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PREFASE

This research started with a specific problem; to recognize a particular type of collision with a heavyweight, low-speed
mobile cleaning robot and no concept on which route to take to solve the problem. The most challenging aspect of this
thesis was to define the method using preliminary experiments, with little literature available on this specific problem. To
provide not only academic results for the research and experiments performed, but also generate result-oriented solutions
that work in a soiled and dynamic environment was most unusual. At the same time, this was the most enjoyable part of
the graduation project, as I had all the freedom to search for solutions with my feet in the dirt, and the results obtained
could be implemented directly into the robot.
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support during the whole time span of the project, and for giving me all the space to work with the robot and search for
solutions. I am grateful for the opportunity to graduate at Lely and to get to know the company.

Furthermore, I would like to thank my daily supervisor from the TU Delft, Yke Bauke Eisma, for his enthusiasm and
positivity in this project from day one, his academic point of view and the online and - if allowed by Covid-19 restrictions
- personal meetings, which increased in the final writing phase of the thesis. I also thank Joost de Winter from the TU
Delft for his accurate comments during the online meetings and thorough feedback on my draft report throughout the research.

I hope you will enjoy reading this thesis.

Delft, Februari 2022 E.C. Kooi
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Blind collision detection and classification framework for a heavyweight,
low-speed mobile robot colliding with soft and hard objects
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Abstract— Visual occlusion can cause object detection and clas-
sification systems to fail due to swift movement or a soiled, moist
or dusty environment. Hence, this asks for a ’blind’ collision
detection and classification method. This paper presents a
novel blind collision detection and classification scheme for a
heavyweight, low-speed, wheeled mobile robot. By recognizing
the target signal pattern in phase current data, the robot can
detect whether the wheels are blocked caused by overload (G1).
After this, using acceleration and phase current data, the robot
will be able to differentiate between a collision against a wall
or a collision with an object between the wall, or no collision
of interest (G2). Additionally, an algorithm based on the pitch
angle can detect if the robot slides on top of a soft object
(G3). Three different algorithms are developed that address
these goals. Finally, the developed algorithms are validated in
a dynamic and soiled environment (G4). The first two goals are
reached by training machine learning classifiers that identify
the signal pattern of its target event and place uneventful data in
a separate class (open-world classification). During training the
classifiers Random Forest, Multi-layered Perceptron, Decision
Tree and Logistic Regression are compared, and the two best
perfoming classifiers are subsequently tested for a time-series
open-world classification task. The third goal is reached with
the development of a heuristic algorithm based on the running
mean of the pitch angle.
Experiments were performed in a controlled environment,
creating collisions with varying floor conditions, robot weight
and collision objects. The best performing algorithm for blind
collision overload detection has achieved 98.6% detection
accuracy. The object classification algorithm can differentiate
between two types of soft objects, a wall or no event with an
accuracy of 93.3%. The algorithm based on the deviating pitch
angle can detect events with 100% detection rate and 0% false
positive rate. Detailed implementation schemes are provided
for real-time implementation, illustrating a robust framework
in soiled environments. The proposed solutions can be used to
improve collision detection on blind mobile robots, as well as
mapping the environment using the object classification model.

Index Terms— Collision detection, object classification, mobile
robot, blind sensing, visual occlusion

I. INTRODUCTION

Automated guided vehicles have become more prominent in
the last twenty years because of their relevant applications
to the world today. A combination of a mobile robot,
inexpensive sensors and advanced software technology can
already ensure reliable navigation. However, detecting and
interpreting collisions is an essential aspect of safe robot

operations. The classification of different types of obsta-
cles for mobile robots typically requires vision- or laser-
based perception systems (Mahalingam & Subramoniam,
2017; Hernández, Gómez, Crespo, & Barber, 2016; Galvez,
Vicerra, Bandala, Dadios, & Maningo, 2018). However,
visual occlusion can cause object detection and classification
systems to fail due to swift movement or a soiled, moist
or dusty environment. Hence, this asks for ’blind’ collision
detection and classification system. Blind sensors in this
research were defined as sensors that do not make use of
light detection or radio waves, i.e. all sensors that are not
affected in their performance when covered with a thick
layer of dirt. This thesis will research collision detection and
classification with soft objects for a heavyweight cleaning
robot. The focus in practice will be to develop a feasible real-
time object detection application in an uncontrolled, soiled
environment with arbitrary robot movements. The method
must be reproducible and applicable on all robots of the same
type. The types of collisions that can occur when the robot
is in operation are shown in Figure 1. The robot can push
the object forward against a wall (type I), slide on top of the
object (type II), or drive against it in free ride (type III).

Fig. 1: Visualisation of different types of collisions from the robot
and soft object: (a) push object against wall, (b) sliding on top
of object and (c) collision impact. Collision type I and II will be
detected when the research goals are achieved. Collision type III
will transition to type I or II over time.

I-1 State of the art
A previously performed extensive literature review (summary
in Appendix A) gives an overview of the existing blind
collision detection algorithms and classification methods,
where cameras, LIDAR or ultrasonic sensors were excluded.
The results of the performed literature study show that
collisions can be detected and distinguished based on
blind sensing, using robotic arms or lightweight mobile
robots. Thus far, the most significant part of the literature
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focuses on motor current and acceleration based detection
methods. Geravand et al. used time-varying detection
thresholds on the motor current based on the input
trajectory of the robot, which resulted in a robust algorithm
making the collision detection method not bound to a
smooth trajectory (Geravand, Flacco, & De Luca, 2013).
Additionally, low and high pass filters on this motor
current could differentiate between hard and soft collisions.
This concept is also shown in the research of Cho et al.
(Cho, Kim, Kim, Song, & Kyung, 2012). (Park & Kim,
2021) showed that motor currents and machine learning
methods based on Support Vector Machine(SVM) and
Convolutional Neural Network(CNN) could accurately
detect soft collisions (pushing, pulling, catching) and hard
collisions (sharp impacts). The aforementioned studies
describe a way of detecting collisions using the motor
current and determining whether the collision object is hard
or soft. These classification methods are limited to hard or
soft, where no differentiation can be made between different
soft or hard collisions.

When the load caused by a collision is too high for the
motor, an event of overload will occur which will lock
the rotor. A threshold on the motor current will not purely
detect this event since high torques are sometimes desired in
industrial robots. Mohar et al. (Mohar et al., 2021) detected
overload in a three phase induction motor using a Neural
Network with inputs the motor Current, Voltage, Torque and
Speed. With only the phase current as input feature, Gao et
al. showed that overload of the motor could be identified
based on variations of the current signal in the frequency
spectrum (Gao, Cecati, & Ding, 2015). Although this is
used for fault detection in the motor, this can also be used
for overload caused by a collision. A caveat to this method
is that fluctuating load, speed and friction of the robot
causes variations in the motor current, which can introduce
false positives if the method is based on the frequency
spectrum only.

Collisions in literature are also detected based on accelerom-
eters. After pre-processing acceleration signals, a detection
threshold was commonly used to identify collisions (He,
Du, Sun, & Lin, 2007; Wisanuvej, Liu, Chen, & Yang,
2014; Moorits & Usk, 2012; Zug, Seidel, Beckhaus, &
Winkelsträter, 2017; Speleers & Ebner, 2019). Except for
Mericli et al., who detected collisions using the Fast Fourier
Transform (FFT) of a sliding window to detect anomalies,
and Becker et al., who trained a Logistic Regression (LR)
classifier with normal data and two types of collision data
to detect and classify collisions. (Meriçli & Levent Akın,
2008; Becker & Ebner, 2019). Acceleration signals lend
themselves well to classify collisions after detection. Windau
et al. could identify the hardness, elasticity, and stiffness
using correlation techniques on known material properties
(Windau & Shen, 2010). However, learning algorithms based
on acceleration data performed best; Wisanuvej et al. could
identify which material was tabbed against a robotic arm

(Wisanuvej et al., 2014), and Vail et al. could identify the
surface on which a legged robot was walking (Vail & Veloso,
2004). The study from (Adu & Bran-Melendez, 2018) op-
timized IMU based gesture classification. They compared
the classification accuracy of Logistic regression, Support
Vector Machines and Multi-Layered Perceptron (MLP) and
concluded that MLP had the highest accuracy. The best
performing classifiers with acceleration data in the discussed
literature were DT, Neural Network and LR. However, signal
patterns are different for each robot, and thus these results
cannot directly be used on our mobile robot.

I-2 Knowledge gap
Nothing in literature could be found for blind collision de-
tection and classification for a soft object with a heavyweight
cleaning robot in a soiled environment. The robots from
the literature study are lightweight with low driving friction,
usually in a controlled environment. Papers found on mobile
robots in a highly soiled environment focus on navigation
instead of object detection and classification.
Additionally, a method based on the three-phase current for
object detection and classification in a wheeled mobile robot
could not be found. Techniques to detect overload using raw
three-phase current signal patterns did not turn up. Lastly,
acceleration signal patterns have shown to discriminate be-
tween the type of object, however, the patterns are different
for each robot and thus a new algorithm needs to be trained
for a heavyweight mobile robot.

