
m. alusheet = 0.00720046;
m. i n t e r s h u t t l e = 0.00622449; % 2 s h u t t l e s
m. f l e x u r e = 0.00366031; % 8 f l e x u r e s

I . mainframe = 0.00009612;
I . alusheet = 0.00004453;
I . i n t e r s h u t t l e = 0.00002585;
I . f lexureinner = 0.00000261;
I . f lexureouter = 0.00000548;

m3 = 2*m. mainframe + m. alusheet + 0.5*2*m. f l e x u r e . . .
+ 0.5*2*m. i n t e r s h u t t l e ;

I3 = 2* I . mainframe + I . alusheet + 2* I . f lexureouter . . .
+ 0.5*2* I . i n t e r s h u t t l e ;
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m2 = m. in + 2/8*m. f l e x u r e ;
m4 = m. out + 2/8*m. f l e x u r e ;

I2 = I . in ;
I4 = I . out ;

M=diag ( [m2 m2 I2 m3 m3 I3 m4 m4 I4 ] ) ;

case 3 % symbolic
syms m2 m2 I2 m3 m3 I3 m4 m4 I4
M=diag ( [m2 m2 I2 m3 m3 I3 m4 m4 I4 ] ) ;

case 4 % multidof
% I n e r t i a SolidWorks
% Main frame : 2x main frame + 0.5 of a l l intermediate s h u t t l e s and
% 0.5 of a l l f l e x u r e s
m. mainframe = 0.01848074;
m. alusheet = 0.00720046;
m. i n t e r s h u t t l e = 0.00622449; % 2 s h u t t l e s
m. f l e x u r e = 0.00366031; % 8 f l e x u r e s

I . mainframe = 0.00009612;
I . alusheet = 0.00004453;
I . i n t e r s h u t t l e = 0.00002585; % 2 s h u t t l e s ? ? ? ?
I . f lexureinner = 0.00000261; % 4 f l e x u r e s
I . f lexureouter = 0.00000548; % 4 f l e x u r e s

m3 = 2*m. mainframe + m. alusheet + 1/8*4*m. f l e x u r e ;
% mass of 4 h a l f f l e x u r e s = 2/8 , x two l a y e r s
I3 = 2* I . mainframe + I . alusheet ; % no f l e x u r e i n e r t i a ! !

m2 = m. in + 1/8*2*m. f l e x u r e ;
m4 = m. out + 1/8*2*m. f l e x u r e ;

I2 = I . in ;%moment of i n e r t i a , output shutt le + axle [ kg m2]
I4 = I . out ; % no f l e x u r e i n e r t i a ! ! ! !

ms = 1/2* m. i n t e r s h u t t l e + 1/8*2*m. f l e x u r e ;
I s = 1/2* I . i n t e r s h u t t l e ;

M=diag ( [m2 m2 I2 m3 m3 I3 m4 m4 I4 . . .
ms ms I s ms ms I s ms ms I s ms ms I s ] ) ;

end

%% S t i f f n e s s
switch cell2mat ( para ( 5 ) )

case { 1 , 2 , 3} % DP−DP f l e x u r e s
syms f2y f4y% f l e x u r e mechanism motion direction
% f l e x u r e mechanism connected to input axle , body 2
f2 . l = 50e−3; % f l e x u r e length
f2 . t = 0.2 e−3; % f l e x u r e thickness
f2 .w = 4.972e−3; % f l e x u r e height
f2 . a = 0 . 5 ; % lumped / distr ibuted parameter ( f l e x u r e has length a* l )
f2 . p1 = 28e−3; %=2*W1, distance between inner f l e x u r e s
f2 . p2 = 84e−3; %=2*W2, distance between outer f l e x u r e s
f2 . E = 193e9 ; % Youngs modulus

[ k2 . y , k2 . x , k2 . thet ] = f_DP_st i f fness ( f2y , f2 . l , f2 . t , f2 .w, f2 . a , f2 . p1 , f2 . p2 , f2 . E) ;

k2 . x0=double ( subs ( k2 . x , f2y , 0 ) ) ;
k2 . xmax=double ( subs ( k2 . x , f2y , l 1 ) ) ;
k2 . thet0=double ( subs ( k2 . thet , f2y , 0 ) ) ;
k2 . thetmax=double ( subs ( k2 . thet , f2y , l 1 ) ) ;

% f l e x u r e mechanism connected to input axle , body 2
f4 . l = 50e−3; % f l e x u r e length
f4 . t = 0.2 e−3; % f l e x u r e thickness
f4 .w = f2 .w; % f l e x u r e height
f4 . a = 0 . 5 ; % lumped / distr ibuted parameter ( f l e x u r e has length a* l )
f4 . p1 = 28e−3; %=2*W1, distance between inner f l e x u r e s
f4 . p2 = 84e−3; %=2*W2, distance between outer f l e x u r e s
f4 . E = f2 . E ; % Youngs modulus

[ k4 . y , k4 . x , k4 . thet ] = f_DP_st i f fness ( f4y , f4 . l , f4 . t , f4 .w, f4 . a , f4 . p1 , f4 . p2 , f4 . E) ;
k4 . x0=subs ( k4 . x , f4y , 0 ) ;

case 4 % P f l e x u r e s
syms fy2s1 fy2s2 fy3s1 fy3s2 % layer 1
syms fy4s3 fy4s4 fy3s3 fy3s4 % layer 2

f l . l = 50e−3; % f l e x u r e length
f l . t = 0.2 e−3; % f l e x u r e thickness
f l .w = 4.972e−3; % f l e x u r e height
f l . a = 0 . 5 ; % d i s t r i b u t i o n parameter ( f l e x u r e has length a* l )
f l . p1 = 28e−3; %=2*W1, distance between inner f l e x u r e s
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f l . p2 = 84e−3; %=2*W2, distance between outer f l e x u r e s
f l . E = 193e9 ; % Youngs modulus

% f _ P _ s t i f f n e s s : output order : motion , bearing , rotation
% layer 1
[ k2s1 . x , k2s1 . y , k2s1 . thet ] = f _ P _ s t i f f n e s s ( fy2s1 , f l . l , f l . t , f l .w, f l . a , f l . p1 , f l . E) ;
[ k2s2 . x , k2s2 . y , k2s2 . thet ] = f _ P _ s t i f f n e s s ( fy2s2 , f l . l , f l . t , f l .w, f l . a , f l . p1 , f l . E) ;
[ k3s1 . x , k3s1 . y , k3s1 . thet ] = f _ P _ s t i f f n e s s ( fy3s1 , f l . l , f l . t , f l .w, f l . a , f l . p2 , f l . E) ;
[ k3s2 . x , k3s2 . y , k3s2 . thet ] = f _ P _ s t i f f n e s s ( fy3s2 , f l . l , f l . t , f l .w, f l . a , f l . p2 , f l . E) ;

% layer 2
[ k4s3 . x , k4s3 . y , k4s3 . thet ] = f _ P _ s t i f f n e s s ( fy4s3 , f l . l , f l . t , f l .w, f l . a , f l . p1 , f l . E) ;
[ k4s4 . x , k4s4 . y , k4s4 . thet ] = f _ P _ s t i f f n e s s ( fy4s4 , f l . l , f l . t , f l .w, f l . a , f l . p1 , f l . E) ;
[ k3s3 . x , k3s3 . y , k3s3 . thet ] = f _ P _ s t i f f n e s s ( fy3s3 , f l . l , f l . t , f l .w, f l . a , f l . p2 , f l . E) ;
[ k3s4 . x , k3s4 . y , k3s4 . thet ] = f _ P _ s t i f f n e s s ( fy3s4 , f l . l , f l . t , f l .w, f l . a , f l . p2 , f l . E) ;

k2 . thet0=double ( subs ( k2s1 . thet , fy2s1 , 0 ) ) ;
k2 . thetmax=double ( subs ( k2s1 . thet , fy2s1 , l 1 /2) ) ;
k3 . thet0=double ( subs ( k3s1 . thet , fy3s1 , 0 ) ) ;
k3 . thetmax=double ( subs ( k3s1 . thet , fy3s1 , l 1 /2) ) ;

end

%% S t i f f n e s s matrix
switch cell2mat ( para ( 5 ) )

case 1
% non l i n e a r s t i f f n e s s :
K=diag ( [ k2 . y k2 . x k2 . thet k4 . x k4 . y k4 . thet ] ) ; % s t i f f n e s s matrix
% absolute Y axis equilibrium position of main frame :
eqy = double ( ( 2 * l 1 *k2 . x0 ) / ( 2 * ( k4 . y + k2 . x0 ) ) ) ;

case 2
% l i n e a r s t i f f n e s s :
ky = k2 . y ;
kx = 1e3 ;
kthet = 1e3 ;
K=diag ( [ ky kx kthet kx ky kthet ] ) ; % s t i f f n e s s matrix
% absolute Y axis equilibrium position of main frame :
eqy = double ( ( 2 * l 1 * kx ) / ( 2 * ( ky + kx ) ) ) ;

case 3
% symbolic
syms k2y k2x k2thet k4x k4y k4thet req kx ky kthet

% K=diag ( [ k2x k2y k2thet k4x k4y k4thet ] ) ; % s t i f f n e s s matrix
K=diag ( [ ky kx kthet kx ky kthet ] ) ; % s t i f f n e s s matrix

case 4
% multidof : s i ngle P−f l e x u r e
K=diag ( [ k2s1 . x k2s1 . y k2s1 . thet . . . % layer 1

k2s2 . x k2s2 . y k2s2 . thet . . .
k3s1 . x k3s1 . y k3s1 . thet . . .
k3s2 . x k3s2 . y k3s2 . thet . . .
k4s3 . y k4s3 . x k4s3 . thet . . . % layer 2
k4s4 . y k4s4 . x k4s4 . thet . . .
k3s3 . y k3s3 . x k3s3 . thet . . .
k3s4 . y k3s4 . x k3s4 . thet ] ) ; % s t i f f n e s s matrix

end

% finding equilibrium radius of main frame path :
t r y
req = eqy − l 1 / 2 ;
catch
end

clearvars −except f para M K x1 y1 x3 y3 l 1 cent req f l f2y f4y fy * m*

eom_coordsys.m

% F i l e building body coordinates and coordinate system
disp ( ’ Building coordinate system ’ )

