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• The fracture toughness of WELs and
comparable microstructures were ob-
tained using elasto-plastic micro frac-
ture experiments

• The fracture toughness of WELs is com-
parable to martensite

• The fracture toughness of WELs can be
estimated from the hardness via a pro-
posed empirical relation.

• Various criteria for interpreting the J-
integral at small scales are quantita-
tively compared and discussed.

• We determined critical defect size in
WELs.
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The fracture behavior of a white etching layer formed on the rail surface in pearlitic steels during the rail-wheel
contact is investigated using indentation-based microcantilever fracture tests. The sample thickness is in the
order of 5 μm. The local fracture toughness of the white etching layer, its neighboring brown etching layer, mar-
tensite and pearlite with similar chemical composition are determined and compared to ferritic steels. All sam-
ples show stable crack growth accompanied by significant plasticity at the crack tip. The toughnesses scale
inversely with the microhardness. The white etching layer exhibits a toughness of 16.0 ± 1.2 MPa m1/2 which
is in the same range as the fully martensitic steel. It is shown that the local fracture toughness can be roughly es-
timated based on the Vickers hardness of the white etching layer. Also, an estimation of a critical defect size in
white etching layers which considerably furthers the understanding of crack initiation ismade in this study. Fur-
thermore, various criteria for analyzing the elasto plastic fracture toughness are compared.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

White Etching Layers (WELs) are nano-crystalline regions in
iron carbon based alloys which were subjected to a complex loading
r).

. This is an open access article under
scenario comprised of (i) severe mechanical loading, (ii) thermal load-
ing and, often, (iii) electrical loading. WELs are of enormous economic
importance as they cause degradation of materials subjected to contact
fatigue failure [1–6]. Examples are rail tracks and wheels [1,6] or hard-
turned surfaces [7]. The origin of WELs and their forming mechanisms
are currently discussed intensively [2,8–13]. The two most prominent
formation models either hypothesize the formation via a martensitic
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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transformation of the pearlitic steel [4,14,15] or the formation via severe
plastic deformation [16,17].

WELs are acting often as crack initiation sites [1,2,4–6,18,19]. Two
crack types are reported: (i) cracks perpendicular to theWEL surface
propagating through the WEL and (ii) cracks at the interface be-
tween WEL and pearlite [18,20,21]. Perpendicular cracks initiate at
the sample surface and propagate rapidly through the WEL until
they reach the interface [21]. This behavior has been associated
with the mechanical properties of WELs which are commonly as-
sumed to be brittle. However, up to now only indentation has been
performed to assess the mechanical properties of WELs which only
gives access to hardness values, but the fracture toughness remains
unknown. At the WEL-pearlite interface, the cracks either are
deflected and run along the interface or propagate straight through
the pearlite. The interface cracks can also start at the sample surface
and propagate along the WEL-pearlite interface. These crack often
form branches at a later stage [21]. Even though numerous studies
on crack initiation and propagation in WEL exist, a thorough under-
standing of the WEL formation mechanisms and of the crack forma-
tion in the WEL vicinity is currently missing.

New views on the microscopic behavior of materials are offered by
the ability to isolate micron and submicron sized material volumes
using focused ion beam (FIB)machining followed bymechanical testing
of these samples. This comprises methods for measuring the material
strength during compression, tension and bending [22–24], and local
measurements of the fracture toughness [25]. In situ micromechanical
fracture testing is well established for brittle materials (e.g. single crys-
tal Si [26], bulk metallic glasses [27] and hard coatings [28–30]) in
which linear elastic fracture mechanics (LEFM) applies. However, for
semi-brittle/ductilematerials – inwhich significant plasticity occurs be-
fore failure – elasto-plastic fracture mechanics (EPFM) are required.
EPFM is less established at the micron scale and still no thorough stan-
dardization exists. For testing semi-brittle materials at the micrometer
scale, EPFM gained elevated attention recently. One example is the frac-
ture properties of tungsten [31–34]. But also othermaterial systems like
NiAl [35], metallic glass thin films [27], severely deformed pearlitic
wires [36,37] were tested recently by applying EPFM at themicrometer
scale.