I-3 Generic approach
The method used is derived from preliminary experiments
and inspired by different methods presented in the literature,
both from robotic arms and lightweight mobile robots. Cur-
rently, the data of the robot is logged with 10Hz. Based on
the Nyquist-Shannon Sampling Theorem (Shannon, 1949),
it can then only reconstruct signals with a frequency <5Hz.
Therefore external sensors are placed on the robot to reach
a higher sample rate of 1000 Hz, as the minimum sample
rate used for object classification in literature is 125 Hz
(Appendix A). Preliminary data acquisition and analysis
showed that the collision type III (Fig. 1(c)) of a soft
object (40 kg) could not be detected (see Appendix C for
this analysis). Thresholds on acceleration and motor current
data to determine the exact time of collision proved to be
not applicable. Any signal changes due to a soft collision
were visually undetectable during normal movement of the
robot, despite different high- and low-pass filters applied.
Furthermore, the excited frequencies of the acceleration in
driving direction during movement with and without an
object did not empirically change. The momentum caused
by the robot’s weight (being ten times heavier than the
object) presumably overrules a noticeable impact from the
soft object. In addition, the cleaning robot has high fric-
tional forces with the ground due to rubber strips, which
fluctuate enormously in time and varying ground conditions.
Furthermore, the robot’s speed is low, varying from 0.1 to
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0.2 m/s; in combination with the softness of the object, this
will significantly reduce the magnitude of the impact force.
Therefore this thesis focuses on the detection of collisions
type I and II (see Figure 1). Collision type III eventually
transitions into type I or II, therefore this focus can be
defended. For collision type I, a two-stage process is used
to minimize false positives: 1) detection of overload and 2)
perception with acceleration and three-phase current signal
patterns. Acceleration signals in the impact direction are
used for classification. To keep the classification task in the
horizontal plane, this thesis will only focus on classification
of type I collisions. For collision type II, the focus is placed
on a heuristic, robust but straightforward algorithm based on
the pitch angle, robust to dirt buildup in front of the robot,
changes in the slope of the floor and drifting data and still
identify collisions.

I-4 Aim
This research was aimed to close the knowledge gap by
providing the following research goal:
Develop a blind collision detection and classification method
for implementation in a heavyweight mobile cleaning robot
in a soiled and uncontrolled environment.
The approach presented in this paper uses a data-driven
strategy to address the main challenges associated with blind
mobile robots in a soiled environment:

• detect when the wheels block by predicting motor
overload based on the raw phase current signal pattern
(G1),

• identify the type of object causing this overload by
classifying the unique signal patterns (G2),

• determine if the robot slides on top of a soft object by
deviating pitch angle(G3),

• validate the developed algorithms in a dynamic and
soiled environment (G4).

This thesis aims to re-introduce previously unused sensors
in the robot for a new purpose to improve the robot’s
object detection. To reach goals G1, G2 and G3, algorithms
A1, A2 and A3 will be developed. With these algorithms,
collision events in a predominantly uneventful environment
will be detected, to be able to stop the movement of the
robot. This measure can significantly decrease the risk of
harmful injuries.

From the three-phase motor currents, information such as
hardness can be obtained based on the rate of change (Cho
et al., 2012). The wavelength of the three-phase current
signal will change based on the specific object, depending
on the hardness or elasticity of the object, determining how
fast the wheels come to a stop. Acceleration signals give
information about the hardness, elasticity, and stiffness.
After impact, it is expected that each object has its unique
signal pattern, like tapping sounds coming from different
materials. With the combination of motor current and
acceleration measurements, the hypothesis is that different
soft objects can be distinguished from hard objects.

To test these expectations, three experiments were carried
out in June and August 2021 to characterise the machine
behaviour for different types of collisions and to develop
and train the three algorithms in order to achieve the research
goals. The method is described in Chapter II, including the
hardware used and the experiments performed. Hereafter the
results are presented in Chapter III, followed by a discussion
of the results in chapter IV. Finally, a conclusion and future
recommendations are presented in Chapter V.

II. METHOD

This chapter describes the methods used for detecting colli-
sion types I and II. Details on hardware are presented along
with the performed experiments, the analysis method, and
the algorithm development for detection and classification.

II-1 Materials
The used robot is a differential-drive mobile cleaning robot
with rubber strips upfront. Its weight varies from 300 kg
when empty and 700 kg when filled with water. Dimensions
are approximately 1.0 x 1.2 x 0.5 meter, and the velocity
range is 0.1 - 0.2 m/s. The robot logs internal data at 10 Hz,
from which the pitch angle is extracted. To obtain data with
a higher sampling frequency, an external IMU (ADIS 16505,
2000 Hz) is placed inside, and a 3-phase current logger (1000
Hz) is connected to the motors. The natural frequencies of the
robot are primarily present within the bandwidth 300 - 450
Hz, determined using an impact test and FFT plot (Appendix
B). A representation of the robot, its defined axes, and the
specifications are given in Figure 2.

Fig. 2: Representation of the robot used and its defined axes (left).
Specifications of the robot and the sensors used (right).

The three phase current signals were recorded in time-
domain, acquired from both motors using an NI based data
acquisition system and LabVIEW, and saved as CSV. The
program iSensorFX3Eval was used for logging the IMU data
from an USB-c cable and saved as CSV. The data was read
and merged using Python, filling up any missing values with
zeros after re-sampling the IMU data to 1000 Hz.

II-2 Machine Learning Classifiers
For this thesis, supervised learning was chosen as the pre-
ferred method to fulfill goals G1 and G2. Four different
classifiers were compared for collision type I detection and
classification of the object. This thesis could not compare
the whole spectrum of machine learning algorithms due to
the wide range of available algorithms and the continued
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development in this sector. When selecting the suitable
classifiers, the following criteria needed to be met:

• Effective with little training data (<300 samples per
class)

• Robust to noise in data
Based on the selection criteria and the literature discussed,
this thesis compares the classifiers Random Forest (RF),
MLP, LR and Decision Tree (DT) during training of the
algorithms. After training, due to the significant computation
time when implemented in time-series, only two classifiers
with the best prediction accuracy are compared for open
world classification in time-series.

With a part of the data obtained from the experiments,
the classifiers are trained using the target signal patterns
of collision detection and classification (training set). The
remaining part is used for validation (test set). The train
and test set contain respectively 80% and 20% of the whole
dataset. The prediction accuracy on the test set will vary per
run as a result of shuffling of test and train sequences. To
systematically compare the methods, the average accuracy
will be determined of 10 consecutive runs.
Table 1 presents an overview of the used classifiers, including
the method, pros, cons and the specifications used for training
in Python.

II-3 Experiments
Three experiments were performed to develop the methods
and train the three algorithms in order to achieve the
research goals. The experiments give information about the
behaviour of the robot during collisions type I and II, and
collects data for object characterisation. The experiments
were performed in controlled lab conditions.

II-3.1 Experiment A: Driving Routes: The aim of the first
experiment was to analyse the behaviour of the robot during
normal operation and when colliding with a 40 kg soft object
(leather bag filled with sand, see Appendix Fig. 44). This
experiment determines the exact direction of the methods
used to achieve the research goals. The three phase motor
currents, acceleration in driving direction and pitch angle
were collected.
Three types of driving routes were programmed which
include the relevant actions of the robot during operation:
(a) wallbump: driving against the wall; (b) wallfollow:
scraping along the wall, with the wall to the right of the
robot; (c) freeride: riding without touching the wall (Figure
3). Each route is driven ten times with and without a 40 kg
soft object placed in the trajectory of the robot.

II-3.2 Experiment B: Stationary Robot Object Classifica-
tion: The second experiment was performed with a sta-
tionary robot, to gather information from pure acceleration
signals in impact direction. The goals of this experiment were
to 1) determine the impact frequencies of the soft and hard
object, 2) compare four different classification algorithms
for these conditions and 3) compare the input features that

Fig. 3: Driving conditions for experiment A; Wallbump, Wallfollow,
and Freeride. With and without soft object (bottom / top) of 40 kg
placed in its trajectory. Used for analysis of the robots behaviour
during type I and II collisions.

result in the most accurate classification. With this test,
pure acceleration signals from impact with an object can be
obtained without driving vibrations caused by movement of
the robot (Fig. 4). For three representative object velocities,
the acceleration of the robot in impact direction is obtained.
The objects hang as a pendulum from the ceiling, free from
the ground and are released against the stationary robot. The
objects are a 40 kg wooden beam and a 40 kg bag filled with
sand, and are released at horizontal speeds of 0.1, 0.2 and
0.24 m/s (1). The experiment is repeated 50 times for each
object and its velocities, making 300 collisions.

Fig. 4: Visualisation of Experiment B: pendulum test, and equation
(1) for bottom velocity

II-3.3 Experiment C: Object Classification During Robot
Movement: Experiment C collects the three phase currents
and acceleration signals when the robot drives against two
different types of soft objects between the robot and wall,
and the wall without an object. The goals of this experiment
were to train the object classification algorithm for goal
G2, and reflect on the acceleration signals compared to the
stationary robot data from Experiment B. The motor current
that is needed for a given speed varies with the payload
of the robot and the friction of the floor. Therefore it is
important for future implementation to vary these properties.
The robot’s weight (300 kg, 450 kg, 700 kg) and the friction
of the floor (with rubber strip, µs = 0.75 and 0.37)(Appendix
24) are independent variables. Dependent variables are the
acceleration signal in impact direction and three phase motor
currents at the time of collision with each object. The wall in
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Classifiers Model Pro’s Con’s Specification settings Python

Decision Tree (DT) Predicts the target variable class by
learning simple rules of decision
(<, =, >) on training data. The
prediction arises from a series of
splits based on input feature num-
bers, generating a tree-like graph
(Alzubi, Nayyar, & Kumar, 2018)

• Effective with little training data.
• Very simple, low in captivated
memory space.
• Less affected with irrelevant fea-
tures.

•High accuracy requires heavy fea-
ture engineering.

default

Random Forest (RF) Uses a set of 50 decision trees,
internally trained with random fea-
tures. The most votes among each
outcome of the decision trees is the
predicted class.

