
Formalising the Symmetry Book
Formalising the Symmetry Book using the UniMath library.

Pallabi Sree Sarker1

Supervisor(s): Benedikt Ahrens1, Kobe Wullaert1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Pallabi Sree Sarker

Final project course: CSE3000 Research Project

Thesis committee: Benedikt Ahrens, Kobe Wullaert, Neil Yorke-Smith

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

To address the challenge of the time-consuming na-
ture of proofreading proofs, computer proof assis-
tants—such as the Coq proof assistant—have been
developed. The Univalent Mathematics project
aims to formalise mathematics using the Coq proof
assistant from a univalent perspective, which is
based on homotopy type theory.

The Symmetry book is a textbook about symme-
tries in mathematics written from a univalent view-
point. This paper focuses on formalising the proofs
in chapter 3 of the Symmetry book using the Uni-
Math Coq library. Currently, the book is partly for-
malised in the Agda UniMath library. In this paper,
we aim to formalise the chapter using the UniMath
Coq library to verify its correctness. We have suc-
cessfully formalised all the theorems in sections 3.1
to 3.3, along some other minor proofs.1

1 Introduction
Proofs in mathematics can be very lengthy, intricate texts,
which are difficult to verify. Humans verifying these proofs
is not only time-consuming, but also error-prone. This is why
we use computer proof assistants. Computer proof assistants
such as the Coq2 proof assistant use type-checking to verify
the correctness of a proof.

The Univalent Mathematics[1] project is a project which
aims to formalise mathematics using the Coq proof assistant
from a univalent point of view. That is, the foundation of its
mathematics is homotopy type theory (HoTT)[2], rather than
set theory.

The Symmetry book[3] is a work-in-progress textbook
meant for bachelor’s student about symmetries in mathemat-
ics. It is written from a Univalent point of view.

In this paper we will formalise the proofs in chapter 3 of
this book using the UniMath Coq library. Currently, small
parts of the Symmetry book are formalised in the Agda Uni-
Math library. Our goal is to formalise more of chapter 3 in
the Coq UniMath library so the correctness can be verified
and various theorems about the circle can be reused in future
formalisations. Specifically, we aim to answer the research
question: Can we formalise the proofs in chapter 3 of the

1This abstract was written with help of ChatGPT. The prompt
"Write an abstract based on the following introduction: <introduc-
tion>" was used. Then, the author edited the generated text to make
it more coherent and include more of the necessary information.

2https://coq.inria.fr/

Symmetry book using the UniMath Coq library to verify their
correctness?

This section introduces the basic relevant concepts of ho-
motopy type theory to the reader. Followed by section 2
which outlines the goal of this research paper and our ap-
proach. Section 3 provides informal proofs of everything we
want to formalise, along with links to the exact lines in the
code where the formalisations are. Section 4 provides a de-
scription of what AI tools were used during this project and
how. Furthermore, the challenges faced during this project
are described in section 5. The considerations in regards to
a responsible approach to research are discussed in section
6. Lastly, the conclusions and comments on future work are
discussed in section 7.

1.1 A note on notation

As this paper formalises the proofs in the Symmetry book, we
are using the same notation as the Symmetry book. The most
important of which is that the identity type is denoted as

=−→
and equivalences as

≃−→. Furthermore, the constructors base
and loop of the circle are denoted as • and⟲ respectively.

1.2 Homotopy Type Theory

Homotopy type theory forms the basis of Univalent Foun-
dations of Mathematics. The following subsection serves as
a very brief introduction to the basic concepts of homotopy
type theory that are relevant to this paper. All the information
was taken from the Homotopy Type Theory book[2] and the
Symmetry book[3], where more details can be found.

Homotopy Type theory is a dependent type theory which
regards types as spaces, and elements of those types as points
within those spaces. Two elements are considered equal if
there exists a path between those elements. This path has a
type as well, called the identity type. The identity type has
a constructor, namely refl𝑥 : 𝑥

=−→ 𝑥. To illustrate, figure 1
shows a space, or type 𝐴, with two elements, 𝑎 and 𝑏. These
two elements are equal, as a path 𝑝 exists between them. Con-
trarily, figure 2 shows some space 𝐵 which contains two el-
ements 𝑎 and 𝑏 which are not equal, as there is no possible
path between them.

