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SUMMARY

A large part of condensed matter physics concerns itself with understanding the behaviour
of electrons in solids and finding ways to control them. However, in mesoscopic systems
(i.e., systems with nanometer to micrometre scale), the behaviour of electrons is difficult
to predict through the Schrödinger equation. Instead, it is often more fruitful to use an
approximate semiclassical theory that re-introduces the concept of particle trajectories
into the quantum world. These trajectories not only depend on the applied external fields
but also on the Fermi surface of the material itself. The control over the Fermi surface
allows to engineer electron trajectories not present in classical physics and therefore leads
to new novel phenomena. For example, in highly anisotropic materials with open Fermi
surfaces, the semiclassical trajectories of electrons in a magnetic field are no longer closed
but instead move in an oscillating open trajectory that travels from one sample edge to
the next. These open trajectories result in magnetoresistance oscillations with a period
proportional to the flux passing through the sample — similar to the Aharonov–Bohm
effect. However, unlike the Aharonov–Bohm effect, the magnetoresistance oscillations
here are not due to interference effects.

Open trajectories not only lead to novel transport phenomena but also contribute to
the magnetic response. Two counter-propagating open trajectories couple via boundary
reflections and form an effective closed trajectory. Unlike usual cyclotron orbits that
shrink with increasing magnetic field, these effective closed trajectories extend over the
entire sample width irrespective of the magnetic field. The magnetic response of these
effectively closed trajectories oscillates between diamagnetism and paramagnetism with
a period proportional to the flux quanta passing through the area defined by the width
of the sample and the distance between adjacent atomic layers. These oscillations are
distinct from the de Haas–van Alphen effect, where due to the shrinking of cyclotron
orbits the oscillation period is proportional to the inverse magnetic field. Additionally,
these oscillations require sample-wide coherence and high-quality boundaries.

In mesoscopic systems, interfacing different materials is a common way to engineer
devices with precise electronic properties. In particular, superconductor interfaces with
other materials (e.g., semiconductors or ferromagnets) often host subgap Andreev bound
states (ABS). The charge and energy of these ABS are highly electrically tunable through
gate voltages and flux bias. As a result, ABS are excellent mediators of interactions between
local fermionic modes. For example, a superconducting island between two quantum
dots mediates the normal hopping and superconducting pairing processes between the
dots. In addition, a tunable capacitor between the dots allows for control of the Coulomb
interaction between them. Together, these processes allow precise electrical control of the
fermionic modes within the dots and thus offer a practical implementation of a fermionic
universal quantum computer. Our design consists of an array of quantum dots tunnel
coupled by a hybrid superconducting island together with a tunable capacitor coupling
the dots.

vii



viii SUMMARY

In addition to new devices, hybrid superconducting nanostructure makes it possible
to engineer phases of matter — topological superconductors which host Majorana bound
states. Majorana bound states are zero-energy modes that are their own antiparticles.
Most modern attempts to realize Majorana bound states focus on hybrid superconducting
nanostructures with strong spin-orbit coupling and an external magnetic field. Recent
experiments suggest that instead of an external magnetic field, it might be possible to
proximity-induce the required exchange field through a ferromagnetic material. To vali-
date the validity of such a zero-field device, we perform detailed microscopic simulations
and map the topological phase diagram as a function of gate voltages and proximity-
induced exchange couplings. We show that the ferromagnetic hybrid nanowire with
overlapping superconducting and ferromagnetic layers can become a topological super-
conductor within realistic parameter regimes.

An alternative way to realize a topological superconductor is to build a magnetic
adatom chain atom-by-atom on a superconductor surface. These chains are known
as Yu–Shiba–Rusinov (YSR or Shiba) chains. While several experiments realised YSR
chains, realistic numerical modelling remains a challenge. To model a YSR chain correctly,
we require a superconductor of a size much larger than the coherence length. Such a
requirement is often computationally intractable in realistic systems. Instead, we propose
to exploit the long coherence length of the superconductor through the short-junction
approximation. The short-junction approximation reduces the whole superconductor
to a boundary condition for the adatoms and thus allows a computationally cheaper
method to model YSR chains. We further reduce the computational complexity of the
short-junction approximation by removing modes that do not couple the adatoms to the
superconductor. We do so by developing the concept of virtual leads — eigenmodes of
the current operator — which provide a natural basis for the problem.



SAMENVATTING

Een groot deel van de fysica van gecondenseerde materie houdt zich bezig met het
begrijpen van het gedrag van elektronen in vaste stoffen en het vinden van manieren
om ze te beheersen. In mesoscopische systemen (d.w.z. systemen op nanometer- tot
micrometerschaal) is het gedrag van elektronen echter moeilijk te voorspellen met de
Schrödingervergelijking. In plaats daarvan is het vaak nuttiger om een benaderende
semiklassieke theorie te gebruiken die het concept van deeltjesbanen opnieuw intro-
duceert in de kwantumwereld. Deze banen zijn niet alleen afhankelijk van de toegepaste
externe velden, maar ook van het Fermi-oppervlak van het materiaal zelf. De controle
over het Fermi-oppervlak maakt het mogelijk om elektronenbanen te construeren die
niet voorkomen in de klassieke fysica en leidt daarom tot nieuwe fenomenen. In zeer
anisotrope materialen met open Fermi-oppervlakken zijn de semiklassieke banen van
elektronen in een magnetisch veld bijvoorbeeld niet langer gesloten, maar bewegen ze
in plaats daarvan in een oscillerende open baan die van de ene monsterrand naar de
volgende gaat. Deze open banen resulteren in magnetoresistentie-oscillaties met een
periode die evenredig is met de flux die door het monster gaat — vergelijkbaar met het
Aharonov-Bohm effect. In tegenstelling tot het Aharonov-Bohm effect zijn de magnetore-
sistentie oscillaties hier echter niet het gevolg van interferentie effecten.

Open banen leiden niet alleen tot nieuwe transportverschijnselen maar dragen ook
bij aan de magnetische respons. Twee tegengestelde voortbewegende open banen kop-
pelen via grensreflecties en vormen een effectieve gesloten baan. In tegenstelling tot
gebruikelijke cyclotronbanen die krimpen met toenemend magneetveld, strekken deze
effectieve gesloten banen zich uit over de gehele monsterbreedte, ongeacht het mag-
neetveld. De magnetische respons van deze effectief gesloten banen schommelt tussen
diamagnetisme en paramagnetisme met een periode die evenredig is met de fluxquanta
die door het gebied gaan dat gedefinieerd wordt door de breedte van het monster en de
afstand tussen aangrenzende atoomlagen. Deze oscillaties zijn te onderscheiden van het
de Haas–van Alphen effect, waarbij door het krimpen van cyclotronbanen de oscillatiepe-
riode evenredig is met het omgekeerde magneetveld. Bovendien vereisen deze oscillaties
monsterbrede coherentie en hoogwaardige grenzen.

In mesoscopische systemen is het samenstellen van verschillende materialen een
gebruikelijke manier om apparaten te maken met nauwkeurige elektronische eigen-
schappen. In het bijzonder, supergeleider-oppervlakken met andere materialen (bijv.
halfgeleiders of ferromagneten) bevatten vaak subkloof Andreev gebonden toestanden
(ABS). De lading en energie van deze ABS zijn in hoge mate elektrisch afstembaar via
gatespanningen en fluxbias. Daardoor zijn ABS uitstekende bemiddelaars van interacties
tussen lokale fermionische toestanden. Zo bemiddelt een supergeleidend eiland tussen
twee kwantumstippen de normale hopping en supergeleidende paarprocessen tussen
de stippen. Daarnaast zorgt een afstembare condensator tussen de stippen voor cont-
role over de Coulomb-interactie tussen de stippen. Samen maken deze processen een
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x SAMENVATTING

nauwkeurige elektrische besturing van de fermionische toestanden binnen de stippen
mogelijk en bieden zo een praktische implementatie van een fermionische universele
quantumcomputer. Ons ontwerp bestaat uit een array van kwantumstippen die tun-
nelgekoppeld zijn door een hybride supergeleidend eiland, samen met een afstembare
condensator die de stippen met elkaar verbindt.

Naast nieuwe apparaten maakt de hybride supergeleidende nanostructuur het mo-
gelijk om fasen van materie te ontwikkelen — topologische supergeleiders die Majorana-
gebonden toestanden dragen. Majorana gebonden toestanden zijn nulpunten van energie
die hun eigen antideeltjes zijn. De meeste moderne pogingen om Majorana-gebonden
toestanden te realiseren richten zich op hybride supergeleidende nanostructuren met
een sterke spin-baankoppeling en een extern magneetveld. Recente experimenten sug-
gereren dat in plaats van een extern magnetisch veld, het mogelijk zou kunnen zijn om
het vereiste uitwisselingsveld nabij te induceren via een ferromagnetisch materiaal. Om
de validiteit van een dergelijk nul-veld apparaat te valideren, voeren we gedetailleerde
microscopische simulaties uit en brengen we het topologische fasediagram in kaart als
functie van gatespanningen en nabijheids-geïnduceerde uitwisselingskoppelingen. We
laten zien dat de ferromagnetische hybride nanodraad met overlappende supergelei-
dende en ferromagnetische lagen een topologische supergeleider kan worden binnen
realistische parameterregimes.

Een alternatieve manier om een topologische supergeleider te realiseren is door
een magnetische adatoomketen atoom voor atoom op te bouwen op een supergelei-
deroppervlak. Deze ketens staan bekend als Yu-Shiba-Rusinov (YSR of Shiba) ketens.
Hoewel verschillende experimenten YSR-ketens realiseerden, blijft realistische numerieke
modellering een uitdaging. Om een YSR-keten correct te modelleren, hebben we een
supergeleider nodig die veel groter is dan de coherentielengte. Een dergelijke vereiste is
vaak rekenkundig onuitvoerbaar in realistische systemen. In plaats daarvan stellen we
voor om de lange coherentielengte van de supergeleider te benutten door middel van de
korte-kringbenadering. De korte-splitsingsbenadering reduceert de hele supergeleider
tot een randvoorwaarde voor de adatomen en maakt zo een rekenkundig goedkopere
methode mogelijk om YSR-ketens te modelleren. We verminderen de rekenkundige
complexiteit van de korte-koppelingbenadering verder door modi te verwijderen die de
adatomen niet aan de supergeleider koppelen. Dit doen we door het concept van virtuele
afleidingen — eigenmodes van de stroomoperator — te ontwikkelen die een natuurlijke
basis voor het probleem vormen.
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2 1. INTRODUCTION

1.1. PREFACE
The last century saw a great deal of progress in condensed matter physics: semiconductor
devices ushered in electronics, liquid crystals paved the way for smartphones, the dis-
covery of superconductors led to the development of strong magnets used in magnetic
resonance imaging and maglev trains, and many more advances. What gives rise to these
materials’ characteristic properties is a specific basic constituent of matter — the electron.
Today in condensed matter physics we understand the electron as a spin 1/2 fermion with
dynamics governed by the Schrödinger equation. The Schrödinger equation is incredibly
successful in explaining material properties, but it is in no way simple. Such a precise
model is often unhelpful in understanding the underlying physics and often it is more
useful to identify the key features of a phenomenon and choose a simpler model that
captures these features.

In the most simple case, we can treat an electron as a simple ball-like particle with a
fixed charge and a classical trajectory defined through Newton’s laws of motion. Applied
to metals, this model is known as the Drude model. While the model is crude, it does
explain the conductivity of metals, the Hall effect and partly the Wiedmann-Franz law.

However, a fully classical description of electrons is not sufficient to explain more
complex properties. In particular, the continuous phase space in the classical picture does
not allow magnetism according to the Bohr–van Leeuwen. Therefore, to deal with mag-
netic phenomenon we need to borrow an important feature from quantum mechanics —
quantisation. Quantisation allows only certain classical trajectories whose classical action
fulfils the condition known as the Bohr–Sommerfeld quantisation. Such a combination
of classical and quantum is known as the semiclassical theory. The semiclassical theory
is a powerful yet simple tool to explain electron dynamics in electromagnetic fields and
magnetic phenomena like the de Haas–van Alphen effect.

Things get even more involved when we consider superconductors. In superconduc-
tors, electrons form Cooper pairs and condense into a macroscopic quantum state. When
we place a weak link such as a thin metal or insulator between two superconductors, cur-
rent flows without any voltage applied — a phenomenon known as the Josephson effect.
While superconductivity is an inherently quantum phenomenon, the Josephson effect
does not require a full quantum description. In the weak link, instead of electron states,
we now consider variable charge fermionic quasi-particles known as Andreev states. An-
dreev states are bound states of electrons and holes that in the weak link follow classical
trajectories. At the superconductor interface, the particles retro-reflect and switch charge
— an effect known as Andreev reflection. Andreev reflection leads to a current passing
through the weak link at zero voltage bias, an effect known as the Josephson effect.

The semiclassical theory is a powerful tool that explains many phenomena on a
mesoscopic scale, but it does have its limitations. Because particles have a fixed position
and velocity in the semiclassical picture, interference is not possible. For example, a
current in a ring oscillates with the passing magnetic flux as a result of interference of
clockwise and counterclockwise moving electrons — known as the Aharonov–Bohm effect.
Furthermore, concepts like entanglement and superposition are absent in semiclassics
which makes it unsuitable to analyse strongly correlated phenomena. Lastly, semiclassics
requires dynamics at length scales much larger than the de Broglie wavelength and
therefore cannot explain the bandstructure in crystals.
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1.2. SEMICLASSICAL EQUATIONS OF MOTION
The everyday macroscopic world we experience — the elliptical orbits of planets, the
swings of a pendulum, the scattering of billiard balls — work according to the laws of
classical mechanics. These constant reminders of Newton’s laws of motion build an
intuitive picture of the physics of the world around us. In part thanks to that, when faced
with a classical mechanics problem, we often have a good idea of what solution to expect.

Despite its simplicity, classical mechanics is merely an approximation of a more fun-
damental theory. When we look at the world on a smaller scale — the world of electrons,
atoms and molecules — the Newtonian picture breaks down. To get a valid description
of the world, we turn to quantum mechanics. While valid, quantum mechanics is both
more technically involved and less intuitive than classical mechanics: non-commuting
operators replace commuting variables of position and momentum, and the trajectories
of particles become wavefunctions which interfere as waves. Because of these difficulties,
we often require various approximations to solve the Schrödinger equation.

While the quantum and classical pictures seem to govern different regimes, they
are not mutually exclusive. In mesoscopic condensed matter systems, it is possible to
combine the best of both theories. To illustrate this, consider an electron in a crystal lattice
with potential V (r) that is subject to additional slowly-varying external potential U (r, t )
and magnetic field B =∇×A(r, t ) where r is position and t is time. The time-dependent
Schrödinger equation for such a system is

iħγ ∂

∂τ
Ψ(ρ,τ) =

[
1

2me

(−iħγ∇ρ −qe A(ρ,τ)
)2 +V (ρ)+U (ρ,τ)

]
Ψ(ρ,τ), (1.1)

where me and qe are the mass and charge of an electron. We re-scaled time, t = τ/γ, and
position, r = ρ/γ where the small parameter γ describes the ratio between microscopic
and macroscopic scales of the problem. A good choice of γ is the ratio between the Fermi
(or de Broglie) wavelength λF and the relevant length scale of the problem L. The ratio
between the derivatives of the external fields and the crystal potential is on the order of
O(γ). Because of this, we expect the crystal potential to dominate the fast oscillations of
the wavefunction and the external fields to slowly modulate the overall amplitude.

To separate the dynamics of the system into two regimes, we use the Ansatz wavefunc-
tion

Ψ(ρ,τ) =Ψ′(ρ,τ)unk(ρ)exp

(
i

γħS(ρ,τ)

)
, (1.2)

whereΨ′ is the slowly modulating part and uk (ρ) is the n-th band eigenfunction of the
crystal with crystal momentum k:(

−ħ2γ2

2me
∇2

p +V (ρ)

)
unk(ρ)exp

(
i k ·ρ)= εn(k)unk(ρ)exp

(
i k ·ρ)

, (1.3)

where εn(k) is the band dispersion of the unperturbed crystal. Because the effect of the
external field must be smaller than that of the crystal potential, we expand the slowly
modulating part of the wavefunction in orders of the small parameter:

Ψ′ =Ψ′
0 +γΨ′

1 +O(γ2), (1.4)
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and solve Eq.(1.1) order by order — an approach known as the WKB approximation [1, 2].
At zeroth order, we obtain the eikonal equation that governs the overall motion of the
particle [3, 4]:

−∂S(r, t )

∂t
= εn

(
k(r, t )+ qe

ħ A(r,τ)
)
+U (r, t ), (1.5)

ħk(r, t ) =∇r S(r, t ), (1.6)

where we switched back to the original position and time variables (r, t ). Equation (1.5)
is similar to the Hamilton–Jacobi equation from classical mechanics: the right-hand
side acts as a classical Hamiltonian whereas the crystal momentum ħk corresponds to
the canonical momentum and S is the classical action of a trajectory. Based on this
correspondence, we transform Eq. (1.5) into Newtonian-like equations known as the
semiclassical equations of motion:

ħdκ

dτ
=∇r U (r, t )−qe

dr

d t
×B, (1.7)

dr

d t
=∇κεn(κ), (1.8)

κ(r, t ) = k(r, t )+ qe

ħ A(r, t ), (1.9)

where we introduced the kinetic crystal momentum κ. Equation (1.7) describes the evolu-
tion of kinetic momentum κ through the classical equation of a particle under the Lorentz
force. However, the relationship between momentum is no longer proportional to velocity
as is in classical mechanics. Instead, the velocity in Eq. (1.8) is now the group velocity of
the wavepacket given by the band dispersion of the crystal. In other words, the electrons
behave as an anisotropic classical liquid that follows the Fermi–Dirac distribution — a
Fermi liquid. Such semiclassical treatment of electrons successfully explains electron
transport properties in metals [5, 6], semiconductors [7, 8], 2D materials [9, 10] and mag-
netic multilayers [11]. In addition, a first-order γ term introduces modulation to the
wavepacketΨ′

0 which leads to anomalous velocity and magnetic moment terms [4, 12].
These additions further explain the anomalous Hall effect [13, 14] and transport in Weyl
metals [15].

While the semiclassical theory allows us to model many phenomena with ease, it
does have its limitations. To begin with, the semiclassical theory assumes that quantum
systems approximately follow classical dynamics, which is not always the case. It does not
apply to systems where effects such as superposition and entanglement are significant.
In addition, it does not account for the wave nature of particles and therefore cannot
explain interference and diffraction phenomena. Furthermore, it fails to accurately
describe phenomena at small position and time scales. Rather, it is only valid when the de
Broglie wavelength of the particle is much smaller than the length scale of the problem.
Additionally, semiclassics treats each band separately and does not account for transitions
between them.1 To ensure no transitions, a large band gap must separate the bands and
any applied external fields must be weak enough to not cause transitions.

1Although it is worthwhile to note that it is possible to extend the semiclassical equations to two coupled
bands [16–18] and spin transport [19].
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1.3. SEMICLASSICAL QUANTISATION
Classical physics deals with continuous quantities such as energy, angular momentum,
magnetic flux, etc. However, in quantum mechanics, physical quantities cannot take
any arbitrary values but rather must be quantised — allowing only integer multiples
of some fundamental unit. Quantisation is a direct consequence of the wave nature of
particles in quantum mechanics and is necessary to ensure that the wavefunction is single-
valued. In practice, quantisation arises from the application of boundary conditions to
the wavefunction. For example, in a box of length L, the wavefunction must fulfil hard-
wall boundary conditions Ψ(0) =Ψ(L) = 0 for the particle to stay within the box. The
constraint forces the wavefunction to be a standing wave within the box with wavevector
k = nπ/L where n is an integer. Similarly, the semiclassical wavefunction in Eq. (1.2)
must fulfil the periodic boundary conditionsΨ(ρ,τ) =Ψ(ρ+L,τ) to be a valid solution.
In general, these restrictions give rise to Bohr–Sommerfeld quantisation condition [20]
which states the action of a closed trajectory must be quantised [21, 22]:

S(E)/ħ≡
∮
ε(k)=E

k(r) ·dr = 2πn +γM +γB , (1.10)

where n is an integer and k(r) is the canonical crystal momentum as a function of orbit
position r. We assumed that the Hamiltonian is time-independent and therefore the
dynamics conserve the total energy E . An analogous interpretation is that the total phase
accumulated along a closed trajectory must be an integer multiple of 2π. Based on this
interpretation, we identify the left-hand side of Eq. (1.10) as a dynamic phase accumulated
along a trajectory where the trajectory follows a constant energy contour along ε(k) = E .
In addition to the dynamical phase, the total phase also contains contributions from
the Maslov index γM and the Berry phase γB . The Maslov index takes into account the
phase accumulation at classical turning points — points where the particle switches
its direction of motion [23]. In practice, these arise due to boundary reflections. Each
reflection from a hardwall boundary, such as a discrete potential step, contributes a phase
of π. On the other hand, a reflection from a soft continuous potential, such as a potential
well, contributes a phase of π/2. Similarly to a soft potential, particle direction switching
due to a magnetic field also contributes a phase of π/2. Lastly, the Berry phase originates
from the periodic adiabatic evolution of the system and only arises in crystals without
inversion and time-reversal symmetry [24]. We shall neglect the Berry phase contribution
in this thesis, so γB = 0.