• Effective with little training data.
• Very high accuracy and very ro-
bust, low variance.
• Less affected with irrelevant fea-
tures.

• Captivates most memory space.
• Appears as a black box model
structure.

n estimators = 50

Multi-Layered
Perceptron (MLP)

Feedforward neural network with
backward propagation. It consists
of input layers, hidden layers and
an output layer. Learns by chang-
ing weights of the neurons that it
assigns to itself (Gardner & Dor-
ling, 1998)

• Effective to complex nonlinear
problems.
• Can reach very high accuracy.
• Quick predictions after training.
• Can reach high accuracy with
lesser training data than other Neu-
ral Networks.

• Requires more training data then
DT, RF, LR for difficult classifica-
tion tasks.
• Performance variance is high for
each training set.
• Has a black box model structure.

alpha = 1e-5,
hidden layer sizes = (30,30,30),
solver = ’adam’,
activation = ’relu’,
learning rate init = 0.01,
learning rate = ’adaptive’

Logistic Regression (LR) Implements regularized logistic re-
gression equation. For multiclass, a
binary problem is fit for each label,
the highest prediction score of all
classes is chosen. (Alzubi et al.,
2018)

• Effective with little training data.
• Very simple, low in captivated
memory space.
• More accurate for simple training
sets.

• Less accurate with complex clas-
sification problems.
• High accuracy requires heavy fea-
ture engineering.
• Poor performance with irrelevan-
t/correlated features.

max iter = 400,
multi class = ’ovr’

TABLE 1: Specifications of classifiers DT, RF, MLP and LR used to detect motor overload (G1) and predict type of object (G2).

the workshop is a rigidly fixed wooden beam to the floor. A
Wallbump is defined as a collision type I without an object
between robot and wall. The soft objects placed between
robot and wall are representative for real objects in the field
of operation of the robot and include 1) a 40 kg leather bag
filled with sand and 2) a polyether foam block over the whole
length of the wall. Each combination of object, weight and
floor properties is executed ten times, collecting a total of
180 collisions; the test matrix is given in Table 2.

II-4 Blind Collision Overload Detection (G1)
There is a large uneventful interval around each collision,
causing false positives to become more likely. Therefore a
double verification process to detect a collision was used:
first, detect overload by collision with a sliding window and
an open-world classification algorithm identifying blocked
wheels (goal G1), and afterwards predict the type of object
OR if the overload is not caused by a collision (goal G2).

A plot of the three phase currents during a collision with
the wall from Experiment A can be seen in Figure 5. The
black line shows the point in time where the robot hits the
wall (without object), and at the red line, the phase currents
increase above the rated value (overload), causing the rotor
to lock. Events will be detected using the characteristics of
the waveforms during overload. Therefore the part after the
red line will be used for the first goal G1: detection. The
part between the black and red line gives information about
the object between robot and wall, and will be used later in
the report for the second goal: classification. Following this
method, a robust detection system can be developed.

II-4.1 Development Algorithm - Training: The dataset for
overload detection was made of 1000 ”no event” samples of
normal phase current data and 360 samples of ”overload”

Dependent variable Weight robot [kg] Floor Collisions

Wallbump 300 High friction 10

Low friction 10

450 High friction 10

Low friction 10

700 High friction 10

Low friction 10

Sandbag + wall 300 High friction 10

Low friction 10

450 High friction 10

Low friction 10

700 High friction 10

Low friction 10

Foamblock + wall 300 High friction 10

Low friction 10

450 High friction 10

Low friction 10

700 High friction 10

Low friction 10

Total 180

TABLE 2: Test matrix of Experiment C: used for training and
validation of blind object classification algorithm. Variations of the
robot’s weight and floor friction are included for robustness of
algorithm in new environments.

(Table 3). A signal of length 100 ms has been chosen
for fast detection when applied in time-series data. Open
world classification was used since real-time detection in
an uneventful environment is wanted. No event samples are
harmonic phase currents in different amplitudes; Figure 6
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Fig. 5: Three phase currents of the right motor during start of
collision type I without object (black dotted line) until locked rotor
(red dotted line). Obtained in controlled lab conditions.

shows the phase current samples for a locked rotor and
normal driving data. The test and training samples of bumps
are made of 8 collisions, split in 15 samples per collision
for each of the left motor three phase currents (C1, C2,
C3), making a total of 360 sequences (Appendix Fig. 25). In
the Appendix more phase current sequences of eventful and
uneventful data can be seen (Figures 26, 27). The sequences
are trained using Python, the script is presented in Appendix
f.1 and f.2.

Total sequences Length sequence Training sequences Test sequences

[#] [# datapoints] [#] [#]

No event 1000 100 797 203

Overload 360 100 291 69

TABLE 3: Characteristics of the dataset to train and test the
classifiers for goal G1: detection of overload using the raw phase
current.

Fig. 6: Phase current signal patterns of an Uneventful and Overload
sequence of 100 ms used to train the classifiers for goal G1:
detection of overload using the raw phase current.

II-4.2 Real-Time Implementation: Due to the long run time
across an entire time-series dataset, only the two best per-
forming algorithms from the previous step are implemented
for time-series detection. The classifiers will run through one
hour of eventful and uneventful data using a sliding window.
An improvement in the detection accuracy was to threshold
the prediction probability of an overload detection. If the
predicted sample of overload had 85 percent certainty, the

detection was deemed successful; otherwise, the signal was
ignored.
Only one out of three phases of the motor supply current
will be monitored for real-time overload detection. Since the
robot has two motors, the algorithm will run through both
motor currents consecutive. When an overload is detected on
the first motor (left wheel), the algorithm will directly check
the second motor (right wheel). A collision event signal is
triggered if both rotors are predicted as locked.
Sequences through the dataset were made using a sliding
window as shown in Figure 7.

Fig. 7: Sliding window used for prediction collision type I in time-
series data. The window contains 100 samples (100 ms) and moves
with 10 samples (10 ms) each step

The window has the same length as the trained sequences,
with a time step of 10 ms, the detection algorithms will run
through time-series data. A smaller time step will slow down
the algorithm, while a bigger time step can skip important
data. The same collision can be detected multiple times
due to the duration of the signal and the sliding window.
Therefore, consecutive events with an interval shorter than
0.5 seconds are ignored. Furthermore a minimum of two
consecutive bumps is required for successful event determi-
nation to reduce false positives. The detection algorithm (A1)
provides the starting point for object classification, which
allows for the collision signal to be segmented. In Appendix
f.3 the Python script is presented.

II-5 Blind Object Classification (G2)
When an object hits different materials, varying patterns are
produced in the data segments during impact. These signals
can be processed using machine learning techniques for
classification. To keep the classification task in the horizontal
plane, this thesis will only focus on classification of type I
collisions. Besides, it is assumed that collisions of type II
will not happen with a hard object, and will push the object
forward against a wall (transitioning into type I).
A plot of the three phase current of a collision with the wall
from Experiment A was seen in Figure 5. The part between
the black and red line gives information about the possible
object between robot and wall. After detection of overload
(red line), described in the previous section, the algorithm
can go back a section in time to predict the type of object
(goal G2).
Since the robot is in motion, the natural frequencies of
the robot can be excited. To be able to filter out these
frequencies, the specific impact frequency per object was
determined from Experiment B: impact with a hard and soft
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object on a stationary robot. The impact frequencies per
object were determined using an FFT plot. The prediction
performance of classifiers RF, MLP DT and LR for
classification of pure acceleration signals from a hard and
soft object collision will be determined using Python. Next,
these learning’s will be used to develop the algorithm for
collision classification during movement of the robot in
Experiment C. Here the three phase motor currents are an
important extra feature.

II-5.1 Development Algorithm - Training: The classifiers
RF, MLP, DT and LR were trained and compared with data
from Experiment B and subsequently trained and compared
with data from Experiment C.
II-5.1.1 Experiment B: An FFT plot made from the colli-
sion sequences of the hard and soft objects in Experiment B
showed the impact-specific frequencies of each object. Based
on this data, the cut-off frequency of a Low-Pass (LP) filter
to process the acceleration signal could be set at 100 Hz - to
filter out the higher natural frequencies of the robot. The 300
collisions from Experiment B are labelled and shortened to
sequences of 200ms. The length of the sequences was chosen
based on the length of the signal. Data is normalized for
the algorithm not to focus on magnitude but signal pattern
(Zacc/max|Zacc|). The machine learning classifiers will be
compared for different input features to determine the input
that achieves the most accurate result for this type of object
classification. The input features for acceleration are 1) raw
data; 2) LP filtered (cut-off 100 Hz) and 3) the FFT of the
sequence.

Total sequences Length sequence Training sequences Test sequences

[#] [# datapoints] [#] [#]

Soft object 150 200 121 29

Hard object 150 200 119 31

TABLE 4: Characteristics of the dataset to train and test the
classifiers for Stationary Robot Object Classification

II-5.1.2 Experiment C: The same filters and acceleration
signal processing features were used to train the algorithms
for classification during robot movement, based on Table
2. The input features will be based on raw or processed
phase current signals and acceleration data. Since the robot is
differential wheeled, both left and right motor current needs
to be implemented in the algorithm. To combine this into a
single feature, the maximum of the three phase currents of
each motor is determined and multiplied for the left and right
motor (Maximum Power). This makes one signal dependent
on both wheels, and could result in an increased performance
by reducing the number of input features.
Segmented collision signals with a length of one second will
be classified. Once again, the performance of the classifiers
RF, MLP, DT and LR for different input features was
compared. To apply the classifiers on multi-variate time-
series data, e.q. acceleration and motor current, the sequences
must be flattened into a vector. Each two dimensional se-
quence array is re-shaped from [l samples, n features] into

[1,l samples x n features] (Figure 8), where l samples is the
length of the samples and n features is the total number
of features in a sample. Subsequently, the entire dataset
will be of shape [n samples, l samples x n features], where
n samples is the number of collision sequences. The Python
script for training the classes is presented in Appendix f.5.

