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Summary 

The safety assessment of dike slope stability often involves dealing with large uncertainty 
in soil properties, caused by a lack of knowledge of the exact subsoil conditions. 
Uncertainty has influence on the reliability estimate of slope stability. Large uncertainty 
may therefore lead to an overestimation of the failure probability. A way of improving 
the reliability assessment is by incorporating additional information such as the survival 
of loading conditions from the past. An example of such an observation is the survival 
of an extreme water level, but the survival of other loading conditions may be useful as 
well. A dike heightening often causes a decrease in reliability during construction. 
Moreover, raising a dike may lead to excess pore water pressures in the subsoil, resulting 
in a temporal strength decrease, lowering the stability. Observations of critical loading 
conditions might provide information on the strength of a dike, which can be used to 
improve reliability assessments. This research investigates the effect of incorporating 
construction survival in estimating the slope reliability of dikes.  
 
Assessing slope reliability can be done by means of simulation. However, due to the high 
reliability of dikes, many realizations and thus model evaluations may be needed to 
achieve sufficient accuracy, leading to infeasible computation times. A possible way to 
reduce the calculation time is the use of an approximation model, called metamodelling. 
A metamodel is constructed with a concise set of model evaluations and is used for 
predicting the model outcome, forming a replacement of the actual model (e.g. slope 
stability software). In this research a method is developed for reliability updating using 
the metamodelling package ERRAGA (Van den Eijnden et al., 2021). The developed 
method involves training two metamodels, one for predicting the slope stability in the 
observed situation and one for the assessment situation. The reliability update is done 
with simulation using importance sampling. All samples are evaluated in both 
metamodels, after which the posterior reliability is calculated by only considering 
realizations that lead to survival of the observed situation. 
 
The effect of incorporating construction survival is explored by updating the inward 
slope reliability of a case study dike improvement with various observations. The chosen 
case is Kinderdijk-Schoonhovenseveer, a Dutch dike trajectory along the river Lek. From 
this trajectory a dike section is chosen in which the crest was raised, and a berm was 
constructed on the land side. The observations comprise the survival of the original dike 
improvement and the hypothetical survival of alternative construction sequences (first 
constructing the berm and then heightening the dike, and vice versa). It was found that 
the reversed construction phasing leads to more effect for reliability updating then the 
original situation: updating the reliability index from 6.0 to 8.5. The original construction 



phases were not severe enough for the construction survival to yield an effect for 
reliability updating. 
 
The effectiveness of a reliability update depends on the criticality of the observation and 
the similarity of loading conditions in the observed and assessment situation. It was 
found that the updating effect is optimal when the two governing limit state functions 
are parallel, and the reliability in the survived situation is smaller. Then the entire failure 
domain of the assessment situation falls within the failure domain of the observed 
situation, which is the implausible domain because survival was observed. For situations 
with the same set of stochastic parameters with only reducible uncertainty (all 
parameters have full auto-correlation in time), the failure probability reduces to zero. 
Cases with (near) parallel limit state functions are therefore effective for updating. 
Further insight is obtained by comparing the design points and the importance factors 
of the (strength) parameters in both situations, determined with FORM analyses. It was 
found that limit state functions are approximately parallel when the importance factors 
and slip planes are similar, thus when loading conditions are alike. Cases with these 
characteristics are therefore good candidates for reliability updating, although 
parallelism is not a strict requirement. Other situations can be effective as well, though 
cases with limit state functions that are less alike need a more severe survived loading 
condition to achieve the same effect. 
 
The case study shows that the current semi-probabilistic approach to assessing 
construction stability in practice leads to situations not effective for reliability updating. 
Though adjusting the construction phasing may lead to a significant update. The 
potential impact of including a reliability update in future dike improvement designs is 
examined by optimizing the remaining construction activities after observing the survival 
of a critical construction step. The design was altered such that the updated reliability 
is equal to the prior reliability of the original design. In the alternative construction 
phasing of the case study, the critical construction step used for updating took place just 
before construction of the berm. This allows for reduction of the berm dimensions after 
observing construction survival. It was found that the berm length could be shortened 
from 10 to 5 meter and the berm height from approximately 2 to 1 meter. A limiting 
factor for this approach is the flooding probability during construction, which should 
still comply with the statutory requirements. However, this limitation does not seem 
crucial, as a slope failure does not directly cause a flooding. So, besides improving the 
reliability, this method also has potential to reduce construction costs, limit additional 
space occupation and reduce other negative impacts of dike reinforcements. This makes 
designing the construction phasing with reliability updating in mind promising for future 
dike designs. 
 



The main finding of this research is that incorporating construction survival in the 
reliability assessment can be very effective in terms of reliability, and in making dike 
improvements more efficient and less space consuming. A simplified approach is proposed 
for investigating the potential of optimizing a dike improvement with reliability updating, 
before going into the endeavor of Bayesian analysis. The developed method using 
metamodelling decreases the computational time from at least days to several hours 
compared to advanced sampling methods while not losing accuracy, which makes the 
practical application of Bayesian updating within reach.



 

Contents 
List of symbols .............................................................................................................. 11 

1 Introduction ........................................................................................................... 13 

1.1 Background and motivation ............................................................................ 13 

1.2 Problem definition ........................................................................................... 14 

1.3 Research objective and questions .................................................................... 15 

1.4 Thesis overview ............................................................................................... 16 

2 Background ............................................................................................................ 17 

2.1 Flood safety ..................................................................................................... 17 

2.1.1 Safety assessment ...................................................................................... 17 

2.2 Slope stability .................................................................................................. 17 

2.2.1 Shear strength ........................................................................................... 18 

2.3 Reliability analysis ........................................................................................... 19 

2.3.1 Monte Carlo Simulation ............................................................................ 20 

2.3.2 Importance sampling ................................................................................. 20 

2.4 Reliability updating ......................................................................................... 21 

2.4.1 Bayes’ Theorem ........................................................................................ 21 

2.4.2 Type of information .................................................................................. 21 

2.4.3 Type of uncertainty .................................................................................. 22 

2.4.4 Implementation ......................................................................................... 23 

2.4.5 Past applications ....................................................................................... 23 

2.5 Metamodelling ................................................................................................. 24 

2.5.1 Kriging ...................................................................................................... 25 

2.5.2 Active learning Kriging based Monte Carlo simulation ............................ 27 

2.6 ERRAGA ......................................................................................................... 27 

2.6.1 Learning procedure regression model ........................................................ 27 

2.6.2 Adaptive importance sampling ................................................................. 28 

3 Methodology .......................................................................................................... 30 

3.1 Model setup ..................................................................................................... 30 

3.2 Model assumptions .......................................................................................... 31 



3.2.1 Slip plane consistency ............................................................................... 31 

3.2.2 Reducible uncertainty ............................................................................... 33 

3.3 Model training ................................................................................................. 34 

3.4 Reliability analysis ........................................................................................... 36 

3.4.1 Reliability update ..................................................................................... 36 

3.4.2 Combined importance sampling................................................................ 38 

4 Case study: Kinderdijk – Schoonhovenseveer ........................................................ 39 

4.1 Case introduction ............................................................................................ 39 

4.2 Construction data ............................................................................................ 40 

4.3 Boundary conditions ........................................................................................ 42 

4.3.1 Hydraulic boundary conditions ................................................................. 42 

4.3.2 Geometry .................................................................................................. 44 

4.3.3 Soil parameters ......................................................................................... 45 

4.3.4 Soil stratification ....................................................................................... 47 

4.4 Prior reliability ................................................................................................ 48 

4.4.1 Stochastic parameters ............................................................................... 48 

4.4.2 Parameter dependency .............................................................................. 48 

4.4.3 Phasing ..................................................................................................... 49 

4.4.4 ERRAGA parameter settings ................................................................... 49 

4.4.5 Results ...................................................................................................... 50 

4.4.6 Discussion ................................................................................................. 53 

5 Case study: Posterior Analysis .............................................................................. 54 

5.1 Observations .................................................................................................... 54 

5.1.1 Construction sequences ............................................................................. 54 

5.1.2 Water level ................................................................................................ 55 

5.2 Reliability update original case ....................................................................... 56 

5.3 Reliability update alternative A ...................................................................... 58 

5.4 Reliability update alternative B ...................................................................... 60 

5.5 Reliability update observed water level ........................................................... 64 

5.6 Overview updating results ............................................................................... 65 

5.7 Optimized dike design ..................................................................................... 66 

5.8 Discussion ........................................................................................................ 67 



6 Conclusion .............................................................................................................. 73 

6.1 Findings ........................................................................................................... 73 

6.2 Discussion ........................................................................................................ 77 

6.3 Recommendations ............................................................................................ 78 

References ...................................................................................................................... 81 

Appendices .................................................................................................................... 84 

 ERRAGA user experience...................................................................................... 85 

 ERRAGA’s learning algorithm .............................................................................. 90 

 Compression tests Salmsteke – Schoonhoven ........................................................ 91 

 Limit state plot ...................................................................................................... 93 

 Prior and posterior domain of failure .................................................................... 94 

 



  11 

 

List of symbols 
Latin symbols 

CoV coefficient of variation (�/� ), possibly with subscript indicating the 
random variable  ��(�)  probability density function of X 
(⋅)  limit state function ℎ(⋅)  observation function 

h  water level 
[⋅]  indicator function, returns 1 if argument is true, 0 otherwise �(x, x�) covariance (kernel) function, gives covariance between random variables 
at x and x’ �(�)  covariance matrix of x 

L(⋅)  learning function �(�)  mean vector of x ��  slip plane model factor 
m  strength increase exponent  
M  metamodel 
n  sample size (⋅)           normal distribution 
p  pore pressure �(⋅)  occurrence probability of argument ��  estimate of probability 
Pf  probability of failure ��(�)  importance sampling distribution for random variable X 
S  shear strength ratio 
Su  undrained shear strength 
uIS  group of importance samples in the standard normal space �(�)  importance sampling weight of realizations x 
X  vector of random variables 
x  realization of X �(�) metamodel, approximates model response as a function of model 

parameter x ��  �(��) data set for training the metamodel ��  � ��! predicted model response 

 
Greek symbols "  reliability index #  evidence or observed event 



1.1 Background and motivation  12 

��  standard deviation of X �  total stress �′  effective stress �%�  vertical effective stress �%&�   yield stress Φ()(⋅)  inverse cumulative density function of standard normal distribution *  contribution factor of a failure mechanism to the total failure probability 
 
Abbreviations 

AK-MCS Active learning Kriging based Monte Carlo Simulation 
DoE  Design of Experiment 
FORM First Order Reliability Method 
GEV  Generalized Extreme Value distribution 
GMM  Gaussian Mixture Model 
HL  Head Line 
IS  Importance Sampling 
KIS  Kinderdijk-Schoonhovenseveer 
LEM  Limit Equilibrium Method 
MCS  Monte Carlo Simulation 
NAP  Normaal Amsterdams Peil, the Dutch national reference height 
OCR  Over-consolidation Ratio 
PDF  Probability Density Function 
PL  Phreatic Line 
POP  Pre-overburden Pressure 
SAS  Salmsteke-Schoonhoven 
SF  Safety Factor 
SHANSEP Stress History and Normalized Soil Engineering Properties 
SHM  Structural Health Monitoring 
WBI Wettelijk Beoordelingsinstrumentarium (Dutch statutory assessment 

manual)



  13 

1  

Introduction 

1.1 Background and motivation 
Flood defenses are an essential part of infrastructure for low-lying coastal areas such as 
The Netherlands. For societal and economic benefits, it is crucial to minimize the risk of 
failure to an acceptable level. Dutch waterboards are therefore obligated to assess the 
safety of their system of flood defenses every 12 years. This safety assessment is to make 
sure that the failure probability of flood defenses meets the statutory safety requirement. 
The probability of failure is determined by assessing all possible failure mechanisms, of 
which slope stability is an important one for earthen dikes. Large uncertainty in soil 
properties is a typical issue encountered in the assessment of such geotechnical structures 
(e.g. Han et al, 2011). This uncertainty can be reduced by site investigation and lab 
tests, but spatial and temporal variability and the availability of resources put restraints 
to the reduction extent. The lack of knowledge on the exact subsoil conditions and thus 
soil strength affects the reliability assessment of slope stability. Large uncertainty may 
lead to an overestimation of the failure probability. This provokes an ongoing search for 
sophisticated probabilistic methods to improve the reliability estimate. A way of 
improving the reliability assessment is by incorporating additional information such as 
the survival of loading conditions from the past.  
 
The concept of updating with past performance is meant to improve the beliefs about 
uncertain parameters with additional information. For instance, by improving settlement 
predictions (Kelly & Huang, 2015; Van der Meijs, 2015) or sheet pile deformation 
predictions (Papaioannou & Straub, 2012) with deformation measurements. Another 
example is the incorporation of a survived loading condition to improve the reliability 
estimate. An intuitive example for flood defenses is the survival of an observed water 
level, as used by Schweckendiek (2014) for updating the reliability regarding the failure 
mechanism piping. A less intuitive example is updating with survival of the construction 
of a dike, as investigated by van der Krogt et al. (2021). However, construction or 
improvement of a dike can cause severe loading conditions, as becomes apparent from 
cases in which slope instability occurred after improvement, like in the Dutch town of 
Streefkerk in 1984 (TAW, 1985). Such cases give reason to believe that observing dike 
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improvement survival could be useful for reliability updating, perhaps improving the 
safety assessment of dikes. 
 

1.2 Problem definition 
A way of incorporating additional information in a reliability analysis is by using Bayes 
theorem for conditional probabilities, known as Bayesian reliability updating (e.g. 
Schweckendiek, 2014; Straub & Papaioannou, 2014). Bayesian updating results in a 
probability conditionalized on the information. In case of slope reliability updating with 
past performance this would be the probability of failure given the survival of a loading 
condition. Determining this conditional probability can be done by means of integration 
over the joint probability density function. This may be feasible for simple reliability 
problems involving few parameters but gets difficult or impossible for more complex 
problems. Therefore, preceding studies have proposed alternative methods for Bayesian 
reliability updating. Examples are the use of fragility curves with the First Order 
Reliability Method (FORM) (Schweckendiek & Kanning, 2016) and approaches using 
the Equivalent Planes Method (Laghmouchi, 2021; Roscoe et al., 2015; van der Krogt et 
al., 2021). These approaches are computationally inexpensive but involve 
approximations, which may pose limitations for complex reliability problems with 
strongly nonlinear limit state functions.  
 
A class of approaches that doesn’t involve simplification of the reliability problem is 
simulation, like Monte Carlo Simulation (MCS). MCS involves drawing parameter 
realizations from the joint probability density function and evaluating the model 
performance (e.g. slope stability calculation). The updated reliability is obtained by only 
considering realizations that are consistent with the observation. However, for problems 
with a high reliability, many realizations may be needed to achieve sufficient accuracy 
of the outcome. There are methods available for enhancing the simulation efficiency, like 
subset simulation (Au & Beck, 2001; Straub & Papaioannou, 2014) and importance 
sampling (Melchers, 1989). But when failure probabilities are small and the model 
evaluation is computationally expensive, these methods may lead to infeasible 
computation times, as is the case for slope stability. Therefore, the urge arises to reduce 
the amount of model evaluation to a minimum.  A possible way to reduce the simulation 
time is by the use of an approximation model, called metamodelling. 
 
A metamodel is constructed with a concise set of model evaluations and is used for 
predicting the model outcome (e.g. slope stability). It can be used for replacing actual 
model evaluations in a simulation, thus reducing the computational time. This is 
beneficial in the above described case, where (repetitive) evaluation of the model is 
computationally expensive. Metamodelling has had various applications in slope stability 
analysis (Li et al., 2016), and in structural engineering for updating the reliability of 
bridges (Sousa et al., 2019) and sheet pile walls (Chai, 2019). A metamodelling method 
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called Active learning Kriging based Monte Carlo Simulation (AK-MCS) has shown to 
be an efficient way of approximating failure probabilities (Echard et al., 2011). It 
contains an iterative process in which the training set of the metamodel is expanded 
with extra model evaluations until a certain convergence criterion of the outcome is met. 
An advantage of Kriging is that besides estimating the model response, also the 
uncertainty of the estimate is given. This allows for assessing the accuracy of the analysis 
outcome. Recently, Van den Eijnden et al., (2021) took the concept further and 
developed a two stage AK-MCS metamodel meant for modelling noisy and incomplete 
models (see section 2.6). The two-stage approach allows the model to be used in the 
reliability updating context, in which one of the stages predicts consistency with the 
observation. This way the failure probability conditional on the observation can be 
determined. The metamodel developed by Van den Eijnden et al., (2021) may thus be 
applicable to reliability updating of slope stability, which is the topic of this research. 
 

1.3 Research objective and questions 
Reliability updating with dike improvement construction survival seems promising. 
However, a limitation for problems with a highly reliability and expensive computational 
models turns out to be long computation times. Therefore, the objective of this research 
is to update dike reliability with construction survival using a metamodel, making 
computation times feasible for appliance in practice, while not losing accuracy. 
Considering this objective, the main research question is formulated along with three 
sub-questions: 
 
What is the effect of reliability updating with construction survival of a dike 

improvement? 

 
• What are the characteristics of a dike improvement leading to a significant 

reliability update with survival of the construction? 
 

• What is the effect of reliability updating with construction survival compared to 
reliability updating with an observed water level?  