As an example, consider a particle in a box of length L. In the absence of any fields, the
particle moves with constant momentum and reflects twice from the hard-wall bound-
aries such that γM mod 2π = 0. The quantisation condition in Eq. (1.10) allows only
certain momenta k = nπ/L. Because we know that the momentum is related to the energy
through the dispersion relation ε=ħ2k2/2m, we rewrite the quantisation condition in
terms of energy:

εn = 1

2m

(ħπn

L

)2

, (1.11)

which is the energy spectrum of a particle in a box.
Similarly, we can apply the quantisation condition to a harmonic oscillator where

the particle is trapped in a parabolic potential well V (x) = mω2x2/2. In this case, the
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momentum reads:

k(x) =±
√

2m
(
E −mω2x2/2

)
, (1.12)

where ± corresponds to the two directions of motion. Additionally, the particle changes its

motion twice due to the soft potential turning points at x± =±
√

2E/(mω2) and therefore
obtains phase γM =π. As a result, Eq. (1.10) defines the allowed energies of the oscillator:

εn =ħω
(
n + 1

2

)
, (1.13)

which is the energy spectrum of a quantum harmonic oscillator.

1.4. ORBITAL MAGNETIC RESPONSE
As a final example, consider a particle in a uniform magnetic field B = B ẑ where z is the
unit vector along z-direction. The particle moves in a closed cyclotron orbit such that the
direction of motion smoothly switches twice and therefore the Maslov phase is γM =π. We
choose the Landau gauge vector potential A =−B y x̂ in which the quantisation condition
in Eq. (1.10) reads: ∮

ky (y)d y = 2π

(
n + 1

2

)
, (1.14)

whereas kx and kz do not appear in the integral because they are both constants of mo-
tion due to the specific choice of the gauge. The equations of motion in Eqs. (1.7—1.9)
directly define the evolution of kinetic momentum κ rather than the canonical momen-
tum k. Therefore, it is more convenient to re-write Eq. (1.14) in terms of the kinetc
momentum [20, 25]:

A(E ,kz ) ≡
∮
κy dκx = 2π

l 2
B

(
n + 1

2

)
, (1.15)

where we used ħdκx = qe Bd y and defined the magnetic length lB = √ħ/(qe B). Equa-
tion (1.15) quantises the allowed area enclosed by the momentum trajectory, A(E ,kz ). In
the case of a simple isotropic dispersion, it is easy to show that Equation (1.15) correctly
calculates the Landau energy levels. More importantly, Eq. (1.15) allows us to identify
the general properties of a system with any dispersion relation. For example, the energy
levels of any system in a finite magnetic field B shift by ∆E [25]:

∆E = En+1 −En ≈ 2π

l 2
B

(
∂A(E ,kz )

∂E

)−1

. (1.16)

Because the energy levels shift, the total energy changes and the system develops finite
magnetisation as a result. At a weak magnetic field B , this magnetisation is proportional
to the applied magnetic field and is known as Landau diamagnetism [26]. At higher
magnetic fields, the magnetisation starts to oscillate with the inverse magnetic field
and is known as the de Haas–van Alphen effect [27]. The main contributions to the
de Haas–van Alphen effect come from energy levels shifting around the Fermi energy
EF , and therefore the period of these oscillations is directly related to the Fermi surface
cross-section perpendicular to the magnetic field:

1

Bn+1
− 1

Bn
≈ 2πqe

ħA(EF ,kz )
. (1.17)
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By measuring the period of these oscillations at different magnetic field orientations, it is
possible to reconstruct the full Fermi surface of a metal [28, 29].

1.5. SUPERCONDUCTIVITY
In simple systems such as metals, semiconductors, and insulators — the global phase of
the wavefunction does not influence physical properties and therefore we often neglect it.
However, that is not the case in superconductors. Superconductors are a class of materials
that transmit electric current without any resistance and perfectly expel magnetic fields
from their interior. According to BCS theory [30], these strange properties originate from
the formation of electron pairs, called Cooper pairs2. These Cooper pairs condense into a
perfectly coherent macroscopic ground state which leads to a well-defined global phase
of the wavefunction. To parametrise the superconductivity we use the superconducting
order parameter ∆ = |∆|e iφ where |∆| is the superconducting gap value and φ is the
superconducting phase.

The most common and simplest superconductivity is spin-singlet s-wave where
electrons with opposite spin form Cooper pairs. To describe such a superconducting state,
we use a four-component Bogoliubov-de Gennes (BdG) Hamiltonian:

ĤBdG =
(
−ħ2∇2

2m
−µ+V (x)

)
τz +∆(x)σyτx , (1.18)

where µ is the chemical potential, V is the potential, σi and τi are Pauli matrices that act
on spin and particle-hole spaces respectively.

Whenever the parameters V (x),∆(x) in Eq. (1.18) are slowly varying in space, the
semiclassical WKB approximation from the previous section applies. Furthermore, we
assume that µ is much larger than the superconducting order parameter and the energy
of the system, ∆(x),E ≪µ. These two approximations allow us to conveniently partition
the wavefunction into the slowly and rapidly modulating parts [33]:

Ψ(x) =Ψ+(x)exp

(
i
∫ x

x0

kF (x ′)d x ′
)
+Ψ−(x)exp

(
−i

∫ x

x0

kF (x ′)d x ′
)

, (1.19)

where we define the position dependent Fermi wavector kF (x) =
√

2m
(
µ+V (x)

)
/ħ. The

slowly modulating spinors have physical meaning: Ψ+ describes the right-moving elec-
trons and left-moving holes, andΨ− describes the left-moving electrons and right-moving
holes. These two slowly modulating spinors follow the semiclassical BdG Hamiltonian

Ĥ± =∓iτz
ħ2kF (x)

m

∂

∂x
+∆(x)σyτx . (1.20)

Assuming spatially homogeneous potentials ∆(x) = ∆,V (x) = V , the eigenproblem de-
fined through the Hamiltonian in Eq. (1.20) reduces to a matrix ordinary differential
equation:

dΨ±(x)

d x
=± m

ħ2kF

(
Eτz + i∆σyτy

)
ψ±(x). (1.21)

2See the following references for a more pedagogical introduction to superconductivity [31, 32]
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At E = 0, we see that the solutions to Eq. (1.21) must be eigenfunctions of σyτy which are
equal superpositions of electrons and holes. Additionally, we note that there are no plane
wave solutions to Eq. (1.21) whenever E < |∆|. In large superconductors that means that
no quasiparticles exist below the superconducting gap.

1.6. ANDREEV BOUND STATES
In Section 1.5, we briefly discussed some of the properties of a single bulk s-wave super-
conductor. In practise we often deal with superconductors in contact with other, different
materials like metals, ferromagnets or semiconductors. These heterojunctions lead to
novel phenomena which are not possible in each material separately. Here, we shall focus
on one such phenomenon — Andreev reflection [34].

Consider a metal-superconductor (NS) junction where an electron with energy E < |∆|
approaches the superconductor from the metal side. If the superconductor was a normal
metal, the electron would simply transmit into it as an electron quasiparticle. However,
the superconductor is not a normal metal — due to the condensation of Cooper pairs
at the Fermi energy, it has a quasiparticle gap of size |∆|. Instead, the electron transmits
into the superconductor as a Cooper pair and leaves behind a hole to conserve the overall
charge. To conserve the momentum, the left-over hole appears to retro-reflect from
the superconductor. Such a process is known as Andreev reflection. A similar process
happens in reverse when a hole approaches the superconductor from the metal: a Cooper
pair in the superconductor breaks apart and one of its electrons recombines with the hole,
leaving the other electron behind. Because the leftover electron is from the Cooper pair, it
acquires the superconducting phase and an additional phase from the reflection process
itself [34]:

φA =φ−cos−1
(

E

|∆|
)

, (1.22)

where φ is the superconducting phase.
While the phases in Eq. (1.22) seem redundant in an NS junction, they become im-

portant in a superconductor-normal-superconductor (SNS) junction also known as a
Josephson junction. Consider the left superconductor and right superconductor to have
superconducting order parameters ∆L = |∆| and ∆R = |∆|e iφ respectively. As a result of
two successive Andreev reflections, the electron and hole in the middle metal form a
bound state known as the Andreev bound state [35]. To find the energy of the Andreev
bound state, we use the Bohr–Sommerfeld quantisation condition [36, 37] in Eq. (1.10)
and calculate the reflection (Maslov) phase according to Eq.(1.22):

2kF L = 2πn +2cos−1
(

E

|∆|
)
−φ, (1.23)

where L is the length and kF is the Fermi momentum of the metal. We assume the short-
junction limit, kF L ≪ 1, and therefore disregard the dynamic phase term which gives the
phase-dependent energy of the Andreev bound state:

E A =∆cos

(
φ

2

)
. (1.24)
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Upon a single closed trajectory, the particle experiences two Andreev reflections: at
one superconductor it breaks apart a Cooper pair and at the other, it creates a Cooper pair.
Overall, a single Cooper pair transmits through the junction even tho we did not apply any
voltage bias. This phenomenon is known as the Josephson effect and the passing current
is known as the Josephson current [38]. Josephson junctions form the basis of modern
electronic devices such as superconducting quantum interference devices (SQUIDs) [39],
superconducting charge and flux qubits [40].

In addition to the Josephson effect, Andreev bound states give rise to many other
interesting phenomena and thus are a subject of intense research in mesoscopic physics.
Andreev bound states act as a tunable mediator between elastic co-tunelling and crossed
Andreev reflection in devices called Cooper pair splitters [41–43]. In addition, the mi-
croscopic Andreev states couple strongly to electromagnetic fields and therefore are a
prospective candidate for qubit realisation [32].

1.7. MAJORANA BOUND STATES
In Section 1.5, we discussed the simplest superconducting state — an s-wave spin-singlet
state. There exist other superconducting states with different spatial and spin symmetries.
One of the more interesting ones is the spin-triplet p-wave superconductivity (also known
as topological superconductivity) that pairs electrons with the same spin. While intrinsic
p-wave superconductivity is not yet observed, it is possible to engineer it by combining a
spin-singlet s-wave superconductor with a one-dimensional spin-orbit coupled material
(nanowire) in a magnetic field [33, 44]:

ĤBdG =
(

p̂2

2m
−µ+V (x)−Bσx +αpσy

)
τz +∆(x)σyτx , (1.25)

where ∆ is now the proximity-induced superconducting gap, B is the Zeeman energy due
to the applied magnetic field, and α is the spin-orbit coupling strength. The potential
that confines the electron to the semiconductor is V (x) and we assume that near one of
the nanowire’s edges, it is approximated by a linear potential V (x) =µ−V ′x.

Equation (1.25) is similar to Eq. (1.18) and therefore the semiclassical WKB approx-
imation used in Section 1.5 also applies. However, the presence of spin-orbit coupling
complicates the problem and it is simpler to perform a basis transformation on the coordi-
nate x such that spin-orbit coupling becomes an effective position-dependent magnetic
field (see Ref. [33] for detailed derivation). In the limit of B ≫∆ and V ′ ≪ B∆/(ħα) there
exists near-zero energy solutions at the edges of the nanowire:

E ≈∆exp

(
− B 3

ħαV ′∆

)
. (1.26)

These solutions are known as the Majorana bound states.
Majorana bound states are similar to Andreev bound states at zero energy: they are

both chargeless, spinless, their own antiparticles. However, unlike Andreev bound states
which are fermions, Majorana bound states are non-abelian anyons: exchanging two
Majoranas results in a unitary transformation that is not just an overall phase factor.
In addition, Majorana bound states are non-local and appear in pairs at the opposite
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edges of the nanowire. The non-locality of the Majorana bound states also means that
they are not affected by local perturbations such as disorder. For example, by comparing
Eq. (1.24) to Eq. (1.26) we see that Andreev bound state energy is sensitive to the variations
of superconducting phase whereas the Majorana bound state is not sensitive to any local
parameter variations as long as its deep within the topological phase. The non-abelian
exchange statistics and protection against local perturbations make Majorana bound
states a promising candidate for topological quantum computation [44–47].

1.8. THIS THESIS
The motion of electrons in a crystal determines the electronic transport properties of
the material. For example, the Hall effect is a well-known phenomenon where a current-
carrying conductor develops a voltage perpendicular to the applied current and magnetic
field. The origin of the effect is the Lorentz force which deflects the electrons in the
conductor and therefore creates a charge imbalance. The explanation assumes the band
structure of the conductor is isotropic and therefore the electrons move in simple circular
orbits. However, the motion of electrons in crystals is not always so simple. Many
metals have a highly anisotropic structure which makes the trajectories also anisotropic.
In Chapter 2, we consider one such anisotropic system — a quasi-two-dimensional
electron gas in an in-plane magnetic field. Because of the anisotropy, the orbit of an
electron in a magnetic field is no longer closed. Instead, it moves in an oscillating open
trajectory that travels from one sample edge to the next. These open trajectories result
in magnetoresistance oscillations [48] that closely resemble the Aharonov–Bohm effect.
However, unlike the Aharonov–Bohm effect, the observed magnetoresistance oscillations
do not rely on phase coherence and instead only require ballistic transport.

The magnetic response of a material also depends on the trajectories of its electrons.
For example, the oscillations in the de Haas–van Alphen effect depend directly on the
shape of the closed electron trajectories [25]. Therefore, one might expect that open
orbits do not have a diamagnetic response. Contrary to this expectation, in Chapter 3
we show that open orbits in finite systems do contribute to the magnetic response that
oscillates between diamagnetism and paramagnetism. The oscillations are similar to
the Aharonov–Bohm effect because the oscillation phase is set by the number of flux
quanta through the area defined by the width of the sample and the distance between
adjacent atomic layers. The magnetic response originates from the closed trajectories
formed by counter-propagating open orbits coupled via specular boundary reflections.
The phenomenon acts as a probe of the phase coherence of open electron trajectories.

Thanks to advances in hybrid nanostructure fabrication [49], it is now possible to
combine physical properties from different materials into a single device. In particular, the
combination of semiconductors and superconductors [50, 51] allows to engineer of new
electronic devices with novel properties. Chapter 4 proposes a practical implementation
of a universal quantum computer that uses local fermionic modes rather than qubits. Our
design consists of an array of quantum dots tunnel coupled by a hybrid superconducting
island together with a tunable capacitor coupling the dots. The superconductor islands
host Andreev bound states which act as a tunable mediator of interaction between the
dots [41–43]. We show that coherent control of Cooper pair splitting, elastic cotunneling,
and Coulomb interactions allows us to implement the universal set of quantum gates
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defined by Bravyi and Kitaev [52]. Finally, we discuss possible limitations of the device
and list necessary experimental efforts to overcome them.

In addition to new devices, hybrid nanostructure makes it possible to engineer novel
phases of matter — topological superonductors [53]. In Chapter 5, we study the elec-
tronic properties of InAs/EuS/Al heterostructures as explored in a recent experiment [54],
combining both spectroscopic results and microscopic device simulations. In particular,
we use angle-resolved photoemission spectroscopy to investigate the band bending at
the InAs/EuS interface. The resulting band offset value serves as an essential input to sub-
sequent microscopic device simulations, allowing us to map the electronic wave function
distribution. We conclude that the magnetic proximity effects at the Al/EuS as well as the
InAs/EuS interfaces are both essential to achieve topological superconductivity at zero
applied magnetic field. Mapping the topological phase diagram as a function of gate volt-
ages and proximity-induced exchange couplings, we show that the ferromagnetic hybrid
nanowire with overlapping Al and EuS layers can become a topological superconductor
within realistic parameter regimes.

Another proposed platform to host topological superconductivity is a chain of mag-
netic adatoms on a superconducting substrate — a Yu–Shiba-Rusinov (YSR or Shiba)
chain [55–58]. While the theory of such chains is well-established [56, 57], their exact
modelling is challenging. To model a YSR chain correctly, we need to ensure that the size
of the superconductor is much larger than the superconducting coherence length. In
practice, this requirement makes the modelling of YSR chains computationally intractable.
In Chapter 6, we propose a computationally cheaper method to model YSR chains that
employ the short-junction approximation [59]. We further reduce the computational
complexity of the short-junction approximation by removing modes that do not couple
the adatoms to the superconductor. We do so by developing the concept of virtual leads —
eigenmodes of the current operator — which provide a natural basis for the problem. We
demonstrate the efficiency of our method by calculating the dispersion of a YSR chain.
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2.1. INTRODUCTION
Known since the discovery of mineral CuFeO2 by Friedel in 1873, delafossites are mate-
rials with the general formula ABO2 [1, 2]. Delafossites are naturally occurring layered
structures of alternating conductive A layer and insulating BO2 layer with the overall R3̄m
space group [3]. These materials are considered to be 2D owing to their weak interlayer
coupling which results in a nearly cylindrical Fermi surface [4, 5]. Of particular interest
are PdCoO2 and PtCoO2 which were first synthesized and characterized at room temper-
ature in 1971 by Shannon et al. [2, 3, 6]. Even though nearly 50 years have passed since
then, the area of research is still very active due to the delafossites’ impressive electronic
transport properties [7]. At room temperature, it was shown that the conductivity of
PdCoO2 is 2.6µΩcm, very close to that of elemental copper [8]. Part of the reason for such
large conductivity is the high Fermi velocity 7.5×105 ms−1 [8]. Another reason is their
exceptional mean-free path at 4 K which exceed 20µm [8]. Such value of mean-free path
is accredited mostly to anomalously clean nature of delafossites and orbital-momentum
locking [9, 10]. Overall, all of these properties of delafossites make them a good platform
to study mesoscopic ballistic transport [11].

Figure 2.1: PdCoO2 magnetoresistance experimental set up (top) and results (solid blue lines) obtained by
Putzke et al. [12]. The semiclassical prediction (dashed red lines) was obtained by modeling the finite size
PdCoO2 sample.

Recent experiments studied the out-of-plane transport of PdCoO2 [12], with the setup
and the measured magnetoconductance shown in Fig. 2.1. Magnetoconductance was
measured with the magnetic field applied in the plane of the delafossite layers and the
current passing out-of-plane. Surprisingly, the magnetoconductance showed oscillations
with a magnetic field similar to the Aharonov-Bohm effect, and therefore appearing to be
of quantum origin. The period of the oscillations corresponded to adding a flux quantum
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through the area W c with W ∼ 5µm the width of the sample and c the spacing between the
adjacent conducting layers. Given that the oscillations persist up to elevated temperature
of 50 K, this result is remarkable compared with e. g. quantum Hall interferometers, where
coherence at micron length scale vanishes below 100 mK [13].

Simulations performed by Putzke et al. confirmed that the oscillations of Kubo con-
ductivity with Aharonov-Bohm periodicity indeed appear in a minimal tight-binding
model that combines high anisotropy with magnetic field [12]. Based on this observa-
tion, Ref. [12] attributed the oscillations to long-range coherence of the delafossite layers
(lφ ≥10µm) and separately ruled out multiple semiclassical or macroscopic origins of
these oscillations. The manuscript therefore opens a question about the possible origins
of this unusual long length and high temperature phase coherence. The coherent origins
of the phenomenon also require closed trajectories, and are therefore hard to reconcile
with boundary scattering at the strongly disordered sample boundaries1.