%% Coord sys
syms Q
switch cell2mat ( para ( 6 ) )

case 1 % Zero displacement equilibrium config
% Generalized coordinates
syms t omega phi1_0
syms phi2 phi3 phi4 dr
syms phi2d phi3d phi4d drd
syms phi2dd phi3dd phi4dd drdd

q = [ phi2 phi3 phi4 dr ] . ’ ;
qd = [ phi2d phi3d phi4d drd ] . ’ ;
qdd = [ phi2dd phi3dd phi4dd drdd ] . ’ ;
input = [ phi1_0 omega Q] . ’ ;
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% Prescirbed input
phi1 = phi1_0 + omega* t ;
phi1d = omega ;

% Body coordinates X(q)
X = [ x1 ;

y1 ;
phi1 ;
cent ( 1 ) + ( dr+req ) * sin ( phi3+2*phi1 ) ; % BODY2
cent ( 2 ) − ( dr+req ) * cos ( phi3+2*phi1 ) ;
phi2 + phi1 ;
x3 ; % BODY3
y3 ;
phi4 + phi1 ] ;

case 2 % polar + body rotat ions
% Generalized coordinates
syms t omega phi1_0
syms thetc r thet3 thet4
syms thetcd rd thet3d thet4d
syms thetcdd rdd thet3dd thet4dd

q = [ thetc r thet3 thet4 ] . ’ ;
qd = [ thetcd rd thet3d thet4d ] . ’ ;
qdd = [ thetcdd rdd thet3dd thet4dd ] . ’ ;

% input = [ phi1_0 omega Q] . ’ ;

% Prescirbed input
phi1 = phi1_0 + omega* t ;
phi1d = omega ;

% syms phi1

% Body coordinates X(q)
X = [ x1 ;

y1 ;
phi1 ;
cent ( 1 ) + r * sin ( thetc ) ; % BODY2
cent ( 2 ) − r * cos ( thetc ) ;
thet3 ;
x3 ; % BODY3
y3 ;
thet4 ] ;

case 3 % global coordinates
% Generalized coordinates
syms t omega phi1_0
syms x y thet3 thet4
syms xd yd thet3d thet4d
syms xdd ydd thet3dd thet4dd

% work in progressss

q = [ x y thet3 thet4 ] . ’ ;
qd = [ xd yd thet3d thet4d ] . ’ ;
qdd = [ xdd ydd thet3dd thet4dd ] . ’ ;

input = [ phi1_0 omega Q] . ’ ;

% Prescirbed input
phi1 = phi1_0 + omega* t ;
phi1d = omega ;

% Body coordinates X(q)
X = [ x1 ;

y1 ;
phi1 ;
x ; % BODY2
y ;
thet3 ;
x3 ; % BODY3
y3 ;
thet4 ] ;

case 4 % multidof
% Generalized coordinates

syms t omega phi1_0
syms thetc r thet3 thet4
syms thetcd rd thet3d thet4d
syms thetcdd rdd thet3dd thet4dd

syms xs1 xs2 xs3 xs4 xs1d xs2d xs3d xs4d xs1dd xs2dd xs3dd xs4dd
syms ys1 ys2 ys3 ys4 ys1d ys2d ys3d ys4d ys1dd ys2dd ys3dd ys4dd
syms thets1 thets2 thets3 thets4 thets1d thets2d thets3d thets4d
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syms thets1dd thets2dd thets3dd thets4dd

q = [ thetc r thet3 thet4 . . .
xs1 ys1 thets1 . . .
xs2 ys2 thets2 . . .
xs3 ys3 thets3 . . .
xs4 ys4 thets4 ] . ’ ;

qd = [ thetcd rd thet3d thet4d . . .
xs1d ys1d thets1d . . .
xs2d ys2d thets2d . . .
xs3d ys3d thets3d . . .
xs4d ys4d thets4d ] . ’ ;

qdd = [ thetcdd rdd thet3dd thet4dd . . .
xs1dd ys1dd thets1dd . . .
xs2dd ys2dd thets2dd . . .
xs3dd ys3dd thets3dd . . .
xs4dd ys4dd thets4dd ] . ’ ;

input = [ phi1_0 omega Q] . ’ ;

% Prescirbed input
phi1 = phi1_0 + omega* t ;
phi1d = omega ;

% syms phi1

% Body coordinates X(q)
X = [ x1 ;

y1 ;
phi1 ;
cent ( 1 ) + r * sin ( thetc ) ; % BODY2
cent ( 2 ) − r * cos ( thetc ) ;
thet3 ;
x3 ; % BODY3
y3 ;
thet4 ;
q ( 5 : end) ] ;

case 5 % multidof , s h u t t l e s polar
% Generalized coordinates

syms t omega phi1_0
syms phi3 r3 thet3 thet4
syms phi3d r3d thet3d thet4d
syms phi3dd r3dd thet3dd thet4dd

syms rs1 rs2 rs3 rs4 rs1d rs2d rs3d rs4d rs1dd rs2dd rs3dd rs4dd
syms phis1 phis2 phis3 phis4 phis1d phis2d phis3d phis4d
syms phis1dd phis2dd phis3dd phis4dd
syms thets1 thets2 thets3 thets4 thets1d thets2d thets3d thets4d
syms thets1dd thets2dd thets3dd thets4dd

q = [ phi3 r3 thet3 thet4 . . .
phis1 rs1 thets1 . . .
phis2 rs2 thets2 . . .
phis3 rs3 thets3 . . .
phis4 rs4 thets4 ] . ’ ;

qd = [ phi3d r3d thet3d thet4d . . .
phis1d rs1d thets1d . . .
phis2d rs2d thets2d . . .
phis3d rs3d thets3d . . .
phis4d rs4d thets4d ] . ’ ;

qdd = [ phi3dd r3dd thet3dd thet4dd . . .
phis1dd rs1dd thets1dd . . .
phis2dd rs2dd thets2dd . . .
phis3dd rs3dd thets3dd . . .
phis4dd rs4dd thets4dd ] . ’ ;

input = [ phi1_0 omega Q] . ’ ;

% Prescirbed input
phi1 = phi1_0 + omega* t ;
phi1d = omega ;

% syms phi1

% Body coordinates X(q)
X = [ x1 ;

y1 ;
phi1 ;
cent ( 1 ) + r3 * sin ( phi3 ) ; % BODY2
cent ( 2 ) − r3 * cos ( phi3 ) ;
thet3 ;
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x3 ; % BODY3
y3 ;
thet4 ;
x1 − rs1 * sin ( phis1 ) ; % shutt le 1
y1 + rs1 * cos ( phis1 ) ;
thets1 ;
x1 + rs2 * sin ( phis2 ) ; % shutt le 2
y1 − rs2 * cos ( phis2 ) ;
thets2 ;
x3 + rs3 * cos ( phis3 ) ; % shutt le 3
y3 + rs3 * sin ( phis3 ) ;
thets3 ;
x3 − rs4 * cos ( phis4 ) ; % shutt le 4
y3 − rs4 * sin ( phis4 ) ;
thets4 ] ;

end

%% Parameter vector
% The input vector contains a l l parameters that can be changed without recomputing the functions
% Ergo , these parameters remain symbolic in the functions
syms Tout Tin
syms a l f a beta Cin Cout
input = [ phi1_0 omega Q Tin Tout Cin Cout a l f a beta ] . ’ ;
Torque = sym( zeros ( length (q) , 1 ) ) ;
Torque ( 4 ) = Tout ; % output axis torque

%% Input axis + torque
switch cell2mat ( para ( 1 ) )

case 2
% Input axis as DOF, prescribed torque
syms thet2 thet2d thet2dd

q = [ thet2 ; q ] ; % add DOF at
qd = [ thet2d ; qd ] ;
qdd = [ thet2dd ; qdd ] ;
X( 3 ) = thet2 ; % instead of prescribed phi1

Torque = [ Tin ; Torque ] ;
end

%% compute body v e l o c i t i e s
dXdt = jacobian (X , t ) ;
dXdq = jacobian (X , q) ;
Xd = dXdt + dXdq * qd ; %time d e r i v i a t i v e s of x in terms of q , qd , qdd

% write to l i b r a r y :
t r y
f ( para { : } ) . X = matlabFunction ( [ X ] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;
f ( para { : } ) . Xd = matlabFunction ( [ Xd ] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;

f ( para { : } ) . q = q ;
f ( para { : } ) . qd = qd ;
f ( para { : } ) . qdd = qdd ;
f ( para { : } ) . input = input ;
catch

disp ( ’ Generalised displacements cannot be written ’ )
end

clear dXdt dXdq Xd

eom_deformation.m

% F i l e computing s t r a i n u( x )
disp ( ’ Building e l a s t i c deformation r e l a t i o n s ’ )
% Strains as function of X , which i s function of q , −−> u(q)

switch cell2mat ( para ( 2 ) ) % deformation calculat ion

case 1 % to r s i o n a l s t r a i n : rotation of input and output used
u = [ (X( 4 )−X( 1 ) ) * cos (X( 3 ) ) + (X( 5 )−X( 2 ) ) * sin (X( 3 ) ) ;

−(X( 4 )−X( 1 ) ) * sin (X( 3 ) ) + (X( 5 )−X( 2 ) ) * cos (X( 3 ) ) ;
X( 6 )−X( 3 ) ; %i s t h i s direction correct ? ? ? ?