 
• How can metamodelling be used for reliability updating with past performance 

regarding slope stability of dikes?   
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1.4 Thesis overview 
This thesis is structured as follows. First, in chapter 2, some essential theory regarding 
reliability analysis and slope stability is discussed. Furthermore, it discusses reliability 
updating, metamodelling and introduces the metamodel by Van den Eijnden et al., 
(2021). Chapter 3 proposes a method for reliability updating using metamodelling and 
discusses the design choices of this method. Next, the case study dike improvement 
Kinderdijk-Schoonhovenseveer is introduced in chapter 4, along with the prior reliability 
analysis of slope stability. Then, in chapter 5, the effect of reliability updating with 
construction survival is investigated. This effect is compared to updates with survival of 
the daily conditions and survival of an extreme water level. Also, the effect of 
incorporating a reliability update into a dike design is explored. Chapter 5 is finalized 
with a discussion of all the results. In chapter 6 conclusions are drawn from the case 
study results. It presents why certain observations are effective for reliability updating 
and how this can be recognized. These findings are used for answering the research 
questions. Hereafter, the most important points of discussion of the developed 
methodology are presented. Finally, several recommendations are done regarding the 
improvement of the methodology and for further research. Also, a simplified approach 
is proposed for investigating the potential of optimizing a dike improvement with 
reliability updating
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2  

Background 

2.1 Flood safety 
The Dutch safety requirements for flood defenses are based on optimization of economic, 
societal and individual risks. These risks were determined in a nationwide flood risk 
analysis, in which for each dike trajectory the consequences of several flood scenarios 
were considered (VNK2, 2014). The statutory upper limits of the flooding probabilities 
were derived using predetermined acceptable levels per risk category, resulting in a risk 
bases trajectory specific target probability. 
 
2.1.1 Safety assessment 

The failure probability of a dike trajectory consists of contributions of various failure 
mechanisms. A combination of these probabilities results in the failure probability of the 
dike trajectory. The assessment of a single mechanism is usually done by dividing the 
dike trajectory in sections based on similarity in properties. In each section a 
representative two-dimensional cross-section is chosen and used for assessment of the 
failure mechanism. The resulting probability on cross-sectional level then needs to be 
scaled to sectional level, which is be done by incorporating the length-effect (WBI, 2017). 
Assembly of the failure probability of all sections results in the failure probability of a 
single mechanism on trajectory level. Combining the failure probability of all 
mechanisms results in the final failure probability of the dike trajectory. This method is 
described in the Dutch statutory assessment manual (WBI, 2017).  
 

2.2 Slope stability 
Slope stability is an important failure mechanism for dikes. A slope instability can be 
described as the loss of equilibrium of (a part of) the dike slope. Its occurrence can lead 
to the loss of the water retaining function of a dike, therefore the probability of 
occurrence is assessed periodically. The stability of a slope is often expressed with the 
safety factor (SF), which is the resisting force (strength) divided by the driving force 
(load) of a slip surface. A safety factor smaller than one therefore indicates failure of the 
slope. Slope stability is usually assessed by considering a two-dimensional cross-section 
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of a dike. Software can be used to compute the safety factor.  The occurrence of a slope 
instability is schematized in figure 2-1.  
 

 
Figure 2-1: Illustration of slope instability, adapted from Deltares (2018) 

2.2.1 Shear strength 

The shear strength of soil is an important parameter in the slope stability assessment of 
dikes. The strength of soil in a slope stability calculation is determined using shear 
strength models. Soil types are usually divided in two categories for which different shear 
strength models are used, soils with drained or undrained behavior. Applying a load to 
a normally consolidated soil causes deformation by a decrease of pore volume. If the 
pores are saturated, then water needs to dissipate for the soil to deform. A soil is 
considered to behave drained if the dissipation process is quick relative to the load 
increase. This is the case for sands. The shear strength of drained soils is often modelled 
with the Mohr-Coulomb strength model, as is the case for the safety assessment in the 
Netherlands (WBI, 2019). Further details on the Mohr-Coulomb model are found in 
chapter 20 of (Verruijt, 2001).  
 
Soils are considered to behave undrained if the water dissipation process is slow 
compared to the load increase. Applying a load can cause excess pore water pressure. 
For soils with such behavior, the SHANSEP (Stress History and Normalized Soil 
Engineering Properties) model is used. The shear strength using SHANSEP is presented 
in equation (1), in which Su is the undrained shear strength, �%� is the in-situ vertical 
effective stress, S is the shear strength ratio, OCR is the overconsolidation ratio and m 
is the strength increase exponent. S and m are immutable soil properties, the OCR 
however, describes the state of a soil and depends on the stress history. The OCR is 
related to the pre-overburden pressure (POP) as in equation (2), with �%&�  the maximum 

experienced effective vertical stress. 
 
 +, = �%� ⋅ + ⋅ ./01 (1) 

 
 ./0 = �%&��%� = �%� + �.��%�  (2) 
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Important factors for slope stability are the hydraulic boundary conditions and the 
associated pore water pressures. An increase in pore water pressure causes a decrease in 
effective stress and thus also in shear strength. The vertical effective stress �%� is defined 
in equation (3), in which �% is the total vertical stress and p the pore water pressure.  
 
 �%� = �% − 4 (3) 

 
This explains a decrease in stability during a period of high water. A rise in water level 
may cause a rise in phreatic level and thus also in the weight of the soil body, which is 
the driving force of this mechanism. Simultaneously, the resisting force is decreased 
because of the decrease in effective stress. The occurrence of a high water level can 
therefore cause a critical loading condition in terms of inward slope stability. Another 
situation causing an increase in the pore water pressure is heightening a dike that is 
built on a soft soil foundation with undrained behavior. The load increase causes excess 
pore water pressures and thus a decrease in strength. The loading condition during 
improvement of a dike therefore has similarities with the condition during high water. 
The stability is often a limiting factor for the construction speed of a dike improvement. 
The construction phasing is determined such that between the construction steps the 
excess pore water pressure has time to dissipate (partially). 
 

2.3 Reliability analysis 
Failure is defined as the occurrence of an unwanted event, such as the loss of water 
retaining function of a dike. Whether failure occurs can be evaluated with a limit state 
function, here written as 
(�), with x the realization of X, which is the vector of all 
involved random variables. The limit state function is defined such that failure occurs 
when 
(�) < 0. When the limit state function and joint probability density function ��(�) are known, then the failure probability can be determined by evaluating the 
integral in equation (4). A common way to express the reliability is through the 
reliability index " as expressed in equation (5), in which Φ() is the inverse cumulative 
standard normal distribution function. 
 
  

( ) 0

( )
f

g

P f d
<

=  X

X

x x  
(4) 

 
 " = −Φ()(�5) (5) 

 
For a simple limit state function with few random variables, analytical or numerical 
evaluation of this integral might be possible but is difficult or impossible for a large set 
of dependent variables. Additionally, slope stability problems have no analytical 
expression for the limit state function (at least not without some effort). The use of other 
techniques is therefore better suited for this class of problems.  
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2.3.1 Monte Carlo Simulation 

Monte Carlo simulation (MCS) is a sampling technique in which the integral of equation 
(4) is approximated. Random samples are drawn from the join distribution function and 
are evaluated in the limit state function. The estimate of the probability of failure ��5 is 

presented in equation (6), in which the sample size is n and 
[⋅] is the indicator function, 
returning 1 if the argument is true and 0 otherwise. 
 
 ��5 = 17 8 
[
(�9) < 0]<

=>)  (6) 

 
The uncertainty of the estimate is expressed through the coefficient of variation. It can 
be determined when realizing that the number of failures in an MCS is binomial 
distributed and that its variance is 7 ⋅ �5(1 − �5). After some math the coefficient of 

variation can be written as in equation (7) (Jonkman et al., 2017): 
 
 /?@AB = C1 − �57 ⋅ �5  (7) 

 
The probability of failure of a flood defense is typically very low. For a probability of 
failure �5 = 10(D  and a required CoV of 0.05 already 4 ⋅ 10F  model evaluations are 

needed. This clearly demonstrates the limitation of applying MCS to low probability 
problems like flood defenses. Various methods are developed to enhance the efficiency of 
MCS, like Importance Sampling (Melchers, 1989) and Subset Simulation (Au & Beck, 
2001).  
 
2.3.2 Importance sampling 

Importance sampling is a technique of simulation in which samples are generated from 
a different distribution than the original one, called the importance distribution. This is 
a useful technique when the region of interest is far away from the mean, for instance 
the failure domain in a reliability analysis. The efficiency of the simulation can be 
enhanced by shifting some of the density towards this region such that failure is more 
frequently observed. Though, the importance distribution must be chosen carefully, as a 
poor choice may result in an erroneous result. The probability of failure using importance 
sampling is determined with equation (8) and its variance with equation (9). The 
symbols are defined as in the previous paragraph, with additionally the importance 
sampling weight �, defined in equation (10). It corrects the for the difference in density 
between the original distribution �� and the importance distribution ��. 
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 ��5 = 17 8 
[
(�=) < 0]<

=>) ⋅ � (�=) (8) 

 
 �A�BH = 17 I17 8 � (�=)H <

=>) 
[
(�=) < 0] − ��5HK (9) 

 
 �(�) = ��(�)��(�) (10) 

 

2.4 Reliability updating 
The reliability obtained from a reliability assessment is an estimate. Its quality depends 
on the assessment method and the knowledge about the problem under consideration. A 
typical issue for slope reliability analysis is the lack of knowledge on the exact subsoil 
conditions. The subsoil conditions are determined through site investigation and lab 
tests, but uncertainty always plays a role due to the spatial variability of soil and the 
availability of resources. The lack of knowledge on the subsoil conditions and thus soil 
strength affects the reliability assessment of slope stability. Large uncertainties herein 
may lead to an overestimation of the failure probability. Including additional information 
like the survival of a critical loading condition may improve the reliability estimate. This 
section goes into inclusion of additional information with Bayesian updating, based on 
the method used by Schweckendiek, (2014). 
 
2.4.1 Bayes’ Theorem 

Bayesian reliability updating is based on Bayes’ Theorem for calculating conditional 
probabilities, presented in equation (11). With this theorem the occurrence probability 
of some event E conditionalized on the occurrence of another event # can be calculated. 
In the case of reliability with past performance, the event E is the occurrence of failure 
and # is the observation of past performance, also called the evidence. Calculation of the 
conditional probability involves evaluation of two reliability problems, as is seen from 
the right part of equation (11). The joint probability of seeing event E together with the 
evidence #, and the occurrence probability # itself. 
 
 �(L|#) = �(#|L)�(L)�(#) = �(L ∩ #)�(#)  (11) 

 
2.4.2 Type of information 

The implementation of equation (11) in the reliability analysis depends on what 
information is contained by the evidence #. Generally, the information in the evidence 
can be of two types, equality or inequality information. A measurement of a system 
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characteristic or performance is of the equality type. For example, measured settlements 
in a settlement prediction analysis. So, the performance of the model (e.g. settlement), 
which is a function of the involved set of random variables x, should be equal to the 
measured value (or close, when including measurement uncertainty). This is expressed 
in equation (12) using the observation function h(x). The evidence is defined as the 
observation function being zero. 
 
 # = {ℎ(�) = 0} (12) 

 
For inequality information no exact model quantity is known. It is only known that some 
model quantity is larger or smaller to a certain value. This is the case for a dike that 
survived a loading condition. This observation does not provide a safety factor, survival 
only shows that the limit state function was not exceeded under the observed conditions. 
Hence the stability factor must have been equal to or larger than one. The evidence with 
inequality information is expressed in equation (13). The observation function is defined 
such that it results in zero or positive values for parameter combinations leading to the 
observation being true. This definition deviates from the one defined by Schweckendiek 
(2014) (which is # = ℎ(�) < 0), but is a more convenient definition for considering dike 
slope survival information. It leads to similar definitions of the observation function and 
limit state function, presented in equation (24) and (25). 
 
 # = {ℎ(�) ≥ 0} (13) 

 
In this research only inequality observation is considered. Substitution of equation (13) 
in equation (11) and taking slope failure as the event under consideration results in the 
failure probability conditional on the evidence with inequality information: 
 
 �(R|#) = �({
(�) < 0} ∩ {ℎ(�) ≥ 0})�(ℎ(�) ≥ 0)  (14) 

 
Equation (14) can be interpreted as only taking failure into account over the domain in 
the parameter space which results in consistency with the observation, so ℎ(�) ≥ 0 must 
be true.  
 
2.4.3 Type of uncertainty 

The purpose of reliability updating by including additional information is reducing 
uncertainty, but not all uncertainty can be reduced. Generally, there are two types of 
uncertainty: reducible (epistemic) uncertainty and unreducible (aleatory) uncertainty. 
When a random variable has only epistemic uncertainty, then a true value exists for this 
variable, only it is unknow. Adding information can theoretically reduce all uncertainty. 
Another way to see this is that the random variable is fully autocorrelated in time, 
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learning the value in the past results in knowing the value in the future. An example is 
the shear strength ratio of soil. For variables with only aleatory uncertainty, a random 
process over time is involved. Information on this variable from the past does not say 
anything about the variable in the future, there is no (or limited) correlation in time. 
An example is the water level in a river. Though its distribution can be inferred from 
data, the uncertainty cannot be reduced by knowing the water level at a point in time. 
A random variable can also have a mix of aleatory and epistemic uncertainty. Then the 
variable has some autocorrelation in time, due to the epistemic uncertainty. Accounting 
for these different types of uncertainty in the reliability analysis is done by modelling 
two correlated sets of random variables, one for the observation and one for the 
assessment. A method for computing the autocorrelation is given by Roscoe et al. (2015). 
The type of uncertainty must be carefully considered when updating the reliability or 
parameter distributions. Reducing aleatory uncertainty could lead to an overestimation 
of the updated reliability. 
 
2.4.4 Implementation 

The updated probability presented in equation (14) consists of two reliability problems. 
Both can be determined using any reliability method, but an approach using importance 
sampling is chosen here as discussed in 2.3. Applying equation (8) for calculating both 
probabilities in equation (14) results in the following equation, in which the sample size 
n drops out.  
 
 ��(R|#) = S 
[
(�9) < 0  ∩  ℎ(�9) ≥ 0] ⋅ �(�9)<=>) S 
[ℎ(�=) ≥ 0] ⋅ �(�9)<=>)  (15) 

 
Note that equation (15) uses the same set of random variables in both limit state 
functions. This assumes that there is only reducible uncertainty present. For problems 
with also unreducible uncertainty, two correlated sets of random variables should be 
used, as explained in the previous paragraph.  
 
2.4.5 Past applications 

A lot of research has been done in the field of reliability updating. Some focusing on the 
methodology and others on finding new useful applications. A selection of research is 
discussed here. 
 
Applications in flood defenses  

A useful application of reliability updating in the Dutch flood control context was found 
by Schweckendiek (2014). The failure mechanism piping is one of the main contributors 
to the failure probability of Dutch river dikes, mainly because of the uncertainty in 
subsoil conditions. It was found that reliability updating with field observations has a 
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significant effect, while also pointing out the most probable cause of the change by 
updating the parameter distributions. Another practical example is the appliance of 
Bayesian updating to settlement predictions by Van der Meijs (2015). During a dike 
improvement, settlements and pore water pressures are monitored to ensure stability, 
but also for predicting long term settlements. These measurements were used for 
updating the beliefs on long term settlement.  
 
Schweckendiek & Kanning (2016) developed a practical reliability updating framework 
for updating slope reliability with past performance. They used FORM to construct so 
called fragility curves. Fragility curves give the failure probability conditional on a 
dominant load variable and are constructed by performing reliability analyses (e.g. 
FORM) at discrete points of that load variable. A fragility curve can be seen as the 
cumulative density function of the overall strength, Schweckendiek & Kanning (2016) 
therefore used it to sample from in an MCS. The updated reliability is then obtained by 
filtering out the realizations that are inconsistent with the observation. The case study 
report accompanying the research (Schweckendiek et al., 2016) showed that in one of 
their two cases the failure probability decreased orders of magnitude due to updating, 
showing the potential in practice. 
 
Structural Health Monitoring 

Reliability updating is also applied in structural engineering, but mainly with 
measurements instead of survival information. A lot of infrastructure was built after the 
second world war and is now approaching the end of the design lifetime. Collective 
replacement is expensive so a good estimation of the state of infrastructural works could 
mean an extension of their lifetime. A management strategy called Structural Health 
Monitoring (SHM) uses deformation and settlement measurements to update the 
reliability of structures. Sousa et al., (2019) established a SHM approach for updating 
the parameter distribution with damage scenarios and demonstrated it in a case study. 
Updating the parameters was done by means of sampling and with a finite element 
method combined with a metamodel. Another SHM example is the work of Chai (2019), 
who used strain measurements to update the reliability of sheet pile walls. A finite 
element model was combined with a metamodel, as structural problems typically have 
a low failure probability and computations are expensive. 
 

2.5 Metamodelling 
A metamodel, or surrogate model, is a function �(�) that approximates an unknown 
function describing the response of a system. It is based on a set of points in the 
parameter space where the response is known. A regression method is used to 
approximate the system response at points where it is unknown. This comes in handy 
when the system response is obtained by an expensive computational model. Perhaps 
the simplest interpolation methods thinkable are linear interpolation and linear 
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regression for a one-parameter system, presented in figure 2-2 for illustrative purposes. 
The blue line is the metamodel and approximates the system response. Of course, more 
sophisticated methods are needed for multi-parameter systems with a non-linear model 
response like slope stability problems. A method capable of grasping the response of such 
systems is Kriging, explained in the following paragraph. 
 