Here, we argue that contrary to the claim of long range coherence, the oscillations are
a consequence of the shape of the semiclassical trajectories rather than an interference
pattern of electron waves traversing the sample. Our construction extends the idea put
forward by Pippard [14] used to explain magnetoresistance oscillations in gallium [15].
Our formalism does not rely on sample-scale phase coherence and therefore is compatible
with the low temperature phase coherence length lφ =400 nm estimated from Shubnikov-
de Haas [12] experiments. The semiclassical approach also allows us to incorporate the
appropriate bulk and boundary scattering rates, and simulate the full 2D cross-section
of the sample. The semiclassical approach also allows us to isolate the role of different
scattering mechanisms and to conclude that in the clean samples, the sample aspect ratio
is the most likely factor limiting the visibility of the oscillations.

2.2. BALLISTIC IN-PLANE MODEL IN THE WEAK OUT-OF-PLANE

COUPLING LIMIT
Delafossites’ conduction band is well approximated by the energy dispersion

ε(k) = ε∥(k∥)− tz cos(kz c ′), (2.1)

where ε∥(k∥) is the in-plane dispersion relation with an approximately hexagonal Fermi
surface [8, 16, 17], c ′ is the interlayer distance and tz is the interlayer hopping. While inter-
layer dispersion is weak [4, 8]—tz ∼ 10meV is much smaller than the in-plane bandwidth—
it exceeds the thermal broadening of the Fermi surface at temperatures T ≲ 50K. This
motivates a perturbative approach in terms of tz that we use throughout the paper.

We compute electron density f (r,k, t )d 3k at position r, time t and momentum k by
using the Boltzmann equation. We separate electron density into the equilibrium part
and non-equilibrium parts:

f (r,k) = f 0 − g (r,k)
∂ f 0

∂ε
, (2.2)

1The samples in Ref. [12] were produced using focused ion beam lithography, and therefore have a few nm
amorphous layer at the boundary
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where the equilibrium density f 0 (Fermi-Dirac distribution) becomes at zero temperature

a Heaviside function so that its derivative ∂ f 0

∂ε becomes a Dirac delta function centered
around the Fermi energy. The resulting steady-state linearised Boltzmann equation [18]
reads:

v ·∇rg − e

ħ (v×B) ·∇kg −evzEz =L g , (2.3)

where v is the velocity, e is the elementary charge, ħ is the reduced Planck constant, B is
the magnetic field, Ez is the electric field along the out-of-plane direction, and L g is the
linearised collision integral. The boundary conditions at the boundary coordinate rB are

|v(k∥) · n̂B|g (rB,k) =
∫

v(k′
∥)·n̂B>0

K
(
k′,k

)× ∣∣v(k∥) · n̂B
∣∣g (rB,k′)d 3k ′,

v(k∥) · n̂B < 0.

(2.4)

where n̂B is the unit normal vector of the boundary (pointing inwards) and K is the
boundary scattering kernel.

Utilizing the smallness of tz , we expand g in Eq. (2.3) as a series to first order in tz :

g (r,k) ≈ g0(r,k)+ g1(r,k), (2.5)

where g0 does not depend on tz and g1 ∝ tz . With the magnetic field inside the y z-plane
B = (0,By ,Bz ), the zeroth-order expansion is

v∥ ·
∂g0

∂r∥
− e

ħ (v∥×B) ·∇kg0 =L g0, (2.6)

where v∥ is in-plane velocity. Equation (2.6) describes an electron in a magnetic field with
no external forces capable of generating a steady non-equilibrium distribution. Under
these conditions, non-zero scattering ensures that the steady state solution is g0 = 0.
Therefore, to first order in tz linearised Boltzmann equation is

v∥ ·
∂g

∂r∥
− e

ħ
(
v∥×B

) ·∇kg −evzEz =L g . (2.7)

Additionally, since g ∝ tz , it is sufficient to approximate L to zeroth order in tz .
Integrating Eq. (2.7) over kz within the 1st Brillouin zone, we obtain an equation

identical to Eq. (2.6), but with g0 replaced by g∥(r,k∥) ≡ ∫
BZ g (r,k)dk ′

z . Therefore, the
in-plane current of electrons vanishes in the steady state:∫

B Z

g (r,k)dkz = 0. (2.8)

We assume that the disorder in the bulk and at the boundaries is weakly correlated across
the layers. Therefore, the disorder rapidly randomizes out-of-plane momentum kz and
leads to kz -independent K and L . The weakly correlated disorder together with Eq. (2.8)
simplifies the linearised collision integral:

L g =− g (k∥,kz )

τ(k∥)
, (2.9)



2.2. BALLISTIC IN-PLANE MODEL IN THE WEAK OUT-OF-PLANE COUPLING LIMIT

2

21

where τ is the relaxation time which depends only on the in-plane wavevector k∥. Similarly,
substitution of Eq. (2.8) in Eq. (2.4) and using the independence of K from kz yields the
simplified boundary conditions:

g (rB,k∥,kz) = 0,for v(k∥) · n̂B < 0. (2.10)

Neither the scattering Eq. (2.9) nor boundary conditions Eq. (2.10) mix non-equilibrium
electron densities along different trajectories defined by the semiclassical equations of
motion

ħdr(t )

d t
=∇kε(k), ħdk(t )

d t
=−ev(t )×B, (2.11)

where t is the time along the trajectory. Therefore, using Eq. (2.11), we obtain the evolution
of g along a single trajectory:

∂g (t ,r0,k0)

∂t
= v ·∇rg − e

ħ (v×B) ·∇kg . (2.12)

Here we parameterize each trajectory originating at a sample boundary through its initial
coordinate and wave vector r0 = (x0, y0, z0) and k0 = (k0 cosθ0,k0 sinθ0,kz,0). Substituting
Eq. (2.12) and Eq. (2.9) into Eq. (2.7), we obtain the Boltzmann equation along a single
trajectory

∂g (t ,r0,k0)

∂t
−eEz vz (kz (t )) =− g (t ,r0,k0)

τ(k∥(t ))
, (2.13)

with solution

g (t ,r0,k0) =−eEz

∫ t

0
vz

(
kz (t ′)

)×exp

(
− (t − t ′)
τ(k∥(t ))

)
d t ′

=−eEz tz

ħ Re

[
exp

(
i kz,0

)∫ t

0
exp(i∆kz (t ))×exp

(
− (t − t ′)
τ(k∥(t ))

)
d t ′

]
, (2.14)

where ∆kz (t) is the kz (t) solution to Eq. (2.11) with kz (0) = 0 initial condition. Because
∆kz (t) is fully determined by the in-plane trajectories, Eq. (2.14) shows that the excess
electron distribution g is also fully determined by the in-plane trajectories.

To analyze experimental observations, we compute the current along z

Izz = e
∫
S∥

d 2r ∥
Ñ
BZ

f (r,k)vz (k)dk, (2.15)

where the triple integral is over the 1st Brillouin zone, and S∥ is the in-plane surface
area of the sample. We express the out-of-plane conductivity σzz = Izz /(S∥Ez ) at zero
temperature by substituting Eq. (2.2) into Eq. (6.6):

σzz = e

S∥Ez

∫
S∥

d 2r ∥
Ñ
BZ

δ(ε−εF )g (x,k)vz (k)dk, (2.16)

where εF is the Fermi energy. In order to compute the lowest nonvanishing contribution
in tz to conductivity, we use g0 = 0, and approximate the energy ε(kx ,ky ,kz ) ≈ ε∥ only to
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Figure 2.2: (A) Trajectories with oscillations commensurate to the sample width due to an in-plane magnetic
field. Different curves indicate the different initial phases of the trajectory. (B) Same as in (A), but the in-plane
magnetic field is chosen to give incommensurate oscillations. (C) Same as in (A), but with scattering present. (D)
Trajectories due to an out-of-plane magnetic field. Blue lines are boundary-to-boundary trajectories whereas
the red lines are edge-localized trajectories. Only the boundary-to-boundary trajectories produce current
oscillations due to a net kz drift throughout the trajectory.

zeroth order in tz . We switch to cylindrical coordinates in k-space (x,k,θ,kz ) where k is
the in-plane wavevector length and θ is the azimuth. The conductivity to the lowest order
in tz is

σzz = e

S∥Ezħ
∫
S∥

2π∫
0

π
c′∫

− π
c′

kF (θ)

vR (θ)
g (x,kF (θ),θ,kz )× vz (kz )d 2r ∥dθdkz , (2.17)

where

vR (θ) = 1

ħ
∂ε∥
∂k

, (2.18)

and kF (θ) is the Fermi wavevector ε(kF (θ),θ) = εF . We further simplify Eq. (2.17) by using
that kz enters Eq. (2.14) as a single complex exponent and carry out integration over kz in
a closed form.

2.3. RESULTS

2.3.1. LARGE ASPECT RATIO LIMIT
Because the mean free path of delafossites is larger than the sample size [12], to illustrate
the origin of the oscillations we first neglect scattering L g = 0. Furthermore, we assume
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the sample has a large aspect ratio L/W → ∞ and therefore we utilize translational
invariance of the sample along the y-direction. With in-plane magnetic field B = (0,By ,0),
the Boltzmann Eq. (2.7) reduces to

vx
∂g (x, vx ,kz )

∂x
− vx

eBy

ħ
∂g (x, vx ,kz )

∂kz
−eEz vz = 0. (2.19)

In this simple limit, g (x, vx ,kz ) only depends on kx and ky through vx (kx ,ky ). Solution
to Eq. (2.19) fulfilling the boundary conditions of Eq. (2.10) is

g (x, vx ,kz ) = −tzEz

By vx

[
cos(kz c ′)−cos

(
kz c ′+ ωBy

W
xB

)]
, (2.20)

with:

ω= e

ħc ′W, xB =
{

x for vx > 0
x −W for vx < 0.

(2.21)

We substitute Eq. (2.20) into Eq. (2.17), and obtain the conductivity along z

σzz =
eπt 2

z

ωħB 2
y

(
1−cos

(
ωBy

)) 2π∫
0

kF (θ)

vx (θ)vR (θ)
dθ . (2.22)

In other words, the conductivity has oscillations with an experimentally observed period-
icity, but it vanishes in the minima so that the oscillations have a much larger amplitude.

To explain the large amplitude of the oscillations, we consider electron trajectories.
When the magnetic field is of the form B = (0,By ,Bz ), the kz dependence on x is

kz (x) = kz0 + e

ħBy x. (2.23)

This ensures that all trajectories have a similar oscillatory vertical displacement as a
function of x:

z(x) = tz

ħvx

[
cos

(
kz0 + e

ħBy x
)
−cos(kz0)

]
. (2.24)

We plot the trajectories in Fig. 2.2(A, B). The universal trajectory shape is a result of the kz

advancing over the complete out-of-plane Brillouin zone, similar to Bloch oscillations [19],
however, the origin of the momentum drift is Lorentz force instead of the electric field.
This gives kz a universal dependence on x regardless of the in-plane trajectory. When the
oscillation period is commensurate with the sample width, all trajectories have a zero
net vertical displacement over the time of flight, and therefore carry no current as shown
in Fig. 2.2(A). At the same time, the vertical displacement of different trajectories—and
therefore the current—is maximal when a half-integer number of oscillation periods fits
into the sample width as shown in Fig. 2.2(B). Because the contribution of every trajec-
tory to the conductance has the same magnetic field dependence, as seen in Eq. (2.22),
this minimal model yields an oscillatory conductance with a correct frequency, but full
visibility of the oscillations in contrast to the experimental data. We define the overall
phenomenon as Bloch-Lorentz oscillations.
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Figure 2.3: (Left panel) Semiclassical predictions of PdCoO2 magnetoresistance with variable sample aspect
ratio and no bulk scattering. (Right Panel) Semiclassical predictions of PdCoO2 magnetoresistance sample with
translational invariance along y and variable bulk scattering (mean-free-path l ).

2.3.2. REALISTIC SAMPLE GEOMETRY

Bulk scattering cannot explain the disagreement between the experiment and the minimal
model because the mean-free-path of 20µm [8] is much larger than the dimensions of
samples used by Putzke et al. [12] (4µm to 6µm). Therefore, the dominant source of
scattering must originate from the boundaries. In the experimental setup by Putzke et
al. [12], the sample has a low aspect ratio with a sample length shorter than the width
W > L. As a result, we expect the boundaries along the length of the sample to alter the
semiclassical trajectories.

To analyse the effects of small aspect ratio, we consider a rectangular geometry with
boundaries at: x = 0, x = W , y = 0, y = L. We parameterize the trajectories by their
point of origin at the boundary and the initial angle θ0. At a sufficiently high out-of-
plane magnetic field, bulk cyclotron orbits appear that do not intersect with sample
boundaries. We disregard these trajectories because they do not contribute to the h/e
magnetoresistance oscillations, however extending our approach to those trajectories
is straightforward. By changing the variables in Eq. (2.17) to the trajectory coordinate
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system (t ,θ0,kz0), we bring σzz to the form

σzz = −e

W Ezħ
∮

dr0

θmax∫
θmi n

dθ0

tB (θ0,r0)∫
0

d t ′
kF (θ(θ0, t ′))

vR (θ(θ0, t ′))
J (t ′,θ0)×

π/c∫
−π/c

dkz0g (r0, t ′,θ0,kz0)vz (r0, t ′,θ0,kz0), (2.25)

with the Jacobian determinant:

J (t ′,θ0) =
(
∂θ

∂t ′
∣∣∣

t ′=0

)−1 ∂θ

∂t ′
vx (0,θ0). (2.26)

In Eq. (2.25), the r0 integral is over the sample boundary and tB (θ) is the time that the tra-
jectory hits a boundary. The integral over θ0 includes the contributions of all trajectories
within the sample.

We solve Eq. (2.25) numerically with an in-plane magnetic field By and without bulk
scattering τ→∞. The results in Fig. 2.3 left panel shows the oscillations decaying with
decreasing aspect ratio L/W of the sample. The visibility of the oscillations drops with
a lower aspect ratio due to more trajectories scattering off the sample side-boundaries.
Using the geometry of the sample of Ref. [12], we confirm that the computed relative
magnitude of the oscillations agrees with the measured values, however, the overall
resistance profile is somewhat different, as shown in Fig. 2.1. The possible reasons for this
disagreement are residual bulk scattering, minor misalignment of the magnetic field, or
inhomogeneity of the sample along the z-direction.

The scattering from the side-boundaries plays a similar role to bulk disorder. To
demonstrate this, we apply the theory in the high aspect ratio limit in Eq. (2.19) to include
bulk scattering through Eq. (2.9). The solution to the resulting linearised Boltzmann
equation with relaxation is

g (x,θ,kz ) = Ezτec ′tz

ħ(
B 2

yφ
2 +1

) (
Byφcos

(
kz c ′

)+ sin
(
kz c ′

)
−exp

(
−xB

l

)[
Byφcos

(
kz c ′+ ωBy

W
xB

)
+ sin

(
kz c ′+ ωBy

W
xθ

)])
, (2.27)

with
l (θ) = τvx (θ), φ(θ) = e

ħc ′l (θ). (2.28)

Here we assume that τ is constant along the Fermi surface. We substitute Eq. (2.27) into
Eq. (2.17), and obtain conductivity per unit azimuth

σzz (By ) = τe2t 2
z c ′π

ħ2

2π∫
0

kF (θ)

vR (θ)
(
B 2

yφ
2 +1

)2 ×
(
1− r + (Byφ)2r + (Byφ)2 + r exp

(
− 1

r (θ)

)

×
[

(1−B 2
yφ

2)cos(ωBy )−2Byφsin(ωBy )
])

dθ, r ≡ l (θ)/W. (2.29)
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Figure 2.4: Numerical results from the semiclassical theory (dashed lines) with l (0) = 4.4µm compared to the
experimental (solid lines) magnetoresistance results by Putzke et al. [12] for magnetic field tilted out-of-plane
by 5◦ steps. Black lines indicate the critical field when the cyclotron orbit fits inside the sample. The critical
field value is determined by the shorter side of the sample. In the experiment, this is the length of the sample L,
whereas in the semiclassical prediction it is the width of the sample W .
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We recover a simple Drude model B 2 resistivity scaling [20] in Eq. (2.29) by removing
the boundaries, W →∞, which removes the second term in Eq. (2.29). The results of
Eq. (2.29) for various values of mean-free-path l are shown in the right panel of Fig. 2.3.
We observe that the scattering of the side boundaries in a sample with a finite aspect ratio
results in a similar magnetoresistance as bulk scattering. Moreover, our simulations show
that the magnitude of the oscillations due to side boundary scattering in the geometry
used in the experiment is comparable to the observed one (see Fig. 2.1). Based on this we
conclude that the sample aspect ratio is the factor likely limiting the oscillation visibility
in the experiment.

2.3.3. OUT-OF-PLANE MAGNETIC FIELD

In the presence of an out-of-plane magnetic field Bz , the in-plane projection of each
trajectory is a rotated and rescaled hexagonal Fermi surface, while the out-of-plane
motion follows the oscillatory pattern of Eq. (2.24) (see Fig. 2.2(D)). We use the integral
form of the Boltzmann Eq. (2.25) to find the magnetoresistance response. To reduce
the numerical cost required to evaluate a 4D integral of Eq. (2.25), we approximate the
side boundary scattering by using a finite relaxation time τ instead. We expect that
this approximation, while somewhat crude, should capture the essential physics, as
supported by the comparison between the two mechanisms shown in Fig. 2.3. To evaluate
the remaining 3D integral, we choose the starting point of each trajectory as t = 0, so
that its initial conditions are r0 = (x0, y0, z0) and k0 = (k0 cosθ0,k0 sinθ0,kz,0). Here x0 = 0
and −π/2 < θ0 <π/2 at the left boundary, while x0 =W and π/2 > θ0 > 3π/2 at the right
boundary.

In presence of the out-of-plane magnetic field, some trajectories cross from one
boundary to the opposite, while others return to the boundary from which they originated,
as shown in Fig. 2.2(D). Only the trajectories that cross the sample contribute to the
conductance oscillations because they have a net kz drift given by Eq. (2.23). On the other
hand, the trajectories returning to the boundary where they originated do not contribute
to the oscillations. As Putzke et al. [12] pointed out, once the cyclotron orbits become
smaller than W , which happens at

Bz >
(

2ħkF

eW

)
, (2.30)

with kF the Fermi wavevector, ballistic trajectories crossing the sample disappear, and so
do the conductance oscillations.

We perform numerical integration of Eq.(2.25), with the result shown in Fig. 2.4. The
model qualitatively agrees with the experimental data at the small tilt angles from the
x y-plane. However, the disagreement increases with Bz , likely due to our calculation
approximating side boundary scattering with a constant relaxation time. This is likely a
crude approximation because the sample length L is shorter than W in the experiment.
The extension of the theory to a realistic sample geometry is straightforward—especially
since one may still compute g for every trajectory independently—but it strongly increases
the computational costs, and therefore we consider it unjustified for our study.
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2.4. SUMMARY
In summary, we demonstrated that the observed magnetoresistance of delafossite mate-
rials is explained by the Bloch-like oscillations of the out-of-plane electron trajectories.
These Bloch-Lorentz oscillations arise from the quasi-2D dispersion of these materials
combined with the nearly ballistic motion of the electrons. We identify the sample aspect
ratio as the most likely factor limiting the oscillation visibility. modelingling achieves a
qualitative agreement with the experiment without introducing any free parameters.
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AHARONOV-BOHM MAGNETISM IN

OPEN FERMI SURFACES

This chapter has been previously published as Kostas Vilkelis, Ady Stern, Anton Akhmerov Aharonov-Bohm
magnetism in open Fermi surfaces, arXiv:2303.04310 (2023).
Own contribution to work: I developed the theory, carried out the numerical simulations and analyzed the data
with input from other authors. I wrote the manuscript together with other authors.
Note: Upon completion of this work we learned about related references that analyze the same phenomenon
without considering the effects of the 3D dispersion and disorder [1, 2]
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3.1. INTRODUCTION

Figure 3.1: An example of closed (blue curve) and open (black curve) orbits. The right-moving (solid black line)
and the left-moving (dashed black line) open trajectories are connected through boundary reflections. The inset
at the bottom right shows the corresponding Fermi surface which is closed(open) for the blue(black) curve.