Inductive types are defined by constructors which generate
points of that type. For example, the boolean type is defined
by two constructors, namely true and false. Higher induc-
tive types are inductive types (that is, they have constructors
which generate points of that type), but they also have con-
structors which generate paths (equalities) and higher paths
(equalities of equalities) in that type.

1

Figure 1: Illustration of some type 𝐴. 𝐴 contains two elements 𝑎
and 𝑏, which are equal as denoted by path 𝑝.

Figure 2: Illustration of some type 𝐵. 𝐵 contains two elements 𝑎 and
𝑏, which are not equal.

Chapter 3 of the Symmetry book concerns a specific higher
inductive type, namely the circle 𝑆1. It is defined by the con-
structors • : 𝑆1 and ⟲ : • =−→ •. The first constructor gen-
erates a point on the circle. The second constructor generates
a loop from the point to itself. Figure 3 shows an illustration
of this circle with its two constructors. It must be noted that
⟲ ≠ refl•.

Propositional truncation[2, Section 3.7]
A propositional truncation | |𝐴| | of a type 𝐴 effectively col-
lapses the type 𝐴 into a new type which loses all information
except for whether 𝐴 was inhabited–that is, whether 𝐴 had
any elements–or not. | |𝐴| | thus becomes the proposition ‘was
𝐴 inhabited?’

Figure 3: Illustration of the circle 𝑆1. The circle has two construc-
tors: • (base) and⟲ (loop).

Induction and Recursion Principles of the circle[4,
Section 21.1][2, Section 2.3, 6.4]
The induction principle is the principle that allows us to prove
something for every element of an inductive type. In the spe-
cific case of the induction principle of the circle, in order
to prove

∏
𝑥:𝑆1 𝑃(𝑥) (that is, for all elements of the circle,

𝑃(𝑥)), we must provide an element 𝑢 : 𝑃(•) and an element
ℓ : tr𝑃(⟲, 𝑢) = 𝑢, where tr is the transport function. The
induction principle gives a function

𝑓 :
∏
𝑥:𝑆1

𝑃(𝑥)

given the aforementioned elements which can be used to
prove something for all elements on the circle. The induc-
tion principle furthermore states that we have the identifica-
tion apd 𝑓 (⟲) =−→ ℓ .

The recursion principle of the circle states that given some
type 𝐴 together with some element 𝑎 : 𝐴 and ℓ : 𝑎

=−→ 𝑎, we
have the function 𝑓 : 𝑆1 → 𝐴 which sends • to 𝑎. Further-
more we have the identification ap 𝑓 (⟲) =−→ ℓ .

2 Formalization of Proofs in Chapter 3: A
Homotopy Type Theory Approach

The following section describes the problem we are trying to
solve in this research paper and the approach we took to solve
it.3

2.1 Problem Description

The Symmetry book is aimed at bachelor’s students about dif-
ferent symmetries found in mathematics. It is written from a
Univalent point of view. This project aims to formalise some
of the proofs in chapter 3 of the Symmetry book using the
UniMath Coq library, as it contains proofs that have not yet
been formalised in said library.

The research question is: Can we formalise the proofs in
chapter 3 of the Symmetry book using the UniMath Coq li-
brary to verify their correctness?

2.2 Approach

The approach of the project was split up into two phases. The
preparatory phase—where I learned about Homotopy Type
Theory, the UniMath library and the Coq proof assistant—
and the research phase, where I formalised proofs from chap-
ter 3 of the symmetry book using the UniMath Coq library.

3This paragraph contains suggestions from Copilot.

2

Preparatory Phase
During the preparatory phase, I learned about Homotopy
Type Theory, the UniMath library, and the Coq proof as-
sistant. I learned about Homotopy Type Theory using part
of Egbert Rijke’s Introduction to Homotopy Type Theory[4]
and materials from the HoTTest summer school[5]. I learned
about UniMath and the Coq proof assistant using materials
from the UniMath school 2022[6].

I also prepared my research by installing the Coq proof
assistant and the UniMath library.

