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A B S T R A C T

Arctic sea ice leads to a significant dissipation of tidal energy, necessitating its inclusion in global tidal models.
However, most global tidal models either neglect or only partially incorporate the impact of sea ice on tides.
This study proposes a method to model the dissipative forces exerted by sea ice on tides without directly
coupling to a sea ice model, yet utilizing sea ice parameters such as thickness and concentration. Our approach
involves (re)-categorizing the sea ice cover into regions dominated either by the velocity difference between
sea ice and tides (Vertical Shear (VS)) or by the shear from drifting sea ice on tides (Horizontal Shear (HS)),
which primarily govern the energy dissipation between tides and sea ice. The subdivision and resulting areas
of these HS and VS regions are based on a nondimensional number referred to as the Friction number, which
is the ratio of the internal stress of the sea ice field to the ice–water frictional stress, and directly depends on
the thickness and concentration of the sea ice. The new parameterization is validated through a performance
assessment comparing it to a commonly used approach of assuming all the sea ice to be stationary (landfast).
The seasonal modulation of the M2 tidal component, quantified as the March–September difference, serves as
the performance metric, demonstrating that the new parameterization has better agreement with observations
from altimeter- and tide gauge-derived seasonal modulation. The results indicate that the physics of ice–
tide interaction is better represented with the new parameterization of sea ice-induced dissipation, making
it suitable for investigating the effects of declining sea ice thickness on tides.
1. Introduction

Numerous studies have investigated the influence of tides on Arctic
sea ice dynamics (e.g., Holloway and Proshutinsky (2007) and Luneva
et al. (2015), among others). However, there is limited knowledge
regarding the impact of sea ice and its decline (Perovich and Richter-
Menge, 2009; Meier, 2016) on future global tides and surges. Most
global or regional ocean tide models do not model the effect of sea
ice on tides (e.g., Lyard et al., 2021; Padman and Erofeeva, 2004 and
Pal et al., 2023), and as such, are not able to study the impact of
sea ice and its decline on tides. Recent regional studies by Overeem
et al. (2011) and Lintern et al. (2013) have demonstrated that the
reduced sea ice extent provides greater fetch and wave action and, as
such, allows higher storm surges to reach the shore. Other regional
studies (St-Laurent et al., 2008; Kagan and Sofina, 2010; Müller et al.,
2014; Kleptsova and Pietrzak, 2018; Kulikov et al., 2020) have shown
a seasonal modulation of tides due to friction between the sea ice–
tide interface. Bij de Vaate et al. (2021) observed in a global study
a significant impact on the seasonal modulation of the M2 tide by
considering only the Arctic landfast ice.

∗ Corresponding author.
E-mail address: a.n.vasulkar@tudelft.nl (A. Vasulkar).

To assess the impact of Arctic sea ice decline on global tides,
global hydrodynamic tidal models should model the effect of sea ice on
tides. Sea ice is known to cause a frictional dissipation force on tides,
resulting in a loss of tidal energy (St-Laurent et al., 2008). Such loss,
coupled with the seasonal and inter-annual variations in sea ice extent,
leads to a modulation of tides. In the past, tidal models did not consider
such modulation of tides from sea ice, assuming that the model errors
were much larger than any modulation (Kleptsova and Pietrzak, 2018).
As such, these models either ignored sea ice or assumed a constant
yearly mean sea ice cover. In the latter case, the models incorporate
the effect of dissipation from sea ice as an additional term, similar to
sea bed (bottom) frictional stress.

A rigorous approach to include the effect of sea ice exploits a
global 3D coupled ocean tide–sea ice model, resolving the effects of
sea ice on tides and vice versa (e.g., STORMTIDE Müller et al. (2014),
FESOM2.1 Song et al. (2023)). However, these models employ coarse
grids, leading to less accurate tidal dynamics (Song et al., 2023),
while increasing grid resolution significantly increases computational
vailable online 11 July 2024
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costs. Despite the 3D nature of these ice–ocean models, they do not
necessarily exhibit greater accuracy compared to most high-resolution
2D global tidal models. These 2D global tidal models have also im-
proved in the past couple of decades, owing to improved modelling
and data assimilation from satellite altimetry (Stammer et al., 2014).
Nevertheless, an accurate representation of tides remains a challenge
for these models in the poleward regions (above 66° latitude) (Stammer
t al., 2014; Kleptsova and Pietrzak, 2018).

In the current state-of-the-art 2D hydrodynamic tidal models, the
ffect of sea ice dissipation and its resulting modulation is included by
sing a monthly mean sea ice cover instead of a yearly mean (time
nvariant) version, with sea ice assumed to be fixed, i.e., landfast ice
e.g., Cancet et al. (2018), Kleptsova and Pietrzak (2018)). The ice-
riction stress is then simulated in Kleptsova and Pietrzak (2018) using
pproaches proposed by Dupont et al. (2002), Dunphy et al. (2008)
nd Collins et al. (2011), combining it with bottom frictional stress and
arying the cumulative drag coefficient based on sea ice concentration.
n contrast, Cancet et al. (2018) simply multiplied the bottom frictional
tress by a factor of 2 in the region covered by sea ice. While these
tudies considered the entire sea ice cover/field for the month, Bij de
aate et al. (2021) only considered monthly landfast sea ice cover.
here, the ice–water frictional stress was again modelled by adding
xtra friction to the bottom frictional stress in the region of the landfast
ea ice cover.

However, there are two main issues with these approaches. Firstly,
he sea ice field is not entirely fixed, but partly fixed and partly
rifting. In fact, only about 12% of the Northern Hemisphere sea ice
s fixed/landfast (Mahoney, 2018). Modelling the ice–water frictional
tress from drifting sea ice in a 2D tidal model requires a relative
elocity between sea ice and water as input (Pease et al., 1983). For
uch drifting sea ice, the fixed sea ice cover assumption is physically
ncorrect and would lead to larger dissipation and erroneous results.
he second issue is that these parameterizations do not include sea

ce parameters like thickness and concentration, and as such, are not
quipped to deal with the effect of the spatio-temporal variability
f these parameters. In fact, the sea ice is thinning at a rapid rate
ith large variability (Mallett et al., 2021) in the Arctic. It should
e noted here that Kleptsova and Pietrzak (2018) do include the
ea ice concentration parameter in an indirect way through the drag
oefficient.

The main objective of this paper is to present and analyse a new
hysically consistent sea ice parameterization that models the effect of
ea ice-induced dissipation, incorporating sea ice thickness and concen-
ration. Unlike the traditional division of the sea ice field into landfast
nd drifting categories with their corresponding dissipation effects, this
arameterization identifies two distinct dissipation regimes. The first is
eferred to as Vertical Shear (VS), representing the dissipation arising
rom the velocity difference between sea ice and tides, where sea ice
s either fixed (landfast) or drifting so slowly that it can be considered
lmost fixed (referred to as near-stationary sea ice). The second regime,
nown as Horizontal Shear (HS), accounts for dissipation due to the
hear from drifting sea ice. The latter is modelled by integrating the
ce–water momentum equations, similar to Heil and Hibler (2002),
esulting in a dissipative sea ice viscous internal stress term. The
ew parameterization addresses the two issues previously mentioned,
.e. the sea ice field as fixed and no consideration of the sea ice
arameters. This is achieved by considering horizontal shear dissipation
rom drifting sea ice, separate from the vertical shear associated with
ixed or near-stationary sea ice. Furthermore, the modelling of the
orizontal shear also requires the sea ice thickness and concentration
ields.

The new parameterization is implemented in the Global Tide and
torm Surge Model (GTSM, Verlaan et al. (2015), Muis et al. (2016)),
nd its performance is assessed by comparing the model-derived sea-
onal modulation of the M tide with altimeter- and tide gauge-derived
2

2

modulations for the years 2012, 2017, and 2019. These years were cho-
sen because they represent the maximum, minimum, and average dif-
ferences in ice extent between March and September. Note that the sea-
sonal modulation of the M2 tide is quantified as the March–September
differences in tidal amplitudes and phases.

Moreover, a sea ice field is traditionally subdivided into Landfast
sea ice and Drifting sea ice regions. The drifting sea ice field is further
subdivided into free drift sea ice and sea ice drifting under strong
internal stresses. Such a division is also observed in Vasulkar et al.
(2022), where it is noted that the dissipation from free drift sea ice on
tides is (almost) negligible under low wind conditions. Meanwhile, in
the absence of winds, the sea ice exerts no dissipation on tides (McPhee,
1978; Leppäranta, 2011b; Vasulkar et al., 2022). This implies that
only landfast sea ice and sea ice drifting under strong internal stresses
cause dissipation on tides. Following McPhee (1980), Leppäranta and
Omstedt (1990), one can approximate, in a quantitative sense, that the
sea ice field with concentrations less than 0.8 can be assumed to be
free drift sea ice. Hence, in this paper, sea ice fields with concentrations
above 0.8 will be considered, which would then be either landfast sea
ice or sea ice drifting under strong internal stresses.

The paper is organized as follows: Section 2 describes the dataset
and model (GTSM) used in this study. Section 3 provides the de-
tailed theory of our approach to model the dissipation of sea ice. Sec-
tion 4 presents the results and discussions of the validation. Section 5
summarizes and concludes the main findings of this research.