The aim of this work is to study the fracture toughness of WELs in
order to pave the way for a thorough understanding of crack initiation
and nucleation in rail-wheel contacts. For this purpose, we are using
FIB milled pre-notched micro cantilevers. The fracture toughness of
WELs is measured and compared to brown etching layers (BELs), lab
simulated martensite and undeformed pearlitic steel. All materials
have identical chemical composition and only differ by their
microstructure.
Fig. 1. (a) Schematic of the geometry of the micro-cantilevers
2. Experimental procedure

2.1. Material selection

The specimenswere obtained from a curved rail track with a radii of
400m. The rail track has a total load passage of approximately 33mega-
tons/year for a period of 3 years in-service. The initial material was a
pearlitic rail steel (grade R350HT) with a composition of Fe-0.72C-
1.1Mn-0.56Si-0.11Cr (inwt%). In the as-delivered state, thematerial ex-
hibited a fully pearlitic microstructure with a colony size of 20 μm and
an interlamellar spacing of 150 nm. Patches of WEL were present close
to the contact surface and these patches have a different microstructure
than the base material. Microstructure details of the WEL are reported
by Kumar et al. [38]. The rail was cut using a diamond wire saw into 5
× 4×2mm3 sized samples (further denoted asmacro-sample) and sub-
sequently mechanically polished with 4000 grit paper and etched with
2% Nital solution. The polished surface was perpendicular to the train
running direction. Finally, the microstructure was investigated using
light optical microscopy and scanning electron microscopy (SEM).
This revealed the size and distribution of the WEL, a transition region
(called brown etching layer (BEL)) and the undeformed pearlite.

Apart from the macro-samples extracted from the in-service rail,
two lab simulated martensite macro-samples were prepared from the
same steel composition. The lab simulated material was processed in a
Gleeble 1500 thermo-mechanical-simulator at 200 °C/s heating rate,
heated until 730 °C (A3 temperature), immediately followed by rapid
quenching with a cooling rate of 400 °C/s to room temperature in
helium atmosphere. This procedure resulted in a fully martensitic
microstructure.

2.2. Micro cantilever preparation

The micro fracture cantilevers were milled with a FIB on three
macro-samples, all containing WEL, BEL and undeformed pearlite re-
gions. The single cantilever geometry was used to measure the fracture
toughness [26,31]. The samples had a rectangular cross-sectionwith the
intended crack plane defined by the train running direction and the rail
surface normal. The ratios of cantilever length (L):height (W):width
(B) of each milled cantilever were nominally 5:1:1, while the lengths
of the cantilevers were in between 20 and 25 μm (Fig. 1a).

For FIB milling, a Zeiss Auriga® dual beam microscope equipped
with a Nano Patterning and Visualization Engine (NPVE) was operated
with 30 keV Ga ions. The milling currents were gradually reduced
from a coarse milling step with 16 nA and a dose of 60 nC/μm2

(16 nA||60 nC/μm2), via an intermediate step at 2 nA||40 nC/μm2 and
fine milling at 600pA||40 nC/μm2. Straight through-thickness notches
prepared by FIB milling. (b) Definition of the crack length.



Fig. 2. (a) Representative force-displacement curve of a white etching layer (WEL) sample. The curve shows the initial elastic and later significantly plastic deformation and fracture.
(b) Secondary electron SEM image of the tested white etching layer micro cantilever. (c) Sequential elasto-plastic crack propagation recorded by in situ SEM with positions highlighted
in the force-displacement curve (a).
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were made with 10pA||60 nC/μm2 and resulted in a final notch depth of
about 1.0 μm. Finally, the side surfaces were re-polished to guarantee a
constant pre-notch depth and to avoid side-notch effects. It has to be
noted that special precautions – like the successive reduction of milling
currents and times as well as the choice of significantly large FIB free
space in the vicinity of the cantilever – were taken to avoid material
re-deposition at the back and lower cantilever surface, as re-
deposition would have affected the obtained fracture toughness
considerably.