 
Figure 2-2: Illustration of simple metamodels for a one-parameter system 

2.5.1 Kriging 

Kriging is an interpolation method in which the approximate system response function �(�) is modelled as a Gaussian process. This means that �(�) is normally distributed at 
a certain � and that any finite collection of model responses has a multivariate normal 
distribution. The big advantage of Kriging is that it estimates the model response but 
also shows the uncertainty. This is a convenient property because it allows for optimal 
expansion of the training set in an iterative learning process. This paragraph goes into 
the mathematics of simple Kriging. It assumes that the a-priori global mean is zero, 
which is different from ordinary Kriging where the global mean is determined. In all the 
presented equations a one-parameter model is considered with � the model parameter, �(�=)  or �=  the model response and �  a collection of model parameters with the 
corresponding model response vector � . A collection of model responses has a 
multivariate normal distribution as presented below: 
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In which �(�)  is the covariance matrix. The dependence structure of the joint 
probability density function enclosed in the covariance matrix is expressed by the 
covariance function, or kernel function �(�, ��). It gives the covariance of two random 
variables separated a distance � − �′. Various kernel functions are available in literature, 
a choice must be made on which fits best. The vector y can be partitioned in two parts, 
a known part yt (y(xt)) used for training the metamodel, and a part to be predicted yp. 
Following Murphy (2012), the partitioning is written as:  
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This partitioning allows solving for yp. The mean vector and covariance matrix of yp are 
given by equation (19) and (20), using the proof of Murphy (2012)1 for conditionalizing 
Gaussian distributions: 
 
 1

p t pt tt t( | )m
−=y y K K y  (19) 

 
 1 T

p t pp pt tt pt( | ) −= −K x x K K K K  (20) 

 
Taking the diagonal of the covariance matrix �(��|��) gives the variance for each point 

in yp (given yt). So, besides a prediction of the model response, also the uncertainty in 
the prediction is known. An example of Kriging is shown in figure 2-3, in which the solid 
line is the estimated model response, the red dots the known data, the gray area is the 
95% confidence interval and the dashed lines are some realizations. It shows that the 
uncertainty increases as the distance from the known points increases.  
 

 
Figure 2-3: Example of Kriging (Rasmussen & Williams, 2006)  

(solid line is the mean, gray area is the 95% certainty interval, dashed lines are realizations) 

                                      
1 Chapter 4.3 equation 4.69 of Murphy (2012) 
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2.5.2 Active learning Kriging based Monte Carlo simulation 

Kriging is a convenient regression method, as explained above. A metamodelling method 
that uses Kriging is Active learning Kriging based Monte Carlo Simulation (AK-MCS) 
and has shown to be an efficient way of approximating failure probabilities (Echard et 
al., 2011). Active learning means that an iterative process is used in which the training 
set is expanded based on the uncertainty of the model, especially in the region of interest 
(i.e. region near the limit state). The process is repeated until a chosen convergence 
criterion is met. The metamodel is used together with MCS for determining the system 
response of interest, as the method name indicates. Recently, Van den Eijnden et al., 
(2021) developed a two-stage AK-MCS metamodel for geotechnical reliability meant for 
modelling noisy and incomplete models. The model is explained in the next section. 
 

2.6 ERRAGA 
The AK-MCS based metamodel by Van den Eijnden et al., (2021) is named ERRAGA 
(Efficient and Robust Reliability Analysis for Geotechnical Applications) and is meant 
for modelling noisy and incomplete models. A model is incomplete if it is not able to 
return an answer for some combinations of input parameters. That could be the case if 
a part of the parameter space causes a physically impossible situation in the model, 
called the infeasible domain. One of the two stages in ERRAGA is a classification model. 
It is trained to predict feasibility of a parameter set. The other stage is a regression 
model for predicting the model outcome. Both models can be used during simulation to 
estimate the probability of failure given feasibility. In this work, ERRAGA is used for 
predicting the model response of slope stability in a reliability updating framework 
presented in the following chapter. Therefore, this section elaborates on some of the 
characteristics of ERRAGA and the training of the regression model, the classification 
model is not discussed. For further explanation the reader is referred to the work by Van 
den Eijnden et al., (2021). 
 
2.6.1 Learning procedure regression model 

The metamodel approximates the real model response, based on a concise set of model 
evaluation. This set of model evaluations is called the design of experiment (DoE). The 
prediction of the metamodel is most accurate around the model evaluations. The 
accuracy decreases with increasing distance from those points in the parameter space. 
For a reliability analysis, it is important that failure or survival of the system is predicted 
accurately. The metamodel should therefore be most accurate around the limit state 
function, at the edge of failure. This reduced the probability of misclassification of failure. 
However, the location of the limit state function is often not known a-priori. Therefore, 
an iterative procedure is implemented in ERRAGA to allow for optimal expansion of 
the DoE during training. 
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The training starts with an initial set of model evaluations with parameters randomly 
drawn for the joint parameter distribution. This initial DoE is used for fitting the first 
metamodel. Then the failure probability is determined by drawing a group of parameter 
sets uIS from the initial importance sampling distribution, elaborated further in the next 
paragraph. A sample is selected from this group based on a learning function, which is 
meant to choose the most optimal point for learning. The selected sample is used as 
input for a model evaluation. The result is added to the DoE, the metamodel is fitted 
and the reliability is determined with the same uIS. The process of selecting the optimal 
learning sample from the sample group is repeated until two convergence criteria are 
met, one for the certainty of the metamodel prediction, called the stopping criterion and 
one for the certainty of the calculated probability of failure. The latter is explained in 
the next paragraph. Multiple stopping criteria are available in ERRAGA. The stopping 
criterion used in this work is “BetaStop” and is discussed here. This criterion is based 
on the 1-T certainty bounds of the predicted limit state outcome for uIS. The reliability 
is determined for the predicted limit state outcome and the lower and upper bound, 
denoted by ", "( and "U. These reliabilities are used for the stopping criterion presented 
in equation (21), in which k is the amount of standard deviations from the mean to 
either one of the certainty bounds (so � = Φ()(T/2)) . 
 
 "U − "(" < 2 ⋅ � ⋅ T (21) 

 
For the learning functions multiple options are available as well. The used learning 
function in this work is the UNIS learning function. The function predicts the expected 
reduce in the probability of misclassification regarding failure for the sample under 
consideration. The function is applied to every sample in uIS, after which the sample 
with the highest reduction is selected for addition to the DoE. Details of this learning 
function are given by Van den Eijnden et al. (2021). 
 
2.6.2 Adaptive importance sampling 

The importance sampling methods implemented in ERRAGA make use of a Gaussian 
Mixture Model (GMM). This model is a combination of multiple Gaussian distributions 
with a certain mean and standard deviation. The failure probability using simulation in 
combination with an importance sampling distribution was presented in equation (8) 
and its variance in (9).  
 
The importance distribution at the start of training begins as a regular Gaussian 
distribution with a variance such that some cases of failure are probably observed in the 
initial sampling pool uIS. After initializing the importance distribution, the learning 
procedure as described in the previous paragraph commences. After each addition to the 
DoE, the stopping criterion and the criterion for the probability of failure are checked. 



2.6 ERRAGA  29 

The latter criterion is given in equation (22). If the stopping criterion is met, but the 
convergence of the failure probability is not, then the importance sampling distribution 
is adapted. All parameter sets used for expanding the DoE are added to the GMM, 
resulting in an importance distribution with extra weight around the limit state line. 
The importance distribution is also adapted if a user-specified maximum of model 
evaluations is reached. ERRAGA allows for three cycles of adapting the distribution. If 
both criteria are met, then the learning is finished. The total learning procedure of 
ERRAGA is presented in appendix B. 
 
 /?@AB = �AB��5 ≤ 0.05 (22) 
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3 Methodology  

This chapter provides a framework for updating the reliability of slope stability, using 

dike improvement as the survived loading condition. It discusses the combined use of 

ERRAGA and slope stability software to obtain a metamodel for slope stability, as well 

as how to deal with the observed loading condition. Finally, estimation of the updated 

probability of failure is discussed. The methodology established in this chapter is applied 

in a case study in chapter 4. 

 

3.1 Model setup 
In chapter 2 it was discussed that the failure probability of a dike due to slope instability 
is assessed periodically. In this assessment the actual dike situation is used, including 
any stochastic boundary conditions like the water level. This is referred to as the 
assessment situation. The situation used for reliability updating is referred to as the 
observed situation, which in this research is the survival of a dike improvement. The 
intention is to use the observation to reduce the uncertainty in the assessment situation, 
hereby improving the reliability estimate. Incorporating the observation in the reliability 
analysis is done with equation (23), as presented in section 2.4.  
 
 �(R|#) = �({
(�) < 0} ∩ {ℎ(�) ≥ 0})�(ℎ(�) ≥ 0)  (23) 

 
The probability of failure F given the observation # is the updated probability, it only 
accounts for failure in the part of the possibility space were the observation is also true. 
In a probabilistic method using sampling, this is equivalent to only accepting samples 
that are consistent with the observation. Thus, for the case of updating with construction 
survival, if a realization survives the observed conditions. Only those realizations are 
used for computing the updated reliability, details are given in paragraph 3.4.1. So, in 
order to assess construction survival, also the stability in the observed situation must be 
evaluated. Hence, two slope stability problems need to be evaluated, for both the 
observed and the assessment situation. This method uses the metamodelling package 
ERRAGA to create metamodels for predicting slope stability (Van den Eijnden et al., 
2021). The limit equilibrium software D-Stability 20.2.1 by Deltares is used for training 
the metamodels (Van der Meij, 2019). 
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ERRAGA is suited to only accept realizations that are consistent with the observation. 
The default implementation is using a binary classification model, as was done by Van 
den Eijnden et al. (2021). This binary feature is especially useful when the computational 
model does not provide a model response for certain parameter sets. That could be the 
case if those sets cause a physically impossible situation in the model. The parameter 
combinations without a model response are then used to train the classification model. 
However, this research uses a limit equilibrium method (LEM) to compute the safety 
factor, which nearly always returns a model response. Training the classification model 
with factors of safety means only utilizing the binary component (failure/survival), and 
not the information on how far the realization is from the point of failure.  
 
Therefore, it is proposed to use a second regression model instead of the classification 
model. It uses all information and is therefore expected to be more efficient during 
training of the metamodel. It also provides more insight into the stability behavior in 
the observed situation, as it returns the limit state response instead of just a classification. 
 

3.2 Model assumptions 
This section explains two assumptions regarding this method for reliability updating. 
Both assumptions are substantiated in the following two paragraphs. 
 
3.2.1 Slip plane consistency 

The common way to schematize the subsoil in a slope stability analysis is by subdividing 
it in layers with homogeneous properties. Geotechnical site investigation such as CPT’s 
and borehole data is used for subdividing the subsoil in layers based on the soil type. 
Each layer is assigned a set of soil parameters which represent the spatial averaged 
properties. The result is a subsoil schematization with deterministic layer boundaries, 
with one set of soil parameters per layer. This approach is used for the evaluation of 
slope stability in this research. This is however a simplification of reality, as soils are 
spatially variable. Soil properties can vary from place to place within a soil layer. 
Therefore, two slip planes passing through a soil layer at different locations may 
experience different soil properties. One could pass a weaker spot, while the other could 
go through a stronger area. This phenomenon, which is not represented in the 
schematization, should be considered when updating the reliability. Updating the 
reliability is done by only considering parameter value combinations which lead to 
survival in the observed situation. But for a schematization without spatial variability, 
gaining knowledge on the strength of one sliding plane may not be enough to update the 
beliefs of the strength along other slip planes. 
 
This is clarified by means of the example situation in figure 3-1. In the example the 
spatial variability of a strength parameter of the actual situated is represented by weaker 
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and stronger areas. This spatial variability is not modelled in the slope stability analysis, 
as a strength parameter has a single value per soil type. For this realization, a smaller 
slip plane is critical in the observed situation, while a deeper one is critical in the 
assessment situation. Both critical slip planes result in failure. In reality, the small slip 
plane crosses a stronger area, while more averaging takes place along the larger plane. 
The slip plane averaged strength along the two slip planes is thus not equal. The strength 
found by observing survival of the smaller plane is therefore not representative for the 
strength along the deeper plane. In this example, this could lead to overestimation of 
the strength of the deeper layer. Reliability updating considering different slip planes 
could therefore lead to an overestimation of the updated reliability. 
 
Therefore, it is assumed that the reliability can only be updated if the two considered 
slip planes are equal. The chosen strategy in this methodology is to first calculate the 
slope stability in the assessment situation freely with an algorithm that finds the critical 
slip plane. Then the same slip plane is used in the stability analysis of the observed 
situation. Considering equal slip planes prevents overestimation of the updated reliability. 
This is however a conservative assumption because the observation may also carry 
information when the slip planes are not exactly equal. 
 

 
Figure 3-1: Example situation leading to over estimation of the reliability 
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3.2.2 Reducible uncertainty 

There are two types of uncertainty, reducible and non-reducible uncertainty, explained 
in paragraph 2.4.3. In this method the shear strength ratio and strength increase 
exponent are assumed to be time invariant, and hence, they are modelled as fully 
correlated between the observation and assessment situation. The values do not change; 
the uncertainty is reducible. Also, the POP is assumed to be time invariant, although 
the analysis accounts for development of stress history due to construction activities and 
change of hydraulic conditions.  The uncertainty of the water level is modelled as non-
reducible. The observation of a water level does not provide information for future water 
levels. For the model factor, the classification of reducibility is less straightforward. The 
model factor takes account for the possible error between the slip plane model and the 
slope stability situation in reality. The uncertainty of a model factor in general typically 
consists of reducible and non-reducible uncertainty (Schweckendiek, 2014). In some 
situations, the model will perform better than in others, resulting in different model 
factors from case to case. If the model factor does not change in time, then in theory all 
its uncertainty can be reduced by considering some observation in the past. However, if 
there are factors changing the model performance over time, then perhaps the 
uncertainty can only be reduced partially. For the problems considered by this method 
it holds that the subsoil stratification is the same for both situations. Also, the considered 
slip planes are equal. The factors that do change are the pore water pressure and a part 
of the geometry, due to the improvement. Due to the similarity of the situations it is 
assumed that the non-reducible part of the model factor is small. The uncertainty of the 
model factor is assumed to be fully reducible.   
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3.3 Model training 
Section 2.6 explains the training procedure of a single metamodel. In an iterative loop 
the training set is expanded with extra realizations until the convergence criteria are 
met. This is true for the approach with two metamodels as well, but the models are not 
trained separately due to the requirement of equal slip planes explained in the previous 
section. The learning algorithm implemented for training the model for reliability 
updating is presented in figure 3-2. 
 
In the learning algorithm, the subscripts A and O denote the assessment situation and 
observed situation respectively. The design of experiment (DoE) is the set of model 
evaluations on which the metamodel is trained. M denotes the metamodel and g is the 
vector of the predicted limit state outcome for the sample group uIS, drawn for the 
importance sampling distribution. The first step is creating the initial DoE. The stability 
in both situations is evaluated for a group of samples randomly drawn from the 
probability distribution. Then the metamodel of the assessment situation is trained. The 
additional model evaluations of slope stability are based on optimal learning of this 
situation. In a model evaluation, both stability situations are evaluated with the same 
slip planes. So, during training of the metamodel in the assessment situation, also the 
DoE of the observed situation is expanded. After training the metamodel for the 
assessment situation, training of the observed situation follows. It starts with the 
importance distribution developed during training of the assessment model. Multiple 
options are available in ERRAGA for the importance distribution, learning function and 
stopping criterion. The used settings are presented in table 3-1, which are discussed in 
section 2.6. The learning algorithm for training the original two staged metamodel is 
presented in appendix B. Many steps of the algorithms are similar because those steps 
are implemented in ERRAGA and are used in this method. The updated reliability is 
determined after training both models, for which the method is given in the next section. 
 

Parameter Value 

Importance distribution Gaussian Mixture Model based on DoE 
Learning function UNIS learning function 
Stopping criterion for convergence meatamodel BetaStop (on the reliability index ") 
Stopping criterion value 0.01 
Convergence criterion probability of failure 0.05 

Table 3-1: ERRAGA settings 
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Figure 3-2: Model learning algorithm 
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3.4 Reliability analysis 
In reliability analyses, the failure or survival of a system is usually expressed by the limit 
state function. It is defined such that negative values represent system failure. For the 
slope stability analyses in this research, a safety factor below one is defined as failure. 
This leads to the definition of the limit state functions in the assessment and observed 
situation in equation (24) and (25) respectively, including the model factor �� for the 
chosen slip plane model. These equations are used for identifying slope failure in the 
reliability analysis. � represents a single realization of the involved parameters and �∗ 
the same set but without the model factor. The safety factor is obtained by performing 
a slope stability software.  The reliability of a slope stability problem can be determined 
by simulation, as elaborated in paragraph 2.3.1. 
 
 
(�) = +R[(�∗)�� − 1 (24) 

 
 ℎ(�) = +R\(�∗)�� − 1 (25) 

 
3.4.1 Reliability update 

The updated probability of failure is determined by only considering realizations which 
result in survival of the observed situation. The expression in equation (8) for 
determining probabilities with importance sampling is combined with Bayes theorem 
from equation (23) to obtain an expression for the updated failure probability, presented 
in equation (26). In the equation 7 represents the sample size, �9 is a single realization 
of parameters, and 
[⋅] is the indicator function, which is one if the argument is true. 
The importance sampling weight is �(�9) and is defined in equation (10). 
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The convergence criterion for this probability is a maximum coefficient of variation of 
0.05, as given in equation (27). 
 