2. Data and models

2.1. Sea ice dataset

A global ocean reanalysis product from the Copernicus Marine
Service (Copernicus Marine Service, 2019), having the GLORYS model
underneath is used for the parameterization in this study. This product
provides monthly mean sea ice thickness and concentration values in a
gridded format and, is based on a global numerical model that includes
the assimilation of sea ice concentration, among others. The years 2012,
2017, and 2019 were selected because most sea ice datasets have shown
sufficient resolution and accuracy in the past decade, i.e.,2010–2020.
Additionally, the March–September differences in monthly sea ice ex-
tent (obtained from NSIDC (Fetterer et al., 2017)) were maximum for
2012 (≈ 11.6 million km2) and minimum for 2017 (≈ 9.4 million km2),
while the difference for 2019 is (almost) the average of the two
extremes (≈ 10.3 million km2). The sea ice field with concentration
larger than 0.8 is plotted for the year 2019 (Fig. 1).

Although the GLORYS model includes the assimilation of sea ice
concentration, it is known to suffer from inaccuracies. In particular, sea
ice thicknesses are overestimated in the GLORYS model (Uotila et al.,
2019). Ideally, remote sensing-based observational products of sea ice
concentration and thickness are more accurate than those derived from
the GLORYS model. However, utilizing these datasets presents multi-
ple challenges. Firstly, for our analysis, these products must provide
monthly average ice concentrations and thicknesses specifically for
March and September in the years 2012, 2017, and 2019. Secondly,
integrating different products may lead to inconsistencies; for exam-
ple, regions with sea ice concentrations greater than 0.8 might lack
corresponding thickness data due to disparities in the sources of the
products. While interpolation is possible to estimate these thicknesses,
it inherently introduces additional errors. Furthermore, the resolution
discrepancy between the two products necessitates further interpola-
tion, potentially degrading data quality. In contrast, model-derived
products, despite their inherent inaccuracies, offer consistently aligned
concentrations and thicknesses with monthly averages. These products
also provide the flexibility to generate daily or weekly averages, which
might be essential for future enhancements in tidal model simulations.
We compare the sea ice extent from the GLORYS model with another
dataset in Appendix A and compare the sea ice concentration and

thickness from multiple remote sensing products in Appendix B.
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Fig. 1. Sea ice concentration field with values larger than 0.8 for March and September 2019 obtained from a global ocean reanalysis product (Copernicus Marine Service, 2019).
The sub-figures (Figs. 1(a) and 1(b)) show the March and September distribution.
2.2. Altimeter-derived seasonal modulation in the Arctic

Bij de Vaate et al. (2021) estimated March–September differences
in M2 amplitude and phase from CryoSat −2 and Sentinel-3 altimeter
data acquired between June 2010 to August 2019 (CryoSat −2) and
between December 2016 to December 2019 (Sentinel-3). The area
covered by the altimetry product includes the region north of 60◦N
and is extended to include the Hudson Bay area; 50°N–60°N, 100°W–
45°W (Fig. 7). UTide (Codiga, 2011) was used to perform tidal analysis
using the major tides; K1, O1, Q1, P1, N2, M2 and S2. This altimetry
product is observed to exhibit significant spatial variability of seasonal
modulation owing to spatial and temporal data scarcity (Bij de Vaate
et al., 2021).

The March–September differences capture the total seasonal modu-
lation from not only the seasonal sea ice cover but also other external
seasonal forcings, i.e., wind forcing, spatial density differences, strat-
ification, and inter-annual variations of sea ice (Bij de Vaate et al.,
2021). However, in the Arctic region, many studies have noted that the
seasonal sea ice cover is a major contributor to seasonal modulation (Bij
de Vaate et al., 2021; St-Laurent et al., 2008; Müller et al., 2014;
Kleptsova and Pietrzak, 2018).

2.3. Tide gauge-derived seasonal modulation

This study uses two tide gauge datasets. The first dataset comprises
tidal water level predictions at 15-min intervals at 11 locations for
the year 2019. These predictions, obtained from the Canadian Hydro-
graphic Service (Fisheries and Ocean Canada-MEDS, 2019) and referred
to as CHS in this paper, include predictions for 154 locations. We
selected these 11 locations because a Fourier Transform of the year-long
time series revealed amplitudes larger than 1 cm for the 𝛼2 (H1) and
𝛽2 (H2) tidal frequencies, which are satellite constituents responsible
for the seasonal modulation of the M2 tide (Ray, 2022). From these
tidal water level predictions at 11 tide gauge locations, we computed
M2, H1, and H2 constituents by performing a tidal analysis without
considering the nodal factors. The second dataset includes the M2, H1,
and H2 tidal amplitudes and phases for 7 tide gauge records provided
by Kulikov et al. (2020). The locations and names of the tide gauges
for both datasets are shown in Fig. 2.

Using the amplitudes and phases for the M2, H1, and H2 components
from both datasets, a year-long series is reconstructed without con-
sidering the nodal factors to eliminate interference with the seasonal
3

modulation. From this reconstructed signal, the monthly average am-
plitudes and phases for the M2 component are computed for both March
and September (Fig. 9). This tide gauge-derived dataset is referred to
as TG-derived in this paper.

2.4. Global Tide and Surge Model

The Global Tide and Surge Model version 4.0 (GTSM) (Verlaan
et al., 2015; Muis et al., 2016; Irazoqui Apecechea et al., 2017) is
utilized to model the effect of sea ice on tides. Developed within
the Delft3D Flexible Mesh suite by Deltares, the model operates on
an unstructured grid that begins with a node at the North Pole and
transitions from a resolution of 25 km in the open ocean to 2.5 km
near the coasts. This grid configuration prevents singularity at the
North Pole caused by a regular longitude–latitude grid. The grid in high
latitudes is also thinned in the longitudinal direction to avoid numerical
issues. Furthermore, such unstructured grid makes it possible to have
high resolution in coastal areas and lower in deeper ocean to achieve
acceptable computational costs as noted in Kernkamp et al. (2011).

GTSM employs the depth-averaged shallow water equations with
no lateral boundaries like in regional tidal models. The tides are
forced by the full tide-generating potential and the model also in-
cludes Self Attraction and Loading (SAL) and internal tidal wave drag
in parameterized forms as these are important in the larger open
oceans (Irazoqui Apecechea et al., 2017). The resulting governing
equations for continuity and momentum are:

𝜕𝜁
𝜕𝑡

+ 𝛁.(𝐻𝑑𝒖) = 0, (1)
𝜕𝒖
𝜕𝑡

+ 𝑓𝑒𝑖𝜋∕2𝒖 + 𝒖.𝛁𝒖 = −𝑔𝛁(𝜁𝑛) + 𝜈𝑤(𝛁𝟐𝒖) +
𝝉𝒃

𝜌𝑤𝐻𝑑
+

𝝉𝑰𝑻
𝜌𝑤𝐻𝑑

+
𝝉𝒔

𝜌𝑤𝐻𝑑
,

(2)

where 𝜁 (𝑡) is the water level relative to the model’s reference surface,
𝒖 is the tidal water velocity, 𝐻𝑑 is the total water depth given by
𝐻𝑏 + 𝜁 with 𝐻𝑏 being the bathymetry, 𝜈𝑤(25m2s−1) is the horizontal
kinematic viscosity of water, 𝜌𝑤 is the density of water, 𝑓 is the Coriolis
parameter, 𝑔 is the acceleration due to gravity, and 𝜁𝑛 = 𝜁 − 𝜁𝑒𝑞 − 𝜁𝑠𝑎𝑙,
where 𝜁𝑒𝑞 is the equilibrium tide, 𝜁𝑠𝑎𝑙 is the SAL effect, 𝝉𝒃 is the bottom
frictional stress, 𝝉𝑰𝑻 is the internal tides frictional stress and 𝝉𝒔 is the
wind stress from atmospheric forcing. In this study, we do not consider
surges so the 𝝉𝒔 forcing is set to zero.

GTSM version 4.0 utilizes the GEBCO2019 gridded bathymetry
which includes IBCAOv3 for the Arctic Bathymetry (GEBCO Bathymet-
ric Compilation Group, 2019). The model has been globally calibrated
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Fig. 2. Tide gauge locations with their respective names in the legend. The dots represent tide gauges from Fisheries and Ocean Canada-MEDS (2019) and triangles represent tide
gauges from Kulikov et al. (2020). The names of the regions referred to in the paper are also shown in the figure.
,
for bathymetry (Wang et al., 2021), using water levels derived from
FES2014 (Lyard et al., 2021). This calibrated version 4.0 represents
the latest model iteration, offering improved tidal estimates globally,
although it is known to exhibit poor accuracy in the Arctic, partly due
to the lack of sea ice modelling (Wang et al., 2021).

3. Sea ice parameterization for 2D ocean tide models

3.1. Governing equations with sea ice dissipation

Drifting and landfast sea ice exert different dissipation on tides,
and as such, can be modelled separately based on their characteristics.
The sea ice-induced dissipation of tides can be incorporated into the
momentum equation of the depth-averaged shallow water equations
of tidal models. These equations are similar to Eq. (2) in most hy-
drodynamic 2D models. The resulting momentum equation is given
by:
𝜕𝒖
𝜕𝑡

+ 𝑓𝑒𝑖𝜋∕2𝒖 + 𝒖.𝛁𝒖 = −𝑔𝛁(𝜁𝑛) + 𝜈𝑤(𝛁𝟐𝒖) +
𝝉𝒃

𝜌𝑤𝐻𝑑
+

𝝉𝑰𝑻
𝜌𝑤𝐻𝑑

+
[

𝜆
𝝉𝒘𝒊

𝜌𝑤𝐻𝑑
+ (1 − 𝜆) 𝛁.𝝈

𝜌𝑤𝐻𝑑

]

, (3)

where the terms have same meaning as in Eq. (2) apart from the sea
ice terms with 𝛁.𝝈 being the stress from the horizontal (2D) sea ice
internal friction (𝝈) with dimension force/length and 𝝉𝒘𝒊 is the water–
ice surface frictional stress from the landfast (fixed) sea ice and is
similar to the bottom frictional stress. 𝜆 is a parameter that controls
the switch between the two shear forcing from sea ice on tides and is
responsible for the classification of sea ice into landfast and drifting sea
ice.

