
 
 

Delft University of Technology

Oikonomos-II: A Reinforcement-Learning, Resource-Recommendation System for Cloud
HPC

Betting, J. L. F.; Zeeuw, C. I. De; Strydis, C.

DOI
10.1109/HiPC58850.2023.00044
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 IEEE 30th International Conference on High Performance Computing, Data, and
Analytics (HiPC)

Citation (APA)
Betting, J. L. F., Zeeuw, C. I. D., & Strydis, C. (2023). Oikonomos-II: A Reinforcement-Learning, Resource-
Recommendation System for Cloud HPC. In Proceedings of the 2023 IEEE 30th International Conference
on High Performance Computing, Data, and Analytics (HiPC) (pp. 266-276). (Proceedings - 2023 IEEE 30th
International Conference on High Performance Computing, Data, and Analytics, HiPC 2023). IEEE.
https://doi.org/10.1109/HiPC58850.2023.00044
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/HiPC58850.2023.00044
https://doi.org/10.1109/HiPC58850.2023.00044


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Oikonomos-II: A Reinforcement-Learning,
Resource-Recommendation System for Cloud HPC
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Abstract—The cloud has become a powerful and useful en-
vironment for the deployment of High-Performance Computing
(HPC) applications, but the large number of available instance
types poses a challenge in selecting the optimal platform. Users
often do not have the time or knowledge necessary to make
an optimal choice. Recommender systems have been developed
for this purpose but current state-of-the-art systems either
require large amounts of training data, or require running
the application multiple times; this is costly. In this work, we
propose Oikonomos-II, a resource-recommendation system based
on reinforcement learning for HPC applications in the cloud.
Oikonomos-II models the relationship between different input
parameters, instance types, and execution times. The system
does not require any preexisting training data or repeated job
executions, as it gathers its own training data opportunistically
using user-submitted jobs, employing a variant of the Neural-
LinUCB algorithm. When deployed on a mix of HPC appli-
cations, Oikonomos-II quickly converged towards an optimal
policy. The system eliminates the need for preexisting training
data or auxiliary runs, providing an economical, general-purpose,
resource-recommendation system for cloud HPC.

Index Terms—High-Performance Computing, resource recom-
mendation, cloud computing, prediction, middleware

I. INTRODUCTION

High-Performance Computing (HPC) refers to the use of

high computational power to solve complex calculations at

high speed. Examples of HPC applications include brain sim-

ulations, weather and climate modeling, and genome sequenc-

ing. Traditionally, such computations take place on computing

clusters and supercomputers, where HPC jobs are executed on

a statically defined hardware allocation after being placed in a

queue. However, modern cloud environments such as Amazon

EC2 and Microsoft Azure offer a wide range of computing

resources on demand, often without waiting times, and on a

pay-per-hour basis. This makes them an attractive alternative

for HPC calculations.

At the time of writing, Amazon EC2 offers 637 different

instance types. The instance types are categorized into families

and the available hardware and costs per hour are available on

Amazon’s website. Nevertheless, it remains challenging for

users to make an optimal choice for their application. Recog-

nizing this problem, Amazon offers instance type recommen-

dation, which recommends an instance type to a user based on

This paper is supported by the European Union’s Horizon Europe research
and innovation programme under projects SEPTON (Gr. Agr. No. 101094901)
and SECURED (Gr. Agr. No. 101095717) and by the Dutch Research
Council’s Gravitation programme under project DBI2 (No. 024.005.022).

historical use over a 14-day period [1]. However, application

execution time is affected by input size and parameters, in

combination with the hardware characteristics, in a typically

hard-to-predict way. This means that the optimal instance type

can be different, even for the same application. Smaragdos et

al. [2] showed that for a simulation model of the human brain,

a CPU version, a GPU-optimized version, and a FPGA version

of the application can all be optimal choices, depending on

the input parameters such as size of the neural network and

connectivity.

We present Oikonomos-II, a reinforcement-learning

resource-recommendation system for cloud HPC.

Oikonomos-II approaches cloud-resource recommendation as

a contextual multi-armed bandit problem. It uses incoming

jobs from researchers to both explore different cloud instance

type options, while also exploiting the knowledge it gains in

the process. As opposed to earlier work, which was either

search-based or prediction-based, Oikonomos-II combines

the best elements of both approaches, and eliminates their

main weaknesses. It can therefore be seen as the first hybrid

system for this purpose. This work is a novel approach over

our previous work, Oikonomos [3], which used an MLP, but

was still purely prediction-based.

The contributions of this work are as follows:

• A novel, reinforcement-learning instance recommender

for HPC applications in heterogeneous cloud environ-

ments. By using a deep contextual bandit algorithm, it

overcomes several limitations of earlier approaches.

• An improvement of the Neural-LinUCB algorithm by

Xu et al. [4]: applying the principle of soft update

makes it possible to use much deeper artificial neural

networks, and thus the representation of much more

complex context-reward relationships.

• A performance analysis of Oikonomos-II on four di-

verse HPC applications, showing the robustness of its

reinforcement-learning approach and its potential for gen-

eral (re)use.

The paper is organized as follows: in Section II, we give an

extensive overview of related works, addressing the strengths

and weaknesses of the various publications. In Section III, we

describe our system and the underlying algorithms in detail. In

Section IV, the four applications that we used for evaluation

are described as well as the relevant implementation-specific
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details. In Section V, the performance of Oikonomos-II is

evaluated on four existing HPC applications. We show that

Oikonomos-II explores the available options effectively and

exploits the knowledge it gains, successfully selecting the best

instance type for incoming jobs in the vast majority of cases,

for all applications. In Section VI, we present a discussion of

our findings as well as potential improvements. Section VII

concludes the work.