Research Phase
During the research phase, I formalised all the theorems in
sections 3.1 to 3.3 and lemma 3.1.6 of the Symmetry book.
The formalisation of the proofs followed the order as pre-
sented in the book. I started with the formalisation of the
definition of the circle and then proceeded to formalise sec-
tions 3.1 to 3.3. While some of the minor proofs were not
formalised due to time constraints, all the theorems in these
chapters have been.

Additionally, I formalised construction 2.25.4(2), which,
although not found in chapter 3, was necessary to prove a
theorem in section 3.3. In total, I formalised four proofs, of
which two theorems. Due to time constraints, I was not able
to formalise all the proofs in chapter 3 of the Symmetry book.

To assist me in writing the formalisations, I used GitHub
Copilot4 and ChatGPT5, which helped me debug my proofs
and give suggestions (for more details, please refer to section
4).

3 Implementation
The following section describes the formalisation of the
proofs. It also goes through the steps of the proof in a more
human-readable format, to make them easier to understand
for the reader. All proofs contain links to the corresponding
lines in the GitHub repository6.

3.1 Defining the Circle

Defining a circle, which is a higher inductive type, is quite
difficult in Coq, as Coq does not have default support for
higher inductive types. Because of this, the HoTT Coq[7,
Torus.v] library was used as a source of inspiration for defin-
ing the Circle, as well as some help from the UniMath Zulip
community.

4https://github.com/features/preview/copilot-x
5https://chat.openai.com
6https://github.com/pujiii/rp-code

The above means that we cannot simply define the circle
as follows:

Inductive S1 : Type :=

| base : S1.

| loop : base = base.

Instead, we must use a workaround to be able to define the
circle. We must define our loop constructor as an axiom. This
is done as follows:

Private Inductive S1 : Type :=

| base : S1.

Axiom loop : base = base.

Furthermore, we have to define the induction and recursion
principles ourselves. The entire definition of the circle can be
found in Circle.v as S1.

3.2 Proof formalisations
The following section discusses all the proof formalisations
that I have made. The proofs are all formalised in Coq and
can be found in Circle.v and every subsection below has a
link to the respective line number.

The circle is connected
We want to prove lemma 3.1 as taken from the Symmetry
book [3, Lemma 3.1.6]. The formalisation of this proof can
be found in Circle.v under the name circle_connected.

Lemma 3.1. The circle is connected.∏
𝑧:𝑆1

| |• =−→ 𝑧 | |

Proof. We want to construct an element of type | |• =−→ 𝑧 | | for
all 𝑧 : 𝑆1. We use circle induction on 𝑧. As a base case we
take refl• : | |• =−→ •||. The loop case immediately follows, as
| |• =−→ •|| is a proposition. □

The evaluation function is an equivalence
We want to prove theorem 3.2 as taken from the Symme-
try book [3, Theorem 3.1.2]. The type of our proof is
isweq(ev A), where 𝐴 is some arbitrary type. isweq is
the type necessary to construct in order to prove a function
is an equivalence. The formalisation can be found in Circle.v
under the name evisweq.

Theorem 3.2. The evaluation function, of type:

ev𝐴 : (𝑆1 → 𝐴) →
∑
𝑎:𝐴

(𝑎 =−→ 𝑎)

3

https://github.com/pujiii/rp-code/blob/main/Circle.v#L10
https://github.com/pujiii/rp-code/blob/main/Circle.v#L38
https://github.com/pujiii/rp-code/blob/main/Circle.v#L54

defined as ev𝐴(𝑔) B (𝑔(•), ap𝑔(⟲)) is an equivalence.

Proof. To prove ev𝐴 is an equivalence we use construction
A.1. We must first define its inverse ve𝐴. We define ve𝐴
which takes as argument a tuple (𝑎, 𝑏) to return a function
which sends • to 𝑎 and⟲ to 𝑏. We do this using the recursion
principle.

Furthermore, we must construct an identification of type
ev(ve((𝑎, 𝑙))). We do this using using the identification
𝑎𝑝 𝑓 (⟲) =−→ ℓ .