Fig. 8: Example of a time-series sequence flattened into a vector

II-5.2 Real-Time Implementation: During real-time imple-
mentation, the detection algorithm A1 can signal a false
positive or event of no interest; this can happen when the
robot scrapes along the wall during navigation, or due to a
second push. Therefore the classifier should have an extra
output of no event, to place unseen data which can not
be classified as wallbump or object. The output of the
final classification model will be a prediction in the classes
[no event, wallbump, sandbag, foamblocks].
From Experiment C, Table 2, the classifiers were trained
with different types of floor frictions and payloads. This will
improve the algorithms robustness when applied to different
robots of the same type in a new environment. The Python
script for predicting classes after detection (Algorithm A2)
is presented in Appendix f.6.

II-6 Detection of Deviating Pitch Angle (G3)
The motor wont block if the robot slides on top of the soft
object, ergo collision type II will not be detected using the
same method as for collision type I.

II-6.1 Development Algorithm: A machine learning model
is not necessary to reach the third goal, therefore a heuristic
method was developed to detect sudden change in the pitch
angle. However, data from Experiment A showed a drift
in pitch angle, whereby a simple threshold would not be
sufficient. Furthermore, it should be robust in an uncontrolled
environment; slopes in the floor and dirt build-up in front
of the robot. Filtering out the low frequencies to recover
for drift in the sensor signals caused a loss of information
in magnitude (Appendix Fig. 28). In Python, an algorithm
is developed that can be run real-time to detect a sudden
negative change in magnitude. A moving average of the
pitch angle with a lagging window of 80 seconds is de-
termined. Any deviation from this average that exceeds a
threshold is considered an event. The moving threshold of
five degrees deviation is determined based on two times
the maximum outlier of uneventful data, determined using a
boxplot (Appendix Fig. 29). This proved to be the optimum
between eliminating false positives and detecting events.
Eventful signals will not be included in the lagging window
to calculate the threshold, this way the algorithm signals an
event for the whole duration of the collision. The algorithm
is presented in Python script in Appendix f.4.
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II-7 Validation Algorithms in Dynamic Environ-
ment (G4)
The algorithms developed will be validated for real-time
implementation in a different environment under soiled and
dynamic conditions.
From goals G1 and G2 only the best performing classifier
will be validated in an uncontrolled and dynamic
environment due to the significant computation time
when implemented in large time-series data-files. The
hardware and sensors were set up on another robot of the
same type operating in a soiled and dynamic environment
with moving objects. The classifiers were tested for its true
and false positives for each algorithm. Since more data was
available at with a sample rate of 10 Hz, the algorithm for
detection of deviating pitch angle could be validated on
seven different robots, in a dynamic and soiled environment.

II-7.1 Implementation Pipeline: A pipeline for implemen-
tation of the algorithms was developed to use for real-
time collision detection on the heavyweight mobile robot.
This implementation scheme aims to reduce the number of
false positives significantly by adding the expectation of
hitting a wall, the pitch angle algorithm and true/false time
duration statements. It can be used to robustly implement
the developed methods in the field before developing future
algorithm improvements.

III. RESULTS

The results of the developed algorithms are represented in
this chapter to reflect on the the research aim and goals.
First, the blind collision detection outcomes for goal G1 will
be evaluated, after which the blind collision classification
outcomes for goal G2 will be examined. Thirdly the results
of the detection of deviating pitch angle (G3) will be given
followed by the validation of the algorithms in a dynamic
and soiled environment.

III-1 Blind Collision Overload Detection (G1)
Events of collision type I are detected using the signal
pattern characteristics of the phase current waveforms
during overload. The results of training the algorithm are
described in the next subsection followed by the results of
implementation of the algorithm in a new data-set.

III-1.1 Development Algorithm - Training: Table 5 shows
the performance of the compared algorithms on the test
sequences. RF has the highest average detection accuracy
of 98.6%, and a slightly less performance of MLP with
an average accuracy of 97.9%, followed by DT (91.2%)
and LR (82.4%). The confusion matrixes of the best
performing algorithms can be found in Appendix Fig.30.
The successive results in Table 5 concerns the best two
performing classifiers for time-series implementation.

III-1.2 Real-Time Implementation: When run through one
hour of time series data in lab conditions, both algorithms
detected 100% of the 13 type I collisions (Appendix Figures
32 and 31). It can be seen that using the RF classifier,
harmonic phase current signals but with a high amplitude are
effectively ignored. MLP had a significantly larger amount of
false positives than RF (59.0% versus 0%). When the robot
hits the sidewall hard, the wheels can also block, however,
this is defined as a Non collision, not a false positive. These
type of blocked wheels will be later on classified as a
collision of no interest. The MLP based learning algorithm
runs faster through 10 seconds of time series data than RF,
with an 8.48 second duration versus 9.05 seconds. Both
algorithms are faster-than-real-time. Table 5 shows the results
for the detection of type I per learning algorithm.

Performance Detection RF MLP DT LR

Accuracy test set 98.6% 97.9% 91.2% 82.4%

True Positive rate time-domain 100% 100% - -

False Positive rate time-domain 0% 59.0% - -

Overload detected of type Non collision 6 6 - -

Algorithm’s speed over 10 s of data [s] 9.25 8.48 - -

TABLE 5: Accuracy of classifiers compared for goal G1: detection
of overload using the raw phase current. During training four
algorithms were compared using the test set of sequences. Only the
best performing two were compared for real-time implementation
using a time-series data-set. A higher false positive rate means a
higher number of false positives.

III-2 Blind Object Classification (G2)
This section examines the outcomes of the blind collision
classification method by analysis of experiment B and C.
First the results of training the algorithms on data from
experiments B followed by C are described, whereafter the
best performing algorithms are analysed for its accuracy in
a time-series dataset.

III-2.1 Development Algorithm - Training:
III-2.1.1 Experiment B: The impact frequencies of each
object are shown in Figure 9, together with the raw and
filtered time-series acceleration signal. It can be observed that
the impact frequencies are below 100 Hz, where the natural
frequencies were most dominant above 300 Hz (Appendix
B). Therefore, a low-pass filter with a cut-off frequency of
100 Hz is applied to the data. Figure 33 in the supplementary
materials shows the importance of filtering these collision
signals for classification; the raw collision signals with a
soft object looks uncorrelated, where the filtered data shows
significant similarities. Acceleration data and FFT plots from
experiment B can be seen in the supplementary materials
(Appendix Figures 34, 35, 36, 37, 38, 39)
The accuracy scores of the different algorithms with different
input features is shown in Table 6. It can be seen that all
algorithms perform good; RF has the highest score of 100%
accuracy. LR and MLP follow up close (99.5% & 99.3%),
and DT stays behind with 92.8%.
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Fig. 9: Specific signal patterns of the pure collision signals (raw
and filtered) for hard and soft objects (top), with their corresponding
frequency spectra (bottom).

Performance RF MLP DT LR Average

Raw acceleration data 100.0% 99.3% 92.8% 99.5% 97.9%

Low-pass filter (cut-off 100Hz) 99.4% 98.7% 96.4% 98.7% 98.3%

Fast Fourier Transform 99.4% 99.5% 98.1% 98.8% 99.0%

Average 99.5% 99.3% 96.0% 98.8%

TABLE 6: Performance Stationary Robot Object Classification.
Average accuracy of classification algorithms on the test set - com-
pared for goal G2 using stationary robot collisions from Experiment
B.

III-2.1.2 Experiment C: Figure 10 provides an illustration
of the signal patterns for collision type I for each dependent
variable. A clear difference can be seen in the slope of
the phase current after a Wallbump, Sandbag or Foamblock
collision. Furthermore, the deceleration of the robot during
Wallbump is more significant in magnitude than the other
objects. In the acceleration collision signal of the Sandbag
the deceleration is more difficult to observe - though still
present, but it has a drift upwards. This is due to the object
causing the robot to tilt slightly, which skews the IMU and
lets gravity influence the signal. Ten acceleration and phase
current signals for each object can be found in Appendix
Figure 43, 44 and 45.
Table 7 shows the performance of the algorithms for
the different input features. It can be seen that Random
Forest performs best, followed by DT, LR and MLP.
However, in perspective with results from experiment B,
the performance of the MLP based algorithm is falling short.