−(X( 7 )−X( 4 ) ) * cos (X( 9 ) ) − (X( 8 )−X( 5 ) ) * sin (X( 9 ) ) ;
(X( 7 )−X( 4 ) ) * sin (X( 9 ) ) − (X( 8 )−X( 5 ) ) * cos (X( 9 ) ) ;
X( 9 )−X( 6 ) ] ; %i s t h i s direction correct ? ? ? ?

case 3 % symbolic
syms u2y u2x u2thet u4x u4y u4thet
u = [ u2x u2y u2thet u4x u4y u4thet ] . ’ ;

case { 4 , 5 , 6 } % multidof
l s 0 = 0.0592; % absolute i n i t i a l hight in Y of s h u t t l e s

u = [ (X(10)−X( 1 ) ) * cos (X( 3 ) ) + (X(11)−X( 2 ) ) * sin (X( 3 ) ) ; % layer 1
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−(X(10)−X( 1 ) ) * sin (X( 3 ) ) + (X(11)−X( 2 ) ) * cos (X( 3 ) )−l s 0 ;
X(12)−X( 3 ) ;

(X(13)−X( 1 ) ) * cos (X( 3 ) ) + (X(14)−X( 2 ) ) * sin (X( 3 ) ) ;
−(X(13)−X( 1 ) ) * sin (X( 3 ) ) + (X(14)−X( 2 ) ) * cos (X( 3 ) ) + l s 0 ;

X(15)−X( 3 ) ;
(X(10)−X( 4 ) ) * cos (X( 6 ) ) + (X(11)−X( 5 ) ) * sin (X( 6 ) ) ;

−(X(10)−X( 4 ) ) * sin (X( 6 ) ) + (X(11)−X( 5 ) ) * cos (X( 6 ) )−l s 0 ;
X(12)−X( 6 ) ;

(X(13)−X( 4 ) ) * cos (X( 6 ) ) + (X(14)−X( 5 ) ) * sin (X( 6 ) ) ;
−(X(13)−X( 4 ) ) * sin (X( 6 ) ) + (X(14)−X( 5 ) ) * cos (X( 6 ) ) + l s 0 ;

X(15)−X( 6 ) ;
(X(16)−X( 7 ) ) * cos (X( 9 ) ) + (X(17)−X( 8 ) ) * sin (X( 9 ) )−l s 0 ; % layer 2 : output − shutt le

−(X(16)−X( 7 ) ) * sin (X( 9 ) ) + (X(17)−X( 8 ) ) * cos (X( 9 ) ) ;
X(18)−X( 9 ) ;

(X(19)−X( 7 ) ) * cos (X( 9 ) ) + (X(20)−X( 8 ) ) * sin (X( 9 ) ) + l s 0 ;
−(X(19)−X( 7 ) ) * sin (X( 9 ) ) + (X(20)−X( 8 ) ) * cos (X( 9 ) ) ;

X(21)−X( 9 ) ;
(X(16)−X( 4 ) ) * cos (X( 6 ) ) + (X(17)−X( 5 ) ) * sin (X( 6 ) )−l s 0 ; % layer 2 : ring − shutt le

−(X(16)−X( 4 ) ) * sin (X( 6 ) ) + (X(17)−X( 5 ) ) * cos (X( 6 ) ) ;
X(18)−X( 6 ) ;

(X(19)−X( 4 ) ) * cos (X( 6 ) ) + (X(20)−X( 5 ) ) * sin (X( 6 ) ) + l s 0 ;
−(X(19)−X( 4 ) ) * sin (X( 6 ) ) + (X(20)−X( 5 ) ) * cos (X( 6 ) ) ;

X(21)−X( 6 ) ;
] ;

end

switch cell2mat ( para ( 2 ) ) % incorporate beam arc length conservation
case 6

%PRBM
gamma = 0.8517; % n=0 , pure transverse loading
u( 2 ) = u( 2 ) +( (gamma* f l . l )−sqrt ( ( (gamma* f l . l )^2−u( 1 ) ^2) ) ) ;
u( 5 ) = u( 5 ) −((gamma* f l . l )−sqrt ( ( (gamma* f l . l )^2−u( 4 ) ^2) ) ) ;
u( 8 ) = u( 8 ) +( (gamma* f l . l )−sqrt ( ( (gamma* f l . l )^2−u( 7 ) ^2) ) ) ;
u(11) = u(11) −((gamma* f l . l )−sqrt ( ( (gamma* f l . l )^2−u(10) ^2) ) ) ;

u(13) = u(13) + ( (gamma* f l . l )−sqrt ( ( (gamma* f l . l )^2−u(14) ^2) ) ) ;
u(16) = u(16) −((gamma* f l . l )−sqrt ( ( (gamma* f l . l )^2−u(17) ^2) ) ) ;
u(19) = u(19) + ( (gamma* f l . l )−sqrt ( ( (gamma* f l . l )^2−u(20) ^2) ) ) ;
u(22) = u(22) −((gamma* f l . l )−sqrt ( ( (gamma* f l . l )^2−u(23) ^2) ) ) ;

end
clear f l

% write to l i b r a r y :
f ( para { : } ) . u = u ;
t r y
f ( para { : } ) . u = matlabFunction ( [ u ] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;
catch
disp ( ’Cannot write deformations ’ )
end

eom_eom.m

% Building the EoM
disp ( ’ Building EoM’ )

%% Energies
disp ( ’ Computing energies ’ )

%% Potential
switch cell2mat ( para ( 5 ) )

case { 1 , 2 , 3}
K = subs (K , [ f2y f4y ] , [ u( 1 ) u( 5 ) ] ) ; % motions of f l e x u r e mechanisms for non−l i n s t i f f n e s s

case 4
K = subs (K , [ fy2s1 fy2s2 fy3s1 fy3s2 fy4s3 fy4s4 fy3s3 fy3s4 ] . ’ , [ u ( 1 : 3 : 1 2 ) ; u ( 1 4 : 3 : end) ] ) ;

end

V=( 1/2* (u . ’ * K * u) ) ; %potential energy of the system

%% Kinetic
% computing v e l o c i t i e s
dXdt = jacobian (X , t ) ;
dXdq = jacobian (X , q) ;
Xd = dXdt + dXdq * qd ;

T0 = simpli fy ( 1/2* ( dXdt . ’ * M * dXdt ) ) ; % transport
T1 = simpli fy ( dXdt . ’ * M * (dXdq*qd) ) ; % mutual / coupling ,
T2 = simpli fy ( 1/2* ( ( qd . ’ * dXdq . ’ ) * M * (dXdq*qd) ) ) ; % r e l a t i v e
T = T0 + T1 + T2 ;

%% Lagrange equation , finding a l l the needed terms
disp ( ’ Building Lagrange equations ’ )

dT_dqd = ( jacobian (T , qd) ) . ’ ;
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DdT_Dtdqd = ( jacobian (dT_dqd , q) ) * qd . . .
+ ( jacobian (dT_dqd , qd) ) * qdd ;

dT_dq = ( jacobian (T , q) ) . ’ ;

dV_dq = ( jacobian (V , q) ) . ’ ;

Equations = (DdT_Dtdqd − dT_dq + dV_dq − Torque ) ; %assembling the Lagrange
fv = dV_dq ;
f t = DdT_Dtdqd − dT_dq ;

% Linearization
MM = jacobian ( f t , qdd) ;
KM = jacobian ( f t , q) + jacobian ( fv , q) ;
KM = subs (KM, qdd , zeros ( s i z e (qdd) ) ) ; %substitue qdd=0; l i n e a r i z a t i o n around steady motion

%% Proportional Damping
switch cell2mat ( para ( 4 ) )

case 3 % proportional damping

%% Linearisat ion point for proportional damping
phi1range = [45]/180* pi ; % substi tut ion angle at which to compute proportional damping
omega_ = 0*2* pi ; t_ = 0 ;

% formulate q and qd at l i n e a r i s a t i o n point :
c lear vars_eq
for i =1: length ( phi1range )

phi1_ = phi1range ( i ) ;
switch cell2mat ( para ( 6 ) ) % Coord sys : 1 = q_equi=0

case 2 % 5DOF
vars_eq ( : , i ) = [ 2 * ( phi1_+omega_* t_ ) , 0.009999680005120 ,. . .

( phi1_+omega_* t_ ) , ( phi1_+omega_* t_ ) , 2*omega_ , 0 , omega_ , omega_ ] . ’ ;
case 5 % multidof , s h u t t l e s polar

l s 0 = 0.0592; % absolute i n i t i a l hight in Y of s h u t t l e s
theta2_0 = phi1_+omega_* t_ ;
phidef1 = asin (−0.5* l 1 * sin ( theta2_0 ) / l s 0 ) ;
phidef2 = asin (−0.5* l 1 * cos ( theta2_0 ) / l s 0 ) ;
% only correct for purely v e r t i c a l ( y ) o f f s e t between axi s !
vars_eq ( : , i ) = [ 2*( theta2_0 ) , 0.009999680005120 , ( theta2_0 ) , ( theta2_0 ) , . . .

( theta2_0 ) +phidef1 , ls0 , theta2_0 , . . .
( theta2_0 )−phidef1 , ls0 , theta2_0 , . . .
( theta2_0 ) +phidef2 , ls0 , theta2_0 , . . .
( theta2_0 )−phidef2 , ls0 , theta2_0 , . . .
2*omega_ , 0 , omega_ , omega_ , . . .

