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Abstract
Ongoing urbanization highlights the need for a better understanding and
high resolution modelling of the urban climate. In this study, we com-
bine rural observations by WMO surface stations, weather radar data and
urban crowd-sourced observations with very fine-scale modelling efforts for
Amsterdam, The Netherlands. As a model, we use the Weather Research
and Forecasting (WRF) mesoscale model with 3D variational data assim-
ilation at a 100-m resolution in the innermost model domain. In order
to enable the assimilation of observations within the urban canopy, we
develop a scheme to reduce urban temperature biases by adjusting urban
fabric temperatures. The scheme is tested against independent urban obser-
vations for the summer month of July 2014 and specifically for a hot
period and an extreme precipitation event. We find data assimilation reduces
biases in temperature and wind speed. Within the city, the most signifi-
cant improvement is the reduction of negative temperature biases during clear
nights, which implies a better prediction of the Urban Heat Island (UHI). Con-
cerning precipitation, the fractional skill score improves incrementally when
additional observations are assimilated, and the largest impact is seen from the
assimilation of weather radar observations.

K E Y W O R D S

1 INTRODUCTION
Today’s weather and climate models are progressing
towards ever finer spatiotemporal scales, which is largely
due to the increased computational capabilities that have
become available. Recently, a global grid spacing of 1 km
was employed for numerical weather prediction (NWP)
models (Wedi et al., 2020). In the transition to these high
resolutions, the representation of cities in NWP models

becomes crucial. The complex structures of cities — which
are made up of buildings, streets and vegetation of
variable sizes and shapes — require a different modelling
approach than the typically more homogeneous rural sur-
roundings. In mesoscale atmospheric models (resolution:
0.5–2 km), urban canopy-layer schemes are primarily used
to model the radiation and energy balance of the urban
surfaces in the modelling domain (Masson, 2000; Kusaka
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2 KOOPMANS et al.

et al., 2001; Martilli et al., 2002; Chen et al., 2011). Most
of these parameterizations take the effects of shading,
radiation trapping, drag and anthropogenic heat
emissions into account. Despite evidence that the models
perform well on a case-by-case basis (Miao et al., 2009;
Salamanca et al., 2011), most models still show signif-
icant bias in the representation of the energy balance
and deviate substantially due to the variety of param-
eterization schemes (Grimmond et al., 2010; Loridan
et al., 2010). Therefore, steps are still required to improve
the meteorological forecasting and hindcasting of the
urban environment.

Improved model performance can be achieved by
advancing the physics of the model and/or steering the
model using observations, such as by applying data assimi-
lation. The purpose of data assimilation is to accurately
describe the state of the atmosphere using observations
and model results. By using data assimilation, the model
fields and observational fields are compared, and the
model is steered in the direction of the observations
based on the weighted uncertainties of both observa-
tions and model output. Various studies have shown
the benefits of data assimilation for the improvement of
mesoscale weather forecasts (e.g., Xiao and Sun, 2007;
Huang et al., 2009; Dee et al., 2011; Adam et al., 2016). Data
assimilation is especially useful in hindcasting and fore-
casting extreme precipitation as there is rapid error growth
the convective scale, which is a well-known challenge
for atmospheric models (Sun et al., 2014). Data assimila-
tion techniques have also been applied in meteorological
reanalysis data sets, such as Era-Interim and its successor,
Era-5 (Dee et al., 2011; Hersbach et al., 2020). Reanaly-
sis data consists of a complete and coherent collection
of meteorological gridded data, which is the best-known
atmospheric state computed from the model and observa-
tions. Era-Interim and Era-5 are commonly used in climate
research and have many applications in renewable energy,
for example in the siting of favourable areas for wind
(Kalverla et al., 2019) or solar power plants (Boilley and
Wald, 2015; Lorenz and Barstad, 2016).

Current generation reanalysis products lack accu-
racy on relatively fine sub-kilometre urban scales. These
fine scales are crucial to account for the variability of
urban morphology, which directly affects meteorological
processes and accordingly improves forecasts of routine
weather variables, such as 2-m air temperature (Ching
et al., 2009; Ronda et al., 2017). For the fine urban scale,
specific studies reporting on data assimilation in the urban
canopy or urban boundary layers are absent. In this paper,
we explore whether data assimilation techniques have the
potential to improve the representation of urban weather
characteristics in a NWP system. This includes a novel
approach to nudge modelled urban canopy temperatures

with quality-controlled, crowd-sourced observations and
independent verification against professionally installed
urban weather stations.

In this study, we performed a hindcast for July 2014
for Amsterdam (The Netherlands) at a high resolu-
tion of 100 m, nested in coarser-resolution surrounding
domains. The hindcast benefitted from high-resolution
(urban) land-use maps in combination with a dense spa-
tial network of crowd-sourced and professionally installed
weather stations. In addition, Amsterdam’s complex spa-
tial structure, with its network of canals and proximity
to large water bodies (i.e., the North Sea and Marker
Lake), makes Amsterdam an excellent test site for model
improvement. The month of July 2014 is chosen as test
case because it includes several days with intense convec-
tive precipitation and a relatively warm, dry period, which
are both critical conditions for water management and for
human thermal comfort in cities. This work builds on the
study by Ronda et al. (2017) that developed urban weather
forecasts for Amsterdam at the same high-resolution grid
spacing, but without data assimilation. Although they
were able to reproduce the spatial variation in the urban air
temperature, there was a cold bias of 1–2 K. This is a good
incentive to explore whether data assimilation can assist in
reducing this cold bias. The final goal is to create a reanal-
ysis dataset of 15 years focused on the urban surroundings
in order to investigate the urban climatology based on the
evaluation of this study.

This paper is organized as follows. Section 2 presents
the modelling set-up, a description of the assimilation
approach for the urban canopy, the observations used
for data assimilation and model verification. Section 3
presents the modelling results and Section 4 summarizes
discussion and conclusions.

2 METHODS
2.1 Model set-up
This study used the Weather Research and Forecasting
(WRF) model version 3.7.1 (Skamarock et al., 2005; Pow-
ers et al., 2017). WRF is a non-hydrostatic numerical
model that allows for nesting to represent step-by-step
the large-scale circulation towards micro-scale transport
(Chen et al., 2011). We built on the study by Ronda
et al. (2017) and used four one-way nested compu-
tational domains with gradually increasing resolutions
(12.5 km, 2.5 km, 500 m, 100 m, see Figure 1a,b). The
European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis data (ERA-Interim) was used as ini-
tial and boundary conditions because Era-5 was not fully
released when we start performing data assimilation test
runs. At the innermost domain 100-m resolution, parks,
ponds and runways at Schiphol airport were visible and,

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4401 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [02/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KOOPMANS et al. 3

consequently, their specific impact is visible in the model
simulation. The basic WRF configuration is in accordance
with the urban weather forecasts of Ronda et al. (2017).
This set-up included 72 vertical eta-levels and made use
of the Noah land surface model (Ek et al., 2003). The
Grell–Freitas cumulus scheme (Grell and Freitas, 2014)
was applied to the outer domain (12.5 km resolution).
As Planetary Boundary Layer Scheme, Yonsei Univer-
sity (YSU) was used for the three coarsest domains
(Hong et al., 2006). The inner domain turbulence was
partly resolved and partly modelled with the Smagorin-
sky first-order closure scheme. Compared to the set-up of
Ronda et al. (2017) our innermost domain was enlarged
so Schiphol Airport was included (Figure 1). In addition,
various data assimilation techniques were applied using
the WRFDA module (Barker et al., 2012), which will be
described in Section 2.2.