III-2.2 Real-Time Implementation: The detection
algorithm of G1 defines the endpoint of the one-second
segment for classification when applied to time-series
data. For accurate implementation with unpredictable
robot movements, it should be emphasized that both the
(processed) motor current and acceleration signals must be
used as input features. As an example, Figure 11 shows

Performance RF MLP DT LR Average

Maximum power + LP filtered acc 93.3% 57.4% 86.2% 58.5% 73.9%

LP filtered acc 92.8% 64.0% 83.1% 60.3% 75.1%

C1 + C4 + raw acc 92.4% 65.2% 82.1% 55.1% 73.7%

Maximum power + raw acc 91.9% 59.2% 84.0% 62.2% 74.3%

Maximum power 91.8% 67.5% 85.1% 62.0% 76.6%

C1 + C4 89.4% 48.4% 83.5% 51.0% 68.1%

FFT2 acc 59.5% 63.0% 48.3% 60.4% 57.8%

Average 88.7% 60.0% 80.6% 60.3%

TABLE 7: Performance Object Classification During Robot Move-
ment. Average prediction accuracy of classification algorithms on
the test set - compared for goal G2 using moving robot collisions
from Experiment C. Tested when trained with different input
features in which the maximum power stands for: max(C1;C2;C3)
* max(C4;C5;C6)

the phase motor current and filtered acceleration signal of
a forward Wallbump collision versus a backward driving
Wallbump collision. It can be observed that the motor
currents have the same behaviour, but - as expected, the
acceleration signal sign flips. The acceleration signals during
collision with a hard and soft object on a stationary robot
(Fig. 9) differ substantially from acceleration signals during
collision with a hard and soft object in robot movement.
This can be explained due to the low speed of the robot,
making the acceleration signal caused by impact force to not
rise above the driving vibrations. Therefore for time-series
implementation the best performing algorithm trained with
moving robot data from Experiment C will be used. Table
2 shows this to be the Random Forest classifier with input
features Maximum Power and LP filtered acceleration.

Figure 12 shows the final overview of the classifier perfor-
mance for goal G1: detection and goal G2: classification of
type I collisions, and the false positives in test data of 1 hour
of the overload detection algorithm.

III-3 Detection of deviating pitch angle (G3)
Events of collision type II are detected using a developed
algorithm that identifies sudden changes in the pitch angle.
III-3.1 Development Algorithm: Figure 13 shows the pitch
angle of the robot in controlled lab conditions. The smaller
downward peaks are caused by the robot’s acceleration
from a standstill, causing it to tilt. The most prominent
downward peaks are when the robot is on top of the object.
The algorithm detects 10/10 type II collisions.

III-4 Validation Algorithms in Dynamic Envi-
ronment (G4)
Since Random Forest outperformed all other classifiers for
collision detection and classification, this was used for vali-
dation on a different robot of the same type. Table 8 shows
the performance of the developed Random Forest detection
and classification algorithms for collisions type I in one hour
of data from a new environment.
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Fig. 10: One second signal patterns of Phase Motor Current, the calculated Maximum Power and Acceleration data during collision with
each dependent variable, trained in the algorithm for blind object classification (G2) (shown splitted in full size in Appendix Figures 42
and 41)

Validation Dynamic Environment Detection Wallbump Sandbag Foamblock

True Positive rate time-domain 100% 100% 100% -

False Positive rate time-domain 2.67% 8.18% 0% 2.72%

TABLE 8: Performance of the developed best algorithms for goals
G1: detection and G2: classification of collisions type I in a soiled
and uncontrolled environment. Since no foamblocks could be placed
in this environment, no true positives are available. A higher false
positive rate means a higher number of false positives.

In the data from experiment A the pitch deviation from
collision is dominantly visible; however, this is more
difficult in the uncontrolled field, and the probability of
false positives is high. Therefore the algorithm was tested
on 24 hours of uneventful data from a similar robot in
dynamic and soiled conditions, where the algorithm gives
no false positives (Appendix Fig.46). The algorithm is
additionally validated on seven different robots in different
soiled environments, where no false positives are given as
well (Appendix Fig.47). Lastly, in a log of eventful data in a

dynamic and soiled environment the collision was detected
(Appendix Fig.48).

III-4.1 Implementation Pipeline: Figure 14 shows the sug-
gested pipeline for implementation of the developed algo-
rithms to use for real-time collision detection and classifi-
cation. For each red circle, action is desired from the robot
operator. The wall expectation statement reduces the amount
of non-interesting overload detection events that need to be
classified. When a wall is not expected, the overload duration
needs to be at least five seconds to signal and classify the
event. For collision type II, a duration penalty of five seconds
is suggested to ensure it is not a short tilt reaction but still
minimizes harm.
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Fig. 11: Top: Phase Motor Current C1 (left motor) (C1) and
Phase Motor Current C4 (right motor) (C4) and bottom: raw and
filtered acceleration signal. Shows similarities in forward Wallbump
collision and a backwards driving Wallbump in the phase current
signal, however a clear difference in acceleration signal can be seen

Fig. 12: Overview of classifier performance for goal G1: detection
and goal G2: classification of type I collisions, and the false posi-
tives for test data of 1 hour of the overload detection algorithm. A
higher false positive rate means a higher number of false positives.

IV. DISCUSSION

The primary aim of this thesis was to develop a blind colli-
sion detection and classification method for implementation
in a heavyweight, low-speed mobile cleaning robot in a
soiled and uncontrolled environment.
With a data-driven approach and by re-introducing previously
unused acceleration and three-phase motor current signals
in the robot, four machine learning algorithms were trained
and compared for detection and classification. With the pitch
angle, a heuristic algorithm was developed to detect sliding
on top of a soft object. The final algorithms were validated in
a dynamic and soiled environment. This collision detection

Fig. 13: Tilt detection algorithm on lab environment data, detecting
all type II collisions marked with a corresponding event signal
(bottom)

and classification framework was specially developed for a
type of robot whose size and dynamics had no agreement
with the robots seen in the literature concerning collision
detection and classifications.
To summarise the main findings, the detection method has
proven to support the first goal G1; overload of the motor can
be detected based on the specific signal pattern: interruption
of the harmonic phase current. Additionally, the second goal
G2 was achieved; obstacles that caused this overload can be
identified by classifying the unique signal pattern, provided
these also appeared in training data. Thirdly, goal G3 is
fulfilled; determine if the robot slides on top of a soft object
based on the pitch angle. Finally, the last goal G4 is reached;
the methods work in a dynamic and soiled environment.

IV-1 Blind Collision Overload Detection (G1)
The results of the experiments show that sequences of over-
load versus normal harmonic phase current can be correctly
classified during training with 98.6% accuracy using an RF
classifier. For one hour of an unseen time-series dataset,
overload due to a collision was detected 100% using open
world classification. This is a different approach than motor
current-based detection methods used in literature, which
rely on thresholds and a rapid transition of the current value
(Geravand et al., 2013; Cho et al., 2012) or variations in
the frequency spectrum (Gao et al., 2015). The method
from Geravand et al. (2013) and Cho et al. (2012) was
an accurate method to detect hard and soft collisions in
their research, however, the motor currents in Figure 31
indicates a threshold would deploy to many false positives
in this data-set. Irregularities in the floor or acceleration
of the robot can cause a rapid transition of the measured
current as well, generating a number of false positives.
Although the literature showed that optimal performance can
be reached when using a time-varying detection threshold on
the motor current based on the input trajectory model of the
robot, this thesis demonstrated a robust method based on
recognising the overload signal pattern. This is especially
useful in cases where high phase currents are often desired
but at the same time blocked wheels need to be detected.
In general, algorithms based on machine learning have a
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Fig. 14: Pipeline for implementation of the algorithms A1: Blocked wheels algo; A2: Classification algo and A3: Pitch detection algo
for robust implementation of real-time collision detection

longer response time then a simple algorithm. However,
the algorithms developed in this research have shown to be
’faster’ then real-time, which is satisfactory.

IV-2 Blind Object Classification (G2)
From pure, normalized acceleration signals of a hard and
soft object hitting a stationary robot, RF could classify hard
from soft with an accuracy of 100%. Logistic regression
and MLP performed second best with a maximum accuracy
of 99.5% for both algorithms. DT performed least with
an accuracy of 98.1% - however, still satisfactory. These
results are in line with the statement from Wisanuvej et al.
(2014) , ”The accuracy (...) in terms of object identification
proves that accelerometer has a very high potential to capture
the difference in vibration patterns from different materials
(p.2254).” However, the acceleration patterns from stationary
robot collisions (Experiment B) were not similar to the
acceleration patterns during robot movement ( Experiment
C). The classifiers perform different on training data from
both experiments.
The impact signals from soft object collisions with the robot
do not rise above movement noise/friction in acceleration
data, also seen in the supplementary material (Appendix
C). Therefore, although all classifiers performed well for
classifying a pure hard / soft / no collision impact signal on
a stationary robot, the trained classifiers from Experiment
B could not directly be applied to acceleration data during
robot movement. Experiment B did show that each object’s
impact frequency bandwidth was very consistent and could
therefore be used to determine the frequency bandwidth that

should be preserved after filtering the data.
The RF algorithm could classify the type of impact from
movement data with an accuracy of 93.3% on the test sam-
ples, where DT, LR and MLP reached a maximum accuracy
of respectively 86.2%, 67.5%, 62.2%. The least performing
algorithms might need more collisions for training for this
more difficult classification task. There is a clear difference in
phase current and acceleration signal patterns from collisions
against a wall with and without a soft object in between.
In line with Geravand et al. (2013) and Cho et al. (2012),
information such as hardness can be obtained based on the
rate of change of the motor current. A rapid transition of the
current signal indicates a hard collision, and a slow rising
slope indicates a soft collision, which can be traced back
to the type of object. Geravand et al. (2013) and Cho et al.
(2012) did not show that differentiation between different
soft objects using motor current was possible, where the
result from this thesis can differentiate between a foam block
and a leather bag filled with sand.