−l s 0 * cos ( theta2_0 ) *omega_ , 0 , omega_ , . . .
l s 0 * cos ( theta2_0 ) *omega_ , 0 , omega_ , . . .

−l s 0 * sin ( theta2_0 ) *omega_ , 0 , omega_ , . . .
l s 0 * sin ( theta2_0 ) *omega_ , 0 , omega_ ] . ’ ;

c lear l s 0 theta2_0 phidef1 phidef2
end

end
clear phi1_ i

% OR, more accurate : import l i n e a r i s a t i o n point from Newton Raphson scheme manually :
% vars_eq = . . .

%% Bearing f r i c t i o n
CMbearing = sym( zeros ( length (q) ) ) ; % matrix for bearing f r i c t i o n
switch cell2mat ( para ( 1 ) )
case 1 % prescribed motion

CMbearing ( 4 ) = Cout ;
case 2 % prescribed torque ; add extra coordinate

vars_eq = [ phi1range+omega_* t_ ; vars_eq ( 1 : end / 2 , : ) ; ones ( s i z e ( phi1range ) ) *omega_ ; vars_eq (end/2+1:end , : ) ] ;
CMbearing ( 1 ) = Cin ;
CMbearing ( 5 ) = Cout ;

end

%% Adding a l l damping terms
% Proportional damping , only diagonal terms , with respect to l i n e a t i s a t i o n point
CMprop = diag ( a l f a . * diag ( double ( subs (MM, q , vars_eq ( 1 : end/2) ) ) ) + beta . * diag ( double ( subs (KM, [ q ; qd ] , vars_eq )

) ) ) ;

C = CMprop + CMbearing ;

% Recomputing the EoM including damping
clear Equations ;
Equations = (DdT_Dtdqd − dT_dq + dV_dq + CMprop* ( qd−vars_eq (end/2+1:end) ) + CMbearing*qd − Torque ) ;

otherwise
C = zeros ( length (q) ) ; % empty damping matrix

end

CM = jacobian ( f t , qd) + C ; % o v e r a l l damping matrix , including i n e r t i a l terms
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%% Solving
disp ( ’ Solving Lagrange equations ’ )

Fv = −(Equations − MM*qdd) ;
qddsol = inv (MM) *Fv ;

%% Dynamic equilibrium
dynequilibrium = qddsol ;
dyntangst i f f = jacobian ( dynequilibrium , [ q ; qd ] ) ; % tangent s t i f f n e s s matrix for Newton−Raphson

%% Formulation of separate forces of postprocessing
Feuler = MM*qdd ;
F i n e r t i a = DdT_Dtdqd − dT_dq − Feuler ;
F e l a s t i c = dV_dq ;
switch cell2mat ( para ( 4 ) )

case 3 % proportional damping
Fdamper = CMprop*qd + CMbearing*qd ;

otherwise
Fdamper = C*qd ;

end

forces = [ Feuler , Finert ia , F e l a st i c , Fdamper ] ;

%% Writing to l i b r a r y
% Write function f i l e for EoM ( f a s t e r integrat ion )
matlabFunction ( [ qd ; qddsol ] , ’ Vars ’ , { t , [ q ; qd ; input ] } , ’ F i l e ’ , ’ f_eom ’ ) ;

i f writefun
disp ( ’ Writing functions to l i b r a r y ’ )
%% Needed for modal analysis
f ( para { : } ) .MM = matlabFunction ( [MM] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;
f ( para { : } ) .CM = matlabFunction ( [CM] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;
f ( para { : } ) .KM = matlabFunction ( [KM] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;

f ( para { : } ) . dynequilibrium = matlabFunction ( [ dynequilibrium ] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;
f ( para { : } ) . dyntangst i f f = matlabFunction ( [ dyntangst i f f ] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;

%% Needed for time integrat ion
f ( para { : } ) .eom = matlabFunction ( [ qd ; qddsol ] , ’ Vars ’ , { t , [ q ; qd ; input ] } ) ;

t r y
f ( para { : } ) .CMprop = matlabFunction ( [CMprop] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;
catch
end
f ( para { : } ) . K = matlabFunction ( [ K] , ’ Vars ’ , { [ q ; qd ; input ; t ] } ) ;
f ( para { : } ) .M = matlabFunction ( [M] , ’ Vars ’ , [ q ; qd ; input ; t ] ) ; %% why not as c e l l ? ? gives error
f ( para { : } ) . o f f s e t = l 1 ;

f ( para { : } ) . forces = matlabFunction ( [ forces ] , ’ Vars ’ , { [ q ; qd ; qdd ; input ; t ] } ) ;
end

clear writefun

f_DP_stiffness.m

function [ ky , kx , kthet ] = f _ s t i f f n e s s ( y , l , t ,w, a , p1 , p2 , E)
%% S t i f f n e s s e s of paired double parallelogram f l e x u r e (DP−DP)
I = w* t ^3/12; % second moment of i n e r t i a of f l e x u r e beam

k110 = 6 / ( (3 −6*a +4*a^2) *a ) ;
k111 = ( 3*(15 −50*a +60*a^2 −24*a^3) ) / ( 5*(3 −6*a +4*a^2)^2 ) ;
g11 = (2* a^3 * (105 −630*a +1440*a^2 −1480*a^3 +576*a^4) ) / ( 175* (3 −6*a +4*a^2)^3 ) ;
k33 = 6 / ( a* ( t / l ) ^2 ) ;

%% DP−DP f l e x u r e
% motion direction
ky = 2*E* I * k110/ l ^3;
% constraint direction
kx = (2*E* I / l ^3) * k33 / (1 + ( k33 * ( g11+ ( k111^2/k110 ) ) * ( y /(2* l ) ) ^2) ) ;
% angular direction
kthet = (E* I / l ^3) * ( (4* ( p2/2)^2 * ( p1/2) ^2) / ( ( p2/2)^2 +(p1/2) ^2) ) * ( k33 / (1 + k33 * g11 * ( y /(2* l ) ) ^2) ) ;

f_P_stiffness.m

function [ ky , kx , kthet ] = f _ P _ s t i f f n e s s ( y , l , t ,w, a , p , E)
%% S t i f f n e s s e s of paired double parallelogram f l e x u r e
I = w* t ^3/12; % second moment of i n e r t i a of f l e x u r e beam

k110 = 6 / ( (3 −6*a +4*a^2) *a ) ;
k111 = ( 3*(15 −50*a +60*a^2 −24*a^3) ) / ( 5*(3 −6*a +4*a^2)^2 ) ;
g11 = (2* a^3 * (105 −630*a +1440*a^2 −1480*a^3 +576*a^4) ) / ( 175* (3 −6*a +4*a^2)^3 ) ;
k33 = 6 / ( a* ( t / l ) ^2 ) ;
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%% P f l e x u r e
% motion direction
ky = 2*E* I * k110/ l ^3;
% constraint direction
kx = (2*E* I / l ^3) * k33 / (1 + k33 * g11 * ( y/ l ) ^2 ) ;
% angular direction
kthet = (2*E* I / l ^3) * (p/2)^2 * ( k33 / (1 + k33 * g11 * ( y/ l ) ^2) ) ;

findequilibrium.m

function [ vars_eq , error , i t e r a t i o n s ] = findequilibrium ( f , para , sett ings , input , t_ , i n i t )
% Function to i t e r a t e to a steady motion equilibrium configuration
% S t a r t i n g from an i n i t i a l guess ’ i n i t ’
% ’ f ’ contains a l l needed funcions , ’papa ’ contains the scenario parameters
% ’ sett ings ’ contain max no . of steps and tolerance
% ’ input ’ contains the model parameters

%%
phi1_ = input ( 1 ) ;
omega_ = input ( 2 ) ;
l 1 = f ( para { : } ) . o f f s e t ;

% Newton raphson parameters :
t o l = s e t t i n g s ( 1 ) ; % tolerance at which to stop i t e r a t i o n s
nmax = s e t t i n g s ( 2 ) ; % maximum number of N−R i t e r a t i o n s DEFINED BY FUNCTION INPUT
display = 0 ; % display i t e r a t i o n s in command screen ?

%% Model parameters
% Check existance of data for current parameters
t r y

i f isempty ( f ( para { : } ) .MM) ==1;
disp ( ’No data for these model parameters ’ )
return ; end

catch
disp ( ’No data for these model parameters ’ )
return

end

%% Equilibrium conditions
equilibrium = f ( para { : } ) . dynequilibrium ;
t a n g s t i f f = f ( para { : } ) . dyntangst i f f ;

%% Load variables for current model parameters
q = f ( para { : } ) . q ;
qd = f ( para { : } ) . qd ;

%% Maximum i t e r a t i o n step
switch cell2mat ( para ( 2 ) ) % deformation

case { 1 , 2 , 3 , 4 }
maxcorr = 5e−2; % maximum i t e r a t i o n step s i z e

case { 5 , 6 }
maxcorr = 1e−2; % maximum i t e r a t i o n step s i z e

end

%% I n i t i a l guess for equilibrium
i f isempty ( i n i t )
switch cell2mat ( para ( 6 ) ) % Coord sys : 1 = q_equi=0

case 1
vars_eq = zeros (2* length ( f ( para { : } ) . q) , 1 ) ;

case 2
vars_eq = [ 2 * ( phi1_+omega_* t_ ) , 0.009999680005120* l 1 /20e−3, ( phi1_+omega_* t_ ) , ( phi1_+omega_* t_ ) , . . .