II. RELATED WORK

Work in the field of cloud-HPC resource recommendation

generally falls in one of two categories: searched-based al-

gorithms and prediction-based algorithms. Search-based algo-

rithms evaluate different hardware combinations in succession

to find the optimal choice. These algorithms do not rely on

earlier data but usually need to run a job multiple times to find

an optimal instance type; this leads to extra costs. Prediction-

based algorithms use offline evaluation of data to predict

performance and can immediately suggest an optimal instance

type. This removes the need to actively search, but these

algorithms require either prior knowledge about the behavior

of the application in the form of a model or historical data. A

summary of related work can be found in Table I.

Venkataraman et al. [5] proposed Ernest, a prediction-based

framework that works with a non-negative least-squares solver,

using historic data about the size of the input data, the number

of virtual machines used and the execution time to fit four

parameter values to a formula. This formula is then used

to predict execution times, and can be extended to include

more parameter values. However, Ernest is less suitable if

the application behavior is unknown. It is also unsuitable for

heterogeneous hardware configurations, since it only takes the

number of machines into account.

Samreen et al. [6] presented Daleel, a prediction-based

framework to support decision making in Infrastructure-as-

a-Service (IaaS) environments, such as clouds. Daleel uses

a multivariate polynomial model to predict execution times,

which is fit to the training data through different regression

methods. In this respect, Daleel is similar to Ernest’s formula-

fitting approach. The amount of vCPUs, RAM, and the day

of the week are used as input parameters. Even though Daleel

achieved low Mean Square Error, like Ernest, it is less suitable

for heterogeneous-hardware configurations or complex rela-

tionships between input parameters and execution time.

Yadwadkar et al. [7] proposed PARIS, another a prediction-

based approach, for selecting the best Virtual Machine (VM)

among multiple clouds. A central innovation of PARIS is the

decoupling of instance performance characterization from the

workload-specific resource requirements. It does this by pro-

filing the instance types using a set of benchmark workloads

– this has to be done only once for each instance type. It

then lets the user choose and run a representative workload

to analyse the resource usage patterns and create a fingerprint

of the application. It uses this fingerprint to recommend an

instance type based on the user’s needs. The decoupling of

application characteristics from instance-type characteristics is

important. However, PARIS burdens the user with choosing a

representative workload, and does not take the influence of

application parameter values on resource usage patterns into

account.

Alipourfard et al. [8] presented CherryPick, a search-based

approach that uses Bayesian optimization to build a perfor-

mance model for applications. A central insight of CherryPick

is that a recommendation system does not need to predict the

execution time as accurately as possible; it just needs to be

good enough to recommend an optimal cloud configuration.

The user is asked to give the objective (e.g. minimizing

costs or execution time) and constraints (budget, maximum

execution time), as well as a workload representative of the

application. CherryPick then finds a list of candidates for

the optimal hardware configuration in multiple clouds, and

finds an optimal cloud configuration in an iterative manner.

The authors compared CherryPick to Ernest, and found that

CherryPick performed similarly when it comes to running

costs, but with lower search time and cost. However, it still

needs to run a workload several times, and like PARIS, burdens

the user with providing representative workloads.

Hsu et al. published three search-based approaches;

Scout [9], Arrow [10], and Micky [11]. Scout is a pair-wise-

comparison approach that uses past performance information

to search efficiently. A key insight from Scout is that any

search-based algorithm has a trade-off between exploration

and exploitation. Historical data can be used to optimize the

exploration process in order to exploit more. Arrow, like Cher-

ryPick, uses Bayesian optimization, but augments it with low-

level metrics in order to reduce search costs. The authors found

that including this information led to enhanced performance

compared to CherryPick’s original Bayesian approach. Build-

ing on the insights from Scout and Arrow, the authors propose

Micky, which casts the problem of finding the best VM as a

multi-armed bandit problem and uses the Upper Confidence

Bound (UCB) algorithm to optimize rewards. Micky optimizes

for a batch of workloads, rather than a single workload, and

aims to find a cloud configuration that is near-optimal for the

majority of workloads. The authors suggest combining Micky

with Arrow or Scout to find the best cloud configuration for

individual workloads. Even though all of these approaches

address some of the problems of search-based algorithms, all

of them require running a workload multiple times to find the

best configuration, which implies additional costs.

Recently, more prediction-based systems were published.

Samreen et al. presented Tamakkon [12]. A key insight from

Tamakkon is that historical performance data can be used for

resource recommendation of new applications or VM types, if

we can determine their similarity. Tamakkon does this using a

Kolmogorov-Smirnov test. Based on the degree of similarity,

Tamakkon adapts a machine-learning model to a specific task

by using profiling data from similar applications. This makes

the algorithm useful for different applications and hardware

configurations. The systems does require the production of

auxiliary data in the cloud, which entails additional costs.

Also, Tamakkon simply labels workloads as ‘similar’ or ‘partly
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similar’, but does not further specify in which way the

workloads are similar.