The initial notch length (a0) was measured from high resolution
SEM micrographs recorded in a Gemini 500 field emission SEM. The
a/W ratio was in the range of 0.2–0.3 (see Fig. 1b). To ensure suffi-
cient statistics, at least 4 data sets for each microstructure (i.e.
WEL, BEL, lab simulated martensite and undeformed pearlite) were
tested.
2.3. Fracture experiment

The micro-cantilever fracture experiments were performed in
situ in a Zeiss Gemini 500 SEM equipped with an ASMEC Unat II
nanoindenter (ASMEC GmbH, Radeberg, Germany). A conductive di-
amond wedge indenter with an opening angle of 60° and a wedge
length of 10 μmwas used to load the cantilevers under displacement
control. The loading rate was constant at 20 nm/s. The force-
displacement curves and in situ videos of bending/fracture were re-
corded for all beams. Numerous loading-unloading cycles were
used to determine the crack propagation via the unloading stiffness,
as previously proposed by Wurster et al. [31].
2.4. Analysis of the fracture toughness

For the determination of the fracture toughness (Jc), we are following
the approach byWurster et al. [31], who separated the elastic and plastic
contributions to the J integral (Eq. (1))

J ¼ Jelastic þ Jplastic ð1Þ

Jelastic
(i) is calculated from LEFM (Eq. (2)), where KIQ

(i) represents the
plane strain stress intensity factor as calculated from Eq. (3):

J ið Þ
elastic ¼ K ið Þ

IQ

� �2 1−ν2
� �

E
; ð2Þ

K ið Þ
IQ ¼ F ið Þ

Q L

B W3=2 f a ið Þ
.

w

� �
; ð3Þ

where ν is the Possion's ratio, E is the elastic modulus, FQ(i) is the acting
force at a time increment i. The geometry parameters are defined in
Fig. 1. The dimensionless geometric factor f ða=W Þ for rectangular canti-
levers (Eq. (4)) was adopted fromMatoy et al. [39]:

f a=w
� � ¼ 1:46þ 24:36 a=W

� �
−47:21 a=w

� �2 þ 75:18 a=w
� �3

: ð4Þ

At each unloading cycle i, the crack extension (W-ai) was calculated
from the unloading stiffness and used to determine the crack initiation
and crack propagation resistance.

W−ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � k � L3
B � E

3

s
ð5Þ

The plastic contribution Jplastic to the J integral is obtained by

J ið Þ
plastic ¼

Z
η APlastic localð Þ
B W−aið Þ ; ð6Þ

where η is a constant (η = 2) and APlastic local is the area under the load
versus displacement curve. The J integral was calculated with its elastic
and plastic contributions (Eq. (7)). Finally, JQ was obtained based on



Fig. 3. (a) Representative force-displacement curve of a brown etching layer (BEL) sample. The curve shows the initial elastic and later significantly plastic deformation and fracture.
(b) Secondary electron SEM image of the tested brown etching layer micro cantilever. (c) Sequential elasto-plastic crack propagation recorded by in situ SEM with positions
highlighted in the force-displacement curve (a).
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several criteria discussed in the results section. For comparison, JQ was
used to calculate KQ Eq. (8).

J ið Þ ¼ K ið Þ
IQ

� �2 1−ν2
� �

E
þ 2 � APl ið Þ
B � w−a0ð Þ ð7Þ

KIQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JIQ

E
1−ν2
� �

s
ð8Þ

3. Results

Cantilever fracture experiments exhibit stable crack propagation in
the WEL. A representative force-displacement curve is shown in the
Fig. 2a. After a linear initial loading regime plastic deformation sets in.
Multiple partial unloading segments with a uniform interval of 1 μm
are used to measure the change in cantilever stiffness. Subsequently,
the stiffness change is used to calculate the crack propagation assuming
Fig. 4. (a) Stiffness of the loaded cantilever vs. indenter displacement. The stiffness was obtaine
polynomial fit to the data. (b) Corresponding increase in crack length as calculated from Eq. (5).
the web version of this article.)
a constant elastic modulus. A comparable force-displacement curve is
observed for the lab simulated martensite. In contrast, the BEL samples
and the undefomed pearlitic steel show slight differences in terms of a
lack in force-reduction during crack propagation (see. Fig. 3a).

