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Correct energy evolution of stabilized formulations: The relation between VMS, SUPG

and GLS via dynamic orthogonal small-scales and isogeometric analysis.

II: The incompressible Navier–Stokes equations

M.F.P. ten Eikelder∗, I. Akkerman

Delft University of Technology, Department of Mechanical, Maritime and Materials Engineering, P.O. Box 5, 2600 AA
Delft, The Netherlands

Abstract

This paper presents the construction of a correct-energy stabilized finite element method for the incom-
pressible Navier-Stokes equations. The framework of the methodology and the correct-energy concept have
been developed in the convective–diffusive context in the preceding paper [M.F.P. ten Eikelder, I. Akker-
man, Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via
dynamic orthogonal small-scales and isogeometric analysis. I: The convective–diffusive context, Comput.
Methods Appl. Mech. Engrg. 331 (2018) 259–280]. This work extends ideas of this paper to build a
stabilized method within the variational multiscale (VMS) setting which displays correct-energy behavior.
Similar to the convection–diffusion case, a key ingredient is the proper dynamic and orthogonal behavior
of the small-scales. This is demanded for correct energy behavior and links the VMS framework to the
streamline-upwind Petrov-Galerkin (SUPG) and the Galerkin/least-squares method (GLS).

The presented method is a Galerkin/least-squares formulation with dynamic divergence-free small-scales
(GLSDD). It is locally mass-conservative for both the large- and small-scales separately. In addition, it
locally conserves linear and angular momentum. The computations require and employ NURBS-based
isogeometric analysis for the spatial discretization. The resulting formulation numerically shows improved
energy behavior for turbulent flows comparing with the original VMS method.

Keywords: Stabilized methods, Energy decay, Residual-based variational multiscale method, Orthogonal
small-scales, Incompressible flow, Isogeometric analysis

1. Introduction

The creation of artificial energy in numerical methods is undesirable from both a physical and a numerical
stability point of view. Therefore methods precluding this deficiency are often sought after. This work
continues the construction of the correct-energy displaying stabilized finite element methods. The first
episode [1] exposes the developed methodology in the convective–diffusive context. The current study deals
with the incompressible Navier–Stokes equations and is the second piece of work within the framework. The
setup of this paper is closely related to that of [1]. In particular, the correct-energy demand is the same,
thus it represents that the method (i) does not create artificial energy and (ii) closely resembles the energy
evolution of the continuous setting. The precise definition is stated in Section 4. What sets the Navier–
Stokes problem apart from convection–diffusion case is the inclusion of the incompressibility constraint. In
this work we use a divergence-conforming basis which allows exact pointwise satisfaction of this constraint.
This is considered a beneficial property. Therefore it is added as a design criterion. In a two-phase context
this property is essential for correct energy behavior [2].
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1.1. Contributions of this work

This paper derives a novel VMS formulation which exhibits the correct energy behavior and to this
purpose combines several ingredients. The final formulation is summarized in Appendix A. The new method
is a residual-based approach that employs (i) dynamic behavior of the small-scales, (ii) solenoidal NURBS
basis functions and (iii) a Lagrange-multiplier construction to ensure the incompressibility of the small-scale
velocities. The formulation is of skew-symmetric type, rather than conservative, which is motivated by both
the correct-energy demand and its improved behavior in the single scale setting (i.e. the Galerkin method)
[3]. Moreover, the formulation reduces to a Galerkin formulation in case of a vanishing Reynolds number
due to a Stokes-projector. The use of dynamic small-scales, firstly proposed in [4], is also driven from an
energy point of view. In addition, it leads to global momentum conservation and the numerical results of
[5] show improved behavior of the dynamic small-scales with respect to their static counterpart.

1.2. Context

This work falls within the variational multiscale framework [6, 7]. The basic idea of this method is
to split solution into the large/resolved-scales and small/unresolved-scales. The small-scales are modeled
in terms of (the residual of) the large scales and substituted into the equation for the large-scales. This
approach was first applied in a residual-based LES context to incompressible turbulence computations in
[8]. The VMS methodology has enjoyed a lot of progress since then. For an overview of the development
consult the review paper [9].

Our work is not the first to analyze the energy behavior of the VMS method. A spectral analysis of
the VMS method can be found in [10]. That paper proves dissipation of the model terms under restrictive
conditions. Additional to the optimality projector, they require L2-orthogonality of the large- and small-
scales. This condition naturally leads to the use of spectral methods.

Principe et al. [11] provide a precise definition of the numerical dissipation within the variational mul-
tiscale context for incompressible flows. Equally important, they numerically show that the concept of
dynamic small-scales, which we apply in this work, is able to model turbulence.

Colomés et al. [12] assess the performance of several VMS methods for turbulent flow problems and
provide an energy analysis of these methods. They conclude that algebraic subgrid scales (ASGS) and
orthogonal subscales (OSS) yield similar results, whereas the latter one is more convenient in terms of
numerical performance.

We build onto [10–12] without requiring L2-orthogonality. Therefore we are not restricted to the use of
spectral methods, while retaining a strict energy relation.

Other recent related work includes the IGA divergence-conforming VMS method of Opstal et al. in
[13]. They also employ an H1

0 -orthogonality between the velocity large- and small-scales on a local level.
Our work deviates from [13] in that we motivate the required orthogonalities with the correct energy de-
mand. Furthermore, our work distinguishes itself by enforcing the divergence-free velocity small-scales with
a Lagrange-multiplier construction. We believe the Stokes orthogonality between the large- and small-scales
is a natural path to take, since it reduces the scheme to the Galerkin method in the vanishing Reynolds
number limit.

The discretizations throughout this work are based on the isogeometric analysis (IGA) concept, proposed
by Hughes et al. in [14]. This idea integrates the historically distinct fields of computer aided design (CAD)
and finite element analysis. Isogeometric analysis rapidly became a valuable tool in computational fluid
dynamics, in particular in turbulence computations. It provides several advantages over standard finite
element analysis, including an exact description of CAD geometries, increased robustness and superior
approximation properties [14–16]. This work requires in particular inf–sup stable discretizations for which
we use [17, 18]. Moreover these spaces allow the pointwise satisfaction of the incompressibility constraint.
The smooth NURBS basis functions are convenient for the computation of second derivatives.

1.3. Outline

The organization of this paper in Section 2 and 3 is very comparable with that of the convective–diffusive
context [1], and at some points mirrors it. The purpose thereof is (i) to indicate the great similarities of the
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methodologies and (ii) to clarify the approach. The remainder of this paper presents the actual construc-
tion of a stabilized variational formulation for the incompressible Navier–Stokes equations which displays
correct-energy behavior. We summarize it as follows. Section 2 states the continuous form of the governing
incompressible flow equations, both in the strong formulation and the standard weak formulation. It addi-
tionally provides the energy evolution of the continuous equation, in both global and local form. Section 3
discusses the energy evolution of the variational multiscale approach with dynamic small-scales. The path
toward correct energy behavior actually starts in Section 4. This Section presents the required orthogonality
of the large-scales and small-scales. This converts the residual-based variational multiscale method into the
Galerkin/least-squares method with the correct energy behavior. Section 5 presents conservation properties
of the method. Section 6 provides a computational test case, namely a three-dimensional Taylor–Green vor-
tical flow. In particular it examines the energy behavior and compares the novel method with the standard
VMS method with static small-scales [8]. The calculations employ the generalized-α method with favorable
energy behavior which is also discussed in [1]. In Section 7, we wrap up and present avenues for future
research.