Samuel et al. [13] proposed A2Cloud-RF, a prediction-based

approach which, like PARIS, decouples the characteristics of

the applications and cloud instances. This is done by profiling

them separately: the instances for performance using standard

benchmark applications, and the applications for resource

usage with the Linux perf application. A Random-Forest

Classifier (RFC) is used to recommend an instance. The RFC

can directly classify instance types as ‘excellent’, ‘good’,

‘okay’, or ‘bad’, based on these profiles. It can also classify

applications as either computationally intensive, balanced, or

memory-intensive, and use historical data of similar applica-

tions to create the aforementioned classification. Even though

this classification of instance types is useful, but given the huge

amount of available instance types, a classification in four cat-

egories is rather rough. Decoupling applications and instance

types reduces the need for test runs, but also makes it more

difficult to capture the complex interplay between application

performance, resource use, and available hardware. It remains

unclear how the perf traces generated for each application

account for the differences in behavior that applications may

have on various heterogeneous types of architecture.

Ai et al. [14] presented an expanded version of A2Cloud-RF,

named A2Cloud-H (Hierarchy). Rather than only using a RFC,

A2Cloud-H uses a variety of machine learning algorithms,

divided into two modules: an unsupervised learning module

(USL), and a supervised learning module (SL). Both modules

are contained in a decision module. When a job request

comes in, the decision module selects an algorithm from both

modules, based on the popularity of the model (measured by

the number of publications and the number of citations), the

historical accuracy, and the F1 score. Users themselves get

the final say as to whether the want to use the algorithm from

the USL or the SL module. Even though offering a variety of

algorithms might make the system more generalizable, it also

makes it more complex: it creates the need for an additional

algorithm to select a recommender algorithm.

Our previous work, Oikonomos [3], is a prediction-based

algorithm that works in an opportunistic, data-driven fashion.

Starting with the assumption that a single HPC application

is executed a myriad times with different parameter values,

Oikonomos consists of a Multi-Layer Perceptron (MLP) arti-

ficial neural network that takes the specific parameter values of

the job and the hardware characteristics of a specific instance

type as its input, and returns a prediction of the execution

time. The network is trained using historical data. The users

themselves only have to provide the parameter values they

want to use. Oikonomos showed that a general MLP can be

used as a general-purpose solution for cloud recommendation.

The main weakness of Oikonomos is that it relies on a large

amount of historical data, which might not be practical or

available, especially for new applications. This is a problem

that Oikonomos shares with other data-driven, prediction-

based algorithms but neural networks tend to be especially

vulnerable to it. Furthermore, the application was tested on

balanced datasets; in reality, the datasets will not be balanced.

In summary, in the prediction-based approaches, there tends

to exist a trade-off between more specific modeling (for in-

stance by fitting a formula or by fingerprinting) and a reliance

on considerable amounts of data. For search-based approaches,

there is a trade-off between exploration and exploitation: more

exploration might lead to better recommendations, but will

also lead to higher overhead costs, whereas early exploitation

will lead to lower overhead costs but might make the recom-

mendations less accurate.

The work we present in this paper, Oikonomos-II, like

Oikonomos, has an MLP at its core, and uses historical data.

However, like Micky, we approach the problem of cloud

resource recommendation as a multi-armed bandit problem,

in order to explore the search space for giving better recom-

mendations. Oikonomos-II can be seen as a hybrid approach,

combining the advantages of search-based and prediction-

based algorithms. In this way, it overcomes the limitations

of earlier approaches.

III. DESIGN

As the extensive related-work section demonstrates, there is

a need for a middleware layer for resource recommendation

in a heterogeneous HPC system that aids the user in selecting

the hardware platform that is best-suited for the job they

need to run. We avoid performance-model construction, as

the complex interplay between the application parameters

and the execution platform call for an application-agnostic

approach. We also avoid running the same job more than

once: we assume a stream of incoming jobs with different

parameter values each time. Oikonomos-II gets to make only

one decision regarding the instance type per job, and gets to

observe the execution time and costs of only that particular

job execution. In contrast to recommenders like Oikonomos,

we assume the absence of any preexisting historical execution

data. Therefore, the decisions that Oikonomos-II makes not

only influence the costs and execution time of one particular

job but also the available data to base future decisions on.

Because of the absence of preexisting historical data,

Oikonomos-II is forced to take risks by recommending in-

stance types it has not encountered before. At the same time,

though, Oikonomos-II has to optimize performance for its

users. This dilemma is known as the exploration-exploitation

dilemma, which is a general problem to be found in data-

driven, decision-making processes where a feedback loop

exists between data gathering and decision making [15]. This

becomes most clear in a class of problems known a multi-

armed bandit problems.

A. The Contextual Multi-Armed Bandit Problem

Lattimore and Szepesvári [16] describe the bandit problem

as a sequential game between a learner and an environment.
Played over n rounds, for each round t ∈ [n], the learner picks

an action at from a set of actions A. After the action is chosen,

the environment reveals a reward rt ∈ R. The learner does

not get to see the rewards associated with the other actions.
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The learner cannot see into the future, so in the classical

multi-armed bandit problem, it has to rely on the history
Ht−1 = (a1, r1, . . . , at−1, rt−1) in order to make decisions.

The learner is expected to adopt a policy π: a mapping from

histories to actions. Most commonly, the goal is for the learner

to find a policy that maximizes the cumulative reward over

all rounds
∑n

t=1 rt. The regret of a policy π is defined as

the difference between the cumulative expected reward using

policy π and the cumulative reward of an optimal policy π∗.

Cumulative regret will often grow in a logarithmic fashion

for good policies: cumulative regret will increase relatively

fast in the beginning, when there is little historical data and a

strong need for exploration, and will slow down with time,

as the amount of historical data grows, allowing for more

exploitation. Bandit algorithms are part of the wider class of

reinforcement-learning algorithms.