Lastly, we must construct an identification of type
ve(ev(𝑓)) =−→ 𝑓 . We do this as follows. By function
extensionality it suffices to construct an element of type∏

𝑥:𝑆1 ve(ev(𝑓 (𝑥))) =−→ 𝑓 (𝑥). We can construct this using
circle induction. The base case is trivial. The inductive
case requires us to use construction A.2, followed by the
identification the recursion principle has given us, namely
𝑎𝑝 𝑓 (⟲) =−→ ℓ . Lastly, we use the identification 𝑝−1 ·𝑝 =−→ refl.

□

Set families
We want to prove lemma 3.3 as taken from the Symmetry
book [3, Construction 2.25.4(2)]. We provide the formalisa-
tion of the proof of this lemma in Circle.v under the name
set_families.

Lemma 3.3. We have the following equivalence.

(𝐴 → Set) ≃−→
∑
𝐵:𝒰

∑
𝑓 :𝐵→𝐴

∏
𝑎:𝐴

isSet(𝑓 −1(𝑎))

Proof. We use the converse of construction A.1, which
requires us to provide the following: function ℎ :∑

𝐵:𝒰
∑

𝑓 :𝐵→𝐴

∏
𝑎:𝐴 isSet(𝑓 −1(𝑎)) → (𝐴 → Set), a function

𝑔 : (𝐴 → Set) → ∑
𝐵:𝒰

∑
𝑓 :𝐵→𝐴

∏
𝑎:𝐴 isSet(𝑓 −1(𝑎)), an

identification 𝑔(ℎ(𝑎)) =−→ 𝑎 and an identification ℎ(𝑔(𝑎)) =−→
𝑎.

We start by providing a function ℎ :∑
𝐵:𝒰

∑
𝑓 :𝐵→𝐴

∏
𝑎:𝐴 isSet(𝑓 −1(𝑎)) → (𝐴 → Set). We

construct this as follows. From our input, we take∏
𝑎:𝐴 isSet(𝑓 −1(𝑎)) → (𝐴 → Set) by taking the second

projection of the second projection. We use this for the
definition of our output function, as we can create a set from
an element of isSet.

Next, we must provide a function 𝑔 : (𝐴 → Set) →∑
𝐵:𝒰

∑
𝑓 :𝐵→𝐴

∏
𝑎:𝐴 isSet(𝑓 −1(𝑎)). We call our input 𝜓 :

(𝐴 → Set). We define our type 𝐵 B
∑

𝑎:𝐴 𝜓(𝑎). We de-
fine our function 𝑓 B pr1. Lastly, we must provide a proof
that for all 𝑎, isSet(𝑓 −1(𝑎)). We apply lemma A.3. We know

that 𝜓(𝑎) is a set. Furthermore, we constructed our type 𝐵

and function 𝑓 such that 𝜓(𝑎) ≃−→ 𝑓 −1(𝑎). So we conclude
that 𝑓 −1(𝑎) is a set.

Now we must provide an identification 𝑔(ℎ(𝑎)) =−→ 𝑎.
Note that 𝑎 is of type

∑
𝐵:𝒰

∑
𝑓 :𝐵→𝐴

∏
𝑎:𝐴 isSet(𝑓 −1(𝑎)). We

use lemma A.4. So, to provide this identification, it suf-
fices to give an identification 𝑝 : pr1(𝑔(ℎ(𝑎)))

=−→ pr1(𝑎)
and an identification tr𝑃(𝑝, pr2(𝑔(ℎ(𝑎))))

=−→ pr2(𝑎) where
𝑃(𝑥) B �𝑥.

∑
𝑓 :𝑥→𝐴

∏
𝑎:𝐴 isSet(𝑓 −1(𝑎)). The identification

𝑝 : pr1(𝑔(ℎ(𝑎)))
=−→ pr1(𝑎) follows from lemma A.5.

We can construct identification tr𝑃(𝑝, pr2(𝑔(ℎ(𝑎))))
=−→

pr2(𝑎) as follows. We use lemma A.6. It suffices to give a
proof that

∏
𝑎:𝐴 isSet(𝑓 −1(𝑎)) is a predicate, which is imme-

diate as we know isSet (𝑥) is a predicate, and an identification
between the first projections of both the left and right-hand
side. We can construct this using minor manipulations.