The stable crack propagation is in all cases reflected by the SEM im-
ages taken in situ at the indicated positions in the force-displacement
curve (see Figs. 2c and 3c). The cracks are propagating in a straight di-
rection and do not deflect from the intended crack plane. At the crack
tip, significant plastic deformation is seen documenting the importance
of plasticity to the energy dissipation during fracture. As expected, the
undeformed pearlite shows the largest plastic contributions, which hin-
ders thequantitative analysis of the fracture properties for thatmaterial.
Hence, for undeformed pearlite we only provide a lower bound of the
fracture toughness.

The stiffness for each unloading segment is calculated (Fig. 4a) and
shows a decreasewith displacement. Hence, the crack extension as calcu-
lated from Eq. (5) increases (Fig. 4b). The crack length of all considered
samples estimated from stiffness measurement before and after bending
experiment matches well with crack length measured from SEM. This
d from the unloading segments in the load displacement curves (Fig. 2a). The blue line is a
(For interpretation of the references to colour in this figure legend, the reader is referred to



Fig. 5. The J integral (red) and the elastic (blue) and plastic (red) contributions to it for a WEL sample. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

1 For quantitative comparisons we discuss only the toughness as evaluated by Pippan's
transfer.
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agreement is – for instance – observed in Fig. 4b, where the initial crack
length is 1.5 μm as measured by SEM and as obtained from the first
unloading stiffness (red point). It should be noted that some samples ex-
hibit a stiffness increase which could be interpreted as crack closure,
which is not the case. The reason for the apparent stiffness increase is ad-
dressed later. Specimens showing this phenomenonwere not considered
for the calculation of the mean fracture toughness.

As shown in Fig. 5, the J is quantified by addition of the elastic (Jelastic)
and plastic (Jplastic) contribution part, see Eq. (7). During the initial load-
ing segment, the elastic J-integral dominates. As soon as plastic defor-
mation starts at the crack tip, Jplastic dominates the J integral.

We further interpret the fracture behavior by plotting the J vs. Δa
curve (crack resistance curve, Fig. 6). The crack resistance curve consists
of the blunting line (first initial slope), where the artificial FIB milled
notch starts to become a natural crack. Subsequently, stable crack
growth becomes dominant. To quantitatively compare our crack resis-
tance curve we use four previously published criteria:

(i) Pippan's transfer of ASTM standards to the microscale [40]
JQ is standardized in ASTM E1820 for macro samples. The crack
extension curve is fitted by a power law in a crack extension re-
gime from 0.15 mm to 1.5 mm. The blunting line is defined by
the slope of the power law at zero crack extension. Subsequently,
J0 (or J0.2) are defined as the intersection of the crack extension
curve with the blunting line that was shifted by 0.2 mm. Since
FIB milled micro samples dissatisfy the geometrical require-
ments of the ASTM standards, Pippan et al. suggested using ei-
ther 2% crack extension or 2% of the sample width instead of
the 0.2 mm threshold [40]. To keep the spirit of ASTM standards,
we fitted the power law in the crack extension range from Δa=
1.5% to 15% and shifted the blunting line by an offset of Δa =
0.02W (W is the initial sample thickness) to determine JQ [40,41].

(ii) Wurster et al.'s approach based on the blunting line [31]
In Wurster's first criterion JQ is the intersection of the blunting
line with the fitted line of the stable crack growth regime, i.e.
the crack resistance curve [31].

(iii) Wurster et al.'s [31] and Ast et al.'s [42] approach based on crack
extension
InWuster's second criterion, the J integral at a crack extension of
0.5 μm defines the JQ. In their study, crack blunting was finished
and stable crack growth was observed at this crack extension.
Ast and co-workers observed negligible crack blunting and an
immediate stable crack growth, therefore used a crack extension
of Δa = 0.2 μm.

The J-integral valueswere analyzed forWEL, BEL, undeformed pearl-
ite and lab simulatedmartensite using the four aforementioned criteria,
as summarized in Table 1 and with a statistical analysis in Table 2. Nev-
ertheless, the quantitative discussion of thematerial properties is based
on Pippan's criterion only as this follows the ASTM spirits most closely.