The bandit problem has been studied since the 1930s [17],

but interest has skyrocketed over the last two decades because

of its applicability in online environments. Dynamic pricing

of online airplane bookings is a good example of a bandit

problem: when a visitor searches for a flight, the website picks

a price to offer to the visitor. The reward is revealed when the

customer either books the flight or leaves without booking.

The goal of the algorithm is to maximize total cumulative

profit over all visitors [18].

Contextual knowledge can be essential for adopting a policy

to make decisions. For instance, in the airplane booking

example, it might be useful to know the IP address of the

visitor. After all, the visitor’s location might be correlated to

the price they are willing to pay. Context can also consist of

similarity information regarding the actions in A. A visitor

might be willing to book a flight on a different date, or to a

different airport, and showing them such options could lead

to a higher chance of booking. Multi-armed bandit problems

where context plays a role are known as contextual bandits.

Two of the most widely used algorithms for solving the

exploration-exploitation dilemma in multi-armed bandit prob-

lems are Upper Confidence Bound (UCB) and Thompson

Sampling (TS). UCB was first proposed by Auer et al. [19],

and is based on the principle of optimism in the face of
uncertainty. This means that the algorithm estimates the ex-

pected reward, as well as a confidence bound for each action,

and chooses the action that has the highest upper confidence

bound. Whereas UCB is aimed at estimating the reward (see

Figure 1), TS builds a probability model based on previous

rewards, and then samples from this model to choose an

action [17]. Both TS and UCB are widely used and have strong

theoretical guarantees on the regret bound.

The original UCB and TS algorithms do not take contextual

information into account. However, they have been used as

bases for algorithms that do work with contextual information.

One of the most popular contextual bandit algorithms is

LinUCB, proposed by Li et al. [20]. The algorithm assumes

a linear relationship between the context parameters and the

rewards. The relationship is represented by a vector θ, which

is to be learned. LinUCB was presented in two versions: a

expected
reward E[r]

re
w

ar
d

A B C
actions

confidence
interval

upper confidence
bound

Fig. 1. The UCB algorithm: The expected reward E[r] is assessed for each
option, as well as the confidence interval. The algorithm will choose the option
with the highest upper confidence bound. Even though E[r] is the highest for
action B, the algorithm will choose action A, as its upper confidence bound
is higher: optimism in the face of uncertainty.

disjoint version (where only one vector of context parameters

in used) and a hybrid version (where two context vectors

are used: one for parameters describing the context in round

t, and one for parameters that describe the actions in A).

Li et al. applied the algorithm to personalized news-article

recommendation and showed that it performs better than the

original UCB algorithm.

The requirement of a linear relationship between context

parameters and rewards in LinUCB is restrictive. For instance,

in the case of cloud HPC, the relationship between applica-

tion parameters, hardware, and execution time is potentially

complex. This requirement, however, can be overcome using

an artificial neural network (ANN). We will mention two

relevant publications. Zhou et al. presented NeuralUCB, which

feeds the context vector to a neural network [21]; NeuralUCB

is a generalized version of LinUCB, achieving the regret

bound of LinUCB without the aforementioned requirement.

However, as the whole network is used for exploration, the

algorithm is very complex and computationally expensive for

large neural networks. Addressing this issue, Xu et al. pre-

sented an adaptation where representation is decoupled from

exploration [4]. Their algorithm, Neural-LinUCB, is based on

the principle of deep representation and shallow exploration:

it uses the entire ANN to learn the relationship between the

context vectors and the rewards, but only uses the last layer for

exploration. In this way, deeper and wider ANNs can be used,

allowing for the representation more complex context-reward

relationships. Additionally, the way in which the relationship

vector θ is calculated after each round is highly parallelizable,

allowing for better performance. The authors showed that

Neural-LinUCB achieves similar performance to NeuralUCB,

while being much less computationally expensive.

Betting et al. [3] showed with Oikonomos that a deep MLP

can be used to recommend an optimal cloud-instance type

for HPC applications, based on the input-parameter values.

However, as Oikonomos was purely prediction-based, it relied
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Fig. 2. Schematic overview of Oikonomos-II: While the user gets the job output they want, the algorithm saves the parameters of the job and its execution
time, saves it in a database, and uses Neural-LinUCB to make better choices over time.
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Fig. 3. Oikonomos-II UCB calculation: The job parameters and the instance type parameters are concatenated, and passed through an MLP. The output vector
qt is multiplied with vector θt−1 to find the expected reward, and A−1

t−1 is used to calculate the confidence bound. For a detailed description of how θt−1

and A−1
t−1 are determined, see Algorithm 1.

on a large amount of preexisting training data. The absence

of this data creates a contextual multi-armed bandit problem.

A consists of all possible instance type recommendations,

whereas the rewards are a function of execution time and/or

usage costs. Each round t involves a decision to recommend

an instance type to a specific job. We define ‘job’ as the

(requested) execution of the application with specific param-

eter values. The context, therefore, consists of both round-

specific context (the input parameters of the job), as well

as action-specific context (the hardware parameters of the

instance types). The non-linear relationship between context

and rewards rules out traditional LinUCB. Because of the

complexity and computational costs of NeuralUCB for deeper

neural networks, as well as the opportunities for parallelism

that Neural-LinUCB offers, Neural-LinUCB was chosen to

solve the multi-armed bandit problem that Oikonomos-II faces.