Lastly, we must construct an identification ℎ(𝑔(𝑎)) =−→ 𝑎.
Following univalence and minor manipulations, it suffices to
give the equivalence 𝑓 −1(𝑎) ≃−→ 𝑓 (𝑎). We defined both 𝑓 and
𝐵 precisely so that this equivalence holds.

□

String of equivalences and a special case of the evaluation
function is an equivalence
We want to prove theorem 3.4 as taken from the Symmetry
book[3, Theorem 3.3.6]. We provide the formalisation of the
proof of this lemma in Circle.v. It is subdivided into part 1
(ev_set_equiv) and part 2 (string_of_equivalences).

Theorem 3.4. The evaluation function provides an equiva-
lence

evSet : (𝑆1 → Set) →
∑
𝑋:Set

(𝑋 =−→ 𝑋)

defined by evSet(𝑔) B (𝑔(•), 𝑎𝑝𝑔(⟲)).

Consequently, we have a string of equivalences

SetBundle(𝑆1) ≃−→ (𝑆1 → 𝑆𝑒𝑡) (1)
≃−→

∑
𝑋:Set

(𝑋 =−→ 𝑋) ≃−→
∑
𝑋:Set

(𝑋 ≃−→ 𝑋) (2)

≃−→
∑
𝑋:𝑈

∑
𝑓 :𝑋→𝑋

𝑖𝑠𝑆𝑒𝑡(𝑋) × 𝑖𝑠𝐸𝑞𝑢𝑖𝑣(𝑓) (3)

Proof. The first part follows directly from lemma 3.2.
For the second part, we will go step by step. The equiv-

alence SetBundle(𝑆1) ≃−→ (𝑆1 → 𝑆𝑒𝑡) immediately follows
from lemma 3.3. The equivalence (𝑆1 → 𝑆𝑒𝑡)
≃−→ ∑

𝑋:Set(𝑋
=−→ 𝑋) follows from the first part of our proof.

4

https://github.com/pujiii/rp-code/blob/main/Circle.v#L169
https://github.com/pujiii/rp-code/blob/main/Circle.v#L177
https://github.com/pujiii/rp-code/blob/main/Circle.v#L228

The equivalence
∑

𝑋:Set(𝑋
=−→ 𝑋) ≃−→ ∑

𝑋:Set(𝑋
≃−→ 𝑋) fol-

lows from univalence. Lastly, the equivalence
∑

𝑋:Set(𝑋
≃−→

𝑋) ≃−→ ∑
𝑋:𝑈

∑
𝑓 :𝑋→𝑋 𝑖𝑠𝑆𝑒𝑡(𝑋) × 𝑖𝑠𝐸𝑞𝑢𝑖𝑣(𝑓) can be con-

structed with minor manipulations. □

4 Use of AI Tools
During this project, I have used several AI tools to aid me in
my research. These tools are discussed in this section.

4.1 GitHub Copilot X
During the project, I used GitHub Copilot X[8] for sugges-
tions on steps in my proofs, as well as asking it to explain
errors to me. I tried to use it to fix bugs for me, but it was
not very good at that. Occasionally I would get an idea from
its responses, but its responses were always wrong. The sug-
gestions were often also wrong, but sometimes they were cor-
rect. For example, one suggestion was to use funextfun in
the proof of 3.2. The suggestions that were used in the final
proofs are denoted with a comment in the code. Partial sen-
tences of this paper were also written using suggestions from
Copilot X. These parts are denoted with a footnote.

4.2 ChatGPT
Before getting access to Copilot X, I used ChatGPT[9] to
help me explain code line-by-line, to better understand al-
ready written Coq code, it succeeded in this. I also tried to
have it explain errors and correct errors for me, but like Copi-
lot, it was not very good at this.

ChatGPT was also used to write some parts of this paper.
These parts are denoted with a footnote.7

5 Challenges
During this project, I faced some challenges. This section
discusses these challenges.

5.1 Learning Homotopy Type Theory
Before this project, I did not know Homotopy Type the-
ory. Therefore, I had to learn it from scratch. As homo-
topy type theory is quite a niche field, there are not many
resources available to learn it. However, the resources that
existed[2][5][4] were sufficient.

