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Abstract

The offshore wind industry is increasingly constructing wind turbines farther from the coast, in deeper
water, and under more extreme conditions. This requires larger (monopile) foundations and necessi-
tates new installation methods. An important factor affecting workability is the dynamic behavior of the
monopile during installation.

The objective of this thesis is to develop a method for determining the hydrodynamic loads caused
by internal sloshing in an open-ended monopile (MP) as it transitions from a horizontal to a vertical
position in the splash zone.

First, the resonance frequencies of the internal water column are predicted with analytical approxi-
mations based on linear theory. Distinction is made between piston mode and sloshing. Two numerical
methods, linear potential flow (LPF), and computational fluid dynamics (CFD) are used to verify the
resonance frequencies. Since the CFD analysis is done in 2D, a 2D representation of the open-ended
monopile is considered. Due to the presence of viscous effects in CFD, the resonance observed with
CFD consistently occurs at a lower frequency than for the analytical and LPF methods. Also it is found
that an decrease in inclination angle of the monopile with respect to the horizontal, while maintaining
the same submerged length, results in lower resonance frequency for both piston mode and sloshing
in both LPF and CFD.

To assess the accuracy of LPF in describing the motion of the internal water column, it is compared
to the CFD model. Input excitation in the CFD model is low enough to avoid non-linear sloshing modes
and other non-linear behaviour of the free-surface. The ComFLOW 2D CFD model has been validated
against various works from the literature for the accurate representation of gap resonance frequencies.

For both the piston mode and sloshing resonance, discrepancies between the two numerical meth-
ods are found, which can be attributed to viscous effects. At resonance viscous effects are non-
negligible, therefore the LPF method over-predicts the severity of the piston mode and sloshing. The
influence of both the submergence of themonopile and its inclination angle with respect to the horizontal
is considered.

The hydrodynamic coefficients for added mass and damping are found with forced oscillation for
both upright and inclined geometries. While good agreement is found between the LPF and CFD results
away from resonance, the CFD results in the vicinity of the resonance frequency are used to tune the
LPF model, by way of additional linear damping, to achieve more accurate results.

It can be concluded from the present work that the resonance of the internal water column near the
first sloshing mode significantly affects the overall hydrodynamic force and must be taken into account.
At the peak hydrodynamic force observed during the first sloshing mode, the sloshing induces forces
5.59 times higher (submergence of 5 meters), 3.62 times higher (submergence of 10 meters), and 2.33
times higher (submergence of 15 meters) compared to cases where sloshing is not considered.

Looking forward, it is strongly advised to conduct forced oscillation tests with larger amplitudes, as
this explores the effect of non-linear chaotic sloshing. Additionally, expanding the CFD analyses to 3D,
where more non-linear sloshing effects are expected, such as swirling, is recommended. Furthermore,
given the differences in results between LPF and CFD, it is valuable to validate the findings through
model experiments.

ii



Contents

Preface i

Abstract ii

Nomenclature v

Conventions vii

1 Introduction 1
1.1 Offshore wind industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The monopile foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Standard installation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Research Motivation 3
2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Vertical cylinder in waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 First order potential flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Diffraction modelling for thin-walled structures . . . . . . . . . . . . . . . . . . . . 4
2.2.4 Water behaviour inside MP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.5 Mechanical sloshing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.6 Vessel Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.7 Diffraction and CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Research Objectives 9
3.1 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Analytical description 10
4.1 Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Piston mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.1 Two-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 Three-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Sloshing mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 Natural frequency of the sloshing liquid . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2 Two-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.3 Inclined sloshing frequency - 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.4 Three-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.5 Inclined sloshing frequency - 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Linear potential flow 21
5.1 Diffraction modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Dipole panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Piston mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.1 Dipole panels vs. conventional panels . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Sloshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.1 Asymmetric sloshing mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.2 Symmetric sloshing mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.3 Damping lid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.4 Two-dimensional approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Focus on 10 meter submergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Inclined cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



Contents iv

6 Computational fluid dynamics 38
6.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 One-phase flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Cell labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.2 Discretization and solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.3 Initial settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Validation of the CFD code ComFLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.1 Phase difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.2 Grid resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.3 Generating and absorbing boundary condition (GABC) . . . . . . . . . . . . . . . 45

6.4 Fixed geometry with regular incident waves . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4.1 Piston mode - 2D - Upright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4.2 Piston mode - 2D - Inclined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Geometry forced to oscillate in calm water . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.1 Sloshing mode - 2D - Upright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.2 Determination of the hydrodynamic properties . . . . . . . . . . . . . . . . . . . 56
6.5.3 Sloshing mode - 2D - Inclined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Results 61
7.1 Validation of LPF using CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 Upright structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1.2 Inclined structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Modelling the sloshing resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.1 Damping lid for modelling purposes . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.2 Hydrodynamic force ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Experimental model tests 69
8.1 Other model test in the research field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Conclusions 70
9.1 Determination of the resonance frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.2 Accuracy of linear system description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.3 Effect of the resonance of the internal water column . . . . . . . . . . . . . . . . . . . . 72
9.4 Primary research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10 Recommendations 73
10.1 Resonance behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.2 Monopile installation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.3 Environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.4 2D CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.5 3D CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.6 Experimental model tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.7 Mechanical sloshing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A Appendix A: Grid resolution 79
A.1 Gap resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.2 Piston mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.3 Sloshing mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B Appendix B: Potential theory (OrcaWave) 83
B.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.1.1 First-order equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.1.2 Boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.1.3 The potential formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

C Appendix C: Analytical forced oscillation description for a 3D cylinder 86
C.1 Fundamental sloshing mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D Appendix D: Analysis of 2D forced oscillation results 88



Nomenclature

Abbreviations

Abbreviation Definition

BiCGSTAB Bi-conjugate gradient stabilized method
CFD Computational fluid dynamics
CFL Courant-Friedrichs-Lewy condition
CM Center of Mass
DOF Degree of freedom
GABC Generating and absorbing boundary condition
ILU Incomplete lower-upper preconditioner
ISA International standard atmosphere
LPF Linear potential flow
MP Monopile
OWF Offshore wind farm
OWT Offshore wind turbine
RAO Response amplitude operator

Latin Symbols

Symbol Definition Unit
Aw wave amplitude [m]
Di inner diameter [m]
Do outer diameter [m]
g gravitational acceleration [=9.81] [m/s2]
h submergence [m]
H wave height [m]
Jα(.) the Bessel function of the first kind [α is a real non-

negative number]
k wave number
R radius of a circular cylindrical tank or a circular spher-

ical tank [= 1
2D]

[m]

t time [s]
T period [s]
V velocity [m/s]

Greek Symbols

Symbol Definition Unit

α used for definition of different angles
ϵ damping parameter
η fluid surface elevation [m]
ηi translatory (i = 1, 2, 3) and angular (i = 4, 5, 6) com-

ponents of motion
ιm,i roots of the equation J ′

m(ιm,i) = 0

v



Contents vi

Symbol Definition Unit

κ moonpool geometry factor
λ wavelength [m]
Λ dimensionless excitation frequency
ω angular frequency [rad/s]
Ω excitation frequency [rad/s]
ρ density [kg/m3]
σ surface tension [N/m]
Φ velocity potential



Conventions

Coordinate system
In this section the coordinate system conventions for a vessel and cylinder are given.

Coordinate Origin at Positive direction

X aft perpendicular (APP) or base of the cylinder towards bow
Y centre line (CL) or base of the cylinder towards port side (PS)
Z baseline (or keel (BL) or base of the cylinder upwards

(a) Coordinate system vessel. [28]
(b) Coordinate

system cylinder [20].

Figure 1: Schematic representation of coordinate system conventions.

Motions
In this section the motion conventions are given.

Motion Description Positive direction

surge (η1) motion in x-direction towards bow
sway (η2) motion in y-direction to port side (PS)
heave (η3) motion in z-direction upwards
roll (η4) rotation around axis parallel to x-axis starboard (SB) down
pitch (η5) rotation around axis parallel to y-axis bow down
yaw (η6) rotation around axis parallel to z-axis bow to port side
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Figure 2: Schematic representation of (vessel) motion conventions with respect to center of gravity [20].

Wave heading
In this section the wave heading convention is given. This convention is similar for current and wind.

Figure 3: Wave heading convention with respect to vessel. [28]



1
Introduction

This chapter provides the necessary background information on the thesis subject, which helps readers
understand why the graduation topic is relevant. It gives readers a foundation of knowledge to better
comprehend the main theme of the thesis.

1.1. Offshore wind industry
The offshore wind industry is a continuously growing market. In this market, it is important to extract
the maximum possible efficiency from an offshore wind farm (OWF). In recent years there has been
an urge to place OWFs further and further from the coast. There are multiple factors that explain this
trend. Firstly, stronger and more consistent winds at greater distances from shore allow an offshore
wind turbine (OWT) to generate more electricity. Secondly, installing OWFs further out at sea can
reduce the impact of visual and noise pollution on coastal communities. Thirdly, suitable sites for wind
farms are becoming increasingly scarce closer to shore, prompting developers to look to deeper waters
further out at sea. Additionally, advances in turbine technology have resulted in the production of larger
and more powerful turbines, which require more space and are better suited to installation further out
at sea. Finally, the cost of building and operating OWFs has decreased significantly in recent years,
making it more economically feasible to install turbines further out at sea.

A challenge of building OWFs further out at sea is the increase of seabed depth to which the foun-
dations have to be fixed. In general there are two categories of OWT foundations, bottom-fixed and
floating. Among the bottom-fixed foundations, the monopile is the simplest in terms of production and
installation. Other options are the jacket or the gravity based foundation [24]. Floating OWT rely on
mooring and anchoring systems for their station keeping. Examples of floating foundations are the
spar, the semi-submersible platform and the tension leg platform [24].

1.2. The monopile foundation
The focus of this study is exclusively on monopile foundations. From this point onward, a monopile
(MP) will be indicated as MP. A MP is a thin-walled, hollow steel cylinder that are installed in the seabed
by means of a powerful hydraulic hammer [44] or a vibratory hammer [10]. At present, MPs are the
prevailing foundation type for supportingOWTs, accounting for about 80%of such installations [21]. The
main reason for MPs to be the preferred option, is the simplicity in design, fabrication and installation
processes. MPs are typically used in hard to semi-hard seabed conditions [24]. Typically a MP is
around 5 meter in diameter and has a slenderness ratio (length/radius) of 10 to 12, which makes them
suitable for shallow to moderate water depths of 35 meter [21]. However, since the OWF will be in
increasingly deeper waters, the MP size will increase as well. Such large MPs are referred to as XL,
for diameters up to 10 meters, and XXL, for diameters larger than 10 meters.

1.2.1. Standard installation method
For the installation of MP foundations, either a jack-up vessel or a floating heavy lifting vessel is used.
The MP foundations can be transported to the site either on a barge (feedering) or on the installation
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1.2. The monopile foundation 2

vessel (shuttling), depending on the specifications of the installation vessel. For most projects shuttling
is the most economic way of transportation. However, when the project site is very far from the shuttling
port, feedering might be the preferred option [27]. Also for projects in the United States, carried out by
foreign installation vessels, feedering is used because of the Jones act [61].

The primary benefit of utilizing a jack-up is its ability to offer a secure and steady platform for instal-
lation purposes. However, the installation and retrieval of the jack-up legs can be time-consuming and
must be conducted during favourable weather conditions [56]. Compared to jack-up vessels, floating
heavy lifting vessels are more versatile for offshore operations and are proficient in executing mass
installations of wind farms because they allow for swift transit between foundations [39]. Heavy lifting
vessels use dynamic positioning systems for station-keeping. Nonetheless, the installation of founda-
tions using a floating vessel is more susceptible to weather conditions due to the heave, pitch, and roll
motions of the vessel, unlike the stable jack-up platform.

The widely used installation method in the industry consists of four steps. First the MP is upended
from a horizontal to a vertical position, from the transportation barge or on the installation vessel, using
an upending frame. Then the crane brings the MP into position besides the ship, where a pile-handling
tool, such as a gripper device, is used to hold the MP in vertical position. The MP is lowered until it
stands on the seabed and driven into the seabed by a hydraulic hammer. When the MP is in place, the
transition piece can be placed on top. Nowadays, also MP foundations without transition pieces are
used, and this last step is skipped [24].



2
Research Motivation

This chapter provides the problem statement and a literature review.

2.1. Problem statement
The main focus of this study is the upending phase of a MP installation procedure, in which a MP is
upended from a horizontal to a vertical position, partly through the wave zone. In this phase, the hydro-
dynamic loads will influence the motions of the MP.While the hydrodynamic loading on the MP structure
may not be a critical concern for the MP itself, it will create dynamic loading on the cranes. Therefore,
an accurate estimation of these loads is necessary. In other words, to determine the hydrodynamic
behaviour of the MP will increase the accuracy of workability predictions.

In the context of XXL MP installation, there are distinctive aspects that necessitate thorough in-
vestigation to be able to comprehend the hydrodynamic behaviour. Firstly, the Morison equation, a
conventional tool for such analysis, is not appropriate due to the significant diameter of XXL MPs. Con-
sequently, a more suitable description of MP behavior using potential flow theory is used. Secondly,
the open-ended configuration of the MP on both sides introduces complexities involving internal water
dynamics and flow separation at the bottom edge.

Among these complexities, the internal water behavior presents the most substantial source of
uncertainty in understanding MP hydrodynamics. Especially resonance effects of the internal water
column are relevant, since these can be significant and possibly critical for the operation. Moreover,
frequencies near the resonance frequency may commonly appear in the wave spectrum at the opera-
tional location.

Furthermore, unlike conventional installation methods, due to the adoption of the ”tandem lifting”
procedure, XXL MPS are subjected to inclined splash-zone entry instead of solely vertical lowering.
The effect of the inclination on the internal water behaviour should be investigated.

2.2. Literature review
2.2.1. Vertical cylinder in waves
The force model on a vertical MP is described by Lin Li et al. [38], using Morison equation [52] for the
horizontal wave force. Strip theory is employed in this model to calculate excitation forces based on
the slender body assumption. According to Faltinsen and Timokha [17], the primary assumption of the
Morison equation is that the diffraction potential remains constant across the entire body. Because of
this assumption, the Morison equation is only applicable if the diameter of the cylinder is small with
regards to the wavelength. If this is not the case, diffraction effects have to be taken into account [59].
For the large diameter XXL MPs this implies that diffraction has to be considered for smaller wave
periods. Another disadvantage of the standard Morison equation only applies to vertical cylindrical
structures, which is not constantly the case during upending [41].

Another technique to model the hydrodynamic loads is potential flow theory. It evaluates pressure
integrals around the surface of a body and is suitable for situations where the floating body is signifi-
cantly larger than the wavelength of the incident sea state. It accurately accounts for wave excitation

3



2.2. Literature review 4

forces, diffraction, radiation loads, addedmass, and damping caused by the presence of the submerged
structure. However, this theory does not account for viscous drag loading.

To analyse the dynamic response during the installation of large diameter MPs, it is relevant to look
at research for large diameter cylindrical floating structures such as semi-submersible wind turbine
foundations. To simulate the dynamic response of such a structure Kvittem et al. [35] combines the
use of potential flow theory, which accounts for radiation and diffraction effects, with Morison’s equation
which accounts for viscous effects. Other examples of closed vertical cylinders subjected to external
water flow are spar buoy ([75],[34]) and the tension leg platform (TLP) [53].

2.2.2. First order potential flow
The MP upending operation from a horizontal to a vertical position alongside the ship takes approxi-
mately 20 minutes [27]. This is relatively long compared to the expected wave periods, and therefore
it can be considered a stationary operation. The potential flow theory assumes inviscid, incompress-
ible and irrotational flow [16]. Also, no transient effects are present due to the steady state conditions
[16]. A disadvantage of potential flow theory is that viscous effects are not taken into account. Viscous
effects might be important for the overall behaviour of the MP, considering the water behaviour inside
the MP (2.2.4).

If the viscous effects are not considered, the hydrodynamic problem in regular waves can be divided
in two components [16]. Steady-state condition is assumed, so no transient effects are present due
to initialconditions. This condition implies that the linear dynamic motions and loads acting on the
structure are harmonically oscillating with the same frequency as the wave-induced loads that excite
the structure. Due to linearity these two components can be added to give the total hydrodynamic
loading. The two components are [17]:

1. The forces and moments acting on the structure when the body is restrained from oscillating and
incident regular waves are present. The hydrodynamic loads consist of the Froude-Kriloff loads
and the diffraction forces and moments, collectively referred to as wave excitation loads. The
Froude-Kriloff forces arise from the pressure field within the incident waves, which are undisturbed
by the structure. Newman [54] refers to what we call the diffraction problem as the scattering prob-
lem. Newman [54] refers to what is known as the diffraction problem as the scattering problem.
In his terminology, the diffraction loads encompass the combined effects of the Froude-Kriloff and
scattering loads.

2. The forces andmoments acting on the body when the structure is forced to oscillate in undisturbed
water at the wave excitation frequency corresponding to any rigid-body motion mode. There are
no incident waves present, but the oscillations of the body lead to the generation of radiating
waves. The hydrodynamic loads are identified as added mass, damping and restoring forces and
moments. This subproblem is known as the radiation problem.

It is important to emphasize that in a nonlinear theory, the diffraction and radiation problem cannot
be separated.

2.2.3. Diffraction modelling for thin-walled structures
There are multiple numerical modelling programs that determine the linear hydrodynamic loads and as
such assess the performance of offshore structures. Currently, the boundary element method (BEM)
based on the potential flow theory remains a prevalent technique for evaluating a wide range of selective
sea states, despite the high accuracy of computational fluid dynamics (CFD) based on Navier-Stokes
(N-S) equations. This is mainly due to BEM’s lower computational cost, which has made it an essential
tool in the field. Generating appropriate panels for simulation in BEM analyses for thin structures, like
the thin-walled XXL MP, can be challenging [65]. Consequently, numerical modeling of structures with
thin components may require a considerable number of panels to achieve accurate results.

Research by Sheng et al. [65] concluded that open source software HAMS [41] could handle thin
structures as accurately as commercial codeWAMIT [36]. Other radiation-diffraction analyses software
packages are ANSYS-AQWA and NEMOH. Sheng et al. [65] found that NEMOH could not predict the
hydrodynamic parameters correctly for a thin walled structure.

In the graduation thesis of Van Steensel [69] the hydrodynamic diffraction of a hollow cylinder was
modelled with ANSYS-AQWA. The results for radiation damping, added mass and wave loads per fre-
quency excitation were than used in Orcaflex models to compare with the results for model experiments.
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An interesting take away from this research regarding ANSYS-AQWA is that unwillingly a standing wave
was generated inside the cylinder because of the water oscillation. The model does not account for
viscous effects, which would partly damp out oscillations in real-world scenarios, leading to unrealisti-
cally high surface elevations. This could be fixed with a numerical trick. By implementing an abstract
(not physical) lid inside the cylinder, which suppresses the vertical velocity. However, the amount of
viscous damping this internal lid should represent is an approximation.

Regardless of the approach used for numerical modeling of the MP behavior, it is imperative to ac-
quire experimental results to procure model-scale data that can be utilized for the purpose of validation
and calibration of the integrated numerical model.

2.2.4. Water behaviour inside MP
The water behaviour inside the MP can best be compared with the water behaviour inside a partially
filled circular tank. Ibrahim described liquid sloshing in the book ”Liquid sloshing dynamics” [22]. Liquid
sloshing refers to any motion of a liquid’s free surface inside its container. A phenomenon caused
by disturbance to partially filled containers. Depending on the shape of the container and the type
of disturbance, the liquid surface experiences various types of motion. These include simple planar
motion, nonplanar motion, rotational patterns, irregular beating, symmetric and asymmetric motion,
quasi-periodic oscillations, as well as chaotic behaviour.

First the focus will be on the linear sloshing that can be expected. During the upending operation
the MP will be open-ended on both sides. The water that will flow inside the MP during this operation
will be in contact with the water surrounding the MP. It is expected that this water motion might show
resonance at certain oscillatory frequencies. The natural mode at which the water is forced to oscillate
up and down, in a heaving motion, is referred to as the piston-mode. The natural modes at which water
is oscillation back and forth are refered to as the sloshing modes. Both modes are described by Molin
[48] for moonpools (Figure 2.1). Moonpools are vertical openings in a vessel’s deck and hull, which
are utilized for various maritime and offshore activities. For moonpools the natural modes are caused
by the water motion that is influenced by wave-induced pressures and the motion of the vessel. Molin
[48] showed that as the width and draught of the moonpool decrease, there is a corresponding rise in
the frequency of the longitudinal sloshing modes.

