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Abstract

An end-to-end framework is developed to discover physical laws directly from videos, which
can help facilitate the study on robust prediction, system stability analysis and gain the
physical insight of a dynamic process. In this work, a video information extraction module is
proposed to detect and collect the pixel position of moving objects, which would be further
transformed into physical states we care about. A physical law discovery module is developed
to learn closed-form expressions based on the extracted physical information. The video in-
formation extraction module takes advantage of contour detection and Hough transformation
to extract position information. The physical law discovery module includes a deep neural
network-like hierarchical structure Mathematical Operation Network (MathONet) which is
consisted of basic mathematical operations. We develop a sparse Bayesian learning algorithm
to learn both the topology and parameters of dynamic systems. Several simulated videos
were generated to illustrate Newton’s law of motion, the state space of a Duffing oscillator,
and the pendulum motion equation. By demonstrating on these examples, our method can
discover the corresponding governing function without requiring much prior information.
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Master of Science Thesis Zixuan Wan



ii

Zixuan Wan Master of Science Thesis



Table of Contents

Acknowledgements xi

1 Introduction 1
1-1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-2 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-3 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminary 5
2-1 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2-1-1 Overfitting and Regularization . . . . . . . . . . . . . . . . . . . . . . . 6
2-1-2 Efficiency and Model Compression . . . . . . . . . . . . . . . . . . . . . 7

2-2 Bayesian Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2-2-1 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . 9
2-2-2 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2-2-3 Laplace Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2-2-4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Video Information Extraction 13
3-1 Video Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3-2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3-2-1 Contour Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3-2-2 Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3-2-3 Comparison between Contour Detection and Hough Transform . . . . . . 17

3-3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Master of Science Thesis Zixuan Wan



iv Table of Contents

4 Physical Law Discovery 21
4-1 Multilayer Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4-2 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4-2-1 Polynomial-Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4-2-2 Operation-Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4-2-3 Model Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4-3 Dependency between connections . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4-4 Specific Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4-5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Sparse Bayesian Learning Algorithm 33
5-1 Laplace Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5-2 Evidence Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5-3 Regularization Update Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5-3-1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Experiment Result 39
6-1 Free Falling Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6-1-1 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6-1-2 Real Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6-2 Duffing Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6-2-1 Synthetic Video Generation . . . . . . . . . . . . . . . . . . . . . . . . . 48
6-2-2 Physical Information Extraction . . . . . . . . . . . . . . . . . . . . . . . 49
6-2-3 Physical Law Discovery Experiment Setup . . . . . . . . . . . . . . . . . 50
6-2-4 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6-3 Swinging Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6-3-1 Synthetic Video Generation . . . . . . . . . . . . . . . . . . . . . . . . . 53
6-3-2 Physical Information Extraction . . . . . . . . . . . . . . . . . . . . . . . 54
6-3-3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6-3-4 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusion 61
7-1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7-2 Further Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Supplement Experiment result 63
A-1 Free Fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A-1-1 Distilled results of L1 regularization . . . . . . . . . . . . . . . . . . . . 63
A-1-2 Distilled results of no regularization . . . . . . . . . . . . . . . . . . . . 64

A-2 Duffing Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A-2-1 Distilled results of L1 regularization . . . . . . . . . . . . . . . . . . . . 66
A-2-2 Distilled results of no regularization . . . . . . . . . . . . . . . . . . . . 67

A-3 Swinging Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A-3-1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A-3-2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Zixuan Wan Master of Science Thesis



Table of Contents v

B Real Dataset for Pendulum 71
B-1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B-1-1 ROS framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B-1-2 Python code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B-2 Video Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B-3 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 77

Master of Science Thesis Zixuan Wan



vi Table of Contents

Zixuan Wan Master of Science Thesis



List of Figures

1-1 Schematic architecture of the end-to-end framework . . . . . . . . . . . . . . . . 4

2-1 Two kinds of layers in deep neural networks[21] . . . . . . . . . . . . . . . . . . 5
2-2 Underfitting and overfitting[20] . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2-3 Comparison between L1 regularization and L2 regularization . . . . . . . . . . . 7
2-4 Conversion from a dense network to a sparse network . . . . . . . . . . . . . . . 8
2-5 Comparison between a traditional neural network and a Bayesian neural network[7] 9

3-1 Examples of a frame from the simulated or real pendulum video . . . . . . . . . 14
3-2 The difference between the two methods for object recognition . . . . . . . . . . 14
3-3 The result of Canny edge detection algorithm . . . . . . . . . . . . . . . . . . . 16
3-4 The result of Canny edge detection algorithm . . . . . . . . . . . . . . . . . . . 16
3-5 Detected position results of a simulated free falling ball video and a swinging

pendulum compared with ideal values . . . . . . . . . . . . . . . . . . . . . . . 18
3-6 Schematic diagram of physical information extraction process . . . . . . . . . . . 19