As the urban scheme within WRF, we used the
Single-Layer Urban Canopy Model (SLUCM) from
Kusaka et al. (2001). The most relevant input parame-
ters are listed in Table 1. The physical properties of buil-
dings — including albedo, thermal conductivity and the
thickness of roads, walls and roofs — are uniform for all
buildings in Amsterdam. These values were determined
by calculating averages from typical housing types in
different construction year intervals (Agentschap, 2011;
De Waag, 2021). The calculated albedo values were
checked and marginally adjusted (<0.01) with albedo
calculations from remote-sensing bands from the Land-
sat satellite (Liang, 2001; USGS, 2021). Other building
properties — such as mean, area-weighted and standard
deviation building height — were grid-cell-specific and
adopted from Ronda et al. (2017) using the NUDAPT
approach (National Urban Data and Access Portal Tool)
(Ching et al., 2009) (Figure 1c). Together with other
grid-cell-specific geomorphological statistics — such as
frontal area index and plan area fraction — it is possible to
perform neighbourhood-specific energy balance calcula-
tions for the urban canyon. This leads to a more accurate
representation of meteorological variables in the urban
area (Zhang et al., 2020). For completeness, the urban
fraction is displayed (Figure 1d) to demonstrate the urban
density differences in the study area.

Following Monaghan et al. (2014), the value of
the ‘Akanda’-parameter was modified from default 1.29
(Kanda et al., 2007) to 0.4 (Table 1). This parameter
affects the ratio of the roughness length for heat and the
roughness length of momentum, and it enhances sensible
heat exchange between the urban canopy and atmosphere
above. We simulated and compared two simulations with
the default (0.4) and modified (1.29) Akanda-parameter
(1.29) to grasp how sensitive this modification was. This
had a similar effect on root mean squared error (RMSE)

performance of net radiation and sensible heat flux as
albedo changes of roof and wall, with 0.09 and 0.15 respec-
tively (Loridan et al., 2010). For the anthropogenic heat
flux (Table 1), we accounted for energy consumption, gas
consumption (CBS, 2018a), traffic scaled for Amsterdam’s
population density (Klok et al., 2010) and metabolic rate
estimates (Sailor & Lu, 2004).

2.2 Data assimilation

Data assimilation aims to describe the state of the atmo-
sphere in a statistical manner by steering model fields in
the direction of observations by a limiting cost function
and accounting for uncertainties in the model results and
observations (Barker et al., 2012). The observations used
for data assimilation consisted of three types:

1 Two-meter air temperature and air pressure obser-
vations from WMO-certified SYNOP stations in The
Netherlands, Germany and the UK. These observations
have a resolution and accuracy of 0.1 K and 0.1 hPa
(KNMI, 2010; Met Office, 2020; DWD, 2022), which is
in line with the WMO requirements (WMO, 2018).

2 Volume radar data from the C-band Doppler weather
radar as operated by KNMI (Royal Netherlands Mete-
orological Institute) in The Netherlands (Beekhuis and
Holleman, 2008). As product, both radial (wind) veloc-
ity and reflectivities were used.

3 Temperature observations from personal weather sta-
tions available from the Wunderground database
(Weather Underground, 2022), where most brands have
an accuracy of <0.3 K even under high exposure to
solar radiation, while a few may have a radiation error
of up to several degrees (Bell et al., 2013). There-
fore additional data selection is applied (see below in
Section 2.2.1).

In addition, two types of observations were not used
for data assimilation, but as independent evaluation of the
model performance:

1 Temperature observations from the Amsterdam
Atmospheric Monitoring Supersite (AAMS; Ronda
et al., 2017) have an accuracy of less than 0.3 K (Bell
et al., 2013).

2 Rain gauge-adjusted radar data (Overeem et al., 2009b).
This record has a bias of less than 0.4 mm for the 24-hr
precipitation sum.

In the research set-up, three types of data assimila-
tion were applied sequentially in four simulations. The
abbreviated experiment names are given between brackets
and were used as reference in the following sections:

• No data assimilation (NO-DA)
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4 KOOPMANS et al.

F I G U R E 1 (a) Land-use map of the Dutch model domain (domain 2 with domains 3 and 4 nested). The black rectangles represent the
four nested domains (100–500–2,500–12,500 m). The white dots indicate the 96 personal weather stations, and the blue dots indicate the 7
WMO stations: Schiphol (WMO code: 6240), Wijk aan Zee (WMO code: 6257), De Bilt (WMO code: 6260), Deelen (WMO code: 6275), Eelde
(WMO code: 6280), Westdorpe (WMO code: 6319) and Volkel (WMO code: 6375) used for the model evaluation. (b) Land use map of the
inner model domain (domain 4) with 22 independent Amsterdam Atmospheric Monitoring Supersite (AAMS) urban weather stations used
for the evaluation (black dots). The black star is an excluded station. The personal weather stations are indicated with white dots. (c, d) Mean
building height and urban (built) fraction, including 22 independent AAMS stations as black dots [Colour figure can be viewed at
wileyonlinelibrary.com]

• WMO stations data assimilation (WMO-DA)
• WMO stations data assimilation+ radar data assimila-

tion (RADAR-DA)

• WMO stations data assimilation+ radar data assimila-
tion+urban nudging using personal weather stations
(URBAN-DA)
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KOOPMANS et al. 5

T A B L E 1 Configurations used in the Single-Layer Urban Canopy Model (SLUCM) (Kusaka et al., 2001)

TS_scheme 4-layer model

CH_scheme Narita scheme for the convective heat transfer coefficients within urban
canopies

Akanda (exchange variable) 0.4 Monaghan et al. (2014), parameter introduced by Kanda et al. (2007)

Thickness roof layers 0.23 m

Thickness of building wall 0.179 m

Thermal conductivity of road 0.4 J⋅s−1⋅K−1

Thermal conductivity of wall 0.4004 J⋅s−1⋅K−1

Thermal conductivity of roof 0.48 J⋅s−1⋅K−1

Heat capacity of road 1.4 MJ⋅K−1

Heat capacity of wall 1.3 MJ⋅K−1

Heat capacity of roof 1.65 MJ⋅K−1

Surface albedo of road 0.2

Surface albedo of wall 0.2

Surface albedo of roof 0.175

Roughness length for momentum over ground (road)
and roof

0.01 m

Roughness length for momentum over wall 0.0001 m

Maximum anthropogenic heat flux 38.5 W⋅m−2 (average 21.4 W⋅m−2)

Hourly weights of maximum anthropogenic heat flux,
starting from 0000 to >2300 UTC

{0.16 0.13 0.08 0.07 0.08 0.26 0.67 0.99 0.89 0.79 0.74 0.73 0.75 0.76 0.82
0.9 1.0 0.95 0.68 0.61 0.53 0.35 0.21 0.18}

The data assimilation process worked as follows. First,
the observations from the WMO-certified stations and
volume radar data were assimilated every two hours
within the WRF module WRFDA 3.8.1 using variational
data assimilation (3D-Var). This is presented in the left
panel of Figure 2. Second, within each two-hourly 3D-Var
update cycle, an inner loop runs until convergence is
reached in one data assimilation update cycle (Figure 2,
right panel), with a maximum of 400 iterations. The final
analysis was used by the WRF model to start the next 2-hr
forecast (Figure 2, left panel), after which a 3D-Var update
cycle was applied again.

The steps within one data assimilation update cycle
are further explained. The 3D-Var solves (iteratively) a pre-
scribed cost function by minimizing differences between
analysis and observation/first guess from the background
error model, while being weighted by estimates of pre-
defined observation and background errors (Skamarock
et al., 2005; Yang et al., 2015). The background error
was determined separately, following the so-called ‘NMC
method’ (Parrish and Derber, 1992). Herein, the model
variance was estimated at certain time steps by compar-
ing two overlapping 24-hr forecasts with 12 hr shifted lead
times. More specifically, forecast 1, starting on day 1 at

0000 UTC and forecast 2, starting on day 1 at 1200 UTC
are compared with day 2 at 0000 UTC, both on the largest
domain 1 and at leaps of 12 hours.