(a) Three-dimensional case. Piston mode. Square moonpool.
(b) Three-dimensional case. First longitudinal sloshing mode. Elongated

moonpool.

Figure 2.1: Piston mode and sloshing mode as presented by Molin [48].

The effect of the resonance modes is that the water inside behaves more or less like a rigid body
possible leading to significant loads. As the size of the MP increases, so does the volume of water,
which can be a significant concern. Additional research is required to determine the impact of both the
piston- and sloshing-modes on the behavior of the open-ended inclined XXL MP, as well as to assess
the extent to which the internal water resonance-induced loads affect the overall motion of the MP.

The application of an open-ended vertical cylinder subjected to external water flow can be found
in the oscillating water column (OWC) device, which converts wave energy to electricity [72]. Multiple
OWC device concept are possible, but the one relevant for this research consists of a truncated, vertical,
hollow cylinder which is partially submerged and open at the bottom. At the top, above the water, there
is a turbine which generates energy from the air pressure that is created by passing waves. In the study
by Wang and Falzarano [72] an analytical model has resolved the diffraction and radiation challenges
associated with a floating vertical Oscillating Water Column (OWC) device by incorporating first-order
wave forces and hydrodynamic properties. This model has similarities to a partially suspended cylinder
in water subjected to waves.

A significant observation gathered during the monopile model tests conducted by Van Oord at SIN-
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TEF [29] is the resonant sloshing behavior of the internal water column during the forced motion tests.
During forced motion tests conducted with water inside the monopile, the occurrence of resonant slosh-
ing is contingent upon several factors, including the water level, angle of inclination, motion frequency,
and mode. The presence of significant sloshing amplitudes leads to non-linear free surface effects,
which pose challenges in both the development of numerical or empirical simulation models and real-
world upending operations. Liquid oscillations resulting from resonant sloshing can induce undesired
movements of the monopile, complicating operational control. An example of an instance where slosh-
ing is observed is given in Figure 2.2 from the SINTEF [29] model test campaign. Figure 2.2 shows
snapshots of the free surface phenomena occurring during a specific test. In Figure 2.2, a 45 degrees
inclination angle, an enforced horizontal motion of amplitude 1.5 meter, with a period of 6 seconds
was present. In this test, a bottom plug was present, which is not the case in the desired installation
sequence in the present work. In this specific test, the flow rapidly becomes violent, characterized by
impinging jet flows that culminated in swirling sloshing patterns.

The swirling or rotary flow motions that are indicated in Figure 2.2 are described by Faltinsen and
Timokha [17]. The direction of forced motion which is applied to the structure is also indicated in Figure
2.2. Swirling occurs during horizontal excitation when the forcing frequency is near the lowest natural
frequency. A consequence of swirling is a lateral hydrodynamic force component that is perpendicular
to the forced oscillation direction. To get a sense of swirling, it is possible to move a glass of water
back and forth. It’s worth noting that the rotation direction depends on transient conditions, and steady-
state swirling motion can be either clockwise or counterclockwise. Additionally, swirling may change
its rotation direction during transient conditions. Swirling is a nonlinear phenomenon.

Figure 2.2: Violent sloshing accompanied with jet flows that subsequently transition into swirling or rotary flow patterns,
oscillating back and forth. This dynamic behavior occurs under a 45-degree inclination, with water present inside the structure
and the bottom plugin place. The horizontal amplitude of the imposed motion is 1.5 meters, and the period of forced motion is 6

seconds. [29]

2.2.5. Mechanical sloshing model
In the work by Sharma et al. [64], a mechanical model is proposed for predicting the highest amplitude
of sloshing waves inside a cylindrical tank. The model is based on earlier work by Abrahamson et al.
for linear fluid sloshing, Abrahamson et al. represented the lateral sloshing problem using spring-mass-
damper systems [2] and pendulum based models [1]. The work by Abramson was mostly conducted to
predict the dynamic behaviour of liquids in moving (cylindrical) tanks in the space craft technology. The
model by Sharma et al. [64] consists of a linear, two degrees of freedom, spring-mass-damper system
which contains two masses representing a sloshing mass and a non-sloshing mass of the partially
filled cylindrical tank. A representation of the model is given in Figure 2.3. Through experimental
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tests, the model has been validated, demonstrating its ability to provide an accurate representation of
water sloshing within a laterally excited cylindrical tank. The model’s accuracy and applicability can be
further improved by incorporating additional modal masses, introducing non-linear and torsional springs
to account for non-linear effects, and addressing the rotational dynamics of the free surface, especially
near resonant frequencies. In the present work, the effect of the open bottom of the cylinder on the
sloshing should be taken into account. Also the inclination of the cylinder and the effect it has on the
motion of the internal water column is not considered by this model.

Figure 2.3: Proposed two DOF spring-mass-damper model for lateral sloshing [64].

2.2.6. Vessel Shielding
The wave spectrum that acts on the MP is influenced by the presence of the heavy lifting vessel (HLV).
The diffraction and shielding effect from the vessel is studied by L. Li et al. [40]. The study focuses
on the process of lowering the MP vertically alongside the vessel, in a conventional crane-gripper
configuration. Thus it can be considered a multi-body system where the bodies (vessel and MP) are
connected through the lift wire and the gripper, in which the lift wire controls the lowering of the MP
and the gripper the horizontal motions of the MP. The study concludes that the motions of the MP in
relatively short waves (Tp = 5 and 7 s) are significantly reduced when the MP is lowered on the leeward
side of the vessel, compared to the same operation on the windward side of the vessel. The shielding
effect decreases as the wave period increases, which can be explained through diffraction theory. Short
waves are subject to diffraction by the vessel, whereas long waves are not. When it is decided to use a
floating HLV in long waves (Tp > 11s) it is suggested to carry the operation out in head seas or following
seas to avoid large roll motions of the vessel. These roll motions will significantly increase the gripper
contact forces on the MP [40]. In the current study, we exclusively focus on the monopile, disregarding
the presence of the vessel. It is advisable to incorporate the vessel and connecting cranes in future
research to analyze the impact of multibody dynamics.

2.2.7. Diffraction and CFD
The internal water motion in an open endedmonopile during the installation can have a significant effect.
Specifically the effect of sloshing motions of the surface water level, near the natural sloshing modes,
can have a pronounced effect on the monopile motions. Bunnik and Veldman [8] present two different
models that take into account the effect of sloshing on ship motions. In the first model a linear diffrac-
tion method in the frequency domain is used for both the liquid motions in the containment system and
the liquid motions outside the vessel. In the second model, a time-domain coupling technique where
the computation of the sloshing liquid within the containment system is performed using computational
fluid dynamics (CFD) utilizing the Volume of Fluid method. Meanwhile, the hydrodynamics of the ship
are calculated using the linear diffraction method.
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Both methods are employed to simulate model tests described by Molin [49], where the motion re-
sponse of a barge with a water container partially filled on its deck was measured. The focus of the
research is on the roll motion response in beam seas. Validating the models with these model tests
show:

• The diffraction model produces a roll response (RAOs) that is reasonably consistent with the ex-
perimental results. However, there is a slight shift in the position of the 2nd sloshing-induced peak,
and the peak itself is narrower compared to the experiments. In order to achieve accurate added
mass values and an appropriate roll response, it is necessary to introduce additional dissipation
on the free surface of the tank.

• The coupled CFD-diffraction model exhibits excellent agreement with the experimental data. A
study on grid refinement demonstrates that even with relatively coarse grids, satisfactory results
can still be achieved.

• In more severe sea conditions, the second peak in the roll response noticeably decreases. This
behavior is accurately predicted by the coupled CFD-diffraction model, although it slightly over-
estimates the actual response.

Although the coupled CFD-diffraction model yields favorable outcomes in the context of this specific
large free-surface tank application, it is important to acknowledge its inherent limitations. An important
limitation in the context of the current research is that viscous effects are not resolved due to the use
of coarse grids without any resolution in boundary layers. As a result, when viscous effects become
significant, refined boundary layers and turbulence models should be employed. The CFD model used
by Bunnik and Veldman [8], did not allow such capabilities, but the newer version of ComFLOW (from
ComFLOW 3 onward) does.
Furthermore, Bunnik and Veldman [8] only focused on beam seas. Wave directions other than beam
seas have the potential to induce longitudinal tank sloshing and impact surge motions. The method
presented in this paper can, in theory, handle such wave directions. However, it should be noted that
incorporating non-beam seas would significantly increase the required CPU time, as sloshing would
transition from a 2D effect to a 3D effect in those cases.



3
Research Objectives

In this chapter the research objectives, research questions and plan of approach will be given.

3.1. Research objective
The main objective of this research is develop a method that sufficiently conservatively predicts the
effect of internal fluid motions on the overall hydrodynamic behaviour of a large-diameter, thin-walled,
open-ended monopile as it is upended from a horizontal to vertical position in the splash zone.
To meet the main objective, multiple sub-objectives are formulated:

1. Analyze the internal water motions and loads resulting from fluid resonance in an open-ended
cylinder, including piston-mode resonance and sloshing.

2. Investigate how the inclination angle of the monopile relative to the horizontal position during the
upending operation affects these phenomena.

3. Investigate whether the resonance frequencies of the internal water column are within the ex-
pected range of frequencies occuring during the operation.

4. Develop a method to determine the hydrodynamic loads from internal sloshing on an upright and
inclined cylinder during the complete upending cycle.

5. Examine the difference in hydrodynamic loads between the conventional method and the method
that incorporates internal water effects.

6. Validate the computational model based on LPF with a CFD model.

3.2. Research questions
Primary research question
Is it possible to predict the internal water behavior, particularly resonance motions, in an open-ended
monopile during the installation sequence, and what is the impact of this behavior on the overall motions
of the monopile?

Secondary research questions
• Can an analytical equation be employed to determine the frequencies of the piston mode and
sloshing mode within the internal water column of both vertical and inclined monopiles?

• Is it possible to describe the internal water behavior in an open-ended monopile accurately with
linear theory, or is it necessary to take non-linearities into account?

• Is it feasible to formulate a precise method for translating the motions of the internal water column
into forces acting upon the monopile?

9



4
Analytical description

In this chapter, analytical descriptions for the relevant phenomena will be treated. Two types of resonant
motion are treated, known as the piston and sloshing modes. Both resonant modes will be initially
examined in two dimensions and subsequently in three dimensions. The analytical derivations provided
for the resonant modes will be utilized throughout the remainder of the report.

4.1. Theoretical description
The following theoretical description is grounded in several studies and expounded upon in the work
of Faltinsen and Timokha [17]. In the frequency domain, the equations of rigid-body motions are repre-
sented by equation 4.1. As only the monopile is taken into account, the equations describing its motion
involve six degrees of freedom (DOFs). In equation 4.1 only the equations of linear and angular mo-
mentum are used. The effect of sloshing is not yet incorporated in the equations of motion. Thus the
considered hydrodynamic flow in these equations of motion are exterior to the structure.

6∑
k=1

[(Mjk +Ajk)η̈k +Bjkη̇k + Cjkηk] = Fje
iσet (j = 1, ..., 6) (4.1)

In equation 4.1, Mjk is the generalized mass matrix, Ajk is the hydrodynamic added mass matrix,
Bjk is hydrodynamic damping matrix and Cjk is the restoring matrix. Furthermore, Fj are the complex
amplitudes of the exciting force and moment components. The subscripts in, for example, Ajkη̈k refer
to the force (or moment) component in the j-direction because of motion in the k-direction.

Because added mass and damping are frequency dependent, the equations of motion provided in
equation 4.1 cannot be employed directly in the time domain. Nonetheless, if the steady-state solution
is of interest, this issue can be bypassed by combining the responses to components of regular waves.
If however a transient response is needed, for example the coupling between nonlinear sloshing in a
ship tank and ship motion, the equations of motion are given as equation 4.2.

6∑
k=1

{[Mjk +Ajk(∞)]η̈k(t) +Bjk(∞)η̇k(t) +

∫ t

0

hjk(τ)η̇k(t− τ)dτ + Cjkηk} =

F ext
j (t) + F tank

j [ηk(t)] (j = 1, ..., 6)

(4.2)

In equation 4.2, F ext
j represents the linear external wave force and moment components. Further-

more, F tank
j are the force and moment components associated with sloshing and are functions of ηk(t)

and the second time derivative of ηk(t). The integrals in equation 4.2 are referred to as the convolution
integrals or as Duhamel integrals. In these integrals hjk(t) are the retardation functions, which evalu-
ation requires information on the behavior of either Ajk or Bjk at all frequencies. The structure terms
Mjk and Cjk are the same as in equation 4.1. Ajk(∞) and Bjk(∞) mean infinite frequency added
mass and damping coefficients.

10
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The focus is now shifted from coupled ship motions and sloshing to coupled sway (could also be
surge) motions and sloshing. The equations representing the steady-state response in the sway direc-
tion can be approximated as in equation 4.4.

[M +A22(σ)]η̈2 +B22(σ)η̇2 = F exc
2 + F tank

2 (4.3)

In equation 4.4, M is the mass of the structure, not including the mass of the liquid inside the tank.
A22(σ) and B22(σ) are the linear sway added mass and damping associated with the external flow,
respectively. These are a function of σ, the frequency of oscillation. F exc

2 is the external linear sway
excitation force and F tank

2 is the sway force caused by the sloshing in the tank and can be expressed
as equation 4.4.

F tank
2 = −Ctank

22 (σ, η2)η2 (4.4)

4.2. Piston mode
Given that the base of the monopile is open at the bottom, the water contained within it remains in direct
connection with the encompassing water. The fluid can undergo a vertical movement in a uniform
manner with an oscillating motion and a flat free surface as a result of an oscillatory force, such as
waves.

4.2.1. Two-dimensional
Extensive research has been conducted on the piston-mode resonance between two ships, a moon-
pool, or between a ship and the quayside. The situation that can best be compared to that of a partly
submerged vertical monopile is the moonpool. Molin [48] describes an approximation for the piston
mode inside a moonpool. The approximation assumes the water inside the moonpool to be a solid
body. Molin’s formula was initially devised to estimate piston-mode resonance frequency occurring
within a two-dimensional moonpool situated between two hulls. However, it also provides accurate
approximations for three-dimensional cylindrical situations, as demonstrated in the research by [25].
Molin’s formula with the relevant variables for the monopile is provided in equation 4.5.

ωpiston =

√
g

h(1 +Di(1.5 + ln(Do/2Di))/πh)
(4.5)

In equation 4.5, h is the submergence of the monopile, Di the inner diameter of the monopile and
Do the outer diameter of the monopile. Equation 4.5 is valid for deep water and it assumes a rigid
boundary condition at z = −h for all x and y coordinates, except at the moonpool opening. This
assumption is necessary to obtain a closed semi-analytical solution. In other words, the accuracy of
the estimate improves when the horizontal dimensions of the surrounding geometry are significantly
larger than those of the moonpool [12]. It should therefore be evaluated whether equation 4.5 is valid for
an upright monopile, which can be considered as a thin-walled moonpool. This reasoning is necessary
for both the 2D and 3D piston-mode resonance frequency approximations by Molin.

4.2.2. Three-dimensional
For the three-dimensional piston mode, three different methods for finding the resonance frequency
are introduced. First a function by Molin following from the function for two-dimensional piston mode is
introduced, then Fukuda’s formula is given. Both these methods are developed for a moonpool. Lastly,
the upright cylinder is considered as a mass-spring system, and an approximation by Falnes [15] is
used to find the natural frequency.

In case of a three-dimensional rectangular moonpool, Molin [48] also gives an approximate formula
for the piston-mode resonance frequency. The formula, 4.6, considers a moonpool of length L, breadth
b and submergence (or draught) of h.

ωpiston =

√
g

h+ bf3(b/L)
(4.6)

where
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Figure 4.1: Parameters for Molin’s two dimensional analytical piston mode determination for a partly submerged vertical
cylinder. (this figure is not to scale)
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Equations 4.6 and 4.7 follows by generalizing the procedure for a two-dimensional moonpool. This
procedure is expained by Faltinsen and Timokha [17].

Another method to calculate the wave frequency corresponding to the infrequency of the vertical
oscillating water column in a three-dimensional moonpool (piston mode) is using Fukuda’s formula
[71]. This method is described by DNV [13] and employed by the diffraction software AQWA. Fukuda’s
formula is presented in equation 4.8.

ωpiston =
2π

Tpiston
=

√
g

h+ κ
√
A

(4.8)

In equation 4.8, A is the cross sectional area of the internal surface area, h is the submergence and
κ is a shape dependent constant. The value of κ = 8/(3π3/2) = 0.479 for a circular area, 0.460 for a
rectangular area (b/l=0.5) and 0.473 for a square area. The coefficient of could be related to the added
mass at the lower surface of the moonpool. [71]

Piston mode natural frequency for an upright cylinder
First, the natural frequency of the piston mode will be determined for an upright cylinder. The system
can be considered a mass-spring system, thus the linear equation of motion in heave direction is given
by:

(m+ a33)η̈3 + b33η̇3 + c33η3 = Fex3 (4.9)

in which m and a33 are mass and added mass respectively, b is the linearized damping, C is the stiff-
ness, F is the excitation force and η3 is the heave motion of the water.

The mass, M , is equal to the volume of the water column times the water density:

m = Awlρwh, Awl =
π

4
D2

i (4.10)

In this equation Awl is the water plane area inside the cylinder, ρw is the water density, h is the
submerged length and Di is the inner diameter. See Figure 4.2.

The stiffness, c33, is given by:

c33 = Awlρwg (4.11)
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Figure 4.2: Upright cylinder. (this figure is not to scale)

The equation of motion can be solved to find the natural frequency by assuming harmonic motion:
η = ηae

iwt. Considering equation 4.9, 4.10 and 4.11 the homogeneous equation of motion in heave
direction becomes:

−ω2(Awlρwh+ a33(ω)) + iωb33(ω) +Awlρwg = 0 (4.12)

This analytical analysis does not consider damping. In reality, both linear radiation damping, and
nonlinear viscous damping might influence the natural frequency of the system. The undamped natural
frequency for the piston body is given by:

ωn =

√
c33

m+ a33(ω)
=

√
Awlρwg

Awlρwh+ a33(ω)
(4.13)

The water present below the water column is likely to move with the water within the cylinder, re-
sulting in an ”added mass” that reduces the frequency. According to Kristiansen [32], it is clear that
the natural frequencies decrease in proportion to the square root of the submerged length of the cylin-
der. The magnitude of the added mass varies in the context of gap resonance problems, introducing
an element of uncertainty ([32]). It is expected that the added mass depends on several geometric
parameters, including cylinder thickness, length, and diameter. Additionally, the added mass is highly
dependent on the wave frequency, with the expectation that it increases significantly near resonance,
in contrast to its behavior at relatively low or very high frequencies. To estimate the added mass, Falnes
[15] introduced a correction to account for the added mass of the oscillating water column. Falnes [15]
estimates the added mass at ωn as:

a33 = 0.76
2π

3
R3ρw (4.14)

In this approximation R is the inner radius of the cylinder, and thus half of the inner diameter (= 1
2Di).

Implementing this into the equation of the natural frequency gives:

ωpiston =

√
Awlρwg

Awlρwh+ 0.76 2π
3 R3ρw

≈
√

g

h+ 0.5R
(4.15)

Piston mode natural frequency for an inclined cylinder
For an inclined cylinder, linear equation of motion in body fixed heave direction (so for the body fixed
axis system which rotates together with the body), is given by equation 4.16.

(m+ a) ¨η3−bf + b ˙η3−bf + cη3−bf = Fex3−bf (4.16)

in which m and a are mass and added mass respectively, b is the linearized damping, c is the
stiffness, F is the excitation force and η3−bf is the heave motion of the water in the body-fixed axis
system.

For an inclined cylinder, as opposed to an upright one, the surface-piercing area of the geometry
increases because the cylindrical shape becomes elliptical. This is illustrated in Figure 4.3.
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Figure 4.3: The surface piercing area and side-view of an inclined cylinder. [4] (this figure is not to scale)

For the surface piercing area in Figure 4.3, the length ofA is equal to the diameter (D) of the cylinder
and the length of B is equal to D/ sin(α). The surface piercing area is given by equation 4.17.