IV-3 Detection of deviating pitch angle (G3)
A heuristic algorithm based on the change in pitch angle was
developed to detect if the robot slides on top of a soft object.
Assuming the robot would not manage to slide on top of a
hard object.
A simple threshold would suffice if no drift in the pitch angle
data was present. Furthermore, drift in integrated senor data
is a well-known concept, demonstrating the importance of
an algorithm that handles this well.
A running mean with a threshold on the deviation from this
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mean allowed pitch signals caused by collision type II to
be accurately detected. A similar concept using a running
mean on acceleration signals detected robot collisions in the
aforementioned literature (He et al., 2007). The developed
algorithm in this research shows that this type of method can
also be applied to sensor data experiencing drift. It identified
all events in lab conditions and showed robust to false
positives in data from a robot in a different, uncontrolled
environment. Therefore, existing slopes in the floor and dirt
build-up in front of the robot did not reduce the algorithm’s
accuracy.
As the classification task was limited to the horizontal plane,
the proposed method does not provide an opportunity to
classify the type of object for this specific collision (type
II).

IV-4 Validation Algorithms in Dynamic Environ-
ment (G4)
The performance of the algorithms developed for goals
G1 and G2 was slightly less in a dynamic environment
than achieved in training data, with 8.2% false positives on
Wallbump detection and 2.7% false positives on Foamblock
detection. However, the algorithm still performed satisfacto-
rily in this dynamic and soiled environment.
The scientific articles in the blind collision detection and
classification branch keep the environment and the robot’s
payload constant. Furthermore, no article was found that
applies its blind collision detection and classification method
in a soiled environment. When implementing the algorithms
according to the developed pipeline, this method is innova-
tive and robust in dynamic environments.

V. CONCLUSION AND RECOMMENDATIONS
To summarise the main findings, 100% of overload events
with the developed data-driven method can be detected, and
the type of impact with an accuracy of 93.3% using Random
Forest. Furthermore, all events of the robot sliding on top of
a soft object were detected. With the developed algorithms
and the implementation scheme, we will be able to detect
collision events in a predominantly uneventful environment
to stop the robot’s movement. This measure can significantly
decrease the risk of harmful injuries.

V-1 Recommendations
The Random Forest classifier has shown to outperform
all other machine learning based algorithms in this thesis.
However, MLP was computationally faster, and RF uses a
bigger amount of memory space on the processor then other
algorithms. If this is not desired, another type of machine
learning algorithm can be used and optimized by adding
more samples or an extensive feature engineering method.
The present work opens up opportunities for environment
mapping as well as detecting a variety of types of collisions
with a clear collision signature when the algorithm is trained
to do so. The classification method can be trained for any
type of robot when data from different collision classes are
present. If the robot shows uniformity with other robots,

the algorithm can be duplicated to these kinds of robots,
as proven by validation of the method with another robot of
the same type (Table 8).
Due to the weight and speed of the robot used, classical
detection methods with a threshold could not be used. The
developed method can be used where collision detection is
not possible employing a threshold. The patterns of motor
current overload in other induction motors will correspond.
In the used differential wheeled robot, both wheels had to
block simultaneously for collision detection of type I. This
can be easily adapted when a single induction motor drives
both wheels.
In short, the developed object detection and classification
methods have much potential for improving the behavior of
different types of blind (mobile) robots in different environ-
ments (i.e. dynamic, soiled, dusty or foggy). The developed
method especially adds value to collision detection and
classification for heavyweight and low-speed mobile robots,
where impact signals from soft object collisions during robot
movement do not rise above movement noise in acceleration
data.
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A. APPENDIX - LITERATURE REVIEW ABSTRACT AND RESULTS

A-1 Abstract
Detecting and interpreting collisions is an important aspect of safe robot operations. When the environment does not allow
for visual based detection technologies, ‘blind’ collision detection systems could be used. This literature study will focus on
different methods suitable for blind mobile robots to detect collisions after impact and distinguish different collision objects.
This can be put into a singular research question: ”Which collision detection algorithm is suitable for a blind mobile robot
to distinguish intended contact from unexpected collisions?”. A systematic search was performed to find related articles
to answer the research question. The results can be classified based on the method and sensors used for the collision
detection system. Methods found in the literature are divided into model-based and non-model-based methods. Model-based
methods rely on internal control: current sampling, torque sensors, the velocity deviation or position deviation. Non-model-
based methods rely on an accelerometer, microphone, tactile surface sensors or current sampling. The results confirm that
collisions can be detected and distinguished based on blind sensing. Depending on the desired type of classification task,
various methods are suitable to distinguish intended contact from unexpected collisions. Hard collisions can be accurately
distinguished from soft collisions using multiple thresholds and parallel use of high- and low- pass frequency filters on
acceleration or motor current data. Additionally, processing sound data performed good in discriminating hard from soft
collisions. To classify collisions based on the specific material of the object, learning algorithms based on acceleration data
performed best. Though, for a mobile robot driving on an uneven floor, it can be difficult to obtain a clear collision signal
in order to classify the collision object material.

A-2 Result Tables
A number of 24 useful articles were found, of which 10 are model-based, and 14 non-model-based. Two Tables with all the
results from literature are developed, where each article is classified and the goal, method, type of robot, sample rate and
results of the CD-method are described (Table 9, 10).
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B. APPENDIX - NATURAL FREQUENCY DETERMINATION

The natural frequencies of the robot are determined with a hammer and the IMU sensor. The robot was hit 50 times with a
rubber hammer from the front and side in horizontal direction, while measuring the acceleration in the direction of impact.
From the FFT plot 16 it can be deduced that the excited frequencies are mainly above 300 Hz, with the major peak at 370
Hz.

Fig. 15: Location of impact from rubber hammer concerning natural frequency determination: front and side of the robot in horizontal
direction

Fig. 16: Power spectral density of natural frequencies of the robot excited with a rubber hammer 50x
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C. APPENDIX - TYPE III DETECTION

C-1 Visual inspection of raw data for anomalies
Figure 17 shows the wheelspeed, calculated force and motor current during collision type III (impact in free ride of robot).
An increase in energy of 11.7% was expected due to collision with a 40 kg soft object. However, no causal changes due to
the object can be seen. Furthermore, in the acceleration signal in impact direction there was no visual change in frequency
or magnitude.

Fig. 17: Wheelspeed, calculated force and motor current during collision type III (red cirlce)

C-2 Data filtering
The acceleration collision data is filtered with a low pass filter of 100 Hz, to filter out the natural frequencies. However,
the moment of collision could still not be visually determined. Secondly, the frequency spectrum of collision type III data
is determined with an FFT plot and compared with no collision data. The hypothesis was that impact with an object would
change the frequency bandwith. However, no recurring difference in the frequency spectrum could be seen before and after
collision with the soft object.

C-3 Machine learning collision detection on acceleration data
From experiment B, pure collision signals of acceleration data in impact direction was gathered. The suggested method to
detect collisions was to classify the data with open-world classification into ’hard object’, ’soft object’ and ’no collision’
category. 10,000 sequences of ’no collision’ are randomly generated from experiment B, together with 300 labelled hard and
soft collisions. Classifiers MLP and Random Forest are trained with 80% training data. The confusion matrix of Random
Forest and MLP on 20% test data is shown below. Random Forest false predicts three more labels then the MLP based
algorithm.

Using a sliding window of 100ms, acceleration data gathered during robot movement is passed trough thealgorithms.
In Figure 20 below, 10 collisions of the robot with the hard wall can be seen. It shows the predicted detected hard objects
with MLP detection classifier (in green) and the true collisions(in red). It can be seen that 9/10 hard collisions were detected,
and 2 false positives are generated.
However, detection accuracy of collision with a soft object is poor(Fig. 21. The dotted black line shows the predicted
softbumps, while the red line indicates true softbumps. Many false positives and false negatives were predicted.

C-4 Conclusion
The impact signal from collisions with a soft object of 1/10th the weight of the robot could not be detected during free
movement of the robot. Thresholds on acceleration and motor current data proved to be not applicable. The acceleration and
power change at the time of collision was also visually undetectable, despite different high- and low-pass filters applied.
The frequency spectrum of movement with and without object did not empirically change.
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Fig. 18: Confusion matrix of MLP classifier Fig. 19: Confusion matrix of Random Forest classifier

Fig. 20: Ten wallbumps from Test 2 with frictionless skits, predicted with MLP algorithm with low-pass filter Y-acceleration data as input
feature

This can be explained by the weight of the robot being ten times heavier than the object; the momentum presumably
overruling a noticeable impact from the soft object. In addition, the cleaning robot has high frictional forces with the ground
due to rubber strips, which fluctuate enormously in time and varying ground conditions. Furthermore, the robot’s speed is
low, varying from 0.1 - 0.2 m/s; in combination with the softness of the object, this will significantly reduce the magnitude
of the impact force.
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Fig. 21: Big section of the acceleration dataset during robot movement. Shows the poor accuracy of predicted soft collisions (black)
compared to true collisions (red) with the MLP algorithm

D. APPENDIX - MATERIALS

D-1 Sandbag

Fig. 22: Dummy leather bag filled with sand, representing ’sandbag’

D-2 Friction properties of floor in lab environment with different materials

Fig. 23: Friction coefficients of 40 kg cow’s leather bag filled with sand versus different floor types in lab environment. Dry and soapy
floor, object used in all experiments as ’sandbag’.
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Fig. 24: Friction coefficients of rubber strip with 7 kg weight on top versus coated concrete in lab environment. Dry and soapy floor

E. APPENDIX - FIGURES

Fig. 25: One out of tree phase’s stator current (C1), labbelled as 0 (uneventful) or 1 (collision). Eventful data of one collision is splitted
in 15 sequences of 100ms for training
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Fig. 26: (20 out of 380) Phase current sequences for learning detection algorithm EVENTFUL data during locked rotor

Fig. 27: (20 out of 1000) Phase current sequences for learning detection algorithm UNEVENTFUL data during normal movement
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Fig. 28: High-pass (0.01Hz) filter on pitch angle data including drift, sampled at 10 Hz. Shows loss of information in magnitude with
respect to raw data

Fig. 29: Boxplot of pitch angle data during uneventful driving conditions. Threshold for eventful data is set on -5.0 degrees, to eliminate
false positives in future unseen data
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Fig. 30: Best performing confusion matrix for blocked wheels of MultiLayer Perceptron resp. Random Forest after 10 iterations

Fig. 31: Test data experiment A with 13 collisions (green V). Phase currents from left (C1) and right (C2) motors. Predicted collisions
by RF based algorithm have been marked with a red dotted line.
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Fig. 32: Test data set with 13 collisions (green V). Phase currents from left (C1) and right (C2) motors. Predicted collisions by MLP
based algorithm have been marked with a red dotted line.