According to the classical theory by Langevin, diamagnetism is a result of the cyclotron
motion of electrons in a magnetic field [3]. While this explanation provides an intuitive
picture, it is incorrect due to the Bohr–van Leeuwen theorem [4, 5] that proves the absence
of magnetic response in classical mechanics. On the other hand, a more modern interpre-
tation by Liftshiftz-Kosevich [6] explains diamagnetism as a result of quantized closed
orbits along the Fermi surface. The picture by Lifshitz-Kosevich is simple yet sufficient
at explaining phenomena like de Haas-van Alphen (dHVA) diamagnetic oscillations [7]
through the Fermi surface shape of metallic systems [8, 9].

Because ballistic orbits in the magnetic field are rotated and rescaled cuts of the Fermi
surface, a Fermi surface that spans the whole Brillouin zone results in an open cyclotron
orbit. An example of an open orbit is shown in Fig. 6.1 by the black curve. These orbits
appear in metals such as copper [10] and gallium [11] or in highly anisotropic materials
like delafossites [12]. The Liftshiftz-Kosevich theory [6] states that open orbits do not have
a magnetic response. However, in multi-band materials with magnetic breakdown regions,
it is possible to couple several open orbits into an effective closed orbit [13]. Such effective
closed orbits have a magnetic response, but the contribution is exponentially small. On
the other hand, open orbits in single-band materials do not close. As a result, the open
orbits cannot be quantized and thus do not have a magnetic response according to the
Bohr–van Leeuwen theorem [4, 5]. That raises the question of whether it is possible to
observe quantum interference phenomena in open orbits without magnetic breakdown.

In this paper, we develop a theory of the orbital magnetic response of open orbits
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in finite samples and predict magnetic oscillations alternating between diamagnetism
and paramagnetism. These magnetic oscillations have the frequency of the Aharonov-
Bohm effect [14] through the loop defined between the adjacent conducting atomic layers
and the width of the sample. The effect is similar to h/e magnetoresistance oscillations
observed in delafossites [15] and predicted in twisted bilayer graphene [16]. However,
while the role of phase coherence in h/e magnetoresistance oscillations is uncertain,
ballistic phase-coherent propagation is vital to the magnetic oscillations discussed in this
paper. In addition, we find that these magnetic oscillations are sensitive to boundary
quality such that diffusive boundaries destroy the effect. With these conditions fulfilled,
we predict that this phenomenon has a strength comparable to Landau diamagnetism.

3.2. OPEN ORBIT QUANTIZATION VIA BOUNDARY REFLECTIONS
We begin by considering an open Fermi surface in layered materials with weak interlayer
coupling, however, our theory equally applies to any other open Fermi surfaces. The
dispersion of such a layered system is

ε(κx ,kz ) = ε∥(κx )+2t⊥ cos(kz c), (3.1)

where κx ,kz are the crystal momentum along x (in-plane) and z (out-of-plane) directions
respectively, c is unit cell spacing along the z-direction, t⊥ is the interlayer coupling and
ε∥(kκ) is the in-plane dispersion. Note we use an unconventional symbol κx for crystal
momentum along the x-direction to distinguish it from the average crystal momentum
kx in a system with broken translational symmetry along x-direction which we will
introduce shortly. For brevity, we omit the y-dimension here and will introduce it later on.
We linearize the dependence of ϵ∥ on κx at energy E :

ε∥(κx ) ≈ E +ħvx (E) [κx −kx (E)]

ε∥(kx ) = E , ħvx (E) = ∂ε∥(kx (E))

∂kx
,

(3.2)

where kx (E) and vx (E) are momentum and and velocity along x-direction at energy E
when kz =π/(2c), such that the out-of-plane energy is zero. Note that we require Eq. (3.1)
to define an open Fermi surface at ε=µ along the kz direction.

In the presence of an in-plane magnetic field, the semiclassical motion follows con-
stant energy lines in momentum space and a real-space trajectory that is perpendicular to
the momentum-space one. Without loss of generality, we consider the in-plane magnetic
field along the y-direction B = (0,B ,0) and choose a vector potential A = (0,0,−B x) in the
Landau gauge. For the open Fermi surface we consider, this implies periodic motion in
the z-direction, but not in the x-direction along which the trajectory is open. To describe
the trajectory in momentum space, we substitute [17] kz → kz − e

ħB x into Eq. (3.1) and
define local momentum along x at a fixed energy ε(κx ,kz ) = E :

κx (E ,kz , x) =±
[

kx (E)− 2t⊥
ħvx (E)

cos
(
kz c − e

ħcB x
)]

(3.3)

where the trajectory is open whenever kx (E) > 2t⊥/(ħvx (E)).
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The allowed trajectories are those that fulfill by the Bohr-Sommerfeld quantization
rule [18] given via WKB theory [19]:

S(E ,kz ) ≡
∮
κx (E ,kz )d x = 2πn, (3.4)

where n ∈ Z and we choose hard-wall boundaries such that there is no Maslov index.
In the case of an open trajectory, the electron flips its direction of motion only when
it scatters off a boundary. Therefore, we substitute Eq. (3.3) into Eq. (3.4) and consider
particles specularly reflecting from the boundaries to obtain the open orbit quantization
equation:

S(E ,kz ) ≡ 2kx (E)W − 2Γ(φ)cos(kz c)

∆Ex
= 2πn,

∆Ex (E) ≡ ħvx (E)

W
, φ= e

ħcW B , Γ= 2t⊥ sinc
(
φ/2

)
,

(3.5)

with ∆Ex the subband spacing due to confinement along x-direction, φ is the number of
magnetic flux quanta (in units of 2π) passing through the loop of area cW .

Figure 3.2: Plot of multiple displaced and overlapping kz bands (blue curves) as a function of flux quanta φ
passing through the system. The orange curve highlights one such band and its variation of bandwidth Γwith
φ. The blue filling illustrates the occupation of bands below the chemical potential µ (dashed line), with the
intensity indicating the number of overlapping bands at that point. As the bandwidth changes with respect to
µ, the occupation of the bands changes which leads to a magnetic response. When an integer number of flux
quanta pass through the system, different kz trajectories are identical since they lead to the same energy as
shown in the top right inset and therefore the bandwidth collapses.

We invert Eq. (3.5) and find the open orbit spectrum:

En = ε∥
(πn

W

)
+Γcos(kz c), (3.6)

where n is the index of the miniband that comes from the confinement along x-direction
and Γ is the bandwidth as defined in Eq. (3.5). The bandwidth oscillates with the number
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of flux quanta φ threading a rectangle of size W c. The oscillations decay in a way similar
to Fraunhofer diffraction, and their periodicity is that of the Aharonov-Bohm effect, as
shown in Fig. 4.2. When the number of flux quanta is an integer, the bandwidthΓ collapses
to zero so that the different kz channels decouple. In the opposite limit, we see that if we
take B = 0 in Eq. (3.6), we recover the original dispersion given by Eq. (3.1).

3.3. DIAMAGNETIC RESPONSE OF AN OPEN FERMI SURFACE
To find the total magnetisation of the system, we reintroduce the y-dimension. We start
with a zero-temperature case and consider finite temperature later. The magnetisation of
occupied states at fixed ky is:

M(µ,ky ) = d

dB

∫ µ

−∞
Eρ(E ,ky )dE , (3.7)

where ρ(E ,ky ) is the density of states at energy E and wavevector ky . We express the
density of states ρ through the action of a trajectory in Eq. (3.5), similar to the work by
Doron and Smilansky [20]:

ρ(E ,ky ) =− 1

Wπ2

∫ π/c

−π/c
dkz

d

dE
Imln

(
1−e i S(E+i 0+)

)
, (3.8)

with Im the imaginary part. To regularise the oscillatory integrand along energy E given
by Eq. (3.8), we perform analytic continuation of Eq. (3.7) into the complex energy E +
iE (see supplementary). The analytic continuation converts the oscillatory terms into
exponentially decaying functions away from E = 0 and fixes the convergence of the
integral in Eq. (3.7). That allows us to linearise the dispersion in Eq. (3.2) around the
Fermi level µ and compute the magnetisation at ky :

M(ky ,µ) = 1

W cπ

dΓ

dB

∞∑
n=1

sin(2nkF W )

n
J1

(
2nΓ

∆Ex

)
,

kF (ky ) = kx (µ,ky ), ∆Ex (ky ) = ħvF (ky )

W
,

vF (ky ) = vx (E ,ky ),

(3.9)

where J1 is a Bessel function of the first kind and kF and vF are the Fermi momentum
and Fermi velocity. For ky = 0, Eq. (3.9) is the magnetisation of a 2D system with an open
Fermi surface.

Equation (3.9) depends in an oscillatory way on the flux φ and chemical potential
µ. The flux dependence has two characteristic frequencies. The first is the dependence
similar to the Aharonov-Bohm effect of Γ on the fluxφ. The second is from the Γ/∆Ex term
that originates from commensuration of the energy separation ∆Ex between minibands
with the bandwidth Γ. Lastly, the chemical oscillatory dependence comes from kF W that
originates from the position of the chemical potential with respect to the center of a kz

band. The sum over n represents the different Fourier components of the oscillations
with respect to the chemical potential µ.
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In 3D, the total magnetisation per unit volume is:

M (µ) = 1

π

∫
F S

M(ky ,µ)dky , (3.10)

where the integral over ky is along the Fermi surface. We utilize the steepest-descent
method to evaluate the leading order contributions to this integral originating from
its behavior near the maxima of kF (ky ). To do so, we define the maxima of the Fermi
wavevector along x as KF and compute the corresponding Fermi surface curvature:

KF = kF (ky,0),
dkF (ky,0)

dky
= 0,

ky,eff =
(

d 2kF (ky,0)

d 2ky

)−1

=
(
∂2ε∥
∂k2

y

∂kF

∂ε∥

)−1

= my VF

ħ ,

(3.11)

where my is the effective mass along the y-direction, VF = vF (ky,0) is the Fermi velocity
at KF and ky,eff is related to the Fermi surface curvature and defines the effective Fermi
y-momentum below which all the trajectories point predominantly along the x-direction.
We substitute Eq. (3.11) into Eq. (3.10), deform the integration contour along the steepest
descent and obtain total magnetisation:

M (µ) =M0
dsinc(φ/2)

dφ

∞∑
n=1

sin(2nKF W )

n3/2
J1

(
2nΓ

∆Ex

)
,

M0 = 2et⊥
W ħπ3/2

√
ky,effW

(3.12)

The magnetisation in Eq. (3.12) is a complex oscillatory function of the Fermi wavevec-
tor and the magnetic field B . To simplify the expression, we consider thermal broadening
of the order of miniband spacing, kB T ≈∆Ex , which suppresses the terms with n > 1 (see
the supplementary material for details).

M (µ,kB T ≈∆Ex ) ≈

M0
dsinc(φ/2)

dφ
sin(2KF W )J1

(
2Γ

∆Ex

)
.

(3.13)

In Eq. (3.13), there are two distinct regimes: the single-band limit, where t⊥/∆Ex ≪ 1 and
the many-band limit, where t⊥/∆Ex ≫ 1.

In the single-band limit t⊥/∆Ex ≪ 1, we expand the Bessel function J1 in Eq. (3.13)
for small arguments and find a simplified form of magnetisation:

M (µ,kB T ≈∆Ex ) ≈

−2M0

φ3

t⊥
∆Ex

sin(2KF W )
(
2−φsinφ−2cosφ

)
.

(3.14)

The magnetisation in Eq. (3.14) oscillates with φ, the number of flux quanta passing
through an area cW similar to the Aharonov-Bohm effect, however, the oscillations decay
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Figure 3.3: The magnetisation as a function of magnetic flux quanta passing through the system for different
t⊥/∆Ex ratios. The main (thick) curves are evaluated at KF W =π/8 whereas the thin secondary (thin) curves
are evaluated at other KF W values.

with φ2. Figure 4.2 provides a qualitative explanation of this behavior as a response of a
partially occupied band with bandwidth that both oscillates and decays with φ. These
oscillations are distinct from the dHVA diamagnetism [7] that oscillates with inverse
magnetic field 1/B because the cyclotron orbit shrinks with a magnetic field. Due to their
similarity with the Aharonov-Bohm effect, we name the magnetisation oscillations of
open Fermi surfaces Aharonov-Bohm magnetism.

In the many-band limit t⊥/∆Ex ≫ 1, Eq. (3.13) exhibits a combination of multiple
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frequency oscillations combined with an overall decay, as shown in Fig 4.3. However,
Aharonov-Bohm magnetism is still evident in this regime because regardless of the chem-
ical potential, the amplitude of the magnetization oscillations reaches its maximum
whenever an integer number of flux quanta passes through the area cW .

3.4. PRACTICAL CONSIDERATIONS
Under the ideal conditions which include ballistic phase-coherent transport with specular
boundaries and the absence of thermal broadening, the M0 term controls the overall
magnetization magnitude of the phenomenon as shown in Fig 4.3. Therefore we see in
Eq. (3.12) that Aharonov-Bohm magnetism favors small sample widths W , large inter-
layer hopping t⊥, and flat in-plane Fermi surfaces with large ky,eff. In a typical delafossite
sample, we find the magnetisation from Aharonov-Bohm magnetism to be M0 ≈ 1Am−1

which is an order of magnitude weaker than Landau diamagnetism (see supplementary).
If we move away from the ideal conditions, we find that the Bohr-Sommerfeld quan-

tization condition in Eq. (3.4) relies on specular boundary reflections at the ends of
the sample to close the trajectory. To examine the role of diffusive boundary scattering,
we numerically calculate the magnetisation in finite samples with variable boundary
reflectivity r . We observe that the amplitude of the magnetisation is proportional to r 2,
consistent with the idea that closed trajectories require two specular reflections in order
to close. Furthermore, we remark that random bulk scattering and dephasing must work
in the same way as diffusive boundary reflection: the probability to encounter a random
scattering/dephasing event in a 2W width sample with mean-free path/phase coherence
length l0/φ is exp(−2W /l0/φ). Therefore, the strength of Aharonov-Bohm magnetism
depends on both mean-free-path and boundary quality:

M ∝ r 2
[

1−exp

(
− l0/φ

2W

)]
. (3.15)

Finally, we summarize the necessary conditions required to observe Aharonov-Bohm
magnetism:

1. Open component to the Fermi surface.

2. Phase coherence length and mean-free path larger than the sample width, W ≤
lφ, l0.

3. High-quality sample boundaries to ensure specular reflections.

One candidate family of materials that fulfill conditions 1. and 2. are the delafossites [21]
like PdCoO2 and PtCoO2. Delafossites are highly anisotropic materials with a cylindrical
Fermi surface [12] and mean-free path on the order of 20µm [22]. Additionally, the
hexagonal Fermi surface in delafossites allows one to align a sample in a way that does
not permit trajectories along the magnetic field direction and thus maximizes ky,eff.
An alternative candidate material is elemental copper [10]. Despite not having a fully
open Fermi surface, it does have small open components. Even though that reduces
the number of possible open trajectories (and thus ky,eff), the out-of-plane mass m⊥ in
copper is smaller and thus more favourable than in delafossites. Additionally, it is possible
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to engineer copper samples with a mean-free path well into the micrometre scale [23].
However, in both cases, the sample boundaries pose a significant bottleneck which should
be overcome for the effect to be observed.

3.A. DIAMAGNETIC RESPONSE DERIVATION

3.A.1. 2D RESULT
We substitute the density of states in Eq. (3.8) into the definition of magnetisation in
Eq. (3.7):

M(ky ,µ) =− Im

Wπ2

d

dB

µ∫
−∞

π∫
−π

dE dkz E
d

dE
ln

(
1−e i S(E+i 0+)

)
=

− 1

Wπ2

∫ π/c

−π/c
dkz Im

d

dB

(
µ ln

(
1−e i S(µ)

)
−

∫ µ

−∞
ln

(
1−e i S(E)

)
dE

)
,

(3.16)

where we use integration by parts to split the integral into two. The first part of the integral
simplifies to:

Im
d

dB

(
ln

(
1−e i S(µ)

))
=−Im

(
i e i S(E)

1−e i S(E)

dS(E)

dB

)
=−Im

(
i

1−e−i S(E)

2−2cos(S)

dS(E)

dB

)
= 1

2

dS(E)

dB
.

(3.17)

From Eq. (3.5), we see that the Eq. (3.17) will average out to zero in an integral over kz and
therefore will not contribute to the magnetisation. As a result, we focus our attention on
the second term in Eq. (3.16)

M(ky ,µ) =− 1

Wπ2

∫ π/c

−π/c
dkz Im

∫ µ

−∞
dE

i e i S(E)

1−e i S(E)

dS(E)

dB
(3.18)

To complete the integral over E in Eq. (3.18), we employ analytic continuation and extend
the energy into the complex plane E + iE . We use the following integration contour as
shown in Fig. 3.4:

I. E →−∞ and E ∈ (0,+∞).

II. E ∈ (−∞,µ) and E →+∞
III. E =µ and E ∈ (+∞,0).

One can check through Eq. (3.5) that integral contours I and II do not contribute because
limE→−∞ e i S(E) = 0 and limE→∞ e i S(E) = 0. To proceed with the remaining integral III,
we work with open trajectories which arise when kx > 2t⊥/(ħvx ). We argue that this
relation breaks only when the trajectories are aligned with the magnetic field direction
and therefore should not contribute to the magnetisation. We express action in terms of
linearised momentum as we did in Eq. (3.5), but now include a first order E term:

S(µ+ iE ,ky ,kz ) = 2kF W + i
E

∆Ex
− 2Γcos

(
φ/2+kz c

)
∆Ex

, (3.19)
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Figure 3.4: Integration contour along real energy deformed into the complex plane through analytical continua-
tion. The dashed parts of the contour are chosen sufficiently far away such that they do not contribute to the
overall integral and the only contribution comes from the solid vertical contour line.

where we define kF = kx (ky ,µ) and∆Ex =∆Ex (µ,ky ) and exclude the explicit dependence
on ky and µ in the equations for brevity. Higher order E terms are neglected due to the
exponential decay e−E /∆Ex of the ingrand. We substitute Eq. (3.19) into the integral
Eq. (3.18) along contour III:

M(ky ,µ) = ∆Ex

Wπ2

∫ π/c

−π/c
dkz Im

∫ ∞

0
dE

i e−
E
∆Ex

+i S(µ)

1−e−
E
∆Ex

+i S(µ)

dS(µ)

dB
=

− ∆Ex

Wπ2 Im
∫ π/c+φ/2

−π/c+φ/2
dkz i ln

(
1−e i S(µ)

)dS(µ)

dB
,

(3.20)

dS

dB
= ecW

ħ∆Ex

[
Γsin(kz c)− dΓ

dφ
cos(kz c)

]
. (3.21)

We expand the natural logarithm ln in Eq. (3.18) in a power series:

ln
(
1−e i S

) dS

dB
=

∞∑
p=1

e i Sp

p

dS

dB
, (3.22)

and utilize the Jacobi-Anger expansion on the exponential term in Eq. (3.22):

e i nS = e i 2nkF W
[

J0

(
2nΓ

∆Ex

)
+2

∞∑
q=1

i q Jq

(
− 2nΓ

∆Ex

)
cos

(
qkz c

)]
, (3.23)
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where Jq are the Bessel functions of the first kind. Due to the orthogonality between
trigonometric function in Eq. (3.21) and Eq. (3.23), the integration in Eq. (3.20) will only
leave the q = 1 term remaining:

M(ky ,µ) = 1

W cπ

dΓ

dB

∞∑
n=1

sin(2nkF W )

n
J1

(
2nΓ

∆Ex

)
. (3.24)

3.B. EFFECT OF TEMPERATURE
Equation (3.10) is a result at zero temperature. The addition of temperature can simplify
the form of magnetisation by removing the higher frequency n > 1 components. To
achieve this, we write M at non-zero temperature:

M (µ,T ) =
∫ ∞

−∞
M (E ,T = 0)

dF
(
E −µ,T

)
dE

dE =
(
M ⊛

dF

dE

)
(µ) =F−1

{
F {M } ·F

{
dF

dE

}}
,

(3.25)
where F (E−µ,T ) is the Fermi-Dirac distribution. In the last part of the equation, we utilize
the convolution theorem to express magnetisation as a product of Fourier components of
zero temperature magnetisation and Fermi-Dirac distribution. The Fourier Transform of
a Fermi-Dirac distribution is [24]:

F {F } (s) = 1p
2π

∫ ∞

−∞
F (E)e−i sE dE =

√
π

2
δ(s)+ 1p

2π

(
sinh(sπkB T )

iπkB T

)−1

. (3.26)

On the other hand, to find the Fourier transform, we work with the linearised momentum:

kx (E) = KF + 1

∆ExW

(
E −µ)

, (3.27)

where we drop the ky index since kx (E ) is evaluated at the extrema. The zero temperature
magnetisation at energy E close to Fermi level µ reads:

M (E) =M0
dsinc(φ/2)

dφ

∞∑
n=1

sin
(
2nW KF + n(E−µ)

∆Ex

)
n3/2

J1

(
2Γ

∆Ex

)
, (3.28)

where only the sin term was substituted in by Eq. (3.27) and other terms are kept constant
KF as a result of a steepest-descent approximation. The approximation is valid as long as
µ≫ kB T . Therefore, the Eq. (3.26) becomes:

M (µ) =M0
dsinc(φ/2)

dφ

∞∑
n=1

sinh( nπkB T
∆Ex

)

(nπkB T )
∆Ex

−1
sin(2nW KF )

n3/2
J1

(
2nΓ

∆Ex

)
. (3.29)

Whenever the thermal temperature is comparable to or larger than the energy spacing,
kB T ≈∆Ex , the Eq. (3.29) reduces to a single component:

M (µ) ≈M0
dsinc(φ/2)

dφ
sin(2KF W )J1

(
2Γ

∆Ex

)
. (3.30)
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3.C. MAGNETIC SUSCEPTIBILITY MAGNITUDE
In order to estimate the magnitude of the magnetic susceptibility χ, we expand the
magnetisation in Eq. (3.13) to first order in flux φ:

χ=µ0
dM

dB
≈−µ0

M0

12

dφ

dB
sin(2KF W )J1

(
4t⊥
∆Ex

)
, (3.31)

where µ0 is the vacuum permeability. To compare we consider Landau diamagnetism [25]
of an isotropic dispersion with mass m∥ and Fermi wavevector KF :

χL =−µ0
e2KF

12π2m∥
. (3.32)

The ratio between Aharonov-Bohm magnetism in Eq. (3.31) and Landau diamagnetism
in Eq.(3.32) is:

max(χ)

χL
≈

√
ky,effW (cKF )−1

(
m∥
m⊥

)
J1

(
4t⊥
∆Ex

)
(3.33)

where we substituted t⊥ =ħ2/(2m⊥c2) where m⊥ is the mass along the z direction and
m∥ (my = mx = m∥) is the mass along the in-plane direction. Note that in Eq. (3.33) we
consider sin(2KF W ) = 1 and thermal broadening on the order of miniband spacing kB T ≈
∆Ex to simplify the estimate. We see from Eq. (3.33) that Aharonov-Bohm magnetism
favors large mass anisotropy m∥/m⊥ and flat in-plane Fermi surfaces that maximize
ky,eff. Furthermore, the thermal broadening of highly oscillatory terms in the many-band
regime decreases the magnitude of the effect through the J1 term.

As a check, we estimate the magnitude of the effect in typical delafossites samples[21]
with Fermi momentum KF = 1.0Å−1, Fermi velocity VF = 1mµs−1 sample width W =
1.0µm, inter-layer lattice spacing c = 1Å, inter-layer hopping t⊥ = 10meV and mass

anisotropy m∥/m⊥ = 10−2. We further estimate
√

ky,effW ≈ 102, miniband spacing ∆Ex =
1meV and J1 = 0.1. As a result, we predict Aharonov-Bohm magnetism to be at least an
order of magnitude weaker than Landau diamagnetism max(χ)/χL ≈ 0.1.
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4.1. INTRODUCTION
Over the years, qubits emerged as the de facto basis for quantum computation with a
plethora of host platforms: superconducting circuits [1, 2], trapped ions [3, 4] and quan-
tum dots [5], to name a few. Recent works used qubit-based quantum computers to
simulate fermionic systems [6–8]. However, the mapping from qubits to local fermionic
modes (LFMs) is inefficient because it introduces additional overhead to the calcula-
tions [9, 10]. For example, a map from n qubits to fermions requires O(n) additional
operations through the Jordan-Wigner transformation [11] and O(logn) through the
Bravyi-Kitaev transformation [12].

An alternative to avoid the overhead in the qubit to LFM map is to use a quantum
computer that already operates with local fermionic modes [12]. Moreover, the advantage
of local fermionic modes is not limited to the simulation of fermionic systems. A set of 2n
local fermionic modes maps directly to n parity-preserving qubits, which corresponds
to n −1 qubits. Therefore, the map from local fermionic modes to qubits only requires
a constant number of operations regardless of the system size and is, therefore, more
efficient than the reverse [12]. Recently, Ref. [13, 14] showed that local fermionic modes
offer advantages in quantum optimization problems of finding the ground state energy of
fermionic Hamiltonians.

Motivated by this advantage of local fermionic modes over qubits, we propose an
experimental implementation of a quantum computer with local fermionic modes. Our
device is inspired by recently reported Cooper pair splitters [15–20], and our design
includes an additional tunable capacitance to control Coulomb interactions. We show
that the device implements the necessary universal set of gates proposed by Bravyi and
Kitaev [12]. We also discuss the limitations of the device.

4.2. DESIGN
Bravyi and Kitaev [12] showed that fermionic quantum computation is equivalent to
parity-preserving qubit operations. As a consequence, given a set of fermionic creation
(c†

i ) and annihilation operators (ci ), it follows that
U1(α) = exp

(
iαc†

i ci

)
, U2(β) = exp

[
iβ

(
c†

i c j + c†
j ci

)]
,

U3(γ) = exp
[

iγ
(
c†

i c†
j + c j ci

)]
, U4(δ) = exp

(
iδc†

i ci c†
j c j

)
 (4.1)

with α=β= γ=π/4, and δ=π, is a universal set of gate operators. The case of two LFMs
is similar to two uncoupled qubits: each operation within a given fermion parity sector
is a rotation within SU(2). In the odd fermion parity sector, the operations U1(α) and
U2(β) are rotations around perpendicular axes in the Bloch sphere. Likewise U3(γ) and
U1(δ) are perpendicular rotations within the even fermion parity sector. In the presence
of an extra ancilla LFM, applying U4 entangles the even and odd subspaces of the two
computational LFMs.

We thus propose a device where excitations occupy single-orbital sites, numbered
by the subindex i and j . A practical platform for such a proposal is an array of spin-
polarized quantum dots, as the scheme shown in Fig. 6.1. Within this platform, the
unitary operations in Eq. 4.1 are a time-evolution of the following processes:
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Figure 4.1: The unit cell of a fermionic quantum computer. Two singly-occupied spin-(anti)polarized quantum
dots host the local fermionic modes L and R. Two tunnel barriers enable normal t and spin-dependent tSO
tunnelings between the two dots. A middle superconducting island mediates superconducting correlations
between the two local fermionic modes. An external mutual capacitor Cm allows Coulomb interactions between
the sites.

1. c†
i ci onsite energy shift of the fermionic state at site i ;

2. c†
i c j hopping of a fermion between sites i and j ;

3. c†
i c†

j superconducting pairing between fermions at sites i and j ;

4. c†
i ci c†

j c j Coulomb interaction between fermions at sites i and j .

We control the onsite energies µi with plunger gates. Similarly, a tunnel gate between
neighboring pairs of quantum dots controls hopping strength t between them. Manipula-
tion with plunger and tunnel gates is a well-established technique in charge [21, 22] and
spin [5] qubits.

To implement the superconducting coupling between the spin-polarized dots, we
utilize the design of a triplet Copper pair splitter [16–20]. We include an auxiliary quantum
dot in proximity to an s-wave superconductor mediating crossed Andreev reflection (CAR)
and elastic cotunelling (ECT) between the two quantum dots that encode the LFMs. Thus,
the ECT rate Γ sets the hopping strength between the two dots, whereas the CAR rate
Λ sets the effective superconducting pairing. Because the dots are spin-polarised, the
superconducting pairing must be of spin-triplet, enabled by spin-orbit hopping in the
hosting material. We quantify the spin-orbit coupling in the hosting material by the spin
precession angle between the dots θi = 2πd/lso , where d is the interdot distance and lso

is the spin-orbit length. The spin-orbit coupling in InSb wires leads to a spin-precession
length lso ≈ 100nm [23, 24] resulting on non-negligible θi within the order of dot-to-dot
distance.
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Finally, we achieve Coulomb interaction between a pair of dots through capacitive
coupling Cm . Our design requires a variable capacitive coupling to implement the U4

gate. Several recent works demonstrate variable capacitive coupling in various platforms:
gate-tunable two-dimensional electron gas [25], varactor diodes [26], and external double
quantum dots [27].

We show the unit cell of a fermionic quantum computer with two LFMs in Fig. 6.1. The
basic building block consists of three tunnel-coupled quantum dots in a material with
large spin-orbit coupling. The middle dot is proximitized by an s-wave superconductor
with an induced gap ∆ that mediates CAR and ECT between the outer dots. The spin-
polarised outer dots (L,R) encode the LFMs, whereas the middle one is an auxiliary
component. Finally, a tunable capacitor couples the outer dots. We generalize the device
to an arbitrary number of LFMs by repeating the unit cell in a chain. To read out the
fermionic state, we propose to measure the occupation in each quantum dot through
charge sensing [28].

4.3. EFFECTIVE HAMILTONIAN

4.3.1. TUNNEL COUPLING
In the absence of capacitive and tunnel coupling, the approximate Hamiltonian for the
two spin-polarised dots is

Hd = ∑
i=L,R

µi c†
iσi

ciσi , (4.2)

where ciσ is the electron anihilation operator at site i and spin σ, and µi is the corre-
sponding chemical potential. The Hamiltonian in Eq. (4.2) is valid if the charging energy
and Zeeman splitting on each dot are larger than all other energy scales in the problem.
Recent experiments on similar devices measure charging energy of 2 meV and Zeeman
splitting of 400µeV at 200 mT [16, 17, 19, 20]. Both charging energy and Zeeman split-
ting are larger than the usual induced superconducting gap inside the quantum dot
∆∼ 100µeV [20, 29, 30], justifying the approximation in Eq. (4.2).

The proximity of the middle dot to the superconductor suppresses its g -factor [31].
Thus, differently from the outer dots, we consider a finite Zeeman energy B . The Hamilto-
nian of the middle dot is

HABS =
∑
σ,σ′

[
µM (σ0)σσ′ +B(σz )σσ′

]
c†

Mσ
cMσ′ +∆c†

M↑c†
M↓+h.c. (4.3)

where c†
Mσ

is the creation operator of electron on the middle dot with spin σ, ∆ is the
induced superconducting gap, and σl are the Pauli matrices (l = {0, x, y, z}) acting on
the spin subspace. Both spin-polarised dots in Eq. (4.2) connect to the middle dot by
symmetric tunnel barriers with strength t . The barrier t controls both normal and spin-
orbit tunneling processes:

Ht = t
∑

i=L,R
cosθi c†

iσi
cMσ+ i t

∑
i=L,R

∑
σ′

(σy )σiσ
′ sinθi c†

iσi
cMσ′ +h.c. , (4.4)

where θi is the spin precession angle from dot i to the middle island. Thus, the total
Hamiltonian is

H = Hd +HABS +Ht . (4.5)
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We obtain the effective low-energy Hamiltonian in the weak-coupling limit, t ≪∆,
through a Schrieffer-Wolf (the derivation is in Appendix 4.A) [32, 33]:

H̃ =∑
i
ϵ
σiσ j

i c†
iσi

ciσi +
∑
i , j
Γσiσ j c†

iσi
c jσ j +Λσiσ j c†

iσi
c†

jσ j
+h.c. , (4.6)

where ϵ
σiσ j

i is the renormalised onsite energy of dot i , Γσiσ j is the ECT rate and Λσiσ j

is the CAR rate. While t ̸= 0, we do not vary the chemical potential of the outer dots,
µL = µR = 0. For simplicity, we also assume no Zeeman splitting within the middle dot
B = 0 and that the spin precession angles are symmetric θL = θR = θ (see Appendix 4.A
for more general form). In such case, the effective parameters for the anti-parallel spin
configuration are:

Λ↑↓ = κ∆cos(2θ) , Γ↑↓ =−iκµM sin(2θ) , (4.7)

and for the parallel channel:

Λ↑↑ =−iκ∆sin(2θ) , Γ↑↑ =−κµM cos(2θ) , (4.8)

where
κ= t 2/(∆2 +µ2

M −B 2) . (4.9)

Both onsite corrections terms are equal:

ϵ
σiσ j

L = ϵσiσ j

R = κµM . (4.10)

We observe that the magnitude ofΛσiσ j is maximum at µM = 0 and drops with increasing
chemical potential µM . On the other hand, Γσiσ j has maxima at finite µM . The magnitude
of both processes depends on the spin-precession angle θ and spin configuration of the
outer dots as shown in Fig. 4.2 (a) and (b). To ensure that operation times for U2 and U3

are similar, the convenient regime is where maxΓσiσ j ∼ maxΛσiσ j .

4.3.2. CAPACITIVE COUPLING
The electrostatic energy between the two dots is [34]:

HC = ∑
i=L,R

υi c†
iσi

ciσi +Umc†
LσL

cLσL c†
RσR

cRσR , (4.11)

where Um =Cme2/C̃ is the mutual interaction between the two dots,

υL/R = CR/L(2ng ,L/R +1)+Cmng ,R/L

2C̃
(4.12)

is the renormalization to the onsite energy, C̃ =CLCR−C 2
m , CL and CR are the capacitances

of the left and right dots, Cm is the mutual capacitance, and ng ,i is the charge offset in
the site i . Notice that we consider singly-occupied dots in (4.11). This approximation is
valid when Um ≪∆≪ e2CL/R /C̃ because the charging energy renormalization due to the
mutual capacitance is negligible in this regime. The last term in (4.11) gives the Coulomb
interaction between the dots required to implement U4.
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Figure 4.2: Absolute value of Λ (blue) and Γ (orange) as a function of µM for different values of B for the
anti-parallel configuration (a) and the parallel configuration (b). System parameters are t = 0.15, θL = 0.7 and
θR = 0.3.

4.4. FERMIONIC QUANTUM GATES

4.4.1. UNITARY GATE OPERATIONS
To achieve the fermionic quantum operations defined in Eq. (4.1), we need to engineer
specific time-dependent profiles for the tunable system parameters. In this case, we
control the following system parameters through Eqs. (4.11) and (4.6): left and right
plunger gates (µL ,µR ), middle plunger gate (µM ), tunnel gates (t , we treat the two tunnel
gates together), and mutual capacitance (Cm). For simplicity, we only consider square
pulses in time

H(τ) = HP (S)[Θ(τ)−Θ(τ−τP )] (4.13)

whereΘ(τ) is the Heaviside step function, τ is time and τP is the duration of the pulse. We
define the pulse Hamiltonian HP (S) as a constant total Hamiltonian where S = {

t ,µM , ...
}

are non-zero system parameters in the pulse. For example, HP ({t }) is a constant Hamil-
tonian with all system parameters zero except the tunnel coupling t . We set the idle
(reference) Hamiltonian to one where all gates are zero, t =µL =µR =µM =U = 0. Thus,
the time-evolution operator simplifies to

U (τ2,τ1) = exp

[
− i

ħ
∫ τ2

τ1

dτ′ H(τ′)
]
= exp

[
− i

ħHP (S)τP

]
. (4.14)

where τ2,τ1 are the initial and final times, and τP is the duration of the pulse. In practice,
the transition between the idle Hamiltonian and HP in Eq. (4.13) is not instantaneous but
ramps up smoothly over a time τR to minimize non-adiabatic transitions.
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We engineer the unitary operations as an ordered sequence of pulses defined in
Eq. (4.14). For simplicity, we assume no Zeeman splitting in the middle dot, B = 0, and
leave the discussion of the more general case to section 4.4.2. In this case, the minimal
pulse sequence scheme which implements the gates in Eq. (4.1) is:

1. onsite operation:

U1 = exp

[
− i

ħHP
(
{µL ,µR }

)
τP

]
; (4.15)

2. hopping operation:

U2 = exp

[
− i

ħHP
(
{µL =µ,µR =µ}

)
τ(4)

P

]
×exp

[
− i

ħHP ({t })τ(3)
P

]
×exp

[
− i

ħHP
(
{µL =µ,µR =µ}

)
τ(2)

P

]
×exp

[
− i

ħHP
(
{t ,µM }

)
τ(1)

P

] (4.16)

3. superconducting pairing operation:

U3 = exp

[
− i

ħHP ({t })τP

]
; (4.17)

4. Coulomb interaction operation:

U4 = exp

[
− i

ħHP
(
{µL ,µR }

)
τ(2)

P

]
×exp

[
− i

ħHP ({U })τ(1)
P

]
; (4.18)

where we indicate as τ(i )
P the duration of the i -th pulse.

In the above scheme, the operations U1 and U3 require a single pulse. The gate
U1 requires a single pulse because the dots are uncoupled from one another and the
plunger gates affect the onsite energies without inducing any sort of coupling between the
dots. Similarly, U3 is also a single operation because the CAR rate is maximum at µM = 0
whereas both ECT rate and onsite corrections are zero according to Eqs. (4.7— 4.10). We
show the time-dependent simulation of the U3 gate in Fig. 4.3.

On the other hand, the first pulse of Eq. (4.16) introduces finite onsite corrections to
the outer dots and CAR according to Eqs. (4.7— 4.10). Since the onsite corrections are
equal, only a global phase factor is accumulated within the odd fermion parity sector. On
the other hand, both onsite corrections and CAR result in undesired rotations within the
even fermion parity subspace. We undo these operations with an Euler rotation using two
orthogonal operations, resulting in the three subsequent pulses in Eq. (4.16). Similarly,
the Coulomb operation in Eq. (4.18) also requires a correction puls with the plunger gates
because the mutual capacitance Cm renormalizes the onsite energies in the outer dots, as
shown in Eq. (4.11).

4.4.2. FINITE ZEEMAN SPLITTING IN THE MIDDLE DOT
The presence of Zeeman splitting in the middle dot B introduces (see Appendix 4.A) an
asymmetric the onsite renormalisation ϵ

σiσ j

L ̸= ϵσiσ j

R and a shift in the minima of Γσiσ j
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shifts away from µM = 0, as shown in Fig. 4.2. These changes affect the prescriptions for
U2 and U3 since these operations require finite t .

The asymmetric onsite corrections break the orthogonality between U1 and the
unitary operation prescribed in Eq. (4.16). It is still possible to implement the U2 with two
non-orthogonal rotation axes in the odd fermion parity sector with additional operations
to compensate for the non-orthogonality [35].

The operation in Eq. (4.17) also introduces finite Γσiσ j in the odd parity sector. We
show in Appendix 4.B that anti-parallel spin configuration with symmetric spin-orbit
precession θL = θR removes the shifting Λ minima away from µM = 0 and restores the
orthogonality of the operations within the even parity sector.