Awl = π
A

2

B

2
=

π

4

D2

sinα
(4.17)

In the right Figure in Figure 4.3, D is the diameter of the cylinder, h indicates the submergence, Ls

indicates the submerged length and α is the inclination angle with respect to the waterline.
For an inclined cylinder, compared to an upright cylinder with the same submergence, a larger

submerged length is present. This submerged length depends on the inclination angle, since Ls =
h/ sinα. The natural frequency can be thus be found with equation 4.18 as stated by Balkema [4].

ωn =

√
c

m+ a
=

√
Awlρwg

AwlρwLs + a(ω)
=

√
Awlρwg

Awlρw
h

sin(α) + a(ω)
(4.18)

This implies that if the influence of the change in addedmass is disregarded, the piston-mode natural
period is inversely proportional to the sine of the inclination angle (1/ sin(α)). This means that as the
inclination with respect to the horizontal decreases, and assuming the submergence remains constant,
the piston-mode natural frequency will decrease. However, in reality, the influence of the added mass
cannot be disregarded, as it will have an impact on the piston-mode period [4].
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4.3. Sloshing mode
The interaction between waves, vessel motions, and themonopile can induce a back-and-forth sloshing
motion, characterized by sinusoidal deflections of the water surface within the cylinder. This generates
discrepancies in water levels and applies pressure loads on the monopile due to fluid accelerations.

Bunnik and Veldman [8] analysed sloshing behaviour in a rectangular sloshing tank. They con-
cluded that the exclusion of non-linearities and viscous effects in diffraction theory leads to a significant
overestimation of the liquid motions at the natural sloshing frequencies of the sloshing tank. The first
two natural modes for sloshing in a two-dimensional rectangular tank can be found in Figure 4.4 from
the book Sloshing by Faltinsen and Timokha [17].

Figure 4.4: The first two natural modes for sloshing in a two-dimensional rectangular tank. Dotted and dashed lines refer to
nodal and antinodal lines, respectively. Liquid particle motions at and between the nodal and antinodal lines are indicated by

arrows [17].

Focusing on the sloshing behavior in a cylinder, lateral sloshing pertains to the behavior of the liq-
uid surface within an upright cylinder when subjected to lateral excitation. The significance of lateral
sloshing lies in its ability to generate asymmetric mode shapes. An overview of the governing equa-
tions and boundary conditions that are relevant to the issue of lateral sloshing in a two-dimensional and
cylindrical tank will be presented in this chapter.

4.3.1. Natural frequency of the sloshing liquid
According to Ibrahim [22], when a partially filled container undergoes lateral excitation, the free surface
of the liquid column inside the container may assume arbitrary shapes such as planar, non-planar,
beating, or chaotic. Since theoretical analysis of this behaviour can be very difficult, the following
assumptions are applied [64]:

1. To simplify the analysis and avoid the complications arising from container flexibility, it is assumed
that the tank holding the liquid is rigid.

2. In order to linearize the problem, the assumption is made that the wave heights on the free surface
of the liquid are small.

3. The analysis considers the liquid to be incompressible, irrotational, homogeneous, and inviscid.
4. It is assumed that the total volume of liquid within the tank remains constant.

4.3.2. Two-dimensional
Faltinsen and Timokha [17] noted that the most straightforward scenario in two dimensions, featuring
precise analytical natural modes and frequencies, is related to the sloshing phenomenon occurring
within a planar rectangular tank. When the method of Faltinsen and Timokha [17] is not applied to a
rectangular tank but rather to the two-dimensional depiction of the monopile, equation 4.19 yields the
natural frequency and period of sloshing.

ωi =
2π

Ti
=

√
g
πi

Di
tanh( πi

Di
h) (4.19)
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Figure 4.5 schematically clarifies the two-dimensional notation. In the two-dimensional representa-
tion of the monopile, the breadth of the tank is equal to the inner diameter of the monopile, Di and the
height of the liquid to the submergence of the monopile, h. Since the 2D geometry of the monopile does
not have a bottom, equation 4.19 can only be used when the liquid-depth-to-breadth ratio, h/Di

>∼ 1.
This is the deep liquid condition, when the liquid motions of the free surface do not ”feel” the tank bottom
[17].

Figure 4.5: a) Mean liquid shape for a two-dimensional rectangular tank (with monopile notations). b) Standing wave
corresponding to the first natural mode for sloshing. [25]

4.3.3. Inclined sloshing frequency - 2D
In the literature, specific research on the sloshing frequency for an inclined rectangular 2D geometry,
where h > D (ensuring that the water surface does not interfere with the bottom of the geometry), is not
present. If we consider Figure 4.5 as the starting point and rotate it around the center point on the still
water level (SWL), the submerged length will remain constant. The length of the water surface will be
equal toDi/ sin(α), where α is the inclination angle (90 degrees corresponds to vertical). Incorporating
the adjusted water surface length in equation 4.19 will be used as the first approximation of the natural
sloshing frequency for an inclined 2D geometry. It is important to note that this will not provide an
accurate determination of the sloshing frequency. Equation 4.19 for an open-ended structure is only
valid for a deep liquid, a condition not met as the inclination angles decrease. Consequently, it is
employed as a preliminary approximation, and the actual sloshing frequency will be determined through
LPF and CFD.

4.3.4. Three-dimensional
In the three-dimensional analysis, the monopile geometry is conceptualized as an upright circular cylin-
drical tank. The geometric definitions of this tank are given in Figure 4.6, in which a cylindrical coordi-
nate system is used (r, θ, z).

Based on the definitions in Figure 4.6, the cylinder in Figure 4.7 is considered with radius, R, and
liquid height, h. Since the liquid is incompressible, irrotational and inviscid, the velocity field can be
described as v = ∇φ. The variable φ denotes the single valued velocity potential function and satisfies
Laplace’s equation:

∇2φ = 0 (4.20)

Since a closed cylinder is considered, the velocity potential satisfies the no-penetration condition at
the side and bottom:

(4.21)

At the free surface the kinematic condition is present which states that the particles situated on the
surface should stay on the surface. This condition is accompanied by the requirement that the pressure
exerted on the liquid’s surface remains constant [64]:
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Figure 4.6: Geometric definitions for natural sloshing modes in an upright circular cylindrical tank. Meridional plane
cross-section and wave patterns are shown for the two lowest modes (from [17]).

Figure 4.7: Cylindrical coordinate system (r, θ, z) assumed for the cylindrical tank containing liquid up to depth of h [64].

∂2φ

∂t2
+ g

∂φ

∂z
= 0 (4.22)

In equation 4.22, t is the time and g is the gravitational acceleration. As stated first by Bauer [5],
the boundary value problem is solved to obtain the velocity potential function satisfying the conditions
(4.20,4.21):

φ =
∑
m

∑
i

[αm,i(t) cos(mθ) + βm,i(t) sin(mθ)] Jm(km,ir)
cosh [km,i(z + h)]

cosh(km,ih)
(4.23)

In equation 4.23, αm,i and βm,i are time dependent variables, relying on the initial conditions of the
free surface. Jm is the Bessel of the first kind, of order m. The wave number, km,i is given by:

km,i =
ι′m,i

R
, m = 0, 1, 2, ..., i = 1, 2, ... (4.24)

Table 4.1 provides the value of ιm,i, which represents the ith zero of the derivative of the Bessel
function of order m, denoted as J ′

m.
If αm,i and βm,i are expressed as harmonics functions and equation 4.23 is substituted in equation

4.22, the resonant frequencies for the sloshing modes, ωm,i, of the liquid column are given by the
dispersion relation [22]:
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ω2
m,i = gkm,i tanh(km,ih), m = 0, 1, 2, ..., i = 1, 2, ... (4.25)

From equation 4.25, it becomes clear that for large cylinders, the natural frequencies of the liquid are
small. Also, when a cylinder is filled to a certain level, the natural frequencies of the liquid reach a point
where they no longer vary with the liquid height. This occurs because the hyperbolic tangent function
becomes approximately 1 (tanh(km,ih) ≈ 1). Then making the square of the natural frequencies ω2 ≈
gkm,i.

At the liquid height where tanh(km,ih) ≈ 1, the linearized hydrodynamic theory can also be applied
to vertical cylinders without a bottom, since the natural frequency is then no longer dependent on the
liquid height.

Table 4.1: The first roots ιm,i of the derivative of the Bessel function J ′
m.

i\m J ′
0 J ′

1 J ′
2 J ′

3 J ′
4

1 3.8317 1.8412 3.0542 4.2012 5.3175
2 7.0156 5.3314 6.7061 8.0152 9.2824
3 10.1735 8.5363 9.9695 11.3459 12.6819
4 13.3237 11.7060 13.1704 14.5858 15.9641

These findings are also described by Ibrahim [22], and Faltinsen and Timokha [17]. The natural
frequencies of sloshing are a function of the non-dimensional submergence-to-radius ratio [17]. This
implies that the submergence of the liquid in relation to the cylinder’s diameter affects the behavior until
a certain steady-state is achieved. Ibrahim [22] formulated that for a partially filled circular, cylindrical
container, the natural frequency remains constant when the ratio h/R > 2. Faltinsen and Timokha
[17] states that a difference in natural frequency will be minimal when h/R > 1.5. The section above
and the formulations by Ibrahim [22] and Faltinsen and Timokha [17] entail that in a sufficiently filled
circular container, the resonance of the liquid at the bottom ceases, and only the top layer experiences
sloshing.

Formula 4.26 defines the calculation of natural sloshing periods in three dimensions for themonopile,
with the wave number excluded from the equation.

ωm,i =
2π

Tm,i
=

√
2gιm,i tanh (2ιm,ih/Di) /Di (4.26)

In formula 4.26, ωm,i denotes the sloshing frequency for the ith mode, ιm,i is the ith zero of the
derivative of the Bessel function of order m, denoted as J ′

m(ιm,i) = 0. As before, h refers to the
submergence (or draught) and Di to the inner diameter.

If surface tension is considered, the natural frequency follows from equation 4.27, according to
Ibrahim [22], in which σ is the surface tension and ρf is the liquid density.

ω2
m,i = [gkm,i +

σ

ρf
k3m,i] tanh(km,ih), m = 0, 1, 2, ..., i = 1, 2, ... (4.27)

This equation pertains to the slip contact line and demonstrates that surface tension leads to an
increase in the normal mode frequencies.

The fluid surface elevation, η, measured from the undisturbed free surface is given by equation 4.28.
In this equation ᾱm,i and β̄m,i are constant and determined from initial conditions.

η =
1

g

∞∑
m=0

∞∑
i=1

[
ᾱm,i cos(mθ) + β̄m,i sin(mθ

)
]Jm (km,ir) cosh (km,ih) (ωm,i cos(ωm,it)) (4.28)

The symmetric mode shape is given by 4.29. For the first mode, m = 0, the motion exhibits sym-
metry around the center as angular ridges and furrows. In this situation, the roots of J ′

0(k0,1r) = 0 |r=R

are given in the first column of Table 4.1. The nodal circles corresponding to these modes are given by
η = 0, or J0(k0,1r) = 0. Given that there is no lateral shift of the liquid center-of-mass for any of these
modes, they do not generate any lateral forces or torques.
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η(r, θ, t) =
1

g

∞∑
m=0

∞∑
i=1

[ᾱm,i cos(mθ)]Jm (km,ir) cosh (km,ih) (ωm,i cos(ωm,it)) (4.29)

The asymmetric mode shape is given by 4.30. For the first mode, m = 1, there is a nodal diameter
perpendicular to direction of the regular incident wave (or in the case of forced oscillation, the motion
of the geometry). The roots of J ′

1(k1,1r) = 0 |r=R are given in the second column of Table 4.1.

η(r, θ, t) =
1

g

∞∑
m=0

∞∑
i=1

[β̄m,i sin(mθ)]Jm (km,ir) cosh (km,ih) (ωm,i cos(ωm,it)) (4.30)

In the present work, particular attention is given to the asymmetric mode shapes, since these are
associated with a horizontal oscillation of the center of mass [70]. A 2D visual representation of first
three asymmetric sloshing mode shapes in a 3D cylinder are shown in figure 4.8. For the first mode,
i = 1, there is a nodal diameter perpendicular to the direction excitation, a positive peak at one wall, and
a negative peak at the other wall. This mode is the fundamental asymmetric wave. The fundamental
asymmetric wave is a standing wave with a wavelength twice the structure diameter and a node in
the middle of the tank [17]. For the other modes, i > 1, there is an increasing number of intermediate
peaks present. In figure 4.8 a sketch of the relative shift of the liquid center-of-mass is provided for each
mode. The liquid center-of-mass shift for the fundamental mode (i = 1) is significantly larger compared
to that of the higher modes for the same maximum wave amplitude. As the center-of-mass oscillation
serves as the origin of slosh-induced forces and torques, the fundamental asymmetric wave generates
considerably greater force and torque than any other mode [14]. For a 3D cylinder the analytical force
oscillation description is given in Appendix C.

Figure 4.8: Slosh wave shapes for the first three asymmetric modes [14].

4.3.5. Inclined sloshing frequency - 3D
McNeill and Lamb [46] researched the fundamental sloshing frequency for an inclined, fluid-filled right
circular cylinder. For an incompressible and inviscid fluid, in a tank with rigid walls, and only for small
oscillations. Bugg [7] experimentally validated the method drafted by McNeill and Lamb [46]. Bugg [7]
determined the frequency of liquid oscillations in a right circular cylindrical tank tilted at 0°, 30°, 45°,
and 60° with respect to the vertical. The liquid fill height was varied as well. Two modes of oscillation
were considered, one with its nodal line along the minor axis (the longitudinal mode) of the liquid free
surface and one with is nodal line along the major axis (the lateral mode) of the surface. As the tank
tilt angle increased, the frequency of both oscillation modes decreased. However, it was observed that
the frequency of the former mode decreased significantly more than the latter mode as the tilt angle
increased. In other words the frequency at which the first sloshing mode in longitudinal direction occurs,
decreases most significantly when the inclination angle increases.
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Table 4.2: The percentage deviation between the theoretical value for ω2R
g

(from [46]) and the experimental results (from [7])
in percent for different inclination angles (α).

Inclination angle
α

Asymptotic value
[46]

Deviation of ω2R
g

%
0 1.84 ∼ 0
30 1.24 10
45 0.834 14
60 0.491 ∼ 0

The theoretical curve for α = 0 degrees (i.e. in [7] and [46] this angle corresponds with an upright
right circular cylinder), follows the expression:

ω2R

g
= 1.841 · tanh 1.841 h

R
(4.31)

In Figure 4.9 the coordinate system and the effect of liquid fill height and tilt angle on the longitudinal
frequency are presented in the left figure. In the right figure, the experimental results from Bugg [7], are
compared with the asymptotic values from McNeill and Lamb [46]. The asymptotic values predicted in
[46] for the inclination angles are given in Table 4.2 as well as the deviation of the values for ω2R

g from the
experimental result in the work by Bugg [7]. A cause of discrepancy between the theoretical description
(from [46]) and the experimental results (from [7]) is the assumption in the theoretical description that
the oscillating free surface remains flat. However, in reality, the actual free surface only remains flat
under very small excitation amplitudes.

Figure 4.9: The left figure depicts, the effect of liquid fill height and tilt angle on longitudinal frequency (from [7]). The line
’Theory, ref. 2’ represents equation 4.31. In the right figure the theoretical data ’Theory, ref. 5’(from [46]) is added for

comparison.



5
Linear potential flow

In this chapter, the analytical derivations are used to determine the accuracy of a linear potential flow
(LPF) model. For this model the diffraction software OrcaWave is used, produced by Orcina Ltd [57].

5.1. Diffraction modelling
The analysis of wave forces on a cylinder, aimed at determining the motions and forces, employs
advanced three-dimensional linear radiation-diffraction analysis. In this analysis a linear approach is
used, assuming small amplitude motions describe the waves and the cylinder oscillations. Due to this
linear approach, the results will be presented in the frequency domain. The LPF method has some
considerable limitations, most important of which are [8]:

• The model does not take into account the influence of viscosity.
• The fluid is assumed to be non-rotating.
• It is applicable only to minor ship movements and waves, as the boundary conditions are lin-
earized.

However, it has been observed that the model yields satisfactory outcomes even in scenarios be-
yond its designated theoretical limits. As a result, further exploration was conducted to determine the
potential usefulness of this method in predicting the impact of resonant behaviour of the internal water
column on the movement of an open-ended vertical cylinder.

For the first part of the research the following assumptions are used:

• Only vertical, open-ended, thin-walled cylinders are analysed, assuming symmetrical mass dis-
tribution.

• The environment contains a unidirectional wave heading in positive x-direction (0.0°) and infinite
water depth with a water density of 1.025 (te/m3).

• The buoyancy of the cylinder is negligible compared to its weight.

Due to the first two assumptions, the vertically oriented body of revolution has three degrees of
freedom, consisting of two translations in surge and heave and one rotation in pitch direction [45].
These motions will be analysed in the first part of this research.

5.1.1. Governing equations
The diffraction theory is comprehensively explained by Journée and Massie [26], particularly in Section
7.4.1 of their work. Therefore, their work is recommended as a reference for this section. A more
elaborate description of the linear radiation-diffraction method used is given in Appendix B. The fol-
lowing explanation presents the theory in terms of hydrodynamic forces, but it is equally applicable to
moments.

In linear potential theory, the potential of a floating object results from the combination of potentials
arising from the undisturbed incoming wave (ΦI ), the scattered potential caused by the presence of a

21
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fixed obstructing body (ΦS), and the radiation potential, associated with the first-order oscillatory forced
motions of the body (ΦR).

The pressure on the panels is determined from the velocity potentials, via the linearized Bernoulli
equation, as in B.2. The forces resulting from these pressures can be written as:

F = ρ

∫∫
S

(
∂ΦI

∂t
+

∂ΦS

∂t
+

∂ΦR

∂t
+ gz

)
· n · dSB (5.1)

In which n is the outward facing normal on dSB and SB the wetted body surface.
In equation 5.1, the term ρgz represents the hydrostatic buoyancy in still water. The hydrodynamic

coefficients (Ajk,Bjk) and the first-order wave forces Fj are determined by integrating the pressure
(B.2) across the submerged section of the structure. Using these outcomes, the coupled equation of
motion (4.1) is resolved for the motions in six directions.

The force can be subdivided into two components: the ’reactive’ added mass and damping compo-
nents, and the ’active’ wave excitation components. The reactive force is due to the radiation waves
induced by body motions in still water. The reactive forces are determined with the radiation potential.
The added mass coefficients, dependent on the acceleration of excitation, are given by:

Ajk = −ℜe
{
ρ

∫∫
SB

ΦR,knjdSB

}
(5.2)

The damping coefficients, dependent on the velocity of excitation, are given by:

Bjk = −Im

{
ρω

∫∫
SB

ΦR,knjdSB

}
(5.3)

The ’active’ force components are derived from the undisturbed wave load (the Froude-Krylov force)
and the diffraction load (resulting from the scattered potential). The resultant of these loads on a fixed
body, is referred to as the wave excitation forces. The wave excitation forces are expressed as follows:

FFK + Fdiff = ρ

∫∫
SB

(
∂ΦI

∂t
+

∂ΦS

∂t

)
n · dSB (5.4)

5.1.2. Dipole panels
The requirements for the use of conventional panels in diffraction analysis are described by DNV [13].
In the diffraction analysis mentioned in this document, also dipole panels are used. The reason for
using dipole panels is that the integral equations used in diffraction analysis are ill-conditioned for thin
walled cylinders of thickness t, in combination with a large diameter of the cylinder. To resolve this
problem, one could use panel sizes which are less than t. However, implementing such small panels
in simulations can be impractical due to the need for a large number of mesh panels, resulting in
computationally expensive calculations that may not be feasible or cost-effective.

Thus, a more viable approach is to utilize well-conditioned integral equations that are applicable
in the idealized limit of vanishing thickness (t = 0), which can offer more efficient and computationally
feasible solutions. The validity of using dipole panels will be explained in more depth in Section 5.2.1.

5.2. Piston mode
As mentioned in Section 4.2.1, the two-dimensional Molin [48] approximation for the piston-mode pro-
vides accurate approximations for three-dimensional cylindrical situations [25]. The piston mode as a
function of diameter and submergence following from the analytical description by Molin [48] (equation
4.5) for an infinitely thin cylinder (Do = Di) is given in Figure 5.1.