The tested WELs always exhibit the smallest fracture toughness,
which is on average 16.0± 1.2 MPam1/2.1 In comparison, the lab simu-
lated martensite is insignificantly tougher (17.4 ± 0.9 MPa m1/2). Both,
the BELs and the undeformed pearlite exhibit a significantly higher frac-
ture toughness as the WELs. Besides the strong variation between the
different regions (WELs, BELs, lab simulated martensite and unde-
formed pearlite), the toughness also varies within one region. For in-
stance, the results of the three valid WEL micro samples are: 16.9 ±
2.6 MPa m1/2, 13.5 ± 2.2 MPa m1/2, 17.5 ± 2.6 MPa m1/2. The variation
in local toughness within one region is addressed to the local micro-
structure, i.e. the presence of grain boundaries, retained austenite, dif-
ferent orientations and etcetera [43]. Also, the used criteria strongly
impacts the JQ integral, irrespective of the tested material. The impact
of the used criterion is discussed in the subsequent section.
4. Discussion

4.1. Reasons for the low fracture toughness of WEL compared to BEL

The fracture toughness ofWELs is the lowest among all testedmate-
rial systems indicating that WELs can be as brittle as a fully martensitic
microstructure. The low fracture toughness of WELs is likely caused by
the local microstructure consisting of ultrafine grains, which were
formed by the combined effect of severe plastic deformation [44,45]
and temperature. The WEL microstructure contains a high dislocation
density [15] and carbon supersaturation [44]. Despite the grain size dif-
ference, this argumentation is supported by the comparable fracture
toughness of the WEL and the lab simulated martensite with presum-
ably similar carbon supersaturation.



Fig. 6.Representative J-integral vs. crack extension graphs forWEL, BEL, undeformedpearlite and Lab simulatedmartensite. The blue curve indicates the blunting line. The black line is a fit
to the stable crack growth of the natural crack. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The BEL is an intermediate microstructure between the WEL and
the undeformed pearlite base material. Relatively to the WEL, the
BEL has a higher fracture toughness and also shows significant
crack tip plasticity. We attribute the higher fracture toughness to
the lack of carbon supersaturation [38]. Due to the significant plastic-
ity in the undeformed pearlite, a toughness comparison with the BEL
is out of reach of this study. From the crack morphology, it can be
concluded that the undeformed pearlite exhibits a significantly
higher toughness than the BEL.

A common feature of structural materials is the inverse dependence
of toughness and strength [46]. This relation holds true for the
Table 1
KQ of all 12 successfully tested samples using various toughness criteria. The error bars represe
lower bound values are provided.

Sample KQ,Pippan

(MPa m1/2)
KQ,Wurster, Sl

(At Δa = S
(MPa m1/2)

WEL 1 16.9 ± 2.6 14.2 ± 2
WEL 2 13.5 ± 2.2 12.2 ± 2
WEL 3 17.5 ± 2.6 13.2 ± 1
BEL 1 21.2 ± 3.1 23.1 ± 3
BEL 2 24.3 ± 3.6 21.1 ± 3
BEL 3 23.8 ± 3.6 22.4 ± 3
Undeformed pearlite 1 N28 N23
Undeformed pearlite 2 N19 N16
Undeformed pearlite 3 N19 N13
Lab simulated 1 17.6 ± 2.7 15.9 ± 2
Lab simulated 2 15.8 ± 2.6 14.8 ± 2
Lab simulated 3 18.9 ± 2.7 11.7 ± 1
chemically identical microstructures formed during rolling contact fa-
tigue from pearlitic steels. The higher the strength (hardness) the
lower the fracture toughness (see Fig. 7). The data in Fig. 7 is used to es-
timate the fracture toughness from the local microhardness:

KQ ¼ A

HVB ; ð9Þ

We use a fitted function with KQ as the local fracture toughness (in
MPa m1/2), HV as the Vickers micro hardness and A and B as the fitting
constants. The data in Fig. 7 is best represent by A = 15,600 MPa m1/2
nt the statistical error propagation. Note that in the case of the undeformed pearlite only

ope

lope)
KQ,Wurster, 0.5

(At Δa = 0.5 μm)
(MPa m1/2)

KQ,Ast

(At Δa = 0.2 μm)
(MPa m1/2)

.2 16.6 ± 2.5 13.5 ± 2.0

.0 13.8 ± 2.3 11.0 ± 1.8

.9 12.8 ± 1.9 9.43 ± 1.4

.4 24.2 ± 3.5 20.7 ± 3.0

.1 16.5 ± 2.4 10.8 ± 1.6

.4 22.6 ± 3.4 19.0 ± 2.8
N28 N22
N16 N13
N14 N10

.1 18.9 ± 2.9 13.6 ± 2.5

.4 14.9 ± 2.5 12.1 ± 2.0

.7 16.8 ± 2.4 15.1 ± 2.2



Table 2
Summary of KQ for all materials. The error bars are given as the standard error of the mean.