In the absence of winds, oceanic forcing is the primary cause of sea
ice drift. It follows from the equation that landfast sea ice will have
a vertical shear owing to the velocity difference in frictional stress,
whereas drifting sea ice will have a horizontal shear on tides as a result
of its viscous internal stress. At times, the internal stress for compact sea
ice is strong enough for the ice to move slowly and be considered (near)
stationary. In such scenarios, sea ice exhibits dissipation characteristics
similar to those of landfast sea ice, suggesting that a portion of drifting
sea ice also shares similar dissipation characteristics as landfast ice.
4

Therefore, instead of adhering to the traditional classification (Fig. 3)
this paper proposes dividing sea ice with a concentration greater than
0.8 into Horizontal Shear (HS) and Vertical Shear (VS) regions. These
names reflect the dominant physical interaction between sea ice and
tides. The sea ice field must then be classified into these regions and
modelled separately in ocean tide models according to the Eq. (3).

3.2. Modelling of sea ice dissipation with classification

It can be shown with a scaling argument on Eq. (3) that the
horizontal shear is lower than the vertical shear, with its maximum
potentially equalling the vertical shear. Thus, the upper limit of the
horizontal shear is vertical shear and this limit serves to divide the sea
ice cover into HS/VS regions.

To classify the ice field into the two shear regions, we introduce
a non-dimensional number referred to as the Friction number (𝐹 ). It is
defined as the ratio of the frictional stress from the sea ice field internal
friction and water–ice frictional shear stress with sea ice drift set to
zero, i.e.,

𝐹 = 𝛁.𝝈
𝝉𝒘𝒊

, (4)

where the terms are as described above in Eq. (3). The value of 𝐹 acts
as the classification metric and for 𝐹 ≥ 1 the upper limit of horizontal
shear is reached and the sea ice is almost stationary. Consequently, such
sea ice only causes vertical shear on tides and is classified as VS region.
Conversely, for 𝐹 < 1 the sea ice is classified as HS region with the
dissipation driven by the sea ice internal viscous stress.

Employing 𝐹 , the switching parameter 𝜆 is utilized to classify into
HS and VS regions and is defined as:

𝜆 = 𝐻(𝐹 − 1), (5)

where 𝐻(.) is a Heaviside function which gives a binary switching
between HS and VS regions based on the value of 𝐹 .

To calculate 𝐹 one needs expressions for the two stress terms. The
water–ice frictional stress with sea ice velocity set to zero can be
modelled similar to the bottom frictional stress. For GTSM, this is given
by:

𝝉 = 𝜌 𝐶 |𝒖|𝒖, (6)
𝒘𝒊 𝑤 𝑓
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Fig. 3. Pictorial representation of the traditional sea ice field sub-division and the new sub-division into Horizontal and Vertical Shear (HS/VS). This is a representative figure
and in reality the ratio of HS/VS can change based on the sea ice parameters and VS can even be larger than the landfast sea ice region.
where 𝐶𝑓 is the water–ice drag coefficient.
To model the stress from sea ice internal friction, a sea ice rheol-

ogy is required. Almost all continuum and geophysical-scale sea ice
models employ the Elastic-Viscous-Plastic (EVP) rheology, as proposed
by Hunke and Dukowicz (1997) and further discussed in Ólason et al.
(2022). This rheology represents a numerically efficient implementa-
tion of the Viscous-Plastic (VP) rheology initially proposed by Hibler
(1979). However, the EVP rheology is not without its shortcomings.
Firstly, its underlying assumptions have been questioned (Coon et al.,
2007). Secondly, models employing this rheology have exhibited a
larger spread in thickness, concentration, and sea ice drift than what
is observed in reality (Chevallier et al., 2017). These limitations have
spurred the development of new rheologies, such as the recent Brit-
tle Bingham–Maxwell (BBM) rheology (Ólason et al., 2022), which
addresses some of the limitations inherent to the VP rheology. Addition-
ally, there have been several enhancements to the original formulation
of the VP rheology itself, aiming to mitigate some of its limitations
(e.g., Lemieux et al. (2010), Kimmritz et al. (2016)).

Nonetheless, modelling these rheologies requires significant time
and effort, and we believe a simplified version of the VP rheology is
more appropriate for our relatively simple parameterization. We adopt
the original VP rheology formulation by Hibler (1979), with sea ice
modelled as a Newtonian fluid similar to water, i.e., sea ice is assumed
to be linear, viscous, and incompressible. Such a Newtonian approxi-
mation, initially proposed by Laikhtman (1958), is not representative of
sea ice behaviour but does provide first-order approximations for basin-
wide sea ice circulation, as noted in Leppäranta (2011c). Moreover,
it simplifies the modelling of sea ice internal stress in tidal models
because most tidal models already include modelling for the diffusive
viscous stress term of water (a Newtonian fluid), allowing the addition
of sea ice horizontal shear viscosity to that term.

Given this Newtonian approximation is a simplified one, the viscous-
plastic nature of sea ice is partially represented through the sea ice
shear viscosity obtained from Hibler (1979)’s rheology:

𝝈 = 𝜁 ̇𝜖𝐼 + 2𝜂�̇� − 𝑃
2
, (7)

where 𝜁 (ℎ𝑖, 𝐴) = 𝑃 (ℎ𝑖 ,𝐴)
2𝛥𝑜

and 𝜂(ℎ𝑖, 𝐴) = 𝜁 (ℎ𝑖 ,𝐴)
2𝑒2𝑐

are the horizontal (2D)
bulk and shear viscosities (units kg∕s), respectively, 𝑃 is the strength
of the sea ice field, 𝛥 is the maximum viscous creep variant, 𝑒 is
5

𝑜 𝑐
the aspect ratio of the yield ellipse of the rheology, ℎ𝑖 is the sea ice
thickness and 𝐴 is the sea ice concentration. The expression for sea
ice strength (𝑃 = 𝑃 ∗ℎ𝑖𝑒−𝐶(1−𝐴)) leads to an expression for the shear
viscosity of sea ice given by:

𝜂 =
𝑃 ∗ℎ𝑖𝑒−𝐶(1−𝐴)

4𝛥𝑜𝑒2𝑐
, (8)

where 𝑃 ∗ is the compressive strength of compact ice of unit thickness,
𝐶 is a strength reduction constant for lead opening. This formulation
implies that the sea ice internal stress and its resulting dissipation are
functions of the spatially and temporally varying sea ice thickness (ℎ𝑖)
and concentration (𝐴).

Using Eq. (8) and assuming that the sea ice internal stress is mod-
elled similarly to the diffusive water internal stress, the friction number
𝐹 can be written as:

𝐹 =
𝜂(𝛁𝟐𝒖)
𝜌𝑤𝐶𝑓𝒖2

. (9)

Note that the horizontal shear viscosity (𝜂) in the depth-averaged
shallow water equations is divided by 𝜌𝑤𝐻 and hence is dimensionally
equivalent to the horizontal kinematic viscosity of water (𝜈𝑤)

Further simplification of Eq. (9) is achieved through scaling analy-
sis. Assuming a scaling of 𝑢 = 𝑈𝑢∗, 𝑥 = 𝐿𝑥∗ and 𝑦 = 𝐿𝑦∗ where 𝐿 is the
horizontal length scale, the friction number scales as:

𝐹 ∼
𝜂(ℎ𝑖, 𝐴)𝑈
𝜌𝑤𝐶𝑓𝑈2𝐿2

,

𝐹 ∼
𝑃 ∗ℎ𝑖𝑒−𝐶(1−𝐴)

4𝛥𝑜𝑒2𝑐𝜌𝑤𝐶𝑓𝑈𝐿2
,

𝐹 ∼ 𝛼𝑖ℎ𝑖𝑒
−𝐶(1−𝐴), (10)

where 𝛼𝑖 is a scaling constant given by the expression:

𝛼𝑖 =
𝑃 ∗

4𝛥𝑜𝑒2𝑐𝜌𝑤𝐶𝑓𝑈𝐿2
. (11)

This expression for 𝐹 (Eq. (10)) represents an exponential function
of sea ice concentration 𝐴, linear in sea ice thickness ℎ𝑖 and scales with
a constant 𝛼𝑖. Given the concentration and thickness vary spatially and
temporally, 𝐹 is also a function of space and time.

Classification based on 𝐹 depends on the value of the scaling con-
stant 𝛼 given by Eq. (11). The uncertainties associated with the value
𝑖
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Fig. 4. Plots of non-dimensional friction number (𝐹 ) versus concentration (A) for
𝛼𝑖 = 1. The colours correspond to the various sea ice thickness given in the legend.
The minimum concentration considered is 0.8. The horizontal grey dotted line is the
classification line between HS and VS regions. The abscissa of the point of intersection
for each curve with this line gives the corresponding concentration for that thickness
which is written along the dotted vertical lines for the respective thicknesses.

of the scaling parameter stem from the uncertainties of the underlying
parameters. For instance, 𝑃 ∗, ranges from 10 kPa to 27.5 kPa (Massonnet
et al., 2014) showing a large variability. Likewise, the other parameters
also have their inherent uncertainties and their values are subject to
calibration (See e.g. Massonnet et al. (2014)). Consequently, we instead
analyse the range of possible values of the scaling parameter (𝛼𝑖) based
on the resulting classification of sea ice.