B. Oikonomos-II design

Figure 2 shows the overall architecture of Oikonomos-II,

and a detailed description of its workings can be found in

Algorithms 1 and 2. We assume a sequential stream of jobs,

with each round t corresponding to the recommendation of

an instance type and subsequent execution of job jt. Job jt
is defined by a vector pt of parameter values. Furthermore,

we assume a set of S available instance types s; for every s,

there is a vector hs containing hardware-parameter values of

the instance type, such as the number of vCPU cores, memory

size, GPU type, etc. A matrix A0, and vectors b0 and θ0 are

initialized before any jobs are processed.

We make the assumption that each job jt can start only

when job jt−1 has finished. Each action a ∈ A is the act of

assigning a job to an instance type. Action at,s signifies the act

of assigning job jt to instance type s for execution. The context

vectors x for Oikonomos-II consist of both the application

parameters and the hardware parameters of the instance type.

Here, we simply concatenate the vectors pt and hs to create

xt,s. Theoretically, it is possible to implement a hybrid version

of Neural-LinUCB to evaluate pt and hs separately, but this is

to a large extent non-parallelizable and computationally much

more expensive, to the extent that we consider it infeasible.

Furthermore, combining pt and hs in a single context vector

allows the MLP to learn possibly complex interplays between

hardware and application parameters.

We use the combined context vector xt,s to calculate the
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Algorithm 1 Oikonomos-II adaptation of Neural-LinUCB

1: Input: regularization parameter λ > 0, number of jobs J , vector of retraining rounds k, exploration parameter α > 0,

MLP φ(x,w), context scaler function σx(x), reward scaler function σr(r), custom reward function r(T )
2: Initialization: A0 = λI, b0 = 0, and vector θ0 of length d filled with values 1

d ,

MLP weights wL initialized in a randomized way, empty database D
3: for t = 1, . . . , J do
4: receive job parameter vector pt

5: concatenate pt with vectors {h0, . . . ,hS} to obtain unscaled context vectors {xt,0, . . . ,xt,S}
6: scale each context vector with scaler function σ(x) to obtain scaled context vectors {x(σ)

t,0 , . . . ,x
(σ)
t,S}

7: choose action at = argmaxs∈[S] σ
−1
x

(
θᵀ
t−1φ(x

(σ)
t,s ;wL) + αt‖φ(x(σ)

t,s ;wL)‖A−1
t−1

)
, and obtain execution time Tt

8: calculate reward rt from Tt, using reward function r(T )
9: store tuple {xt,at ;Tt} in D

10: if t ∈ k then
11: σx(x); σr(r); At; bt ← outputs of Algorithm 2

12: else
13: At = At−1 + φ(x

(σ)
t,at

;wL)φ(x
(σ)
t,at

;wL)
ᵀ , bt = bt−1 + rtφ(x

(σ)
t,at

;wL)
14: end if
15: update θt = A−1

t bt
16: end for
17: Output: wL,J ; D

Algorithm 2 Update ANN weights and refit scalers

1: Input: Database D, weights wL, MLP φ(x,w), current round t, soft update parameter τ ∈ (0, 1]
2: Initialization: For each tuple {xt,at

;Tt} ∈ D, load all xt,at
into feature set X . Calculate rewards rt from Tt and load

these into target set Y . Copy wL into wTr. Define a loss function L. Initialize Lmin = ∞
3: Take a sample from X,Y , and divide into training set Xtr, Ytr and validation set Xv, Yv

4: Refit σx to Xtr and σr to Ytr, and scale vectors X , Xtr, Xv , Y , Ytr, Yv accordingly. Divide the sets into mini-batches.

5: for each epoch do
6: Use φ(x,wL) to recalculate A and b for each data point ∈ X,Y (see Algorithm 1)

7: Recalculate θt for each data point in Xtr, Ytr and Xv, Yv

8: Update wT by performing backpropagation using the training set and loss function L
(
θᵀ
t−1φ(x

(σ)
t,s ;wTr),

ˆ
r
(σr)
t

)

9: Soft update step: wL ← τwTr + (1− τ)wL

10: Calculate validation loss Lv , using wL, the validation set, and loss function L
11: if Lv < Lmin then
12: wmin = wL

13: Lmin = Lv

14: end if
15: end for
16: wL = wmin

17: Use φ(x,wL) to recalculate At and bt
18: Output: wL; σx(x); σr(r); At; bt

upper confidence bound for the reward of each job-instance

type combination, as is done in the original Neural-LinUCB

algorithm. The vector qt = φ(xt,s;wL) is obtained by passing

xt,s through the MLP. qt is multiplied with vector θt−1 to

find the expected reward, and the inverse of At−1 is used to

calculate the confidence bound. Following the notation used

by Xu et al., we use [k] to denote a set {1, . . . , k}, k ∈ N
+.

For a semi-definite matrix A ∈ R
d×d and vector x ∈ R

d, the

Mahalanobis norm is denoted as ‖x‖A =
√

xᵀAx. The process

is visualized in Figure 3. The action with the highest upper

confidence bound is recommended to the user.

As shown in Figure 2, after the algorithm recommends an

instance type, the job is executed there. The job output is then

returned to the user. The execution time Tt, as well as vectors

pt and hs are stored in a database. The ANN is retrained

periodically; it would be computationally expensive to retrain

after every round. However, At, bt, and θt are calculated after

every round, and are used for UCB calculation and instance-

type recommendation in the next round.

The Oikonomos-II algorithm is described in detail in Al-

gorithms 1 and 2. For a more detailed explanation of Neural-

LinUCB and proof of the regret bound, we refer the reader to

the original paper. We made several adaptations to the Neural-

LinUCB algorithm to make it suitable for our application. The
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Fig. 4. The architecture of the MLP used in Oikonomos-II

original Neural-LinUCB algorithm retrains the ANN every k
steps. We noticed that the network requires frequent retraining

in the beginning, and requires less frequent retraining later,

when there is more data available. Therefore, rather than

defining k as an integer, we define k as a vector of positive

integers. If t ∈ k, the ANN is retrained after round t. The size

and content of k can be chosen by the user.