Finally, the lateral boundaries and the lower bound-
aries — such as soil moisture/temperature and sea surface
temperatures — were updated from ERA-Interim every six
hours. These updates of the lower boundaries are impor-
tant to keep the model boundaries within realistic reanal-
ysis values throughout the monthly run and will be crucial
to maintaining consistency for the 15-year reanalysis later
on.

From the WMO observations, we assimilated 2-m air
temperature and air pressure. Wind was not assimilated
since pressure gradients were well-correlated with wind
speed. Surface humidity was also not assimilated, because
it showed no improved skill in the data assimilation for this
case (July 2014). Otherwise, the liquid water in the atmo-
sphere was adjusted through the radar data assimilation in
case of precipitation in the model or radar observations.

For the radar data assimilation, we used the C-band
Doppler weather radar located in De Bilt (52.099◦N
5.176◦E). As product, both radial (wind) velocity and
reflectivities were used. Data from the lowest elevation
angle (0.3◦) were discarded since this elevation contained
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6 KOOPMANS et al.

F I G U R E 2 Flowchart of 3D-Var update cycle (left) and the internal model cycles (right) for Weather Research and Forecasting Data
Assimilation (WRFDA) [Colour figure can be viewed at wileyonlinelibrary.com]

a disproportionate amount of clutter due to nearby build-
ings. From the remaining elevations, an average variance
of 2 dBZ was calculated for the reflectivity employing the
parameters of the volume scanning (Beekhuis and Holle-
man, 2008) and the method of Chumchean et al. (2003), see
Equation (1). The standard deviation of the radial velocity
was supplied with the radar product and is in the order of
2–3 m⋅s−1 (Holleman, 2008).

𝜎
2
Z = 0.13 R

P
(1)

𝜎
2
Z is the reflectivity measurement error variance (dB2); R is

the observation range from the radar (km); P is the number
of pulses per range bin.

Finally, the reflectivities and radial wind velocities
were interpolated to model resolutions. The heights and
locations of the C-band Doppler radar observations were
calculated with the WRADLIB module (Heistermann
et al., 2013). This module converted the data from a
polar to a Cartesian representation, taking refraction into
account.

WRFDA offers different methods for radar data assim-
ilation: it directly assimilates reflectivity, or first con-
verts to rainwater mixing ratios before data assimilation
is applied. The latter is known as the ‘indirect method’
(Wang et al., 2013). This method has the advantage that
the specific humidity remains more realistic in the whole

atmosphere including better 2-m dew-point temperatures.
We adopted the method of Wang et al. (2013) as it has the
most constraints for specific humidity in the atmosphere,
which should also lead to a better representation of clouds.
For further details about this method, we refer to Wang
et al. (2013).

Referring to data assimilation of observations taken
in urban areas, we noticed that the canopy scheme
SLUCM did not interact well with WRFDA. This is because
WRFDA needs control variables, including pressure and
temperature on model levels. These model levels, starting
from approximately 50 m above ground level, are present
above the urban canopy and are therefore not part of
SLUCM. The latter is crucial because the control variables
should be in balance with energy fluxes from the urban
fabric (i.e., roads and walls). As such, we propose a new
method that ‘nudges’ urban canopy temperatures within
the canopy scheme, through adjustments in the wall and
road temperatures of the scheme (see Section 2.2.2). To do
this, a temperature model bias first had to be determined in
the city by using personal weather stations (Section 2.2.1).
The personal weather stations were not used to correct
other meteorological variables, such as wind. Wind was
not used for data assimilation for urban areas, since the
spatial and time representativeness of wind measurements
at one given moment is too limited for personal weather
stations (Droste et al., 2020).

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4401 by T
echnical U

niversity D
elft, W

iley O
nline L

ibrary on [02/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


KOOPMANS et al. 7

2.2.1 Model bias correction with personal
weather stations

The estimation of the temperature bias differs between
personal weather stations and WMO weather stations.
While WMO stations are sited according to well-defined
standards and obtain a high degree of spatial representa-
tiveness, this is not the case for personal weather stations
in built-up areas (Bell et al., 2013). The urban environ-
ment is very heterogeneous on a local scale, which results
in microclimates (Heusinkveld et al., 2014), and there-
fore different personal weather stations might show little
spatial correlation on close distances. This is confirmed
by the inter- and intra-local climate zone variability of a
large number of personal weather stations in Berlin (Fen-
ner et al., 2017). Local characteristics, such as north- or
south-facing gardens and the difference between paved
areas and lawns show large variability in diurnal cycles
of the 2-m air temperature urban heat island effect (UHI)
(Oke, 2006). The uniform signal of quality-controlled per-
sonal weather stations was extracted by using a statistical
model that depends on the weather at that time. This
statistical model excludes specific weather station variabil-
ity and intends to remove the cold bias in urban areas
for WRF simulations without DA (Ronda et al., 2017).
The urban canopy temperatures were calculated with a
revised SLUCM scheme of (Theeuwes et al., 2014), which
applies the stability correction between the first model
level (∼50 m) and the 2-m level instead of between the first
model level and the roughness length of heat. This revision
was also used in the set-up of the former study of Ronda
et al. (2017).

This urban canyon temperature at the 2-m level does
not represent yet an urban temperature typical urban grid
cell with an urban fraction lower than 1, which consists
of a natural fraction (e.g., green backyards, parks and,
typically for Amsterdam’s centre: water). As in Ronda
et al. (2017), urban grid cells in WRF consist of a paved
urban canopy fraction (buildings and streets) and a sep-
arate natural fraction. Energy fluxes and air temperature
were calculated separately for the urban tile in SLUCM
and for the vegetated tile. A combined area-weighted
urban-natural temperature, indicated by urban fraction,
was calculated and considered as a representative 2-m
temperature for urban grid cells. Hence, the difference
between this model temperature and personal weather sta-
tionsΔTc was the response value in the statistical model in
Equation (2).

ΔTc = 𝛼 ∗ L ↓ +𝛽 ∗ U + 𝛾 (2)

ΔTc is the difference in urban temperature between
personal weather stations from the statistical regression

model and WRF model (◦C); L ↓ is the WRF modelled
surface downward long-wave radiation (W⋅m−2); U is the
WRF-modelled 10-m wind speed (m⋅s−1); and 𝛼, 𝛽 and 𝛾

are regression coefficients.
The statistical model consists of a linear regression

between response value ΔTc and explanatory variables
wind speed and downward long-wave radiation. The fit
(derivation of regression coefficients) was determined
every two hours on domain 2, covering The Netherlands
and downscaled to the other domains. This equation was
then applied to all urban grid cells. The estimatedΔTc was
used to correct the model bias, and this is further described
in Section 2.2.2 following next.

Regarding the chosen explanatory variables wind
speed and long-wave radiation, the ΔTc were largest on
clear sky nights. Thus, personal weather stations facing
cloudy conditions showed generally smaller temperature
variations. As such, the surface downward long-wave radi-
ation was a suitable variable to correct the model temper-
ature state. Wind was also an important factor, as a high
wind speed mixes the air and therefore usually reduces
the modelled UHI. On the contrary, urban characteristics
like urban fraction and aspect ratio are insignificant in the
statistical model. The aspect ratio was taken into account
in the implementation of the temperature nudging in the
urban canopy model (see Section 2.2.2). The long-wave
radiation and wind variables were retrieved from the
model at the location of the personal weather stations.