5.2 Formalisations
Formalising proofs in Coq was a challenge. I had to learn
how to use both Coq and the UniMath library. This was quite

7This paragraph contains suggestions from Copilot.

a difficult task, as formalising proofs is something that re-
quires practice and time. I did not have much time during this
project to practice, so it was quite a struggle. However, with
help from my supervisor, responsible professor, and the Uni-
Math community on Zulip8 (in particular the user Niels van
der Weide), I learned as I went.

6 Responsible Research
During this project, we take a responsible approach to re-
search. The following section describes the issues and non-
issues relating to responsible research in this project.

As data is not used in this project, we do not have to worry
about the source and use of data or any other issues related to
the use of data.

We do want to ensure that the research is reproducible. To
do this we describe all the tools used during the project, as
well as steps taken to achieve results.

Lastly, we want the results to be useful for future research.
In order to do this, we firstly publish all the source code of
this paper on GitHub. Secondly, we provide human-readable
explanations of the formalised proofs. This is to ensure any-
one can understand the proofs, even if they do not have a
background in Homotopy Type Theory or Coq. 9

7 Conclusions and Future Work
This paper aimed to formalise parts of chapter 3 of the Sym-
metry book. We formalised the definition of the circle and
four proofs about the circle, of which two theorems.

Although we were not able to formalise all proofs in chap-
ter 3 during time constraints, all the proofs that were at-
tempted to formalise were formalised in the end. We can thus
conclude that we have successfully answered the research
question: Can we formalise the proofs in chapter 3 of the
Symmetry book using the UniMath Coq library to verify their
correctness?. 10

In future research, more proofs from the Symmetry book
should be formalised. Furthermore, as the Symmetry book
is a work in progress, the collection of formalisations should
grow as it grows.

8https://unimath.zulipchat.com/
9This paragraph contains suggestions from Copilot.

10This paragraph contains suggestions from Copilot.

5

A Theorems, Lemmas, Constructions and
Corollaries used

This appendix contains all the lemmas and constructions used
with their source. When the source is UniMath, the word Uni-
Math contains a link to the specific line code on the UniMath
GitHub repository containing the proof.

Construction A.1. Let 𝑋,𝑌 be types. For each equivalence
𝑓 : 𝑋 → 𝑌, we have a function 𝑔 : 𝑌 → 𝑋 such that for
all 𝑥 : 𝑋 we have 𝑔(𝑓 (𝑥)) =−→ 𝑥 and for all 𝑦 : 𝑌 we have
𝑓 (𝑔(𝑦)) =−→ 𝑦. Conversely, if we have such a function 𝑔, then
𝑓 is an equivalence.

Construction A.1 is taken from the Symmetry book.[3,
Construction 2.9.9]

Construction A.2. Let 𝑋,𝑌 be types, 𝑓 , 𝑔 : 𝑋 → 𝑌 func-
tions, and let 𝑍(𝑥) B (𝑓 (𝑥) =−→ 𝑔(𝑥)) for every 𝑥. Then for
all 𝑥, 𝑥′ in 𝑋, 𝑒 : 𝑥

=−→ 𝑥, and 𝑖 : 𝑓 (𝑥) =−→ 𝑔(𝑥) we have:

tr𝑍(𝑒 , 𝑖)
=−→ ap𝑔(𝑒) · 𝑖 · ap 𝑓 (𝑒)−1

Construction A.2 is taken from the Symmetry book. [3,
Construction 2.14.3]

Lemma A.3. Let 𝑋,𝑌 be types and 𝑓 : 𝑋
≃−→ 𝑌 an equiva-

lence. It holds that if 𝑋 is a set, then 𝑌 is also a set.

Lemma A.3 is a special case of isofhlevelweqf in Uni-
Math[1, isofhlevelweqf].

Lemma A.4. Let 𝐴 be a type, 𝐵 : 𝐴 → 𝒰 be a dependent
type and 𝑠, 𝑠′ :

∑
𝑥:𝐴 𝐵(𝑥). Given 𝑝 : pr1(𝑠)

=−→ pr1(𝑠′) and
𝑞 : tr𝐵(𝑝, pr2(𝑠))

=−→ pr2(𝑠′), it holds that 𝑠
=−→ 𝑠′.