The result of these analytical approximations to find the natural frequency of the piston mode consid-
ering added mass for a cylinder with a diameter of 11 meter at various submergence, h, can be found in
Table 5.1. The natural frequency of the piston mode following from the diffraction model, using dipole
panels, is also given in Table 5.1. The last column in the table represents the percentage deviation
(∆) between the Falnes analytical value and the diffraction value. The Falnes [15] method is favored
over the Molin [48] and Fukuda [13] methods in this context, as the Molin method is formulated for a
two-dimensional moonpool, whereas the Fukuda method pertains to a three-dimensional moonpool.
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Figure 5.1: Molin’s [48] piston mode period for infinitely thin cylinder as a function of diameter and submerged length.

The natural frequency derived from the diffraction model is based on the sea state RAOs. Sea state
RAOs provide results at the field points for both pressure in the fluid and fluid velocity. Consequently,
these RAOs will now be referred to as field point RAOs. The response amplitude of the vertical surface
elevation of a field point is given by za

ζa
(ω). The first-order complex pressure and velocity are given in

terms of the total first-order potential [57].
The field point is placed exactly in the centre (x, y) = (0, 0) of the cylinder and follows the surface

elevation in the z-direction. The first peak of the surface elevation of this field point is considered to
coincide with the natural piston frequency. The absolute value of the surface elevation of the field point
is visualized in Figure 5.2, since the field point RAO is a complex number. The three vertical lines with
corresponding colors in Figure 5.2 represent the Falnes analytical approximation for the piston mode
natural frequency. The peaks in the surface elevation curves at higher angular frequency are related
to the sloshing resonance, which will be treated in Section 5.3.

The peak in surface elevation during piston mode resonance increases with greater submergence.
This can be elucidated by considering the water column’s ability to move up and down, generating
waves that radiate away from the cylinder. With increased submergence, the energy dissipating through
radiation diminishes because of reduced interaction with the surface water level outside the cylinder.

Table 5.1: Comparison of the natural piston mode frequency, ωp, for a cylinder with D = 11 m, determined with different
methods. The last column presents the percentage deviation between the Falnes [15] analytical approximation and the

ωdiffraction
p .

h [m] ωMolin
p [rad/s] ωFukuda

p [rad/s] ωFalnes
p [rad/s] ωdiffraction

p [rad/s] ∆ [%]
5 1.12 1.01 1.13 1.10 2.23
10 0.875 0.818 0.877 0.880 0.324
20 0.656 0.631 0.657 0.660 0.508
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Figure 5.2: Absolute value of the field point RAO at center of cylinder [D=11m] at various submergence, h, with dipole panels.
The vertical lines represent the analytical values from the Falnes approximation (equation 4.15).

5.2.1. Dipole panels vs. conventional panels
To investigate the validity of the dipole panels, the analysis from Figure 5.2 is also executed with a
cylinder with the same inner diameter (D = 11m), but with a wall thickness (WT) of 0.5 meter, resulting
in an outer diameter of 12 meter. The results of this analysis in combination with the dipole panels
(DP) results for the same frequency domain are given in Figure 5.3. The same trend can be observed
for the surface elevation at the center of the cylinder for the DP and the WT model. Focusing on the
lower frequency range, where the piston mode is observed, the resonance frequency of the model
with wall thickness is slightly lower than for dipole panels. The deviation between the results should
be sought in the nature of the dipole panels. Unlike conventional panels, the dipole panels are wet
on both sides. Therefore, OrcaWave employs well-conditioned integral equations that apply in the
idealized limit (thickness t = 0) [57].

Figure 5.3: Absolute value of the field point RAO at center of cylinder [D=11m] at various submergence, h (DP = Dipole & WT
= Wall thickness).

In Figure 5.4 the mesh view from OrcaWave is for both models analysed in Figure 5.3. The sub-
mergence is h = 10m. The waterlines and sea surface are indicated with blue. The model to the right
shows the dipole panels (green) and the model to the left the conventional panels (red), this model in-
cludes a interior lid (yellow) to suppress the irregular frequencies between the panel layers. OrcaWave
has a build in mesh validation, which performs various tests to all panels. This validation checks if the
input data is correct and otherwise changes should be made to the panels supplied in the mesh files.
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Figure 5.4: OrcaWave mesh view of cylinder with dipole panels (left) and conventional panels (right) at a subermence of
h = 10m. Only the submerged panels are shown.

5.3. Sloshing
5.3.1. Asymmetric sloshing mode
The surge, sway, roll, or pitch excitations with a period, T , close to the highest natural period are of
particular practical concern (Faltinsen and Timokha [17]). For the first mode,m = 1, the surface motion
shows a nodal diameter perpendicular to the direction of rocking the container [22], as is visualized in
Figure 4.8. Thus, for the first asymmetric sloshing mode, half a wave length fits into the width of the
cylinder. The value of ι′m,I for the fundamental mode, with m = 1 and i = 1, is found to be 1.84 (see
Table 4.1). In Figure 5.5 the period T1,1, based on equation 4.26, is given as a function of radius R for
different values of the liquid depth h.

Figure 5.5: The highest natural period T1,1 as a function of radius R0 for an upright circular cylinder tank.

Initially, we verify whether the resonance frequencies determined analytically by equation 4.26 align
with the frequencies exhibiting resonance behavior in the OrcaWave results. Subsequently, the char-
acteristics of the added mass and damping curves are elucidated, followed by a comprehensive dis-
cussion of the results.

The following analysis is done for upright open cylinders with different diameters. The submergence
has a constant value of h = 20 meters. In the analysis dipole panels are used for the whole geometry.

Added mass
The added mass in surge direction is plotted for cylinders with dipole panels, with varying diameters in
Figure 5.6. In the figure, the analytically determined first sloshing frequencies (using equation 4.26) are
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indicated by the dotted vertical lines. In Figure 5.7 a non-dimensionalized representation of the same
results is given. The added mass is non-dimensionalized by dividing by the mass of the water column
inside the cylinder and this dimensionless added mass is plotted against the non-dimensional relative
wave height. The shape of the added mass curve can be explained by the sloshing dynamics in linear
theory. Initially, there is a rise in the added mass, this is anticipated as the upper part of the internal
water column start sloshing back and forth, in-phase with the incoming wave on the outside. The
added mass coefficients increases towards infinity, until the resonance frequency is reached, at which
the sloshing motion switches to out-of-phase with the incident wave, resulting in a vertical asymptotic
as the added mass tends to negative infinity.

Figure 5.6: The added mass for an open ended cylinder. Different diameters are analysed analytically and with diffraction
software. The submergence has a constant value of h = 20m. The vertical lines represent the analytical values following from

equation 4.26.

Figure 5.7: Non-dimensionalized Figure 5.6 by placing the value for D/λ on the x-axis, and A/Astatic on the y-axis.

In Figure 5.6 it is visualized that the peaks in added mass do not correspond fully with the analytical
sloshing frequency value found for a circular tank determined with equation 4.26. Table 5.2 shows the
values and the deviation (∆). It is evident that the analytically determined first sloshing frequency has
a lower value than the frequency at which the added mass peaks due to the first sloshing mode.
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Table 5.2: Comparison of the natural frequencies for the 1st asymmetric sloshing mode ω1,1.

D [m] ωdiffraction
1,1 [rad/s] ωanalytical

1,1 [rad/s] ∆ [%]
7 2.32 2.27 2.13
9 2.04 2.00 1.82
11 1.85 1.81 2.09
13 1.69 1.67 1.38

In Figure 5.8 the 2nd asymmetric sloshing mode natural frequency, ω1,2, are given. Again, for the
analytical value, equation 4.26 is utilized and a submergence of 20 meter is given to the cylinder. Notice
that compared to Figure 5.6, the peaks have significantly lower amplitudes and the frequency range of
the horizontal axis is different. The second asymmetric modes for smaller diameters are not taken into
account, since these occur at wave frequencies considered too high. Table 5.3 shows the frequency
of the peak and the deviation to the analytically determined sloshing frequency (∆).

Figure 5.8: The added mass for an open ended cylinder. Different diameters are analysed analytically and with diffraction
software. The submergence has a constant value of h = 20m. The vertical lines represent the second asymmetric sloshing

frequencies following from equation 4.26.

Table 5.3: Comparison of the natural frequencies for the 2nd asymmetric sloshing mode ω1,2.

D [m] ωdiffraction
1,2 [rad/s] ωanalytical

1,2 [rad/s] ∆ [%]
11 3.13 3.08 1.30
13 2.86 2.84 0.825
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Damping
For slow oscillations (low frequency, where D/λ is small), the damping is small. As the wave frequency
approaches the resonance frequency, the damping rapidly increases, potentially reaching an infinite
value. This behavior is a result of the resonance phenomenon in the water inside the cylinder. Beyond
the resonance frequency, for frequencies higher than resonance, the damping decreases again. In
Figure 5.9 the damping corresponding to the added mass in Figure 5.6 can be found. A plot of the
damping, at non-dimensionalized frequencies, is shown in Figure 5.10.

Figure 5.9: The damping for an open ended cylinder. Different diameters are analysed analytically and with diffraction
software. The submergence has a constant value of h = 20m. The vertical lines represent the sloshing frequencies following

from equation 4.26.

Figure 5.10: Adjusted Figure 5.9 by placing the value for D/λ on the x-axis.
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Phase shift
Due to linearity, the force amplitude Fa is proportional to the wave amplitude ζa. This is referred to
as the load RAO, representing the response amplitude characteristics Fa

ζa
(ω). The load RAO in surge

direction is given in (5.11. The load RAO is composed of the wave excitation forces (the Froude-Krylov
force and the diffraction force), as given in equation . Since viscous damping effects are disregarded,
the linear theory predicts infinite steady-state response for a forcing frequency close to resonance of
the liquid column. The absence of viscous damping is the key factor, as the sole potential damping
source (radiated waves) is not possible for the liquid column due to the surrounding geometry. At the
point in Figure 5.12 where the load RAO becomes zero (D/λ ≈ 0.59), the internal sloshing waves are
precisely out-of-phase with the incoming undisturbed wave. This leads to a 180-degree phase shift in
the wave exciting force.

The phase shift is visualized in figure 5.11b and 5.12b. This abrupt phase shift is notable in this
context due to the minimal damping of the cylinder. From the figures representing the added mass,
damping, and load RAO (5.11,5.12) in the surge direction, it can be concluded that a 180-degree phase
shift leads to a reduction in load to zero, followed by a rapid increase in the total wave force due to the
potential damping rapidly increasing. Both phenomena arise from resonant behavior. First, the shift
from out-of-phase to in-phase sloshing involves a phase adjustment, nullifying the wave exciting force.
Second, as the in-phase behavior intensifies, this leads to substantial wave heights characterized by a
sloshing motion within the cylinder.

(a) Amplitude (b) Phase

Figure 5.11: Load RAO in surge direction for an open ended cylinder. Different diameters are analysed analytically and with
diffraction software. The submergence has a constant value of h = 20m. The vertical lines represent the analytical values

following from equation 4.26.

(a) Amplitude (b) Phase

Figure 5.12: Adjusted Figure 5.11 by placing the value for D/λ on the x-axis.
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5.3.2. Symmetric sloshing mode
The surface motion of the first symmetric sloshing mode, m = 0, is symmetric about the origin in the
form of angular ridges and furrows [22]. This mode is anticipated to exert minimal influence on the
motions of the structure when compared to the asymmetric sloshing modes discussed in the previous
section. This is because the peaks and troughs will symmetrically occur on opposite walls, resulting
in the cancellation of forces. Additionally, there will be no horizontal Center of Gravity (COG) shift due
to the symmetry about the vertical center axis. Figure 5.13 is a graph of the field point RAO at the
center of the cylinder for different diameters. The vertical dotted lines give the analytical values for
comparison, and the frequency range is bounded on the relevant region. Table 5.4 compares the value
from the diffraction analyses and the analytical approach (i.e. equation 4.26).

Figure 5.13: Absolute value of the field point RAO at center of cylinder for different diameters. The vertical dotted lines indicate
the analytical value for the first symmetric sloshing mode, ω0,1 (see Table 5.4). The vertical lines represent the analytical

values following from equation 4.26.

Table 5.4: Comparison of the natural frequencies for the 1st symmetric sloshing mode ω0,1.

D [m] ωdiffraction
0,1 [rad/s] ωanalytical

0,1 [rad/s] ∆ [%]
7 3.33 3.28 1.46
9 2.93 2.89 1.21
11 2.65 2.61 1.37
13 2.43 2.40 0.84
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5.3.3. Damping lid
The governing equations in diffraction modeling assume irrotational and inviscid fluid flow. While this
assumption is applicable in numerous scenarios, it can lead to an overestimation of the response during
resonance. In reality, viscous effects often dampen the response, and these effects are not accounted
for by potential theory. The resonance of the fluid within the open-ended cylinder is such a situation,
where potential theory tends to over-predict the amplitude of the response at a particular wave fre-
quency.

Introducing a damping lid inside the open-ended cylinder, on the free water surface, introduces vis-
cosity and enhances the realism of potential theory models. Nevertheless, it is crucial to investigate
the appropriate level of damping that the lid should impose. In the present work, Computational Fluid
Dynamics (CFD) analysis is employed to determine the optimal amount of damping required for obtain-
ing physically valid results (7.2.1). A mesh view of the damping lid used in a cylinder model with dipole
panels is given in Figure 5.14.

Figure 5.14: OrcaWave mesh view of cylinder with dipole panels and a damping lid, at a submergence of h = 20m. Only a
part of the submerged panels are shown.

The use of the damping lid should not be mistaken for the interior lid, as depicted in Figure 5.4. In
this study, the ’interior lid’ refers to panels implemented to suppress irregular frequencies, while the
’damping lid’ pertains to panels utilized to attain more realistic resonance results.

The damping lid model, used in OrcaWave, employs a model that incorporates a damping term
directly proportional to the free-surface elevation, η, within the free-surface boundary condition (specif-
ically, scheme 6 as outlined in the work by Li [37]). The modified free-surface boundary condition is
given in equation 5.5. The initial free-surface boundary condition is provided in Appendix B, equation
B.4.

g
∂ϕ

∂Z
− ω2[1− iϵ(F)]ϕ = qF (X) X ∈ SF (5.5)

In equation 5.5, the parameter ϵ is the non-dimensional damping coefficient. If ϵ = 0, the classical
free-surface boundary condition is restored. When ϵ > 0, a damping lid is introduced at the free-surface.
Generally, the damping coefficient is advised to be small, as it minimizes the influence of the damping
lid at frequencies away from resonance. For instance, in a study by Chen [11] on resonance in a
narrow gap between two barges, a damping coefficient of ϵ = 0.016 is determined to exhibit favorable
agreement with the measured data.

The influence of introducing a damping lid on the addedmass and damping and LoadRAO is given in
Figures 5.15, 5.16 and 5.17. In Figure 5.15, it is evident that with an increasing damping coefficient, the
addedmass around the resonance frequencies decreases. This outcome is anticipated, as the standing
wave inside the cylinder is dampened. At the highest damping factor in the analysis (ϵ = 0.3), the curve
becomes similar to that of the solid cylinder (closed bottom). The additional added mass between solid
and the ϵ = 0.3 curve is the water column inside the cylinder. As visualized in Figure 5.16, when the
damping coefficient is increased, the radiation damping decreases, particularly at frequencies around
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the resonance frequencies. In Figure 5.17, the load RAO is given. It is clear that the suppression of
standing waves inside the cylinder, by increasing the damping coefficient, ϵ, suppresses the phase shift
effect.

Figure 5.15: The added mass for an open ended cylinder with damping lid. Different values for the damping lid parameter, ϵ,
have been applied. Also a closed bottom (solid) cylinder is used for reference. The submergence has a constant value of h =

20m.

Figure 5.16: The damping for an open ended cylinder with damping lid. Different values for the damping lid parameter, ϵ, have
been applied. Also a closed bottom (solid) cylinder is used for reference. The submergence has a constant value of h = 20m.

There is a substantial amount of empirical evidence in diffraction analysis and computational fluid
dynamics that supports the notion that the boundary condition 5.5 exerts a beneficial damping influence
on resonant wave motions [37]. Nevertheless, the theoretical justification is limited since 5.5 does not
attempt to incorporate the viscous effects present in the Navier-Stokes equations, which are absent
in potential theory. Therefore, validation with CFD increases reliability. This will be elaborated on in
Section 7.2.1.
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Figure 5.17: The Load RAO for an open ended cylinder with damping lid. Different values for the damping lid parameter, ϵ,
have been applied. Also a closed bottom (solid) cylinder is used for reference. The submergence has a constant value of h =

20m.

5.3.4. Two-dimensional approach
A two-dimensional analysis of the monopile within the framework of linear potential flow is employed
for comparison with the CFD model, as elaborated on in Section 6.

To obtain a two-dimensional result from OrcaWave, the geometry mesh in the software is elongated
along the y-axis. The incident wave direction is head waves (thus along the x-axis), consistent with all
previous models. To derive the two-dimensional approximation, the results are divided by the elongated
y-extent of the stretched geometry. In Figure 5.18, a depiction of the mesh geometry utilized in the
model is presented. Two models are employed, one with dipole panels and one with conventional
panels. The conventional panel geometry features an inner diameter of 11meters and an outer diameter
of 12 meters (prior to elongation along the y-axis). For the dipole panels, a diameter of 11 meters is
used. The conventional panel geometry aligns with two-dimensional geometry definition in the CFD
analysis outlined in Section 6. The model’s results are divided over the total length of the geometry in
the y-direction to achieve a 2D representation.

Figure 5.18: Mesh view of the OrcaWave models (left = dipole panels, right = conventional panels), showcasing the
configuration used for the two-dimensional diffraction analysis. Wall thickness (right model) is 0.5 meters and submergence

(h) is 10 meters.
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5.4. Focus on 10 meter submergence
The piston mode can be well observed in the measured surface elevation during the LPF analyses
shown in Figure 5.19 for a vertical cylinder with an inner diameter of 11m and a submergence of 10m.
The first symmetric sloshing mode is also visible in the field point RAO as the peak at the higher
frequency. The black horizontal dotted lines in the figure represent surface elevations of 1 meter and
0 meters. It is evident that, up to the natural frequency of the piston mode, the surface elevation inside
the geometry follows the wave height of the incident wave. However, at higher frequencies, the incident
waves are reflected by the geometry, and the water inside the cylinder remains undisturbed (except for
the symmetric sloshing resonance), no longer following the wave pattern.

Figure 5.19: Absolute value of the field point RAO at center of cylinder [D=11m] at a submergence of 10 meters, with DP =
dipole and WT = wall thickness. The field point is in the centre of the cylinder. The analytical value for the piston mode is based

on the Falnes approximation (equation 4.15) and the analytical first symmetric sloshing mode follows from equation 4.26.

For the same MP the first sloshing mode can be found in the LPF analysis in the load RAO and
the added mass. The load RAO represents the wave excitation load relative to the wave amplitude.
The wave excitation load is the summation of the Froude-Kriloff loads and the diffraction loads. At the
resonance frequency of the first sloshing mode, the added mass and damping become negative and
the total wave force goes rapidly up. This can be explained by the resonance behaviour. The transition
from sloshing that is out-of-phase to being in-phase is accompanied by a phase adjustment, causing
the wave-induced force to become zero. As in-phase behavior becomes more pronounced, this leads
to significant wave heights (sloshing) within the cylinder.

The surface elevation results following from the LPF simulations are visualized using the CAD soft-
ware Rhino. The results at piston mode and sloshing mode resonance for the model with dipole panels
is visualized in Figures 5.22 and 5.23 respectively.

The LPF results show reasonable resemblance with the analytical approximation in terms of res-
onance frequency. However it should be stated that viscous damping is not taken in account by the
LPF theory. Also, the LPF theory neglects non-linear behaviour, which could be significant based on
the observations at the SINTEF model testing campaign [30]. To evaluate if non-negligible sloshing
inside the MP may occur, non-linearities matter. Therefore a second approach using CFD will be used
to investigate further.
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Figure 5.20: Added mass in surge direction (wave in surge direction as well) for inner diameter of 11 meters with DP = dipole
and WT = wall thickness. The analytical value for the sloshing mode is following from equation 4.26.