The quality control of personal weather observations
contains a number of steps. The full list of the used 96
personal weather stations is included as Supplementary
Material (Appendix S1). First, some personal weather sta-
tion brands do not have proper radiation shields (Bell
et al., 2015). During daytime, only Davis Vantage stations
were used, since we were confident in their relatively small
radiation error. The remaining stations can still report
unreliable values due to effects of wrong placement or mal-
functions. The number of crowdsourced personal weather
stations and the long period of time made it unfeasible to
inspect, inquire after or trace these stations and determine
whether they met proper placement criteria. Therefore,
additional criteria were applied to the selection of accept-
able stations for the statistical model:

• The observed temperature should not deviate from the
corresponding WRF model grid cell by more than 5◦C

• After the previous selection, a median is determined
from the observed values of the remaining personal
weather stations

• The remaining personal weather stations are discarded
if their values deviate from the median± 2× standard
deviation
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8 KOOPMANS et al.

• Depending on the number of remaining observations:

– Equation (2) was fitted when there are enough obser-
vations, which was set at more than 5

– For three or four observations, the median was recal-
culated

– With fewer than three observations, the number was
too small to statistically correct the model

• If the fitted statistical model was not significant (p value
> 0.1), the median was used to nudge the model.

Note that Meier et al. (2017) used a less strict
3× standard deviation as threshold for omitting personal
weather stations. However, the employed number of sta-
tions (Berlin) was substantially larger in their study than
available for Amsterdam. The temperatures resulting from
the urban data assimilation are verified against 22 inde-
pendent urban weather stations (AAMS stations) within
domain 4. The station on a small island in the IJ lake
was excluded (see black star in Figure 1b) because it is
non-urban and shows an atypical diminished diurnal cycle
above the water surface compared to land stations. The
temperature sensors of the AAMS stations are shielded
(Decagon VP-3) and ventilated and mounted at 4 m on
lantern posts (de Vos et al., 2020).

2.2.2 Nudging urban temperatures

The correction, ΔTc, was applied in the urban canopy
model SLUCM through a nudging approach and served
as forcing for the model bias correction. This ΔTc engages
within SLUCM’s original canopy temperature on the level
of the roughness length of heat rather than the revised
2-m canyon temperature of Theeuwes et al. (2014). This
choice is described after the explanation of the nudging
concept.

We note that the nudged canopy temperatures could
not preserve the effect of nudging until the next data assim-
ilation cycle because no change in heat storage in the
canopy was realized. Therefore, we adjusted the urban

fabric temperatures in such a way that it was consistent
withΔTc as derived from Equation (2). This included both
walls and roads, which have a large heat storage. Altering
the temperature of the urban fabric was also more effective
in altering energy fluxes, which were fed back to the atmo-
spheric model levels. Hence, the ΔTc was redistributed to
temperature corrections of the wall and road layers, while
maintaining the physical formulation of the resistance
scheme in Kusaka et al. (2001) (see Appendix A). Thereby,
the average diurnal temperature amplitude (difference
maximum and minimum daily temperature) in each layer
of urban fabric determined the proportion of the tempera-
ture correction applied. SLUCM consists of four road and
wall layers. Smaller amplitudes belonging to deeper layers
received a smaller temperature correction and vice versa.
So, urban fabric layers at the surface respond faster to tem-
perature changes than the deeper layers imposed by the
nudging approach. Hence, these often-raised temperatures
for wall and road surfaces increase the urban canopy tem-
perature and the air temperature of the first model level
approximately 50 m above ground level, via an increased
sensible heat flux (see Figure A1 in the Appendix A). The
average diurnal cycle amplitudes were determined for all
urban grid cells in the four-day warm period of July 2014.
Subsequently, amplitude factors were derived for the inner
layers denoting the diurnal cycle amplitude relative to
the largest diurnal cycle amplitude on the wall and road
surfaces (Table 2).

Before changes could be applied to the four wall and
road layers, ΔTc was translated to a difference in wall sur-
face and road surface temperatures ΔTw,g (the suffix g
standing for ‘ground’ is used to be consistent with vari-
able names in WRF). This was calculated with Equation
(3), which is based on the SLUCM resistance equations
of Kusaka et al. (2001), and the complete derivation can
be found in the Appendix A. The temperature increments
for wall and road layers were calculated by multiply-
ing the ΔTw,g with the accompanying amplitude factors
[see Equation (6) and Table 2]. In addition, in accor-
dance with the amplitude determination for walls and
roads, the soil temperatures were also adjusted for the
vegetated fraction of urban cells. This is because per-
sonal weather stations are often located in green backyards

T A B L E 2 Diurnal cycle amplitude of temperature for wall, road and soil layers relative to the diurnal cycle amplitude of the skin
(surface) temperature. Wall layers consist of four equally divided 0.0448 m thick layers. Road and soil layers increase with depth: 0.05 m,
0.25 m, 0.50 m, 0.75 m

Layer 1 Layer 2 Layer 3 Layer 4

Wall (ampw) 0.709 0.503 0.357 0.253

Road
(

ampg
)

0.734 0.157 0.007

Soil (amps) 0.499 0.015
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KOOPMANS et al. 9

rather than over paved surfaces.

ΔTw,g = ΔTc

(
1 + w

(2h + w)
Cah

Cw

)
(3)

Cah =
𝜅u∗
𝜓h

(4)

Cw = Cg =

{
7.51U0.78

c
(

Uc > 5 m ⋅ s−1)

6.15 + 4.18Uc
(

Uc ≤ 5 m ⋅ s−1)

}

(5)

(Kusaka et al., 2001).ΔTc is the difference in urban temper-
ature between model and personal weather stations from
the statistical regression model (predicted variable) (◦C);
ΔTw,g,s is the wall, road surface and soil temperature (◦C);
h is the wall height (m); w is the road width (m); 𝜅 is the
Karman constant (0.4); u∗ is the friction velocity (m⋅s−1);
𝜓h is the Monin–Obukhov stability term (dimensionless);
Cw,g is the heat transfer coefficient from wall and road to
the canopy (m⋅s−1); Cah is the heat transfer coefficient from
the canyon to the overlying atmosphere (m⋅s−1); and Uc is
the urban canopy wind speed (m⋅s−1).

ΔTlayerw,g,s = ΔTw,g,s ∗ ampw,g,s (6)

The magnitude ofΔTw,g in Equation (3) depends on the
heat exchange between the urban fabric and urban canopy,
and the heat exchange between the urban canopy and first
model layer on top. These heat exchanges are dependent
on wind speed and stability (see Equations 4 and 5). Thus,
less stable conditions allow for larger adjustments to road
and wall layers with changing ΔTc. The street width to
building height ratio plays a significant role. In narrow
urban canyons, the total heat exchange decreases between
the urban fabric and the overlying atmosphere (first model
level at ∼50 m), and this leads to smaller adjustments to
road and wall layers with the same ΔTc. An example of
a temperature adjustment of the outer wall is given in
Figure 3. Here it is visible that the denser centre of Amster-
dam has a smaller adjustment, because of a larger aspect
ratio.

We chose to apply ΔTc in Equation (3) on the level of
the roughness length corresponding the original canopy
temperatures, because the newly defined 2-m canopy tem-
perature by Theeuwes et al. (2014) is an output variable
and not implemented in the iterative energy flux calcu-
lations within SLUCM. As original canopy temperatures
in SLUCM are closer to walls and roads, they are more
biased to wall and road surface temperatures. Therefore,
adjustments to roads and walls ΔTw,g were smaller with
the current method than whenΔTc was applied on the 2-m
level (the 2-m level is further away from the road and this

F I G U R E 3 Example of outer wall temperature correction
ΔTw (in ◦C) in the evening on 2 July 2014 at 2200 UTC [Colour
figure can be viewed at wileyonlinelibrary.com]

therefore results in a smaller heat transfer coefficient ratio
Cah
Cw

in Equation 3). Thus, the magnitude of the model cor-
rection, resulting from the adjustments of walls and roads
is generally on the safe side, which is also a benefit since
nudging relies heavily on observations.