2*omega_ , 0 , omega_ , omega_ ] . ’ ;
case 3 % 4 dof , global coordinates

vars_eq = [ l 1 /2 , l 1 /2 , ( phi1_+omega_* t_ ) , ( phi1_+omega_* t_ ) , 0 . 1 , l 1 *2*omega_ , omega_ , omega_ ] . ’ ;
% 20mm misalignment , 45deg

case 4 % multidof
l s 0 = 0.0592; % absolute i n i t i a l hight in Y of s h u t t l e s
theta2_0 = phi1_+omega_* t_ ;
% only correct for purely v e r t i c a l ( y ) o f f s e t between axi s !
vars_eq = [ 2 * ( theta2_0 ) , 0.009999680005120* l 1 /20e−3, ( theta2_0 ) , ( theta2_0 ) , . . .

−l s 0 * sin ( theta2_0 ) , l s 0 * cos ( theta2_0 ) , theta2_0 , . . .
l s 0 * sin ( theta2_0 ) ,− l s 0 * cos ( theta2_0 ) , theta2_0 , . . .
l s 0 * cos ( theta2_0 ) , l s 0 * sin ( theta2_0 ) +l1 , theta2_0 , . . .

−l s 0 * cos ( theta2_0 ) ,− l s 0 * sin ( theta2_0 ) +l1 , theta2_0 , . . .
2*omega_ , 0 , omega_ , omega_ , . . .

−l s 0 * cos ( theta2_0 ) *omega_ , −l s 0 * sin ( theta2_0 ) *omega_ , omega_ , . . .
l s 0 * cos ( theta2_0 ) *omega_ , l s 0 * sin ( theta2_0 ) *omega_ , omega_ , . . .

−l s 0 * sin ( theta2_0 ) *omega_ , l s 0 * cos ( theta2_0 ) *omega_+l1 , omega_ , . . .
l s 0 * sin ( theta2_0 ) *omega_ , −l s 0 * cos ( theta2_0 ) *omega_+l1 , omega_ ] . ’ ;

case 5 % multidof , s h u t t l e s polar
l s 0 = 0.0592; % absolute i n i t i a l hight in Y of s h u t t l e s
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theta2_0 = phi1_+omega_* t_ ; % input axis angle
phidef1 = asin (−0.5* l 1 * sin ( theta2_0 ) / l s 0 ) ;
phidef2 = asin (−0.5* l 1 * cos ( theta2_0 ) / l s 0 ) ;
% only correct for purely v e r t i c a l ( y ) o f f s e t between axi s !
vars_eq = [ 2*( theta2_0 ) , 0.009999680005120* l 1 /20e−3, ( theta2_0 ) , ( theta2_0 ) , . . .

( theta2_0 ) +phidef1 , ls0 , theta2_0 , . . .
( theta2_0 )−phidef1 , ls0 , theta2_0 , . . .
( theta2_0 ) +phidef2 , ls0 , theta2_0 , . . .
( theta2_0 )−phidef2 , ls0 , theta2_0 , . . .
2*omega_ , 0 , omega_ , omega_ , . . .

−l s 0 * cos ( theta2_0 ) *omega_ , 0 , omega_ , . . .
l s 0 * cos ( theta2_0 ) *omega_ , 0 , omega_ , . . .

−l s 0 * sin ( theta2_0 ) *omega_ , 0 , omega_ , . . .
l s 0 * sin ( theta2_0 ) *omega_ , 0 , omega_ ] . ’ ;

end

switch cell2mat ( para ( 1 ) )
case 2 %prescribed torque

vars_eq = [ phi1_+omega_* t_ ; vars_eq ( 1 : end/2) ; omega_ ; vars_eq (end/2+1:end) ] ;
end

else
vars_eq = i n i t ;

end

vars = [ q ; qd ] ;
vars_eq0 = vars_eq ;
dof = length (q) ; %degrees of freedom

% In case of prescribed torque s t a r t i n g from s t a n d s t i l l , abort Newton
% Raphson and only use i n i t i a l conditions as above
i f cell2mat ( para ( 1 ) ) ==2 && omega_==0 && input ( 4 ) >0

i t e r a t i o n s = 0 ; error = 0 ;
disp ( ’ S t a r t i n g from s t a n d s t i l l : Newton Raphson aborted ’ )
return

end

%% Linearization
reference = 1 ;

%% Find equilibrium point : Newton Raphson :
% Newton Raphson i t e r a t i o n
eqerror = equilibrium ( [ vars_eq ; input ; t_ ] ) ;

n=0; % i t e r a t i o n counter
i f display

disp ( [ ’ Equilibrium for omega = ’ , num2str (omega_/(2* pi ) ) , ’ Hz, phi1_0 = ’ , num2str ( phi1_/ pi *180) , ’ deg ’ ] )
disp ( [ ’ I n i t i a l r e l a t i v e error norm = ’ num2str (norm( eqerror ) / reference ) ] ) %norm( ) =vector length
disp ( [ ’ S t a r t i n g Newton−Raphson i t e r a t i o n s (nmax= ’ i n t 2 s t r (nmax) ’ , t o l = ’ num2str ( t o l ) ’ ) ’ ] )

end
while (norm( eqerror ) > t o l * reference ) & (n<nmax) ,

n = n+1;

% evaluate tangent s t i f f n e s s matrix at current solution
K_fix_eq = t a n g s t i f f ( [ vars_eq ; input ; t_ ] ) ;

dvars_eq = (−K_fix_eq \ eqerror ) ; % evaluate correction
i f norm( dvars_eq ) >maxcorr % maximum correction

dvars_eq = dvars_eq *maxcorr/norm( dvars_eq ) ;
i f display
disp ( ’ Maximum correction ’ )
end

end

vars_eq = vars_eq + dvars_eq ; % update equilibrium position

% re−evaluate error
eqerror = ( equilibrium ( [ vars_eq ; input ; t_ ] ) ) ;

i f display
disp ( [ ’ Error norm = ’ , num2str (norm( eqerror ) / reference ) , ’ , a f t e r ’ num2str (n) , ’ steps ’ ] )

end
end

%% End of loop
i t e r a t i o n s = n ; % number of i t e r a t i o n steps used
error = norm( eqerror ) / reference ; % number of i t e r a t i o n steps used

i f n==nmax
disp ( [ ’ Error tolerance not reached at ’ , num2str (omega_/(2* pi ) ) , ’Hz and ’ , . . .

num2str ( phi1_ / pi *180) , ’ deg ! , para ( 2 ) =?? ’ ] )
end

i f display % display i t e r a t i o n s
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t r y
disp ( ’ Last correction : ’ )
disp ( [ ’ ’ , num2str ( dvars_eq ’ ) ] )

catch
end
disp ( ’ Equilibrium found at : ’ )
disp ( [ ’ ’ , num2str ( vars_eq ’ ) ] )
disp ( ’ Acceleration : ’ )
disp ( [ ’ ’ , num2str ( eqerror ’ ) ] )

end

disp ( [ ’ Equilibrium for omega = ’ , num2str (omega_/(2* pi ) ) , ’ Hz, phi1_ = ’ , num2str ( phi1_/ pi *180) , ’ deg , in ’ , . . .
num2str (n) , ’ steps , with error ’ , num2str (norm( eqerror ) / reference ) ] )

modal.m

% Modal analysis

%% I n i t i a l i z e
%% Time integrat ion f i l e
i f e x i s t ( ’ f ’ , ’ var ’ )

c learvars −except f
e lse

clear a l l
load functions . mat

end

%% Model parameters
% Parameter choice :
para = { 1 ; % Presciption of : 1 = motion , 2 = torque

1 ; % Deformation calculat ion : 1 = torsion : input /output , 3 = symbolic , 4 = multidof ,
% 6 = multidof + PRBM constraint

1 ; % I n e r t i a : 1 = SolidWorks , 3 = symbolic , 4 = multidof
1 ; % Damping : 1 = none , 3 = proportional damping
1 ; % S t i f f n e s s : 1 = nonlinear , 2 = l inear , 3 = symbolic , 4 = multidof
2 } ;% Coord sys : 1 = q_equi =0 , 2 = polar , 3 = global , 4 = multidof global , 5 = multidof polar

% Check existance of data for current parameters
t r y

i f isempty ( f ( para { : } ) .eom) ==1;
disp ( ’No data for these model parameters ’ )
return ; end

catch
disp ( ’No data for these model parameters ’ )
return

end

%% Range and i n i t i a l guess for equilibrium
t_ = 0 ;
Q = 0 ;
range . omega = [ 0 : 2 : 1 0 ] * 2 * pi ; % range for input axle v e l o c i t y
range . phi1 = [0:45:180]/180* pi ; % range for input axle angle
omega_ = range . omega( 1 ) ;
phi1_ = range . phi1 ( 1 ) ;

% model parameters
Tin = 0 ; % input axle torque
Tout = 0 ; % output axle torque
Cin = 0 ; % output axle damping
Cout = 0 ; % output axle damping
a l f a = 0 ; % modal damping , mass proportional i ty constant
beta = 0 ; % modal damping , s t i f f n e s s proportional i ty constant

% Newton raphson parameters :
t o l = 1e−7;

%% Load variables for current model parameters
l 1 = f ( para { : } ) . o f f s e t ;
q = f ( para { : } ) . q ;
qd = f ( para { : } ) . qd ;
qdd = f ( para { : } ) . qdd ;
dof = length (q) ; %degrees of freedom
input = f ( para { : } ) . input ;
syms t phi1
phi1 = input ( 1 ) + input ( 2 ) * t ;

% input axis location :
x1 = 0 ;
y1 = 0 ;

% output axis location :
x3 = 0 . 0 0 ;
y3 = f ( para { : } ) . o f f s e t ;
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cent = [ ( x3−x1 ) / 2 ; ( y3−y1 ) / 2 ] ;

%% Linearization
for iomega = 1 : length ( range . omega)

disp ( [ ’ Current freq : ’ , num2str ( range . omega( iomega ) /(2* pi ) ) ] )
for iphi = 1 : length ( range . phi1 )

omega_ = range . omega( iomega ) ;
phi1_ = range . phi1 ( iphi ) ;