Figure 5.21: Load RAO in surge direction (wave in surge direction as well) for inner diameter of 11 meters with DP = dipole
and WT = wall thickness. The analytical value for the sloshing mode is following from equation 4.26.

Figure 5.22: Visualization of the internal surface elevation at the piston mode natural frequency for a cylinder of Di = 11m and
h = 10m.
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Figure 5.23: Visualization of the internal surface elevation at the first sloshing mode natural frequency for a cylinder of
Di = 11m and h = 10m.

5.5. Inclined cylinder
Considering an inclination introduces the significance of wave directions. In this study, the installation
ship is examined in head waves, aligning with the preferred operational heading of a floating installation
vessel. In the LPF analysis, this implies waves approaching at a 180-degree angle, as visualized in
Figure 5.24. In Figure 5.24, the ship is included purely for clarity, and it is not involved in any analysis.
Therefore, shielding and other interference effects are not considered.

For cylinders penetrating the water surface at an angle, distinct resonance frequencies apply. The
conventions used to characterize an inclined cylinder are outlined in Figure 4.3. An inclination angle
(α) of 90 degrees corresponds to the upright cylinder, as considered thus far. For inclination angles of
90, 60, 45, and 40 degrees, the added mass and damping curves are presented in Figures 5.25 and
5.26. The submerged length, defined in Figure 4.3, is held constant at 10 meters, with the cylinder
being rotated around a fixed point. This rotational method results in an increased draft as the angle
increases, reaching a maximum at α = 90 degrees, where the draft equals the submerged length. It
is anticipated that in the lower frequency range, piston-like resonance will occur, followed by the first
asymmetric sloshing resonance at slightly higher frequencies. However, the analytical approximations
valid for the vertical cylinder (i.e., α = 90 degrees) do not hold for an inclined cylinder. CFD analysis
will be employed to identify the nature of the resonance, as one of the goals of the present work is to
establish an analytical describtion for the inclined situation.

Figure 5.24: Schematic representation of the convention which is used in the inclined analysis. The ship is only included as a
reference to visualize the upending procedure and is not included in the OrcaWave or ComFLOW analysis.
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(a) Surge-surge (b) Heave-heave

Figure 5.25: Added mass at a constant submerged length of Ls = 10 meters and at various inclination angles.

(a) Surge-surge (b) Heave-heave

Figure 5.26: Damping at a constant submerged length of Ls = 10 meters and at various inclination angles.
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Computational fluid dynamics

In this chapter, Computational Fluid Dynamics (CFD) will be applied to verify the accuracy of the LPF
method. CFD is a numerical approach for modeling fluid mechanics problems of high complexity, rely-
ing on extensive computational resources. It effectively addresses the nonlinear discretized differential
equations related to continuity, momentum, energy, and species [3]. In contrast to linear potential flow
based theory, CFD takes into account diverse factors such as viscosity, breaking waves, and turbulence
by solving the Navier-Stokes equations, allowing for the simulation of unsteady three-dimensional flow.
These equations, known as the governing equations of fluid motion, provide a comprehensive descrip-
tion of fluid behavior within a continuous framework.

The CFD code ComFLOW is a Volume of Fluid (VoF) method developed by the University of Gronin-
gen. The method has been widely utilized and verified in previous studies on sloshing loads in con-
tainment systems with predefined motions [74]. The CFD code is used to simulate both in 2D and 3D.
Running the code in 3D greatly increases the simulation time. Therefore, in the present work, a 2D
approach is chosen to validate the LPF results. Van der Plas [68] offers an extensive explanation of
the theory supporting ComFLOW.

In the case of linear fluid behavior, it is expected that the CFD method will closely align with the
LPF method. However, when higher harmonic wave frequencies are introduced, disparities emerge.
The LPF method struggles to accurately represent responses at these frequencies, resulting in poten-
tial overestimation or underestimation of response amplitudes, depending on the phase differences
between the harmonic frequencies. These phase differences, in turn, are influenced by the initial wave
frequency. On the other hand, the CFD method has the capability to capture higher harmonic wave
frequencies and may provide a closer approximation to real-world behavior.

6.1. Governing equations
In this section a brief introduction to the underlying mathematical and numerical model that serves as
the foundation for the ComFLOW program provided. ComFLOW can be used to model either one-
phase flow or two-phase flow. In the context of one-phase flow, water is treated as an incompressible,
viscous fluid, while air is considered as a vacuum. In two-phase flow, water is still regarded as an
incompressible, viscous fluid, and the modeling of air can involve selecting either an in-compressible
or compressible viscous fluid representation. Two-phase flow might be of importance in case of deter-
mining the impact of breaking wave, and for example the impact of slamming, during the sloshing of
the internal water column. However, in the first instance of the present study, a one-phase model is
used, because it decreases the computational time. The physical parameters used are given in Table
6.1.

6.1.1. One-phase flow model
The one-phase flow model presented here is adapted from Kleefsman et al. [31]. It addresses fluid
motion within a three-dimensional domain, denotedΩ, through the utilization of the Navier-Stokes equa-
tions. For water motion, where water is considered as an incompressible and viscous fluid, the Navier-
Stokes equations can be simplified to:

38
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Table 6.1: Physical parameters (one-phase flow)

Parameter Value Unit
Density 1 · 103 kg/m3

Viscosity 1 · 10−3 Ns/m2

Gravity 9.81 m/s2

Atmospheric pressure 1 · 105 Pa

∇ · u = 0 (6.1)

∂u
∂t

+ u · ∇u = −1

ρ
∇p+

µ

ρ
∇ · ∇u+ F (6.2)

Where equation 6.1 describes the conservation of mass and equation 6.2 describes the conserva-
tion of momentum. In the equations u = (u, v, w) is the velocity vector, p is the pressure, µ represents
dynamic viscosity, ρ stands for density, and F = (Fx, Fy, Fz) denotes external forces (such as gravity).
These simplified Navier-Stokes equations are defined for domain Ω, which is bounded by the domain
boundary ∂Ω. In the case of incompressible flow, the density remains constant over time, resulting in
a divergence of the velocity that is consistently zero, as indicated by the simplified continuity equation
(6.1).

Boundary conditions
To solve the Navier-Stokes equations, boundary conditions are required both at the domain boundary
∂Ω and at the free surface. At solid boundaries and objects within the domain, a no-slip boundary
condition is applied, ensuring that the fluid cannot penetrate the boundary and sticks to the wall due to
viscosity. This condition is expressed as u = 0 for stationary boundaries and u = ub for moving objects,
where ub represents the object’s velocity. [31]

Certain domain boundaries may allow for the inflow or outflow of fluid. In our wave analysis simu-
lations, specifically involving regular waves, we employ both inflow and outflow boundaries. In these
simulations, a regular linear Airy wave is utilized. The treatment of both boundaries involves the ap-
plication of generating and absorbing boundary conditions (GABC), which will be explained further in
Section 6.3.3.

Free surface
When the free surface’s position is defined as s(x, t) = 0, the equation governing the displacement of
the free surface can be expressed as in 6.3.

Ds

Dt
=

∂s

∂t
+ (u · ∇)s = 0 (6.3)

At the free surface, boundary conditions are required for both pressure and velocities. The continuity
of normal and tangential stresses yields equations 6.4 and 6.5.

−p+ 2µ
∂un

∂n
= −p0 + σκ (6.4)

µ(
∂un

∂t
+

∂ut

∂n
) = 0 (6.5)

In this context, un and ut represent the velocity’s normal and tangential components, respectively.
Furthermore, p0 corresponds to atmospheric pressure, σ signifies surface tension, and κ refers to the
overall curvature of the free surface.
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Calculation of forces
Within a flow domain, the fluid exerts a force on an object located in that domain. This force can typically
be broken down into two components: the pressure force and the shear force. In the ComFLOW
framework, the shear force is typically disregarded due to its tendency to be significantly smaller than
the pressure force. The pressure force is determined by evaluating the integral of the pressure along
the object’s boundary, as given in equation 6.6.

Fp =

∫
S

pndS (6.6)

For relatively basic 2D force calculations on objects it is considered sufficient to define a box area
within which the pressure contributions on the solid object are integrated. Force boxes define a region
in the domain where all pressure contributions on closed cell segments are integrated to determine the
overall force and moments affecting the geometry.

In simulations involving moving objects, the force boxes can be adjusted to move along with the
objects. Even after undergoing translation or rotation, the force box maintains its essential box shape,
allowing its dimensions to adapt and change throughout the simulation.

6.2. Numerical model
6.2.1. Cell labelling
In order to conduct computer simulations of fluid flow, the flow domain Ω is discretized using a Carte-
sian grid featuring staggered variables. Within this grid, pressure values are defined at cell centers,
while velocity components are assigned to cell boundaries. When modeling complex structures using
a Cartesian grid, various types of cells emerge due to the grid’s adaptability. This diversity is accom-
modated within the numerical method by introducing edge and volume apertures, which quantify the
extent to which a portion of the cell face or cell volume is open to fluid flow. These edge and volume
apertures contribute to the assignment of geometry labels to the cells, indicating their nature, such as
being fluid cells, boundary cells (B), or exterior cells (X). Furthermore, to represent the free surface,
fluid cells are further categorized as empty cells (E), surface cells (S), or fluid cells (F), with these dis-
tinctions being governed by free-surface labels that are updated at each time step. In Figure 6.1, we
present an example of cell labeling taken from the study conducted by Kleefsman et al. [31].

Figure 6.1: Cell labeling system: dark grey denotes solid body, light grey is liquid and white is empty. [31]

6.2.2. Discretization and solution
In order to address the Navier-Stokes equations, a process is applied to discretize these equations
both in time and space. For time integration, either the first order Forward Euler method or the second
order Adams-Bashforth method can be used. It is recommended to use one of these methods, but
other alternatives are also acceptable, as long as the chosen method maintains consistency. Spatial
discretization employs the finite volume method. There is the option to select either (second-order)
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central discretization or first or second-order upwind discretization. To solve the discretized Navier-
Stokes equations, a Poisson equation for pressure must be resolved at every time step, which becomes
evident through the rearrangement of the discretized equations. When the GABC boundary equation
is used, as in the present work, the stabilized Bi-Conjugate Gradient (BiCGSTAB) iteration method,
in combination with the Incomplete Lower-Upper preconditioner (ILU(ε)) is used to solve the Poisson
equation as described by Wellens [73]. Once the pressure solution is determined, the new velocity
field is calculated, and thereafter, the free surface is shifted using the Volume-of-Fluid (VOF) method
in conjunction with a local height function [31]. Ultimately, the time step is adapted in accordance with
the CFL (Courant-Friedrichs-Lewy) condition. The CFL number is computed as in equation 6.7.

CFL = max
i,j,k

(
|uijk| δt
hx,i

+
|vijk| δt
hy,j

+
|wijk| δt
hz,k

)
(6.7)

Here, u, v and w represent velocity components, while hx, hy, and hz represent mesh sizes in their
respective directions. If the calculated CFL-number exceeds the user-defined threshold (CFLmax)
from the input file, the time step is reduced. Conversely, if the computed CFL-number remains below
(CFLmin) for 10 consecutive time steps, the time step is doubled.

6.2.3. Initial settings
In this section some important initial settings for the ComFLOW simulation are given. For a more
elaborete explanation of these settings reference is made to the ComFLOW program documentation
[58].

Waves
For the simulation of incoming waves, Airy waves are used, aligning with the wave theory utilized in
the LPF analysis. The simulations start with still water and ramping is used for a smooth startup of the
simulation. Current is intentionally excluded from these simulations, as it is not a parameter taken into
account in the current research.

Turbulence
In the initial stages of this study, turbulence is not expected to exert a substantial impact on the hydro-
dynamic response because the research primarily concentrates on large-scale phenomena like wave
loads and internal forces. Therefore, turbulence models are not incorporated into the simulations.

Diffusion
The LS-STAG discretization scheme is employed due to its capability to provide a more precise estima-
tion of viscous stresses within cells intersected by the geometry. Consequently, it is the recommended
choice for general applications.

Convection
When discretizing the momentum equation, particularly for convection, there are two primary discretiza-
tion options available. One choice is the combination of a first-order upwind scheme and a second-
order central scheme, while the other option is a second-order upwind scheme. When employing the
first-order upwind scheme, it is possible to introduce artificial diffusion to enhance the stability of the
discretization process. For the present work, the first-order upwind scheme is used with an artificial
diffusion factor of 1.0, since this yields the most stable solution.

Fill boxes
In order to measure the water height in grid-aligned direction, fill boxes can be used. In case of non-
inclined geometries, fill boxes can surve as an appropriate measurement tool for the local water height
at a specific location. However, for accurate water height calculations it is recommended to use relative
water height lines, because these provide amore accurate representation of the actual liquid distribution
[58]. In the current study, the preferred method for measuring water height is the use of fill boxes due
to their ease of use and sufficient accuracy.

In section 6.5.1, the geometry undergoes forced motion. In such cases, it is feasible to define
moving fill boxes. However, caution should be exercised when utilizing this feature, as the fill boxes
are constrained to the grid, potentially leading to discontinuities in time. Again, in certain applications
it is recommended to use relative water height lines.
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6.3. Validation of the CFD code ComFLOW
First, the CFD simulation is validated in a 2D setup. In this configuration, a monopile is represented
by two walls, and the distance between the walls corresponds to the inner diameter of the monopile.
However, there is a lack of experimental data on the 2D resonance for a fixed open-ended cylinder
exposed to regular waves. To address this, the ComFLOW numerical model is validated using physical
experiments conducted by Saitoh et al. [62] and numerical investigations by Lu et al. ([42],[43]). These
same studies are also used for validation by Gao et al. [19].

In the research by Gao et al. [19], a 2D numerical wave tank based on OpenFOAM® is utilized
to study the resonant water motion occurring within a narrow gap between two identical fixed boxes
positioned side by side. All dimensions and the wave height are set in accordance with the studies by
Saitoh et al. [62] and Lu et al. ([42],[43]). For the present work, the same validation method is used.

A sketch of the 2D numerical computational domain used in the simulations is depicted in Figure 6.2.
For the validation process, the wave tank dimensions and the values for the breadth (B), box height
(H), box draught (h), gap width (Bg), water depth (D), air depth (Da) and wave height (H0) are given
in Table 6.2.

The wave frequency, ω, considered in the simulations ranges from 3.866 rad/s to 6.957 rad/s. This
corresponds to the dimensionless wavenumber, kD, ranging from 1.0 to 2.5. The wave number and
the wave frequency are related through the dispersion relation (equation 6.8).

ω2 = gktanh(kD) (6.8)

In the research of Saitoh et al. [62] it is derived through the conservation of energy that for a situation
as in Figure 6.2, the natural frequency of the fluid in the gap can be computed using equation 6.9 [50].

ωg =

√
g

BgB
D−h + h

(6.9)

Equation 6.9 shows that the gap resonance only depends on the geometrical parameters of the
system. This is also the case for the Molin [48] approximation for the piston mode natural frequency
inside a moonpool (as given in equation 4.5). In comparison to the validation of the resonance behavior
of the internal water column of the monopile, which will be addressed in Section 6.4, it is important to
understand that the water depth influences the gap resonance in the wave flume shown in Figure 6.2.
In Figure 6.2, G1 and G2 indicate the numerical wave gauges in front of the geometry and in the gap
between the two geometries, respectively.

In the ComFLOW numerical method, the surface elevation is measured by monitoring the fill ratio
of a small part of the domain. The water height is calculated in grid-aligned directions, e.g. a vertical fill
box which encompasses precisely one column of grid cells. As a result, it serves as an approximation
for the local water height. The results from the fill box inside the gap is compared with a fill box at the
same location, when no geometry is present. All other variables are kept equal in both simulations. By
comparing the two simulations, the effect of the presence of the boxes on the water level in the gap
can be analysed.

Figure 6.3 shows the correlation between the dimensionless wave height in the gap (G2) and the
incoming wave number. In addition to the present study, also the experimental restults by Saitoh et
al. [62], and the numerical simulations of Lu et al. ([42],[43]) and Gao et al. [19] are visualized in the
graph.

From Figure 6.3 it can be concluded that the amplification of the free-surface within the gap, as
projected by the ComFLOWmodel, follows the same trend as the results from the previous works. The
non-dimensional wave height peaks at the same frequency as the other works and thus the resonance
frequency matches. However, the magnitude of the present work does not match the comparison
works. As explained by Lu et al. [43], it is important to highlight that accurately determining the resonant
frequency and the associated resonant wave height in the narrow gap is challenging when employing
the viscous fluid model. This is due to the necessity of a very small frequency increment to achieve
high resolution. Hence, in the present validation, when referring to the resonance frequency and the
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Figure 6.2: Sketch of the 2D numerical simulation domain. [50]

Table 6.2: Dimensions of the numerical domain.

Wave tank L 8.5 m
H 0.8 m

Box H 0.5 m
B 0.5 m
h 0.25 m

Gap width Bg 0.05 m
Water depth D 0.5 m
Air depth Da 0.3 m
Wave height H0 0.024 m

Figure 6.3: The amplification curve of the free-surface elevation in the gap between the two boxes, subjected to regular waves
of waveheight H0 = 0.024 m and various frequencies.Hg is the wave height in the gap (gauge G2 in Figure 6.2) and kD is the

wave number.

associated resonant wave height associated to the ComFLOW model, we generally mean values that
are within acceptable tolerance when compared to the other works.
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6.3.1. Phase difference
In the work by Tan et al. [67], a method is described to find the phase angle between the oscillating
motion in the gap and its excitation. The oscillating motion in the gap is measured with a wave gauge in
the gap and the excitation frequency is measured outside of the geometry, at the incoming wave side.

In the study conducted by Tan et al. [66], it becomes evident that at the gap resonance frequency,
there is an observable phase difference of approximately π/2 between the incoming wave and the
oscillatory motion within the gap.

Additionally, when considering different incoming wave frequencies outside of the resonance condi-
tions, the response amplitude within the gap exhibited a comparable magnitude to that observed at the
front location of the leading box. In these cases, phase differences of approximately π and zero were
observed. The results obtained in the present work exhibit the same outcomes, as depicted in Figure
6.4. The value for the resonance frequency derived from equation 6.9, ωg = 5.294rad/s, agrees well
with the ωg = 5.285rad/s at which resonance occurs according to the ComFLOW model. As visualized
in Figure 6.4, at this frequency the surface elevation in the gap is π/2 out of phase with the incoming
wave.

Figure 6.4: Time domain plot of the free-surface elevation at wave gauges G1 and G2 (see Figure 6.2) for different wave
frequencies ω.

6.3.2. Grid resolution
The grid size is of importance for an accurate simulation of the waves. As described in the ComFLOW
documentation [58], when an undisturbed wave is simulated, the rule is to use at least 60 grid cells
per wavelength and 6 grid cells per wave height. For high waves, the number of cells per wave height
should be increased to at least 10. For deep water simulations, this means a lot of cells are needed in
the vertical direction. To counteract this consequence, grid stretching can be applied in vertical direction
around the water surface, increasing the amount of cells in the region of the waves.

Before the results fromComFLOWare compared to the results of previous studies, grid dependence
checks are carried out. To assess how the simulation outcomes are affected by the grid density, three
grid types are compared: course, intermediate and fine. Regardless of the grid density, grid refinement
is applied. The refinement of the grid is such that its density rises from the in- and outlet boundaries
towards the domain’s center, where the boxes are located. The maximum density is located within the
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gap area, where the piston like water movement is expected.
In addition to grid refinement, we also apply grid stretching in the vertical direction. The introduc-

tion of grid stretching allows us to reduce the number of grid cells in the vertical dimension while still
maintaining a minimum of 6 cells for wave height calculations. The grid density increases closer to the
surface level and decreases towards the top and bottom of the domain.

In Appendix A, in Figure A.1, a surface elevationmeasurement in the center of the gap is provided for
different grid sizes. The surface elevation prediction obtained from the 400x1x40 grid closely matches
the results obtained from the finer 400x1x200 grid in the vertical direction. Similarly, in the horizontal
dimension, the 400x1x40 grid exhibits strong agreement with the finer 512.5x1x50 grid. As a result, for
the sake of computational efficiency, the intermediate grid (400x1x40) will be utilized for all subsequent
simulations in the ComFLOW validation.