Material KQ,Pippan

(MPa m1/2)
KQ,Wurster, Slope

(At Δa = Slope)
(MPa m1/2)

KQ,Wurster, 0.5

(At Δa = 0.5 μm)
(MPa m1/2)

KQ,Ast

(At Δa = 0.2 μm)
(MPa m1/2)

Number of valid samples

WEL 16.0 ± 1.2 13.2 ± 0.6 14.4 ± 1.1 11.3 ± 1.2 3/4
BEL 23.1 ± 1.0 22.2 ± 0.6 21.1 ± 2.4 17.0 ± 3.1 3/4
Undeformed pearlite N28 N23 N28 N22 0/4
Lab simulated martensite 17.4 ± 0.9 15.3 ± 0.3 16.9 ± 1.2 12.5 ± 0.6 3/5
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and B = 1.0 ± 0.3, which describes all presented data with a relative
error of b15% (except the undeformed pearlite samples of this study,
which are not included in the fit). We propose to use KQ = 104/HV (KQ

inMPam1/2) as amore conservative estimate for the fracture toughness,
whichunderestimates the obtained fracture toughness by up to 35% and
therefore represents a higher safety factor. Please note that the Vickers
hardness is specified in HV and not in MPa here.

4.2. Consequences of the low WEL fracture toughness

Based on the obtained fracture toughness and reported hardness,
the critical defect size acritical, at which a crack under the assumed stress
state propagates, is estimated using Eq. (10),

KQ ¼ Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π acritical

p
σy ¼ Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π acritical

p H
3
; ð10Þ

where Y is a dimensionless geometry factor of the order of 1, σy is the
yield stress of the hypothetically maximum flow-stress determined
from the hardness H via Tabor's relation. While a critical crack length
in the order of 400 μm is determined for the macroscopic strength and
toughness of rails (σy = 800–900 MPa, KQ = 35–45 MPa m1/2 [47]),
the WEL has a significantly shorter critical crack length: the critical
crack length acritical is on the order of 5–10 μm when using a Vickers
hardness (~900 HV, [10,17,44,45]). This defect size is significantly
Fig. 7. Fracture toughness of all materials as a function of their corresponding Vickers hardne
toughness is inverse to the Vickers hardness. The fracture toughness is also compared to previ
smaller than the typical WEL thickness, which is typically 50–100 μm
[15,17,18,44]. Single detached grain boundaries are excluded as crack
nucleation sites, since the critical defect size is significantly larger than
the grain size in WELs [13]. Hence, surface defects and non-metallic in-
clusions most likely act as crack initiation sites. These observations are
in line with fractography of Carroll et al. [18] and Al-Juboori et al. [12].

In contrast, the critical crack length is larger than N50 μm in BEL due
to the lower strength and higher fracture toughness. The larger critical
crack length in BEL implies that crack nucleation occurs more likely in
the WEL than the BEL.

4.3. Reasons for experimental data scatter

Throughout the study, we notice an increased experimental scatter
compared to e.g. hard coatings [48]. Hence, the data scatter is not orig-
inating from the experimental methodology but rather from different
local microstructures [12,17,38,43,44]. Therefore, the scatter represents
the mechanical property distribution across the non-uniform micro-
structure rather than an experimental scatter caused by measurement
inaccuracies. Furthermore, the fracture toughness of lab simulatedmar-
tensite exhibits the narrowest distribution, which is caused by the uni-
formmicrostructure across the lab simulated martensite. For WELs, the
wide distribution indicates that the fracture toughness will – in general
– be position and history dependent, an observationwhich requires fur-
ther in-depth investigations.
ss. The toughness of the WEL is similar to that of the lab simulated (LS) martensite. The
ous studies as marked in the graph [37,51–57].
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In addition, the plastic deformation duringWEL formation could re-
sult in a local variation of the residual stresses with unknown impact on
the measured fracture toughness.