2. The continuous incompressible Navier–Stokes equations

2.1. Strong formulation

Let Ω ∈ Rd, d = 2, 3, denote the spatial domain and ∂Ω = Γ = Γg ∪ Γh its boundary, see Figure 1.

Ω

Γh

Γg

\

\

Figure 1: Spatial domain Ω with its boundaries Γ = Γg ∪ Γh. This is the same figure as in [1].

The problem consists of solving the incompressible Navier–Stokes equations governing the fluid flow, which
read in strong form

∂tu +∇ · (u⊗ u) +∇p−∇ · (2ν∇su) = f in Ω× I, (1a)

∇ · u = 0 in Ω× I, (1b)

u = g in Γg × I, (1c)

−u−nu− pn + ν∂nu = h in Γh × I, (1d)

u(x, 0) = u0(x) in Ω, (1e)

for the velocity u : Ω × I → Rd and the pressure divided by the density p : Ω × I → R. A constant
density is assumed. Eqs. (1a)-(1e) describe the balance of linear momentum, the conservation of mass, the
inhomogeneous Dirichlet boundary condition, the traction boundary condition and the initial conditions,
respectively. The spatial coordinate denotes x ∈ Ω and the time denotes t ∈ I = (0, T ) with end time
T > 0. The given dynamic viscosity is ν : Ω→ R+, the body force is f : Ω× I → Rd, the initial velocity is
u0 : Ω→ Rd and the boundary data are g : Γg × I → Rd and h : Γh × I → Rd. We assume a zero-average
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pressure for all t ∈ I in case of an empty Neumann boundary. The normal velocity denotes un = u ·n with
positive and negative parts u±n = 1

2 (un ± |un|). The various derivative operators are the temporal one ∂t,
the symmetric gradient ∇s· = 1

2

(
∇ ·+∇T ·

)
and the normal gradient ∂n = n · ∇, with n the outward unit

normal.

2.2. Weak formulation

Let W0 denote the trial weighting function space satisfying the homogeneous Dirichlet conditions on u
and Wg the trial solution space with non-homogeneous Dirichlet conditions on u. The standard variational
formulation writes:

Find {u, p} ∈ Wg such that for all {w, q} ∈ W0,

BΩ,Γh
({u, p} , {w, q}) =LΩ,Γh

({w, q}) , (2a)

where

BD,Γh
({u, p} , {w, q}) =BD ({u, p} , {w, q}) +

(
w, u+

nu
)

Γh(D)
, (2b)

LD,Γh
({w, q}) =LD ({w, q}) + (w,h)Γh(D) , (2c)

BD ({u, p} , {w, q}) = (w, ∂tu)D − (∇w,u⊗ u)D + (∇w, 2ν∇su)D

+ (q,∇ · u)D − (∇ ·w, p)D, (2d)

LD ({w, q}) =(w, f)D. (2e)

Here BD is the bilinear form and (·, ·)D is the L2 (D) inner product over D. The Dirichlet and traction
boundary of domain D denote Γg(D) := Γg ∩ ∂D and Γh(D) := Γh ∩ ∂D respectively. The strong (1) and
the weak formulation (2) are equivalent for smooth solutions.

Remark

The variational form (2) is of conservative type: the incompressibility constraint (1b) is not directly
employed in the convective terms. A discretization of the conservative form may lead to spurious oscilla-
tions caused by the error in the incompressibility constraint acting as a distribution of sinks and sources.
Employing (1b) can be used to generate a convective form which is sometimes preferred and often adopted
in Galerkin computations [3]. Here we write the variational formulation of skew-symmetric type which will
be used in Section 4:

Find {u, p} ∈ Wg such that for all {w, q} ∈ W0,

CΩ,Γh
({u, p} , {w, q}) =LΩ,Γh

({w, q}) , (3a)

where

CD,Γh
({u, p} , {w, q}) =CD ({u, p} , {w, q}) + 1

2 (w, |un|u)Γh(D) , (3b)

CD ({u, p} , {w, q}) = (w, ∂tu)D + 1
2 (w,u · ∇u)D − 1

2 (u · ∇w,u)D + (∇w, 2ν∇su)D

+ (q,∇ · u)D − (∇ ·w, p)D. (3c)

Again, this form is equivalent to the strong form (1). Form (3) does not possess all conservation properties
when discretized in a standard way. However, this can be restored using a multiscale split, see [3] for details.
In the following we continue with the conservative form (2).

To obtain the energy evolution linked to (1) we want to substitute w = u. This is not possible in (2)
due to the different boundary conditions of the solution and test function spaces. The enforcement of the
Dirichlet boundary conditions in the spaces bypasses when employing a Lagrange multiplier construction.
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This converts the variational formulation into a mixed formulation:

Find ({u, p} ,λΩ) ∈ W × V such that for all ({w, q} ,ϑ) ∈ W × V,

(λΩ,w)Γg
= BΩ,Γh

({u, p} , {w, q})− LΩ,Γh
({w, q}) + (ϑ,u− g)Γg

. (4)

Here W is the unrestricted space used for the solution and test functions and V is a suitable Lagrange
multiplier space. Section 2.3 employs formulation (4) to derive the corresponding global energy statement.
The equivalence of this form with the strong form (1) follows from Green’s formula and an appropriate choice
of the weighting functions. The expression of the Lagrange multiplier is a by-product of this execution and
yields

λΩ = − 1
2unu− pn + ν∂nu. (5)

The multiplier can be interpreted as an auxiliary flux with a convective, a pressure and a viscous contribution.
Consult [19] for details about auxiliary fluxes in weak formulations.

Remark

Note that we get the same expression when employing the skew-symmetric form (3).

2.3. Global energy evolution

The evolution of the global energy follows when substituting ({w, q} ,ϑ) = ({u, p} ,λΩ) in (4). Employing
Green’s formula and the strong incompressibility constraint (1b) we see that the convective term only
contributes to the energy evolution via a boundary term. The global energy, which is defined as EΩ :=
1
2 (u,u)Ω, evolves as

d

dt
EΩ = −‖ν1/2∇u‖2Ω + (u, f)Ω − (1, FΩ)Γ, (6)

where
d

dt
is the time derivative and ‖ · ‖2D defines the standard L2-norm over D. The flux reads:

FΩ =

{
−g · λΩ on Γg,
|un|e− u · h on Γh,

(7)

with e := 1
2u · u the pointwise energy. The terms of (6) represent from left to right: (i) the energy loss due

to viscous molecular dissipation, (ii) the power exerted by the body force and (iii) the energy change due to
the boundary conditions. Substitution of the Lagrange multiplier and the boundary conditions leads to the
expected expression of the flux

FΩ = un(e+ p)− ν∂ne on Γ. (8)

These terms represent the convective and viscous flux as well as the rate of work due to the pressure. We
emphasize that the continuous convective–diffusive equation displays very similar energy behavior (obviously
the pressure term is absent there) [1]. This provides an additional indication of the similarity in the discrete
setting.