4.4.3. GATE PERFORMANCE
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Figure 4.3: Time-dependent simulation of pairing gate U3 acting on an initial vacuum state with different pulse

rise time τR profiles. The vacuum population is
∣∣ψ00

∣∣2 whereas the double occupation population (with middle

dot unoccupied) is
∣∣ψ11

∣∣2. Longer pulses (a) result in a smoother transient population profile (b) and less
leakage into the middle ABS state (c). The configuration is the spin-antiparallel with finite Zeeman field within
the middle dot B/∆= 0.2 and symmetric spin-orbit precession θL = θR =π/8

Switching on the pulse in Eq. (4.13) happens over a finite rise time τR . Short rise
times τR induce transitions from the LFM dots into the middle ABS at energy ∼∆which
limits the performance of the gates. To avoid such transitions, the pulse times need to
be τR ≫ħ/∆. In Fig. 4.2 we show the time-dependent simulation of the gate U3 with
different rise times. We find that rise times τR > 2ħ/∆ ensures negligible transitions into
the ABS. In a system of ∆= 100µeV that corresponds to rise times of τR > 13ps.

Current tunable capacitors [25, 26] vary over a limited range. The upper limit for the
ratio between the maximum and minimum capacitance r = Coff/Con is r ≈ 40 [25, 26].
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Thus, there is a non-negligible residual capacitance between the dots when the U4 gate
is off. This residual capacitance acts as an unwanted source of phase and limits the
performance of the device. Because such error is coherent, we argue it is possible to
offset it after each or a few operations with a compensating U4 pulse. However, since
[U3,U4] ̸= 0, the U3 operation would require similar compensation pulses to Eq. (4.16)
to offset the effect of the residual capacitor.

4.5. FUTURE DIRECTIONS
Although the device we proposed has the ingredients to implement universal fermionic
gates, further work is required to mitigate the main sources of errors. Because of its simi-
larities to a quantum dot charge qubit, we expect the limiting decoherence mechanism
to be the same - charge noise [36]. Typical coherence times are on the order of a few
nanoseconds [21, 36–38]. In comparison, Dvir et al. [20] reports CAR/ECT strengths of
ħ/ΓCAR/ECT ≈ 10µs from which we estimate the gate pulse of our proposed device to be
≈ 50ps. On the other hand, if the outer dots in the device shown in Fig. 6.1 are also prox-
imitized by a superconductor, the local fermionic modes would be encoded by Andreev
quasiparticles. Because Andreev states are linear combinations of electron and hole-like
excitations, it is possible to design a device that operates with neutral fermions. A similar
idea was recently proposed to avoid charge noise in fermion-parity qubits [39]. Finally,
minimization of the main sources of errors allows implementation of error-correction
codes for fermionic systems [40].

In the current device, superconducting pairing persists under all possible parameters.
Because of that, the hopping operation in Eq. (4.16) requires a complicated procedure
in order to remove the effects of the induced superconducting gap. To simplify the
hopping operation, we suggest using a device that allows control of the amount of induced
superconducting pairing into the middle dot. For example, a tunnel barrier between the
middle dot and the superconducting lead would mediate the induced superconducting
pairing. Alternatively, connecting the middle dot to two superconducting leads and
controlling the phase difference between them would also allow to control the induced
superconducting pairing.

Our proposed device consists of a chain of single-orbital fermionic sites. The device
layout is a limiting factor, as it only allows nearest-neighbor hoppings, superconducting
pairing, and electrostatic interactions. The layout limitations are detrimental to effective
scalability. Thus, future works could for example generalize the model to, for example,
two-dimensional lattices.

We showed that the proposed device is a building block of a fermionic quantum
computer. However, we must also emphasize that the high control of the system param-
eters allows to use the same device as a quantum simulator. For example, a chain-like
device with the unit cell shown in Fig. 6.1 at finite Γ and U can be directly mapped to
the Heisenberg model. Thus, together with superconducting correlations, these devices
would be an extension of other quantum dot platforms [41].

We mentioned in Sec. 4.4 that all tunable capacitors proposed present a residual
mutual capacitance Coff. The external capacitor is necessary because direct mutual
capacitance is suppressed by the charge screening in the superconducting island. On the
other hand, a floating superconducting island offers a direct interdot capacitance [42]. In
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a device with a switch between a floating and grounded superconductor, there would be
direct control of the mutual capacitance. Moreover, the large charge screening due to the
grounded superconducting island sets Coff ≈ 0, removing the need to fix offset phases due
to the residual capacitance.

4.6. SUMMARY

We showed that Copper pair-splitting devices with tunable capacitors make up a build-
ing block of a fermionic quantum computer. We derived the low-energy Hamiltonian
and showed that it contains all the necessary processes to build a universal set of gate
operations. Moreover, we showed how to use experimentally controllable parameters
to implement the gate operations. We find that the presence of Zeeman splitting in the
superconducting island complicates the implementation of gates and necessitates ad-
ditional steps. Based on the low-energy theory, we also studied optimal regimes for the
device operation. While our design was mostly inspired by recent experiments, we also
discussed how to avoid foreseeable limitations such as (i) the use of neutral fermions to
suppress charge noise; (ii) a floating superconducting island to simplify the layout; (iii)
control of the superconducting gap to simplify gate operations.
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4.A. SCHIEFFER-WOLFF TRANSFORMATION
To obtain the effective Hamiltonian from Eq. (4.6), we perform a Schieffer-Wolff transfor-
mation. We, first, diagonalize the Hamiltonian of the middle dot in Eq. (4.3):

HABS = (ϵABS +B)γ†
↑γ↑+ (ϵABS −B)γ†

↓γ↓ , (4.19)

where ϵABS =
√
∆2 +µ2

M , γσ are the annihillation operators of Andreev quasiparticles

γ†
↑ = uc†

M↑+ vcM↓ , γ†
↓ = uc†

M↓− vcM↑ , (4.20)

and u and v are the coherence factors.
We now define the occupation basis for the many-body states as |nL ,nM ,nR〉, where

ni corresponds to the occupation number at the site i . Notice that for the middle dot, we
define the number operator as n̂Mσ = γ†

Mσ
γMσ, whereas in the outer dots n̂iσi = c†

iσi
ciσi .

Because we consider µL/R ,B ≪∆, in the absence of hopping between the dots,

〈nL ,0,nR |H |nL ,0,nR〉≪ 〈nL ,nM ,nR |H |nL ,nM ,nR〉 , (4.21)

for nL/R ∈ {0,1}, and nM > 0. Thus, the states with zero occupation in the middle dot form
our low-energy manifold.

Occupied states in the middle dot are separated by an energy ∼∆ from the low-energy
manifold. In the weak coupling limit t ≪∆, the high-energy subspace only contributes to
the low-energy dynamics through virtual processes. Therefore, we use a Schieffer-Wolff
transformation to obtain the effective Hamiltonian in the low-energy subspace in Eq. (4.6).
Whenever µL =µR = 0, the terms in Eq. (4.6) for the anti-parallel spin configuration are:

ϵ↑↓R = κ(−2B sin2 (θR )+B +µM
)

, ϵ↑↓L = κ(−2B cos2 (θL)+B +µM
)

, (4.22)

Λ↑↓ = κ∆cos(θL +θR ) , Γ↑↓ =−iκ
[
µM cos(θL +θR )−B sin(θL −θR )

]
, (4.23)

and for the parallel configuration:

ϵ↑↑R = κ(−2B cos2 (θR )+B +µM
)

, ϵ↑↑L = κ(−2B cos2 (θL)+B +µM
)

, (4.24)

Λ↑↑ =−iκ∆sin(θL +θR ) , Γ↑↑ =−κ[
µM cos(θL +θR )−B cos(θL −θR )

]
, (4.25)

where
κ= t 2/(∆2 +µ2

M −B 2) . (4.26)

At finite B , the chemical potential µM at which Γσiσ j = 0 shifts to:

µ↑↓
shift =

B sin(θL −θR )

sin(θL +θR )
, µ↑↑

shift =
B cos(θL −θR )

cos(θL +θR )
, (4.27)

for anti-parallel and parallel spin configurations.
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4.B. CONVENIENCE OF THE ANTI-PARALLEL SPIN CONFIGURA-
TION

4.B.1. ORTHOGONALITY WITH SYMMETRIC SPIN PRECESSION
In Eq. (4.22) for the anti-parallel spin configuration we notice that when the spin pre-
cession angles are equal θL = θR = θ, the double occupation onsite energy ϵL +ϵR = 0 is
zero at µM = 0 and the ETC minima shifts disappear as shown in Eq. (4.27). That restores
the orthogonality of operations within the even parity sector and thus we express U3(γ)
operation as:

U3(γ) = exp

[
− i

ħHP
(
{µL/R }

)
τ(2)

P

]
×exp

[
− i

ħHP ({t })τ(1)
P

]
, (4.28)

where we compensate a finite ϵL−ϵR with an onsite pulse. On the other hand, the hopping
operation requires additional operations to compensate for non-orthogonality [35]:

U2(β) = exp

[
− i

ħHP
(
{µL =µ,µR =µ}

)
τ(N+4)

P

]
×exp

[
− i

ħHP ({t })τ(N+3)
P

]
×exp

[
− i

ħHP
(
{µL =µ,µR =µ}

)
τ(N+2)

P

]
×exp

[
− i

ħHP
(
{µL/R }

)
τ(N+1)

P

]
×

N /2∏
j=1

exp

[
− i

ħHP
(
{t ,µM }

)
τ

(2 j )
P

]
×exp

[
− i

ħHP
(
{µL/R }

)
τ

(2 j−1)
P

] (4.29)

where N is the number of pulses required to correct for the non-orthogonality within the
odd parity sector.

4.B.2. STABILITY AND NUMBER OF OPERATIONS
To quantify the degree of linear dependence of the operations, we define the following
metric

Lo =
√

(ϵL −ϵR )2

(ϵL −ϵR )2 +Γ2
, (4.30)

Le =
√

(ϵL +ϵR )2

(ϵL +ϵR )2 +Λ2
(4.31)

for Le even Lo and odd fermion parity sectors. If Le/o = 0, the operations are orthogonal
and the scheme outlined in Section 4.4 is valid. On the other hand, if Le/o = 1, it is
impossible to generate a universal set of operations. To understand how robust the
scheme in Eq. (4.28) is, we consider small deviations from the perfect spin precession
case: θL = θ and θR = θ+δ. In this case, the metric Le/o reads:

Lo =
[

1+
(µM

B
tan2θ

)2
]−1/2

+O(δ) , (4.32)

Le = δ
(

B

∆

)
tan2θ+O(δ2) . (4.33)



REFERENCES

4

57

Depending on the linear dependence Le/o of the hopping and pairing operations, we can
estimate the maximal number of pulses required to implement an arbitrary operation [35]
within a given fermion parity subspace:

N (Le/o) = ⌈ π

arccos(Le/o)
⌉+1. (4.34)
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Figure 5.1: Schematic of the device studied in the experiment [30] and in this work. An InAs nanowire (yellow) is
partially covered by Al (blue) and EuS (green) layers and is placed on a dielectric substrate (grey). A back-gate
(dark blue) and two side-gates (orange) are applied to control the electrostatic potential profile in the InAs
nanowire. Surface charges are added on the three facets of the bare InAs nanowire (brown) and on the two
facets of the InAs/EuS interface (dark green) to account for the band bending effect.

5.1. INTRODUCTION
Topological superconductivity (TSC) has attracted lots of attention and inspired intensive
research over the last few decades. The defects or wire ends of a TSC can host Majorana
zero modes which are non-Abelian anyons and potential building blocks of topological
quantum computing [1–14]. Heterostructures between a spin-orbit coupled semicon-
ducting nanowire and a conventional s-wave superconductor is one of the promising
platforms for realizing TSC [15–18]. In these hybrid devices, topological superconductivity
is realized for a sufficiently strong Zeeman splitting.

In most experimental studies of semiconductor-superconductor hybrid nanowires
so far, Zeeman splitting is induced by an externally applied magnetic field [19–29]. How-
ever, Zeeman energy in the hybrid system can also be induced by proximity effect from
ferromagnetic insulators (FMI) [15, 18]. In a recent experiment, topological properties of
InAs/EuS/Al ferromagnetic (FM) hybrid nanowires have been investigated [30]. Tunneling
spectroscopy revealed zero-bias conductance peaks over a finite parameter regime for
multiple devices, compatible with Majorana zero modes and topological superconduc-
tivity. Interestingly, such zero-bias peaks have appeared only in devices of a particular
geometry, namely when the Al and EuS layers overlap with each other by one facet (see
Fig. 5.1), but not in other device geometries without such an overlap. This raises the ques-
tion on the fundamental physical mechanisms for realizing TSC in such ferromagnetic
hybrid nanowires.

In this work, we explore systematically different mechanisms for inducing an effective
Zeeman energy in the nanowire, using detailed microscopic device simulations. To this
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end it is essential to have a faithful description of the electrostatic potential in the device.
Previous works highlighted the critical role of band offsets at interfaces of the semicon-
ductor with other materials [31, 32]. For the bare InAs surface and the InAs/Al interface
this has been studied systematically using angle-resolved photoemission spectroscopy
(ARPES) [33], but no such analysis has been available for the InAs/EuS interface so far.

We combine an analysis of the band offset at the InAs/EuS interface from ARPES data
with electrostatic device simulations to arrive at a faithful description of the electronic
density in these hybrid nanowires. In particular, we find that the enhanced band bending
at the InAs/EuS interface leads to an accumulation of electrons along these facets. Using
a microscopic model for superconductivity we conclude that the magnetic proximity
effects at the Al/EuS as well as the InAs/EuS interfaces are both essential for inducing a
sufficiently large effective Zeeman spin splitting allowing to reach a topological phase.
Our calculations show that a topological phase can be reached with plausible parameter
values, and we discuss how topological properties can be optimized by external gating.

5.2. BAND BENDING AND ELECTROSTATICS

5.2.1. BAND BENDING AT THE INAS/EUS INTERFACE

Accurate values of band offset at the interface of InAs with other materials are crucial
for obtaining faithful electrostatic potential and charge density profiles inside the InAs
nanowire. In a previous work [33], the planar interfaces of InAs/Al and InAs/vacuum
were both carefully investigated using the ARPES measurements along with the core-
level fitting procedure. The resulting values of the band offset of InAs(100)/Al and
InAs(100)/vacuum, and the band bending profile near the interface are summarized
as the blue and red lines in Fig. 5.2 (data from Ref. [33]).

In this work, we focus on the band bending effect at the InAs(100)/EuS interface.
ARPES data obtained for this interface has been presented in Ref. [34]. Here, we use the
methods described in Ref. [33] to extract the band bending from this data. In particular,
the fit of the In4d core-level spectra for the InAs/EuS interface is performed simultane-
ously for a set of photon energies in the range 350-750 eV. We use a bulk and an interface
component consisting of two Voigt functions each. The broadening and shift of the line
profile by the band bending potential is accounted for using an auxiliary Schrödinger-
Poisson simulation and the characteristic energy between the conduction band minimum
and the In4d core level ∆CL(In4d,InAs) =−17.22(3) eV for InAs [33].

The result of the core-level fitting for hν = 750 eV is shown in the inset of Fig. 5.2.
While the overall shape of the core line is well captured by our model, the bulk component
binding energy seems to be underestimated by ∼0.08 eV. We suspect that this may be
caused by nonlinear behavior of the background or by a small additional interface compo-
nent that is not adequately captured in our approach, which is reflected in the increased
estimate for the confidence interval towards lower binding energies. The bend bending
profile of InAs(100)/EuS interface is shown as the green line in Fig. 5.2, and we see that
the band offset value of InAs/EuS is in between the values of InAs/Al and InAs/vacuum.

Finally, we note that owing to the geometrical difference between a planar interface
and a multi-facet nanowire structure, the band offset values shown in Fig. 5.2 should be
regarded as guiding values. For the InAs/Al interface specifically, we typically observe the
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Figure 5.2: Interface band offsets and band bending profiles for the bare InAs(100) planar surface, the
InAs(100)/Al, and InAs(100)/EuS heterostructures. Estimated confidence intervals are shown in grey and
light green, respectively. Inset: Fit of the In4d core-level peaks of the InAs/EuS heterostructure for photon
energy hν = 750 eV. The InAs(100)/EuS interface was grown in the MBE system of the Niels Bohr Institute in
Copenhagen and transported for spectroscopic measurements at the ADRESS beamline of the SWISS Light
Source at PSI, Switzerland in protective atmosphere. Data for InAs and InAs/Al is from Ref. [33], and ARPES data
obtained for InAs/EuS interface is in Ref. [34].

value of band offset for in-situ planar MBE growth shown here to be an upper bound, with
a reduction of 0.05-0.1 eV for interfaces with a reduced quality using other growth modes
such as growth after decapping. We can expect this to apply to growth on nanowire facets.
So without loss of generality, in this work we choose the band offset values in our model
to be WInAs/vac =0.2 eV, WInAs/EuS =0.26 eV and WInAs/Al =0.35 eV, respectively.

5.2.2. THOMAS FERMI-POISSON APPROACH
The setup for studying the electrostatics in this work is schematically shown in Fig. 5.1.
We focus on the two-dimensional cross section (in the x-y plane) of the system, and
assume translational symmetry along the third dimension (z axis). The hexagonal InAs
nanowire of radius 40 nm is covered by the EuS layer on two of the top facets, and
also covered by the Al layer on one adjacent facet. The hybrid nanowire is placed on a
dielectric layer of thickness 10 nm, and a back-gate and two side-gates are applied below
or beside the nanowire. To obtain the electrostatic potential φ(r) for the setup, we solve
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Table I. Physical parameters for InAs and Al

Parameter (unit) InAs Al
m (m0) 0.023 [39] 1
αR (eVÅ) 0.3 [44] 0
EF (eV) 0 11.27 [45]
∆0 (meV) 0 0.34 [45]
εr 15.15

the self-consistent Thomas Fermi-Poisson equation [31, 32, 35–38]

∇· [εr (r)∇φ(r)] = ρtot[φ(r)]

ε0
, (5.1)

with appropriate boundary conditions. Here the total charge density

ρtot[φ(r)] = ρe(φ)+ρhh(φ)+ρlh(φ)+ρsurf (5.2)

includes the conduction electrons, the heavy/light holes, and the surface charges. We use
the Thomas-Fermi approximation for a 3D electron gas to determine the mobile charge
densities inside the InAs nanowire:

ρe(φ) =− e

3π2

(
2meeφθ(φ)

ħ2

)3/2

,

ρhh/lh(φ) = e

3π2

(
2mhh/lh(−eφ−Eg )θ(−eφ−Eg )

ħ2

)3/2

(5.3)

where me = 0.023 m0, mhh = 0.41 m0, mlh = 0.026 m0 are the effective mass of the conduc-
tion electron, the heavy-hole and the light-hole in unit of electron mass, Eg = 0.418 eV is
the band gap between conduction and valence bands [39], and θ(x) is the Heaviside step
function. The surface charges are added to account for the band bending effect at both
InAs/EuS and InAs/vacuum interfaces. At the two top facets of the InAs nanowire, where
it is in contact with the EuS layer, a positive charge layer of 1 nm thickness and density
ρsurf = 1.8×1019 e/cm3 is added, leading to a band offset WInAs/EuS = 0.26 eV. Similarly, at
the three facets where the InAs nanowire is either in contact with vacuum or the dielectric
layer, another 1 nm thick positive charge layer of density ρsurf = 1.3×1019 e/cm3 is applied
to model the band offset value WInAs/vac = 0.2 eV [37, 40–42]. The band bending effect
at the interface of InAs and the metallic aluminum layer is modeled by the Dirichlet
boundary condition, i.e., φ= e−1WInAs/Al = 0.35 V at the remaining one facet of the InAs
nanowire. Additionally, the regions of the gates are also Dirichlet boundary conditions,
with the values being determined by the applied voltage value, i.e., φ = Vi , i =BG, LG,
and RG. It is noteworthy that the treatment of the band bending effect at the InAs/EuS
interface is unique to this work, and thus distinguishes our work from others [43]

5.3. ELECTRONIC PROPERTIES OF FERROMAGNETIC HYBRID NANOWIRES

5.3.1. MODEL HAMILTONIAN
The quantum model for investigating the electronic properties of the hybrid nanowire
is shown in Fig. 5.1. We consider the two-dimensional cross section of the nanowire
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(x y-plane), assuming translational symmetry along the wire axis (z-axis). The quantum
system consists of only the InAs nanowire and the Al layer, which we treat on equal footing
at the quantum mechanical level. We model the role of EuS as an induced exchange
coupling term in InAs and Al, while neglecting the stray field from EuS [46]. The effects of
gates, surface charges, dielectric layers, and the vacuum are taken into account via the
self-consistently calculated electrostatic potential inside the InAs nanowire. Under these
assumptions, the normal-state Hamiltonian for the ferromagnetic hybrid nanowire can
be written as

HN =p⊺ 1

2m(r)
p+αR (r)(−i∂xσz −kzσx )−EF (r)

−eφ(r)+hex(r)σz , (5.4)

where p = (−iħ∂x ,−iħ∂y ,ħkz ) is the momentum operator with ħ being the Planck con-
stant, kz the wave vector along the nanowire axis, σi the Pauli matrices acting on the
spin space, m(r) the effective mass, αR (r) the strength of the Rashba spin-orbit coupling,
EF (r) the Fermi energy, φ(r) the electrostatic potential, e > 0 the elementary charge, and
hex(r) the strength of the induced exchange coupling due to the magnetic proximity effect
from EuS. The physical parameters for InAs and Al are summarized in Table I. In addition,
a random onsite potential is added within a distance of 2 nm from the outer surface
of Al, modeling the effect of disorder induced by the amorphous oxide layer in realistic
devices [31]. We assume that the disorder potential has strength U0 = 1 eV with zero
average, and is spatially uncorrelated, i.e., 〈〈δEF (r)〉〉 = 0, 〈〈δEF (ri )δEF (r j )〉〉 =U 2

0 /3 ·δi j ,
such that the bands in Al and InAs couple to each other strongly [31, 37].