Assuming 𝛼𝑖 = 1, the plot for 𝐹 versus concentration A (Fig. 4)
illustrates exponential curves for fours different sea ice thicknesses,
ranging from 0.5m to 3.0m.

The horizontal grey dotted line at 𝐹 = 1 demarcates the HS
and VS regions with area/region below the line classified as HS and
area/region above the line classified as VS region. As per Eq. (10), it is
clear that for a sea ice thickness (ℎ𝑖 = 1m), 𝐹 = 1 when concentration
𝐴 = 1 and 𝛼𝑖 = 1. As the concentration (𝐴) decreases below 0.8 the
value of 𝐹 goes exponentially to zero, suggesting the sea ice becomes
free drift. This demonstrates that the design of Eq. (9) follows the free
drift condition. The equation also implies that increasing or decreasing
the value of 𝛼𝑖 changes the HS/VS classification.

The limiting value of 𝛼𝑖 for the sea ice field to be entirely classified
as VS occurs when 𝐹 = 1 for a lowest possible concentration of 0.8.
This limiting value is given by:

𝛼𝑣𝑠𝑖 = 𝑒4

ℎ𝑖
. (12)

Similarly, the entire field is classified HS when 𝐹 = 1 for the maximum
concentration of 𝐴 = 1.0. The corresponding 𝛼𝑖 is given by:

𝛼ℎ𝑠𝑖 = 1
ℎ𝑖

. (13)

Using Eqs. (12) and (13), the limiting 𝛼𝑖 is evaluated for the same
4 sea ice thicknesses as in Fig. 4. Since 𝛼𝑖 is inversely proportional to
ℎ𝑖, the limiting classification of entire HS occurs for a maximum sea
ice thickness ℎ𝑖( = 3.0m in our considered range of sea ice thicknesses)
giving 𝛼ℎ𝑠𝑖 = 0.3. Likewise, the limiting value for all VS classification
occurs for a minimum thickness ℎ𝑖(= 0.5m) giving 𝛼𝑣𝑠𝑖 = 109.2.

Acknowledging the uncertainty with 𝛼𝑖’s value, in this study we
estimate its value based on assumptions regarding the parameters in
Eq. (11). We consider 𝑃 ∗ = 25 kPa, 𝐶 = 20 and 𝑒𝑐 = 2 which are the
original values in Hibler (1979)’s rheology. The sea ice–water friction
coefficient (𝐶 ) was assumed to be 5.5×10−3 as per McPhee (1980). The
6

𝑓

maximum creep parameter 𝛥𝑜 must be taken much smaller than typical
strain-rates of sea ice for a good approximation of the plastic flow. Sea
ice is seen to have strain rates from subdaily scale tidal and inertial
forces of the order ranging from 10−6 to 10−7 s−1 (Kwok et al., 2003;
Heil and Hibler, 2002). It is noted in Heil and Hibler (2002) that due to
high-frequency motion like in case of tides, the sea ice deformation is
also higher with higher divergence or strain rates. So, here, the larger
of the two 𝛥𝑜 is considered i.e. 𝛥𝑜 = 10−6 s−1.

𝑈 and 𝐿 are the scaling parameters dependent on the physics of
the problem. Since this involves sea ice–tide interaction, it serves as a
criterion for the limit of sea ice drifting due to tidal movements. Hence,
𝑈 = 1m∕s is assumed, representing a stronger tidal velocity. For 𝐿,
the sea ice field on a continuum scale is considered, such a field is
known to exist in shear and marginal zones when 𝐿 is in the range
of 10–15 km (Leppäranta, 2011a). Here, we are using GTSM which has
a maximum grid cell size of up to 25 km in open oceans, down to a
minimum of 2.5 km. Based on this, 𝐿 is assumed to be 15 km, which,
on average, would show sufficient resolution for GTSM grid cells and
also satisfies the sea ice continuum criterion in shear zones. With these
values, 𝛼𝑖 evaluates to 1.2. This value is closer to the all HS limit,
implying that in practice, there is more sea ice with HS than with VS.

Utilizing this value of 𝛼𝑖 alongside the sea ice thickness and concen-
tration, the value of 𝐹 follows from Eq. (10). Implementing this value
of 𝐹 in Eq. (5) gives the classification of the sea ice field in HS and VS
regions. The subsequent step involves modelling the sea ice dissipation
from VS region with Eq. (6) and from the HS region with:

𝛁.𝝈 = 𝜂(ℎ𝑖, 𝐴)(𝛁𝟐𝒖), (14)

where sea ice horizontal shear viscosity, given by Eq. (8), can also be
expressed as:

𝜂 = 𝐹𝜌𝑤𝐶𝑓𝑈𝐿2, (15)

where 𝑈 = 1m∕s and 𝐿 = 15 km.

3.3. Implementation of the parameterization

The new parameterization for sea ice-induced dissipation in ocean
tide models, reliant on sea ice thickness and concentration, can be
implemented in any ocean tide model as follows:

1. Obtain a suitable dataset with sea ice thickness and concen-
tration fields for relevant regions with a sea-ice concentration
larger than 0.8

2. Compute the value of the friction number 𝐹 using Eq. (10)
with 𝛼𝑖(= 1.2). Note that this scaling parameter may require
calibration.

3. Classify the sea ice field into HS and VS regions based on the
switching parameter 𝜆 given by Eq. (5).

4. Sea ice dissipation from the new classification (HS/VS) is then
modelled in the shallow water equations of tide models by
Eq. (3) with:

• Dissipation from VS is modelled with Eq. (6) which is the
same term as bottom frictional stress with different drag
coefficient value.

• Dissipation from HS is modelled with Eq. (14) which is the
same as viscous diffusion from water but with a spatially
varying sea ice shear viscosity computed from Eq. (15)

3.4. Validation

Here, we outline the validation steps to assess the performance of
our parameterization. Initially, we provide details of the validation for
the HS/VS classification, followed by the steps undertaken to assess the
performance of our method in comparison to altimetry and tide gauge
datasets.
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The initial step involves obtaining an HS/VS classification of the
sea ice field from Section 2.1. Additionally, we consider another clas-
sification of HS/VS by assuming 𝛼𝑖 = 0.7, chosen to result in a
lassification with a predominantly large HS region and minimal VS
egion coverage. Modifying 𝛼𝑖(= 0.7) equates to adjusting the maximum
reep parameters 𝛥𝑜 from 1×10−6 to 1.64×10−6 in the Eq. (11), altering
he sea ice shear limits by modifying sea ice viscosity and thereby
xpanding the horizontal shear region. Using these two values of 𝛼𝑖,
wo sets of sea ice field classifications are obtained, denoted as Exp
S_VS_1.2 for 𝛼𝑖 = 1.2 and Exp HS_VS_0.7 for 𝛼𝑖 = 0.7 representing the

wo experiments.
Another classification, termed Ex All_VS, is similar to the current

tate-of-the-art method (Cancet et al., 2018; Kleptsova and Pietrzak,
018; Bij de Vaate et al., 2021) where the entire sea ice field is assumed
o be landfast ice or VS. The HS/VS region distribution resulting from
hese classifications is compared to the distribution of landfast and
rifting sea ice using a gridded dataset from the National Snow and
ce Data Center (NSIDC) (US National Ice Center, 2020). This dataset
roviding the landfast sea ice and total sea ice concentration data is
ased on the National Ice Center (NIC) charts derived from manual
nalysis of various satellite images. This dataset will be referred to as
SIDC in the paper.

These classifications are implemented in GTSM with their corre-
ponding dissipation characteristics. Model simulations are conducted
or three settings: Exp All_VS, Exp HS_VS_1.2 and Exp HS_VS_0.7 for
arch and September months of the years 2012, 2017 and 2019, with
7-day spin-up period. Water levels from the model simulation are

sed to compute M2 amplitude and phase for March and September
hrough tidal analysis with UTide (Codiga, 2011) using the major tides;
1, O1, Q1, P1, N2, M2 and S2, consistent with the altimetry product
Section 2.2). The seasonal modulation of the M2 tide is then evaluated
s March–September differences in M2 amplitude and phase.

Seasonal modulation from the model is compared to the altimeter-
nd TG-derived observations (Sections 2.2 and 2.3). The altimeter-
erived seasonal modulation serves as an average over the data years
2010–2019). In contrast, the CHS tide gauge predictions of 2019 are
ased on harmonic analysis of past data collected by the tide gauge,
acking precise information of the year of collection. On the other
and, the seasonal modulation from tide gauges in Kulikov et al. (2020)
ata is computed from data collected over years ranging from 1981 to
014 with each tide gauge operational during different periods of time.
hese details imply that the observations of altimeter- and TG-derived
odulations are not ideal for model comparisons over the Arctic but
aving reliable, accurate and sufficiently long datasets over the entire
rctic is a challenge.

To address this to an extent, model simulations were performed for
he two extreme years (2012 and 2017) and average (2019) of sea
ce cover, allowing an assessment of the range of seasonal modulation
f tides from the model results and aiding in attributing discrepancies
etween observed- and model-derived seasonal modulation.