6.3.3. Generating and absorbing boundary condition (GABC)
The length of the wave tank in the present work is different from the work by Gao et al. [19]. In
contrast to their work, where a wave tank with a length of 18.5 meters was utilized, we have opted
for a reduced length of 8.5 meters. The reason behind this modification lies in the implementation of
the non-reflective generating boundary condition (GABC) in ComFLOW. The GABC is implemented to
eliminate wave reflection from the domain boundaries and create non-reflective conditions, which helps
to simulate wave propagation more accurately. The GABC is used at the inflow ends (where waves
are generated) and outflow ends (where waves leave the domain). The GABC is defined by specifying
certain coefficients in the ComFLOW input file. A thorough description of the GABC is presented in
Chang et al. [9].

The GABC is defined by specifying certain coefficients in the input file. The coefficients control the
behavior of the boundary condition and how well it approximates the dispersion relation of the waves.

• Coefficients a0, a1, and b1 are used to approximate the linear dispersion relation of the waves:

ca =
√
gh

a0 + a1(kD)2

1 + b1(kD)2
(6.10)

• Coefficients kD1 and kD2 are associated with wave number values, and their specific values
depend on whether the waves are regular or irregular.

• Coefficients alfa1 and alfa2 determine the angle at which the GABC provides the best absorption,
and their values depend on the wave type (regular or irregular).

The coefficients a0, a1, and b1 must satisfy certain requirements to ensure stability. Properly chosen
coefficients lead to better approximation and less wave reflection. To find the optimal coefficients for a
specified range of kD values a coefficient optimization function is used. [58]

The use of the GABC eliminates the requirement for extensive inlet and outlet relaxation zones
within the domain, making it feasible to achieve the shortened length of the numerical wave tank.
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6.4. Fixed geometry with regular incident waves
Computational Fluid Dynamics (CFD) simulations are utilized to investigate the behavior of surface
water inside the cylinder near resonance frequencies. Initially, an analysis is conducted to identify the
characteristics near the resonance frequency. This analysis involves studying both a fixed geometry
exposed to regular incident waves (this section, 6.4) and a geometry forced to oscillate in calm water
(Section 6.5). Surface elevation measurements are performed using numerical wave probes, and pres-
sure is measured on the geometry. The CFD simulations are carried out in a 2D domain to limit the
computational effort required for simulation, aiming to sufficiently identify the most important resonance
characteristics. Subsequently, the LPF results from OrcaWave are compared to the CFD results.

Post processing
To derive experimental results from the collected data, various Matlab scripts are established to process
the data. Please note that in all time series analyses in this research, the initial and final oscillations,
where transient effects are present, are excluded from the time series analysis.

Vertical wave elevation
In the analyses of both upright and inclined cylinders, the wave probemeasuring internal wave elevation
is consistently aligned with the cylinder. Consequently, for inclined cylinders, the internal wave elevation
recorded by the wave probe needs to be multiplied by the sine of the inclination angle (θ) to determine
the vertical wave elevation. Throughout this report’s analysis, the vertical wave elevation is utilized
unless specified otherwise.

6.4.1. Piston mode - 2D - Upright
To be able to compare the results of CFD and LPF, the geometry in the CFD has the same dimensions
as the LPF geometry with source panels, i.e. Di = 11 meters, Do = 12 meters and a submergence h
of 5 and 10 meters. For the 2D CFD, the same conventions are used as in 4.1. The locations of the
wave gauges and the direction of the incoming wave are added to Figure 4.1 and presented in Figure
6.5. In Section 6.3.2, the grid resolution convergence is explained, which is also used for the piston
mode. The corresponding graph illustrating this concept can be found in Appendix A, Figure A.2.

Figure 6.5: Wave gauges and wave direction used in the analysis added to conventions of Figure 4.1.

The Molin [48] approximation for the piston mode natural frequency (equation 4.5) holds for a 2D
geometry. Therefore, the piston mode natural frequency from Table 5.1 is used as the best first guess
for determining the piston mode with ComFLOW. It is expected that the piston mode resulting from the
ComFLOW simulation will be in the vicinity of this frequency. However, because the Molin approxima-
tion assumes linearity, the piston mode resonance frequency from ComFLOW might deviate.

In Table 5.1, in Section 5.2, it becomes clear that the expected piston mode natural frequency based
on the analytical approximation is in line with the LPF results. The results from the 2D ComFLOW
simulations are given in Figures 6.6 and 6.7.

In Figures 6.6 and 6.7, the upper plot shows the relative wave height, Hg/H0 (the wave height in
the gap (Hg) divided by the incident wave height (H0)), as a function of the non-dimensional incident
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wave frequency Λ (= ω2 ∗Di/g). The lower plot shows the phase difference between the wave gauge
in front of the geometry ,G1, and inside the geometry,G2, (as visualized in Figure 6.5), as a function of
non-dimensional incident wave frequency Λ. The phase difference is determined in the same way as
explained in Section 6.3.1.

In Figure 6.6, the submergence of the 2D geometry is 5 meter and represented by blue lines. In
Figure 6.7, the submergence is 10 meter and represented by green lines. At both submergence’s
analysed, the incident wave height (H0) is 0.2 meter.

The maximum relative wave height, Hg/H0, is anticipated to occur at resonance. It is expected that
this peak will occur when there is an approximate 90-degree phase difference between the wave oscil-
lations measured at G1 and G2. Furthermore, the phase difference is expected to gradually approach
zero and 180 degrees as the incident wave frequencies approach zero and infinity, respectively [19].
From these results it can be concluded that the piston mode behaviour as explained by Gao et al. [19],
for two identical fixed boxes positioned side by side, is also valid for two slender bodies with a larger
gap.

In all plots, the non-dimensionalized piston mode resonance frequency, following from Molin’s ap-
proximation and the 2D LPF analysis are indicated by the red and black dotted line respectively.

In Section 5.2 it was established that Molin’s approximation closely matches the resonance fre-
quency following from the LPF model for the 3D cylinder. The discrepancy between the resonance
frquency found with the Molin approximation and the LPF model for a 2D structure should be sought
in the fact that the 2D Molin approximation, which is designed for a moonpool, assumes a small
Di/(wall thickness) ratio [33]. This ratio is not small for the 2D monopile representation.

The piston mode resonance frequency obtained from the ComFLOW simulations is slightly lower
than following from the LPF analysis. As explained in 4.2.2, it is mainly the added mass term which
determines the resonance frequency. However, if there is significant viscous damping, this can also
influence the piston resonance frequency.

The discrepancy between the numerical values obtained from the ComFLOW model and those
derived from the analytical approximation can be attributed to damping. Two types of damping are
distinguished in this context. The first type is the radiation damping incorporated in the LPF method,
consistent with Molin’s approximation. This damping arises from the piston-mode motion of the water
inside the moonpool, which interacts with the exterior domain by generating waves (radiation). The
second type of damping is viscous damping caused by flow separation at the inlet (bottom edges) of
the geometry and frictional stresses along the geometry. In Figure 6.8a, the effect of flow separation is
illustrated and Figure 6.8b shows the occurrence of this phenomena in the ComFLOW calculation. The
fluid experiences separation at the sharp corner, leading to the generation of vorticity that is released
into the main body of the fluid [32]. The circulation is approximately 45 degrees out-of-phase with the
ambient flow, such that the circulation creates a back-flow, acting as a damping effect.

According to Kristiansen’s work [32], radiation damping is very small compared to viscous damping
when the piston mode is excited. The dominance of viscous damping at resonance explains the large
piston amplitude at piston mode resonance in the LPF method (where viscous damping is not included)
and the discrepancy between the piston mode resonance frequency in the LPF (and Molin) method and
the CFD, where both radiation damping and viscous damping is accounted for.

Another possible explanation could be that a significant portion of the incident regular wave is re-
flected by the geometry in the 2D domain. However, applying an incident wave with a lower wave height
did not change the resonance frequency observed in the CFD analysis. Therefore, wave reflection is
not expected to be the reason for the resonance frequency discrepancy between methods.
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Figure 6.6: The upper plot shows the relative wave height, Hg/H0, as a function of the non-dimensional incident wave
frequency Λ (= ω2 ∗Di/g). The lower plot shows the phase difference between G1 and G2 (Figure 6.5), as a function of
non-dimensional incident wave frequency Λ. Submergence of the geometry (h) is 5 meters. The piston mode resonance

frequency from Molin and the LPF method are indicated.

Figure 6.7: The upper plot shows the relative wave height, Hg/H0, as a function of the non-dimensional incident wave
frequency Λ (= ω2 ∗Di/g). The lower plot shows the phase difference between G1 and G2 (Figure 6.5), as a function of
non-dimensional incident wave frequency Λ. Submergence of the geometry (h) is 10 meters. The piston mode resonance

frequency from Molin and the LPF method are indicated.
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(a) Schematics of the effect of circulation for a 2D geometry. This
figure is a variation on the schematic figure given by Kristiansen

[32].
(b) Visualization of the vorticity magnitude from 2D ComFLOW

CFD simulation. Geometry submergence,h = 5 meters.

Figure 6.8: Schematic and CFD visualization of the effect of circulation due to flow separation.

6.4.2. Piston mode - 2D - Inclined
In Section 4.2, the expectation is presented that the piston-mode natural frequency will decrease as
the inclination with respect to the horizontal decreases. This assumption is case the submerged length
remains constant. This hypotheses is tested for the 2D representation of a monopile with a constant
submerged length Ls of 10 meters. To test this hypothesis, we utilize a 2D representation of a monopile
with a fixed submerged length Ls of 10 meters, similar to the model presented in Section 5.5. However,
the analysis in CFD is conducted for a 2D geometry, and the incident waves are following waves (see
Figure 3 for the convention). This is necessary, since the piston resonance is not as effectively excited
when dealing with head waves in the 2D CFD method.

In Figure 6.9 the relative wave height for the 45 degrees inclined geometry is given. The Hg is
measured between the walls, andH0 is in incident wave height. In the figure the pistonmode resonance
frequency for the upright geometry following from CFD is given as the green dotted line. Only the
frequency is given, since the magnitude can not be compared directly, as the incident wave height, H0,
in the inclined simulations is 1 meter, which is significantly larger than theH0 of 0.2 meter in the upright
simulations. The anticipated decrease in piston mode resonance frequency due to the inclination is
reflected in the results.

In Figure 6.10 a visualization is given of the piston mode resonance for the inclined situation. In
Figure 6.11 a visualization of the presence of vorticity around the bottom edges is given. The magnitude
of the vorticity is much higher than for the upright case in Figure 6.8b, because the wave height in the
inclined analyses is 5 times greater, thus the waves containmuchmore energy. Therefore a comparison
between Figure 6.11 and Figure 6.8b is not relevant.
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Figure 6.9: Relative wave height, Hg/H0, as a function of the non-dimensional incident wave frequency Λ (= ω2 ∗Di/g).
The piston mode resonance frequency for the upright geometry following from CFD (from Figure 6.7).

(a) Peak in the sinusoidal motion (b) Trough in the sinusoidal motion

Figure 6.10: Visualization of the free surface motion at piston mode resonance frequency Λ = 0.517.

Figure 6.11: Visualization of the vorticity magnitude from 2D ComFLOW CFD simulation. Geometry submerged length, Ls =
10 meters and inclination angle α = 45 degrees and incident wave frequency Λ = 0.517.

6.5. Geometry forced to oscillate in calm water
6.5.1. Sloshing mode - 2D - Upright
To investigate at which frequencies the first asymmetric sloshing modes occur, forced motion of the 2D
geometry in still water is employed rather than initiating the sloshing motion with an incident wave. The
geometry is given a sinusoidal forced surge excitation at different frequencies, to investigate whether
the analytically determined sloshing frequencies equal those following from the CFD model.
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The structure is forced to oscillate horizontally. The focus is on the excitation frequency, ω, close to
the lowest natural sloshing frequency. The sinusoidal surge excitation is given in equation 6.11.

η1(t) = η1a · cosΩt (6.11)

In equation 6.11, η1a and Ω are the excitation amplitude and frequency, respectively.
Finding the natural sloshing modes using forced oscillation in still water requires some considera-

tions. First, it is important to determine whether the simulation is initiated from a complete stop or if an
initial time (or phase shift) is chosen that corresponds to a small velocity for a smooth start. Further-
more, as found by Faltinsen and Timokha [17], increasing the forcing amplitude and the corresponding
response of the primary excited mode or decreasing the submergence of the geometry can lead to
the amplification of higher modes, thereby challenging the single-dominant modal system. Faltinsen
and Timokha [17] extensively analyze these modes of amplification for both 2D and 3D sloshing. To
facilitate a valid comparison between LPF and CFD, the forcing amplitude is maintained at a low level.
The ratio of the forcing amplitude-to-breadth (η1a/Di) is equal to 0.0091. Note that Di is used in 2D
as the length between the two walls. This ratio in the specific context of this research does not lead to
chaotic surface water behaviour, which makes it possible to draw a comparison between the LPF and
CFD results. This ratio is kept constant throughout the CFD work.

Grid resolution
The optimum grid for the forced oscillation analysis is found by striking a balance between a fine enough
grid and a reasonable computational effort while ensuring a file size that can be handled by the storage
capacity. A refinement ratio of 2, which ensures a smooth transition in grid resolution, is applied on the
grid cells at and around the geometry. This refinement ratio is recommended and extensively tested for
ComFLOW. Moreover, the local refinement is supplemented by grid stretching, in order to obtain faster
resolution changes. The measured force on the geometry is compared for different grid sizes. The
results of this check are presented Appendix A, Figure A.3. Taking both accuracy and computational
effort into consideration, the refined and stretched grid of 200× 100 is sufficient for this research. The
grid is given in Figure 6.12.

Figure 6.12: Grid resolution used for the 2D forced oscillation analysis. Grid refinement around the geometry and stretching in
z-direction from the still water line is visible. Red indicates liquid and blue indicates no-liquid.

Time domain
The surface elevation in the forced oscillation analysis is measured at the same location as for the
incident wave analysis, thus at side 1 (see Figure 4.5). In figure 6.13 and 6.14 the result of the numer-
ical wave probe measurement for the forced motion analysis is given, for a vertical geometry with a
submergence of h = 5m and h = 10m respectively, and a motion amplitude of η1a = 0.1m at various
frequencies.
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Figure 6.13: Surface elevation on side 1 of the geometry, with a submergence of h = 5m and a motion amplitude of
η1a = 0.1m at various frequencies (i = 1 indicates analytically determined sloshing frequency).

Figure 6.14: Surface elevation on side 1 of the geometry, with a submergence of h = 10m and a motion amplitude of
η1a = 0.1m at various frequencies (i = 1 indicates analytically determined sloshing frequency).

To accurately determine the first sloshing mode’s natural frequency using 2D CFD forced motion
analysis, it is necessary to run simulations with a larger number of frequencies than presented in Figures
6.13 and 6.14. This expanded analysis will help ascertain if the resonance frequencies observed in the
2D CFD analysis systematically differ from the analytically approximated frequencies. In the following
section this frequency domain analysis will be carried out.
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Frequency domain
In order to explain the behavior observed in Figure 6.13 and Figure 6.14, the data is analysed in the
frequency domain. This method proves valuable as it offers insights into how a system reacts to various
frequencies, particularly when investigating the dynamic behavior or resonant frequencies of the sys-
tem. For the frequency domain analysis of the 2D forced motion simulations a submerged length (Ls)
of 5, 10 and 15 meters is used. For the upright (i.e. 90 degrees inclination) structure, the submerged
length is equal to the draft (Ls = h).

The CFD simulations operate in the time domain, therefore the results in frequency domain are
obtained after multiple post-processing steps. First, the time domain is analyzed, starting from a point
where a stable situation has begun. The initial portion of the time series is characterized by transient
effects, and therefore is excluded. This specific analysis focuses on the time domain range from 300
to 400 seconds. Next, the force on the geometry is filtered to eliminate irregular frequencies in the
response caused by numerical pressure peaks.

Filtering force data
The Savitzky-Golay filtering method [63] is employed to smooth out irregularities in the response. The
employed method for peak filtering should be approached with caution to prevent smoothing-out gen-
uinely existing flow characteristics. The occurrence of irregularities in the force data can be attributed
to various factors. To enhance the accuracy of the CFD results, adjustments can be made to the input
script. Various reasons for irregularities, and changes in the input script to address them, are listed
below:

1. Mesh Quality: The quality of the mesh used in CFD simulations plays a crucial role. Poorly
structured or unstructured meshes, especially near boundaries or critical regions, can lead to
inaccuracies and irregularities.
Address: Ensure that themesh is well-structured and has sufficient resolution, especially in critical
regions.

2. Boundary Conditions: Incorrectly specified boundary conditions or improper treatment of bound-
aries can cause irregularities. Ensure that the boundary conditions are accurately defined and
represent the physical system.
Address: Check whether the boundary conditions accurately represent the physical system.

3. Numerical Instabilities: Numerical methods used in CFD simulations can become unstable
under certain conditions. This instability may lead to erratic behavior in the simulation results.
Address: Adjust numerical schemes, decrease time step size, and monitor for stability issues
during simulations.

4. Time Step Size: In time-dependent simulations, the choice of the time step size can impact
the stability and accuracy of the solution. An inappropriate time step size may lead to irregular
oscillations or divergence.
Address: Experiment with different time step sizes, perform sensitivity analyses, and choose a
time step that balances accuracy and stability.

5. Solver Convergence: Insufficient convergence of the solver can result in inaccurate and irregular
results. Monitoring convergence criteria and adjusting solver settings may be necessary.
Address: Increase the number of iterations, tighten convergence criteria, and consider usingmore
advanced solvers if available.

6. Physical Assumptions: Assumptions made in the simulation, such as neglecting certain physi-
cal effects or simplifying geometry, can introduce irregularities.
Address: Reevaluate assumptions, consider more detailed models, and compare results with
simulations that include additional physical effects.

An example of force data with and without filtering of the irregularities is visualized in Figure 6.15.
In Appendix D examples are given of how the filtering works for multiple excitation frequencies.

In addition to the general factors contributing to irregularities in the CFD results, there are also spe-
cific considerations pertinent to the pressure peaks observed, which are associated with the models
used in this research. Iwanowski et al. [23] found, in their study using ComFLOW, that pressure spikes



6.5. Geometry forced to oscillate in calm water 54

Figure 6.15: Time domain plot of the surge forced oscillation test in a 2D ComFLOW simulation with an amplitude of oscillation
ηa = 0.1 m and a excitation frequency Ω of 1.63 rad/s.

are especially likely to occur in cells partially occupied by the immersed geometry, specifically in re-
gions where the fluid’s free surface has just appeared or dissipated. For the considered forced motions
problem, this phenomenon occurs in the majority of cells surrounding the geometry in close proximity
to the free surface. Furthermore, in the study conducted by Brodtkorb [6], employing ComFLOW, it
is emphasized that numerical noise in pressure signals is more pronounced when fluid cells contain
only a small portion of solid geometry. Brodtkorb [6] gives multiple mitigation measures. To reduce
the magnitude of the peaks, larger time steps should be employed. Furthermore, the incorporation of
a two-phase flow model may serve to diminish pressure peaks. The numerical simulation is also less
susceptible to pressure peaks when the geometry aligns with the fluid mesh. This latter effect becomes
apparent when examining inclined geometries, where the occurrence of numerical pressure peaks is
more pronounced, as will be observed in Section 6.5.3 .

The mean values of the force amplitude are determined from the time series using equation 6.12.
For an excitation frequency (Ω) of 1.7 rad/s, the method of finding the mean amplitude is visualized in
Figure 6.16. For an excitation frequency (Ω) of 1.7 rad/s, a sudden shift in force occurs at approximately
360 seconds. This shift is attributed to the turbulence induced by the forced oscillation. A visualization
illustrating the cause of this sudden shift is provided in Figure 6.16.

Fsurge =
mean(peaks)−mean(troughs)

2
(6.12)

Figure 6.17 provides the time-steps at which force peaks are measured in the response for various
excitation frequencies.
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Figure 6.16: Graph of the peaks and troughs in the filtered surge force response. For this particular response, Ω is 1.7 rad/s,
and the submergence is 10 meters. The cause of the response shift is visualized on the right, with the time steps indicated.

Figure 6.17: Time-step at which a force peak is measured in the response at different excitation frequencies. The geometry is
submerged to h = 10 meter. The different excitation frequencies are provided in the bottom left of each visualization.