Fig. 33: Shows importance of filtering acceleration signals for classification. Acceleration signal from two collisions in impact direction
with a soft object in experiment A
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Fig. 34: Hard object pendulum test 25 bumps raw data

Fig. 35: Soft object pendulum test 25 bumps raw data
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Fig. 36: Hard object pendulum test 25 bumps LP filtered 100 Hz cutoff

Fig. 37: Soft object pendulum test 25 bumps LP filtered 100 Hz cutoff
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Fig. 38: Hard object pendulum test 25 bumps FFT plot

Fig. 39: Soft object pendulum test 25 bumps FFT plot
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Fig. 40: Overview of experiment B time series data, phase current C1, robot weight and type of collision
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Fig. 41: Phase motor current signals from experiment B per dependent varable
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Fig. 42: Acceleration signals from experiment B per dependent varable
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Fig. 43: Acceleration and phase current signals for experiment B: wallbump with a robot weight of 300 kg and low floor friction
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Fig. 44: Acceleration and phase current signals for experiment B: sandbag + wall collision with a robot weight of 300 kg and low floor
friction
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Fig. 45: Acceleration and phase current signals for experiment B: foamblock + wall collision with a robot weight of 300 kg and low
floor friction
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Fig. 46: Tilt detection algorithm on 24h of uneventful data in an uncontrolled environment (top) and corresponding event signal (bottom)

Fig. 47: Tilt detection algorithm on eventful data in an uncontrolled environment (top) and corresponding event signal (bottom)
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Fig. 48: Tilt detection algorithm on uneventful data of 7 different robots in an uncontrolled environment (top) and corresponding event
signal (bottom)
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F. APPENDIX - PYTHON FILES

Python files have been shortened by removing less relevant and comparable codes for the readability.

F-1 Type I collision detection - sequences, label for training

# -*- coding: utf-8 -*-
"""
@author: Emma Kooi
"""
text = ['non_of_the_above','wheelblock']
nr = [0,1]

# Label and series_id for events.
series_id = np.zeros(len(datafile))
series_id = series_id.astype(int)
datafile['series_id'] = series_id # add column of zeros to datafile
datafile['label'] = series_id # add column of zeros to datafile
series_id = datafile['series_id']
label = datafile['label']

window = 0.1
for i in starth:

for m in range(15):
h = j + datetime.timedelta(0,window)
k = h.time()
l = j.time()
starth2.append(l)
endh.append(k)
j = h

# Label the bumps
for i in range(len(starth2)):

series_id.loc[starth2[i]:endh[i]] = i+1
label.loc[starth2[i]:endh[i]] = 1

# Drop all zeros for making sequences of collisions
newdata = df1[˜df1['label'].isin([0])]

loc01 = pd.to_datetime('12:16:00')
loc02 = pd.to_datetime('12:19:30')
newdata2 = df.loc[loc01.time():loc02.time()]
jkl = newdata2[FEATURE_COLUMNS]
jkl = np.array_split(jkl, 1000) # for non_collision sequences

# Make sequences of datalist
sequences = []

for series_id, group in newdata.groupby("series_id"):
sequence_features = group[['C2(A)']]
sequences.append(sequence_features)

for series_id, group in newdata.groupby("series_id"):
sequence_features2 = group[['C2(A)']]
sequences.append(sequence_features2)

for series_id, group in newdata.groupby("series_id"):
sequence_features3 = group[['C3(A)']]
sequences.append(sequence_features3)

window = 0.1
# make all samples equal length
for i in range(len(sequences)):

if len(sequences[i]) > int(window * 1000) :
sequences[i].drop(sequences[i].tail(1).index,inplace=True)

for i in range(len(jkl)):
if len(jkl[i]) > int(window * 1000):

jkl[i].drop(jkl[i].head(len(jkl[i])- int(window*1000)).index,inplace=True)

# Make one list of labels
ll = np.ones((3*len(starth2)))
sequences0 = list(zip(jkl, np.zeros(len(jkl)).astype((int))))
sequences = list(zip(sequences, ll))
sequences = sequences + sequences0
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F-2 Split and vectorize sequences for training

# split into training and test sequences
shuffle(sequences)

train_sequences, test_sequences = train_test_split(sequences, test_size=0.2)

X_train, X_test = [row[0] for row in train_sequences] , [row[0] for row in test_sequences]
y_train, y_test = [row[1] for row in train_sequences] , [row[1] for row in test_sequences]
xx_train = np.array(X_train)
xx_test = np.array(X_test)

# classififers require shape to be a vector
nsamples = len(train_sequences)
nx = int(window*1000) # length sequences
ny = len(features) # lengt features
train_dataset = xx_train
nsamples, nx, ny = train_dataset.shape
xx_train = train_dataset.reshape((nsamples,nx*ny))

nsamples = len(test_sequences)
nx = int(window*1000) # length sequences
ny = len(features) # lengt features
test_dataset = xx_test
nsamples, nx, ny = test_dataset.shape
xx_test = test_dataset.reshape((nsamples,nx*ny))
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F-3 Type I collision detection - motor current

# -*- coding: utf-8 -*-
"""
@author: emmak
"""

F = 1000 # Hz
timestep = 1/F
features = ['C1(A)']

def rollingclf(starttime, endtime, classifier, dataset):
start1 = pd.to_datetime(starttime)
end1 = pd.to_datetime(endtime)
window = 0.1 # 100 milliseconds
timestepT = 0.02
nx = int(window*1000) # length sequences
ny = len(features) # length features
currenttime = time.time()
len_df = len(dataset.loc[start1.time():end1.time()])
len_loop = int(len_df/timestepT/1000)
print("length of dataframe (seconds) = ", len_df/1000)
print("# of windows = ", len_loop)
print('... Waiting for loop finish...')
oldtime = start1

for i in range(len_loop - 100 ): # whole dataset: range(len_df/window)
Rolling = oldtime + datetime.timedelta(0,window)
Rolling2 = Rolling + datetime.timedelta(0,2) # when there are missing values, window extra big
newtime = oldtime # Update newtime for rolling window
dfrol = dataset[features].loc[oldtime.time(): Rolling2.time() ]
if len(dfrol) > int(window*1000): # adjust length to window

dfrol.drop(dfrol.tail(len(dfrol)- int(window*1000)).index,inplace=True)
X = np.array(dfrol)
nx, ny = X.shape
X = X.reshape((1,nx*ny))

"""machine learning tool"""
Ypred = classifier.predict(X)
proba = classifier.predict_proba(X)

""" set cutoff prediction probability:"""
cutoffpred = 0.85
if Ypred ==1 and proba[0][1] > cutoffpred:

""" Start second wheel """
dfrol2 = dataset['C4(A)'].loc[oldtime.time(): Rolling2.time() ]
if len(dfrol2) > int(window*1000): # adjust length to window

dfrol2.drop(dfrol2.tail(len(dfrol2)- int(window*1000)).index,inplace=True)
X2 = np.array(dfrol2)
X2 = X2.reshape((1,nx*ny))
Ypred2 = classifier.predict(X2)
proba2 = classifier.predict_proba(X2)
if Ypred2 ==1 and proba2[0][1] > cutoffpred:

bumplist.append(Rolling.time())
print (Rolling.time(), "double bump", proba[0][1])

"""Implement classification algorithm here for real time application"""

oldtime = oldtime + datetime.timedelta(0,timestepT) # 10 ms timesteps
if i\%5000 == 0: # shows time passed for every 1.5 minute in data

print ((time.time()- currenttime)/60, "minutes passed, currently at", Rolling.time() )

""" Set break time (minutes)"""
breaktime = 150# minutes
if (time.time()- currenttime) > (60*breaktime): # 60 * n-max minutes loop

print ("MAX SET TIME PASSED, stopped at", Rolling.time() )
break

print ("Loop = done")
elapsedtime = (time.time()- currenttime)/60

print( "Elapsed time (minutes): ", elapsedtime)
return bumplist
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""" Set wallbump function parameters """
bumplist = []

# Open Random Forest Algorithm
import pickle
with open("...",

"rb") as fp:
b = pickle.load(fp)

starttime = '12:15:00'
endtime = '12:15:10'
start1 = pd.to_datetime(starttime)
end1 = pd.to_datetime(endtime)
dfcut = df.loc[start1.time():end1.time()]
dataset = dfcut
classifier = b
bumplist = rollingclf(starttime, endtime, classifier, dataset)

def finalbumplist(whichbumplist):
from datetime import datetime, date
count = 0
bumplistfinal = []
bumplistfinal.append(whichbumplist[0])
for i in range(1,len(whichbumplist)-1): # 1: i for real time implementation i-1

dt = datetime.combine(datetime(1,1,1,0,0,0), whichbumplist[i]) - datetime.combine(datetime(1,1,1,
0,0,0), whichbumplist[i-1])

dt = dt.total_seconds()
if abs(dt) > 0.5: # 0.5 seconds in between

count = 0
elif abs(dt) < 0.20:

count = count + 1
if count ==1: # A minimum of two consequtive bumps required

bumplistfinal.append(whichbumplist[i])
print(whichbumplist[i])

if count > 500: # 500 * (bumplist timestep = 0.02) = 10 seconds
print("WARNING: stuck for at least 10 seconds = foam / obstruction")

return bumplistfinal

bumplistX = finalbumplist(bumplist)