%% Find equilibrium point : Newton Raphson :
input_eq = [ phi1_ , omega_ , Q, Tin , Tout , Cin , Cout , al fa , beta ] . ’ ;

switch cell2mat ( para ( 6 ) ) % Coordinate sys
case { 6 , 7 } % fixed axles and frame

l s 0 = 0.0592; % absolute i n i t i a l hight in Y of s h u t t l e s
l 1 = f ( para { : } ) . o f f s e t ;
[ vars_eq , i t r e r r o r , i t r s t e p s ] = findequilibrium ( f , para , [ 1 e−14;80] , input_eq , t_ , [ ] ) ;

case 8 % simple parallelogram , shutt le 1 with only s t i f f n e s s to f ixed input axle
l s 0 = 0.0592; % absolute i n i t i a l hight in Y of s h u t t l e s
vars_eq = [ 0 , ls0 , 0 , 0 , 0 , 0 ] ’ ;
i t r s t e p s = 0 ; i t r e r r o r = 0 ;

otherwise
switch cell2mat ( para ( 2 ) ) % Deformation

case { 1 , 2 } % 4/5 DOF
l 1 = f ( para { : } ) . o f f s e t ;
[ vars_eq , i t r e r r o r , i t r s t e p s ] = findequilibrium ( f , para , [ 1 e−8;50] , input_eq , t_ , [ ] ) ;

case { 4 , 5 , 6 } % multidof
l s 0 = 0.0592; % absolute i n i t i a l hight in Y of s h u t t l e s
l 1 = f ( para { : } ) . o f f s e t ;
paratemp = para ; paratemp ( 2 ) = { 4 } ;
[ vars_eq , i t r e r r o r , i t r s t e p s ] = findequilibrium ( f , { 1 ; 4 ; 4 ; 1 ; 4 ; 5 } , [ 5 e−7;50] , input_eq , t_ , [ ] ) ;
[ vars_eq , i t r e r r o r , i t r s t e p s 2 ] = findequilibrium ( f , para , [ 1 e−7;100] , input_eq , t_ , vars_eq ) ;
i t r s t e p s = i t r s t e p s + i t r s t e p s 2 ; c lear i t r s t e p s 2 paratemp

end
end

% save equilibrium point
data_eq ( iomega , iphi , : ) = [ vars_eq ; input_eq ; t_ ] ; % generalized coordinates
data_eqx ( iomega , iphi , : ) = f ( para { : } ) . X ( [ vars_eq ; input_eq ; t_ ] ) ; % absolute coordinates
d a t a _ i t r s t e p s ( iomega , iphi ) = i t r s t e p s ; % number of i t e r a t i o n steps used
d a t a _ i t r e r r o r ( iomega , iphi ) = i t r e r r o r ; % f i n a l i t e r a t i o n error

%% Linearize system matrices
% Build EoM for four generalized coordinates , with phi1 as parameter :
MMsub = f ( para { : } ) .MM( [ vars_eq ; input_eq ; t_ ] ) ;
CMsub = f ( para { : } ) .CM( [ vars_eq ; input_eq ; t_ ] ) ;
KMsub = f ( para { : } ) .KM( [ vars_eq ; input_eq ; t_ ] ) ;

%% Solving Eigen value problem
A = [MMsub zeros ( dof ) ; zeros ( dof ) KMsub ] ;
B = [CMsub KMsub; −KMsub zeros ( dof ) ] ;

[ eigvec , lambda ] = eig (−B, A) ; % det (A*lambda+B) =0 −−> −B*V = A*V*lmabda

data_eigvec ( iomega , iphi , : , : ) = eigvec ;
data_lambda ( iomega , iphi , : ) = diag ( lambda) ;
data_Lre ( iomega , iphi , : ) = ( r e a l ( diag ( lambda) ) ) ; % saves im and re part of lambda for every step , in ascending order
data_Lim ( iomega , iphi , : ) = ( imag ( diag ( lambda) ) ) ;

data_Lre_sort ( iomega , iphi , : ) = sort ( r e a l ( diag ( lambda) ) ) ; % saves im and re part of lambda for every step , ascending
data_Lim_sort ( iomega , iphi , : ) = sort ( imag ( diag ( lambda) ) ) ;

% S t i f f n e s s e s and s t r a i n for eq point
data_Ksub ( iomega , iphi , : ) = double ( diag ( f ( para { : } ) . K ( [ vars_eq ; input_eq ; t_ ] ) ) ) ;
data_usub ( iomega , iphi , : ) = double ( f ( para { : } ) . u ( [ vars_eq ; input_eq ; t_ ] ) ) ;

c lear lambda eigvec MMsub CMsub KMsub A B input_eq i t r s t e p s i t r e r r o r
end
% vars_eq = vars_eq0 ; % r e s e t t i n g s t a r t i n g point of i t e r a t i o n s
% disp ( [ ’ Step omega = ’ , num2str ( range . omega( i ) /(2* pi ) ) ] )
end
clear vars_eq eigvec omega_ phi1_

% s t a t i c eigen frequencies :
disp ( ’ S t a t i c eigen frequencies found at [Hz ] : ’ )
disp ( num2str ( squeeze ( data_Lim_sort ( 1 , 1 , end/2+1:end) ) /(2* pi ) ) ) ;
disp ( [ ’Maximum equilibrium r e l a t i v e error norm = ’ , num2str (max(max( d a t a _ i t r e r r o r ) ) ) ] )

integration.m

%% Time integrat ion f i l e
disp ( ’Time integrat ion ’ )
i f e x i s t ( ’ f ’ , ’ var ’ )
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clearvars −except f
e lse

clear a l l
load functions . mat

end

%% Model parameters
% Parameter choice :
para = { 2 ; % Presciption of : 1 = motion , 2 = torque

1 ; % Deformation calculat ion : 1 = torsion : input /output , 3 = symbolic , 4 = multidof ,
% 6 = multidof + PRBM constraint

1 ; % I n e r t i a : 1 = SolidWorks , 3 = symbolic , 4 = multidof
3 ; % Damping : 1 = none , 3 = proportional damping
1 ; % S t i f f n e s s : 1 = nonlinear , 2 = l inear , 3 = symbolic , 4 = multidof
2 } ;% Coord sys : 1 = q_equi =0 , 2 = polar , 3 = global , 4 = multidof global , 5 = multidof polar

% Check existance of data for current parameters
t r y

i f isempty ( f ( para { : } ) .eom) ==1;
disp ( ’No data for these model parameters in l i b r a r y ’ )
return ; end

catch
disp ( ’No data for these model parameters in l i b r a r y ’ )
return

end

%% Integration conditions
tsim = [0 1 ] ; % time span of integrat ion

phi1_0 = 0/180* pi ; % i n i t i a l angle of input axle
omega = 100/60*2* pi ; % i n i t i a l v e l o c i t y of input axle
Q = 0 ;

Tin = . 0 4 5 ; ; % input axle torque
Tout = −.045; % output axle torque
Cin = 0 ; % output axle damping
Cout = 0 ; % output axle damping
a l f a = 0 ; % modal damping , mass proportional i ty constant
beta = 0 ; % modal damping , s t i f f n e s s proportional i ty constant

input = [ phi1_0 omega Q Tin Tout Cin Cout a l f a beta ] . ’ ;

%% I n i t i a l conditions for d i f f e r e n t scenarios
disp ( ’ I n i t i a l conditions ’ )

% Computing the i n i t i a l conditions using Newton−Raphson
switch cell2mat ( para ( 2 ) ) % Deformation

case { 1 , 2 , 4 } % simple
l s 0 = 0.0592; % absolute i n i t i a l hight in Y of s h u t t l e s
l 1 = f ( para { : } ) . o f f s e t ;
[ i n i t , i t r e r r o r , i t r s t e p s ] = findequilibrium ( f , para , [ 1 e−12;100] , input , tsim ( 1 ) , [ ] ) ;

case { 5 , 6 } % including PRBM kinematics
l s 0 = 0.0592; % absolute i n i t i a l hight in Y of s h u t t l e s
l 1 = f ( para { : } ) . o f f s e t ;
[ i n i t , i t r e r r o r , i t r s t e p s ] = findequilibrium ( f , { 2 ; 4 ; 4 ; 3 ; 4 ; 5 } , [ 1 e−10;500] , input , tsim ( 1 ) , [ ] ) ;
[ i n i t , i t r e r r o r , i t r s t e p s 2 ] = findequilibrium ( f , para , [ 1 e−9;500] , input , tsim ( 1 ) , i n i t ) ;

end

%% ODE Solver parameters :
% ODE23 introduces ’damping ’ , vibrat ions die out
disp ( ’ Integration ’ )
AbsTol = [300 600 0.02 300 3 0 0 , . . . % 5dof

100 200 1 100 1 0 0 ] ’ ;
% AbsTol = [300 600 0.02 300 300 , 600 0.02 300 , 600 0.02 300 , 600 0.02 300 , 600 0.02 3 0 0 , . . . % 17 dof
% 100 200 1 100 100 , 200 1 100 , 200 1 100 , 200 1 100 , 200 1 1 0 0 ] ’ ;

opts = odeset ( ’ AbsTol ’ , AbsTol*1e−3, ’ RelTol ’ ,1e−3, ’MaxStep ’ ,1e−5) ;

%% ODE
% multiple ODE solvers can be used ; ODE45 and ODE15s gave good r e s u l t s
[T , Y ] = ode15s (@( t , y ) f ( para { : } ) .eom( t , [ y ; input ] ) , tsim , i n i t , opts ) ;