Remark

The transition from expression (7) to (8) is only possible in the continuous setting. In the discrete setting
no closed-form expression for the Lagrange multiplier exists. This also applies to the localized version in
Section 2.4.
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ω

Γh(ω)

Γg(ω)

Γg(Ω− ω)

Γh(Ω− ω)
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\
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Figure 2: Spatial domain Ω with a subdomain ω ⊂ Ω. The shared boundary of ω and its complement is χω . The boundaries
Γg and Γh split according to ω. This is the same figure as in [1].

2.4. Local energy evolution

The procedure to find the local energy evolution is very similar to that of the global energy. Let ω ⊂ Ω be
an arbitrary subdomain with boundary ∂ω, let Ω− ω denote its complement and let their shared boundary
denote χω = ∂ω ∩ ∂(Ω− ω). Figure 2 shows the subdomains and their boundaries.

The continuity across the interface is enforced with a Lagrange multiplier in the appropriate space Vω.
The discontinuous test function space writes Wω. The weak statement enforced on ω is again a mixed
formulation and reads:

Find ({u, p} ,λω) ∈ W × V such that for all ({w, q} ,ϑ) ∈ W × V,

(w,λω)χω
+ (w,λω)Γg(ω) = Bω,Γh

({u, p} , {w, q})− Lω,Γh
({w, q}),

(ϑ, [[u]])χω
+ (ϑ,u− g)Γg(ω) = 0. (9)

We have here employed the jump term [[u]] given by

[[u]] := u|ω − u|Ω−ω, (10)

where the terms are defined on ω and Ω−ω, respectively. Furthermore, nω is the outward normal of domain
ω, unω

is the outward velocity in direction nω and ∂nω
the direction derivative outward of ω. The equivalence

of this form with the strong form (1) leads to the expression of the Lagrange multiplier:

λω = −unω
u− pnω + ν∂nω

u, (11)

which is clearly the localized version of (5). A direct consequence is the symmetry of the Lagrange multipliers
(these are also called auxiliary fluxes in this setting, see [19]):

λω + λΩ−ω = 0, (12)

i.e. that what flows out ω through χω enters its complement. The energy evolution linked to each of the
domains is a natural split of the global energy evolution:

d

dt
Eω =− ‖ν1/2∇u‖2ω + (u, f)ω − (1, Fω)∂ω , (13a)

with energy fluxes

Fω =

 −g · λω on Γg (ω) ,
|unω
|e− u · h on Γh (ω) ,

−u · λω on χω.
(14)
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The last term of (14) redistributes energy over the domain. It represents an energy flux across the subdomain
interface χω with a convective, a pressure and a viscous component. Similarly as before, substitution of the
terms in the energy flux leads to

Fω = unω (e+ p)− ν∂nωe on ∂ω. (15)

This is obviously the localized version of (8).

Remark

All statements of this Section are in the continuous setting. Hence, the standard discretization, i.e. the
Galerkin method, displays the same correct energy behavior.

Remark

The various boundary terms may distract the reader and do not contribute to the goal of this paper.
Therefore we only consider boundary conditions precluding the energy flux F on Γ. The homogeneous
Dirichlet and periodic boundary conditions satisfy this purpose. Applying non-homogeneous boundaries is
straightforward.

We continue this paper by discretizing the system according to the dynamic variational multiscale method
with the target to closely resemble energy evolution (6) and (13).

3. Energy evolution of the variational multiscale method with dynamic small-scales

The convective–diffusive context [1] learns us that the dynamical structure of the small-scales is a re-
quirement for the stabilized formulation to display the correct energy behavior. This allows to skip the
static small-scales and to directly apply the dynamic modeling approach. We follow this road.

3.1. The multiscale split

The variational multiscale split is nowadays a standard execution [6, 7] which we include here for the sake
of completeness and notation. Employing the variational multiscale methodology the trial and weighting
function spaces split into large- and small-scales as:

W =Wh ⊕W ′, (16)

with Wh and W ′ containing the large-scales and small-scales, respectively. The large-scale space is spanned
by the finite dimensional numerical discretization while the fine-scales are its infinite dimensional comple-
ment. The fine-scale space W ′ is also referred to as subgrid-scales since these scales are not reproduced by
the grid. This decomposition implies the split of the solution and weighting functions as follows:

U = Uh + U′, (17a)

W = Wh + W′, (17b)

where Uh,Wh ∈ Wh and U′,W′ ∈ W ′ with U := {u, p} ,W := {w, q}. Uniqueness follows when a
projector Ph :W →Wh is used for the splitting operation:

Uh = PhU, (18a)

U′ =
(
I −Ph

)
U, (18b)

where I : W → W is the identity operator. Employing both W = Wh and W = W′, and the solution
split (17a) in (2) leads to the weak formulation:
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Find Uh ∈ Wh, U′ ∈ W ′ for all Wh ∈ Wh, W′ ∈ W ′,

BΩ

(
Uh + U′,Wh

)
=LΩ(Wh)Ω, for all Wh ∈ Wh, (19a)

BΩ

(
Uh + U′,W′) =LΩ(W′)Ω, for all W′ ∈ W ′. (19b)

Note that this is an infinite-dimensional system with unknowns Uh and U′. Appropriately parameterizing
the small-scales U′ in terms of Uh converts (19a) into a solvable finite element problem. This conversion
can be done with inspiration from (19b). For the technical details of the parameterization consult [20].

3.2. Dynamic small-scales
Here we employ the dynamic small-scales, see [4], demanded by the convective–diffusive context for

correct energy behavior [1]. The fine-scale model

∂t {û′, 0}+ τ−1 {û′, p̂′}+ R
({

uh, ph
}
, û′
)

= 0, (20)

is an ordinary differential equation. The hat-sign is used to indicate a small-scale model instead of the
actual small-scales. The intrinsic time scale τ is a matrix of stabilization parameters, here τ ∈ R4×4, with
contributions for the two equations:

τ =

(
τMI3×3 03

0T3 τC

)
. (21)

The local large-scale residual contains a momentum part rM and continuity part rC linked to the incom-
pressibility constraint, respectively, given by

R
({

uh, ph
}
, û′
)

=
{
rM (

{
uh, ph

}
, û′), rC(uh)

}T
, (22a)

rM = ∂tu
h +

((
uh + û′

)
· ∇
)
uh +∇ph − ν∆uh − f , (22b)

rC = ∇ · uh. (22c)

In the following we ignore the hat-sign. We employ a dynamic version of the stabilization parameters τM , τC
defined in [8]. The details are provided in Appendix B. The subscripts M and C refer to momentum and
continuity, respectively. Mirroring [1], the momentum residual (22b) uses the full velocity uh + u′. This
creates a nonlinearity in the system. Therefore we apply a standard iterative procedure to determine the
small-scales.