The parameterization is validated by doing qualitative and quan-
itative comparisons between model results and observations. For the
ltimetry dataset, a qualitative comparison presents the seasonal mod-
lation of the M2 amplitude and phase for both observations and
odel results. Quantitative comparison faces challenges due to signifi-

ant variability in altimeter-derived data, as noted in Section 2.2. To
educe this variability, a coarser grid of resolution 875 km × 875 km
s considered where the values at a grid cell are the median of all
he observations/model results in that particular grid cell. A Pearson
orrelation coefficient is calculated between observed and model values
n this coarser grid. Due to large variability, a 𝑝-value is also computed
ith the null hypothesis that the distribution underlying the samples

s uncorrelated and normally distributed. A 𝑝-value below 0.05 is as-
umed to indicate a statistically significant correlation. For tide gauges,
he qualitative comparison is similar to the altimeter-derived product,
hereas quantitative comparison involves calculating the median of the
7

ifference between observations and model results across various years. s
. Results and discussion

.1. Sea ice field classification for 2019

The gridded dataset from the NSIDC provides weekly outputs of
andfast sea ice and total sea ice concentration. We consider the data
rom around mid-month as a representation of the mean for that
onth. The sea ice fields on March 21, 2019, and September 19, 2019,

re shown (Figs. 5(a) and 5(b)) with concentrations larger than 0.8,
isplaying the distribution of landfast and total sea ice. It is observed
hat in September (Fig. 5(b); summer), the sea ice cover is significantly
educed with no landfast sea ice present in the dataset, in contrast to
arch (Fig. 5(a); winter). This loss in landfast sea ice during summer

eriods since 2018 is also noted by Li et al. (2020). For landfast ice,
he March extent is around 10% of the total sea ice extent.

The HS/VS classifications from Exp HS_VS_1.2 and Exp HS_VS_0.7
or the sea ice field of 2019 are shown in Fig. 6. Similar figures showing
lassifications (Exp HS_VS_1.2 and Exp HS_VS_0.7) for the years 2012
nd 2017 are available in Appendix C.

With Exp HS_VS_1.2, it is seen that for March (Fig. 6(a)), approxi-
ately 30% of the sea ice field is classified as VS, which is significantly

arger compared to the landfast ice coverage (10%, Fig. 5(a)). The
arger landfast ice regions, such as the Canadian Archipelago, the East
iberian Sea, and the Laptev Sea, are also identified as part of the
S regions, along with other areas in Hudson Bay and the Central
rctic. On the other hand, the HS classification for March primarily
ncompasses regions with strong tidal velocities like Ungava Bay, Hud-
on Strait, and near the Kara Sea, as well as along the sea ice edge
here horizontal shear is expected due to the drifting nature of the

ea ice surrounded by ocean. For September (Fig. 6(b)), a small region
∼ 7% of the total) north of Greenland is classified as VS, while the
emaining Central Arctic region and parts of the Canadian Archipelago
re classified as HS, in contrast to the absence of landfast sea ice in
eptember (Fig. 5(b)). This HS/VS classification validates the physi-
al notion that regions within the drifting sea ice, possessing strong
nternal stresses, can remain almost stationary under tidal influences,
esulting in vertical shear on tides.

In comparison, Exp HS_VS_0.7 for March (Fig. 6(c)) shows approx-
mately 5% of the sea ice field as VS, mainly in the central Arctic
orth of the Canadian Arctic archipelago and Greenland. As expected
ith the choice of 𝛼𝑖, this VS region is minimal compared to the HS

egion, indicating that much of the sea ice field behaves as drifting sea
ce with horizontal shear. The VS region is considerably smaller than
he landfast ice cover for March (Fig. 5(a)). Likewise, for September
Fig. 6(d)), there is (almost) no VS region (∼ 1–2%) similar to absence
f landfast sea ice cover (Fig. 5(b)). Here again, it is seen that the HS
lassification is around the sea ice edge while the central the sea ice
ield with compact and large internal stresses is classified as VS due to
he high viscosity of the ice field.

It should be noted that the landfast ice coverage is not a mean for
hat month, but the mean is expected to be within ±2% of the current
istribution, as there are not significant variations within a month.
he proportions of the HS/VS regions for March in both classifications
xceed this range, and for September, there is no landfast ice. Thus,
he discussion remains valid even if a mean landfast ice coverage were
vailable. Currently, no dataset provides a monthly mean landfast ice
overage.

.2. Comparing model-derived and observation-derived seasonal modula-
ion

.2.1. Results-altimetry dataset
The model-derived and altimetry-derived March–September differ-

nces in the amplitude and phase of the M2 tide for the year 2019 are
hown in Fig. 7. The plots obtained for the years 2012 and 2017 are

hown in Appendix D.1.
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Fig. 5. Sea ice field for March and September 2019 obtained from NSIDC dataset. The sub-figures (Figs. 5(a) and 5(b)) show the traditional sub-division of landfast sea ice (light
blue) from the remaining sea ice (dark blue) obtained from NSIDC. Note that only the sea ice field with concentration > 0.8 is considered here.
Table 1
Pearson correlation (R) and corresponding 𝑃 -value for the plots in Fig. 8. The mean represents the mean of the values of the 3
years for that respective statistic with the green value denoting the model run with highest correlation in amplitude differences.

Amplitude Phase
Exp All_VS Exp HS_VS_1.2 Exp HS_VS_0.7 Exp All_VS Exp HS_VS_1.2 Exp HS_VS_0.7
R P-value R P-value R P-value R P-value R P-value R P-value

2012 0.42 0.04 0.55 0.005 0.65 0.001 −0.002 0.99 −0.04 0.85 0.28 0.20
2017 0.45 0.03 0.58 0.003 0.60 0.002 −0.19 0.40 0.11 0.62 0.30 0.18
2019 0.47 0.02 0.52 0.009 0.60 0.002 0.032 0.88 0.24 0.28 0.38 0.079
Mean 0.45 0.03 0.56 0.006 0.62 0.001 −0.05 0.76 0.10 0.59 0.32 0.15
Fig. 8 displays the scatter plots of the altimeter-derived March–
September amplitude and phase differences compared to their model-
derived counterparts for the three years and each classification. The
scatter plots are generated using the values on the coarser grid, and
the map showing the median values for observations and model results
is available in Appendix D.1. The resulting correlation coefficients and
p-values are in Table 1.

Amplitude modulations are minimal in the Central Arctic and radi-
ate outward to the Canadian and Russian Arctic sides. A strong seasonal
modulation of up to ∼ ±0.25m in the altimeter-derived estimates
(Fig. 7(a)) is observed for several regions in the Hudson Bay, Hudson
Strait, Frobesius Bay, Canadian Archipelago, White Sea and Kara Sea.
Positive modulations are evident in the western part of Hudson Bay,
Ungava and Frobesius Bay, White Sea, Laptev Sea, and west and east
of Greenland in Baffin Bay, Labrador Sea, and near Svalbard. Negative
modulations are noted in the eastern part of Hudson Bay, Canadian
Archipelago, Barents Sea, Kara Sea, East Siberian Sea, and parts of the
Chukchi Sea and Sea of Okhotsk. In the Central Arctic, the amplitude
modulations are very low (around 2–3mm), as expected due to the low
tidal amplitudes in this region.

In comparison, the amplitude modulations with Exp All_VS for
the year 2019 (Fig. 7(a)) exhibit much stronger seasonal modula-
tion, up to approximately ±0.7m. The distribution of positive and
negative modulation appears smoother compared to the altimeter-
derived estimates in the region. The areas of positive and negative
distribution largely align with the altimeter-derived estimates, with
a few exceptions. These exceptions include the western Hudson Bay
and Strait, Frobesius Bay, Ungava Bay, and the Laptev Sea, where
negative modulation is observed, and the southern Barents Sea, which
exhibits positive modulation. Moreover, the Central Arctic, Chukchi
Sea, and Sea of Okhotsk show almost zero modulation. A quantitative
comparison using scatter plots reveals that only points around 0 am-
8

plitude modulation lie on the 𝑦 = 𝑥 line (dotted line in the figure),
while the remaining points are scattered with no visible linear trend.
This observation is supported by the resulting correlation coefficients,
which average approximately 0.45 (Fig. 8). Furthermore, the amplitude
modulation remains consistent across different years (2012, 2017, and
2019), except for four points in the plot.

The model-derived amplitude modulations with Exp HS_VS_1.2 for
the year 2019 (Fig. 7(a)) also exhibit strong seasonal modulation, up
to approximately ±0.4m, albeit lower than Exp All_VS. The positive–
negative distribution is very similar to the Exp All_VS case, except for
a section of Hudson Bay and Frobesius Bay, where positive modulation
is noted in Exp HS_VS_1.2. Additionally, the negative modulation in the
Chukchi Sea and the southern region of Barents Sea diverges from Exp
All_VS. The scatter plot (Fig. 8(b)) for this case similarly shows points
only around 0 lying on the 𝑦 = 𝑥 line, but exhibits a better linear trend
compared to Exp All_VS. The average correlation coefficient between
years is 0.55 (Table 1). Here, the scatter plot reveals varying amplitude
modulations within different years, primarily for points distant from the
𝑦 = 𝑥 line.