%% Post processing
disp ( ’ Post processing ’ )
% calculat ion of body coordinates from gen coord
Tshort = [ ] ; j =1;

poststep = round ( length (T) /2e3 ) ;
poststep ( poststep <1) =1;

c lear t y yd Tshort x xd u K F forces
disp ( ’ Forces not computable yet ! ’ )

plotindex = round (0* length (T) +1) : poststep : length (T) ;
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dofq = length ( f ( para { : } ) . q) ;
dofX = dofq +5;

for i =plotindex
t = T( i ) ;
y = Y( i , : ) ;
yd = f ( para { : } ) .eom( t , [ y . ’ ; input ] ) . ’ ;
Tshort ( j ) = T( i ) ;
x ( j , : ) = f ( para { : } ) . X( [ y ’ ; input ; t ] ) ;
xd ( j , : ) = f ( para { : } ) . Xd( [ y ’ ; input ; t ] ) ;

% spring elongations :
u( j , : ) = f ( para { : } ) . u ( [ y . ’ ; input ; t ] ) ;
Ktemp = f ( para { : } ) . K ( [ y . ’ ; input ; t ] ) ;
K( j , : ) = diag (Ktemp) ;
F( j , : ) = K( j , : ) . * u( j , : ) ;

forces ( j , : , : ) = f ( para { : } ) . forces ( [ y ’ ; yd (end/2+1:end) ’ ; input ; t ] ) ; % postproc step no , q no , force no ( Feuler ,
Finertia , F e l a s t i c , Fdamper)

j = j +1;
end
clear i j t y

% matrix to substract prescribed angle from angular generalised coordinates
switch cell2mat ( para ( 6 ) ) % Coord sys : 1 = q_equi=0

case 1
i f a n g l e = [0 0 0 0 ] ;

case 2
i f a n g l e = [2 0 1 1 ] ;

case 3
i f a n g l e = [0 0 1 1 ] ;

case { 4 }
i f a n g l e = [2 0 1 1 , . . .

0 0 1 0 0 1 0 0 1 0 0 1 ] ;
case { 5 }

i f a n g l e = [2 0 1 1 , . . .
1 0 1 1 0 1 1 0 1 1 0 1 ] ;

case { 6 }
i f a n g l e = [0 0 1 0 0 1 0 0 1 0 0 1 ] ;

case { 7 }
i f a n g l e = [1 0 1 1 0 1 1 0 1 1 0 1 ] ;

case 8
i f a n g l e = [1 0 1 ] ;

end

switch cell2mat ( para ( 1 ) )
case 2 %prescribed torque

i f a n g l e = [ 1 , i f a n g l e ] ;
phi1 = Y ( : , 1 ) * i f a n g l e ;

% v e l o c i t y di f fernce between input and output :
t h e t a d i f f = Y ( : , 1 ) − Y ( : , 4 ) ; % lag of output axis wrt input
v d i f f = (Y ( : , end/2+5)−Y ( : , end/2+1) ) . / Y ( : , end/2+1) ; % using general coordinates

otherwise % prescribed motion
phi1 = ( phi1_0 + omega*T) * i f a n g l e ;

t h e t a d i f f = phi1 ( : , 4 ) − Y ( : , 4 ) ; % lag of output axis wrt input
v d i f f = (Y ( : , end/2+4)−omega ) . /omega ; % using general coordinates

end

disp ( s p r i n t f ( ’Max energy dif ference : %0.3e J ’ , abs (max( Etot )−min( Etot ) ) ) )
disp ( ’ Post processing done ’ )
disp ( ’ Finished ’ )



D
Experimental setup

D.1. Description of mechanical setup
In this section, a short overview of the experimental setup and all the used components is given. This will be
done by the means of figure D.1, indicating the components. The setup and all used prototypes were build
from scratch by the author.

Figure D.1: Experimental setup indicating the different parts.
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1. IDT NX4S1 high speed camera, recording at 1000 fps with a resolution of 1024×1024.

2. IDT strobe light, coupling to the IDT camera controller, flashing in sync with the camera. Care must be
taken that in the camera image no reflections of the strobe light are visible, as these appear as bright
spots on the images. These disrupt the motion tracking software, as the used marker points are white
as well.

3. Output axle support structure. This structure can be displaced horizontally to set the parallel axle mis-
alignment.

4. Output axle encoder. Baumer EIL580P. The number of pulse per rotation given can be programmed
between 1 and 65536. The experiments are executed using 2048 pulses per rotation. Furthermore, a
reference pulse at a programmed zero angle point is given.

5. Output axle plain/journal bearing. The axial play of the bearing can be adjusted manually. Some axial
pre-stress can be added using a disc spring. This way, bearing friction can be changed, which then will
be the output load for the compliant coupling. The bearing is lubricated using some sewing machine
oil.

6. Transparent cast PMMA plate in which the output axle bearing is fixed. This way the camera has a clear
perpendicular sight upon the compliant coupling.

7. Prototype of the compliant coupling. The coupling is pinned to both axles and secured for further
vibrations with a drop of Loctite. On the black PMMA bodies of the coupling, round with marker points
are sticked which are used as reference points by the motion tracking software.

8. Background for the high speed camera images. It was determined that a matte grey paper background
gave the best results for the motion tracking.

9. Input axle deep groove ball bearings, one at each end of the axle. Axial play is removed by applying
some axial pre-stress between both bearings using a disk spring.

10. Input axle support structure. In the current setup for parallel misalignment couplings, this structure
is fixed to the base plate. For angular misalignment couplings, this structure can be placed under an
angle.

11. Input axle encoder, similar to the output axle encoder, but with a hollow shaft so that it can be placed
at the middle of the axle.

12. Brass flywheel to even out the rotational velocity of the input axle driven by the DC motor. A groove
is machined in the outer surface of the flywheel. When some transmission ratio between the driving
DC motor and the setup, the direct coupling between motor and input axle can be removed, and this
groove can be used for a belt drive to the motor (using a belt with round cross section).

13. Coupling between DC motor and input axle. Ruland Aluminium Flexible Beam Coupling, FCMR25-6-
6-A.

14. Crouzet Brushed DC Motor, 15.7 W, 12 V DC, 75 mNm, 2000 rpm, 6mm Shaft Diameter.

To study the velocity error, the optical encoders are used. For the data acquisition and analysis a Müller-
BBM PAK system is used, measuring the 2048 pulses with dedicated tacho channels with a sampling fre-
quency of 50 MHz and the reference pulses with 50 kHz. Furthermore, motor current and voltage is measured.
Data analysis is done using the PAK software. For velocity ramp up measurements the DC motor power sup-
ply voltage is controlled by an Agilent function generator creating a linear ramp up in motor voltage.

To get insight in the planar motion during rotation, a IDT NX4S1 high speed camera system is used, shoot-
ing 1000 frames per second and placed perpendicularly above the coupling, for which the upper axle support
structure is made of transparent PMMA cast plate. White marker points on the different bodies of the cou-
pling, also visible in the close up of figure ??, are tracked during motion using IDT Motion Studio. At every
frame a pulse is send to the PAK system to be able to sync the two measuring systems.
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Figure D.2: The prototype placed in the setup.

Figure D.3: Detailed picture of the prototype used.

Figure D.4: Setting the amount of misalignment using a depth gauge.
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Figure D.5: The effect of dynamics on a compliant coupling.

Figure D.6: Dimensions of the used prototypes. The thickness of each PMMA layer is 5 mm
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D.2. Measurement of torsional vibration
In this section, some results from the torsional vibration measurements showing the velocity error are given.

Figure D.7: Campbell diagram showing the torsional vibration of the input axle, without anything connected to it. The color scale has
unit RPM.

Figure D.8: Campbell diagram showing the dimensionless velocity error (colour scale) between input and output axle, for a the reference
measurement using the commercial compliant bellow coupling. Zero axle misalignment.
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Figure D.9: ampbell diagram showing the dimensionless velocity error (colour scale) between input and output axle. Measurement with
the compliant Oldham coupling, at zero axle misalignment.

Figure D.10: ampbell diagram showing the dimensionless velocity error (colour scale) between input and output axle. Measurement
with the compliant Oldham coupling, at zero axle misalignment.
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Figure D.11: Dimensionless velocity error for three measurements at constant rotational velocity. Measurement with the compliant
Oldham coupling, at zero axle misalignment.

Figure D.12: Waterfall diagram showing the dimensionless velocity error between input and output axle. Three measurements at a
constant rotational velocity. Compliant Oldham coupling, at zero axle misalignment.
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D.3. Measurement of planar motion
In this section, the result of the motion tracking using the high speed camera is shown. Furthermore, high
speed footage is available in which the break down of the prototypes can be observed and analysed.
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Figure D.13: Path of the COM of the coupler body, based on the motion tracking. Results for three different constant velocities are shown.
The black triangular markers indicate the points of θ2 = n ·45deg. The arrows indicate the body angle of the coupler body at those points



E
Orientation into Redesign

E.1. Introduction
The goal of this work is to design a compliant rotational power transmission mechanism for dynamic appli-
cations. For now, the scope is restricted to the Oldham rigid body kinematics. Within these kinematics, a
compliant transmission mechanisms will be designed.

E.2. Design requirements
The current compliant Oldham design is used as a benchmark. The redesign for dynamic purposes should
have the same capabilities, apart from the dynamic performance, which should be improved. Based on this
benchmark, the following requirements and wishes can be formulated.

Requirements:
• 20 mm parallel misalignment

• ωmax > 600min−1

• ω̇max > ...

• Maximum velocity error < 4%

• Transmission stiffness > ...Nmrad−1

• Statically balanced?