It was also noted that, when training the ANN, there exists

a feedback loop between the weights of the ANN and the

feature vector θ: after all, θ depends on A and b, and

A, b are updated after every round using the MLP output

vector q. This led to instability and reduced performance

during backpropagation, as θ is used in the loss function (see

Algorithm 2). We resolved the issue by applying soft updating,

as described by Lillicrap et al. [22], where the target network

is used to recalculate θ for each data point at the start of

each epoch, and backpropagation is applied to the training

network. A soft-update step is performed at the end of each

epoch. This allowed us to use deeper neural networks, which

makes it possible to represent more complex relationships

between inputs and rewards. We also improved the MLP

training process by applying best-practise techniques, such as

data scaling, training with mini-batches, and early stopping

with separate training and validation sets in Oikonomos-II.

IV. IMPLEMENTATION

The system was implemented in Python. As machine-

learning framework, we used PyTorch [26]. An MLP of nine

linear layers was used, with a maximum width of 2,000.

Normalization and dropout layers were used to enhance per-

formance. (Leaky) ReLU functions were used as activation

layers, except for the last layer, where a sigmoid function was

used (which was observed to improve performance). The full

architecture is summarized in Figure 4. The length d of the

output vector (which corresponds to the length of vector θ)

is 700. As loss function L, we used the Mean-Squared Error

(MSE) loss function. The data set (X,Y ) used for training

consists of a maximum of random 3000 samples from D; for

t ≤ 3000, (X,Y ) = D. The minibatch size was initialized at

1, and slowly increased as D increased, to a maximum of 16.

The MLP was retrained after 50 episodes, and then at

intervals of 500 episodes. Of the dataset, 85% was used as

a training set, and the remaining 15% as a validation set.

Backpropagation is performed using the Adam optimizer [27].

Training is done for 500 episodes, the weights of the episode

with the lowest validation loss are retained. As for the reward

TABLE II
HPC APPLICATIONS USED FOR THE OIKONOMOS-II EVALUATION, AND

THEIR PARAMETER RANGES

(E) HPCC (F) simHH
parameter range parameter range

MPI-procs 4-8 time-steps 1 - 110,000
N 20,000 - 40,000 connectivity 0.5 - 1.0
NB 100 - 20,000 neurons 1000 - 10,000

(G) MNIST (MLP) (H) CIFAR-10 (CNN)
parameter range parameter range

epochs 1 - 1000 epochs 1 - 1000
Training 1 - 5000 Training 1 - 3000
batch size batch size
Test batch size 1 - 5000 Test batch size 1 - 3000
Layer 1 size 1 - 750 Layer 1 size 1 - 500
Layer 2 size 1 - 1000 Architecture type 1 - 4

function: as LinUCB strives to maximize the reward value,

and our goal is to minimize either costs or execution time,

we defined the reward function r(x) = 1
x , with x the costs

in dollars, or the execution time in seconds. The parame-

ter set was scaled using StandardScaler, the rewards

were scaled using PowerTransformer, both from the

sklearn.preprocessing library for Python.

V. EVALUATION

A. Experimental setup

For the evaluation of Oikonomos-II, we used four differ-

ent benchmark applications. Three of these are real HPC

applications, the other one is a synthetic benchmark from

the ARCHER suite. The first is simHH, a neurosimulator

developed at the Erasmus Medical Center, Rotterdam [23]. It

simulates a wide range of biologically plausible, conductance-

based Hodgkin-Huxley neural models. These models work on

non-embarrassingly parallel workloads and uses basic solvers

operating on short time intervals. The second application

involves training an MLP Deep Neural Network with Google

TensorFlow using the widely-used MNIST database [24].

MNIST is a standard dataset in TensorFlow for testing AI

classification. Training time varies based on adjustable hyper-

parameters. The third application is training a TensorFlow-

based Convolutional Neural Network (CNN) using the CIFAR-

10 database. CIFAR-10 consists of color images from ten

classes; the CNN is trained to classify images. The training

time is influenced by variable parameters such as the number

of convolutional layers, fully-connected layer size, epochs, and

test/training minibatch sizes. HPCC [25] is a collection of syn-

thetic benchmarks that measure the range of memory-access

patterns. The application has MPI and OpenMP support. There

are no available GPU or FPGA implementations of HPCC, but

the number of MPI processes can be varied. The application

parameters we varied are stated in Table II. As for instance

type parameters, we used the number of vCPUs, the instance

memory in MiB, and the number of GPUs.