4-1 An example of a multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . 22
4-2 Mathematical operation network (MathONet) . . . . . . . . . . . . . . . . . . . 24
4-3 The structure of the Polynomial-network (PolyNet) and [Operation-network (Oper-

Net) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4-4 An example of MathONet after model compression . . . . . . . . . . . . . . . . 27
4-5 An illustration for the dependencies between connections. . . . . . . . . . . . . . 27
4-6 An example of a specific formula . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4-7 The identification examples of linear and nonlinear system . . . . . . . . . . . . 30

6-1 Description of the synthetic visual physical dataset . . . . . . . . . . . . . . . . 39
6-2 Visualization of the generated synthetic video frame of free falling fall . . . . . . 41

Master of Science Thesis Zixuan Wan



viii List of Figures

6-3 Comparison between the extracted physical position and the true position . . . . 41
6-4 Identified governing equation for free fall dataset . . . . . . . . . . . . . . . . . 43
6-5 The sparsity and predictive ability of MathONet for synthetics free fall dataset . 44
6-6 Sparsity and predictive ability of MathONet with different optimization methods 45
6-7 Visualization of the real dataset of free fall . . . . . . . . . . . . . . . . . . . . . 46
6-8 Detection result for the real free fall dataset . . . . . . . . . . . . . . . . . . . . 46
6-9 The sparsity and predictive ability of MathONet for real free fall dataset . . . . . 47
6-10 Trajectory and the simplified video diagram of a Duffing oscillator . . . . . . . . 49
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Chapter 1

Introduction

Understanding the physical law is of great importance for that it can facilitate the study
on robust prediction, system stability analysis and gain the physical insight of a dynamic
process [47]. With the development of machine learning techniques and the diversity of
sensors, data richness and accuracy have been improved. This gives rise to a new paradigm of
discovering the underlying physical laws from data which is also called data-driven governing
equation discovery [46, 12]. Considering that cameras have been widely utilized to record
scientific videos and collect data, discovering physical laws or governing functions from a raw
video has led to great interest in recent years [14].

The aim of this thesis is to create an end-to-end framework that can distill the laws of
physics including the topology and parameters from a video by using a novel neural network-
like structure Mathematical Operation Network (MathONet). The whole pipeline includes
a video information extraction module and a physical law discovery module. In the video
information extraction module, the pixel position of a moving object in the frame would
be extracted. Then, the video information will be transformed into physical states we care
about (e.g.,distance, velocity, and angle). In the physical law discovery module, a novel deep
neural network like hierarchical structure is designed, termed as MathONet. MathONet is
initialized redundantly and composed of various possible basic mathematical operations that
can contribute to the mathematical expression. The idea of Bayesian deep learning is included
in the network optimization process for discovering the sparse optimal structure from an
over-parameterized initialized model to represent the explicit mathematical expression. The
end-to-end framework is demonstrated on the video of a free falling ball, a Duffing oscillator
and a swinging pendulum. A few assumptions are made to handle the underdetermined
nature of distilling physical laws from videos. First, the dynamic system has only one moving
object of interest. That is, we will not consider a dynamic system containing a group of
objects. Second, the the object to be explored in the video is known, especially when the
background environment is complex and contains other inferring objects. Third, it is assumed
that the variables of the physical law to be explored are known. In other words, the proposed
framework can discover the mathematical expression among variable of interest.

The following section of this chapter will introduce the background information about this
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2 Introduction

topic. Then, the motivation and contribution of this work will be given, followed by the
pipeline of the whole video to physical law framework.

1-1 Background

Data-driven physical law discovery represents building explicit mathematical expressions for
dynamic systems given measured physical states. The early work begins with identifying
linear models from data, followed by the interest for modelling non-linear systems[49]. One
important breakthrough in this area is from [50], which implemented symbolic regression
[19] to distill the underlying governing functions for even chaotic dynamic systems. Till
now, symbolic regression has spawned a family of work. According to the definition for
[52], symbolic regression refers to all methods which aim to learn a symbolic expression that
matches data from an unknown function, which includes several interesting techniques such
as sparse regression[9], genetic programming[2] and network-based symbolic regression[37].
However, these methods have their own disadvantages. For instance, genetic programming is
computationally expensive and sparse regression requires prior information to choose a set of
basis functions.

Instead of recovering the governing functions from given physical states, understanding a video
to learn parameters for well-characterized physical equations has been a topic in recent years.
[4] and [40]’s work estimates the parameters for a given mathematical structure. Fragkiadaki
et al. further incorporated the known external physical engines with the agent to simulate a
billiard game[18]. However, although these approaches can even predict the system precisely,
they still require the prior of a well-characterized governing equation.