When superconductivity is taken into consideration, the system is described by the
Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG =
(
p⊺ 1

2m(r)
p+αR (r)(−i∂xσz −kzσx )−EF (r)

−eφ(r)
)
τz +hex(r)σz +∆(r)τx , (5.5)

in the basis of (ψe↑,ψe↓,ψh↓,−ψh↑). Here τi are the Pauli matrices acting on the Nambu
space, and ∆(r) is the pairing potential in the superconductor.

For the numerical calculations, the Hamiltonians in Eqs. (5.4) and (5.5) are first dis-
cretized into a tight-binding model on a square lattice using the KWANT package [47]. We
choose the lattice constants for InAs and Al to be 5 Å and 1 Å, respectively, to account for
the large Fermi energy difference between the two materials. Then the eigenenergies and
eigenstates are obtained by diagonalizing the sparse Hamiltonian matrices.

5.3.2. EXCHANGE COUPLING IN AL
We first investigate the effect of induced exchange coupling inside the aluminum layer
on the electronic properties of the InAs/Al hybrid system. The origin of this exchange
coupling is the magnetic proximity effect between the Al and EuS layers when they overlap
with each other, as indicated in the schematic of Fig. 5.1. To model this proximity effect,
we assume that hex(r) = hAl

ex > 0 inside the Al layer. At this point we still neglect the
magnetic proximity effect at the InAs/EuS interface; this will be discussed in the next
section.
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Figure 5.3: (a) and (b) BdG band diagrams for the InAs/Al hybrid nanowire in the absence and presence of the
induced exchange coupling in Al. The gate voltages are fixed at VBG =−3.4 V, VLG =VRG = 0 V. We note that a
finite hAl

ex lifts up the spin-orbit degeneracy at kz = 0 in the hybrid state and reduces the continuum gap of the

superconducting states. (c) wavefunction profile of the hybrid state at kz = 0 and EBdG ≈ 0.2 meV with hAl
ex = 0.

(d) zoom-in of the wavefunction profile in the boxed region in Al (color scale adjusted).

Figures 5.3(a) and 5.3(b) show the BdG band diagrams of the InAs/Al hybrid system
in the absence (hAl

ex = 0 meV) and presence (hAl
ex = 0.25 meV) of the induced exchange

coupling in Al, with the gate voltages being fixed at VBG =−3.4 V and VLG =VRG = 0 V. The
color of the band indicates the degree of wavefunction hybridization, which is defined as
wSC =∑

r∈ΩAl
|ψ(r)|2 ≤ 1, withΩAl denoting the volume of the Al layer. A finite hAl

ex has two
effects on the band properties of the hybrid nanowire.

First, a finite hAl
ex would induce an effective Zeeman spin slitting for the hybrid state.

As can be seen, the spin-orbit degeneracy at kz = 0 and EBdG ≈ 0.2 meV in Fig. 5.3(a) for
the hybrid state (wSC ≈ 0.5) is now lifted by the finite induced exchange coupling in Al in
Fig. 5.3(b). The amplitude of the effective Zeeman energy is approximately

E (1)
Z ≈ wSC ·hAl

ex, (5.6)

which is proportional to the weight of the wavefunction in Al. Figures 5.3(c) and 5.3(d)
show the wavefunction profiles of the hybrid state in InAs and Al, respectively. Thereby,
although InAs is not directly subject to the magnetic proximity effect from EuS in the
physical scenario considered here, the hybrid state still gains a finite effective Zeeman
spin splitting by distributing its wavefunction into the magnetized Al layer.

Second, the induced exchange coupling in Al would reduce the quasiparticle contin-
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Figure 5.4: Magnetic proximity efficiency and wavefunction profiles in a bare InAs nanowire. (a) η of the normal
eigenstate closest to the Fermi surface as a function of the backgate and the rightgate voltages. (b) |ψ(r)|2 of the
normal eigenstates at specific gate voltages.

uum gap. By comparing those superconducting states (wSC ≈ 1) in Figs. 5.3(a) and 5.3(b),
we find that the excitation gap of the Al layer decreases from the bare value∆qp = 0.34 meV
to about ∆qp ≈ 0.09 meV [green dashed lines in Figs. 5.3(a) and 5.3(b)]. Since Al is an s-
wave BCS superconductivity, the quasiparticle continuum gap decreases with the induced
exchange coupling in Al in a linear manner:

∆qp(hAl
ex) =∆0 −hAl

ex. (5.7)

Thus we can estimate the strength of induced exchange coupling hAl
ex from experimental

data by considering the reduction of the quasiparticle continuum gap in Al. On the other
hand, for the hybrid state (wSC ≈ 0.5), the kF excitation gap (inverse of the localization
length of the Majorana modes) at kz ≈ 0.025nm−1 in Figs. 5.3(a) and 5.3(b) changes very
little with hAl

ex, possibly owing to the spin-orbit protection from InAs [48, 49].
When considering both of the abovementioned two effects on the InAs/Al hybrid

nanowire, we conclude that an induced exchange coupling in Al alone cannot drive the
hybrid system into the topological phase. Because by combining Eqs. (5.6) and (5.7),
the induced effective Zeeman energy of the hybrid state is always less than the induced
superconducting gap, i.e.,

E (1)
Z <∆ind ≈ wSC∆0, (5.8)

as long as the quasiparticle continuum gap in Al remains finite ∆qp(hAl
ex) > 0. This is in

agreement with a fundamental no-go theorem for topology for BdG Hamiltonians [50].
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5.3.3. DIRECT MAGNETIC PROXIMITY EFFECT
We now focus on the direct magnetic proximity effect at the InAs/EuS interface and its
dependence on gates, neglecting the superconducting shell completely. In particular
for the quantum problem, we consider a bare InAs nanowire and the direct proximity
effect is modeled phenomenologically as a local exchange coupling hInAs

ex σz within a
distance d = 1.5 nm from the two-facet boundaries where InAs and EuS contact with
each other. Here, the distance d is chosen to be about the penetration length of the
wavefunction in a typical magnetic insulator [18], such that the magnitude of hInAs

ex can be
approximated as the strength of the ferromagnetic coupling inside EuS. We have chosen
for this phenomenological approach as the band structure of EuS may not be represented
faithfully with an effective mass model as used for InAs and Al in our study. The effect of
the back-gate and two side-gates is included via the electrostatic potential profile φ(r),
which is calculated based on the geometry shown in Fig. 5.1. In order to quantify the
magnetic proximity effect, we define the efficiency η= [En↑(kz = 0)−En↓(kz = 0)]/2hInAs

ex ,
which is the Zeeman energy splitting of the n-th spinful subband in the presence of a
unit-strength hInAs

ex . Enσ is the energy eigenstate of the discretized normal Hamiltonian
HN in Eq. (5.4).

Figure 5.4(a) shows the calculated η of the normal subband mode closest to the Fermi
surface as a function of the backgate and rightgate voltages (the leftgate dependence is
weak due to the screening effect of Al). The efficiency η is a piecewise function of the gate
voltages, with each piece corresponding to a particular subband mode. The η difference
between distinct subband modes can be stark and dominates the η variations within a
single subband mode. Note that although the dependence of η on the gate voltages is not
monotonic, a general trend is that the subband mode at a more negative (positive) value
of the backgate (rightgate) voltage would have a larger η, because their wavefunctions are
more confined towards the InAs/EuS interface where the direct magnetic proximity effect
is the strongest, as shown in Fig. 5.4(b).

The generalization from the bare InAs to the InAs/Al hybrid nanowire is straight-
forward. Namely, the effective Zeeman splitting for the hybrid state due to the direct
magnetic proximity effect can be approximated as

E (2)
Z ≈ (1−wSC) ·η ·hInAs

ex , (5.9)

where the prefactor (1−wSC) accounts for the semiconductor-superconductor hybridiza-
tion. In the absence of other mechanisms of inducing Zeeman splitting, the minimal
strength of the exchange coupling for realizing TSC would be about hInAs

ex,min = wSC∆0
(1−wSC)η

by requiring E (2)
Z = ∆ind. For a typical device with strong coupling at both InAs/Al

and InAs/EuS interfaces, e.g., wSC ≈ 0.5 and η ≈ 7 × 10−3 [see Fig. 5.4(a)], we have
hInAs

ex,c ≈ 50 meV. Such a large strength of exchange coupling sets a demanding requirement
for the proximity magnetic insulator candidates.

5.3.4. TOPOLOGICAL PHASE DIAGRAM
We now consider the scenario in which the InAs/Al hybrid nanowire is subject to the
joint magnetic proximity effect from both Al/EuS and InAs/EuS interfaces, and study
the topological phase diagrams as a function of gate voltages and exchange couplings.
Namely, the induced exchange coupling is finite both in Al and at the boundaries of InAs,
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Figure 5.5: (a) Topological phase diagram in (hInAs
ex , VBG) with hAl

ex = 0.25 meV, and VLG =VRG = 0 V. The area
in purple represents the topological phase of the hybrid nanowire, while that in grey represents the trivial
phase. (b) Minimally required exchange coupling at the InAs/EuS interface for realizing TSC as a function of the
strength of the induced exchange coupling in Al. The two lines correspond to the topological phases in (a) at
VBG =−2.03 V and −3.45 V. (c) Topological phase diagram in (VRG, VBG) with hAl

ex = 0.25 meV, hInAs
ex = 15 meV,

and VLG = 0 V.
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and thereby the total effective Zeeman spin splitting now is the combined contribution of
two mechanisms:

E tot
Z (hAl

ex,hInAs
ex ) = E (1)

Z (hAl
ex)+E (2)

Z (hInAs
ex ), (5.10)

where E (1)
Z and E (2)

Z are estimated in Eqs. (5.6) and (5.9). To determine the topological
phase diagram of the hybrid nanowire, we keep track of the energy gap EBdG(kz = 0).
For semiconductor-superconductor nanowires, the closing and reopening of EBdG(kz =
0) signifies the topological quantum phase transition [15–18]. Figure 5.5(a) shows the
topological phase diagram of the device in Fig. 5.1 as a function of the backgate voltage
VBG and the exchange coupling hInAs

ex in InAs, with other parameters being fixed at hAl
ex =

0.25 meV, and VLG =VRG = 0 V. The areas in purple represent the topological phase of the
nanowire, while those in grey represent the trivial phase. There are several observations
on the result in Fig. 5.5(a). First, the pattern of the phase diagram resembles those of
the hybrid nanowires for which the Zeeman energy is induced by an applied magnetic
field but without including the orbital effect from the field. Because in our model, the
Zeeman energy is induced by the exchange couplings at zero magnetic field. Second, the
TSC phases (lobes in purple) at VRG <−1.5 V are more robust, based on the fact that they
have a smaller critical exchange coupling strength, and a larger width along VBG. The
robustness is the consequence of the joint effect of a larger direct magnetic proximity
effect (η> 7×10−3 as shown in Fig. 5.4) and a stronger InAs/Al hybridization (wSC ≈ 0.5
as shown in Fig. 5.3) at more negative gate voltages. Third, the minimal strength of the
critical exchange field hInAs

ex,c for achieving topological phases is about 10 meV for the
two lobes at VRG ≈ −2 V and −3.5 V. Such a strength of hInAs

ex,c at the InAs/EuS interface
is comparable to the estimated strength of exchange coupling at the interface of III-V
compounds and magnetic insulators, which confirms the feasibility to realize TSC in
semiconductor-superconductor-ferromagnetic hybrid nanowires with overlapping Al and
EuS layers. This is one of the central result in the current work.

Figure 5.5(b) shows the minimally required strength of hInAs
ex,c at the InAs/EuS inter-

face as a function of hAl
ex in Al for two particular subband modes. The minimal strength

hInAs
ex,c decreases linearly with an increasing hAl

ex, because an larger effective Zeeman en-

ergy E (1)
Z ∝ hAl

ex facilitates the realization of topological superconductivity in the hybrid
nanowire. In particular, the minimally required exchange coupling at the InAs/EuS in-
terface is about hInAs

ex,c ∼50 or 20 meV if no exchange coupling is induced in Al. This value

reduces significantly to hInAs
ex,c ≲ 10 or 5 meV as hAl

ex ≈ 0.28 meV. Here for comparison

between theory and experiment, the value of hAl
ex is chosen such that the shrinking of

the continuum gap is comparable to the observations in Ref. [30], i.e., the gap in devices
with overlapping Al and EuS layers is ∼ 0.04/0.23 of the gap in non-overlapping ones. If
we assume that the properties of a hybrid nanowire with non-overlapping Al and EuS
layers are approximately captured by setting hAl

ex = 0 in our model, Fig. 5.5(b) explains why
zero-bias conductance peaks in the tunnel spectroscopy are only observed in overlapping
devices in Ref. [30].

Figure 5.5(c) shows the topological phase diagram in the (VRG, VBG) plane, focusing
on the three topological lobes at VBG <−1.5 V. Now the exchange couplings are fixed at
hInAs

ex = 15 meV and hAl
ex = 0.25 meV, and gate voltages VLG = 0 V. The topological phase
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Figure 5.6: (a) wSC and η of lobe-A along the zero-Fermi-energy line [dashed lines in Fig. 5.5(c)]. Here the
variation of wSC has a dominant effect over η in determining the topological phase of the hybrid state. (c)
Calculated E tot

Z −∆ind (black dots) of lobe-A. Ideally, the hybrid state at zero Fermi energy becomes topological

when E tot
Z −∆ind is greater than zero. The purple shaded area represents the topological phase indicated in

Fig. 5.5(c). (b) and (d) Similar to (a) and (c) for lobe-C. For lobe-C, the change of η is larger than wSC, and the
hybrid state becomes topological when the direct magnetic proximity effect is prominent (η> 9×10−3).

shows up as a diagonal line, along which the Fermi energy of the relevant subband mode
keeps close to zero. Note that the hybrid state of the particular subband mode can remain
topological all the way along the diagonal zero-Fermi-energy line (e.g., the continuous
lobe-B), or it can transform between topologically trivial and nontrivial phases (e.g., lobes-
A or -C). It turns out that the topology along the zero-Fermi-energy line depends crucially
on how the semiconductor-superconductor hybridization (wSC) and direct magnetic
proximity efficiency (η) respond to the gate voltage variations. For the hybrid state with
zero Fermi energy, we can use a simplified criterion in the form

E tot
Z −∆ind

=E (2)
Z −

(
∆ind −E (1)

Z

)
=(1−wSC) ·η ·hInAs

ex −wSC(∆0 −hAl
ex) > 0, (5.11)

based on the definitions in Eqs. (5.6), (5.8), (5.9) and (5.10). In Eq. (5.11), the relative
strength of Zeeman energy due to the direct magnetic proximity effect E (2)

Z and the
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induced quasiparticle continuum gap wSC(∆0 −hAl
ex) depend on wSC and η explicitly.

Figure 5.6 shows the wSC and η of the lobes-A and -C along the zero-Fermi-energy line,
i.e., the dashed lines in Fig. 5.5(c). In Fig. 5.6(a), the variation of wSC dominates that of η,
and the hybrid state is topological [see Fig. 5.6(c)] when the hybridization is moderately
small, i.e., wSC ≲ 0.5. As indicated by Eq. (5.11), a smaller degree of semiconductor-
superconductor hybridization means a stronger E (2)

Z from the InAs side and a smaller
induced continuum gap from Al, making it easier to satisfy the topological criterion. In
another scenario, as shown by Fig. 5.6(b) for lobe-C, η increases monotonically as the
voltage of the right-gate becomes more positive, and has a dominant effect than wSC. The
hybrid state becomes topological when η is sufficiently large. We thus see that depending
on the details of a subband, a topological transition can be driven by two gates by both
changing the induced superconducting gap or the directly induced Zeeman splitting. This
is in contrast to the usual topological phase transition driven by changing the chemical
potential by a gate.

5.4. SUMMARY

In this work, we studied the electronic properties of InAs/EuS/Al hybrid nanowires. We
analyzed the band bending at the InAs/EuS interface using ARPES data and found that
this interface enhances electron accumulation compared to a bare InAs surface. Using
this input, we performed microscopic electrostatics and device simulations. From these
we concluded that it is feasible to achieve topological superconductivity in the device ge-
ometry shown in Fig. 5.1, within the realistic parameters: the calculated minimal strength
of hInAs

ex at the InAs/EuS interface is about 10 meV, consistent with the induced exchange
coupling between III-V semiconductors and magnetic insulators. Our calculations also
indicate that in experiments a topological phase is only achieved by the combination of
both an induced Zeeman splitting in the superconducting Al shell by EuS, and an induced
Zeeman splitting directly at the InAs/EuS interface. We also find in this hybrid device
additional ways to control the topological phase by gates compared to the well-known
control by changing the chemical potential: Topology can be controlled using two gates
either by changing the effective induced superconducting gap or by changing the overlap
of the wave function with the InAs/EuS interface and thus the directly induced Zeeman
splitting. This gives new avenues to experimentally optimizing topological phases in a
given device geometry.

While finishing this work we became aware of a similar study on InAs/EuS/Al nanode-
vices focusing on electrostatic effects [43]. That work concludes, opposite to our findings,
that only the directly induced Zeeman splitting is necessary for a topological phase. The
reason for this discrepancy is that Ref. [43] only assumes electron accumulation due to
the work function difference between Al and InAs, and not at the InAs/EuS interface,
contrary to our experimental finding. We note that there is concurrent work on the effects
of electrostatics in these hybrid systems [51]. Also, there are concurrent efforts to go
beyond the effective model as used in our work, and do a self-consistent treatment of
proximity effect between EuS and Al when the shells overlap [52].



5

74 REFERENCES

ACKNOWLEDGEMENTS
We are grateful to Aleksei Khindanov, Andrey E. Antipov, William S. Cole, Bernard van Heck
for discussions at the initial stage of this project. We would like to thank Anton Akhmerov,
Artem Pulkin, Haining Pan, and F. Setiawan for useful comments on the manuscript.
C.-X.L. thanks Zhenglu Li, Qisi Wang for helpful discussions. S.S., Y.L. and P.K. would
like to acknowledge J. Krieger and V. Strocov from the ADDRESS beamline at the Swiss
Light Source, PSI, Switzerland. This work was supported by a subsidy for top consortia for
knowledge and innovation (TKl toeslag), by the European Union’s Horizon 2020 research
and innovation programme FETOpen Grant No. 828948 (AndQC), by Microsoft Quantum,
by the European Union’s Horizon 2020 research and innovation programme under grant
numbers 716655 (ERC Stg HEMs-DAM), by the international training network “INDEED”
(grant agreement no. 722176), and by São Paulo Research Foundation, grants 2016/10167-
8 and 2019/07082-9.