2.3 Model evaluation methods

Different verification methods were applied to evaluate the
performance of consecutive data assimilation steps. We
used the bias and the root mean squared error to evaluate
the model performance for air and dew-point tempera-
ture, wind speed and sea-level pressure. This evaluation
was performed for seven selected WMO stations across
the country (Figure 1a). These stations provided observa-
tions suitable for application in the data assimilation, and
were also used for model verification one and two hours
after the data assimilation cycling. This time delay was
considered sufficient to avoid serious dependence between
cycling and verification. Nonetheless, we made use of
independent weather stations for the verification of urban
air temperatures.

FSS = 1
Ndays

Ndays∑

i=1
FSS(d) (7)

FSS(d) = 1 −
∑Nx

i=1
∑Ny

𝑗=1
[
O(d)i,𝑗 −M(d)i,𝑗

]2

∑Nx
i=1

∑Ny
𝑗=1O(d)2i,𝑗 +

∑Nx
i=1

∑Ny
𝑗=1M(d)2i,𝑗

(8)
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10 KOOPMANS et al.

O(d)i,𝑗 is the observed fraction precipitation grid cells
above threshold value over window i, j; and M(d)i,𝑗 is
the model fraction precipitation grid cells above threshold
value over window i, j.

To verify the spatial representation of precipitation, the
fractional skill score (FSS) was calculated for daily accu-
mulated precipitation of the consecutive data assimilation
runs for domain 2 that covers The Netherlands. The FSS
is a neighbourhood-based verification method for evalu-
ating the spatial accuracy of precipitation (Roberts and
Lean, 2008) and has been applied in real case verification
studies (Ebert, 2009; Mittermaier et al., 2013; Skok and
Roberts, 2016; Imhoff et al., 2020; Khain et al., 2020). In
order to use it, the gauge-adjusted radar data (Overeem
et al., 2009a) were transformed with an average weighted
interpolation scheme (Met Office, 2018) to match the
model resolution. The FSS calculates the skill of precipita-
tion forecasts by comparing fractions of precipitation over
a threshold in a certain spatial window between model
and observations, see Equations (7) and (8). This window
was moved over the entire domain, and the FSS was deter-
mined as the spatial average. A FSS of 1 indicates perfect
skill and 0 no skill. Evaluating fractions determined over a
window has the advantage that the location differences of
showers are not double-penalized.

A 90th percentile (90p) threshold was chosen to eval-
uate the spatial accuracy of extreme precipitation (Skok
and Roberts, 2016), and an average threshold to evaluate
the spatial accuracy in general. Since evaluating spatial
accuracy is the aim of FSS, the model and observation
fractions are unbiased (Mittermaier et al., 2013). Hence,
threshold values were separately determined for the model
and observations. For 90p, this means that precipitation
fractions comprised both 10% of domain 2 for model and
observations. Correcting for bias was important because
a substantial bias would deteriorate the FSS, and positive
biases would have had larger impacts than negative biases
because of the M(d)2i,𝑗 in the denominator of Equation (8).
The window or neighbourhood size is 50 km and, thus,
consists of 20× 20 cells with a resolution of 2.5 km accord-
ing to domain 2. This window size is small enough for
forecast purposes (Roberts and Lean, 2008).

3 RESULTS

3.1 Model evaluation

In the model evaluation, we first present a monthly time
series of the nearby KNMI weather station Schiphol Air-
port (WMO code 6240) (Figure 4) and statistics from
other pre-selected WMO stations spread across the coun-
try (Figure 5). The diurnal cycles of air temperatures in

the NO-DA run and WMO-DA run are well represented
for most days. However, WMO-DA was able to remove
or substantially reduce cold biases on clear nights, clearly
visible on 13 and 29 July 2014. In NO-DA the maximum
hourly cold bias amounted 3.5◦C on 13 July 2014, which
virtually disappeared in WMO-DA, and was reduced from
5.3 to 2.6◦C on 29 July 2014. Maximum temperatures are
also better modelled in the WMO-DA in terms of biases,
as can be seen on 11 July (2.5 vs. 1.0◦C), 16 July (3.2 vs.
0.8◦C), 27 July (3.3 vs. 0.0◦C) and 29 July (3.3 vs. 0.1◦C).
On the other hand, 9 July and 21 July are clear examples
of cases that are both too warm in NO-DA and WMO-DA
during the daytime, which is related to a surplus of solar
radiation.

Note that no data assimilation was applied for solar
downwelling radiation at the surface. Over the whole
month, the cloud cover was underestimated in the NO-DA
and WMO-DA run, resulting in an overestimation of solar
downwelling radiation. In addition, both WRF simulations
have a surplus of surface solar radiation on clear days.
The modelled surface pressure correspond reasonably well
with the model runs and observations, especially in ti-
ming and for high-pressure situations. Some low-pressure
system occurrences remain too deep in the WMO-DA run.
The WMO-DA run partly restores this around 21 July and
27 July 2014. The largest hourly deviations on these days
reduced from 6.7 to 3.4 hPa and from 3.2 to 1.4 hPa respec-
tively. The modelling system was unable to resolve the
minimum pressure on 9 July (recall the deviations in solar
radiation and temperature). Both WRF simulations had
difficulties in correctly representing precipitation events,
especially high-intensity precipitation. The model runs
were generally drier than the observations, with the largest
deviation for NO-DA. Comparing precipitation at a single
point is not very representative due to the spatial variability
of convective precipitation, therefore we perform a spatial
analysis in Section 3.3.

The statistics plots (Figure 5) show significantly lower
RMSE for the WMO-DA run compared to the base NO-DA
run for the rural WMO stations. The bias is also smaller
overall for the WMO-DA simulation, although this is
less pronounced. The sea-level pressure (SLP) and wind
(FF) show smaller biases, (44% and 49% respectively) in
WMO-DA. For the dew-point temperature a small posi-
tive bias (∼0.3◦C) was introduced, but this is accompanied
with by lower RMSE. The RADAR-DA run only has small
changes compared to the WMO-DA run. RADAR-DA
adjusts clouds and humidity on different model levels,
which has a slightly negative effect on the RMSE of the
dew-point temperature (and indirectly on SLP). The bias,
on the other hand, is improved for the dew-point tem-
perature and the air temperature. Straightforwardly, the
URBAN-DA mimics the RADAR-DA, since the additional
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KOOPMANS et al. 11

F I G U R E 4 Times series of modelled and observed (a) 2-m temperature, (b) mean sea-level pressure, (c) downwelling solar radiation,
and (d) precipitation at Schiphol airport weather station (52.301◦N, 4.774◦E, WMO code 6240) for July 2014. The black dots and bars indicate
the observations, the dark blue solid lines and dots the WMO stations data assimilation (WMO-DA) run and the light blue dashed lines and
dots the no data assimilation (NO-DA) run [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Root mean squared error (RMSE) (a) and bias b) of 2-m temperature (T2m), dew-point temperature (TD), wind speed (U)
and sea-level pressure (SLP), for the data assimilation model runs at seven WMO stations (see Figure 1a). The analysis was done at hourly
intervals between 3 July (two days spin up) and 29 July 2014. The bars indicate the standard deviation [Colour figure can be viewed at
wileyonlinelibrary.com]
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12 KOOPMANS et al.

nudging in the urban canopy has no substantial impact on
the rural station outside.