Recently, there has been attempts to uncover the closed-form governing equations from a raw
video. [34] successfully distills first-order and second-order ordinary differential equations
from videos through learning the spatial-physical transformation and implementing sparse
regression toolbox. On the other hand, Chari et al. uncovers dynamic equations regard-
ing gravitational and centripetal acceleration by adopting the variational auto encoder to
determine the latent variables such as speed and acceleration[13]. They utilized existing
genetic programming approach to discover the physical law from latent variables. In these
works, the physical law is explored by using existing symbolic regression approaches (e.g.,
spare regression, genetic programming), which may limit their application due to the inher-
ent shortcomings of these methods. More detailed discussion on these symbolic regression
approaches is in Section 1-2.

1-2 Motivation and Contribution

As introduced in the beginning of this chapter, existing approaches to explore physical laws
from videos are mainly based on genetic programming or sparse regression. Since these
symbolic regression methods have their own drawbacks, which may limit the performance of
these methods in their application on physical law discovery from video. Especially, symbolic
regression can be divided into four categories:
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1-2 Motivation and Contribution 3

• Brute force This is the most intuitive way to discover the relationship among variables.
Given the variables of interest and possible operations, the brute force method will try
all possible mathematical expressions in the form of symbolic strings[52] or symbolic
tree[28]. It can be easily understood that the brute force method is computational
expensive which prevents it from being implemented for large systems. To reduce the
computational burden, the work from [52] leverages the properties such as symmetries,
separability and compositionality of the physical dataset to narrow the search space and
simplify the discovering process.

• Genetic programming This is a commonly used method in the field of physical law
discovery. Genetic programming is inspired by biology and includes operations such as
mutation, selection, and crossover when doing a targeted search for symbolic expression.
The search will evolve in the direction of satisfying the fitness criteria. Nevertheless,
genetic programming still has limitations such as high computational complexity, over-
parameterized output expression[9] and sensitivity to initial conditions[30].

• Sparse regression As another widely used approach to search mathematical expres-
sions, sparse regression uses a different searching strategy from brute force or genetic
programming. With an over-redundant basis function library, this method would dis-
tinguish the essential components with a linear sparse regression. A benchmark work is
proposed by [9], which presents the sparse identification of nonlinear dynamics (SINDy)
algorithm. Although SINDy has been successfully implemented on many dynamic sys-
tems, it suffers from the nontrivial task of choosing appropriate basis functions, which
requires an amount of prior information.

• Network-based symbolic regression Due to the powerful data fitting capability,
neural networks architectures are also used for discovering governing functions. Works
from [37] and [44] proposed network-based structures which can act as an equation
learner and be integrated with deep learning frameworks to be trained with backpro-
pogation. These methods include elementary operators as the activation functions.
However, these network-based approaches cannot fit the constant term in the equation.
Besides, they use L1 regularization for training and compressing redundant connections.

Motivated by these symbolic regression methods, we designed a novel DNN-like hierarchical
structure to serve for the physical law discovery module in the end-to-end framework. Our
main contributions are as follows:

• End-to-end framework design We designed an end-to-end framework which can
distill physical laws from raw videos directly, without requiring much prior knowledge
and the true labelled data.

• Mathematical operation network design A deep neural network like hierarchical
structure, termed MathONet, is designed to represent the mathematical expression of
the governing functions of dynamics systems. The MathONet is built by stacking unary
(log, sin) and binary (+, −, ×) operations.

• Bayesian learning discovery algorithm A Bayesian learning algorithm is included
in the training process of MathONet, which can provide a sparse solution by reducing
the redundancy of an initialized over-parameterized network and relieve the burden in
hyperparameter tuning.
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4 Introduction

1-3 Pipeline

The pipeline of our end-to-end framework is as shown in Figure 1-1. The input is only the raw
video. Then, the video information extraction module will extract the positional information
of the moving object from the consecutive frames. After that, the extracted pixel coordinates
would be transformed into physical states, which act as the input and output variables to
train the physical law discovery network, namely, MathONet. A Bayesian learning algorithm
is implemented to compress the over-redundant model and discover the sparse solution to
represent the explicit mathematical expression of the physical law, which is the final output
of the whole framework.

Figure 1-1: Schematic architecture of the end-to-end framework
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Chapter 2

Preliminary

This chapter will give a brief introduction to the background knowledge in this thesis. First,
the principle and properties of deep neural networks will be reviewed, which is the foundation
of MathONet. Second, how Bayesian learning works and the comparison between several
typical Bayesian learning approaches will be introduced.

2-1 Deep Neural Network

As an important subset of machine learning algorithms, deep neural network(DNN) aims at
discovering multiple levels of distributed representations[21]. Especially, DNN has become
an indispensable tool for modelling complex nonlinear systems and has been applied for
several domains such as computer vision, language processing and control theory[29, 15,
27]. Examples of a fully-connected layer and a convolutional layer are as shown in figure
2-1. Though deep neural networks are of great importance in the field of system modelling,
overfitting and efficiency are two frequently encountered problems.