The Amazon instance types that we have used for our

evaluation are shown in Table III. Without loss of generality,

they were selected so as to create a diversity of hardware
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TABLE III
AMAZON EC2 INSTANCE TYPES USED FOR OIKONOMOS-II EVALUATION

Instance type CPU type vCPU no. Memory (GiB) GPU type GPU mem. (GiB)

t2.2xlarge Intel Xeon Family @ 3.3 GHz 8 32 – –
c5a.4xlarge AMD EPYC 7R32 @ 2.8 GHz 16 32 – –
m5a.4xlarge AMD EPYC 7571 @ 2.5 GHz 16 64 – –
m5a.8xlarge AMD EPYC 7571 @ 2.5 GHz 32 128 – –
c5a.8xlarge AMD EPYC 7R32 @ 2.8 GHz 32 64 – –
c5a.12xlarge AMD EPYC 7R32 @ 2.8 GHz 48 192 – –
g3.4xlarge Intel Xeon E5-2686 v4 @ 2.3 GHz 16 122 Tesla M60 8.0
g4dn.4xlarge Intel Xeon Family @ 2.5 GHz 16 64 Tesla T4 16.0

TABLE IV
DISTRIBUTION OF BEST INSTANCE TYPE IN ORACLE SETS (TIME / COST)

simHH MNIST HPCC CIFAR-10
t2.2xlarge 1.66% /

2.44%
0.00% /
1.52%

0.34% /
1.60%

0.00% /
0.00%

c5a.4xlarge 4.66% /
25.58%

1.06% /
34.00%

0.00% /
98.40%

0.00% /
0.00%

m5a.4xlarge 2.70% /
1.10%

0.00% /
0.00%

0.00% /
0.00%

0.00% /
0.00%

m5a.8xlarge 0.16% /
0.00%

0.00% /
0.00%

0.00% /
0.00%

0.00% /
0.00%

c5a.8xlarge 6.70% /
0.18%

0.34% /
0.00%

75.44% /
0.00%

0.00% /
0.00%

c5a.12xlarge 26.28% /
0.00%

2.10% /
0.00%

24.22% /
0.00%

0.00% /
0.00%

g3.4xlarge 5.02% /
18.06%

0.00% /
0.00%

0.00% /
0.00%

0.00% /
0.00%

g4dn.4xlarge 52.82% /
52.64%

96.50% /
64.48%

0.00% /
0.00%

100.00% /
100.00%

options, but we also selected some instance types from the

same family. This allows us to test if Oikonomos-II can discern

between instances that are relatively similar. Two instance

types have a GPU available, three are compute-optimized, and

three are general-purpose instances.

To evaluate the performance of Oikonomos-II, we used

datasets where all the jobs have been executed fully on each

of the eight instance types. We call these datasets oracle
sets, since they provide us with full insight into the best

possible policy and the regret of each different policy.1 By

using these sets as a simulation environment, it was possible

to evaluate the regret for each application. For our four

applications, we used oracle sets of 5,000 jobs. The sets were

created by executing jobs on the Amazon EC2 instances, and

then augmenting the data by manually studying the behavior

of these applications, in order to create sets that reliably

represent the application behavior on the cloud instances. We

randomized the order of each of the jobs and presented the

jobs one by one to Oikonomos-II. The algorithm only gets to

see the execution time of a job for the instance type it has

chosen, and it cannot see into the future.

Comparing Oikonomos-II to other work is challenging,

since each author uses their own HPC application to evaluate

performance – the absence of a good benchmark set for cloud

HPC recommendation is a persistent issue in this field. Even

when the same applications are used, differences in parameter

ranges can lead to vastly different data sets. Most standard

HPC benchmark sets are unsuitable for our purpose: they are

1The oracle sets that were used for evaluation can be found at: https://
gitlab.com/c7859/neurocomputing-lab/oikonomos-II data.

designed to characterize specific HPC platforms, and fail to

capture the complex interplay between application character-

istics, individual job input parameter values, and hardware. We

therefore decided to evaluate the performance of Oikonomos-II

in its own right.

We employed three metrics. The first metric is the per-

centage of all rounds for which the best instance type was

recommended. This shows the performance of Oikonomos-II,

including the exploration phase. The second metric is the

percentage of the last 1,000 rounds for which the best instance

type was recommended. By this time, the algorithm has had

the opportunity to explore and should be mostly exploiting.

The last metric is the regret. Regret is usually defined as the

difference between the optimal policy and the actual policy.

The unit and size of the regret differs for every application. In

order to compare the applications, it was decided to express

regret as a percentage of the regret of random policy.

B. Results

We evaluated the performance of Oikonomos-II on all four

applications, optimizing for both execution time and costs. We

analyzed the oracle sets to determine the distribution of the

best option. The most interesting cases are those where the

best choice of instance type depends on the parameter values.

As shown in Table IV, to varying degrees, this is the case for

all benchmarks except for CIFAR-10, where g4dn.4xlarge
is the overall best choice for both cost and time.

Table V shows the evaluation results for all four appli-

cations, employing the three metrics. Despite the fact that

Oikonomos-II starts without any knowledge about any of the

applications, over 5,000 episodes it is able to recommend

the best instance type for jobs it has not seen before. The

percentage of optimal recommendations becomes even higher

when only the last 1,000 episodes are considered. This is

expected: after all, the later the episode, the more the algorithm

can rely on previous observations. However, the numbers are

not much different, as Oikonomos-II has likely converged

much earlier. It is interesting to compare these two metrics

to the data in Table IV. For example, simHH shows a lot of

variation regarding the optimal instance type: the best choice is

heavily dependent on job parameters. The high percentage of

optimal recommendations shows that Oikonomos-II is able to

effectively learn the relationship between input parameters and

optimal instance type. Oikonomos-II appears to perform less

well in predicting the instance with the fastest execution time

for HPCC. We found that this was caused by the fact that two
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Fig. 5. A: Cumulative regret for simHH (cost-optimized). Regret increases rapidly in the beginning, but then mostly flatlines. B: Confusion matrix of
recommendation choices for the first 100 episodes for simHH (cost-optimized). True labels are on the x-axis, whereas recommendations are on the y-axis.
Since Oikonomos-II has not explored the space yet, it is forced to explore and make suboptimal choices. C: Confusion matrix for the last 100 episodes for the
same application. Now that Oikonomos-II has explored the relationship between parameters and performance, it mostly exploits and makes optimal choices:
most recommendations coincide with the true best option.