 /?@A(]|^) = �A(]|^)��(R|#) ≤ 0.05 (27) 

 
An expression for estimating the failure probability is available in equation (26), but 
also an expression for its uncertainty is needed to check the convergence criterion. The 
expression for the conditional probability is a quotient of two probabilities, as seen in 
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Bayes theorem in formula (23). These two probabilities are random variables with a 
binomial distribution, as was discussed in paragraph 2.3.1. However, the normal 
distribution is a reasonable approximation for the binomial distribution for certain 
conditions for the probability of occurrence and sample size, given by Box et al. (1978). 
The condition is given in equation (28), in which n is the sample size and p is the 
probability of occurrence of the event. This probability is not equal to the probability of 
failure when using importance sampling. In that case, p is the probability of seeing failure 
in the simulation. An efficient importance distribution should attribute a significant 
portion of the weight to the region of failure. The probability p should therefore be larger 
than the failure probability if a reasonable importance distribution is used. For p = 0.01, 
the condition is fulfilled for a sample size of approximately 105. In the case study 
presented in chapter 4, the lowest value found for p is in the order of 10-5, which results 
in a sample size in the order of 106. Such sample sizes are not a restriction from the 
computational point of view. 
 
 1√7 ⋅ `C1 − 44 − C 41 − 4` < 0.3 (28) 

 
Approximating the binomial distributions as normal allows the expression in equation 
(26) to be seen as a quotient of normally distributed random variables. Díaz-Francés & 
Rubio (2013) proved that the distribution of the ratio of two independent normally 
distributed random variables with positive means Z = X/Y can to a certain extent be 
approximated as normal under certain conditions. From Díaz-Francés & Rubio (2013) 
it follows that for the coefficients of variation �b/�b < 0.1  and �c/�c < 0.5  the 
cumulative density function of the actual distribution and the approximation have a 
maximum difference of 0.03 within two standard deviations of the mean of Z. In case of 
the expression in equation (26), the criterion of the denominator is fulfilled, as a 
coefficient of variation of smaller than 0.05 is required for convergence. Only a check on 
the coefficient of variation of the joint probability in the numerator of equation (26) 
remains needed when updating the reliability. However, a variation coefficient larger 
than 0.5 will probably not result in convergence of the updated probability. It is therefore 
expected that this criterion does not require the sample set to be expanded. 
 
The only criterion that probably cannot be fulfilled is the requirement of independence. 
The updated probability is a quotient of probabilities, both involving the same event, 
construction survival. Therefore, if there is any correlation between the probabilities, 
then it would probably be positive. However, a positive correlation reduced the spread 
of a quotient of random variables. For the purpose of checking the convergence criterion, 
assuming independence is thus a conservative assumption. On this matter, it results in 
a stricter convergence criterion because the uncertainty is overestimated. The variance 
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of the quotient is given in Díaz-Francés & Rubio (2013) and presented in equation (29). 
For applying it to updating the reliability, X represents the estimate of �(R ∩ #), Y the 
estimate of �(#) and Z the estimate of �(R|#). 
 
So, in order to use a normal approximation for �(R|#), the criterion in equation (28) 
must be met and the coefficient of variation of �(R ∩ #) may not be greater than 0.5. 
Then the convergence criterion of the updated probability in equation (27) can be 
evaluated using the expression of the variance in equation (29). 
 
 �dH = �cH�bH ⋅ e�cH�cH + �bH�bHf (29) 

 
The expression for the variance of the failure probability for a single metamodel is used 
from Van den Eijnden et al. (2021) and presented in equation (30). 
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3.4.2 Combined importance sampling 

Dike failure mechanisms generally have a low probability of occurrence. Estimating a 
low probability with simulation requires a large sample size, which may cause impractical 
computational times. This explains the need for importance sampling methods 
(paragraph 2.3.1). The importance sampling methods implemented in ERRAGA make 
use of a Gaussian Mixture Model (GMM), described in paragraph 2.6.2. During the 
training of a metamodel this GMM is adapted for efficiently estimating the reliability of 
the system under consideration. This is achieved by allocating extra probability density 
to the region around the limit state function. In the training procedure presented in 
figure 3-2, first the metamodel in the assessment is trained, together with a GMM. 
Hereafter, the metamodel for the observed situation is trained. The training does not 
start with a new GMM but continues with the GMM from the assessment situation. The 
resulting GMM is thus a distribution with extra weight around both limit state functions. 
This is an efficient approach when the limit state functions of the observed and 
assessment situation are somewhat similar, as is the case for the slope stability problems 
considered in this work. Though a different approach may be needed for problems in 
which the limit state functions are very different. In that case the current approach may 
result in an inefficient learning procedure. The combined GMM is used for determining 
the updated probability. This distribution is not suggested to be the most efficient, but 
covers the important domain of the parameter space and was found to be effective in 
this work.
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4  

Case study: Kinderdijk – 

Schoonhovenseveer 

In this chapter the case study dike improvement Kinderdijk-Schoonhovenseveer is 

introduced. This case is used for investigating the effect of incorporating dike 

improvement construction survival in the reliability assessment of slope stability. First 

the case is introduced, and the improvement data is presented in section 4.1 and 4.2. 

Then the hydraulic and geotechnical boundary conditions are discussed in 4.3. Finally, 

the prior reliability is determined and discussed in 4.4. In chapter 5, the reliability of 

this case study is updated with various loading conditions. 

 

4.1 Case introduction 
The dike between Kinderdijk and Schoonhovenseveer (KIS) is part of the primary flood 
defense trajectories 16-2 and 16-3 and is located east of Rotterdam. The dike is 
maintained by Waterboard Rivierenland and was reinforced in 2016-2018. For design 
purposes, the dike was subdivided into sections. The reliability updating methodology is 
applied to section L1, where the dike was heightened, and a berm was constructed. The 
situation of the dike trajectory and section L1 is presented in figure 4-1. 
 

 
Figure 4-1: Location KIS and section L1  

(Data by OpenStreetMap.org contributors under CC BY-SA 2.0 license)  
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4.2 Construction data 
During the dike reinforcement, section L1 was monitored with four water pressure gauges 
and various settlement plates. Together with construction verification reports provided 
by waterboard Rivierenland, this gives a clear insight into how the reinforcement was 
phased and how the pore water pressure developed. The location and names of the 
settlement plates and water pressure measurements are shown in figure 4-2. Two of the 
pressure gauges were positioned underneath the crest and two in the hinterland beneath 
the new berm, all at different depths. The measured heads are presented in figure 4-3. 
The head measurements are corrected for settlements, for which the nearest settlement 
plate is used. The amount of excess pore water head at the maximum level is presented 
in table 4-1 and the position of the pressure gauges in the dike profile is presented in 
figure 4-4. 
 
Other data sources data sources that are used for the schematization of the stability 
calculations are listed below. The remainder of this chapter uses this list for referencing: 
 
[1] Hydraulic boundary conditions database WBI2017_Benedenrijn_16-2_v04, 

Rijkswaterstaat, Helpdesk water, www.helpdeskwater.nl 
[2] TNO Hydraulic head map, https://www.grondwatertools.nl 
[3] Algemene Hoogtekaart Nederland AHN3, https://www.pdok.nl 
 
 

 
Figure 4-2: Measurement points dike section L1 
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Figure 4-3: Pore water pressure measurements 

 

 
Figure 4-4: Location pore water pressure measurements (red dots indicate position) 

 

Construction phase 

ghijklm [n] ghokjn [n] 

-3 m NAP 

(6002) 

-7 m NAP 

(6008) 

-6 m NAP 

(5944) 

-10 m NAP 

(5943) 

Construction berm 0.00 0.00 2.10 2.20 
Raise of crest 1.80 2.70 0.00 0.00 

Table 4-1: Excess pore water head per phase 
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4.3 Boundary conditions 
The boundary conditions are determined such that the analyses performed here are as 
close to reality as possible. Therefore, several conditions are adopted from the dike 
improvement design. However, the dike improvement was designed according to the old 
safety standards, which used exceedance instead of failure probabilities and only used 
drained shear strength parameters for soils. For these parameters new values are 
determined, elaborated in the coming paragraphs.  
 
4.3.1 Hydraulic boundary conditions 

Extreme river water level 

In the dike improvement design only one design water level was determined. However, 
in a probabilistic analysis a probability distribution is needed. With use of the software 
Hydra-NL, various water levels are determined and used for fitting an extreme value 
distribution. The water levels are determined at a location 1000 meter upstream of 
section L1 and are presented in table 4-2. The following holds for the derived the water 
levels: 
 

• The current distribution is considered, no climate change is included 
• Model and statistical uncertainty is included (built-in in Hydra-NL) 
• Hydraulic boundary condition database “WBI2017_Benedenrijn_16-2_v04” is 

used [1] 
• Hydra-NL version 2.7.1 (November 2019) 

 
Exceedance probability 

[1/year] 

Water level 

[m + NAP] 

1/10 2.89 
1/30 3.07 
1/50 3.14 
1/100 3.23 
1/300 3.35 
1/1000 3.48 
1/3000 3.58 
1/10000 3.71 
1/30000 3.90 
1/100000 4.14 

Table 4-2: Water levels from Hydra-NL 

The water levels above are shown as red dots in the exceedance probability plot in figure 
4-5. A Generelized Extreme Value distribution (GEV) is fitted to the data, which is a 
combination of three extreme value distributions, Gumbel, Fréchet and Weibull. The 
CDF of a GEV distribution is shown in equation (31), in which ξ, σ and � are the shape, 
scale and location parameter respectively. Fitting a single distribution to the data did 
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not provide a good fit, hence a second GEV distribution was used to model the behavior 
of the tail. The fitted distribution parameters are shown in table 4-3. 
 
 R(�) = exp e− t1 + ξ t� − �� uu()/v f  �?w x y 0 (31) 

 
Figure 4-5: Exceedance probability curve 

Distribution Domain Shape z Scale { Location | 

GEV 1 h <= 3.52 m 0.127 2.457 0.222 

GEV 2 h > 3.52 m -0.287 3.272 0.010 
Table 4-3: GEV distribution parameters 

Daily river water level 

The average water level in the river is 0.40 m + NAP, adopted from the dike 
improvement design. 
 
Polder water level 

In the summer the polder level is maintained at -2.11 m NAP and in the winter at -2.21 
m NAP. In the daily condition the winter polder level is used. In the design condition 
the water level in the polder ditches may be increased by seepage and overtopping water, 
the polder water level is therefore schematized close to the polder surface level. 
 
Daily head aquifer 

The hydraulic head in the aquifer is -1.00 m NAP, adopted from the dike improvement 
design. The value of the head in the aquifer is verified using the TNO hydraulic head 
map [2]. 
 
Pore water pressure 

The schematization of the pore water pressure is adopted from the dike improvement 
design. Three head lines are used, the phreatic line (HL1), the aquifer head line (HL3), 
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and the head under daily circumstances (HL2), used to schematize the intrusion length 
during high water conditions. The phreatic pressure is assigned to the subsoil from the 
surface level to two meters below the surface level of the hinterland in all conditions. 
The aquifer head is assigned to the top of the aquifer. Under daily conditions, linear 
interpolation takes place between the former two heads. Under high water conditions, 
the phreatic and aquifer head interpolate towards HL2, which is assigned three meters 
above the aquifer, the intrusion length. The schematization of the head lines is illustrated 
by means of figure 4-6 and table 4-4, in which hd and hh are the daily and high river 
water level, aq is the daily head in the aquifer, PL is the polder level and SFL is the 
surface level. r is the response factor and equals 0.35, as in the improvement design 
(W+B, 2013). 
 

Situation Head line a b c d e f 

Daily conditions HL1 hd hd+1.0 hd+1.0 PL - PL 
 HL3 aq - - - - aq 

High water HL1 hh hh -1.0 hh -1.5 SFL - 0.1 SFL SFL 
 HL2 hd - - - PL PL 
 HL3 hh - - hd+r(hh-hd) - hh 

Table 4-4: Head line values at reference points 

 
Figure 4-6: Reference points for head line schematization 

 

4.3.2 Geometry 

The cross-section line in figure 4-1 was projected to the Dutch national height map 
AHN3 [3] to obtain the cross-sectional geometry. It was recorded in 2015 and thus 
represents the situation before improvement. The geometries of the various construction 
phases are derived using the settlement plate recordings. For the situation after 
settlement the dike improvement design is used (W+B, 2013). The geometry of four 
construction stages is presented in figure 4-7. These are the stages that are used for 
updating the reliability in the next chapter. 
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Figure 4-7: Geometry of construction stages 

4.3.3 Soil parameters 

During the design of dike improvement KIS, it was common practice for Dutch engineers 
to use a drained shear strength model for soils with undrained soil behavior. However, 
new insights have led to the use of the SHANSEP model for modelling undrained shear 
strength, elaborated on in paragraph 2.2.1. As a result, the collection of shear strength 
parameters used for the dike improvement design is not suited for the analyses in this 
research. Instead, the collection of shear strength parameters of the region “Neder-
Betuwe” is used, obtained from Deltares, involved in reinforcing dike trajectories in that 
region. The Neder-Betuwe is located around the city of Tiel, some 60 kilometers 
upstream of KIS. Seen the scale of geological depositions, the location of KIS and the 
resemblance of the regions, it is expected that the use of this alternative parameter set 
will not significantly alter the reliability of the dike trajectory. This regional collection 
however, does not contain state parameters (as they should be site specific). Therefore, 
compression tests of dike improvement Salmsteke – Schoonhoven (SAS), a dike 
trajectory just upstream of KIS, are used for deriving distributions for the POP. The 
compression test data is presented in appendix C. 
 
The SAS collection of 42 tests is divided in four groups for which separate distributions 
for the POP are derived. A distinction is made between peat and light clay (<17.5 
kN/m3), and between soils under, and besides the dike. The latter distinction is made 
because of the difference in stress history. A lognormal distribution is fitted to each of 
the groups, representing the POP at a certain point in a soil layer. In appendix C it can 
be seen that for soil samples taken from the same layer in the same borehole at different 
depths, the resulting POP values vary, indicating spatial variation. So, it is expected 
that some spatial averaging takes place along a potential sliding plane. The method from 
the TAW (2001) report on water retaining earthen structures is used to adjust the 
distributions to account for spatial averaging. It uses the variance reduction factor ΓH 
to account for spatial variation along a sliding plane. Although the value of ΓH  is 
uncertain, 0.25 seems to be a reasonable choice (TAW, 2001). The spatial averaged 
standard deviation is shown in equation (32). The method is described for normally 
distributed variables, therefore the standard deviation of the logarithm of the POP is 
used. Thereafter a sample size correction is done to the standard deviation using equation 
(33), in which ~<()�.�D is the 95th-percentile of the student-t distribution with n-1 degrees of 
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freedom, and 1.645 the 95th-percentile of the standard normal distribution. The student-
t distribution is often used to account for statistical uncertainty when determining 
characteristic values of soil properties, equation (33) should be seen as applying this 
method to a whole distribution, in which the 5th percentile serves as a calibration point. 
 
 ���(A\A),�% = ���(A\A),��=<�CΓH + 17 (32) 

 
 ���(A\A),�%,���� = ���(A\A),�% ⋅ ~<()�.�D1.645 (33) 

 
All the soil parameters are presented in table 4-5. The weight of the soils is adopted 
from the dike improvement, which is based on site specific weight tests. The uncertainty 
of the parameters is expressed through the coefficient of variation (CoV), which is �/�. 
The presented CoV values for the POP include spatial averaging as presented above. 
The other soil parameters are not corrected for spatial variability. All soil strength 
parameters are assumed to be lognormally distributed. 
 

  
Saturated 

weight 

Dry 

weight 

Friction 

angle  
S   m   POP       

Soil type [kN/m3] [kN/m3] µ  [°] 
CoV 
[-] 

µ  
[-] 

CoV  
[-] 

 µ [-] 
CoV 
[-] 

µ 
below 
[kPa] 

CoV 
below 

[-] 

µ 
besides 
[kPa] 

CoV 
besides 

[-] 

Dike material (clay) 18.54 - 35.0 0.07 - - - - - - - - 

Peat  10.63 - - - 0.41 0.06 0.75 0.08 35.7 0.29 33.9 0.29 

Peat clayey  11.69 - - - 0.33 0.03 0.95 0.04 35.7 0.29 33.9 0.29 

Clay strong organic 13.08 - - - 0.29 0.05 0.93 0.10 40.7 0.40 28.4 0.32 

Clay silty organic 15.16 - - - 0.30 0.04 0.77 0.10 40.7 0.40 28.4 0.32 

Clay silty  16.82 - - - 0.32 0.05 0.83 0.07 40.7 0.40 28.4 0.32 

Sand 20.00 18.00 34.0 0.05 - - - - - - - - 

Raise material sand 19.00 17.00 32.6 0.05 - - - - - - - - 

Table 4-5: Soil property parameters 
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4.3.4 Soil stratification 

The soil stratification of section L1 is adopted from the dike improvement design and 
presented in table 4-6 and figure 4-8. The site investigation used for the dike design 
(W+B, 2013) shows a significant difference between the stratification under the dike 
and in the hinterland. Hence different soil stratifications are used, separated at the inner 
dike toe.  
 