Noting the significant differences between simulations
and observations (paired Student’s t-test, 𝛼 = 0.05), the
RMSE is slightly larger for dew-point temperature (TD)
and wind speed (U). The RMSE for air temperature is
also smaller (just significant for URBAN-DA and just not
significant for RADAR-DA). The URBAN-DA should not
have a substantial effect on the evaluated variables on the
rural stations, which is confirmed by the large similarities
of RADAR-DA and URBAN-DA.

3.2 Heatwave case

The nudging of urban air temperatures (URBAN-DA) of
personal weather stations was also evaluated for a warm
episode between 16 July and 20 July 2014. Urban air tem-
peratures are underestimated by WRF on clear nights
for the simulations without urban nudging (NO-DA).
The nudging process increases the nocturnal tempera-
tures and decreases the bias with respect to independent
urban observations (Figure 6a). In addition, the simu-
lated hours in the warm period are closer to the 1:1
line in Figure 6b. With additional urban data assimi-
lation (URBAN-DA) the bias decreases from −0.9◦C to
−0.2◦C and the RMSE decreases from 1.5◦C to 1.0◦C.
During daytime, only small adjustments in urban air tem-
perature are made by the nudging process, since the
atmospheric boundary layer is well mixed. The under-
estimation in maximum temperature is reduced to less
than 1◦C in URBAN-DA for all four days. The WMO-DA

effectively reduces the cold bias in urban areas during
daytime (Figure 6a), which means the cold bias is not
caused by urban-specific processes. WMO-DA strongly
reduces the cold bias for Schiphol (Figure 4a) and other
stations during the warm period and affects urban areas
via interpolated model fields. In addition, during day-
time urban model temperatures in WMO-DA correlate
better with rural WMO temperature observations com-
pared to the night, because of daytime-enhanced turbulent
mixing and predominant temperature advection from the
countryside.

Supplementary to the time series results, contour plots
are shown for Amsterdam after urban nudging to provide
a spatial overview (Figure 7). The minimum temperatures
are clearly higher for the densely built areas in Amsterdam
for July 2014. These areas are either largely paved or have a
small sky-view factor. The fine resolution allows runways
at Schiphol Airport to be distinguished as warmer areas.
The canals and the large water body, the IJ, can be distin-
guished as cooler places than the adjacent urban areas. The
parks and rural parts adjacent to the city are relatively cool
and only slightly warmer than the rural areas further away
(∼0.3◦C). Therefore, it can be stated that (intra-)urban
heat advection does not play a substantial role for mod-
elled minimum temperatures, and corresponding results
apply for average temperatures in the model context at this
grid spacing. In the average monthly urban temperatures,
temperature differences between cities and the rural coun-
terparts are smaller, due to the lower daytime UHI. Water
surfaces are relatively cool at daytime. Lastly, maximum
temperatures (not shown) are only 0.5–1.0◦C warmer for
urban areas compared to the rural environment.

F I G U R E 6 (a) Time series of median 2-m air temperature of all model runs with consecutive data assimilation at observation
grid-points and median observations from independent Amsterdam Atmospheric Monitoring Supersite (AAMS) urban weather stations in
Amsterdam for the warm period of 16–20 July 2014. (b) Scatter plot of modelled WMO stations data assimilation+ radar data assimilation
(RADAR-DA) and WMO stations data assimilation+ radar data assimilation+urban nudging using personal weather stations (URBAN-DA)
and observed 2-m air temperature of 16–20 July 2014 [Colour figure can be viewed at wileyonlinelibrary.com]
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KOOPMANS et al. 13

F I G U R E 7 (a) Daily minimum temperature, and (b)
monthly mean modelled 2-m air temperature (WMO stations data
assimilation+ radar data assimilation+urban nudging using
personal weather stations — URBAN-DA) on hourly intervals for
3–31 July 2014 [Colour figure can be viewed at
wileyonlinelibrary.com]

Here, we illustrate the impact of the urban nudging
technique on the modelled surface energy balance dur-
ing the four-day warm period (Figure 8). The net radi-
ation is calculated as the sum of the modelled energy
fluxes. The energy fluxes are typically associated with an
urban surface, best seen in the storage heat flux. The
maximum storage heat flux in the morning amounts to
150 W⋅m−2, while the soil heat flux for a rural grass-
land area typically amounts to 30 W⋅m−2 (Cleugh and
Oke, 1986).

For URBAN-DA, it appears that increasing the temper-
ature of wall, road and soil layers leads to an increased
release of stored heat and an increase in the sensible heat
flux, which is most pronounced at night (Figure 8). On
clear nights in the warm period, the sensible heat flux
is typically 30 W⋅m−2 larger for URBAN-DA compared to
RADAR-DA. The storage heat flux is approximately 50%
larger. The difference can be explained by the increased
skin temperature and an associated increase in outgo-
ing long-wave radiation. During the day, the difference

F I G U R E 8 Modelled energy balance for WMO stations data
assimilation+ radar data assimilation+urban nudging using
personal weather stations (URBAN-DA) (full line) and WMO
stations data assimilation+ radar data assimilation (RADAR-DA)
(dashed line) for the average of the locations of Amsterdam
Atmospheric Monitoring Supersite (AAMS) urban stations, for the
four-day warm period (corresponding to Figure 6). H denotes
sensible heat flux, LH denotes latent heat flux, G denotes storage
heat flux, and Q* denotes the net radiation [Colour figure can be
viewed at wileyonlinelibrary.com]

in energy balance between URBAN-DA and RADAR-DA
is smaller. At solar noon, around 47% of the net radi-
ation is used for sensible heat flux (RADAR-DA 46%
and URBAN-DA 48%). This H/Q* ratio is close to that
of the urban sites of Basel, approximately 51% (Chris-
ten and Vogt, 2004), and lies within the range of 75th
percentile July energy fluxes of downtown London (Kot-
thaus and Grimmond, 2014). In a high-rise district of
Marseille, the H/Q* ratios are around 60% (Grimmond
et al., 2004), which matches the denser urban sites of Ams-
terdam with low green fraction (48%–61% for RADAR-DA
and 51%–64% for URBAN-DA). On the other hand, Kato
and Yamaguchi (2007) shows for the city of Nagoya consid-
erably lower H/Q* ratios, which is related to low sky-view
factors and related obstruction of solar radiation of tall
buildings.

The storage heat flux consists of 29% and 25% of the
net radiation (G/Q*) for RADAR-DA and URBAN-DA at
solar noon. These results correspond with the observed
storage heat flux for the urban districts of Basel (Chris-
ten and Vogt, 2004). The maximum G/Q* ratio is modelled
in the morning at 0700-0800 UTC and amounts to 41%
for RADAR-DA and 37% for URBAN-DA and these val-
ues are in the range of the different urban districts of
Basel (Christen and Vogt, 2004), and is close to that for
different cities in North America (Grimmond and Oke,
1999). Thus, this means that, in general, the energy par-
titioning in the urban area is in agreement with typ-
ical values in the literature both for URBAN-DA and
RADAR-DA.
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14 KOOPMANS et al.

3.3 Extreme precipitation

In order to evaluate the modelled extreme precipitation
for each of the data assimilation steps, 28 July 2014 was
selected as an example of extreme precipitation over Am-
sterdam, which resulted in precipitation sums over
100 mm in 24 hr and flooding in parts of the city (Figure 9).
The synoptic pattern is characterized by little background
flow at 850 hPa, and hence the development of show-
ers is strongly bound to a local circulation influenced
by land–sea interactions and the diurnal cycle. Below,
we evaluate the NO-DA, WMO-DA and RADAR-DA runs
(Figure 9) and describe their differences using time series
and a skill score designed for precipitation (Figure 10).