AUTHOR CONTRIBUTIONS.
C.-X.L. proposed the idea of microscopic device simulation and initiated the project, the
scope of the project was later refined using contributions from all authors. C.-X.L., K.V.,
and A.M. performed an extensive survey on the appropriate model of the hybrid nanowire.
C.-X.L. conceived the model in this work, implemented the numerical methods, and
performed the numerical calculations. S.S., Y.L. and P.K. carried out the data analysis
for band bending at the InAs/EuS interface. M.W. supervised the project. All authors
discussed the results. C.-X.L. and M. W. wrote the manuscript with input from all authors.

REFERENCES
[1] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian

anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008).

[2] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems,
Rep. Prog. Phys. 75, 076501 (2012).

[3] M. Leijnse and K. Flensberg, Introduction to topological superconductivity and Majo-
rana fermions, Semicond. Sci. Technol. 27, 124003 (2012).

[4] C. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens.
Matter Phys. 4, 113 (2013).

[5] T. D. Stanescu and S. Tewari, Majorana fermions in semiconductor nanowires: funda-
mentals, modeling, and experiment, J. Phys.: Condens. Matter 25, 233201 (2013).

[6] J.-H. Jiang and S. Wu, Non-Abelian topological superconductors from topological
semimetals and related systems under the superconducting proximity effect, J. Phys.:
Condens. Matter 25, 055701 (2013).

[7] S. R. Elliott and M. Franz, Colloquium: Majorana fermions in nuclear, particle, and
solid-state physics, Rev. Mod. Phys. 87, 137 (2015).

http://dx.doi.org/10.1103/RevModPhys.80.1083
http://stacks.iop.org/0034-4885/75/i=7/a=076501
http://stacks.iop.org/0268-1242/27/i=12/a=124003
http://dx.doi.org/ 10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/ 10.1146/annurev-conmatphys-030212-184337
http://iopscience.iop.org/article/10.1088/0953-8984/25/23/233201/meta
http://iopscience.iop.org/article/10.1088/0953-8984/25/5/055701/meta
http://iopscience.iop.org/article/10.1088/0953-8984/25/5/055701/meta
http://dx.doi.org/10.1103/RevModPhys.87.137


REFERENCES

5

75

[8] S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological
quantum computation, Npj Quantum Information 1, 15001 EP (2015).

[9] M. Sato and S. Fujimoto, Majorana fermions and topology in superconductors, J. Phys.
Soc. Jpn. 85, 072001 (2016).

[10] M. Sato and Y. Ando, Topological superconductors: a review, Rep. Prog. Phys. 80,
076501 (2017).

[11] R. Aguado, Majorana quasiparticles in condensed matter, Riv. Nuovo Cimento 40,
523 (2017).

[12] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus,
and Y. Oreg, Majorana zero modes in superconductor–semiconductor heterostructures,
Nat. Rev. Mater. 3, 52 (2018).

[13] H. Zhang, D. E. Liu, M. Wimmer, and L. P. Kouwenhoven, Next steps of quantum
transport in Majorana nanowire devices, Nature Communications 10, 5128 (2019).

[14] S. M. Frolov, M. J. Manfra, and J. D. Sau, Topological superconductivity in hybrid
devices, Nature Physics 16, 718 (2020).

[15] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for
topological quantum computation using semiconductor heterostructures, Phys. Rev.
Lett. 104, 040502 (2010).

[16] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana fermions and a topological
phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett.
105, 077001 (2010).

[17] Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in
quantum wires, Phys. Rev. Lett. 105, 177002 (2010).

[18] J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Non-Abelian
quantum order in spin-orbit-coupled semiconductors: Search for topological Majo-
rana particles in solid-state systems, Phys. Rev. B 82, 214509 (2010).

[19] V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven,
Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire
devices, Science 336, 1003 (2012).

[20] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks
and splitting in an Al-InAs nanowire topological superconductor as a signature of
Majorana fermions, Nat. Phys. 8, 887 (2012).

[21] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Anomalous
zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device, Nano Lett. 12,
6414 (2012).

http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/ 10.7566/JPSJ.85.072001
http://dx.doi.org/ 10.7566/JPSJ.85.072001
http://stacks.iop.org/0034-4885/80/i=7/a=076501
http://stacks.iop.org/0034-4885/80/i=7/a=076501
https://www.sif.it/riviste/sif/ncr/econtents/2017/040/11/article/0
https://www.sif.it/riviste/sif/ncr/econtents/2017/040/11/article/0
http://dx.doi.org/ 10.1038/s41578-018-0003-1
http://dx.doi.org/10.1038/s41467-019-13133-1
http://dx.doi.org/10.1038/s41567-020-0925-6
http://dx.doi.org/ 10.1103/PhysRevLett.104.040502
http://dx.doi.org/ 10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/ 10.1126/science.1222360
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w


5

76 REFERENCES

[22] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q. Xu, and
C. M. Marcus, Superconductor-nanowire devices from tunneling to the multichannel
regime: Zero-bias oscillations and magnetoconductance crossover, Phys. Rev. B 87,
241401(R) (2013).

[23] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Anomalous
modulation of a zero-bias peak in a hybrid nanowire-superconductor device, Phys.
Rev. Lett. 110, 126406 (2013).

[24] S. Albrecht, A. Higginbotham, M. Madsen, F. Kuemmeth, T. Jespersen, J. Nygård,
P. Krogstrup, and C. Marcus, Exponential protection of zero modes in Majorana
islands, Nature 531, 206 (2016).

[25] J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, T. D.
Stanescu, and S. M. Frolov, Experimental phase diagram of zero-bias conductance
peaks in superconductor/semiconductor nanowire devices, Science Advances 3 (2017),
10.1126/sciadv.1701476.

[26] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård,
P. Krogstrup, and C. M. Marcus, Majorana bound state in a coupled quantum-dot
hybrid-nanowire system, Science 354, 1557 (2016).

[27] H. Zhang, Ö. Gül, S. Conesa-Boj, M. Nowak, M. Wimmer, K. Zuo, V. Mourik, F. K.
de Vries, J. van Veen, M. W. A. de Moor, J. D. S. Bommer, D. J. van Woerkom, D. Car,
S. R. Plissard, E. P. A. M. Bakkers, M. Quintero-Pérez, M. C. Cassidy, S. Koelling,
S. Goswami, K. Watanabe, T. Taniguchi, and L. P. Kouwenhoven, Ballistic supercon-
ductivity in semiconductor nanowires, Nature Communications 8, 16025 EP (2017).

[28] Ö. Gül, H. Zhang, J. D. S. Bommer, M. W. A. de Moor, D. Car, S. R. Plissard, E. P. A. M.
Bakkers, A. Geresdi, K. Watanabe, T. Taniguchi, and L. P. Kouwenhoven, Ballistic
Majorana nanowire devices, Nat. Nanotechnol. 13, 192 (2018).

[29] F. Nichele, A. C. C. Drachmann, A. M. Whiticar, E. C. T. O’Farrell, H. J. Suominen,
A. Fornieri, T. Wang, G. C. Gardner, C. Thomas, A. T. Hatke, P. Krogstrup, M. J. Manfra,
K. Flensberg, and C. M. Marcus, Scaling of Majorana zero-bias conductance peaks,
Phys. Rev. Lett. 119, 136803 (2017).
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6.1. INTRODUCTION
The ability of a superconductor to induce superconducting behaviour in adjacent ma-
terials [1–3], known as the superconducting proximity effect, is an invaluable tool for
engineering quantum states in mesoscopic structures. It is the key method that allows
the exploration of novel quantum materials by combining materials with different prop-
erties. In particular, it is used for the creation of Majorana zero modes in systems such as
semiconductor heterostructures [4] and YSR chains [5].

However, modelling the proximity effect numerically is a challenging task. To cap-
ture the phenomena correctly, one needs to consider a large superconductor such that
bound state wavefunctions sufficiently decay into it. In two dimensions and more this
task becomes computationally intractable. While there are efficient bound-state energy
algorithms which eliminate the superconductor leads [6, 7], the problem definition is still
non-linear. On the other hand, modelling the superconductor through the short-junction
approximation [8] allows us to express the problem as a linear eigenvalue problem which
utilizes the scattering matrix of the superconductor lead. However, the method relies
on finding all the modes in the superconductor which becomes expensive in the case
that the number of modes within the superconductor is much larger than the number of
modes in the scattering region.

In this paper, we further reduce the computational complexity of the short-junction
approximation by reducing the scattering matrix of the superconductor to a smaller
matrix which only contains the modes that couple to the scattering region. We do so by
developing the concept of virtual leads — eigenmodes of the current operator — which
decouple the scattering region from the superconductor. We demonstrate the efficiency
of our method by calculating the dispersion of a YSR chain.

6.2. SHORT JUNCTION THEORY
We consider a magnetic impurity Hi that is connected to a large superconducting lead.
In the case that the superconductor coherence length is much larger than the distance
between the superconductor and the impurity, χ≫ L, the dynamical phase of the bound
state becomes negligible. This limit is known as the short junction limit and allows us to
model the superconductor as a boundary condition on the impurity [8]:(

0 −i A†

i A 0

)
Ψ= E

∆
Ψ,

A = 1

2

(
r AS −ST r A

)
,

(6.1)

where S is the normal state scattering matrix in the case that superconducting lead was
metallic and r A is the Andreev reflection matrix. Whenever time-reversal symmetry holds,
the Andreev reflection couples electrons and holes which are time-reversed partners.
Therefore, we choose a basis such that the outgoing modes are the time-reversed part-
ners of the incoming ones which gives a diagonal Andreev reflection matrix r A = i , and
simplifies the Eq. (6.1) to: (

0
(
ST −S

)†

ST −S 0

)
Ψ= E

∆
Ψ. (6.2)
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However, to obtain S, we are required to simulate a dense metallic lead which is expensive
and redundant because a portion of the modes usually do not couple to the bound state.
To distinguish the modes that couple to the bound state, we partition the impurity from
the superconducting leads by inserting in-between them an auxiliary pair of leads whose
modes are current eigenmodes — a construction we refer to as virtual leads. By passing
current through the virtual leads, we identify the modes that propagate between the
impurity and the superconductor. We then take the resulting scattering matrix between
virtual leads and the superconductor, relate it to the original scattering matrix S and
perform a polar decomposition [9] to remove the redundant modes which do not couple
to the bound states.

6.3. VIRTUAL LEADS
Consider a tight-binding system composed of a finite system A and a semi-infinite lead B
connected through a hopping matrix V :

Ĥsys =


HA V
V † HB VB

V †
B HB VB

V †
B HB VB

. . .
. . .

. . .

 , (6.3)

where HA and HB are the Hamiltonians of A and B unit cells and VB is the hopping
between the lead B unit cells. In the eigenbasis of leads B , the Eq. (6.3) defines the
scattering problem for a scattering matrix S that relates the incoming and outgoing
propagating waves of lead B . Rather than solve the full scattering problem, we wish
to decouple the two systems into two independent sub-problems. Such decoupling is
beneficial because it allows us to:

• solve the scattering problem for the system A (B) and hopping V independently of
the system B (A).

• take advantage of symmetries in system A (B) and hopping V which may not be
present in the system B (A).

A standard way to decouple the systems is through the self-energy ΣA(B) which encodes
the system A(B). We propose an alternative method to decouple the systems through
the use of virtual leads inserted between the system A and B . The method is equivalent
and dual to the recursive Green’s function method in the sense that it encodes the system
A(B) in the scattering matrix S A(B) rather than the self-energy ΣA(B).

Our goal is to split the systems A and B into two distinct scattering problems. To
achieve this, we consider the tight-binding equations in Eq. (6.3) at the intersection of the
two systems:

(HA −E)ψA +VψB ,1 = 0, (6.4)

V †ψA + (HB −E)ψB +VBψB ,2 = 0, (6.5)
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where ψA and ψB ,1 are the wavefunction amplitudes in the system A and the first unit
cell of lead B respectively. Because the hopping matrix V in Eqs. (6.4) and (6.5) is not
diagonal, the current operator Î mixes different A and B channels together:

〈
ψ

∣∣ Î
∣∣ψ〉= (

ψA

ψB ,1

)†

Î

(
ψA

ψB ,1

)
=(

ψA

ψB ,1

)† (
0 iV

−iV † 0

)(
ψA

ψB ,1

)
.

(6.6)

To simplify the problem, we consider a similarity transformation that diagonalizes V and
therefore ensures that A and B systems are singly connected. To find the transformation,
we perform an SVD decomposition on V :

V =UAU †
B , (6.7)

where UA and UB are matrices of shape NA ×M and NB ×M such that NA and NB is the
size of HA and HB respectively and M is the rank of V . Through Eq. (6.7) we define the
similarity transformation: (

φA

φB

)
=

(
U †

A 0
0 U †

B

)(
ψA

ψB ,1

)
. (6.8)

We then substitute Eq. (6.8) into Eq. (6.6) to find the current in the new basis:

〈
ψ

∣∣ Î
∣∣ψ〉= (

φA

φB

)†

σy

(
φA

φB

)
. (6.9)

We first construct the scattering matrix for the sub-system A in Eq. (6.4). To achieve this,
we decompose (φA ,φB )T onto two full rank basis decompositions of incoming (i ) and
outgoing modes (o): (

φA

φB

)
=

(
Φo

A
Φo

B

)
qo −

(
Φi

A
Φi

B

)
q i, (6.10)

whereΦi/o
A/B is the matrix of modes of shape M ×M and where q i and qo are the incoming

and outgoing mode amplitudes respectively. We relate the incoming and outgoing modes
through the scattering equation for subsystem A:

qo = S A q i, (6.11)

where S A is the scattering matrix for subsystem A given the definition of incoming/outgoing
modes in (6.10). In this basis, the scattering matrix for subsystem A in Eq. (6.4) becomes:(

HA UAΦ
o
B

−U †
A Ψo

A

)(
ΨA

S A

)
=

(
UAΦ

i
B

Φi
A

)
, (6.12)

whereΨA is the matrix of column vectors of shape NA ×M that defines the solution of
a system for each incoming mode. To construct the scattering problem for subsystem
B scattering matrix SB in Eq. (6.5), we use the same modes in Eq. (6.10) but now the
incoming and outgoing modes switch.
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To preserve current, we require the incoming and outgoing modes to carry equal,
but opposite current in Eq. (6.9). As a consequence, that enforces unitary S A and the
incoming/outgoing modes to be eigenvectors of the current operator:(

Φi/o
A

Φi/o
B

)
= 1p

2

(
Φi/o

A
±iΦi/o

A

)
, (6.13)

where we are free to choose any full rankΦi/o
A . We refer to this choice of modes as virtual

modes.
The scattering matrix SB contains an additional set of leads and therefore it has the

following block structure:

SB =
(
r1 t1

t2 r2

)
, (6.14)

where r1 and r2 are the reflection matrices for the incoming modes from the virtual and
physical leads respectively. Similarly, t1 and t2 are the transmission matrices for the
outgoing modes for virtual to physical leads and vice versa. Because the virtual modes in
S A are the same as in SB , we combine the two systems and solve the Dyson equation for
the full scattering matrix S:

S = r2 + t1
(
S−1

A − r1
)−1

t2. (6.15)

6.4. GENERALISED SHORT JUNCTION THEORY
We choose time-reversal symmetric virtual leads through the SVD decomposition of V as
in Eq. (6.7) by ensuring that the incoming and outgoing modes are time-reversed partners
of each other:

Φo
A =U †

AT
(
U †

A

)+
Φi

A , (6.16)

where T is the time-reversal operator and + superscript indicates the Moore-Penrose
pseudoinverse of a matrix. The time-reversal basis of virtual leads is possible whenever
hopping V preserves time-reversal symmetry. Because both the superconductor and
virtual leads are time-reversal symmetric, SB is an antisymmetric matrix, SB =−ST

B , in
this basis. Then we carry out a cosine-sine decomposition of SB [9] to remove the trivial
modes that do not couple to the bound states:

SB =
(
U1 0
0 U2

) r̃ t̃ 0
−t̃ r̃ 0
0 0 I

(
V1 0
0 V2

)
, (6.17)

where r̃ , t̃ are diagonal real-valued matrices that quantify reflectance/transmission and
U ,V are unitary matrices. In the basis defined by U ,V , the Eq. (6.17) shows that the trivial
modes are fully decoupled from the bound states and can be ignored. Therefore, we
transform S A into this basis:

S̃ A =V1S AU1, (6.18)

and re-write the Dyson equation in Eq. (6.15) as:

S̃ =
(
r̃ 0
0 I

)
−

(
t̃
(
S̃ A

−1 − r̃
)−1

t̃ 0

0 0

)
. (6.19)
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The only non-trivial eigenvalues (norm < 1) are in the first block of Eq. (6.19):

S̃red = r̃ − t̃
(
S̃ A

−1 − r̃
)−1

t̃ . (6.20)

In the original basis Eq (6.20) becomes:

Sred = r †
1 −V †

1 t̃V1
(
S−1

A − r1
)−1

U1 t̃U †
1 , (6.21)

where r1 =U1r̃ V1 and t̃ =
p

1− r̃ 2. Therefore, bound state energies only depend on the
incoming modes (from the impurity) that reflect from the normal metallic leads r1 and
not the full scattering matrix S.

6.5. APPLICATION TO A YSR CHAIN
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Figure 6.1: Shiba chain subgap dispersion calculated exactly (blue circles and orange triangles) and through the
short-junction method (black line).

To test the validity of the approach, we consider a chain of magnetic impurities along
the edge of a 2D superconductor. We model the impurities as a tight-binding chain with a
single orbital per site and a local magnetic moment J :

Hi =
∑
σ

[
J (σz )σ,σ+ϵ

]∑
m

d †
m,σdm,σ, (6.22)

where d †
m,σ is the creation operator of electron on the magnetic impurity site m and spin

σ, and the sum over m runs over the sites along a chain. The J term is the exchange
coupling between the magnetic impurity and the superconductor and ϵ is the energy of
the impurity level. The superconductor is a 2D square lattice that is infinite along the
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chain direction and finite but large perpendicular to the chain:

HSC =∑
j

(∑
σ

[
4t −µ]

c†
j ,σc j ,σ+∆c†

j ,↑c†
j ,↓+h.c.

)
− ∑
σ,σ′

∑
〈 j ,k〉

(
tδσ,σ′ + iα

(
r̂ j k ×σσ,σ′

) · ẑ
)

c†
j ,σck,σ′ , (6.23)

where c†
j ,σ is the creation operator of electron on the superconductor site j with spin σ.

The symbol t is the hopping between nearest neighbours, µ is the chemical potential, ∆
is the superconducting gap, α is the spin-orbit coupling strength, r̂ j k is the unit vector
pointing from site j to site k and σ is the vector of Pauli matrices. The sum in 〈 j ,k〉 runs
over the nearest neighbours and h.c. indicates the Hermitian conjugate. We connect the
impurity chain to the surface of the superconductor by a simple hopping term:

HB =−tB
∑

〈m, j 〉

∑
σ

d †
m,σc j ,σ+h.c., (6.24)

where tB is the hopping between the impurity chain and the superconductor. The total
Hamiltonian then becomes:

H = HSC +Hi +HB . (6.25)

We numerically diagonalize the full tight-binding model of Eq. (6.25) with 5000 supercon-
ductor atoms perpendicular to the chain to find the exact subgap dispersion of the YSR
states. We use the parameters t = 1,ϵ= 0.2, tB = 0.75,µ= 2, J = 0.7,α= 0.1 and ∆= 0.003
We then compute the subgap dispersion according to the short-junction method through
Eqs. (6.21) and (6.2) and compare to the exact results in Fig. 6.1. For small values of ∆,
the short-junction method is in good agreement with the exact results. However, when
∆ increases, the coherence length becomes comparable to the distance between the
impurity and the superconductor and the short-junction method breaks down.

6.6. CONCLUSSION
We generalised the theory of the short-junction approximation to calculate the subgap
bound state energies of systems in contact with a superconducting lead. We showed
that the bound state energies only depend on the incoming modes that reflect from the
normal metallic leads and not the full scattering matrix. The advantage of this approach
is that it does not require modelling the full superconductor explicitly and the system of
equations is linear, making it a computationally efficient method to calculate the subgap
bound state energies.
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