Dike   Hinterland 

Soil type Top layer 

[m NAP] 

Soil type Top layer 

[m NAP] 

Dike material clay - Clay silt organic - 
Clay silt 0.9 Peat clayey -2.8 
Peat -6.0 Clay organic -4.3 
Peat clayey -7.7 Peat clayey -5.3 
Clay silt organic -9.3 Clay organic -9.2 
Peat -12.4 Peat clayey -11.3 
Clay silt organic -12.7 Clay silty -12.3 
Heavy peat -13.7 Heavy peat -14.2 
Sand -14.2 Clay silty -14.5 
    Sand -14.8 

Table 4-6: Soil stratification L1 

 

 
Figure 4-8: Visualization of stratification section L1 (D-Stability) 

  



4.4 Prior reliability  48 

4.4 Prior reliability 
This section elaborates on the estimation of the prior reliability and forms a basis for 
the reliability update in the next section. The reliability is estimated using ERRAGA, 
as described in paragraph 2.6.1. The prior reliability is determined for five points in time. 
The initial condition, the situation after improvement for both the daily conditions, and 
with inclusion of the extreme water level distribution, and two points in time during 
construction of the dike reinforcement. The reinforcement was executed in many steps, 
with time in between to allow for consolidation. The two points in time during 
construction are chosen based on the pore water pressure measurements. The stability 
is expected to be critical when the excess pressure reaches a maximum. Maxima can be 
found after construction of the berm, and after partially raising the crest, presented in 
figure 4-3 and table 4-1. The situation after these construction steps are used for 
updating the reliability in chapter 5. 
 
4.4.1 Stochastic parameters 

The parameters listed below are treated as random variables in the reliability analyses, 
adding up to a total of 14. All soil strength parameters are assumed to be lognormally 
distributed with the parameters from table 4-5. The extreme value distribution of the 
water level was presented in paragraph 4.3.1. The model factor quantifies discrepancies 
between a real slip plane and the slip plane model used for schematization. It has a 
normal distribution for which the parameters are given in table 4-7. This work uses the 
slip plane model Uplift-Van. 
 

• Water level (h) 
• Shear strength ratio (S) 
• Strength increase exponent (m) 
• Pre-overburden pressure (POP) 
• Model factor (md) 

 
Model |n�  [−] {n� [−] 
Bishop 1.025 0.050 
Uplift-Van 1.005 0.033 
Spencer 1.008 0.035 

Table 4-7: Distribution parameters model factor (Schweckendiek, van der Krogt, et al., 2017) 

4.4.2 Parameter dependency 

The POP of a soil layer has two origins, it develops over time but is also dependent on 
the stress history of the soil layer. A load applied to the surface level has effect over a 
certain depth, hence dependency in the vertical direction is expected over that depth. 
Due to this effect it is assumed that the values for the POP of the soil layers below the 
crest are fully dependent, as are those of the layers in the hinterland. Assuming full 
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correlation seems contradictory to considering spatial averaging in paragraph 4.3.3. 
However, from the analysis in paragraph 4.3.3 it followed that various values for the 
POP were found in the same soil layer, hence the true correlation differs from one. Still, 
considering spatial averaging is a conservative choice from the reliability updating 
perspective. It results in distributions less spread around the mean and hence a higher 
prior reliability estimate, leaving less to be updated. The approach of spatial averaging 
combined with correlated POP values is considered to be reasonable for analyzing the 
effectiveness of reliability updating in this research. All values for S and m are assumed 
to be independent per soil type. 
 

4.4.3 Phasing 

State parameters like the POP are parameters that depend on the circumstances. When 
the circumstances change (e.g. increase in load), the POP also changes. It is therefore 
crucial to consider all loading conditions that affect the POP, from determining the POP, 
up to the point in time of interest. Otherwise, some development or loss of POP might 
not be considered. The stages listed underneath are considered for achieving this. In D-
Stability all stages can be schematized in one calculation. This ensures that the 
appropriate values for the POP are used in each phase. 
 

• Initial condition (daily water level) 
• Construction of the berm  
• Raising the crest 
• Final geometry (consolidated, daily water level) 
• Final geometry (extreme water level distribution) 
 

4.4.4 ERRAGA parameter settings 

The ERRAGA settings used for calculating the prior reliability are shown in table 4-8. 
The function of the ERRAGA parameters are specified in section 2.6. The chosen 
convergence criterion value of 0.01 results in a 99-percent certainty range of 0.3 on the 
reliability index for a reliability index around 6. This range decreases for decreasing 
reliability indices. 
 

Parameter Value 

Initial training set size 50 
Maximum training set size 450 
Learning function UNIS 
Convergence criterion BetaStop (on the reliability index ") 
Convergence criterion value 0.01 
Minimum amount of white noise 0.001 (on the limit state outcome) 
Number of kernel parameter optimizations 20 

Table 4-8: ERRAGA parameter settings 
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4.4.5 Results 

A reliability analysis with ERRAGA was performed for every phase of the dike 
improvement, for which the results are presented in table 4-9. The reliability index is 
given for each phase, accompanied with the safety factor resulting from a 5th-percentile 
semi-probabilistic calculation (model factor not included). The extreme water level 
distribution is only included in the assessment situation. In the other stages the water 
level is fixed to a daily level determined in paragraph 4.3.1.  
 
FORM analyses were done on the trained metamodels to obtain some insight into the 
importance of the variables involved. For this Python package OpenTURNS (Baudin et 
al., 2015) is used. The results are presented in table 4-10. The design points in standard 
normal space (U-space) are given, as well as the squared values of the importance factors TH. Also, the reliability index resulting from the FORM analyses are presented. In a 
FORM analysis the design point is defined as the point on the limit state line with the 
highest probability density. 
 
From the analyses follow that all construction phases have a failure mode contributing 
most to the probability of failure, here called the main sliding mode. Going through the 
slope stability calculations in the metamodel training sets gives an idea of which slip 
planes are important. Performing a slope stability analysis with the design point values 
results in the most probable sliding plane. The slip planes resulting from a design point 
slope stability analysis of the berm phase and assessment situation are given in figure 
4-9. The main mode of the crest phase and daily conditions are very similar to the main 
mode of the assessment situation and thus not presented. Looking at the main sliding 
modes turns out to be useful for reliability updating, further explained in chapter 5. 
 
The metamodels trained in the analysis are hard to visualize as a whole. Presenting the 
metamodel as an analytical expression wouldn’t provide much insight, as it is a function 
of all the (hundreds of) model evaluations in the training set. Plotting the metamodel is 
possible but the dimensionality of 14 prevents the metamodel to be plotted as a function 
of all the variables. Therefore, in figure 4-10, the metamodel prediction of the limit state 
function in the assessment situation is presented in a matrix plot. The diagonal gives 
the limit state outcome as a function of one parameter, and the non-diagonal as a 
function of two. The remaining parameters are fixed in the design point so that the most 
relevant part of the model is visible. For readability, only the four most important 
parameters are plotted. The difference in importance factors is big compared to the other 
variables (table 4-10), so these four parameters are decisive and represent the important 
part of the metamodel. The limit state plot over the whole parameter space is presented 
in appendix D.  
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Situation 
Initial 

conditions 
Berm phase 

Crest 
phase 

Daily 
conditions 

Assessment 
situation 

Safety factor 1.11 1.14 1.09 1.05 1.03 

Reliability index � 5.8 6.7 6.9 6.1 6.0 
Table 4-9: Result prior reliability analyses with ERRAGA 

 

Phase 
Initial 

conditions 
Berm phase Crest phase 

Daily 
conditions 

Assessment 
situation 

FORM reliability " =  5.7 " =  6.6 " =  6.8 " =  6.1 " =  5.9 

Parameter Udesign �� Udesign �� Udesign �� Udesign �� Udesign �� 
Water level -0.01 0.00 0.01 0.00 0.01 0.00 -0.03 0.00 0.39 0.00 

POP below dike -2.76 0.23 -2.53 0.15 -2.48 0.13 -1.65 0.07 -1.78 0.09 

POP hinterland -2.71 0.23 -3.44 0.27 -2.67 0.15 -2.35 0.15 -2.15 0.13 

Model factor 2.93 0.26 3.91 0.35 4.22 0.38 4.03 0.44 3.85 0.43 

S silty clay -2.73 0.23 -1.66 0.06 -3.67 0.29 -3.06 0.25 -2.94 0.25 

m silty clay -0.61 0.01 -0.46 0.01 -0.34 0.00 -0.70 0.01 -0.92 0.02 

S peat clayey -0.25 0.00 -0.87 0.02 -0.74 0.01 -0.80 0.02 -0.66 0.01 

m peat clayey -0.12 0.00 -0.26 0.00 -0.29 0.00 -0.27 0.00 -0.31 0.00 

S clay silty organic -0.16 0.00 -0.06 0.00 -0.99 0.02 -1.03 0.03 -0.98 0.03 

m clay silty organic -0.20 0.00 -0.09 0.00 -0.18 0.00 -0.14 0.00 -0.18 0.00 

S organic clay -0.92 0.03 -2.47 0.14 -0.26 0.00 -0.23 0.00 -0.21 0.00 

m organic clay -0.43 0.01 -0.36 0.00 -0.18 0.00 -0.17 0.00 -0.01 0.00 

S peat 0.03 0.00 -0.75 0.01 -0.80 0.01 -0.90 0.02 -0.82 0.02 

m peat -0.02 0.00 -0.17 0.00 -0.21 0.00 -0.01 0.00 0.03 0.00 

Table 4-10: Results FORM analyses  
(the squared importance factors may not add up to one due to rounding) 

 

  
Figure 4-9: Main sliding modes of the berm phase (left) and the assessment situation (right) 



4.4 Prior reliability  52 

 
Figure 4-10: Limit state outcome of the four most important parameters in U-space obtained by 

ERRAGA  
(Diagonal: limit state outcome as a function of one variable. Non-diagonal: colors indicate the outcome 

of the limit state function, orange line is the limit state line) 
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4.4.6 Discussion 

The safety factors from the semi-probabilistic slope stability analyses show that the 
assessment situation is the most critical loading condition. Constructing the berm has a 
stabilizing effect. This allows the remaining construction activities to be executed 
without the safety factor being worse than in the assessment situation. The reliability 
indices largely confirm the former findings, with the noteworthy difference that the 
reliability is worst in the initial condition. It is concluded that in this case, the 
construction of the dike improvement is a less severe loading condition than the 
assessment situation. Note that the safety factor and reliability during daily conditions 
is lower than after the crest raise. This is because another raise takes place after the 
crest raising phase considered here, causing the safety factor and reliability to decrease.  
 
From the FORM analyses follow that the POP, the shear strength ratio of silty clay and 
the model factor are by far the most influential parameters. The sum of squared influence 
factors of these four variables adds up to at least 0.80 in all phases. The importance of 
these variables thus remains consistent throughout the phases, although there is a 
redistribution between the four. The squared importance factors of both POP variables 
approximately decrease by a factor two from the first to the last phase. This is explained 
by the load increase due to the dike raise and the loss of stress history inherent to it 
(decrease of the POP). When the POP in the initial condition is smaller than the 
addition of effective stress due to improvement, then all stress history is lost. This causes 
the lower tail of the distribution of the POP to become less important, as all POP is 
lost up to a certain value. This can be recognized in the top left graph of figure 4-10, 
where the limit state outcome is plotted as a function of the POP below the dike. It 
shows the invariant behavior of the limit state outcome up to a value of -2 in U-space. 
The water level is in this case barely of influence. This is typical for a situation with a 
thick soft soil blanket and an aquifer that is not very sensitive to an external water level 
rise (response factor is 0.35). 
 
The difference in main sliding mode is also a feature that can be found in the importance 
factors. The sliding mode in the berm phase differs from the other phases. It is smaller 
and shallower and does not pass the deep silty clay layer in the hinterland (blue layer 
in figure 5-3). This results in a lower importance factor for the shear strength ratio of 
silty clay, while the shear strength ratio of organic clay has a much higher value than in 
the other phases. 
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5 Case study: Posterior Analysis 

This chapter investigates the effect of reliability updating with observations of survived 

loading conditions for the case study Kinderdijk-Schoonhovenseveer, introduced in 

chapter 4. Also, the potential impact of including a reliability update in the dike design 

is explored. This chapter concludes with a discussion of all the results. 

 

5.1 Observations 
The effect of reliability updating is explored by updating the slope reliability of the case 
study with various observed loading conditions. A reliability update is done with the 
observed survival of the dike improvement construction phases. Also, two hypothetical 
construction sequences are used for updating the reliability, referred to as alternative A 
and B. The actual dike improvement construction sequence is referred to as the original 
case. Besides updating with construction survival, also an update is done with survival 
of the daily conditions and with a hypothetical observed water level. The updating 
results are presented individually, after which an overview is given. Finally, the results 
are analyzed in the discussion.  
 
In each reliability update four values for the reliability "  are presented. For the 
assessment situation the prior and posterior reliabilities are given, "��=�� and "������=��. 
For the observation two reliabilities are given as well. The actual reliability in the 
observation "���, determined with a free slip plane search, and the reliability in the 
observed situation obtained by using the critical slip plane from the assessment situation, "���,5=���. The latter shows how critical the observed loading condition was for the slip 

plane area relevant to the assessment situation. The process of training the metamodel 
to determine this value is presented in figure 3-2 (where "���,5=��� relates to �5,\). To 

obtain insight in the importance of the parameters, a FORM analysis is done on each 
metamodel. The resulting importance factors are used for comparing loading conditions. 
 

5.1.1 Construction sequences 

The original dike improvement sequence and the two alternatives are presented in figure 
5-1. In the original case the berm was constructed first, then the crest was raised partially, 
and finally the rest of the crest was constructed and the berm was reduced to its final 
dimensions. In alternative A, the partial crest raise takes place before construction of 
the berm. This is expected to create a more severe loading condition than in the original 
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improvement, which should affect the reliability update. In alternative B, the whole crest 
is constructed before constructing the berm.  
 
A point of attention is how much of excess pore water pressure should be used in the 
alternative construction sequences, as the pressure measurements represent the original 
phased construction. The crest raise took place after dissipation of the excess pressure 
caused by the berm construction. The excess pressure found in the measurements after 
the crest raise were thus only caused by the crest raise, as the soil under the berm already 
consolidated. Therefore, it is assumed that the pressure measurements after berm and 
crest construction can be treated as independent. Thus, the actual measurements after 
berm construction and raising the crest can be used in alternative A. In alternative B 
the whole crest is raised before constructing the berm. This has the potential to create 
more excess pore water pressure than the partial crest raise, depending on the 
construction speed. Yet, to create a not too extreme loading condition, the actual 
measurements are used for alternative B as well. 
 

 
Figure 5-1: Different construction sequences (construction order is from left to right) 

5.1.2 Water level 

The effect of reliability updating with the survival of an observed water level is 
investigated in section 5.5. The slope reliability is updated with an extreme water level 
with a return period of 100 years. It is determined with the extreme water level 
distribution given in paragraph 4.3.1 and is 3.23 m NAP. 
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5.2 Reliability update original case 
The reliabilities that result from updating with the original construction phases are 
presented in table 5-1, as are the semi-probabilistic safety factors. SFobs is the safety 
factor of the critical slip plane in the observation, and SFobs,fixed is the safety factor of the 
observation using the critical slip plane from the assessment situation. The reliabilities 
and design points resulting from FORM analyses are presented in table 5-2. Note that 
these are different from the FORM analyses results shown in table 4-10, which used 
metamodels trained with a free slip plane search. The results shown here follow from 
FORM analyses performed on the metamodels trained with the critical slip planes from 
the assessment situation, as elaborated in section 3.3. The reliability update using 
construction survival turns out to have no effect in the original case. The least reliable 
observed situation is the daily situation. The limit state function in the daily and 
assessment situation are plotted in figure 5-2 for comparison. The limit state outcome of 
the assessment situation is plotted in the background as a reference.  
 

Survived load condition ��ol ��ol,���k� ���lmkj��j ���ol ���ol,���k� 

berm construction 6.7 8.2 6.0 1.14 1.21 
crest construction 6.9 7.6 6.0 1.09 1.12 
daily conditions 6.1 6.1 6.0 1.05 1.05 

Table 5-1: Reliability updating results original case with ERRAGA ("��=�� = 6.0) 
Phase Berm phase Crest phase 

Daily 
conditions 

Assessment 
situation 

FORM reliability "]\�� = 8.1  "]\�� =  7.5 "]\�� =  6.1 "]\�� =  5.9 

Parameter Udesign �� Udesign �� Udesign �� Udesign �� 
Water level 0.09 0.00 0.18 0.00 0.02 0.00 0.39 0.00 

POP below dike -3.32 0.17 -2.81 0.14 -1.77 0.09 -1.78 0.09 

POP hinterland -3.78 0.22 -3.03 0.16 -2.31 0.15 -2.15 0.13 

Model factor 4.37 0.29 4.48 0.36 4.04 0.45 3.85 0.43 

S silty clay -1.34 0.03 -3.99 0.28 -2.96 0.24 -2.94 0.25 

m silty clay -0.19 0.00 -0.12 0.00 -0.73 0.02 -0.92 0.02 

S peat clayey -0.88 0.01 -0.95 0.02 -0.75 0.02 -0.66 0.01 

m peat clayey -0.20 0.00 -0.34 0.00 -0.25 0.00 -0.31 0.00 

S clay silty organic 0.09 0.00 -1.30 0.03 -1.09 0.03 -0.98 0.03 

m clay silty organic -0.31 0.00 -0.13 0.00 -0.22 0.00 -0.18 0.00 

S organic clay -4.01 0.25 -0.09 0.00 -0.18 0.00 -0.21 0.00 

m organic clay -0.85 0.01 -0.11 0.00 -0.19 0.00 -0.01 0.00 

S peat -1.28 0.03 -0.86 0.01 -0.84 0.02 -0.82 0.02 

m peat -0.22 0.00 -0.14 0.00 -0.04 0.00 0.03 0.00 

Table 5-2: Results FORM analyses original case 
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Figure 5-2: Comparison of limit state functions in the daily conditions and assessment situation for the 

original case 
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5.3 Reliability update alternative A 
The reliability updating results using survival of the crest construction in alternative A 
are presented in table 5-3. The results from the FORM analyses using the metamodels 
are shown in table 5-4 and the comparison of the metamodels in the observed and 
assessment situation is presented in figure 5-4. The main sliding modes of the observed 
and assessment situation are shown in figure 5-3. 
 