In Figure 6.18 the results are given in the frequency domain. In the upper figure, the phase differ-
ence between the motion and horizontal force on the geometry is given in degrees. In the lower figure,
the horizontal force on the geometry in the is presented. The horizontal force on the geometry consists
of an inertia force of the rigid liquid mass between the walls, the force acting on the interior structure, the
force acting on the exterior structure and the viscous force acting on the walls. In Figure 6.18, a phase
shift is evident at the frequency corresponding to the largest force on the geometry. This observed phe-
nomenon is anticipated during sloshing resonance, as explained in Section 5.3.1. Nevertheless, there
is no immediate occurrence of a 180-degree phase shift; instead, the phase shift gradually increases
until reaching a 180-degree difference with the non-resonant fluid motion. Due to the viscous damping
in CFD, the phase shift is less direct than that observed for in the LPF method (Section 5.3).
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Figure 6.18: In the upper figure the phase angle between the force and the lateral motion is given. In the lower figure the
absolute hydrodynamic force is presented. The structure remains vertical and is analysed at 3 different submergences (h).

6.5.2. Determination of the hydrodynamic properties
The added mass and damping can be determined based on the measured forces and motions [26].

The hydrodynamic coefficients will be derived for sinusoidal excitation in surge direction. Themotion
of the forced oscillation is defined by equation 6.13.

η(t) = ηa cos(Ωt) (6.13)

The resulting forces on the oscillating object are given by equation 6.14, in which εFη represents the
phase difference between the force and the excitation.

Fη(t) = Fηa
cos

(
Ωt+ εFη

)
(6.14)

The amplitudes utilized in the forced oscillation test are maintained at a level that allows the application
of a linear approach. The (linear) equation of surge motion in the time domain for forced oscillation is
provided by equation 6.15.

(m+ a11)η̈1 + b11η̇1 = Fη1a
cos

(
Ωt+ εFη1

)
(6.15)

In equation 6.15, m represents the mass, a11 the added mass, b11 the damping. The stiffness in
surge motion is equal to zero. Fη1a represents the force amplitude in surge direction.

Implementation of equation 6.13 and its time derivatives into equation of motion in surge (6.15),
leads to equation 6.16.

−η1a(m+ a11)Ω
2 cos(Ωt) + η1ab11Ω sin(Ωt) = Fη1a

cos(εFη1
) cos(Ωt)− Fη1a

sin(εFη1
) sin(Ωt) (6.16)

Due to the 90-degrees phase difference between the velocity and acceleration, the component of
the exciting force in phase with the surge motion is related to inertia and stiffness, while the out-of-
phase component is related to damping. Therefore the added mass (from Ωt = 0) and damping (from
Ωt = π

2 ) obtained from equation 6.16, can be written as:

a11 =
−Fη1a

η1a
cos(εFη1

)

Ω2
−m (6.17)
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b11 =

Fη1a

η1a
sin(εFη1

)

Ω
(6.18)

The in-phase and out-of-phase parts of the excitation force during the CFD simulations will be de-
termined. The added mass and damping are then computed based on this excitation force.

The in-phase and out-of-phase parts of the exciting force during an oscillation can be found from an
integration over a whole number (N ) of periods (T ) of the measured signal F(t) multiplied with cos(Ωt)
and sin(Ωt), respectively [26]:

Fa sin εFη1
=

2

NT

∫ NT

0

F (t) · cosΩt · dt (6.19)

Fa cos εFη1
=

2

NT

∫ NT

0

F (t) · sinΩt · dt (6.20)

These are the first order (and averaged) Fourier series components of F (t) [26].

Phase difference
The phase difference between the forced surge motion and the force acting on the geometry is deter-
mined in the time domain. In Figure 6.15, the phase difference for a specific excitation frequency is
visualized. The figure illustrates the results for the 2D representation of a vertical cylinder with an inner
diameter of 11 meters and a submergence of 10 meters. The phase difference is utilized to determine
the added mass and damping coefficients at that frequency. It serves as a measure of the damping
present in the system. In the case of a substantial phase difference, the out-of-phase component of
the force becomes more pronounced, indicating increased damping within the system.

Added mass and damping
The added mass and damping are determined using two methods. The first approach employs the
phase difference approach, which utilizes the mean amplitude of the filtered force data (equation 6.12)
and the phase difference, εFη1

, to calculate the added mass and damping through equations 6.17
and 6.18. In the second approach, it is unnecessary to determine the phase difference. This method
involves solving the integrals in equations 6.19 and 6.20 to find the in-phase force and the out-of-phase
force, which are then applied in equations 6.17 and 6.18.

Figure 6.19 depicts the added mass (a11) and damping (b11) coefficients for a 2D structure at dif-
ferent submergences. First, focus on the red line, which indicates a submergence of h = 10 m. The
material mass of the water between the two walls is ρhDi kg per unit width. Which for this specific
case is equal to 1.1e5 (ρ = 1000kg/m3). In Figure 6.19 it can be observed that the a11 approaches
the material water mass at the lower oscillation frequencies. The added mass varies with frequency
and is negative for Ω greater than the first sloshing frequency as shown in Figure 6.19. The added
mass should not be interpreted as a physical mass. Because of this, the added mass can also have a
negative value. A negative added mass indicates that the ”inertia force” acts in the opposite direction
of the tank acceleration, or that we have an apparent reduction in the system mass. The occurrence
of negative added mass is a widely recognized phenomenon in the context of the external flow issue
surrounding a ship as well [17]. However, the damping b11 is positive, as it must be. The highest b11
values are present within a frequency range centered around the lowest sloshing frequency. A broader
range of significant b11 values would have been observed if the damping ratio of the sloshing had been
higher. In general, the damping increases as the ratio of liquid depth to wall gap (h/Di) decreases [17].
This phenomena can be seen in the non-dimensionalized damping curves in Figure 6.20, where the
largest damping is present at the lowest submergence (as the wall gap is equal for all cases).

In Figure 6.20 the results from Figure 6.19 are made dimensionless, to be able to analyse the
influence of submergence on the added mass and damping. In Figure 6.20, it becomes evident that in
the CFD method for a 2D open-ended structure, the frequency at which the first sloshing mode occurs
reduces with an increasing submergence-to-breadth ratio (h/Di). Furthermore, the amount of damping
increases as the submergence-to-breadth ratio (h/Di) decreases. However, it should be noted that the
accuracy of the results depends on the number of excitation frequencies tested. Increasing the number
of excitation frequencies at which the CFD simulations are carried out would enhance the reliability of
the results.



6.5. Geometry forced to oscillate in calm water 58

Figure 6.19: Added mass and damping of the 2D structure that is forced to oscillate in surge with amplitude η1a = 0.1 m and
angular frequency Ω, at various submergence h.

Figure 6.20: Non-dimensional added mass and damping of the 2D structure that is forced to oscillate in surge with amplitude
η1a = 0.1 m as a function of the non-dimensional excitation frequency Λ (= Ω2Di/g), at various submergence h.
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6.5.3. Sloshing mode - 2D - Inclined
For the inclined analysis, the angles from Section 5.5 are followed, thus angles of 60, 45, and 40
degrees with respect to the horizontal. The submerged length has a constant value of Ls = 10 m.
The surge excitation amplitude, η1a, is adjusted according to the inclination angle such that the forcing
amplitude-to-breadth ratio η1a/B remains constant and equal to 0.0091. In this context, let B represent
the breadth of the water surface between the two walls, defined as B = Di/ sin(α). For inclination
angles of 60, 45, and 40 degrees, this results in excitation amplitudes η1a of 0.1155, 0.1414, and
0.1556, respectively.

For the inclined geometries, the same frequency domain analysis as explained in the previous
section is carried out. The inclined geometry is not aligned with the fluid mesh, leading to a higher
density of spurious pressure peaks in the pressure results compared to the upright case. As expected,
mesh refinement does not counteract the occurrence of these spurious peaks, as it reduces the time
step. In the present work, the samemesh as that used for the upright case is retained, and the Savitzky-
Golay filtering method [63] is applied to remove spurious peaks.

Figure 6.21: Time domain plot of the surge forced oscillation test in a 2D ComFLOW simulation with an amplitude of oscillation
of 115mm and a period of 1.38rad/s. The inclination angle (α) of the geometry is 60 degrees.

In the Figure 6.22 the added mass and damping values are given for the structure forced to oscillate
in surge direction under an angle. The angles with respect to the horizontal are 60, 45 and 40 degrees
respectively. As a reference, the results for the upright structure (α = 90 degrees) is also given in the
figure. The analytical approximation for the first natural sloshing frequency is described in Section 4.3.3.
The expectation is that the first natural sloshing frequency will decrease if the inclination angle with
respect to the horizontal decreases, provided the submerged length remains constant. In other words,
for decreasing angle, the free surface inside the structure will increase, causing the half wavelength
that fits inside this structure to also increase. This increase in wavelength corresponds to a decrease
in first natural sloshing frequency.

Comparison of the frequency at which sloshing resonance can be observed in the added mass and
damping results (Figure 6.22) reveals agreement with the aforementioned expectation.

Furthermore, the magnitude of the added mass and damping terms in surge in the vicinity of the
first sloshing mode significantly decrease when the inclination angle with respect to the horizontal is
reduced.
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Figure 6.22: Added mass and damping of the 2D structure that is forced to oscillate in surge with an amplitude-to-length ratio
η1a/B of 0.0091 and excitation frequency Ω. The structure is under various inclination angles α with respect to the horizontal.

The submerged length is Ls = 10 m.



7
Results

This chapter combines approaches from previous chapters to determine the best method for describing
the researched phenomena.

7.1. Validation of LPF using CFD
In this section the results obtained from the LPF analysis conducted with Orcawave are validated with
the CFD analysis conducted with ComFLOW. It is anticipated that the results should align consistently
with both methods for frequencies away from the resonance frequency of the internal water column.
However, in proximity to the resonance frequency, the LPF results tend towards infinity due to the
linear approach. For frequencies near sloshing resonance, the objective is to obtain CFD results that
more closely align with the physical phenomena occurring.

Two-dimensional models are employed to compare the LPF and CFD approaches. The emphasis
is on comparing the results in terms of added mass and damping obtained from both methods near the
first asymmetric sloshing frequency. The procedure utilizing LPF is detailed in Section 5.3.4, while the
approach employing CFD is outlined in Section 6.5.2. The results for added mass and damping are
presented for a model with a 2D geometry, featuring an inner diameter of 11 meters (Di) and a wall
thickness of 0.5 meters, at various submergences, and inclined at various angles with respect to the
horizontal. In the presented forced oscillation CFD results, a motion-amplitude-to-breadth ratio (ηa/Di)
of 0.0091 is employed. A low ratio is chosen to prevent the free surface from behaving chaotically,
causing substantial changes in the wetted area or significant water entry and exit between the geometric
walls. This is desirable to facilitate a comparison of the CFD results with LPF results. The added
mass and damping results from the CFD analysis are obtained through two methods, as explained
in Section 6.5.2. The phase method, being more indirect, involves determining the phase angle first.
Consequently, the integral method is employed to validate the outcomes of the phase method.

7.1.1. Upright structure
First, the 2D structure is compared in an upright position (α = 90 degrees), at various submergences.
Focus is on the magnitude and the frequency of the sloshing resonance.

Added mass
The added mass in surge for submergence’s h of 5, 10, and 15 meters, obtained from the OrcaWave
and ComFLOW simulations, is presented in Figures 7.1a, 7.2a, and 7.3a, respectively. Additionally, in
each figure, the analytical first asymmetric sloshing mode determined by Equation 4.19 is represented
as a dotted vertical reference line. The submergence-to-breadth (h/Di) ratio is 0.45 for a submergence
of 5 meters, 0.91 for 10 meters, and 1.36 for 15 meters. As explained in Section 4.3.2, the analytical
approximation is only valid when h/Di

>∼ 1. Therefore, it is expected that the resonance frequency for a
submergence of 5meters will deviate from the value determined analytically, as the deep liquid condition
is not satisfied. For a submergence of 10 meters, the deep liquid condition is almost reached, and for
a submergence of 15 meters, the deep liquid condition does apply. The fundamental natural sloshing
frequency, based on linear potential flow theory, should accurately predict the resonance frequency
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for the open structure if deep liquid conditions apply. This is also visible in the figures, where only at
a submergence of h is 5 meters, the analytical determination does not match the linear potential flow
result.

Then, consider the magnitude of the added mass in the OrcaWave method. In the OrcaWave
method, viscous damping effects are neglected. A linear theory based on potential flow of an incom-
pressible liquid predicts infinite steady-state response for a forcing frequency equal to a natural fre-
quency of the liquid motion. However, there is a damping source due to the radiated waves, because
of the open bottom of the structure. This damping is more severe if the submergence is smaller. This
can be explained by considering the surface level of the internal water column. With increased sub-
mergence, the energy dissipating through radiation diminishes because of reduced interaction with the
surface water level outside the cylinder.

The amplitude of the excitation is kept at a small value, therefore the surface water in the CFD
simulation does not include chaotic behaviour or wave breaking, however the surface water behaviour
(especially the wave run up) is not completely linear.

Looking at the oscillation frequencies away from the resonance frequencies, the results from Or-
caWave and ComFLOW align well, indicating the a linear system description is correct and superposi-
tion is possible.

Damping
The damping in surge for submergence’s h of 5, 10, and 15 meters, obtained from the OrcaWave and
ComFLOW simulations, is presented in Figures 7.1b, 7.2b, and 7.3b, respectively.

As in the figures in which the added mass results are presented, in each figure, the analytical first
asymmetric sloshing mode determined by Equation 4.19 is represented as a dotted vertical reference
line.

Both methodologies exhibit peak damping values in the vicinity of the analytically determined first
sloshing mode. However, the damping coefficients derived from the CFD analysis appear to influence a
wider range of frequencies. In the LPF method, only radiation (or wave-making) damping is considered,
while the CFD method incorporates viscous damping, resulting in a noticeable shift in the frequency at
which the damping peaks. The difference in resonance frequency of the first sloshing mode suggests
that damping due to flow separation around the bottom corners of the structure has a significant influ-
ence. This finding is supported by the work of Ravinthrakumar et al. [60]. The percentage deviations
between the resonance frequencies from CFD and LPF for submergences of h = 5, 10, and 15 meters
are 4.62%, 6.16%, and 7.87%, respectively.

(a) Added mass (b) Damping

Figure 7.1: Added mass and damping in surge direction for surge motion with a submergence of h = 5 meter.
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(a) Added mass (b) Damping

Figure 7.2: Added mass and damping in surge direction for surge motion with a submergence of h = 10 meter.

(a) Added mass (b) Damping

Figure 7.3: Added mass and damping in surge direction for surge motion with a submergence of h = 15 meter.



7.1. Validation of LPF using CFD 64

7.1.2. Inclined structure
This section provides a preliminary comparison of the added mass and damping of the 2D structure
around the first sloshing mode at various inclination angles. Figures 7.4, 7.5, and 7.6 show the results
for inclination angles of 40, 45, and 60 degrees respectively. The similarities between the CFD results
and the LPF results are not as pronounced as in the case of upright structures. One reason for this
is the reduced excitation of sloshing as the inclination with respect to the horizontal decreases. The
sloshing that does occur is less linear compared to the upright case because the walls are inclined. This
inclination results in wave run-up on one side and breaking on the other, making it more challenging
for sloshing resonance to be excited.

(a) Added mass (b) Damping

Figure 7.4: Added mass and damping in surge direction for surge motion with a submerged length of Ls = 10 meter. The
angle with respect to the horizontal is 40 degrees.

(a) Added mass (b) Damping

Figure 7.5: Added mass and damping in surge direction for surge motion with a submerged length of Ls = 10 meter. The
angle with respect to the horizontal is 45 degrees.
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(a) Added mass (b) Damping

Figure 7.6: Added mass and damping in surge direction for surge motion with a submerged length of Ls = 10 meter. The
angle with respect to the horizontal is 60 degrees.

7.2. Modelling the sloshing resonance
The primary emphasis in this part is on the fundamental sloshing mode. This is because this specific
mode generates the most noteworthy lateral movement of the center of gravity.

7.2.1. Damping lid for modelling purposes
As discussed in Section 5.3.3, a damping lid can be used to simulate additional damping for the internal
water column in the LPF simulation. The CFD results can be employed to find the appropriate level
of damping that the lid should impose on the surface water of the internal water column, to achieve a
similar response. Figure 7.7 and 7.8 show the added mass and damping results from Figure 7.2a and
7.2b, with the addition of the LPF results for an open bottom structure with a damping lid between the
walls. In the legend the damping coefficients ϵ are indicated. For modelling purposes the application of
this damping lid can be used for a better estimation of the added mass and damping, following from the
LPF results. In the specific case shown in Figure 7.7 and 7.8, a damping lid with a damping coefficient ϵ
of 0.06, would be the best choice to approach the ComFLOW added mass and damping results around
the first sloshing frequency. The damped natural frequency of the system is given by [47]:

ωd = ωn

√
1− ϵ2 (7.1)

Thus the natural frequency decreases from its undamped value by a factor of
√
1− ϵ2, which in the

case of ϵ = 0.06 is 0.9982. This is a very small shift, which is hardly visible in Figure 7.7. Therefore,
the fact that the resonance frequency from OrcaWave does not match with the ComFLOW result is not
addressed with this method.
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Figure 7.7: Added mass in surge direction for surge motion with a submergence of h = 10 meter. OrcaWave models including
damping coefficients epsilon (ϵ) are also given.

Figure 7.8: Damping in surge direction for surge motion with a submergence of h = 10 meter. OrcaWave models including
damping coefficients epsilon (ϵ) are also given.
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7.2.2. Hydrodynamic force ratio
To assess the impact of sloshing on the overall equation of motion, two models are compared. The
first model contains a closed bottom geometry in which the mass of the internal water column at rest is
equal to the mass of the internal water column of the open bottom geometry. The free surface of this
internal water column is considered rigid. This model is referred to as ”frozen”. The second model is
the open ended monopile in which the free water surface is not rigid, thus this model includes sloshing
behaviour. This model is referred to as ”open”. The equation describing the total hydrodynamic force
acting on the structure is given in respectively equation 7.2 and 7.3.

Ffrozen = Af η̈1 +Bf η̇1 + Cfη1 (7.2)

Fopen = Aoη̈1 +Boη̇1 + Coη1 (7.3)

The ratio of these forces is given in equation 7.4.

Fopen

Ffrozen
=

Aoη̈1 +Boη̇1 + Coη1
Af η̈1 +Bf η̇1 + Cfη1

(7.4)

The oscillatory motion in surge in complex notation is given by:

η1 = η1ae
−iωt (7.5)

The velocity and acceleration of this oscillation are:

η̇1 = −iωη1ae
−iωt (7.6)

η̈1 = −ω2η1ae
−iωt (7.7)

Considering only the forced oscillation in the surge direction, the stiffness term C is omitted since
there is no static stiffness in the surge direction. When equations 7.6 and 7.7 are applied to the remain-
ing part of equation 7.4, the resulting complex value ratio is expressed in equation 7.8.

Fopen

Ffrozen
=

−ωη1a(ωAo + iBo)e
−iωt

−ωη1a(ωAf + iBf )e−iωt
(7.8)

Then, several terms cancel each other out. The absolute value of the remaining term provides the
hydrodynamic force ratio, as given in equation 7.9.

Fopen

Ffrozen
=

∣∣∣∣ ωAo + iBo

ωAf + iBf

∣∣∣∣ (7.9)

The hydrodynamic force ratio at the frequencies surrounding the resonance frequency is given in
Figure 7.9. This figure illustrates the significance of the sloshing behavior within the internal water col-
umn around the fundamental sloshing frequency. As the submergence decreases, the relative impact
of the sloshing behavior becomes more pronounced. This is expected since a relatively greater amount
of the total mass of the internal water contributes to the hydrodynamic force due to sloshing at smaller
submergences. Based on Section 6.5.3 it can be expected that the hydrodynamic force ratio observed
for the upright structure near the first sloshing mode is higher than that for the inclined structures.
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Figure 7.9: The hydrodynamic force ratio Fopen/Ffrozen as function of non-dimensional excitation frequency Λ (= ω2Di/g).
The structure remains upright and the hydrodynamic forces at three submergences are analyzed.
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Experimental model tests

Validation of the LPFmethod with CFD has its limitations. For example CFD results are not equivalent to
actual wave loads due to uncertainties in the turbulence models. Better validation for the LPF method
as well as the CFD method can be accomplished by doing model experiments. In other research
focused on surface water elevation multiple measuring methods are presented.