Assume now that the domain Ω is partitioned into a set of elements Ωe. The domain of element interiors
does not include the interior boundaries and denotes

Ω̃ =
⋃
e

Ωe. (23)

The resulting residual-based dynamic VMS weak formulation is

Find Uh ∈ Wh for all Wh ∈ Wh

BVMSD
Ω

(
Uh,Wh

)
=LΩ(Wh), (24a)

where

BVMSD
Ω

(
Uh,Wh

)
=BΩ

(
Uh,Wh

)
+
(
wh, ∂tu

′)
Ω̃
−
(
ν∆wh,u′

)
Ω̃

−
(
∇qh,u′

)
Ω̃
−
(
∇ ·wh, p′

)
Ω̃

−
(
∇wh,uh ⊗ u′

)
Ω̃
−
(
∇wh,u′ ⊗ uh

)
Ω̃
−
(
∇wh,u′ ⊗ u′

)
Ω̃
, (24b)

∂t {u′, 0}+ τ−1 {u′, p′}+ R
({

uh, ph
}
,u′
)

= 0, (24c)

and where the additional D stands for dynamic. When examining the last line of (24b), we recognize the
following contributions. The first term is the SUPG contribution. The first two terms model the cross stress,
while the last term models the Reynolds stress. Note that no spatial derivatives act on the small-scales.
Furthermore, in contrast to static small-scales, the dynamic small-scale model (24c) is a separate equation
and cannot directly be substituted into the large-scale equation (24b).
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3.3. Local energy evolution of the VMSD form

To arrive at the local energy evolution of (24), we extend the weak formulation to a Lagrange multiplier
setting to allow discontinuous functions across subdomains, similar as (9). The weak statement, here stated
for domain ω ⊂ Ω, reads

Find
(
Uh,λhω

)
∈ W × V such that for all

(
Wh,ϑh

)
∈ W × V,(

wh,λhω

)
χω

= BVMSD
ω

(
Uh,Wh

)
− Lω(Wh), (25a)(

ϑh, [[uh]]
)
χω

= 0, (25b)

∂t {u′, 0}+ τ−1 {u′, p′}+ R
({

uh, ph
}
,u′
)

= 0. (25c)

To obtain the evolution of the local total energy Eω = 1
2

(
uh + u′,uh + u′

)
ω̃

linked to the variational

formulation (24), we employ wh = uh, qh = ph and ϑh = λhω in (25). Adding u′ times the momentum
component of (25c) integrated over ω̃ eventually leads to

d

dt
Eω =− ‖ν1/2∇uh‖2ω + (uh, f)ω − (1, Fhω )χω

− ‖τ−1/2
M u′‖2ω̃ + (u′, f)ω̃ + 2(ν∆uh,u′)ω̃

+ (∇ · uh, p′)ω̃ +
(
∇uh, (uh + u′)⊗ (uh + u′)

)
ω̃
−
(
u′, (uh + u′) · ∇uh

)
ω̃
, (26)

where
Fhω = −λhω · uh. (27)

The first line closely resembles the continuous energy evolution relation. Each one of the other terms appears
as a result of the VMS stabilization. The first term of the second line represents the numerical dissipation
due to the missing small-scales. This contributes to a decay of the energy, which is favorable from a stability
argument. The second term is the power exerted by the body force on the small-scales, this term closely
resembles its large-scale counterpart. The remaining terms have no continuous counterpart. With the
current small-scale model, the small-scale pressure term dissipates energy1. The signs of the other terms are
undetermined and therefore these can create energy artificially. The term 2(ν∆uh,u′)ω̃ can be bounded by

both the physical dissipation ‖ν1/2∇uh‖2ω and numerical dissipation ‖τ−1/2
M u′‖2ω̃ using a standard argument.

However, this results in an overall dissipation that can be smaller than the physical one. This is deemed
undesirable. Note that it is comparable with that of the dynamic VMS stabilized form in the convective–
diffusive context. The contrast occurs in the last line which is linked to the incompressibility constraint
(1b) and the small-scale pressure. Inspired by the convective–diffusive context, the next Section rectifies the
method to closely resemble the energy behavior of the continuous setting.

Remark

Employing ω = Ω, and hence ω̃ = Ω̃, provides the global energy evolution of (24):

d

dt
EΩ =− ‖ν1/2∇uh‖2Ω + (uh, f)Ω

− ‖τ−1/2
M u′‖2

Ω̃
+ (u′, f)Ω̃ + 2(ν∆uh,u′)Ω̃

+ (∇ · uh, p′)Ω̃ +
(
∇uh, (uh + u′)⊗ (uh + u′)

)
Ω̃
−
(
u′, (uh + u′) · ∇uh

)
Ω̃
. (28)

1The small-scale pressure expression can be substituted into this term to arrive at (∇ · uh, p′)ω̃ = ||τ−1/2
C p′||2ω̃ . Note that

it vanishes when employing a divergence-conforming discrete velocity space.
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4. Toward a stabilized formulation with correct energy behavior

This Section presents the procedure to remedy the incorrect energy behavior (26) of the dynamic VMS
formulation (24). The first ingredient is the switch from the conservative form to a skew-symmetric form
with the help of the divergence-free velocity field constraint. Next, we employ the natural choice of a Stokes-
projector and demand divergence-free small-scales. In view of the convective–diffusive context, we use H1

0

small-scales to treat the small-scale viscous term.

4.1. Design condition
We present a design condition which clarifies the desirable energy behavior of the formulation. The

variational weak formulation corresponding to (1) is demanded to satisfy the local energy behavior:

d

dt
Eω =− ‖ν1/2∇uh‖2ω + (uh, f)ω − (1, Fhω )χω

− ‖τ−1/2
M u′‖2ω̃ + (u′, f)ω̃, (29)

with exact divergence-free velocity fields. Note that this requirement is very similar to that of the convective–
diffusive context [1] where the convective velocity is assumed solenoidal.

Remark
In the following we use the ingredients mentioned above to convert the VMS formulation (25) into a

method that satisfies the design condition. It is important to realize that the small-scales employed in the
formulation are determined by a model equation. This implies that these properties are not necessarily valid
for the model small-scales. In contrast, the exact small-scales do satisfy these properties. The model small-
scales approximate its exact counterpart which justifies the judicious use of these properties to construct a
method that satisfies the design condition.