Survived load condition ��j��j ��ol ��ol,���k� ���lmkj��j ���ol ���ol,���k� 

crest construction 6.0 4.3 5.6 6.1 0.98 1.04 
Table 5-3: Reliability updating results alternative A with ERRAGA 

Phase Crest phase Assessment situation 

FORM reliability "]\�� = 5.5  "]\�� =  5.9 

Parameter Udesign �� Udesign �� 
Water level 0.01 0.00 0.39 0.00 

POP below dike -2.58 0.22 -1.78 0.09 

POP hinterland -2.98 0.29 -2.15 0.13 

Model factor 3.26 0.35 3.85 0.43 

S silty clay -1.16 0.04 -2.94 0.25 

m silty clay -0.14 0.00 -0.92 0.02 

S peat clayey -0.61 0.01 -0.66 0.01 

m peat clayey -0.25 0.00 -0.31 0.00 

S clay silty organic -0.92 0.03 -0.98 0.03 

m clay silty organic -0.38 0.01 -0.18 0.00 

S organic clay -0.85 0.02 -0.21 0.00 

m organic clay -0.61 0.01 -0.01 0.00 

S peat -0.76 0.02 -0.82 0.02 

m peat -0.24 0.00 0.03 0.00 

Table 5-4: Results FORM analyses alternative A 

  
Figure 5-3: Main sliding modes of the crest phase (left) and the assessment situation (right) 
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Figure 5-4: Comparison of limit state functions in the observation and assessment situation for 

alternative A 
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5.4 Reliability update alternative B 
The reliability updating results using survival of the crest construction in alternative B 
are presented in table 5-5. Updating the reliability with construction survival of the crest 
has significantly improved the reliability. To see the influence of the excess pore water 
pressure, an update was also done with a consolidated variant of the crest construction. 
The consolidated case still causes a significant update. Table 5-8 shows the results from 
the FORM analyses using the fitted metamodels and a comparison of the metamodels 
in the observed and assessment situation is presented in figure 5-6, both for the 
unconsolidated case.  
 

Survived load condition ��ol ��ol,���k� ���lmkj��j ���ol ���ol,���k� 

crest construction 3.1 4.0 8.5 0.92 0.96 

crest construction consolidated 3.3 4.7 7.5 0.95 0.99 
Table 5-5: Reliability updating results alternative B with ERRAGA ("��=�� = 6.0) 

To find out more about the reliability update, several analyses were done with the 
metamodels. First, the posterior parameter distributions of the four most important 
parameters are presented together prior distributions in figure 5-5. The posterior 
distributions are obtained by taking a sample set and creating histograms of only the 
data consistent with the observation, thus construction survival. Then, for insight in the 
implausible part of the parameter space, the correlation matrix of samples causing failure 
in the observation are shown in table 5-8. Finally, a scatter plot in figure 5-7 is presented 
to obtain insight in the prior and posterior failure region of the assessment situation. 
Determining the reliabilities is done with a Gaussian mixture model as the importance 
distribution. However, using sampling data from the mixture model for this figure would 
result in a messy plot, providing little information on the failure domain and how it 
developed after updating. Therefore, a multivariate Gaussian distribution was fitted to 
the prior and posterior samples causing failure in the assessment situation. This 
distribution was used for creating the sample sets presented in figure 5-7. So, the figure 
gives a representation of where in the parameter space failure occurs, but the actual 
shape of the failure domain is different. 
 
The mean value of a failure region is an estimate for the center of gravity of the failure 
distribution, the point in the parameter space around which the probability density of 
failure is evenly distributed. This point is quite like a design point from a FORM analysis, 
which is the point on the limit state line with the highest probability density. The prior 
FORM design points and prior and posterior center of gravity design points are presented 
in table 5-7. It shows that the prior FORM and center of gravity design points are very 
alike. It also shows that after the update, previously unimportant parameters start to 
play an important role. A scatter plot of the prior and posterior domains of failure of all 
the 14 variables is given in appendix E. 
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Survived load condition Crest phase Assessment situation 

FORM reliability "]\�� =  4.0 "]\�� =  5.9 

Parameter Udesign �� Udesign �� 
Water level 0.01 0.00 0.39 0.00 

POP below dike -1.85 0.21 -1.78 0.09 

POP hinterland -2.27 0.32 -2.15 0.13 

Model factor 2.27 0.32 3.85 0.43 

S silty clay -0.94 0.06 -2.94 0.25 

m silty clay -0.08 0.00 -0.92 0.02 

S peat clayey -0.48 0.01 -0.66 0.01 

m peat clayey -0.24 0.00 -0.31 0.00 

S clay silty organic -0.44 0.01 -0.98 0.03 

m clay silty organic -0.11 0.00 -0.18 0.00 

S organic clay -0.75 0.04 -0.21 0.00 

m organic clay -0.32 0.01 -0.01 0.00 

S peat -0.55 0.02 -0.82 0.02 

m peat -0.03 0.00 0.03 0.00 

Table 5-6: Results FORM analyses alternative B 

Design point type FORM Centre of gravity Centre of gravity 

Parameter Prior Udesing Prior Udesing Posterior Udesing 

Water level 0,39 0,38 0,76 

POP below dike -1,78 -1,80 -0,37 

POP hinterland -2,15 -2,29 0,19 

Model factor 3,85 4,08 5,66 

S silty clay -2,94 -2,85 -3,48 

m silty clay -0,92 -0,86 -0,51 

S peat clayey -0,66 -0,75 -0,23 

m peat clayey -0,31 -0,41 -1,16 

S clay silty organic -0,98 -0,95 0,49 

m clay silty organic -0,18 -0,23 -1,31 

S organic clay -0,21 -0,40 -3,19 

m organic clay -0,01 -0,31 -3,20 

S peat -0,82 -0,83 -1,42 

m peat 0,03 -0,02 -0,38 

Table 5-7: Prior and posterior design points of the assessment situation of alternative B 
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Figure 5-5: Prior and posterior distributions of the four important parameters 

  
Water POP 

below 
POP 

besides 
Model 
factor 

S silty 
clay 

m 
silty 
clay 

S peat 
clayey 

m peat 
clayey 

S clay 
silty 

organic 

m clay 
silty 

organic 

S 
organic 

clay 

m 
organic 

clay 

S 
peat 

m 
peat 

Water 1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

POP below 1 -0,16 0,31 -0,14 -0,07 -0,07 -0,02 -0,05 -0,02 -0,07 -0,02 -0,04 0,00 

POP besides 
 

1 0,47 -0,11 -0,04 -0,09 -0,07 -0,08 -0,03 -0,08 -0,07 -0,10 0,00 

Model factor 
 

 1 0,20 -0,01 0,07 0,03 0,11 0,01 0,11 0,05 0,12 0,01 

S silty clay 
 

  1 0,06 -0,06 -0,03 0,01 -0,01 -0,25 -0,07 -0,05 0,00 

m silty clay 
 

   1 0,01 0,00 0,02 0,00 -0,06 -0,01 0,00 0,00 

S peat clayey     1 0,00 -0,01 0,00 -0,01 -0,01 -0,02 0,00 

m peat clayey      1 0,00 0,00 -0,01 0,00 0,00 0,00 

S clay silty organic       1 0,00 -0,06 -0,02 -0,02 0,00 

m clay silty organic        1 -0,01 0,00 0,00 0,00 

S organic clay 
 

        1 0,04 0,00 0,00 

m organic clay 
 

         1 -0,01 0,00 

S peat 
 

          1 0,00 

m peat 
 

           1 

Table 5-8: Correlation matrix disregarded samples alternative B (only top half is given for readability) 
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Figure 5-6: Comparison of limit state functions in the observation and assessment situation for 

alternative B 
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Figure 5-7: Prior parameter distributions and prior and posterior domains of failure  

 

5.5 Reliability update observed water level 
Information about the survival of an observed water level could be useful for reliability 
updating, see for example Schweckendiek, Kanning, et al., (2017). The update with daily 
circumstances in paragraph 5.2 actually already was an update with an observed water 
level, which is the daily water level of 0.4 m NAP. Whether observing a more extreme 
water level is useful for this case study is demonstrated by a reliability update using a 
water level with a return period of 100 years. It is determined with the extreme water 
level distribution given in paragraph 4.3.1 and is 3.23 m NAP. The result is presented 
in table 5-9. 
 
Survived load condition ��j��j ��ol ��ol,���k� ���lmkj��j ���ol ���ol,���k� 

crest construction 6.0 5.8 5.8 6.3 1.03 1.03 
Table 5-9: Result for updating with an observed water level using ERRAGA 
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5.6 Overview updating results 
All updating results are collected in table 5-10. Table 5-11 gives an overview of the 
FORM analyses. The presented FORM results are for the metamodels trained with the 
critical slip plane from the assessment situation. 
 

Survived load condition ��ol ��ol,���k� ���lmkj��j ���ol ���ol,���k� 

original case: berm phase 6.7 8.2 6.0 1.14 1.21 
original case: crest phase 6.9 7.6 6.0 1.09 1.12 
original case: daily conditions 6.1 6.1 6.0 1.05 1.05 
original case: 1/100-year water level 5.5 5.5 6.3 1.03 1.03 
alternative A: crest phase 4.3 5.6 6.1 0.98 1.04 
alternative B: crest phase 3.1 4.0 8.5 0.92 0.96 
alternative B: crest phase, consolidated 3.3 4.7 7.5 0.95 0.99 

Table 5-10: Overview of reliability updating results ("��=�� = 6.0) 
 

Case Original Alternative A Alternative B All 

Load condition 
Berm 
phase 

Crest 
phase 

Daily 
conditions 

Crest phase Crest phase 
Assessment 
situation 

FORM reliability 8.1 7.5 6.1 5.5 4.0 5.9 

Parameter �� �� �� �� �� �� 
Water level 0.00 0.00 0.00 0.00 0.00 0.00 

POP below dike 0.17 0.14 0.09 0.22 0.21 0.09 

POP hinterland 0.22 0.16 0.15 0.29 0.32 0.13 

Model factor 0.29 0.36 0.45 0.35 0.32 0.43 

S silty clay 0.03 0.28 0.24 0.04 0.06 0.25 

m silty clay 0.00 0.00 0.02 0.00 0.00 0.02 

S peat clayey 0.01 0.02 0.02 0.01 0.01 0.01 

m peat clayey 0.00 0.00 0.00 0.00 0.00 0.00 

S clay silty organic 0.00 0.03 0.03 0.03 0.01 0.03 

m clay silty organic 0.00 0.00 0.00 0.01 0.00 0.00 

S organic clay 0.25 0.00 0.00 0.02 0.04 0.00 

m organic clay 0.01 0.00 0.00 0.01 0.01 0.00 

S peat 0.03 0.01 0.02 0.02 0.02 0.02 

m peat 0.00 0.00 0.00 0.00 0.00 0.00 

Table 5-11: Overview FORM analyses 
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5.7 Optimized dike design 
The reliability update with the crest construction phase of alternative B turned out to 
be very effective. It resulted in a large reliability update not accounted for in the design. 
A higher reliability seems nice, but a dike reinforcement always has negative aspects 
such as high costs, nuisance for residents nearby and demolishing houses for creating 
space. From this perspective, it is interesting to see if a less radical dike improvement 
would be possible with inclusion of the reliability update.  
 
Therefore, three updates are done with a berm of reduced cross-sectional area, with 
reductions of 50%, 75% and without a berm. The reduction of 50% is applied to the 
length of the berm, which decreases from 10 to 5 meters. The additional reduction needed 
for the 75% update was applied to the height of the berm, decreasing from approximately 
2 to 1 meter. In the reinforcement, the berm is initially constructed larger than the 
design, probably to enhance settlement. This has effect on the stress history of the subsoil. 
Therefore, the cross-sectional area of initial over-dimensioned berm is reduced with the 
same percentage in each case. The results are presented in table 5-12. The safety factor 
of the observation using a free slip plane search is 0.92 for each update, as the crest 
construction phase takes place before constructing the berm. From the updates follow 
that a berm with just 25% of the cross-sectional area of the original berm provides a 
similar reliability after updating as the original dike design. The reduced berm design is 
presented in figure 5-8. 
 
The observation takes place before constructing the berm, which means that reducing 
the berm dimensions would have been possible during the dike reinforcement. So, the 
combination of updating with construction survival and adaptation of the dike design 
has potential to save costs and reduce other negative effects in future dike reinforcements. 
 
Survived load condition Berm reduction ��j��j ��ol,���k� ���lmkj��j ���ol,���k� �� 

alternative B: crest phase 0% 6.0 4.0 8.5 0.96 1.03 
alternative B: crest phase 50% 5.0 3.5 7.4 0.95 1.00 
alternative B: crest phase 75% 4.3 3.3 6.1 0.93 0.97 
alternative B: crest phase 100% 3.6 3.2 5.0 0.92 0.94 

Table 5-12: Reliability updating results for a reduced dike improvement design 

 
Figure 5-8: Original and adapted dike design 



5.8 Discussion  67 

5.8 Discussion 
Update original case 

The prior reliability analysis already showed that the reliability during the construction 
phases was greater than in the assessment situation. That the survival of these relatively 
reliable loading conditions is not effective for reliability updating becomes apparent from 
the update with the berm and crest construction phase, which showed no effect. Besides 
the higher reliability of the observation, also the similarity of sliding planes in the 
observed and assessment situation plays a role. This is due to the assumption that 
uncertainty can only be updated if the considered slip planes are equal. Therefore, it was 
chosen to train the observation metamodels with the critical slip planes from the 
assessment situation (see paragraph 3.2.1 for details). The resulting reliability, "���,5=���, 

shows how critical the observed loading condition was for the slip plane area relevant to 
the assessment situation. From the prior analysis followed that the main sliding modes 
of the berm phase and assessment situation are different (figure 4-9). The difference 
between "���,5=���  and "���  of the berm phase shown in table 5-10 now also 

demonstrates that the loading conditions in the observation are unimportant for the slip 
plane area of the assessment situation. This dissimilarity of slip planes for the crest phase 
is a less but still present, as is seen by comparing "���,5=��� and "���. 
 

The situation during daily loading conditions on the other hand, has a reliability like 
the assessment situation and equal values for "���,5=��� and "���, indicating similarity of 

the sliding modes. Also, the importance factors are almost identical (table 5-11). For 
two linear limit state functions in U-space it holds that they are parallel if the importance 
factors are equal. In a FORM analysis the limit state function is linearized in the design 
point, meaning that two limit state functions with equal importance factors are at least 
parallel in the design points. That the similarity of importance factors is an indication 
for parallelism of limit state functions can be seen in figure 5-2, where the limit state 
functions of the daily conditions and assessment situation is presented. The lines are 
quite parallel, with the line for the assessment situation closest to the origin. This is 
explained by the smaller reliability in the assessment situation. In the two parameter 
graphs (non-diagonal), the area beyond the limit state line of the observation seen from 
the origin is the implausible area. The parameter combinations in that area would lead 
to failure in both the observation and assessment situation and are disregarded when 
updating the reliability. The area between the limit state lines is thus the area 
contribution to the updated probability of failure, where only failure in the assessment 
situation is predicted. Although it seems small, apparently the bulk of probability 
density is between those lines, as the update is not effective. Note that the limitation of 
presenting only two of the fourteen probably plays a role here. If the limit state line of 
the observation would be on the other side of the assessment limit state line, then this 
would be a very strong case for reliability updating. Then most of the parameter sets 
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leading to failure in the assessment situation would also lead to failure in the observed 
situation, resulting in a large update. 
 
Update alternative A 

It is concluded that the loading conditions during construction and in the daily 
conditions are not severe enough to lead to an update in the original case. Therefore, 
two alternative construction sequences are used to see if a more severe loading condition 
during construction is effective for updating the reliability. In alternative A, the 
construction sequence is altered such that a partial crest raise takes place before 
constructing the berm. The partial crest raise is used as the observed situation. The 
reliability of the observed situation "��� of alternative A is indeed much lower than in 
the assessment situation. However, the slip plane region relevant for the assessment 
situation is not affected severely, as demonstrated by the higher reliability "���,5=���, 

similar to the assessment reliability. This is explained by comparing the dominant sliding 
modes of the observation and assessment situation in figure 5-3. The sliding part is 
smaller and shallower than the main mode in the assessment situation. This dissimilarity 
in important sliding modes causes the update to be insignificant. The update shows a 
small effect of 0.1 in reliability, which is not big with respect to the uncertainty interval 
of the metamodels (0.3 at 99% certainty for a reliability around 6). So, this loading 
condition is not more critical than the assessment situation for the slip plane area 
relevant to the assessment situation. Using the observed construction survival for 
updating does not have a significant effect. 
 
The update with the daily conditions in the original case showed that similar importance 
factors are an indication for parallel limit state functions. The importance factors of the 
update of alternative A are not very similar, as can be seen in table 5-11. The importance 
of the POP values is smaller in the assessment situation, while the shear strength ratio 
of silty clay is much more important. The difference in importance of the parameters is 
partially explained by the slip plane dissimilarity, but also due to the loss of stress 
history caused by raising the dike, as discussed in the prior reliability analysis (paragraph 
4.4.6). The dissimilarity of importance factors can be seen in the plot of the limit state 
lines in figure 5-4. The limit state lines as a function of both the POP variables are still 
parallel, but the remaining parameter plots are not and have crossing points.    
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Update alternative B 

In alternative B the construction phasing is altered such that the total crest is raised 
before constructing the berm. Updating with the crest construction phase shows to be 
very effective, with the reliability increasing from 6.0 to 8.5. Not only "���, but also "���,5=��� is significantly lower than the prior reliability, which was not the case in 

alternative A. The higher crest in the observation adds extra driving force to the failure 
mechanism. The smaller sliding mode is still most important for the observation, but 
the extra driving force causes the deeper sliding mode to become relevant too, as is seen 
from a lower "���,5=���.  