In the NO-DA run, a high-pressure area develops
over the North Sea, which counteracts warm moist air
masses on land. This leads to a weak northerly flow over
The Netherlands transporting relatively cool and dry air,
which suppresses deep convection. In addition, the air

flow is diffluent, which is associated with descending air
motions. The WMO-DA run was able to create a con-
vergence zone, leading to heavy showers in the moist
unstable air. This is related to better representation in sur-
face pressure (Figure 4). The maximum daily precipitation
amounts (127 mm) are close to those using the radar esti-
mates (116 mm) (Figure 9). Unfortunately, the location
of this convergence zone and extreme rainfall is approx-
imately 150 km to the south of what was observed by
the radar. In the afternoon, the gauge-adjusted radar pro-
duct had the largest precipitation intensities in the east
of the country. WMO-DA is able to generate convective
precipitation in this area, although this convective pre-
cipitation is more widespread and dispersed with lower
intensities. The development of storms in the east seen in
the gauge-adjusted radar is not present in WMO-DA either.

The RADAR-DA run is able to simulate the heavy
convective precipitation at the approximate location com-
pared to the gauge-adjusted radar. With the assimilated

F I G U R E 9 Cumulative daily precipitation for 28 July 2014, 0000 UTC — 29 July 2014, 0000 UTC for no data assimilation (NO-DA)
(b), WMO stations data assimilation (WMO-DA) (c), and WMO stations data assimilation+ radar data assimilation (RADAR-DA) (d), and
radar observations (a), for domain 2. The rain observations represent the rain gauge-adjusted radar data [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 10 (a) Average fractional skill scores for the
consecutive data assimilation runs for days with precipitation for
domain 2. The bars indicate the standard deviation of the average
Fractional Skill Score (FSS) and 90th percentile (90p) FSS of the
different days. (b) Daily precipitation sums for the consecutive data
assimilation runs and gauge-adjusted radar as reference for domain
2. Precipitation outside the land surfaces of The Netherlands is
excluded in the model simulations according the gauge-adjusted
radar data in Figure 9a [Colour figure can be viewed at
wileyonlinelibrary.com]

convective precipitation, the model is able to create the
convergence zone in the middle of the country. Therefore,
28 July 2014 shows a clearly improved performance utiliz-
ing radar data assimilation. Until 28 July 2014 1300 UTC,
the radar run resembles the gauge-adjusted radar data. The
northwest–southeast-oriented convergence line is well
represented by the RADAR-DA run (and URBAN-DA).
Thereafter, the most active precipitation in the conver-
gence line remains in the northwest in the radar run, while
the gauge-adjusted radar data show activation in the east
of the country on this convergence line. At the end of the
afternoon, the location of convective precipitation diverges
between RADAR-DA and the gauge-adjusted radar. The
convergence line itself is still present in the RADAR-DA
run (and the URBAN-DA run). On other days with con-
vective precipitation, the improvement of consecutive data
assimilation steps is less distinct.

The performance of multiple precipitation days is
reflected in the FSS (Figure 10a), and daily accumulated
precipitation (Figure 10b). The FSS shows better scores
for average daily precipitation and extreme precipitation

(90p) with each additional data source used for assim-
ilation, although the differences are small (Figure 10a),
and there is a large spread between individual days. In
the Discussion, Section 4, we further examine which
FSS value should be considered as useful for predicting
value. Figure 10b presents the daily averaged precipita-
tion amounts for the Netherlands domain. On average,
the runs without radar data assimilation (NO-DA and
WMO-DA) produce too little precipitation. These runs
resemble each other for most days, except for the last
decade of July, including 28 July. Occasionally, WMO-DA
has substantial impact on the simulated precipitation
fields leading to better precipitation sums. RADAR-DA
and URBAN-DA, on the contrary, overestimate the precip-
itation and differ extensively from the runs without data
assimilation. From 24 July onwards, the runs with radar
data assimilation (RADAR-DA and URBAN-DA) resem-
ble the gauge-adjusted radar much more closely than the
runs without (NO-DA and WMO-DA). In the other rainy
periods, the magnitude of the biases is similar but reversed
between these runs (July 7–12), or the radar data assim-
ilation runs show separately an overestimation of precip-
itation (July 20–21). The URBAN-DA simulation is very
similar to the RADAR-DA run regarding precipitation,
since urban data assimilation only impacts urban temper-
atures at daytime marginally, which therefore has a small
impact on the development of convective precipitation.

4 DISCUSSION

4.1 Urban data assimilation

The inclusion of observations from personal weather
stations in reanalysis products is new and challenging.
Other literature rather focuses on operational forecasts
with assimilation of citizen observations (4D-Var). For
example, recently, a huge number of NetAtmo crowd-
sourced weather stations were assimilated in a regional
weather model (Sgoff et al., 2022). Due to ensemble fore-
casts (local ensemble transform Kalman filter), an observa-
tion error and model error could be derived for the quality
control of personal weather stations. Furthermore, the
meteorological services in Norway (MET Norway) intro-
duced citizen weather observations in the postprocessing
of their forecasts (Nipen et al., 2020). A Kalman filtering
approach was applied to spatially interpolate innovations
(‘innovations’ here means the difference between observa-
tion and model just before the data assimilation cycling)
by the observation to form an analysis, which is the best
estimate for current conditions. A remarkable similarity
between Kalman filtering and the urban nudging pre-
sented in the current work is that the so-called ‘innovation’
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at a station is less or not spread across meteorological fea-
tures, such as fronts. In our fit, wind and clouds (typically
for fronts) generally cause smaller innovations as the UHI
is suppressed during such conditions. Kalman filtering can
determine the lack of correlation of innovations across
such features in the analysis, preventing single innova-
tions at one observing station affecting areas with different
weather. Computational 4D-var data assimilation requires
linear approximations used in a tangent linear model
(Courtier et al., 1994). In a complex urban boundary layer,
this linear model error evolution holds for districts with
high aspect ratios like downtown Hong Kong, while other
urban geometries exhibit such linear model error evolu-
tion to a lesser extent, leading to lower accuracy (Ngan and
Lo, 2017). Lastly, the data assimilation of personal weather
station observations in operational forecasts is investigated
by several European National weather institutes such as
the Danish and Finnish Meteorological Institutes and the
Deutscher WetterDienst (Hintz et al., 2019).

4.2 Radar data assimilation

The runs without radar data assimilation appear to have
too little precipitation. It is worthwhile also reviewing the
Era-Interim dataset, which was used as boundary con-
dition. The near-surface conditions of temperature and
humidity are captured well relative to their resolution
since there are enough high-quality observations avail-
able for the reanalysis. However, the relative and specific
humidity is likely too low for the layers between 925 hPa
and 775 hPa, due to a known dry bias of radiosonde obser-
vations (Vaisala RS90/92) used in the Era-Interim (Sim-
mons et al., 2010). The dry bias is confirmed by comparing
these type of radiosonde measurements with reference
satellite-based measurement systems (GPSRO and GCOS)
(Ladstädter et al., 2015). This dry bias likely has a reduced
effect on shower development and precipitation rates. At
screen level (∼1.5 m), the NO-DA run does not reveal a
dry bias looking to the dew-point temperature verifica-
tion (Figure 5), which is in accordance with Era-Interim
showing no structural bias in humidity near the surface
(Simmons et al., 2010). So, among other processes (e.g.,
data assimilation of weather stations), too dry model levels
higher up are not forcing a reduction of the humidity near
the surface.

Large differences in FSS are observed between indi-
vidual days displayed in the large standard deviations in
Figure 10 (0.19–0.25 for average precipitation and higher
for 90p). On many days there is not a clear signal that
the model sufficiently adopts the location of precipitation
observed by the radar. We hypothesize the model often has
a non-supportive atmosphere for shower development.