4.2. Skew-symmetric form
We employ a multiscale form of the skew-symmetric formulation (see (3)) to eliminate the convective

contributions in (26). Considering the convective terms in isolation, we cast them into the following form:

−(∇wh, (uh + u′)⊗ (uh + u′))Ω̃ =−
((

uh + u′
)
· ∇wh,uh

)
Ω̃
−
((

uh + u′
)
· ∇wh,u′

)
Ω̃

= 1
2

(
wh,

(
uh + u′

)
· ∇uh

)
Ω̃
− 1

2

((
uh + u′

)
· ∇wh,uh

)
Ω̃

+ 1
2

(
uh,wh∇ ·

(
uh + u′

))
Ω̃
−
((

uh + u′
)
· ∇wh,u′

)
Ω̃

= 1
2

(
wh,

(
uh + u′

)
· ∇uh

)
Ω̃
− 1

2

((
uh + u′

)
· ∇wh,uh

)
Ω̃

−
((

uh + u′
)
· ∇wh,u′

)
Ω̃
, (30)

where we have employed the multiscale incompressibility constraint ∇·u = ∇·(uh+u′) = 0 in the last equal-
ity. The last expression is incorporated into the formulation. The resulting residual-based skew-symmetric
VMS weak formulation is

Find Uh ∈ Wh such that for all Wh ∈ Wh,

CVMSD
Ω

(
Uh,Wh

)
=LΩ(Wh), (31a)

where

CVMSD
Ω

(
Uh,Wh

)
=CΩ

(
Uh,Wh

)
+
(
wh, ∂tu

′)
Ω̃
−
(
ν∆wh,u′

)
Ω̃

−
(
∇qh,u′

)
Ω̃
−
(
∇ ·wh, p′

)
Ω̃

+ 1
2

(
wh,u′ · ∇uh

)
Ω̃
− 1

2

(
u′ · ∇wh,uh

)
Ω̃

−
((

uh + u′
)
· ∇wh,u′

)
Ω̃
, (31b)

∂t {u′, 0}+ τ−1 {u′, p′}+ R
({

uh, ph
}
,u′
)

= 0. (31c)
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This eliminates the convective contributions from the local energy evolution equation:

d

dt
Eω =− ‖ν1/2∇uh‖2ω + (uh, f)ω − (1, Fhω )χω

− ‖τ−1/2
M u′‖2ω̃ + (u′, f)ω̃ + 2(ν∆uh,u′)ω̃ + (∇ · uh, p′)ω̃. (32)

4.3. Stokes projector

In the convective–diffusive context a H1
0 -orthogonality of the small-scale viscous term is required for

correct energy behavior. This is the distinguished limit of Pe → 0 of the steady convection–diffusion
equations, where Pe is the Péclet number. Its Navier–Stokes counterpart is to apply a Stokes-projector
which is based on the distinguished limit Re → 0 of the steady incompressible Navier–Stokes equations.
Here Re is the Reynolds number. Thus, applying a Stokes projection on the large-scale equation seems a
natural choice. Moreover, it reduces the variational form in the limit Re → 0 to the standard Galerkin
method. This is a valid and established method in that regime, provided compatible discretizations for the
velocity and pressure spaces are used.

For the scale separation (18) we select the Stokes projector given by

Ph
Stokes : U ∈ W → Uh ∈ Wh: Find Uh ∈ Wh such that for all Wh ∈ Wh,(

ν∆wh,uh
)

Ω
+
(
∇ ·wh, ph

)
Ω

=
(
ν∆wh,u

)
Ω

+
(
∇ ·wh, p

)
Ω
, (33a)(

∇qh,uh
)

Ω
=
(
∇qh,u

)
Ω
, (33b)

in the bilinear form (31b). Note that this projector only makes sense if the elements of Wh are inf–sup
stable and the velocities are at least C1-continuous. The numerical results presented in Section 6 fulfill this
requirement: quadratic NURBS basis functions are employed. However, note that the final form, given in
Appendix A, does not have the smoothness restriction.

As a consequence we assume the modeled small-scales to satisfy the orthogonality induced by the Stokes
operator: (

ν∆wh,u′
)

Ω̃
+
(
∇ ·wh, p′

)
Ω̃

= 0, (34a)(
∇qh,u′

)
Ω̃

= 0, (34b)

for all Wh ∈ Wh . This converts (31) into the simplified formulation:

Find Uh ∈ Wh such that for all Wh ∈ Wh

SΩ

(
Uh,Wh

)
=LΩ(Wh), (35a)

where

SΩ

(
Uh,Wh

)
=CΩ

(
Uh,Wh

)
+
(
wh, ∂tu

′)
Ω̃

+ 1
2

(
wh,u′ · ∇uh

)
Ω̃
− 1

2

(
u′ · ∇wh,uh

)
Ω̃

−
((

uh + u′
)
· ∇wh,u′

)
Ω̃
, (35b)

∂tu
′ + τ−1

M u′ + rM =0, (35c)

where the S abbreviates Stokes. Note that the small-scale pressure terms have vanished from the formulation.
The energy linked to this formulation is

d

dt
Eω =− ‖ν1/2∇uh‖2ω + (uh, f)ω − (1, Fhω )χω

− ‖τ−1/2
M u′‖2ω̃ + (u′, f)ω̃ + (ν∆uh,u′)ω̃ − (∇ph,u′)ω̃. (36)

11



To fulfill the design condition (29), the last two terms of (36) need to be eliminated, i.e.

(ν∆uh,u′)Ω̃ − (∇ph,u′)Ω̃ = 0. (37)

There are various options available to accomplish this. Before sketching some of these options we first like
to note the following. Augmenting the undesirable terms of (36) with (∇·uh, p′), results in the requirement

(ν∆uh,u′)ω̃ − (∇ph,u′)ω̃ + (∇ · uh, p′)ω̃ = 0. (38)

This is a well-defined orthogonality induced by the Stokes operator, given in (34). The augmented term
would appear if ∇p′ in the small-scale momentum equation is not neglected2. Note that this term is not
(easily) computable and therefore usually omitted in the formulation.

The required orthogonality (37) can be either assumed or enforced [1]. We discuss four options here.

• First we could assume the orthogonality in the small-scale equation (35c). This orthogonality has
previously been assumed to modify the large-scale equation (35a). Assuming it in the small-scale
equation results in a stable method with the desired energy property. However the small-scale model
is not residual-based anymore. This results in an inconsistent method. We do not further consider
this option.

• Alternatively, we could assume the orthogonality in the large-scale equation (35a) again. This converts
the formulation into a GLS method. This method includes a PSPG term, −(∇qh,u′)Ω̃, and therefore
pointwise divergence-free solutions cannot be guaranteed. The formulation harms the design condition
of Section 4.1 and is therefore omitted.

• Another option is to enforce the required orthogonality using Lagrange-multipliers. This is not straight-
forward and is deemed unnecessarily expensive.

• The path we propose is to cure the unwanted terms separately by combining the second and third
options. The approach is to (i) enforce divergence-free small-scales to eliminate the second term of (37)
and (ii) assume an H1

0 -orthogonality to erase the first term of (37). Sections 4.4 and 4.5 respectively
describe these steps.

4.4. Divergence-free small-scales

The last term of (36) disappears when enforcing divergence-free small-scales. We handle this with a
projection operator on the small-scales:

Ph
div : U ∈ W → Uh ∈ Wh: Find Uh ∈ Wh such that for all Wh ∈ Wh,(

∇qh,uh
)

Ω
=
(
∇qh,u

)
Ω
, (39)

with corresponding orthogonality: (
∇qh,u′

)
Ω̃

= 0, for all Wh ∈ Wh. (40)

This orthogonality defines the fine-scale space W ′ which represents the orthogonal component of Wh in
terms of the projection (40) as

W ′ =W ′div :=
{
{u, p} ∈ W;

(
∇θh,u

)
Ω

= 0, for all θh ∈ Ph
}
, (41)

2 Including the small-scale pressure in the residual augments the right-hand side of (36) with the term (∇p′,u′). Next, by
using the strong form continuity equation weighted with the small-scale pressure, i.e.