 
Analyzing updated parameter distributions could provide some insight into the origin of 
the update. However, the updated distributions shown in figure 5-5 cannot point out one 
or more parameters that were of great influence solely. Only four distributions are shown 
but the other distributions are not visually altered as well. Possibly, the update is mainly 
caused by the exclusion of combinations of unfavorable parameter values. Therefore, the 
correlation matrix of disregarded samples is presented table 5-8. It shows that 
combinations of low values of the POP, shear strength ratio of silty clay and high values 
of the model factor are correlated, with absolute correlations of 0.11 to 0.47. It is not a 
surprise that the updating mainly takes place through these four variables, as the design 
point from the prior reliability analysis showed these variables to be most important (see 
table 5-11). Although, they are not the only contributors. The rest of the parameters 
also show some correlation with the important four, indicating that it really is a 
combination of unfavorable parameters. 
 
Updating the reliability is reducing uncertainty. And, apparently in this case, 
uncertainty about the occurrence of parameter combinations is reduced. It results in a 
change in the joint probability distribution, which might affect the influence of 
parameters on the slope reliability. To see a possible change of influence, the prior and 
posterior center of gravity design points are determined and presented in table 5-7. It 
shows that the design point changed significantly after updating. The values for the 
POP clearly become less important, while the model factor and the shear strength ratio 
of silty clay grow in importance. Also, the shear strength parameters of organic clay and 
peat significantly grow in importance. A visual representation of the shift in design point 
is given in figure 5-7, in which two phenomena are observed. For the POP variables, the 
failure distributions shift towards the prior mean and become almost the same shape. 
The correlation matrix of implausible parameter sets in table 5-8 shows correlation for 
unfavorable combinations of the POP with other variables. From the shift in failure 
distribution is concluded that this causes the POP to lose its dominant role in causing 
slope instability. Where a-priori failure was most likely for low percentiles of the POP, 
now failure at a certain POP value is almost as likely as the occurrence of that value, 
showing the indifference of model outcome to the POP. So, the first phenomenon is a 
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shift of the design point towards the parameter prior mean due to the reduction of 
uncertainty. The second phenomenon is a shift of the design point away from the mean 
due to the increased relative influence of certain parameter sets. This is the case for the 
model factor and the shear strength ratio of silty clay in figure 5-7. This part of the 
parameter space contributed little to the prior probability of failure because of its low 
probability of occurrence. But, due to updating, this part becomes relevant. 
 

Update with a water level 

The reliability update with a 1/100-year water level resulted in an update of 0.3 in terms 
of the reliability index. So, there is an effect, but not a very big one considering that a 
1/100-year water level is quite a unique observation. From the prior reliability analysis 
followed a squared importance factor close to zero for the water level, indicating its 
limited influence. A large updating effect was therefore not expected.  
 

The role of pore water pressure 

At forehand, the excess pore water pressure was assumed to be a critical factor for 
updating the reliability. To see the sensitivity of the update to the excess pressure, an 
update was done with the crest construction phase of alternative B, without the excess 
pressure. It turns out that the reliability index still increased from 6.0 to 7.5. It shows 
that besides the excess pressure, the increased driving load is of major importance for 
updating the reliability. Although the combination with excess pore water pressure is 
most effective, updating the reliability to 8.5. This however does show that exact 
knowledge of the extreme excess pressure situation is not a strict requirement. In this 
case study the excess pore water pressure was treated as a deterministic variable. 
However, uncertainty always plays a role due to scarcity of data or measurement 
inaccuracy. Doing a cautious estimate of the excess pressure or including uncertainty in 
the schematization would however still cause a significant update, with a reliability 
between 7.5 and 8.5. 
 

FORM reliability  

For each loading condition the reliability was also determined with a FORM analysis, 
applied to the fitted metamodels. Comparing the reliabilities in table 5-10 with those in 
table 5-11 shows that the difference in reliability is 0.1 at most. That makes FORM a 
useful estimator of the reliability. Furthermore, it can serve as an indication for the 
effectiveness of a reliability update, as the reliability in the observation "���,5=��� 

compared to the reliability in the assessment situation turned out to be one of the key 
indicators. The use of FORM for estimating whether an update would have effect is 
useful because it is a widely used well know reliability method, while metamodelling can 
be omitted initially.   
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Factors of safety 

FORM showed to be good for indication if some observation would be useful for 
reliability. An even more straightforward indication is given by the factors of safety from 
semi-probabilistic analyses. Table 5-10 shows that the loading conditions with a lower 
safety factor than in the assessment situation are effective for reliability updating, using 
the critical slip plane from the assessment in both situations (+R���,5=���). The safety 

factor in the assessment situation is 1.03. Table 5-10 shows that the load cases with 
safety factors 1.04 and 1.05 are not effective for reliability updating, while the load case 
with a safety factor of 1.03 shows an update of 0.3 in the reliability index. So, the safety 
factor in the observed situation with the critical slip plane from the assessment, is in 
this case a very good indication for the effectivity of a reliability update. 
 

Failure probability during construction 

In this case study, the construction sequence was altered to create a more severe observed 
situation in terms of stability. Updating with this alternative construction sequence 
showed to be very effective. The reliability of the observed situation is in the order of 3 
in reliability index, or 1/1000 in terms of failure probability, which makes survival of 
this loading condition plausible. However, there are two considerations for creating a 
severe loading condition for sake of a reliability update, which are the flooding 
probability during construction and the cost efficiency. 
 
Deliberately creating a loading condition with a decreased reliability conflicts with the 
purpose of the dike reinforcement and the dike itself. So, it needs to be considered 
whether such a loading condition is acceptable from the perspective of flood risk. The 
computed reliability of 3 however concerns the occurrence of a slope instability, and not 
the occurrence of a flooding event. The flooding reliability can be determined by 
considering the event that the water level exceeds the residual water retaining height 
after an instability, within the period until the dike is repaired. This reliability may 
already be significantly different from the slope reliability. The flooding reliability can 
be increased by constructing the critical step in the summer season, when high water 
levels are less likely. If additionally, preparations are done for emergency repairs in case 
of an instability to reduce the flooding opportunity window, then the flooding reliability 
during construction can be increased further. This way, creating a more severe loading 
condition may be acceptable from the flood risk point of view. 
 
The second consideration in creating a severe loading condition is the cost efficiency. 
Incorporating construction survival in a dike improvement design has a financial benefit, 
as shown in section 5.7. However, it also has a financial downside. Increasing the failure 
probability during construction increases the probability that a repair is needed, thus 
increasing the costs expectation. Of course, the expected benefits should exceed the 
increase in expected costs. The cost efficiency can be assessed and optimized by 
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considering multiple loading conditions in a decision tree framework for cost benefit 
analysis, considering all costs like failure costs or additional monitoring efforts (van der 
Krogt et al., 2020). 
 

ERRAGA 

ERRAGA has shown to be suited for modelling the slope stability behavior of a dike 
using LEM. In this case study with a typical reliability index of six, fourteen variables 
were treated as stochastic. Training a metamodel for this problem with the chosen 
convergence criterion takes about two to four hours with approximately 300 model 
evaluations, using a computer with 16GB of installed memory (RAM) and a 3.5GHz 
processor. For performing a reliability update, two models must be trained, taking about 
six to ten hours. More than double the time is needed compared to training a single 
model because of the growing size of the training set. Initially, the slope stability 
calculations take up most of the time, with fifteen seconds each. But the time needed 
for fitting the metamodel grows when expanding the training set, taking about two min 
for a training set of 300 model evaluations, including the slope stability calculation. 
Addressing this problem with Monte Carlo simulation would require 4 ⋅ 10)) realizations 
(equation (7) with CoV = 0.05), resulting in a computation time of thousands of years. 
This can of course be enhanced by using more advanced simulation techniques and 
parallel processing, but clearly demonstrates the added value of metamodelling for 
reliability problems like these. An overview of the mentioned numbers on training the 
metamodels is presented in table 5-13. Some experiences regarding the use of ERRAGA 
and the influence of ERRAGA’s settings is presented in appendix A. 
 

Characteristic Value 

Number of model evaluations single model (on average) 300 
Single model training time (on average) 2-4 hours 
Double model training time (on average) 6-10 hours 
Duration single slope stability analysis 15 seconds 

Table 5-13: Model training statistics 
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6  

Conclusion 

In this thesis, an approach to reliability updating using construction survival is presented 

and applied to a case study dike improvement. Based on the reliability update, an 

optimized dike design is presented. This chapter presents the main findings of this 

research with which the research questions are answered. Also, some points of discussion 

are presented, as well as several recommendations for improving the developed 

methodology.  

 

6.1 Findings 
The objective of this thesis is to update dike reliability with construction survival using 
metamodelling. With this objective, the main research question was formulated in 
chapter 1, along with three sub-questions. This section answers the sub-questions, after 
which an answer to the main question is presented.  
 
What are the characteristics of a dike improvement leading to a significant reliability 

update with survival of the construction? 

 

One of the two most important characteristics for an effective reliability update is the 
similarity of probable slope failure modes in the observation and after improvement. The 
total probability of failure after improvement generally consists of contributions from 
various sliding modes. If the stability of an important sliding mode reaches a critical 
level during improvement and survival is observed, then this observation might carry 
information on the strength involved in that sliding mode. Updating the reliability with 
this loading condition could therefore reduce the failure probability. The second 
important characteristic is the level of severity of the observed loading condition. The 
severity of a loading condition is usually expressed by the reliability. However, only 
sliding modes significantly contributing to the failure probability after improvement are 
relevant for the effectivity of the update. If was found that the reliability of the observed 
situation, determined by only considering the important sliding modes after 
improvement, is a good indication for how severe the observation was for the sliding 
modes of interest. If this reliability is lower than the reliability after improvement, then 
the loading condition is considered to be severe and an update is expected to have effect.  



6.1 Findings  74 

 
The difference in influence of the stochastic parameters on the stability in the observed 
and assessment situation also plays a role in the effectivity of the update, although this 
characteristic is less apparent. It was found that the similarity of FORM importance 
factors in the observed and assessment situation indicates parallel limit state lines. And 
moreover, that a reliability update is very effective if the limit state lines are parallel 
and the reliability in the observed situation is lower. When the limit state functions are 
parallel, but the observed situation is more reliable, then no significant effect is expected 
from updating. In the case that the limit state lines are not parallel, and reliabilities are 
similar, then no decisive indication can be given. Although, the lower the reliability in 
the observation, the more likely an effective update is. So, using the FORM reliability 
and the importance factors as a proxy for parallelism, an indication can be given about 
the effectivity of a reliability update.  
 
Yet, a more straightforward indication for a significant reliability update using 
construction survival is obtained by looking at the semi-probabilistic factors of safety. 
The case study showed that if in both the observed and assessment situation the critical 
sliding plane from the assessment is used, then reliability updating is effective if the 
safety factor of the observed situation is lower.  
 
What is the effect of reliability updating with construction survival compared to reliability 

updating with an observed water level?  

 

The effect of updating with a water level depends on how important the water level is 
for stability and how extreme the observed water level was. In the case study, it was 
shown that for a situation in which the water level is of minor influence, updating with 
an extreme water level has a limited effect. The observed extreme water level did not 
cause a severe loading condition in terms of stability. For the same situation, a significant 
effect could be achieved by updating with construction survival. So, in this situation the 
effect of updating with construction survival is much bigger. Part of the explanation is 
the severity of the observed situation, as discussed in the previous sub-question. But 
additionally, the amount of unreducible uncertainty also plays a role. The uncertainty 
in the water level cannot be reduced, as it is not time-invariant. If the failure probability 
is mainly governed by the uncertainty of the water level, then updating is not expected 
to be effective. This can only be the case if the water level is important for the slope 
stability situation. So, for situations in which the water level is less important, possibly 
the failure probability is mainly determined by parameters with reducible uncertainty, 
like soil parameters. Situations with a limited influence of the water level are thus good 
candidates for reliability updating with construction survival. 
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However, situations in which an extreme water level creates a severe loading condition, 
and in which a large part of the failure probability is governed by reducible uncertainty, 
updating with a water level might be more effective. Also, situations in which only minor 
changes are done to the dike profile might not cause a severe loading condition during 
construction, resulting in no effect for reliability updating. The relative effect of 
reliability updating with a water level versus construction survival will therefore differ 
from case to case, depending on the influence of the water level, how extreme the 
observed water level was in terms of stability and how critical the stability situation 
during improvement was. 
 
How can metamodelling be used for reliability updating with past performance regarding 

slope stability of dikes? 

 

The case study in this thesis shows that ERRAGA can model a full probabilistic slope 
stability problem. Furthermore, the metamodels in the case study show logical behavior 
and uncertainty regarding the model outcome can be reduced to an acceptable level. The 
developed methodology with two regression metamodels, for the observed situation and 
final situation, has shown to be successful. Metamodelling makes reliability updating of 
slope stability problems feasible, reducing the analysis time from at least days to 
approximately 10 hours, compared to an importance sampling method.  
 
The reduction in computational time is large because using a sampling method would 
involve many realizations, each requiring a (relatively) time-consuming model 
evaluations (i.e. slope stability calculations). However, expensive model evaluations 
leading to large computational times is not unique to slope stability problems. Examples 
of problems in which this also plays a role are the reliability assessment of quay walls 
and sheet piles and probabilistic settlement predictions. Metamodelling is therefore 
interesting for other fields as well. 
 
What is the effect of reliability updating with construction survival of a dike 

improvement? 

 
From answering the sub-questions, it became clear that the effect of reliability updating 
using construction survival is dependent on a couple conditions. If those conditions are 
right, then a reliability update can decrease the estimate for the probability of failure 
orders of magnitude, as shown by the case study of this research. However, the case 
study also shows that the approach to assessing construction stability in practice leads 
to situations not effective for reliability updating. Though adjusting the sequence of 
construction activities led to a significant update. This makes designing the construction 
phasing with reliability updating in mind promising for future dike reinforcements. In 
the case study, it was found that adapting the dike improvement design after survival 



6.1 Findings  76 

of the critical construction step resulted in a reduction from 10 to 5 meters in length and 
from 2 to 1 meter in height of the berm to be constructed, while achieving the same 
reliability as a priori. So, reliability updating can improve the reliability in hindsight. 
But integrating an update in the dike design and adapting the design during construction 
can have effect beyond improving the reliability only. This method for adapting the dike 
design has the potential to reduce construction costs, limit additional space occupation 
and reduce other negative impacts of a dike reinforcement. 
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6.2 Discussion 
This section goes into some points of discussion regarding the methodology and findings 
from the case study. Recommendations are formed from these points and presented in 
the next section, along with several other recommendations. 
 
In the case study, the construction sequence was altered to create a more severe observed 
situation in terms of stability. The hypothetical survival of this alternative construction 
sequence showed to be very effective for reliability updating. However, deliberately 
creating a loading condition with a decreased reliability seems to conflict with the 
purpose of the dike reinforcement and the dike itself. However, it was reasoned that a 
slope instability does not necessarily causes a flooding event. For a flooding to occur the 
water level must exceed the residual water retaining height after the instability, within 
the period until the dike is repaired. Measures like constructing the critical step in the 
summer and including the seasonality of the water level will limit the flooding probability. 
Additionally, preparing an emergency repair strategy to reduce the repair time and thus 
the period of reduced strength will limit the flooding probability further. This way, 
creating a more severe loading condition may be acceptable from the flood risk point of 
view. 
 
Another point of discussion is the excess pore water pressure. At forehand, the excess 
pressure was assumed to be a critical parameter for updating the reliability. However, 
in the case study it was found that a loading condition with an increased driving load 
can solely result in a significant reliability update. Therefore, in this case exact 
knowledge of the pore water pressure situation is not strictly necessary, as a cautious 
estimate or inclusion of uncertainty would still cause a significant update. This is 
beneficial for future adaptive dike designs, as a dense network of pressure gauges for 
monitoring the head may be a limitation for construction activities. However, it is noted 
that in the case study the water level was barely of influence on the stability. The effect 
of excess pressures on reliability updating may be different for situations in which the 
water level is important. A loading condition with excess pore pressure is to some extent 
similar to a high water situation. In both conditions the shear strength is decreased due 
to an increase in pressure. So, for situations in which the water level is important, the 
amount of excess pressure may be important too. The influence of excess pore water 
pressures may thus differ from case to case and should be examined thoroughly when 
updating the reliability with construction survival. 
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6.3 Recommendations 
In this section several recommendations are done regarding the improvement of the 
methodology and further research. Also, an approach is presented for indicating the 
effectiveness of a reliability update with construction survival, without metamodelling. 
 
This research has shown that reliability updating with construction survival is promising 
for future dike reinforcement. Integration of reliability updating in a dike design can 
reduce the final dimensions of the improvement needed for achieving the reliability 
requirement. From answering the first sub-quest it followed that results from FORM 
analyses and semi-probabilistic analyses provided an indication for whether reliability 
updating with construction survival would be effective. Furthermore, it was found that 
FORM is quite an accurate estimator of the reliability compared to estimates using 
metamodelling. This allows for exploring the potential of incorporating construction 
survival and for making preliminary dike designs, without using metamodelling. This is 
very useful for engineers in practice, as FORM is a well-known and widely used reliability 
method. 
 