F-4 Type II collision detection - pitch

# -*- coding: utf-8 -*-
"""
@author: Emma Kooi
"""

def thresholding(y, lag, threshold):
ignorePeak = 1
calcY = np.array(y)
avgY = [0]*len(y)
avgY[lag - 1] = np.mean(y[0:lag]) # initialize variables
for i in range(lag, len(y) - 1):

"""first if statement eliminates errors due to calibration at charger. Remove this when used real
-time. Change next elif to if."""

if abs(y[i]) < 0.05 and abs(abs(y[i-1]) - abs(y[i])) < 0.005:
calcY[i] = 0
avgY[i] = 0

elif abs(y[i] - avgY[i-1]) > threshold: # Update signals = 0 here for real time application
calcY[i] = y[i]
avgY[i] = np.mean(calcY[(i-lag-ignorePeak):i-ignorePeak])
calcY[i] = avgY[i]
ignorePeak = ignorePeak + 1

else: # Update signals = -1 here for real time application
calcY[i] = y[i]
avgY[i] = np.mean(calcY[(i-lag):i])
ignorePeak = 1

return avgY, calcY

def updateSignals(y, avgY):
signals = np.zeros(len(y))
for i in range(lag, len(y) - 1):

if abs(y[i]) < 0.05:
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signals[i] = 0
elif abs(y[i] - avgY[i-1]) > threshold:

if y[i] > avgY[i-1]:
signals[i] = 0

else:
signals[i] = -1

else:
signals[i] = 0

return signals

dfHz = 1000
lag = 60 * dfHz # 60 seconds
threshold = 6 #degrees

# Run algo with settings from above
avgY, calcY = thresholding(y, lag=lag, threshold=threshold)
signals = updateSignals(y, avgY)

avgY = np.asarray(avgY)
signals = np.asarray(signals)

F-5 Blind object classification - sequences, label for training

# -*- coding: utf-8 -*-
"""
@author: Emma Kooi
"""

theta = 0.136
df['Z_correct'] = df.Z_ACCL_OUT * np.cos(theta) - df.X_ACCL_OUT * np.sin(theta)
df['X_correct'] = df.Z_ACCL_OUT * np.sin(theta) + df.X_ACCL_OUT * np.cos(theta)

dffoam['Z_correct'] = dffoam.Z_ACCL_OUT * np.cos(theta) - dffoam.X_ACCL_OUT * np.sin(theta)
dffoam['X_correct'] = dffoam.Z_ACCL_OUT * np.sin(theta) + dffoam.X_ACCL_OUT * np.cos(theta)

# make sequences
def fingerprint(namebumplist):

from datetime import datetime, date
start = []
window = pd.to_datetime('00:00:01,00').time()
for i in namebumplist:

j = datetime.combine(datetime(1,1,1,0,0,0), i) - datetime.combine(datetime(1,1,1,0,0,0), window)
l = pd.to_datetime(str(j)).time()
start.append(l)

return start

startwall = fingerprint(wallbumplist)
startsand = fingerprint(sandbumplist)
startfoam = fingerprint(foambumplist)
startnon_collisions = fingerprint(non_collisions)

# Feature selection motor current
datafile['C1max'] = abs(datafile[['C1(A)','C2(A)', 'C3(A)']]).values.max(axis=1)
datafile['C4max'] = abs(datafile[['C4(A)','C5(A)', 'C6(A)']]).values.max(axis=1)
datafile['C1C4max'] = datafile['C1max'].values * datafile['C4max'].values

# low or high pass filter on acceleration
fhp,flp = 1 , 50 # Cut-off frequencies resp. high pass & low pass

filter
whp, wlp = fhp / (fs / 2), flp / (fs / 2) # Normalize the frequencies
b, a = signal.butter(4, wlp, btype='low', analog = False) # btype = high/low/band band: [whp,wlp]

featuresA = ['Z_ACCL_OUT']
newfeaturesA = ['LPfilter_ZA']
for i in range(len(featuresA)):

outputA = signal.filtfilt(b, a, dataset[featuresA[i]])
dataset[newfeaturesA[i]] = outputA

# make and label FFT sequences

#define timestep
F = 1000 # Hz
timestep = 1/F #* 1000
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l1 = np.ones(len(wallbumplist))
l2 = np.ones(len(sandbumplist))*2
l5 = np.ones(len(foambumplist))*3
l3 = np.ones(len(non_collisions))*4
l4 = np.ones(len(foambumplist2))* 3

llFFT = np.concatenate((l1,l2,l5,l4,l3,l6)).astype(int)

import datetime

sequencesFFT = []

for i in range(len(wallbumplist)):
dfFFT = df['HPZ_correct'].loc[startwall[i]:wallbumplist[i]]
n1 = len(dfFFT)
n12 = int(n1 / 2 )
ps1 = np.abs(np.fft.fft(dfFFT.values))**2
ps1 = ps1/ps1.max()
sequencesFFT.append((ps1))

for i in range(len(sequencesFFT)):
if len(sequencesFFT[i]) > int(window * 1000) :

sequencesFFT[i] = sequencesFFT[i][:-1]

freqs1 = np.fft.fftfreq(n1,timestep)
sequencesFFT = list(zip(sequencesFFT, llFFT))

# LABELLING
text = ['wallbump','sand', 'foam', 'none']
nr = [1,2,3,4]

# Label and series_id for events.
series_id = np.zeros(len(datafile))
series_id = series_id.astype(int)
datafile['series_id'] = series_id # add column of zeros to datafile
datafile['label'] = series_id # add column of zeros to datafile
series_id = datafile['series_id']
label = datafile['label']

# Label the wallbumps
for i in range(len(wallbumplist)):

series_id.loc[startwall[i]:wallbumplist[i]] = i+1
label.loc[startwall[i]:wallbumplist[i]] = 1

# Label the sandbumps
for i in range(len(sandbumplist)):

series_id.loc[startsand[i]:sandbumplist[i]] = len(wallbumplist) + i+1
label.loc[startsand[i]:sandbumplist[i]] = 2

# Label the foambumps
for i in range(len(foambumplist)):

series_id.loc[startfoam[i]:foambumplist[i]] = len(wallbumplist) + len(sandbumplist) + i+1
label.loc[startfoam[i]:foambumplist[i]] = 3

# Label the non-collisions
for i in range(len(non_collisions)):

series_id.loc[startnon_collisions[i]:non_collisions[i]] = len(wallbumplist) + len(sandbumplist) + len
(foambumplist) + i+1

label.loc[startnon_collisions[i]:non_collisions[i]] = 4

datafile['series_id'] = series_id
datafile['label'] = label

FEATURE_COLUMNS = ['C1C4max', 'LPfilter_ZA']
features = FEATURE_COLUMNS

datafile = df
newdata1 = datafile[˜datafile['label'].isin([0])]

s1 = []
label1 = []

for series_id, group in newdata1.groupby("series_id"):
sequence_features = group[features]
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s1.append(sequence_features)
label1.append(group['label'][1])

window = 1 #[seconds]
remove_index = []
setS = [s1]#,s4]
for j in setS:

for i in range(len(j)):
if len(j[i]) > int(window * 1000) :

j[i].drop(j[i].tail(len(j[i])- int(window*1000)).index,inplace=True)
if len(j[i]) < int(window * 1000):

# print(setS[i])
print('index number', i)
remove_index.append(i)

seq = [s1,label1]
for j in seq:

j.pop(remove_index[-1])

seq = [s1]
s = []
for i in seq:

sequences1 = list(zip(i, label1))
s = s + sequences1

sequences = s

# Check for shape
for i in range(len(sequences)):

print(sequences[i][0].shape, i)

F-6 Blind collision classification - Predict class

# -*- coding: utf-8 -*-
"""
@author: Emma Kooi
"""

F = 1000 # Hz
timestep = 1/F
features = ['C1C4max','LPfilter_ZA','signals']

with open("...",
"rb") as fp:

classifier = pickle.load(fp)

def classification_algo(classifier,dataset,startbumplist,bumplist):
window = 1 # seconds
nsamples = 1 #real time
nx = int(window*1000) # length sequences
ny = len(features) # length features
currenttime = time.time()

for i in range(len(bumplist)): # whole dataset: range(len_df/window)
dfrol = dataset[features].loc[startbumplist[i]: bumplist[i]]
if len(dfrol) > int(window*1000): # adjust length to window

dfrol.drop(dfrol.tail(len(dfrol)- int(window*1000)).index,inplace=True)
if len(dfrol) < int(window * 1000):

print('too few datapoints')
continue

X = np.array(dfrol)
nx, ny = X.shape
X = X.reshape((1,nx*ny))

"""machine learning tool"""
Ypred = classifier.predict(X)
proba = classifier.predict_proba(X)
print(bumplist[i], 'Ypredicted', Ypred, proba)

print ("Loop = done")
elapsedtime = (time.time()- currenttime)/60
print( "Elapsed time (minutes): ", elapsedtime)

classification_algo(classifier,dataset,startWP,bumplistWP)
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