TABLE V
OIKONOMOS-II EVALUATION RESULTS (TIME / COST)

simHH MNIST HPCC CIFAR-10

Optimal action over
all episodes

79.34% /
91.28%

92.92% /
87.16%

54.56% /
97.40%

95.88% /
95.82%

Optimal action over
last 1000 episodes

81.40% /
94.24%

95.60% /
89.50%

68.50% /
97.50%

99.00% /
95.00%

Regret as perc. of
random policy regret

2.12% /
1.57 %

4.42% /
10.59%

2.46% /
1.42%

0.99% /
2.16%

instance types have similar performance for this application.

Therefore, which of those two performs for a particular job is

in part determined by chance. For all applications, the regret is

only a small percentage of the regret of a random policy, which

shows that Oikonomos-II far outperforms a random policy.

Figure 5 gives a more detailed look into the performance of

one of the applications, simHH, optimized for costs. Figure 5A

shows the cumulative regret over time. Cumulative regret

increases rapidly in the beginning as Oikonomos-II is forced

to make sub-obtimal choices in order to explore. However,

it rapidly flatlines. However, regret seems to increase faster

again after about 3,500 episodes. This was likely due to the

fact that, after this point, only a sample of D is used to train

the MLP, in order to increase training speed – when we reran

the experiment without sampling, the sudden jump in regret

disappeared. Even though the original Neural-LinUCB paper

states that performance loss is limited, this figure suggests that

it is not negligible.

Figure 5B shows the confusion matrix for the first 100

episodes for simHH, and Figure 5C shows the confusion

matrix for the last 100 episodes. In the first 100 episodes,

Oikonomos-II has not explored the space yet, but is forced

to explore and make suboptimal choices, which is why the

confusion matrix is rather scattered. However, in the last 100

episodes, Oikonomos-II has explored the relationship between

parameters and performance, and is able to exploit, which is

shown by the fact that almost all points in the matrix lie along

the diagonal.

VI. DISCUSSION

So far, we made the assumption that cloud instances are up

and running, and are readily available; start-up times were not

taken into account. In a real-life scenario, it might be useful

to keep instances running in some situations (for example,

when there is a continuous stream of jobs), whereas in other

situations, it would be better to shut them down between runs.

Developing an algorithm that takes this into account would

be useful, but requires additional information about usage

patterns, which was outside the scope of Oikonomos-II. Still,

this could be an interesting extension of the current work,

when combined with a suitable scheduling algorithm.

Oikonomos-II uses a deep neural network which needs to be

retrained regularly. Retraining can be a time-consuming task

that is best done on specific hardware types, such as a GPU;

this might incur extra costs. However, in our evaluation, we

showed that Oikonomos-II can deliver outstanding results with

a long retraining interval of 500 episodes. Furthermore, it is

possible to reduce the training time by retraining on only a

sample of the data. Xu et al. argued that this is possible for

Neural-LinUCB without significant reduction in performance,

and we expect the same for Oikonomos-II.

The current number of instance types offered by AWS is

over 600. Oikonomos-II was tested on data from eight instance

types, which is only a fraction of the number of instances

offered. However, as there is currently no standard benchmark

set for resource recommendation in cloud HPC, it was neces-

sary to collect our own oracle datasets to evaluate performance.

This required that we limit ourselves to a small selection of

instance types. Even so, the small set of eight instance types

contains sufficient diversity. The fact that oftentimes, there is

not one overall ‘best’ instance type, attests to this.
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Oikonomos-II was tested on two types of reward functions:

cost- and time-optimized. A fixed reward function for all

episodes was assumed. However, in a real-life situation, some

users might want the instance type that delivers the fastest

results, whereas other users want to have results at the lowest

cost. Yet others might prefer a balance between these two or

have additional requirements. The current implementation of

Oikonomos-II does not support this diversity of user require-

ments but its design can be easily extended to accommodate

a variety of custom reward functions in the future.
Finally, the assumption was made that jobs arrive and are

dispatched in a sequential manner: a new job arrives when

the previous job has completed. In reality, however, jobs may

arrive simultaneously, and a new job may arrive before the

previous ones have finished. This might affect recommender

performance. However, the problem of delayed feedback in

bandits is well-studied [28], and the structure of Oikonomos-II

is suitable for expansion to incorporate solutions to challenges

that may arise in practice. In addition, it would also be

valuable to assess how Oikonomos-II would perform on other

contextual bandit algorithms, such as Thompson Sampling.

However, this falls beyond the scope of the current work.

VII. CONCLUSION

Oikonomos-II casts the problem of cloud instance-type

selection for different HPC jobs as a contextual multi-armed

bandit problem. It applies a variant of the Neural-LinUCB

algorithm, balancing exploration and exploitation. The system

starts off without knowledge of the application behavior, and

is forced to explore when recommending instances for in-

coming jobs. However, as it gathers knowledge, Oikonomos-II

starts exploiting and converges towards optimal choices. We

evaluated Oikonomos-II on four diverse HPC applications,

where it was shown to converge towards optimal choices,

demonstrating its effectiveness and robustness. Oikonomos-II

avoids the main issues of both prediction-based and search-

based recommenders. Combining the best elements of these

two approaches into a reinforcement-learning recommender

system, Oikonomos-II is both generalizable and accessible,

making it a promising tool for researchers who want to harness

the power of the cloud for their high-performance computing

applications.
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