Therefore, the approach below is proposed for creating a loading condition during 
construction that is effective for reliability updating. It uses the findings from answering 
the first sub-question. If the analysis concerns a past observation, then step 2 is left out. 
In step 5 the results from the FORM analysis are compared. If the importance factors 
are similar and the reliability in the observed situation is lower, then updating is 
expected to be effective. A larger difference indicates a larger update. When the 
importance factors are similar, but the observed situation is more reliable, then no effect 
is expected. In the case that the importance factors are not similar, and the reliabilities 
are similar, then no decisive indication can be given. Although, the lower the reliability 
in the observation, the more likely an effective update is. In a design process, step 2 – 5 
can be iterated through to explore all possibilities. 
  

1. Determine the critical slip plane of the assessment situation with a semi-
probabilistic slope stability analysis 

2. Create a loading condition with a lower safety factor than in the assessment 
situation, considering the same slip plane 

3. Perform a FORM analysis on the critical slip plane in the assessment situation 
4. Perform a FORM analysis in the observed situation, considering the same slip 

plane 
5. Compare the importance factors and reliabilities. 
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Another recommendation is done regarding an important assumption of the methodology 
developed in this thesis. It was assumed that the reliability can only be updated if the 
two considered slip planes in the observed and assessment situation are equal. The need 
for this assumption originates from the variable nature of the subsoil, which is not 
modelled in the slope stability analyses. Considering two different slip planes can lead 
to unjustly disregarding parameter combinations and hence an overestimation of the 
updated reliability. On the other hand, the observation may also carry information when 
the slip planes are not exactly equal. This causes the assumption to be conservative, 
possibly leading to an underestimation of the updated reliability. To improve the 
reliability updating results, it is therefore recommended to incorporate spatial variability 
into the slope stability analysis. A possibility could be the use of random fields for soil 
parameters (see e.g. Griffiths et al., 2007). 
 
This recommendation follows from the discussion of flood risk in the previous section. In 
is reasoned that creating a critical loading condition, with a relatively low slope 
reliability, may be acceptable in terms of flood risk. This qualitative reasoning however 
does not provide any guidance for what level of slope reliabilities is acceptable. For 
future applications of reliability updating with construction survival, it is recommended 
to quantify the probability of flooding due to a slope instability during construction. To 
this end, it needs to be determined what the water retaining height is after the slope 
failure and what time is needed for repairing the damage. The flooding probability is 
then the simultaneous occurrence of a slope failure and a water level exceeding the 
residual water retaining height. Based on this flooding probability and what probability 
is allowed, a criterion can be determined regarding the slope reliability during 
construction. This would allow for risk assessment and optimization of the effect of 
reliability updating. 
 
Currently, the training of the metamodels is based on their individual uncertainty 
regarding the reliability. This causes the models to be most accurate around the design 
points, where failure is most probable. However, the design point changes by updating 
the reliability. For smaller updates, it is expected that the accuracy of the updated 
reliability is not affected much, as the shift in design point is small. But for larger 
updates causing a significant shift in design point, an improvement in the reliability 
estimate is probably possible. In order to increase the prediction of the updated reliability, 
it is recommended to research a joint learning function and convergence criterion for 
training the two metamodels needed for updating, based on the accuracy of the updated 
reliability. Defining a convergence criterion regarding the updated reliability would be 
useful for assessing the certainty of the outcome. As an improvement involving minor 
adjustments, it is suggested to add a joint learning cycle after convergence of the 
individual metamodels. This can be done by creating an importance sampling 
distribution around the new design point and using the existing learning functions and 
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convergence criterion only on the plausible samples. Yet, a more efficient approach would 
be simultaneous training of the models involving a joint learning function and a 
convergence criterion for the updated reliability from the start of the training procedure. 
 
In the case study of this research, the uncertainty of all parameters was modelled as 
epistemic (reducible), except for the water level. This is a solid assumption for soil 
parameters, but arguable for the uncertainty of the model factor regarding the slip plane 
model. It was reasoned that the unreducible part of the uncertainty is small due to the 
great similarity of the observed and assessment situation. Hence, the uncertainty was 
assumed epistemic. However, in the case study the model turned out to be a significant 
contributor to the reliability update. It is therefore recommended to investigate the 
sensitivity of the update to the amount of unreducible uncertainty and to research how 
much unreducible uncertainty should be accounted for in the model factor. 
 
A final recommendation is done regarding the applicability of reliability updating with 
construction survival. In the case study presented in this thesis the water level is of little 
influence. However, in large parts of the Netherlands and other deltas the water level is 
of great influence, like situations with a thin blanket layer sensitive for uplift. Therefore, 
further research into cases where the water level does play an important role is 
recommended to explore the applicability of reliability updating with construction 
survival. 
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ERRAGA user experience 

This appendix describes a couple of ERRAGA’s settings and gives advice regarding the 
use of these settings. It is meant to make future users of ERRAGA aware of the choices 
regarding these settings and perhaps kickstart their analysis. 
 
Choice of learning function and initial training set size 

Metamodels are trained in ERRAGA with an iterative learning procedure. Additional 
model evaluations are added to the Design of Experiment (DoE) until the metamodel 
fulfills the convergence criterion (see section 2.6). The learning procedure starts by 
drawing a sample pool from the (importance) distribution. In every learning iteration a 
sample is chosen from the sampling pool which is expected to be most informative for 
training the model. The selection of the most informative sample is done by a learning 
function, of which various types are implemented in ERRAGA. This research has 
experimented with using the U-learning and UNIS-learning function, the findings are 
shared here. 
 
The U-learning function selects the sample from the sampling pool for which the 
probability of misclassification is largest (e.g. predicting failure instead of survival and 
vice versa). This is done by considering the absolute ratio of predicted limit state 
outcome and prediction uncertainty. The sample with the smallest ratio is chosen. The 
function was however meant for a sample pool sampled with crude Monte Carlo, in 
which all samples have equal weight. Using the U-learning function together with 
importance sampling causes a suboptimal learning process because sampling weights are 
not included. It leads to preferred learning around the limit state line. This seems 
desirable, but also samples around the limit state line that have a very low sampling 
weight are evaluated, which may not add much information to the training set. However, 
something more important is the general convergence behavior of the metamodel. It was 
found that using U-learning with importance sampling can lead to an insufficient amount 
of realizations around the mean, leading to inaccurate predictions in this region of the 
parameter space, affecting convergence of the model. In the case study it was found that 
for initial DoE of 50 model evaluations, the metamodels did not converge after 800 model 
evaluations. Choosing a larger set of 200 model evaluations did result in convergence.  
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So, the U-learning function is an efficient learning approach for crude Monte Carlo 
sampling in which samples have equal weight, but this is not the case when importance 
sampling is used. Therefore, Van den Eijnden et al. (2021) developed the UNIS-learning 
function in which includes the sampling weight and considers noise in the model. As 
recommended in the article of Van den Eijnden et al. (2021), the UNIS-learn function is 
more suited for combination with adaptive importance sampling. Still, initiating a 
metamodel with an initial DoE of limited size could affect the convergence behavior. In 
the case study it was found that an initial DoE with 50 model evaluations always resulted 
in convergence of the metamodels.  
 
Minimum amount of white noise 

In some computational models a bit of (numerical) noise is present such that performing 
the same calculation twice will result in slightly different answers. This could be 
problematic for training a regression model if it does not consider possible ambiguity due 
to model noise. This is solved in ERRAGA by the possibility to deploy a white noise 
component in the kernel. ERRAGA tries to find a best fit for this white noise component, 
but this can be steered by setting upper and lower bounds the white noise. 
 
In some cases, ERRAGA finds an optimal solution for a regression model with a noise 
term that is lower than the actual noise present in evaluating the model responses, 
possibly overfitting the model. To investigate this behavior a four parameter metamodel 
for slope stability was trained with ERRAGA, using a fixed value for the white noise 
standard deviation ��<. The results are presented in figure A.1, in which the limit state 
outcome is plotted as a function of two of the model parameters. In this example, a 
white noise term with a standard deviation of 0.002 on the limit state outcome is enough 
to obtain a good fit. For the model used in the case study, containing 14 variables, 0.001 
was already enough. Although giving a minimum noise term in the 14-parameter case 
was not necessary most of the time. Based on the findings described above, it is 
recommended to always check the limit state functions for logical behavior and 
overfitting. If overfitting is suspected, then rerunning the analysis with a (increased) 
minimum white noise may yield better results.  
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  ��< = 0 ��< = 0.001 

  ��< = 0.002 ��< = 0.003 

 
Figure A.1: Plot of limit state function for different amounts of white noise 

 

Amount of kernel parameter optimizations 

The kernel parameters of the metamodel are (re)fitted each time the DoE is expanded 
with an extra model evaluation. The fit is based on the maximum likelihood of the kernel 
parameters. A numerical method is used for finding the maxima, as computing the 
likelihood over the total parameters space would be computationally expensive. Using a 
numerical method could however result in finding a local instead of the global maximum. 
To reduce the probability that this occurs, an optimization procedure is implemented2 
in which the maximum likelihood determination is repeated a couple of times, each time 
with a random starting point. The amount of repetitions can be set in ERRAGA with 
the attribute “OptIter” of ERRAGA’s Learn class. 
 
For the fourteen-parameter model used in the case study, it was found that sometimes 
the optimal set of kernel parameters varied strongly by adding a model realization to 
the DoE. This behavior is presented in the left plot of figure A.2, in which the failure 
probability estimate is plotted as a function of the amount of model realizations (made 
with ERRAGA’s ConvPlot.py). This behavior occurs because the most likely set of 

                                      
2 Implemented in Scikit-learn, the Python Machine Learning model used in ERRAGA (Pedregosa et al., 2011) 
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kernel parameters is not found every time that a model evaluation is added to the DoE. 
By default, the number of optimizations is 10. For the cases treated in this research, 
increasing it to 20 solves the behavior observed in the left plot and results in the behavior 
presented in the right plot. It is noted that the figures below are made with different 
models, which explains the difference in failure probability. 
 

  
Figure A.2: Convergece plot with with 10 kernel parameter optimizations (left) and 20 

kernel parameter optimizations (right)  

 

Determining marginal parameter distributions 

A last remark is made on the use of ERRAGA’s CrossScatter.py for constructing the 
marginal (updated) parameter distributions together with importance sampling.  
CrossScatter can be used to visualize the samples drawn in the reliability analysis and 
gives insight in which samples lead to failure, as presented in the figure A.2. It was found 
that when using importance sampling, the marginal distributions might not turn out as 
expected and can have large spikes, shown on the diagonal of figure A.2. This behavior 
is caused by under sampling of the region of failure. A couple of samples with a high 
importance sampling weight dominate the histograms as shown. In this case the default 
amount of 100 000 samples in ERRAGA is not enough for constructing the marginal 
distributions. Increasing the sample size solves the problem.  
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Figure A.3: Samples plotted in U-space (blue: all samples, orange: samples leading to failure) 
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ERRAGA’s learning algorithm 

 
Original ERRAGA learning algorithm (Van den Eijnden et al., 2021) 
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Compression tests Salmsteke – 

Schoonhoven 

Clay below dike 

        

Sample name location surface 
level 
[m+NAP] 

top 
sample 
[m+NAP] 

bottom 
sample 
[m+NAP] 

in-situ 
effective 
stress [kPa] 

yield 
stress 
[kPa] 

POP 
[kPa] 

OCR 
[-] 

163_DP111+003_B_BERM_23a1 berm 2.25 -6.55 -6.65 74.4 101.7 27.3 1.4 

413_DP168+051_B_BERM_031-a berm 1.88 -10.12 -10.48 118.2 133.7 15.5 1.1 

430_DP168+050_B_KR_011-a crest 5.83 0.83 0.56 72.3 134.0 61.7 1.9 

438_DP168+050_B_KR_017-a crest 5.83 -1.57 -1.85 88.3 130.6 42.3 1.5 

441_DP168+050_B_KR_019-a crest 5.83 -2.37 -2.66 94.0 109.7 15.7 1.2 

526_DP186+000_B_BERM_011-a berm 3.03 -0.97 -1.29 56.2 110.6 54.4 2.0 

554_DP186+000_B_BERM_033-a berm 3.03 -9.77 -10.06 102.1 153.8 51.7 1.5 

577_DP185+100_B_KR_015-a crest 5.47 -1.33 -1.62 85.3 155.8 70.5 1.8 

581_DP185+100_B_KR_018-a crest 5.47 -2.53 -2.82 94.5 140.1 45.6 1.5 

 
Clay besides dike 

        

Sample name location surface 
level 
[m+NAP] 

top 
sample 
[m+NAP] 

bottom 
sample 
[m+NAP] 

in-situ 
effective 
stress [kPa] 

yield 
stress 
[kPa] 

POP 
[kPa] 

OCR 
[-] 

79_DP111+000_B_BUT_09a2 outer toe 2.19 -1.21 -1.34 24.4 67.7 43.3 2.8 

93_DP111+000_B_BUT_20a1 outer toe 2.19 -5.41 -5.79 35.6 49.3 13.7 1.4 

112_DP111+003_B_AL_07a1 hinterland 0.66 -1.74 -2.01 43.0 65.9 22.9 1.5 

367_DP168+049_B_AL_022-a hinterland -0.86 -9.26 -9.58 52.4 68.4 16.0 1.3 

369_DP168+049_B_AL_023-a hinterland -0.86 -9.66 -10.02 55.3 83.0 27.7 1.5 

461_DP168+055_B_BUT_007-a outer toe 2.09 -0.31 -0.67 37.1 66.3 29.2 1.8 

511_DP185+099_B_AL_021-a hinterland -0.62 -8.62 -8.95 43.6 92.6 49.0 2.1 

514_DP185+099_B_AL_023-a hinterland -0.62 -9.42 -9.77 48.5 81.8 33.3 1.7 
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Peat below dike 

        

Sample name location surface 
level 
[m+NAP] 

top 
sample 
[m+NAP] 

bottom 
sample 
[m+NAP] 

in-situ 
effective 
stress [kPa] 

yield 
stress 
[kPa] 

POP 
[kPa] 

OCR 
[-] 

66_DP110+099_B_KR_24a1 crest 6.56 -4.24 -4.39 142.1 188.8 46.7 1.3 

147_DP111+003_B_BERM_11a1 berm 2.25 -1.75 -1.85 47.6 71.7 24.1 1.5 

152_DP111+003_B_BERM_14a1 berm 2.25 -2.95 -3.15 51.1 71.5 20.4 1.4 

167_DP111+003_B_BERM_26b1 berm 2.25 -7.95 -8.05 79.8 115.7 35.9 1.4 

393_DP168+051_B_BERM_016-a berm 1.88 -4.12 -4.47 74.1 107.5 33.4 1.5 

396_DP168+051_B_BERM_018-a berm 1.88 -4.92 -5.27 76.2 101.5 25.3 1.3 

398_DP168+051_B_BERM_020-a berm 1.88 -5.72 -6.07 76.9 108.4 31.5 1.4 

453_DP168+050_B_KR_027-a crest 5.83 -5.57 -5.96 109.8 125.5 15.7 1.1 

538_DP186+000_B_BERM_020-a berm 3.03 -4.57 -4.95 77.6 123.8 46.2 1.6 

540_DP186+000_B_BERM_022-a berm 3.03 -5.37 -5.68 78.3 117.2 38.9 1.5 

544_DP186+000_B_BERM_024-a berm 3.03 -6.17 -6.48 79.2 144.8 65.6 1.8 

591_DP185+100_B_KR_026-c crest 5.47 -5.85 -6.00 108.2 175.1 66.9 1.6 

 
Peat besides dike 

        

Sample name location surface 
level 
[m+NAP] 

top 
sample 
[m+NAP] 

bottom 
sample 
[m+NAP] 

in-situ 
effective 
stress [kPa] 

yield 
stress 
[kPa] 

POP 
[kPa] 

OCR 
[-] 

86_DP111+000_B_BUT_14a2 outer toe 2.19 -3.21 -3.36 28.4 90.0 61.6 3.2 

89_DP111+000_B_BUT_16a1 outer toe 2.19 -3.81 -4.20 29.4 78.4 49.0 2.7 

127_DP111+003_B_AL_20a2 hinterland 0.66 -7.09 -7.23 75.2 98.4 23.2 1.3 

128_DP111+003_B_AL_21a1 hinterland 0.66 -7.34 -7.73 76.2 111.3 35.1 1.5 

130_DP111+003_B_AL_23a1 hinterland 0.66 -8.14 -8.48 77.3 98.1 20.8 1.3 

345_DP168+049_B_AL_006-a hinterland -0.86 -2.86 -3.06 18.3 37.0 18.7 2.0 

348_DP168+049_B_AL_008-a hinterland -0.86 -3.66 -4.04 19.0 39.0 20.0 2.1 

353_DP168+049_B_AL_012-a hinterland -0.86 -5.26 -5.41 20.0 60.8 40.8 3.0 

473_DP168+055_B_BUT_019-a outer toe 2.09 -5.11 -5.41 69.2 121.1 51.9 1.7 

475_DP168+055_B_BUT_020-a outer toe 2.09 -5.51 -5.73 70.6 107.7 37.1 1.5 

491_DP185+099_B_AL_007-a hinterland -0.62 -3.02 -3.39 23.0 58.5 35.5 2.5 

494_DP185+099_B_AL_009-a hinterland -0.62 -3.82 -4.20 24.0 59.7 35.7 2.5 

497_DP185+099_B_AL_011-c hinterland -0.62 -4.93 -4.99 23.8 44.8 21.0 1.9 
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Limit state plot 
Assessment situation base case: 
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Prior and posterior domain of failure 
Alternative B, prior parameter distributions and prior and posterior failure domains: 

 

 