4.4. Effect of used toughness criteria

Until today, no accepted standards exist for downscaling elasto plastic
fracture tests from the ASTM standards to the micron scale. Hence, we
have applied and compared recently published criteria to analyze the
toughness. Generally, the fracture toughness comparison is only valid if
the same sample geometry and toughness criterion are used at the mi-
cron scale. Besides the sampledimensions, the crack geometry plays a sig-
nificant role, as shown for LEFM [49,50]. For instance, bridge notch
cantilevers of a WEL with slightly different microstructure show a differ-
ent apparent fracture toughness [43]. However, applying the same geom-
etry and toughness criterion allows for a relative comparison of the
toughness.

Pippan's transfer criterion follows the spirit of the ASTM standards
and is best suited to compare the fracture toughnesses of slightly differ-
ently sized samples. The intersection of the linear blunting line fit with
the stable crack growth line allow for a certain change in sample size. By
contrast, a fixed critical crack extension (Δa=0.2 μmandΔa=0.5 μm)
does not allow for general toughness comparisons across sample sizes.
The largest scatter was observed for the critical crack extension based
criteria (e.g. Δa = 0.2 μm) even when using nominally identical
cantilevers.

As already mentioned by Ast et al. [35], the Wurster intersection
method and, likely, Pippan's transfer method are sometimes not appli-
cable due the crack resistance curve shape.

4.5. Reasons for the stiffness increase during crack propagation

In some cases, we have observed an increasing stiffness at low can-
tilever deformations. A stiffness increase can falsely be interpreted as
crack closure or crack healing, which was – as monitored by in situ
SEM images – not the case in this study. However, the increase in sam-
ple stiffness originates from a small angular misalignment of the dia-
mond wedge with respect to the cantilever surface. Due to the
misalignment, an additional torque acts on the cantilever at low dis-
placements. With increasing force, the misalignment is elastically com-
pensated and the wedge aligns with the cantilever surface. This perfect
alignment results in the maximum stiffness. Hence, until the point of
parallel contact, an stiffness increase is observed, which must not be
interpreted as crack closure / healing. After surpassing this point of par-
allel contact, any further crack growth reduces the sample stiffness. To
avoid artefacts, we have omitted all experiments with an apparent
crack closure at low loads.

It should be noted that in complexmicrostructures, such asmartens-
itic steels, other effects might lead to a sample stiffness change and to
substantial errors in the obtained crack extension curve. One such ex-
ample is the transformation of initially metastable phases, e.g. retained
austenite in steels.

5. Conclusions

Within this work we compare the fracture toughness of different re-
gions in a rail-wheel contact by micron sized, elasto-plastic fracture
experiments.

1) The toughness of microstructures with similar global chemical com-
position in a wheel-rail contact strictly follow the inverse toughness
vs. hardness relation [46]. We propose to use the relation JQ =
104/HV (JQ in MPa m1/2) as predictive function for the local fracture
toughness based on the local Vickers hardness. The prediction func-
tion is conservative and underestimates the fracture toughness by
up to 35%.
2) WELs are considerable harder and, therefore, more prone to brittle
failure than the undeformed pearlite and BEL. We obtained a tough-
ness of 16 ± 1.2 MPa m1/2 with Pippan's transfer criterion. This
toughness is comparable to that of lab simulated martensite of the
same chemical composition.

3) The critical defect size inWEL is estimated as 5–10 μm. Crack nucle-
ation sites are therefore either non-metallic inclusions or surface
damage. Cracks very likely do not originate from grain boundary
decohesion in the nanostructured microstructure since the grain
size is significantly smaller than the critical crack length.

4) BEL and pearlite are considerably tougher than WEL and it is ex-
pected that cracks initiate in the WEL only.

5) Different EPFM criteria result in largely different apparent fracture
toughnesses. An absolute comparison of the toughnesses obtained
from samples with varying geometry or from using different criteria
is prone to substantial errors.
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