Lastly, the model-derived estimates for amplitude modulation with
Exp HS_VS_0.7 for the year 2019 (Fig. 7(a)) display a lower seasonal
modulation (up to approximately ±0.3m) compared to the other two
simulations but exceed the altimeter-derived estimates. The distribution
of positive and negative modulation closely resembles Exp HS_VS_1.2,
except for Frobesius Bay and some areas of Hudson Bay. In this region,
Exp HS_VS_0.7 shows a broader spread of positive modulations com-
pared to Exp HS_VS_1.2 and aligns with the altimetry-derived estimates.
The scatter plots (Fig. 8(c)) includes points on the line 𝑦 = 𝑥 that are
not close to 0 and exhibit better linear trends compared to the other
two simulations, with an average correlation coefficient of 0.6 (Table 1)
between years. Moreover, amplitude modulations vary between years
for nearly all points.

The variations in amplitude modulation for the results Exp HS_VS_0.7

and Exp HS_VS_1.2 between years indicate that modulations on the
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Fig. 6. HS (dark blue) and VS (light blue) classification of the sea ice field for March and September 2019 with the sea ice field obtained from Copernicus Marine Service (2019).
The sub-figures show HS/VS classification based on two 𝛼𝑖 values for the same the sea ice field. Exp HS_VS_1.2 is with 𝛼𝑖 = 1.2 and Exp HS_VS_0.7 is with 𝛼𝑖 = 0.7. Note that only
the sea ice field with concentration > 0.8 is considered here.
Canadian Arctic side are larger in 2017 than in 2012, with 2019 serving
as the median between them. Conversely, on the Russian Arctic side,
2017 has lower modulation, with 2012 exhibiting the largest among
the three years. These modulations do not directly correlate with the
fact that 2012 experienced the largest March–September differences in
sea ice, while 2017 had the lowest.

Regarding phases, the hatched region in the phase plot of the
altimeter-derived estimates (Fig. 7(b)), as mentioned by Bij de Vaate
et al. (2021), signifies that these phase differences are deemed un-
reliable due to strong variability. Furthermore, the altimeter-derived
estimates show considerable variability in phase modulation across the
region, except for the Archipelago, where consistently positive differ-
ences are noted. Compared to altimeter-derived estimates, the model-
derived estimates (Exp All_VS, Exp HS_VS_1.2, and Exp HS_VS_0.7,
Fig. 7(b)) for the year 2019 demonstrate less variability in phase
modulations. Consequently, the overall alignment between altimeter-
derived phase modulations and model-derived modulations in scatter
plots (Figs. 8(a), 8(b), 8(c)) is minimal, with insignificant correlation
coefficients (Table 1). This lack of agreement persists across all years.
9

Among the three model-derived estimates, phase modulations from
Exp All_VS (Fig. 7(b)) are negligible in many regions, except for a
few areas on the Russian side of the Arctic and the southern part
of the Labrador Sea. In contrast, Exp HS_VS_1.2 and Exp HS_VS_0.7
simulations present phase modulations throughout the entire region,
with a comparatively lower proportion of areas showing negligible
modulation. Additionally, the large phase differences in the central
Arctic across all model simulations can be disregarded as artifacts or
uncertainties, given the low amplitudes in the region near the North
Pole.

4.2.2. Results-tide gauge dataset
The comparison with TG-derived March–September differences in

amplitude and phase for the year 2019 is shown in Fig. 9. The results
for the remaining years are provided in Appendix D.2.

Fig. 10 displays the TG-derived and model-derived (Exp All_VS,
Exp HS_VS_1.2, and Exp HS_VS_0.7) estimates of amplitude and phase
modulations for all the years, with the tide gauge names on the 𝑥-axis.
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Fig. 7. Seasonal Modulation of M2 tide quantified as March–September differences
in amplitude and phases for the altimeter-derived product and the Exp All_VS, Exp
HS_VS_1.2 and Exp HS_VS_0.7 runs for the year 2019. Differences in amplitude 7(a) and
phase 7(b). Positive differences (red) denote that the March amplitude is larger/phase
is leading than September, while negative differences (blue) denote the opposite.

TG-derived data indicate negative seasonal amplitude modulation
across most CHS tide gauges, with the exception of those in the
Labrador Sea (Fig. 9(a)). The tide gauge at La Grande Riviere in Hudson
Bay exhibits the largest absolute amplitude modulation, recorded at
0.3m. Similarly, in the Russian Arctic, negative modulations were
observed, notably at the Wrangel gauge in the Chukchi Sea.

Comparisons with all three model simulations (Exp All_VS, Exp
HS_VS_1.2, and Exp HS_VS_0.7) show consistent signs of seasonal ampli-
tude modulation with the observed data, except at three tide gauges in
10
the Laptev and Chukchi Seas. Specifically, for the Wrangel tide gauge,
model simulations suggest almost zero modulation, whereas observa-
tions indicate a modulation of −0.1m. Among the model simulations,
Exp All_VS exhibits larger amplitude modulations in absolute terms,
while Exp HS_VS_1.2 and Exp HS_VS_0.7 generally align more closely
with observed values. The median differences in amplitude modulation
between observation-derived estimates and model-derived estimates
(Fig. 10) indicate the best performance with Exp HS_VS_1.2 simulations
and the poorest with Exp All_VS.

TG-derived phase modulation (Figs. 9(b) and 10) from CHS data,
excluding a positive anomaly at Tuktoyaktuk (∼ 65°) in the Chukchi
Sea, exhibit either negative or nearly zero seasonal modulation. Russian
side gauges mostly show positive or neutral phase modulations, with a
notable exception in the Laptev Sea displaying a small negative modula-
tion (∼ −5°). The agreement between model-derived phase modulations
for all simulations and observed values is poor, with deviations as high
as 40° at four tide gauges.

Finally, variability among all the tide gauges between years of
different model simulations is noted in Fig. 10. The Exp All_VS case
exhibits a narrower range of amplitude and phase modulations between
years for all tide gauges, except for La Grande Riviere, compared to the
other two simulations. For La Grande Riviere, the range is wider than
the other two, but only for amplitudes.

4.2.3. Discussion
The comparison between altimeter- and TG-derived versus model-

derived March–September differences shows overall good agreement in
terms of the signs (positive or negative) for the amplitude. However,
in regions such as Ungava Bay, the Bering Sea, and some parts of the
Laptev Sea, the direction of amplitude modulations does not align with
the altimeter-derived values. A plausible explanation could be that the
altimeter-derived seasonal modulation, as mentioned in Section 2.2,
results from all seasonal forces (i.e. wind forcing, spatial density dif-
ferences, stratification). On the other hand, the seasonal modulation
of phases from altimeter- and TG-derived values is not captured very
well by the model runs. In fact, model estimates of 4 tide gauges show
deviations of around 40° from the observations.

Nevertheless, it should be noted that the observations are not with-
out issues. The altimeter-derived values exhibit considerable variability
and uncertainty. For tide gauges, we either lack knowledge of the year
of data collection (CHS data) or the year of data collection differs from
the model runs (Kulikov et al., 2020). For instance, this discrepancy
could explain the poor performance observed at the Wrangel tide
gauge, whose modulations are computed from data collected between
1981–1995. Model simulations show (almost) zero amplitude modula-
tion for this tide gauge, while the observed modulation is −0.1m. The
period of 1981–1995 featured thicker and more extensive sea ice than
the years in this study, which could have influenced the model-derived
seasonal modulation at this tide gauge. With thicker ice conditions,
the scaling parameter 𝛼𝑖 would be higher than 1.2 due to a linear
relationship between them, as this would increase the compressive
strength, consequently leading to a larger VS region. Another issue with
the tide gauge measurements is the presence of local seasonal forces.
For instance, there are local forces like seasonal river discharges due to
ice melting which could affect the observations or tide gauge damage
due to winter sea ice conditions. Such issues were particularly noted
for the tide gauge Churchill near the Hudson River (Ray, 2016).

The variations in sea ice cover can affect amplitude modulations
far from their source, with no direct relationship to the variations. For
instance, the March–September differences were maximum for 2012,
yet the absolute amplitude modulations for 2012 were lower on the
Canadian side of the Arctic than the 2017 modulations. Conversely, on
the Russian Arctic side, absolute amplitude modulations for 2012 were
larger than those in 2017.

Among all the types of model simulations, it is observed that Exp
HS_VS_0.7 simulations (Fig. 9, Table 1) show the best overall agreement
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Fig. 8. Scatter plots showing a comparison between altimeter-derived seasonal modulation (𝑥-axis) versus the seasonal modulation (March–September differences of M2 constituent)
from the 3 Model results (Exp All_VS, I and II) (𝑦-axis). Each sub-figure corresponds to the respective model simulation with the sub-title denoting the name of the simulation and
the amplitude and phase modulations are compared separately. The colour of the dots correspond to the year of the run. Note that each point corresponds to the value at the cell
of the coarse grid and importantly, the phase differences of the cells lying in the hatched region (Fig. 7(b)) are removed from the plotting.
with the altimeter-derived values, while Exp HS_VS_1.2 simulations
(Fig. 10) have the best overall agreement with the tide gauge results.
The Exp All_VS case, which represents a current state-of-the-art in many
tidal models, shows larger seasonal modulations of amplitude implying
a larger dissipation from the sea ice on tides. This outcome is expected
11
since a landfast ice assumption represents an extreme dissipation con-
dition at the ice–water interface. The Exp HS_VS_1.2 and Exp HS_VS_0.7
simulations, which are based on the new parameterization derived in
this paper, exhibit comparatively lower amplitude modulations. Here,
the drifting sea ice is treated separately with its own dissipation charac-
teristics modelled through the HS region. Such dissipation, by virtue of
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Fig. 9. Seasonal Modulation of M2 tide quantified as March–September differences in
amplitude and phases for the TG-derived product and the 3 model runs (Exp All_VS,
Exp HS_VS_1.2 and Exp HS_VS_0.7) for the year 2019. Differences in amplitude 9(a) and
phase 9(b). Positive differences (red) denote that the March amplitude is larger/phase
is leading than September, while negative differences (blue) denote the opposite.

its construction (friction number formulation) in the parameterization,
is lower than the dissipation from landfast ice. This can be verified in
the results, as Exp HS_VS_0.7 has lower amplitude modulation than Exp
HS_VS_1.2, while it has a larger HS area than Exp HS_VS_1.2.