Lemma A.4 is taken from UniMath[1, total2_pathsf].

Lemma A.5. Let 𝐴, 𝐵 be types and 𝑓 : 𝐴 → 𝐵 a function. It

holds that
∑

𝑏:𝐵 𝑓 −1(𝑏) ≃−→ 𝐴.

Lemma A.5 is taken from UniMath[1, sum_of_fibers].

Lemma A.6. Let 𝐴 be a type, 𝐵 : 𝐴 → 𝒰 a dependent
type and 𝑠, 𝑠′ :

∑
𝑥:𝐴 𝐵(𝑥). Given that B is a predicate and

pr1(𝑠)
=−→ pr1(𝑠′), it holds that 𝑠

=−→ 𝑠′.

Lemma A.6 is taken from UniMath[1, subtypePath].

References
[1] UniMath, Unimath coq library, Accessed: 2023-05-10.

[Online]. Available: https : / / github . com / UniMath /
UniMath.

[2] S. Awodey, T. Coquand, and V. Voevodsky, Homo-
topy type theory: Univalent foundations of mathemat-
ics. Univalent Foundations Program, Institute for Ad-
vanced Study, 2013. [Online]. Available: https : / /
homotopytypetheory.org/book/.

[3] M. Bezem, U. Buchholtz, P. Cagne, B. I. Dundas, and
D. R. Grayson, Symmetry, https://github.com/UniMath/
SymmetryBook, Commit: cd4f14a, May 10, 2023.

[4] E. Rijke, Introduction to Homotopy Type Theory. 2022.
arXiv: 2212 . 11082 [math.LO]. [Online]. Available:
https://arxiv.org/pdf/2212.11082.pdf.

[5] M. H. Escardó et al., Hottest summer school, https : / /
github.com/martinescardo/HoTTEST-Summer-School,
2022.

[6] UniMath, Unimath school, https://github.com/UniMath/
Schools, 2022.

[7] HoTT, Coq hott, https://github.com/HoTT/Coq-HoTT,
2023.

[8] Github, Copilot x, https://github.com/features/preview/
copilot-x, 2023.

[9] OpenAI, Chatgpt, https://chat.openai.com, version May
24, 2023.

6

https://github.com/UniMath/UniMath/blob/master/UniMath/Foundations/PartB.v#L67
https://github.com/UniMath/UniMath/blob/master/UniMath/Foundations/PartB.v#L67
https://github.com/UniMath/UniMath/blob/master/UniMath/Foundations/PartA.v#L797
https://github.com/UniMath/UniMath/blob/master/UniMath/MoreFoundations/PartD.v#L14
https://github.com/UniMath/UniMath/blob/master/UniMath/Foundations/PartB.v#L814
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://github.com/UniMath/SymmetryBook
https://github.com/UniMath/SymmetryBook
https://arxiv.org/abs/2212.11082
https://arxiv.org/pdf/2212.11082.pdf
https://github.com/martinescardo/HoTTEST-Summer-School
https://github.com/martinescardo/HoTTEST-Summer-School
https://github.com/UniMath/Schools
https://github.com/UniMath/Schools
https://github.com/HoTT/Coq-HoTT
https://github.com/features/preview/copilot-x
https://github.com/features/preview/copilot-x
https://chat.openai.com

	Introduction
	A note on notation
	Homotopy Type Theory
	Propositional truncation[Section 3.7]HottBook
	Induction and Recursion Principles of the circle[Section 21.1]rijke2022introduction[Section 2.3, 6.4]HottBook

	Formalization of Proofs in Chapter 3: A Homotopy Type Theory Approach
	Problem Description
	Approach
	Preparatory Phase
	Research Phase

	Implementation
	Defining the Circle
	Proof formalisations
	The circle is connected
	The evaluation function is an equivalence
	Set families
	String of equivalences and a special case of the evaluation function is an equivalence

	Use of AI Tools
	GitHub Copilot X
	ChatGPT

	Challenges
	Learning Homotopy Type Theory
	Formalisations

	Responsible Research
	Conclusions and Future Work
	Theorems, Lemmas, Constructions and Corollaries used
	References