8.1. Other model test in the research field
In research by Gabl et al. [18] two methods are used to capture the transient motion of the inner free
surface without significantly impacting the fluid or structure response. The first method utilizes resistive
wave gauges constructed from copper tape to measure the water run-up height on the structure’s walls.
The second method extends the conventional use of optical motion tracking to track the positions of
randomly placed markers floating on the internal water surface.

The study by Moreau et al. [51] examines the damping characteristics of surge and pitch motions, as
well as the first lateral sloshing mode, in a rigid free-floating upright circular dock equipped with bilge
boxes and an open bottom. Experimental model tests are conducted using a 0.80 m diameter model
subjected to regular waves with periods close to the highest natural sloshing period. Measurements
are taken to assess the elevation of the internal free surface and the rigid body motions of the model
using wave probes.

The thesis by Gerritsen [20] found for a vertical cylinder similar to this research, that close to the ex-
pected natural frequency for sloshing of the internal water mass, the water started to randomly show
rotating sloshing behaviour, occurring either in a clockwise or counter-clockwise direction. This sloshing
behaviour represents a non-linear phenomenon. This “rotary” sloshing or swirl behaviour is non-linear
and can thus not be described by LPF, but it can be modelled in CFD and then validated with model
tests. In the thesis by Gerritsen [20] the surface elevation inside the cylinder were measured during
the ’forced oscillation’ tests and the ’fixed model’ tests. These sensors consists of a rigid plastic strip
with on the sides two steel rods. These rods are connected to a instrumentation amplifier which shows
the change of electrical resistance due to water. The average is taken of the two rods to give a reliable
free-surface elevation.

The research by Balkema [4] focusses on the surface water penetration of inclined monopiles. In this
research, only the piston mode resonance of the internal water column in taken into account, since
natural sloshing modes are not expected to be present in the given sea state and geometry. The exper-
iments carried out by Balkema [4] consist of measurement of the forces, motions and wave elevation.
For the measurement of forces and motions, a hexapod is used to which the model is mounted during
the experiments. For the wave elevation, seven wave probes are used. Three of these are located
outside the model to measure the external wave elevation and four internal wave probes are used.
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9
Conclusions

The results obtained in this study can serve as guidelines for a deeper understanding of the resonance
behavior of the internal water column within a monopile during the installation cycle. Two methods to
describe fluid behavior have been employed: one based on linear potential flow (OrcaWave) and one
based on the Navier-Stokes equations (ComFLOW). The study concludes that viscous damping and
nonlinearities in fluid flow significantly influence both the frequency of resonance and its consequences
on hydrodynamic properties. This section will draw conclusions from the study based on the answers
provided to the research questions.

9.1. Determination of the resonance frequencies
In this section the following secondary research question is addressed:

Can an analytical equation be employed to determine the frequencies of the piston mode and slosh-
ing mode within the internal water column of both vertical and inclined monopiles?

To address this research question the piston mode and sloshing mode are treated separately.

Piston mode
The analytical derivations based on literature in Section 4.2, are based on linear theory, and serve as
accurate approximations of the resonance frequencies induced by the piston mode in the 3D potential
flow analysis (Figure 5.2).

However, there is a deviation between the 2D analytical piston mode frequency determination,
based on a moonpool, and the frequency found in the LPF analyses of a thin walled cylinder. This
can be explained by the 2D monopile representation being a thin-walled structure and the 2D analyti-
cal approximation is only valid in case of significant wall thickness.

In Section 4.2, analytical approaches are presented to evaluate the influence of the structure pierc-
ing the water surface at an inclined angle on the resonance frequencies. The expectation that the piston
mode resonance frequency will decrease with a decreasing inclination angle relative to the horizontal,
while the submerged length is constant, is confirmed with CFD (Section 6.4.2).

Sloshing
The analytical approaches based on literature in Section 4.3.4, consistently predict a lower fundamental
(first asymmetric) sloshing frequency when compared to the 3D LPF approach. The relative deviation
is about 1-2%, depending on the monopile diameter. (Figure 5.6 and Table 5.2).

For a 2D monopile representation, the fundamental sloshing frequency can closely be determined
with themethod described in Section 4.3.2, but only when the submergence-to-breadth ratio is h/Di

>∼ 1.
If this is the case, the deep liquid condition is reached, and the free surface do not ”feel” the open
bottom in LPF. When the ratio h/Di

>∼ 1 holds true, in CFD, the fundamental sloshing resonance
frequency is lower than the frequency predicted by the analytical approximation and LPF (Section
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7.1.1). The difference in resonance frequency of the first sloshing mode suggests that damping due to
flow separation around the bottom corners of the structure has a significant influence.

In Section 4.3.3, analytical approaches are presented to evaluate the influence of the structure
piercing the water surface at an inclined angle on the 2D sloshing resonance frequencies. The expec-
tation that sloshing resonance frequencies decrease with a decreasing inclination angle relative to the
horizontal, while the submerged length is constant, is confirmed with CFD (Section 6.5.3).

9.2. Accuracy of linear system description
In this section the following secondary research question is addressed:

Is it possible to describe the internal water behavior in an open-ended monopile accurately with
linear theory, or is it necessary to take non-linearities into account?

To verify whether non-linearities should be taken into account, the results from the LPF (OrcaWave)
analyses are compared with CFD (ComFLOW). To address this research question the piston mode and
sloshing mode are treated separately.

Piston mode
First the 2D CFD model is validated with literature results (Section 6.3). The results indicate that the
ComFLOW 2D CFD model successfully captures the observed trend in the gap resonance between
two fixed bodies. Nevertheless, there is a discrepancy in the magnitude of the gap resonance when
compared to findings from prior research, which could be attributed to the accuracy of the computational
grid.

The piston mode resonance peak observed in the CFD results does not coincide with the value
found in the LPF analysis. The discrepancy is attributed to viscous damping, primarily arising from
flow separation at the lower edges of the geometry (Figure 6.6, 6.7, and 6.8). This phenomenon is not
accounted for in LPF.

The piston mode resonance frequency for an inclined structure is found to be lower than for an
upright structure if the submerged length is kept constant, as shown in Figure 6.9. This is in line with
the expectation following from the approach in Section 4.3.3. However, only this trend is observed;
the accuracy of the approach in Section 4.3.3 is not further tested. The reason for this choice was the
observed difficulty in simulating the piston mode resonance in head waves using 2D CFD.

Sloshing
In Section 7.1.1, it is addressed that due to the nonlinear viscous flow in the CFD, a deviation in the
first sloshing mode frequency is found between the LPF sloshing frequency and the CFD result. The
percentage deviations between the resonance frequencies from CFD and LPF for aDi of 11 meter, and
at submergences of h = 5, 10, and 15 meters are 4.62%, 6.16%, and 7.87%, respectively. Thus, for an
increase in submergence, the influence of radiation damping reduces, and viscous damping becomes
more dominant. The dominance of viscous damping also explains the arbitrarily high amplitudes in
added mass and damping in the LPF results, where viscous effects are not present.

In Section 6.5.3 it is demonstrated that, as the angle with respect to the horizontal decreases while
keeping the forced oscillation amplitude-to-breadth ratio η1a/B and submerged length Ls constant, the
amplitudes of the added mass and damping around the first sloshing frequency decrease. Therefore,
a more in-depth analysis with a focus on the hydrodynamic forces acting on the monopile is conducted
for the upright case.
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9.3. Effect of the resonance of the internal water column
In this section the following secondary research question is addressed:

Is it feasible to formulate a precise method for translating the motions of the internal water column
into forces acting upon the monopile?

In Section 7.2.2, it is demonstrated that it is necessary to take non-linearities into account in the
vicinity of the first sloshing mode. The hydrodynamic force acting on the structure due to sloshing of
the internal water column ,compared to the ”frozen” state, is significant (Figure 7.9). In Figure 7.9 it is
demonstrated that at the highest amplitude of the hydrodynamic force at the first sloshing mode, the
ratio Fopen/Ffrozen, for submergences of h = 5, 10 and 15 meter are, 5.59, 3.62 and 2.33, respectively.
The hydrodynamic force Fopen represents the open bottom CFD model and Ffrozen the closed bottom
LPF model with a static internal water column.

For modelling purposes the application of the damping lid can be used for a more accurate determi-
nation of the added mass and damping using the LPF method. The LPF calculations over-predict the
peak values at resonance frequencies due to the absence of viscous damping in the method. Compar-
ison with CFD enables the inclusion of a damping lid to mimic the viscous damping effect in the LPF
model. However, it should be noted that the frequency at which sloshing occurs is not hardly effected
by the damping lid, and although it is useful for engineering purposes, the damping lid does not incor-
porate the viscous damping effects present in the Navier-Stokes equations. For the specific case given
in this study, a 2D monopile with Di = 11 meter and a submergence of h = 10 meters, a damping lid
coefficient of ϵ = 0.06 is optimal (Section 7.2.1).

9.4. Primary research question
In this section the primary research question is addressed:

Is it possible to predict the internal water behavior, particularly resonancemotions, in an open-ended
monopile during the installation sequence, and what is the impact of this behavior on the overall mo-
tions of the monopile?

In the present work, more insight is gathered on predicting the internal water behavior inside an open-
ended monopile. The impact of the sloshing behaviour is investigated in a 2D CFD approach. It can be
concluded that employing 2D CFD is an effective method for predicting internal water behavior when
used to verify LPF results. To increase confidence in the outcomes of the present work, experimental
model tests should be conducted to validate the results, however this was not withing the scope of this
work.

The present work does not explore the impact of the piston mode resonance on the overall motions
of the monopile. Instead, it focuses on investigating the impact of the first sloshing mode, revealing a
substantial increase in the hydrodynamic force magnitude due to sloshing resonance. These results
should be evaluated in the context of the analyses, as it is found that, in certain circumstances, incident
waves may not generate sloshing. This raises the question of whether waves during normal operation
will be capable of exciting sloshing.

The current method of verifying the LPF method with 2D CFD has both advantages and shortcom-
ings. A notable advantage is the use of small excitation amplitudes and incident wave heights in CFD,
ensuring that the water surface behavior remains comparable to linear flow and providing a suitable
comparison for the LPF method. Nevertheless, forced oscillation tests with larger amplitudes should
be conducted to explore the effect of nonlinear chaotic sloshing. In the 2D approach, lateral motion of
the surface water at sloshing resonance is observed, considered positive in this work due to its ability
to be well-described in a linear manner. However, in the case of 3D CFD, swirling near the resonance
frequency is expected.
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Recommendations

This section provides recommendations for further related research, arranged by the different topics
addressed in the present work.

10.1. Resonance behaviour
• Investigate the effect of the piston mode resonance on the overall motions of the monopile. In
the present work only the effect of the first sloshing mode has been investigated.

• In the present work, the impact of the sloshing internal water column on the added mass and
damping terms has been investigated. It would be valuable to further explore this aspect to
establish a relationship between the potential flow approach away from resonance and a CFD
approach in the vicinity of resonance.

• Empirically derive equations to estimate the resonance frequencies of open-ended inclinedmonopiles.
In this study, assumptions regarding the resonance frequency caused by the inclination of the
monopile are formulated and validated, yet overarching formulas are not established.

10.2. Monopile installation method
• Investigating mitigation measures to reduce internal sloshing during installation. Possible mea-
sures may include the use of internal solid or porous baffles.

• Include the influence of the vessel on the monopile during the operation. What is the interaction
between the monopile and the ship during installation in terms of shielding and diffraction effects.

• Investigate the influence of directionality. The present work only focuses on head waves during
the installation procedure, but other wave heading might induce different behaviour.

10.3. Environmental conditions
• Because the focus of this study was on resonance of the internal water column, forced oscillation
and regular incident is employed. The study could be extended to also include irregular waves
and current.

• Capture the motion of a monopile in an actual installation with a defined sea state. Examine the
behavior of the internal water column and evaluate its response when encountering significant
motions.

10.4. 2D CFD
• The present work employs CFD simulations in 1-phase flow. The use of 2-phase flow (both liquid
and gas phase) might reduce the numerical pressure peaks in the CFD results and therefore
increase the accuracy of the results.

• Investigate the effect of breaking waves and slamming. The present work focuses on small wave
heights and motion amplitudes to maintain surface water behaviour that can be compared with
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the linear potential flow. However, in certain sea states this assumption of linear surface water
behaviour might not hold.

• Include a turbulence model in the CFD model for more accurate determination of the hydrody-
namic loads on the geometry.

• Further investigate the computational grid for inclined geometries to find a suitable method to
reduce the spurious peaks.

• In the present work, CFD analyses are conducted for a fixed diameter. Investigating the influence
of the diameter on resonance frequencies provides valuable information, as demonstrated when
the water surface area is increased due to inclination in the present study.

10.5. 3D CFD
• In the present work, preliminary analyses with 3D CFD have been conducted. During these
analyses, beating appeared to significantly influence the response near the first sloshing mode,
preventing the attainment of a steady state. Utilizing 3D CFD will allow for the modeling of more
complex resonance behavior, such as swirling, thereby expanding the scope of the study.

10.6. Experimental model tests
• The present work necessitates an experimental model study to validate whether the findings from
CFD around the resonance frequency show agreement.

• In experimental model tests the question of whether waves during the monopile installation oper-
ation will be able to excite sloshing can be examined.

10.7. Mechanical sloshing model
• Multiple studies have been conducted on representing the sloshing resonance as a pendulum or
mass-spring system. This can be a suitable approach to standardize the expected forces due to
resonant behaviour of the interal water column.
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A.1. Gap resonance

(a) Surface elevation in the gap in full 40 second run.

(b) Zoom of the positive peaks of the surface elevation in the range of 30-40 seconds.

Figure A.1: Dependence of the free-surface elevation at the desired focus position (i.e., in the center of the gap) on the grid
resolution for regular waves with wave number kD = 1.6 or frequency ωg = 5.38rad/s and incident wave height H = 0.024m.
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A.2. Piston mode

Figure A.2: Zoom of the positive peaks of the surface elevation at the incoming face of the geometry at different grid
resolutions. Free surface elevation measurement between the two geometry walls. Geometry present at a submergence of

h = 5m, an incident wave frequency of ω = 1.0985rad/s and an incident wave height of H = 1m.
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A.3. Sloshing mode

Figure A.3: The hydrodynamic force measurement at an excitation frequency of ω = 1.48rad/s for the grid used in the
analysis (blue) and the a finer grid (red). Both grids are refined around the geometry and stretched in the z-direction from the

still waterline.
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B.1. Governing equations
The linear radiation-diffraction analysis is conducted in OrcaWave. Therefore, the terminology used
by this method is presented [57]. The assumption is made that the flow of the fluid is incompressible,
inviscid, and is irrotational. The velocity of the fluid is represented by the gradient of a scalar function Φ,
known as the velocity potential. The velocity potential, Φ, satisfies Laplace’s equation within the fluid
domain:

∇2Φ(X , t) = 0 (B.1)

After performing substitutions in the Navier-Stokes equation and subsequent integration, the result-
ing outcome is the Bernoulli equation, which is an expression that relates pressure within a fluid flow
system:

p(X , t) = −ρ(
∂Φ

∂t
+

1

2
(∇Φ)2 + gZ) (B.2)

B.1.1. First-order equations
The linear boundary value problem for the first-order complex potential ϕ(1) is given by:

ϕ = ϕI + ϕS + ϕR (B.3)

where ϕI is the potential of the incident wave, ϕS is the scattered potential due to the presence of a
fixed obstructing body, and ϕR is the radiation potential caused by first-order motion of the body in the
fluid.

B.1.2. Boundary value problems
The fluid domain, V , is the volume occupied by the fluid. This domain is enclosed by the surface of
the body, SB , the water free surface, SF , and the seabed,SSB . If infinite-depth water is considered,
Z → −∞, the seabed boundary is not present. For all components of the first-order complex potential,
ϕ(1), the following general boundary value problems are present:

∇2Φ = 0 X ∈ V

∂Φ

∂n
= qB(X ) X ∈ SB

g
∂Φ

∂n
− ω2ϕ = qF (X ) X ∈ SF

∂Φ

∂Z
= 0 Z → −∞ (orX ∈ SF )

(B.4)

The forcing functions qB and qF are different for each component in equation B.3.
These three-dimensional partial differential equations on the unbounded domain, V , are reduced to the
two-dimensional problem of finding the unknown ϕ on the surface SB . Therefore Green’s theorem and
the boundary integral equation method are used ([55]), which will be elaborated on in Section B.1.3.

B.1.3. The potential formulation
The potential formulation, based on the values of ϕ, provides the most precise estimates for funda-
mental results, including added mass and damping, load RAOs (Response Amplitude Operators), and
displacement RAOs.
Upon applying Green’s theorem, the outcome is an integral equation that expresses the potential on
the body surface:

2πϕ(X ) +
∫
SB

ϕ(ξ)
∂G

∂nξ
dSξ =

∫
SB

qB(ξ)GdSξ +

∫
SB

qB(ξ)

g
GdSξ X ∈ SB (B.5)

whereG(X , ξ) is the classical Green’s function for the problem. To simplify the appearance of the equa-
tion, the arguments of G are omitted, with the understanding that every occurrence of G represents
G(X , ξ) for the sake of clarity. The notation dSξ is used to emphasize that ξ is the dummy integra-
tion variable in each of the surface integrals in equation B.5. The notation ∂

∂nξ
represents the normal
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derivative with respect to the ξ variable, denoted as n(ξ) · ∇ξ. Equation B.5 is solved assuming that ϕ
is constant on each mesh panel of SB .

Green's Theorem
The classical Green’s function, denoted as G(X , ξ), which represents the complex potential of the
response to a point source at ξ. It is defined in the absence of a body and a damping lid, and therefore
satisfies the general boundary value problem with ϵ, qF , and qB all equal to zero, and no body surface
SB . This well-known and well-understood Green’s function serves as a fundamental component in the
OrcaWave model.
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C.1. Fundamental sloshing mode
The linear surface elevation resulting from a sinusoidal external excitation of the liquid contained in the
cylindrical geometry can be described analytically. When sinusoindal surge oscillation is considered,
the surface elevation inside the cylinder is found with the following equation [22]:

η1(t) = η1a · sinΩt

η(r, θ, t) =
η1aΩ

2

g
cos(θ) cos(Ωt)[r +B]

B =

∞∑
i=1

2R(
ι21,i − 1

) Ω2(
ω2
1,i − Ω2

) J1 (ι1,ir/R)

J1 (ι1,i)

(C.1)

In equation C.1, the first asymmetric mode, m = 1, is considered. The variables r and θ represent
cylindrical coordinates from figure 4.7. Equation C.1 shows, that when the applied oscillation frequency,
Ω, approaches the natural frequency ω1,i, the solution becomes unbounded due to the invalidation of
the linearized theory [70]. The maximum surface elevation occurs at r = R, θ = 0, and Ωt = π/2,
represented by equation C.2 [22].

η(r, θ, t) =
η1aΩ

2

g
[r +B]

B =

∞∑
i=1

2R(
ι21,i − 1

) Ω2(
ω2
1,i − Ω2

) (C.2)

Zero wave height (nodes) occurs at r = 0, θ = π/2, 3π/2, ....
In Figure C.1 a visualization of an instance of the free surface shape during forced oscillations at its

maximum displacement is given. The parameters belonging to Figure C.1 are given below.

Radius R[mm] 40
Level L[mm] 2.4R

Excitation amplitude A[mm] 1.2
Dimensionless excitation Ω/ω1i 0.9

Figure C.1: 3D surface plot of surface displacement ηmax.
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In this section the force filtering as it is applied to the forced oscillation results for the upright structure
being submerged to h = 10 meter is shown. The same method has been applied to the other CFD
hydrodynamic force results.

Figure D.1: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1 rad/s.

Figure D.2: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1.40 rad/s
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Figure D.3: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1.48 rad/s

Figure D.4: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1.5 rad/s
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Figure D.5: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1.57 rad/s

Figure D.6: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1.6 rad/s
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Figure D.7: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1.63 rad/s

Figure D.8: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1.67 rad/s
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Figure D.9: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1.7 rad/s

Figure D.10: Result of hydrodynamic force in surge for an upright structure, submerged to h = 10 meter. The excitation
frequency Ω = 1.8 rad/s
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