In that case, eventually adopted radar signals of showers
die down quickly, so that they are not perceived in the
model run. That non-supportive atmosphere is substan-
tiated with the radiosonde-related dry biases (Ladstädter
et al., 2015). In addition, the related convection of the
showers should be assimilated (via radial wind velocity)
at an early stage of development (Bachmann et al., 2019),
which is not commonplace every day.

The FSS deviates between 0 (no skill) and 1 (perfect
skill). To put the score in a perspective, a random forecast
FSSrandom equates the fraction of threshold exceedances
(10% threshold exceedances is a FSSrandom of 0.1). The aver-
age FSSrandom is 0.31 and 90p FSSrandom is 0.10 for days
with precipitation in July 2014. Achieving this benchmark
is very minimal performance. The literature (Roberts and
Lean, 2008; Skok, 2015) suggests FSS should be at least
higher than 0.5 to be useful, which is the case for our
model results. Moreover, Roberts and Lean (2008) propose
using FSSuniform as a skill parameter, which is defined as
FSSuniform = 0.5 + f∕2. Herein, f is the fraction threshold
exceedances for radar observations. The FSSuniform is 0.66
for the average FSS and 0.55 for the 90p FSS. According
to Figure 10a, the FSSuniform criterium for URBAN-DA is
just met for the average FSS (0.66) and not met for the 90p
FSS (0.46). The improvement of fraction skill scores for
the sequential DA runs is not significant since the simu-
lation period is relatively short. In addition, Skok, (2015)
obtained the FSSuseful, which is an analytical solution cor-
responding with a rain band, which, displaced, is half the
size of a window. Although Skok (2015) obtained an objec-
tive benchmark, the FSSuseful is less interpretable in situa-
tions with multiple rain areas (see e.g., July 28, Figure 9a)
that is less than the neighbourhood length apart, which
also occur in our study. In addition, rain bands might be
interrupted, since lighter precipitation patches within the
rainband may not exceed the threshold. This especially
applies for the 90p results.

5 CONCLUSION

In this study, we investigated how WRF simulations can be
improved by applying consecutive data assimilation steps
(WRF 3D-Var) and nudging techniques for the urban envi-
ronment in Amsterdam at a 100-m grid spacing. Assim-
ilated observations consist of WMO synoptic weather
observations, volume radar data and urban weather obser-
vations recorded by personal weather stations. Specifi-
cally for the urban canopy, a novel approach was devel-
oped to nudge temperatures with quality-controlled per-
sonal weather observations. Hindcasts are presented for
July 2014 for Amsterdam, which inhibits both warm dry
periods and days with extreme precipitation. We have
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demonstrated that data assimilation of 2-m air temper-
ature and pressure from WMO stations largely improve
the background fields. The assimilation of weather radar
observations shows slightly better performance in the loca-
tion of precipitation fields. In addition, the data assimila-
tion of personal weather station observations reduces the
cold bias at night within the urban canopy, and it pro-
duces more realistic energy fluxes. The findings and best
practices will be used to create a 15-year urban reanalysis
for Amsterdam, which will increase knowledge in urban
climatology and enable the tracing of trends in thermal
comfort and extreme precipitation.
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APPENDIX A

A1 Derivation of wall and road temperature incre-
ments
This appendix presents the derivation of temperature
increment of wall and road layers based on differences in
modelled–observed urban canopy temperature ΔTc. Our
point of departure is the formulation of the sensible heat
flux from walls, Hw, and roads, HG (km⋅s−1) in the SLUCM
model (Kusaka et al., 2001) and visualized in Figure A1.

Hw = Cw (Tw − Tc) (A1)

HG = CG (TG − Tc) (A2)

Herein Tw and TG are the wall and road temperature (K),
Tc is the urban canopy temperature (K), and CG and Cw
are the heat transfer coefficients (m⋅s−1) that have been
parameterized as follows:

Cw = CG

{
7.51U0.78

c
(

Uc > 5 m ⋅ s−1)

6.15 + 4.18Uc
(

Uc ≤ 5 m ⋅ s−1)

}

(A3)

Herein Uc is the wind speed at the canopy level of Tc. In
addition, the sensible heat exchange through the canyon
top towards the overlying atmosphere Ha (km⋅s−1) is
parameterized using classical Monin–Obukhov theory:

Ha =
𝜅u∗
𝜓h

(Tc − Ta) (A4)

in which 𝜅 is the Von Karman constant (dimensionless),
u∗ the surface friction velocity (m⋅s−1), 𝜓h the stability cor-
rection (dimensionless ) and Ta the air temperature (K) at
the first model layer.

In Figure A1, w represents the road width and h the
building height (m). Conservation of these energy fluxes
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F I G U R E A1 Schematic of single-layer urban canopy model
(SLUCM) with the relevant energy fluxes adapted for urban nudging.
Reused and adapted from Kusaka et al. (2001) with permission

(with no storage in the urban canopy) requires that:

wHa = 2hHw + wHG (A5)

The ratio 2h for walls compared to w for roads arises
because there are walls on both sides of one road in an
urban canopy.

Inserting Equations (A1), (A2), (A4) in Equation (A5)
results in:

w𝜅u∗
𝜓h

(Tc − Ta) = 2hCw (Tw − Tc)

+ 2hHW + wCG (TG − Tc) (A6)

Bring Ta in front, because later on we can set changes in
Ta to 0 between two data assimilation cycles:

w𝜅u∗
𝜓h

Ta = w ku∗
𝜓h

Tc − 2hCwTw + 2hCwTc

− wCGTG + wCGTc

Ta = Tc −
𝜓h2hCwTw

w𝜅u∗
+ 𝜓h2hCwTc

w𝜅u∗

− 𝜓hwCGTG

w𝜅u∗
+ 𝜓hwCGTc

w𝜅u∗

Ta = Tc

(
1 + 𝜓h2hCw

w𝜅u∗
+ 𝜓hwCG

w𝜅u∗

)

− 𝜓h2hCwTw

w𝜅u∗
− 𝜓hwCGTG

w𝜅u∗

Write the equation as differences Δ denoting the changes
in canopy and wall and road temperatures. Assume
ΔTa = 0, since the first model layer is not part of SLUCM
and serves as boundary condition:

𝜓h2hCwΔTw

w𝜅u∗
+ 𝜓hwCGΔTG

w𝜅u∗

= ΔTc

(
1 + 𝜓h2hCw

w𝜅u∗
+ 𝜓hwCG

w𝜅u∗

)

2hCwΔTw + wCGΔTG =
ΔTc

(
1 + 𝜓h2hCw

wku∗
+ 𝜓hwCG

wku∗

)

𝜓h
wku∗

= ΔTc

(
w𝜅u∗
𝜓h

+ 2hCw + wCG

)

Subsequently, assume ΔTg = ΔTw since Cw = CG.

(2h + w)CwΔTw = ..

CwΔTw =
ΔTc

(
w𝜅u∗
𝜓h

+ 2hCw + wCw

)

2h + w

= ΔTc
w𝜅u∗

𝜓h(2h + w)
+ ΔTcCw(2h + w )

(2h + w)

CwΔTw = CwΔTc

(
1 + w𝜅u∗

𝜓hCw(2h + w)

)

The final result (A7) matches Equation (5) of the main
paper with the full notation Cah =

𝜅u∗
𝜓h

ΔTw,G = ΔTc

(
1 + w𝜅u∗

𝜓hCw(2h + w)

)

= ΔTc

(
1 + w

(2h + w)
𝜅u∗
𝜓hCw

)

= ΔTc

(
1 + w

(2h + w)
Cah

Cw

)
(A7)
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