(
p′,∇ · (uh + u′)

)
= 0, this term converts

into (∇ · uh, p′).
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where the space Ph is the pressure part of Wh = Uh × Ph. Directly employing this divergence-free space
indeed eliminates the last term of (36). However the small-scale solution space is infinite dimensional, and
therefore not applicable in the numerical method. As before, we avoid dealing with this space by using
a Lagrange-multiplier construction yielding a mixed formulation. Opening the solution space leads to the
formulation:

Find
(
Uh, ζh

)
∈ Wh × Ph such that for all

(
Wh, θh

)
∈ Wh × Ph,

Sdiv
Ω

((
Uh, ζh

)
,
(
Wh, θh

))
=LΩ(Wh)Ω, (42a)

where

Sdiv
Ω

((
Uh, ζh

)
,
(
Wh, θh

))
=SΩ

(
Uh,Wh

)
+
(
∇θh,u′

)
Ω̃
, (42b)

∂tu
′ + τ−1

M u′ +∇ζh + rM =0. (42c)

Obviously, this form follows the energy evolution

d

dt
Eω =− ‖ν1/2∇uh‖2ω + (uh, f)ω − (1, Fhω )χω

− ‖τ−1/2
M u′‖2ω̃ + (u′, f)ω̃ + (ν∆uh,u′)ω̃. (43)

Remark

Note that enforcing divergence-free small-scales has introduced an additional equation in the system.
The new method has 5 global variables instead of 4 leading to a commensurate increase in computational
time. The added block diagonal term is a diffusion matrix which does not further complicate the saddle
point structure of the problem.

4.5. H1
0 -orthogonal small-scales

In the energy evolution (43) unwanted artificial energy can only be created by the term
(
ν∆uh,u′

)
ω̃

.

Employing the orthogonality induced by the H1
0 -seminorm,

(ν∆wh,u′)Ω̃ = 0 for all Wh ∈ Wh, (44)

obviously cancels this term. To avoid dealing with a larger system of equations, we do not enforce the
orthogonality but we assume it in the large-scale equation (42a). This leads to a consistent GLS method.
The resulting GLSDD-formulation reads:

Find
(
Uh, ζh

)
∈ Wh × Ph such that for all

(
Wh, θh

)
∈ Wh × Ph,

SGLSDD
Ω

((
Uh, ζh

)
,
(
Wh, θh

))
=LΩ(Wh), (45a)

where

SGLSDD
Ω

((
Uh, ζh

)
,
(
Wh, θh

))
=Sdiv

Ω

((
Uh, ζh

)
,
(
Wh, θh

))
+
(
ν∆wh,u′

)
Ω̃
,

∂tu
′ + τ−1

M u′ +∇ζh + rM =0. (45b)

In the abbreviation GLSDD we follow the same structure as before where the last two D’s stand for dynamic,
divergence-free small-scale velocities3. This method displays the correct-energy behavior:

d

dt
Eω = −‖ν1/2∇uh‖2ω + (uh, f)ω − (1, Fhω )χω

−‖τ−1/2
M u′‖2ω̃ + (u′, f)ω̃.

(46)

The full expansion of this novel formulation is included in Appendix A for clarity.

3The name GLS refers to the convection–diffusion part of the problem.
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4.6. Local energy backscatter

The separate energy evolution of the large- and small-scales deduces in a similar fashion as above. The
large-scale energy Ehω = 1

2 (uh,uh)ω and the small-scale energy E′ω = 1
2 (u′,u′)ω̃ do not add up to the total

energy Eω because of the missing cross terms. This energy is stored in an intermediate (buffer) regime which
we denote with Eh

′

ω = (uh,u′)ω̃. The energy evolution takes the form:

d

dt
Ehω = −‖ν1/2∇uh‖2ω +

(
uh, f

)
ω
− (1, Fω)χω

+
((

uh + u′
)
· ∇uh,u′

)
ω̃
− (uh, ∂tu

′)ω̃, (47a)

d

dt
Eh

′

ω =
(
uh, ∂tu

′)
ω̃

+
(
u′, ∂tu

h
)
ω̃
, (47b)

d

dt
E′ω = −‖τ−1/2

M u′‖2ω̃ + (u′, f)ω̃ −
((

uh + u′
)
· ∇uh,u′

)
ω̃
− (u′, ∂tu

h)ω̃. (47c)

The result mirrors to the convective–diffusive context with as convective velocity now the total velocity
uh + u′. There is a direct exchange of convective energy between the large-scale and small-scales. Clearly
the superposition of (47) yields (46).

4.7. Time-discrete energy behavior

The generalized-α method serves as time-integrator. Mirroring the convective–diffusive context [1], and
using the same notation, we eventually obtain for αm = γ:

En+1 = En −∆t2(αf − 1
2 )‖u̇n+αm

‖2Ω −∆t‖ν1/2∇uhn+αf
‖2Ω −∆t‖τ−1/2

dyn u′n+αf
‖2

Ω̃

+ ∆t(uhn+αf
, f)Ω + ∆t(u′n+αf

, f)Ω̃. (48)

Hence, we have a decay of the discretized energy when, in absence of forcing, αf ≥ 1
2 . In the numerical

implementation we use αf = αm = γ = 1
2 for the stability and second-order accuracy properties [21].

5. Conservation properties

Conservation of physical quantities in the numerical formulation is an often sought-after property. In this
Section we derive the various conservation properties (continuity, linear momentum, angular momentum)
of the proposed formulation (45). We prove these by selecting the appropriate weighting functions. The
conservation properties hold on both a global and a local scale. Therefore we omit the domain subscript in
the following.

5.1. Continuity

Employing the weighting function wh = 0, θh = 0 in (45) yields

(qh,∇ · uh) = 0. (49)

The choice qh = ∇ · uh proves the pointwise satisfaction of incompressibility constraint4

||∇ · uh||2 = 0 ⇒ ∇ · uh = 0 for all x ∈ Ω. (50)

Furthermore, the choice of weighting functions wh = 0, qh = 0 leads to divergence-free small-scale velocities
in the following sense:

(∇θh,u′) = 0. (51)

4Note that in general this weighting function choice is not allowed. We employ the IGA spaces with stable velocity and
pressure pairs that do allow this choice.
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5.2. Linear momentum

We substitute the weighting functions
(
wh, qh, θh

)
=
(
ei, 0,− 1

2ei · uh
)

in (45), where ei is the ith
Cartesian basis vector. Using ∇ei = 0 and the pointwise divergence-free velocity (50), all diffusive and
pressure terms drop out and we are left with:(

ei, ∂tu
h + ∂tu

′)+ 1
2

(
ei,
((

uh + u′
)
· ∇
)
uh
)

+
(
∇
(
− 1

2ei · uh
)
,u′
)

= (ei, f). (52)

Consider the convective term in isolation and write

1
2

(
ei,
((

uh + u′
)
· ∇
)
uh
)

= 1
2

(
ei,∇ ·

((
uh + u′

)
⊗ uh

))
− 1

2

(
ei,
(
∇ ·
(
uh + u′

))
uh
)

= − 1
2

(
∇ei,

(
uh + u′

)
⊗ uh

)
− 1

2

(
ei,
(
∇ ·
(
uh + u′

))
uh
)

= − 1
2

(
ei · uh,∇ · u′

)
=
(
∇
(

1
2ei · uh

)
,u′
)
. (53)

Combining (52) and (53) leads to the balance

(ei, ∂tu
h + ∂tu

′) = (ei, f). (54)

Linear momentum is thus conserved in terms of the total solution.