Wishes:
• Minimize footprint

• Minimize energy dissipation

• Minimize rotational inertia

E.3. Transmission between parallel axis: functional analysis
In this section the functions of the parallel transmission are defined. In figure E.1 a schematic of the trans-
mission is given. The mechanism should transmit the motion and torque of the input axis to the output axis,
which has a parallel offset from the former. Both the input and output axes are constrained in all directions
but the rotational along their length by conventional bearings. When the rotation of the input axis is pre-
scribed, the mechanism should transmit this rotation and torque to the output axis, and the mechanism thus
has no degree of freedom in this configuration. The functions of the mechanism in this case are given below.

When the input axis would be fixed in all directions, and the output axis being free, the latter would have
two translational DOF.

1. Transmit torque
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Figure E.1: Schematic of transmission

2. Transmit motion

(a) ... with a constant velocity transfer

As mentioned earlier, the Oldham rigid body kinematics are chosen as a basis. Looking at the system’s
functions, the motion transmission is done using a mechanism of the linkage type, more specifically, the
Oldham linkage. Within the Oldham kinematics, several parameters can be tuned to reach the design re-
quirements, as given below and in the appended table.

1. Kinematic variations within the Oldham kinematics. For example, balancing could be a way to improve
the dynamic behaviour.

2. Mass. Distribution of mass, number of ’point masses’, location of these masses, ...

3. Stiffness. The way the DOF and DOC are created.

4. Damping. Material damping properties, additional damping material, ...

This categorisation of parameters might not be conclusive. For example, if the system should be dynam-
ically balanced (first parameter), this could be done by placing a counter mass at some location, influencing
the second parameter.

E.4. Stiffness: prismatic compliant joints
The current benchmark design is build up of two compliant prismatic joints, placed in series, designed in the
planar domain. In this section, this family of mechanisms is elaborated on. First, the most common building
block of planar compliant designs, the beam flexure, is discussed. Secondly, some characteristics of beam
based fexure modules are given. Finally, a functional analysis of the compliant prismatic joint intended for
the Oldham kinematics is performed.

E.4.1. Beam flexures
The beam flexure is the building block for many (planar) flexure mechanisms. Some characteristics of a beam
flexure will be given. First of all the possible loading modes of a single long and thin beam are given in figure
... For planar mechanisms, the focus lies on the first three 2D modes. Out of plane loads and deformations are
assumed zero and neglected. The transverse and rotational direction are seen as degrees of freedom (DOF)
as they posses the lowest stiffness for long thin beams. The axial direction, as well as all other 3D modes, are
seen as degrees of constraint (DOC) with a significant higher stiffness.

As in planar designs primarily loads and deformations in-plane are investigated, the only possible way to
generate stiffness is to load the flexures axially. This can be done in tension and compression. In the latter
case, the beam will buckle at a threshold value, the critical load. This load depends on the way of constraint
of the flexure end tip, as seen in figure E.3.

E.4.2. Flexure modules
A flexure module is a compliant mechanism build up out of multiple elastic beam flexures. The mechanism
is designed to have certain DOF allowing the primary motion, and DOC in all other directions. Ultimately,
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Figure E.2: Possible loading modes of a simple beam

infinite motion in DOF direction is allowed with zero stiffness, and no motion and infinite stiffness along the
DOC. Flexures deviate from this ultimum in several ways, having limited motion and non-zero stiffness along
the DOF and non-infinite stiffness along the DOC.

Undesired motions along other DOF are defined as cross-axis error motion, whereas motions in DOC
direction are called parasitic error motions. These errors can be force dependent, kinematic, elastokinematic,
or a combination.

Increasing displacements lead to error motions and decrease of the DOC stiffness values. These non-
linearities in the force-displacement characteristics originate from three sources, being the material consti-
tutive properties, geometric compatibility and force equilibrium conditions.

As long as the flexure material can be seen as linear-elastic, this first part vanishes.
The geometric compatibility however becomes an important source of non-linearity for transverse dis-

placements in the order of one tenth of the beam length. Parametric approximations such as the pseudo
rigid body method capture this non-linearity.

The non-linearities resulting from the force equilibrium become siginificant for much smaller deflections,
as small as the beam thickness. The effect largely determines the beam’s constraint behaviour, capturing the
load stiffening and elastokinematic effects.

E.4.3. Planar prismatic compliant joints using beam flexures
This functional analysis describes the category of compliant prismatic joints in the planar domain. Beam
flexures provide the needed elastic deformations. Analysis will be in 2D. The joints will be investigated sep-
arately in this part, without integration in the Oldham coupling. Part of the joint is connected to the fixed
world. The end effector of the joint, the shuttle, provides compliance in the motion direction y , and stiffness
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Figure E.3: Critical buckling loads

in the bearing directions x, θ and out of plane with respect to this fixed world. The mechanism thus has one
DOF.

The mechanism can posses certain internal DOF, apart from the desired motion DOF. As all deformations
in the mechanism originate from the elastic deformation of the flexures, there is no clear distinction between
DOF and DOC, apart from that the DOF posses a significant lower stiffness than the DOC. Looking at the
eigen frequencies of the mechanism, the motion direction mode shape is expected to have the lowest eigen
frequency. Other mode shapes with an eigen frequency having the same order of magnitude as the motion
mode, can be seen as (undesired) internal DOF. Ultimately, the desire is to have ω2,3,... >>ω1.

1. Provide straight line kinematics. When the shuttle load is applied in pure motion direction, without
creating a moment on the shuttle, the shuttle should move in a straight line along y . A simple beam
loaded in the traverse direction will not only move in the y direction, but also in x and θ. This behaviour
thus has to be compensated for when using flexures, leading to the following subfunctions.

(a) Eliminate parasitic x-motion. When not constrained, the tip of the beam will move in x-direction
when displacement in y occurs due to the fixed arc length of a beam.

(b) Eliminate parasitic θ-motion. When the tip of a clamped-free beam displaced in y , the tip rotates.

2. Provide motion compliance. In this categorisation, the flexures generate the needed elastic deforma-
tion. However, as discussed above, different mode shapes of elastic deformation can be used.

3. Provide bearing stiffness. The flexure mechanisms should provide stiffness in all bearing directions.
Again, different loading modes of the flexure can be used. Several subfunctions can be indicated.

(a) Prevent stiffness drop due to buckling. Flexures loaded in axial compression will buckle at a cer-
tain threshold value, what can lead to drop in bearing stiffness.

(b) Prevent stiffness drop due to bending. In certain cases displacement of internal DOF can allow for
flexure bending resulting in deformation in bearing direction, and thus in drop of bearing stiffness.

i. Eliminate internal DOF. Quasi-statically, internal DOF can lead to undesired bending modes
in the flexure mechanism. Dynamically, internal DOF are also undesired, as these DOF can
freely resonate at ’low’ frequencies, which are likely to be excited during operation. Certain
strategies to eliminate these DOF exist.

A. Coupling internal DOF. One of the strategies to eliminate the internal DOF is to couple
them to other motions within the mechanisms. Different ’coupling methods’ exist.

(c) Prevent stiffness drop in rotational direction. In the above function ’Eliminate parasitic θ-motion’
rotation of the shuttle is prevented when loaded in motion direction. The current function is to
prevent this same rotation, but then as a function of moments applied on the shuttle.

The functions, including several possible solutions, are given schematically in the appended table.
In the functional analysis, a distinction is made between the case of the shuttle being loaded in pure

motion direction (function 1) and loading in other directions (bearing stiffness, function 3). The first one
should result in straight line motion of the shuttle. The latter one, assuming that infinite bearing stiffness
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can not be reached, inherently results in error motions in the bearing directions, and thus deviation from the
desired straight line motion.

In certain designs, not all functions are fulfilled, and can for example posses internal DOF.
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Improved designs from literature Two designs from literature are given.

Figure E.4: C-DP-DP joint [27] in which the two free intermediate shuttles are coupled reducing the number of underconstraints from
two to one.

Figure E.5: DP-NL joint [29] in which the intermediate shuttle is coupled to the output shuttle via an internal (nested) linkage, eliminating
the underconstraint.



F
Reflection

In this section, I will shortly reflect on the process of graduating. During this project, I (again) discovered my
strengths and weaknesses. I will discuss some of these shortly. First of all, I do not like to seek help when I find
myself in a problem. Silly as it might be, I often feel ashamed to ask help from someone about a topic which
I did not first fully researched myself. For example, at the beginning of the project, I should have looked for
someone within the department who could guide me in the dynamic modelling, as this is not Davood’s his
speciality. However, I did the first modelling steps primarily on my own. Only later in the project, I contacted
Dennis, Arend and Paul van Woerkom, for specific feedback on the dynamic analysis. I think that frequent
feedback from the start of the project, from someone of the dynamics department for example, would have
eased and accelerated the project.

Furthermore, I am a bad finisher. When I do not fully understand something, I can be stuck in little details
and lose track of the bigger picture. This might also be visible in this thesis. Focusing on the details resulted
in work stress at the end of the project, when all those details had to be combined to one complete story. I
did not had the time to incorporate all those little details.

I also discovered that I like team work above individual work. Although it is nice to focus on some details
individually, I really missed the collaboration and discussion with other people. In a team, the responsibility
is shared, and everyone is problem owner. In this thesis project, I was 100% problem owner myself. Further-
more, other team members can motivate me to carry on especially when problems arise.

In the search for a thesis topic a year and a half ago, I was looking for a multidisciplinary project. Looking
back, that goal is fulfilled for sure. I enjoyed the diversity. A lot of time was spend on the modelling work, but
there was also the opportunity to look into the redesign of the coupling. Furthermore, during the building
of the experimental setup, I spend quite some time in the workshops behind lathes and milling machines,
which is a hobby of mine. Also, when the setup was ready, I really enjoyed the experimental lab work. During
this phase, I concluded that I might want to pursuit a job in the field of experimental dynamics.
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