Although some tidal models can change the ice–water drag coef-
ficient in the landfast ice assumption to alleviate (to some extent)
the problem of strong dissipation from the landfast ice assumption.
In fact, Kleptsova and Pietrzak (2018) proposed a solution wherein
the drag coefficient varied with ice concentration. Nonetheless, these
multiple approaches still do not account for drifting sea ice and its
resulting velocity gradients, which can lead to different dissipation
characteristics. Our new parameterization is equipped to deal with
12
Fig. 10. Seasonal modulation per tide gauge (on 𝑥-axis) with observations in black dots
connected by dotted lines. The model results are shown by triangles with different
colours corresponding to a particular year. The tide gauges are arranged on the 𝑥-
axis in order of increasing longitude (going anti-clockwise) starting from Tuktoyaktuk
(Lon 133°W) to Wrangel (Lon 178°E). The first 11 tide gauges on the 𝑥-axis are from
the CHS data and the next 7 are from Kulikov et al. (2020). The first 3 sub-figure
captions denote the type of model simulation among Exp All_VS, Exp HS_VS_1.2 and
Exp HS_VS_0.7. The last sub-figure is the median of difference between model and
observed values computed over 3 years. The colours in this sub-figure correspond to
the three types of model runs. A value closer to zero indicates better agreement of the
model simulation to the observed value.

such dissipation characteristics by modelling the dissipation with a
diffusion term and sea ice viscosity. This diffusion term will lead to
larger dissipation when sea ice velocity gradients are expected to be
larger, for example, in regions like the Hudson Strait and Frobesius Bay.

Furthermore, the dissipation is also designed to handle the spatial
and temporal variability of sea ice thickness (ℎ𝑖) and concentration
(𝐴) through the value of sea ice viscosity and the classification in
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Fig. 10. (continued).

HS/VS regions. This inclusion of sea ice parameters helps in reducing
dissipation when sea ice is thin and increasing dissipation for thicker
sea ice. Given that such variability cannot be addressed with the simple
assumption of landfast sea ice, it is observed that changes in sea ice
cover between years does not have significant differences in seasonal
modulation in Exp All_VS simulations. Our parameterization can deal
with this variability making it suitable for studying the effects of sea
ice decline on tides and thus, has a more accurate representation of sea
ice–water physics than the simple landfast sea ice assumption.

Still, Exp HS_VS_1.2 and Exp HS_VS_0.7 model simulations, when
compared against the observations used in this study, do not seem to
exhibit very good accuracy. Apart from the fact that the observations
have their own uncertainties, the parameterization developed here also
incorporates some approximations and assumptions that can affect the
model-derived results. Firstly, there is uncertainty in the scaling param-
eter (𝛼 ) stemming from the uncertainty of the parameters in Eq. (11).
13

𝑖

This value could further be fine-tuned through calibration using data
assimilation principles to improve the HS/VS classification and the
resulting model outcomes. Secondly, the ice–water drag coefficient 𝐶𝑓
used here, and in most other studies, is obtained from McPhee (1980).
This coefficient is larger for recent first-year ice in the Arctic than
for the experiments conducted in 1978 (McPhee, 2017). Moreover,
the value of this drag coefficient is also known to exhibit a seasonal
pattern (Brenner et al., 2021). Therefore, further research into better
representation of drag coefficients will lead to more accurate dissipa-
tion values. Finally, the parameter 𝜆 for simplicity, is assumed to be
a binary parameter switching between the two regions, i.e., HS/VS.
However, a smooth transitioning parameter between the two regions
(e.g., a sigmoid function) could provide better modelling, potentially
altering the HS/VS classification and, thus, the results. Nonetheless,
the current assumptions regarding these parameters represent a first
step, and the values chosen here are based on tidal characteristics and
a simplistic representation.

5. Summary and conclusions

The impact of sea ice decline on global tides is still a topic of
ongoing research. To study such an impact global hydrodynamic tidal
models should include, in their modelling, the effect of sea ice induced
dissipation on tides. Most models either ignore this effect or model it
by assuming a monthly mean sea ice cover which is fixed i.e. landfast
ice.

Here, we propose a novel parameterization to model sea ice-induced
dissipation on tides, distinguishing between landfast and drifting sea
ice through Horizontal Shear (HS) and Vertical Shear (VS) regions,
determined by a Friction Number (𝐹 ). This number incorporates sea
ice thickness (ℎ𝑖), concentration (𝐴), and a scaling parameter (𝛼𝑖).
From the range of values of 𝛼𝑖 two were selected based on tidal
characteristics and the nature of HS/VS regions, leading to classifi-
cations Exp HS_VS_1.2 and Exp HS_VS_0.7, showcased for March and
September 2019 in Fig. 6. This parameterization’s efficacy was assessed
within the Global Tide and Storm Surge Model (GTSM) by comparing
three simulations–Exp All_VS, Exp HS_VS_1.2, and Exp HS_VS_0.7—-
to altimeter- and TG-derived observations, focusing on the seasonal
modulation of the M2 tide. The Exp All_VS simulation assumes the
entire sea ice field as landfast which is the current state-of-the-art in
many tidal models.

Overall, the simulation results from the Exp HS_VS_1.2 and Exp
HS_VS_0.7 experiments demonstrate better agreement with observa-
tions than the Exp All_VS simulations, which exhibited larger seasonal
modulation indicating higher sea ice-tidal dissipation. This discrepancy
is expected because the Exp All_VS approach does not distinctly treat
drifting sea ice, and its assumption of landfast sea ice implies extremum
in dissipation. Furthermore, the new parameterization accounts for the
spatial and temporal distribution of sea ice thickness and concentration,
making it apt for studying the implications of recent decline in sea ice
thickness. It is also notable that changes in sea ice can influence tidal
modulation (or tides) distantly from its source, with the relationship
being non-linear.

However, this study is limited by the observational dataset. The
altimetry-derived seasonal modulation represents an average over the
data collection years (2010–2019), while the year of data collection for
TG-derived modulation is either unknown or does not coincide with the
model simulation years of 2012, 2017, and 2019. Ideally, a desirable
dataset would encompass spatially distributed tidal water levels from
tide gauges corresponding to the year of the model simulations, facili-
tating a more accurate comparison. The Canadian Hydrographic service
is doing great work on this end, but on the Russian side of the Arctic
there is still a lack of publicly available data. However, due to issues
pointed out in Ray (2016) the tidal water levels from any such Arctic
tide gauges should undergo a thorough quality check.
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Fig. A.11. The sea ice field for March and September 2019 obtained from NSIDC dataset. The sub-figures (Figs. A.11(a) and A.11(b)) show the traditional sub-division of landfast
ice (light blue) from the remaining sea ice (dark blue) obtained from NSIDC. Note that only the sea ice field with concentration > 0.8 is considered here.
In case such an observational dataset is available, it would also
help in further research on improving the estimations of the uncertain
parameters like the scaling parameter (𝛼𝑖) and the drag coefficient
(𝐶𝑓 ) through calibration or tuning. Another approach to improve the
estimation of the scaling parameter (𝛼𝑖) is the utilization of a sea ice
velocity dataset. Such a dataset can aid in estimation of HS/VS regions
and thereby assist in refining the scaling parameter. However, this
approach requires investigation due to the temporal scale mismatch
between the tides and the daily to monthly scales of sea ice velocities
in the datasets.

The results of this study should be viewed in the context of the
challenges in obtaining an accurate representation of sea ice con-
centration and thickness and the limitations of the GLORYS model.
Due to over estimation of sea ice thickness, the VS region is more,
consequently providing larger dissipation. Ideally, a monthly averaged
remote sensing-based product providing both sea ice thickness and
concentration or an accurate model-based product is desirable.

Here, we used the seasonal modulation of the M2 tide as a per-
formance metric. However, other tidal constituents, such as S2, O1,
and K1, also experience seasonal modulation as noted in Wang and
Bernier (2023). Seasonal modulation of these additional constituents
could also serve as performance metrics, provided that suitable datasets
are available.

We focused exclusively on Arctic sea ice, yet our parameterization
can be extended to Antarctic sea ice, which is notably thinner due
to the absence of multi-year ice and (almost) complete summer melt.
This results in a lower ice–water drag coefficient for Antarctic sea
ice—about 40% lower than Arctic averages (Schroeter and Sandery,
2022)—suggesting lower dissipation effects. Considering these differ-
ences, applying and investigating our parameterization for Antarctic
sea ice could provide valuable insights.