5.3. Angular momentum

Conservation of global angular momentum is a desirable property, certainly in rotating flows. It has
been analyzed by Bazilevs et al. [22] and Evans et al. [18]. When using the appropriate weighting function
spaces the formulation conserves angular momentum. The numerical results of Section 6 are however not
computed with these weighting function spaces. The demonstration of conservation of angular momentum
follows the same ideas as [22]. We set the weighting functions

(
wh, qh, θh

)
=
(
x× ej , 0,− 1

2 (x× ej) · uh
)
.

By construction the gradient of the weighting function leads to a skew-symmetric tensor [22]. As a result
the gradient tensor is orthogonal to any symmetric tensor. Consequently the divergence, which is the trace
of the gradient, is zero.

Employing these weighting functions in the weak form we arrive at

(x× ej , ∂tu
h + ∂tu

′) + 1
2 (x× ej , ((u

h + u′) · ∇)uh)Ω − 1
2 (
(
(uh + u′) · ∇

)
(x× ej) ,u

h)

−
((

(uh + u′) · ∇
)

(x× ej) ,u
′)− 1

2

(
∇
(
(x× ej) · uh

)
,u′
)

= ((x× ej) , f). (55)

Consider again the convective terms in isolation. Switching back to a conservative form, see (30), yields an
incompressibility term:

1
2 (x× ej , ((u

h + u′) · ∇)uh)− 1
2 (
(
(uh + u′) · ∇

)
(x× ej) ,u

h)

−
((

(uh + u′) · ∇
)

(x× ej) ,u
′)

=− (∇ (x× ej) , (u
h + u′)⊗ (uh + u′))− 1

2

(
uh, (x× ej)∇ ·

(
uh + u′

))
=− (∇ (x× ej) , (u

h + u′)⊗ (uh + u′)) + 1
2

(
∇
(
(x× ej) · uh

)
,u′
)
. (56)

The antisymmetric tensor and the symmetric tensor in the first and second argument, respectively, cause
the first term to vanish. The incompressibility term cancels with the choice of θh and the conservation of
angular momentum is what remains:

(x× ej , ∂tu
h + ∂tu

′) = (x× ej , f). (57)
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6. Numerical test case

In this Section we test the GLSDD method (45) on a three-dimensional Taylor–Green vortex flow at
Reynolds number Re = 1600. This test case is challenging and it is often employed to examine the perfor-
mance of numerical algorithms for turbulence computations. It serves our purpose because (i) the energy
behavior of a fully turbulent flow can be studied, (ii) reference data is available and (iii) the domain is
periodic. Other boundary conditions than periodic ones are beyond the scope of this work.

The flow is initially of laminar type. As the time evolves, the vortices begin to evolve and roll-up.
The vortical structures undergo changes and subsequently their structures breakdown and form distorted
vorticity patches. The flow transitions to one with a turbulence character; the vortex stretching causes the
creation of small-scales. The Taylor–Green vortex initial conditions are specified as follows:

u(x, 0) = sin(x) cos(y) cos(z), (58a)

v(x, 0) = − cos(x) sin(y) cos(z), (58b)

w(x, 0) = 0, (58c)

p(x, 0) = 1
16 (cos(2x) + cos(2y)) (cos(2z) + 2) . (58d)

The physical domain is the cube Ω = [0, 2π]
3

with periodic boundary conditions. For this test case the
viscosity is given by ν = 1

Re . Here we consider the transition phase for times t ≤ 10 s. Figure 3 shows
the iso-surfaces of the z-vorticity of the initial condition (laminar flow) and the final configuration (fully
turbulent flow).

Due to the symmetric behavior of the flow, we are allowed to simulate only an eighth part of the domain.

(a) Laminar flow at t = 0 s. (b) Fully turbulent flow at t = 10 s.

Figure 3: Taylor–Green vortex flow at Re = 1600. Iso-surfaces of z-vorticity.

Hence, we take as computational domain Ωh = [0, π]
3

and apply no-penetration boundary conditions. All
the implementations employ NURBS basis functions that are mostly C1-quadratic, however every velocity
space is enriched to be cubic C2 in the associated direction [17, 18, 23, 24]. Note that conservation of angular
momentum cannot be guaranteed, since the choice of the weighting function θh in section 5.3 is not valid.
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We apply a standard L2-projection to set the initial condition on the mesh. For the time-integration we
employ the generalized-α method with the parameter choices of [1] which yield correct energy evolution. This
method is stable and shows second-order temporal accuracy. The resulting system of equations is solved with
the standard flexible GMRES method with additive Schwartz preconditioning provided by Petsc [25, 26].

We perform simulations with three different methods: (i) the classical Galerkin method, (ii) the VMS
method with static small-scales (VMSS), comparable with [8] and (iii) the novel Galerkin/least-squares
formulation with dynamic and divergence-free small-scales (GLSDD), i.e. form (45). The DNS results of
Brachet et al. [27] obtained with a spectral method on a fine 5123-mesh serve as reference data (ref).

First, we perform a brief mesh refinement study for the novel method. Figure 4 shows mesh refined
results for the novel GLSDD method (45). For this purpose meshes with 163, 243, 323, 483 elements have
been employed. Clearly, the energy behavior on the coarsest two meshes is quite off. The finer meshes are
able to closely capture the turbulence character of the flow. In the following we therefore use meshes of 323

or 483 elements.
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Figure 4: Taylor–Green vortex flow at Re = 1600 mesh convergence. The GLS method with dynamic divergence-free small-
scales.

We compare the results of the novel GLSDD method with the VMSS and the Galerkin approach. The
simulations are carried out on a mesh of 323 elements, i.e. the mesh size is h = π

32 , and on a slightly finer

mesh of 483 elements. The time-step is taken as ∆t = 4h
5π , i.e. the initial CFL-number is roughly 0.25. In

the Figures 5-6 we visualize the time history of the kinetic energy and kinetic energy dissipation rate for
each of the three methods and the reference data.

The Figure 5 shows that each of the methods is able to roughly capture the energy behavior on the coarse
mesh. The dissipation peek appears too early in time for each of the simulations. The Galerkin method
displays the least accurate results, it overpredicts the dissipation rate. The VMSS method performs a bit
better at all times. The novel GLSDD approach demonstrates an even closer agreement with the reference
results. The results on the finer mesh, in Figure 6, reveal almost no difference with the reference data.