In conclusion, this parameterization represents an initial step to-
wards enhancing tidal models to incorporate sea ice dissipation effects
on tides without necessitating coupling to a sea ice model. Such ad-
vancements promise a more realistic representation of sea ice in tidal
models, aiding in the global analysis of the impacts of sea ice decline
on tides and supporting coastal flood management strategies.
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Appendix A. Comparing sea ice extent from GLORYS with NSIDC

The accuracy of the parameterization of the effect of sea ice de-
veloped here depends, among others, on the sea ice dataset providing
the sea ice thickness and concentration. Currently, we used the dataset
from Copernicus Marine Service (2019) which was a model derived
reanalysis product. Here, we show the comparison of the sea ice cover
from that product to the sea ice cover obtained from the NSIDC dataset
which also gives the landfast ice cover. This product was also used
previously to compare the area of HS/VS classification with landfast
ice. The NSIDC product was also used in the landfast ice study of Bij
de Vaate et al. (2021). The sea ice extent with concentrations larger
than 0.8 is obtained from this dataset for the year 2019 (Fig. A.11).

This dataset does not have monthly mean data but an output every
two weeks. Here, we consider the data for around mid of the respective

https://doi.org/10.48670/moi-00007
https://doi.org/10.48670/moi-00007
https://doi.org/10.48670/moi-00007
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Fig. A.12. Sea ice concentration field with values larger than 0.8 for March and September 2019 obtained from a global ocean reanalysis product (Copernicus Marine Service,
2019). The sub-figures (Figs. 1(a) and 1(b)) show the March and September distribution.
Fig. B.13. Sea ice concentration and thickness obtained from two different observation products for March 9, 2012. The concentration is derived from the OSISAF-450a product,
while the sea ice thickness is from Landy et al. (2022), which evaluates thicknesses using CryoSat −2. BAS refers to the British Antarctic Survey as this product was released by
them.
months and assumed that this data is a representation of the mean
for that month. The sea ice field on March 21, 2019 and September
19, 2019 are shown (Figs. 5(a) and 5(b)) with concentrations larger
than 0.8 and landfast (light blue) and total sea ice (dark blue) regions.
It is seen that in September (Fig. A.11(b); summer) the sea ice cover
is very low with no landfast sea ice in the dataset as compared to
March (Fig. 5(a); winter) This is also noted in Li et al. (2020) that
there is almost no landfast sea ice in the summer periods since 2018.
Furthermore, this NSIDC landfast ice estimate will represent a physical
lower bound of the VS region in our analysis. This can also give an idea
of the value of the scaling parameter (𝛼 ). However, it should be with a
15

𝑖

caveat that these charts from NSIDC are produced by a manual analysis
on satellite images. So the region of landfast ice might vary.

The monthly mean sea ice cover for March and September from
Copernicus Marine Service (2019) is seen in Fig. A.12. On comparison,
the sea ice cover from both the datasets have very similar coverage
with some small discrepancies. The noted discrepancies off the coast of
Japan, Bering Sea and southern Labrador Sea could be due to the fact
that the Copernicus Marine Service (2019) dataset is a monthly mean
where as NSIDC provides for a value at a particular day. Or possibly
that the sea ice–ocean coupled models (including GLORYS used in the
CMEMS product) often suffer from biases. For instance, the GLORYS
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Fig. B.14. Sea ice concentration and sea ice thickness obtained from two different observation products for September 8, 2012. The concentration is obtained from OSISAF-450a
product. The sea ice thickness is obtained from Landy et al. (2022) which evaluates thicknesses from CryoSat2. BAS refers to the British Antarctic Survey as this product was
released by them.
Fig. B.15. Sea ice concentration and sea ice thickness obtained from two different observation products for March 9, 2012. The concentration is obtained from the OSISAF-450a
product. The sea ice thickness is obtained from the CS2SMOS product, which evaluates thicknesses from CryoSat −2 and SMOS and provides monthly averages.
model is known to have larger sea ice thicknesses than observed due
to the underlying EVP rheology.

Appendix B. Comparing sea ice parameters from remote sensing
products

We compared the concentration and thickness of sea ice from
different remote sensing products to evaluate their efficacy. Sea ice
concentration data were obtained from EUMETSAT Ocean and Facil-
ity (2022) (OSISAF-450a product), and sea ice thickness data were
16
obtained from Landy et al. (2022). We compared the data output for
March 9, 2012, and September 8, 2012, from both datasets, as these
were the matching dates we could find in our simulation years of
2012, 2017, and 2019. No monthly averages from these products were
available.

From the sea ice thickness and concentration plots (Fig. B.13),
data gaps were observed in the sea ice thickness product, particularly
in the Canadian Archipelago, Hudson Bay, and Hudson Strait. These
regions are significant in the context of sea ice-induced dissipation. The
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Fig. C.16. HS (dark blue) and VS (light blue) classification of the sea ice field for March and September 2012 with the sea ice field obtained from Copernicus Marine Service
(2019). The sub-figures show HS/VS classification based on two 𝛼𝑖 values for the same sea ice field. Exp HS_VS_1.2 is with 𝛼𝑖 = 1.2 and Exp HS_VS_0.7 is with 𝛼𝑖 = 0.7. Note that
only the sea ice field with concentration > 0.8 is considered here.
comparison for September (summer) also revealed mismatches between
the concentrations and thickness data (Fig. B.14).

Further comparisons were made with a sea ice thickness dataset
from SMOS and CryoSat −2 provided by AWI (CS2SMOS product Ricker
et al. (2017)). This dataset, available only for March, provided monthly
averages.

The monthly average from CS2SMOS (Fig. B.15) when compared
with the sea ice concentration on March 9, 2012 from OSISAF-450a
showed that for the sea ice concentration from the Bering Sea, there
was no corresponding sea ice thickness in the CS2SMOS product. Ad-
ditionally, the thickness product missed some regions in the Canadian
Archipelago.
17
This analysis highlights the potential data mismatches and spatio-
temporal challenges associated with using remote sensing products.
However, with improvements in remote sensing technologies, it is
expected that future products will provide better quality data with the
required spatio-temporal coverage, allowing for their direct use in place
of model-based products in our new parameterization.

Appendix C. Sea ice classification results

The model runs were done for 3 years; 2012, 2017 and 2019
with the respective sea ice fields for those years. Here, we show the
results from the Exp HS_VS_1.2 and Exp HS_VS_0.7 classification for
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Fig. C.17. HS (dark blue) and VS (light blue) classification of the sea ice field for March and September 2017 with the sea ice field obtained from Copernicus Marine Service
(2019). The sub-figures show HS/VS classification based on two 𝛼𝑖 values for the same sea ice field. Exp HS_VS_1.2 is with 𝛼𝑖 = 1.2 and Exp HS_VS_0.7 is with 𝛼𝑖 = 0.7. Note that
only the sea ice field with concentration > 0.8 is considered here.
the two months; March and September for the years 2012 and 2017.
These years as mentioned previously, represent the maximum and min-
imum differences of the sea ice cover between March and September.
Fig. C.16 shows the classification for 2012 while Fig. C.17 gives the
classification for 2017.

Appendix D. Additional model results

D.1. Comparison with altimetry

The map of model-derived March–September differences in M2
amplitude and phase at altimeter product locations for the years 2012
and 2017 are given in Figs. D.18 and D.19, respectively.
18
The altimetry data has noise which was reduced by first considering
a coarser grid (875 km×875 km). Then, all the points from the altimetry
product which were part of a particular grid cell were selected and
a median of these points was computed. This median value was a
representation of that grid cell/area of the region. The resulting values
on the coarser grid was used to compute the correlation plots (Fig. 8).
The coarse grid values of March–September differences for 2019 are
shown here in Fig. D.20.

D.2. Comparison with tide gauges

The map of model-derived March–September differences in M2
amplitude and phase at tide gauge locations for the years 2012 and
2017 are given in Figs. D.21 and D.22 respectively.
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Fig. D.18. Seasonal Modulation of M2 tide quantified as March–September differences
in amplitude and phases for the altimeter-derived product and the Exp All_VS, Exp
HS_VS_1.2 and Exp HS_VS_0.7 runs for the year 2012. Differences in amplitude D.18(a)
and phase D.18(b). The positive differences (red) denote that the March amplitude is
larger/phase is leading than September, while negative differences (blue) denote the
opposite.
19
Fig. D.19. Seasonal Modulation of M2 tide quantified as March–September differences
in amplitude and phases for the altimeter-derived product and the Exp All_VS, Exp
HS_VS_1.2 and Exp HS_VS_0.7 runs for the year 2017. Differences in amplitude D.19(a)
and phase D.19(b). The positive differences (red) denote that the March amplitude is
larger/phase is leading than September, while negative differences (blue) denote the
opposite.
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Fig. D.20. March–September differences of M2 tide on a coarse grid for the altimeter-
derived product and the Exp All_VS, Exp HS_VS_1.2 and Exp HS_VS_0.7 runs for the
year 2019. Differences in amplitude D.20(a) and phase D.20(b). The positive differences
(red) denote that the March amplitude is larger/phase is leading than September, while
negative differences (blue) denote the opposite.
20
Fig. D.21. Seasonal Modulation of M2 tide quantified as March–September differences
in amplitude and phases for the TG-derived product and the 3 model runs (Exp All_VS,
Exp HS_VS_1.2 and Exp HS_VS_0.7) for the year 2012. Differences in amplitude D.21(a)
and phase D.21(b). The positive differences (red) denote that the March amplitude is
larger/phase is leading than September, while negative differences (blue) denote the
opposite.
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Fig. D.22. Seasonal Modulation of M2 tide quantified as March–September differences
in amplitude and phases for the TG-derived product and the 3 model runs (Exp All_VS,
Exp HS_VS_1.2 and Exp HS_VS_0.7) for the year 2017. Differences in amplitude D.22(a)
and phase D.22(b). The positive differences (red) denote that the March amplitude is
larger/phase is leading than September, while negative differences (blue) denote the
opposite.
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