In the following we further analyze the contributions of the dissipation rate (on the course mesh). The
dissipation rate of the Galerkin method only consists of the large-scale/physical dissipation ‖ν1/2∇uh‖2Ω. In
contrast, the dissipation of the GLSDD method is composed of a large-scale and a small-scale contribution:

d

dt
EGLSDD

Ω =− ‖ν1/2∇uh‖2Ω − ‖τ
−1/2
M u′‖2

Ω̃
. (59)

In Figure 7 we display the temporal evolution of both parts and the small-scale dissipation fraction

(‖τ−1/2
M u′‖2

Ω̃
)/(‖ν1/2∇uh‖2Ω + ‖τ−1/2

M u′‖2
Ω̃

). In the laminar regime (t < 3) the small-scale contribution is
negligible. When the flow has a more turbulent character the contribution of the small-scales is substantial:
the maximum of the dissipation fraction exceeds 0.35.
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Figure 5: Taylor–Green vortex flow at Re = 1600 on 323-mesh for various methods: the Galerkin method, the VMS method
with static small-scales and the GLS method with dynamic divergence-free small-scales.
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Figure 6: Taylor–Green vortex flow at Re = 1600 on 483-mesh for various methods: the Galerkin method, the VMS method
with static small-scales and the GLS method with dynamic divergence-free small-scales.
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Figure 7: Taylor–Green vortex flow at Re = 1600 on 323-mesh with the GLSDD method: (a) large-scale and small-scale parts
of the dissipation rate and (b) their fraction.
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Lastly, we focus on the energy dissipation of the VMSS formulation. The derivation follows the same
steps used throughout this paper. One might argue that the energy could also be solely based on the
large-scales. This is what we do here. Its evolution reads:

d

dt
Eh,VMSS

Ω =− ‖ν1/2∇uh‖2Ω − ‖τ
−1/2
M u′‖2

Ω̃
+ (ν∆uh,u′)Ω̃ −

(
u′, ∂tu

h
)

Ω̃

+ (∇ · uh, p′)Ω̃ +
(
∇uh, (uh + u′)⊗ (uh + u′)

)
Ω̃
−
(
u′, (uh + u′) · ∇uh

)
Ω̃
. (60)

Figure 8 shows the contribution of the separate terms. The two desired dissipation terms are clearly
dominant. The small-scale dissipation is smaller than the large-scale dissipation, however it has a significant
contribution. Although the contributions are small, the unwanted terms can create artificial energy.
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Figure 8: Taylor–Green vortex flow at Re = 1600 on 323-mesh with the VMSS method: energy dissipation of separate terms.

7. Conclusions

We continued the study initiated in [1] concerning the construction of methods displaying correct-energy
behavior. In this paper we have applied the developed methodology to the incompressible Navier–Stokes
equations. It clearly shows that the link between the methods VMS, SUPG and GLS, established in [1], is
also valid for the incompressible Navier–Stokes equations.

The novel GLSDD methodology employs divergence-conforming NURBS basis functions and uses a
Lagrange multiplier setting to ensure divergence-free small-scales. Furthermore, it enjoys the favorable
behavior of the dynamic small-scales and reduces to the Galerkin method in the Stokes regime. These
properties all emerge from the correct-energy design condition. A pleasant byproduct of the method is the
conservation of linear momentum. The conservation of angular momentum can be achieved when employing
the appropriate weighting function spaces. The numerical results support the theoretical framework in that
the energy behavior improves upon the VMS method with static small-scales. The variational multiscale
method with static small-scales has unwanted small-scale contributions which create artificial energy.

The novel formulation requires a bit more effort to implement compared to the variational multiscale
method with static small-scales. One has to include an additional variable to ensure the divergence-free
behavior of the small-scales. In addition the formulation needs to be equipped with the dynamic small-scale
model. However, the resulting system of equations does not demand a sophisticated preconditioner; we
have employed the standard ASM (Additive Schwarz Method) technique. In our opinion, the accuracy gain
outweighs the little extra implementation effort and calculation cost.

We see several directions for future work. The first concerns the development of a method displaying
correct energy behavior at the boundary, in particular when using the weak imposition of Dirichlet boundary
conditions. This allows to test the effect of correct energy behavior on wall-bounded turbulent flow problems.
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Another extension is correct energy behavior for free-surface flow computations. This is an important step,
since artificial energy creation can yield highly instable behavior, as demonstrated in [28]. We have work on
both extensions in progress and aim to report on it in the near future.
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Appendix A. Galerkin/least-squares formulation with dynamic divergence-free small-scales

We repeat the Galerkin/least-squares formulation with dynamic divergence-free small-scales (GLSDD),
i.e. form (45), to provide an overview of the separate terms. The formulation is of skew-symmetric type,
applies GLS stabilization and uses divergence-free dynamic small-scales. The method requires a stable
velocity–pressure pair and reads:

Find
(
uh, ph, ζh

)
∈ Wh × Ph such that for all

(
wh, qh, θh

)
∈ Wh × Ph,(

wh, ∂tu
h
)

Ω
+
(
wh, ∂tu

′)
Ω̃

+ 1
2 (wh, (uh + u′) · ∇uh)Ω − 1

2 ((uh + u′) · ∇wh,uh)Ω −
((

uh + u′
)
· ∇wh,u′

)
Ω̃

+(∇wh, 2ν∇suh)Ω +
(
ν∆wh,u′

)
Ω̃

+(qh,∇ · uh)Ω − (∇ ·wh, ph)Ω +
(
∇θh,u′

)
Ω̃

= (w, f)Ω,

(A.1a)

∂tu
′ + τ−1

M u′ +∇ζh + rM = 0, (A.1b)

where momentum residual is

rM = ∂tu
h +

((
uh + u′

)
· ∇
)
uh +∇ph − ν∆uh − f . (A.2)

The separate terms of (A.1a) are from left to right: the temporal terms, the convective contributions, the
viscous contributions, the incompressibility constraint, the pressure term, the divergence-free small-scale
velocity constraint and the forcing term. This form follows the correct-energy evolution (on a local scale):

d

dt
Eω =− ‖ν1/2∇uh‖2ω + (uh, f)ω − (1, Fhω )χω

− ‖τ−1/2
M u′‖2ω̃ + (u′, f)ω̃, (A.3)

and possesses the conservation properties of Section 5.

Appendix B. Definition dynamic stabilization parameter

The dynamic stabilization parameter τM is the discrete approximation of the inverse of the convective
and viscous parts of momentum Navier–Stokes operator. It mirrors the dynamic stabilization parameter of
convection–diffusion equation (see [1]). The continuity stabilization parameter τC is on its turn the discrete
approximation of the inverse of the divergence operator, here we use the objective definition introduced in
[22]. The parameters take the form:

τM =
(
τ−2
conv + τ−2

visc

)−1/2
, (B.1a)

τC =
(
τM
√

G : G
)−1

, (B.1b)
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where the convective and viscous contributions of τM are

τ−2
conv =4u ·Gu, (B.2a)

τ−2
visc =CIν

2G : G. (B.2b)

Here the following definition is employed:

G =
∂ξ

∂x

T ∂ξ

∂x
, (B.3a)

G : G =

3∑
i,j=1

GijGij , (B.3b)

where ∂ξ/∂x is the inverse Jacobian of the map between the elements in the reference and physical domain.
The positive constant CI is determined by an inverse estimate.
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