(a) Fully-connected layer (b) Convolutional layer

Figure 2-1: Two kinds of layers in deep neural networks[21]
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6 Preliminary

2-1-1 Overfitting and Regularization

Since the field of deep learning has been focusing on achieving high accuracy, deeper models
and more complex models appear one after another, which would bring the problem of overfit-
ting. Figure. 2-2 can help understand the relationship among dataset, model complexity and
prediction accuracy. When fitting the dataset with three different models, a linear model is
the simplest one but it cannot capture the curvature of the data, which leads to underfitting.
A quadratic function fits the dataset well, while a more complex polynomial of degree 9 suffers
from overfitting because it cannot be generalized to unseen points. It can be concluded that
there is a balance between model complexity and prediction accuracy. In the deep neural
network domain, regularization can help beat overfitting and reduce the generalization error
for the test dataset.

Figure 2-2: Underfitting and overfitting[20]

Regularization is defined as "any modification we make to a learning algorithm that is in-
tended to reduce its generalization error but not its training error" [20]. Though there are
several methods that can help reduce overfitting like data augmentation, dropout and early
stopping, normally regularization refers to strategies adding restrictions or penalties in the
objective function. With W , x and y represent the weight matrix, input data and output
data, L(W ;x,y) indicates the loss function while L̃ is the loss function with regularization,
as shown in (2-1).

L̃(W ;x,y) = L(W ;x,y) + αΩ(W ) (2-1)
α is a hyperparameter that determines the contribution of the norm penalty term Ω. A larger
α corresponds to more regularization. When training with the regularized objective function,
both the original loss and parameter norm item would be decreased. Different choices of Ω
will result in corresponding optimal solution W ∗. Typically, there are two norm terms: L1
and L2.
L1 regularization term is defined as Ω(W ) = ‖W‖1 =

∑
i |wi|, namely, the sum of the ab-

solute values of all the weights. L2 parameter norm penalty is commonly known as weight
decay. This regularization strategy adds a penalty term Ω(W ) = 1

2‖W‖
2
2 to the optimization

function, driving the weights closer to the origin.
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2-1 Deep Neural Network 7

Figure 2-3: Comparison between L1 regularization and L2 regularization

Figure. 2-3 gives an intuitive explanation about how L1 and L2 influence the final solution of
parameters. In this simple case, the weight space has 2 dimensions while H0 is the hypothesis
and the solution is the points where H0 meets the constraints. Due to the nature of ‖W‖1,
the possible solutions will be limited in corners, thus lead to sparsity in the final weight set.
As for L2 regularization, the hypothesis is tangential to ‖W‖2, the intersection has non-zero
values both in x1 and x2 axis, but the values tend to approach the origin.

2-1-2 Efficiency and Model Compression

Complex models not only lead to overfitting, but also require extended and expensive train-
ing which prevent such models from being used by mobile devices. The model compression
technique can not only improve the efficiency of memory and energy consumption, but also
leads to less network bandwidth, faster processing, and better privacy [53]. Since model com-
pression has raised a surge in the deep learning community, there are a number of successful
compression algorithms. Typically, they can be categorized into three class: standard weight
pruning, fixed point precision and Bayesian compression. Specifically, these three classes are
not mutually exclusive. For example, Bayesian compression needs to prune redundant weights
and it can reduce the bit size of weights at the same time.

1. Standard weight pruning It has been proven that there is a great redundancy in the
parameters of a DNN [17, 54]. In this case, weight pruning, which was first proposed to
improve generalization ability, can also be used for model compression and speed-up[31].
As the name gives away, weight pruning represents removal of redundant weights. Thus,
improving the compression rate as much as possible without sacrificing accuracy is a
topic worth exploring. Some experiments showed that neural networks can prune up to
99% parameters without significant loss of accuracy [24, 22].
Redundant weights can be pruned according to the ranking of how much each weight
contribute to the final accuracy. Usually there are two common methods: pruning
synapses and pruning neurons (Figure 2-4). As an alternative of pruning at once,
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iterative pruning can repeat the process of training and pruning to avoid removing
connections prematurely [24]. The result showed that it can boost compression rate 13x
on VGG-16 without any loss of accuracy.

Figure 2-4: Conversion from a dense network to a sparse network

2. Fixed point precision Another approach to model compression is to reduce the bit
size per weight. For example, reducing 32 bit floats to 1 bit leads to a 32× storage
improvement [53]. It has been demonstrated that neural networks are robust against
certain amount of low precision, and there are several experiments proving that reducing
the weight encoding precision has little influence on the prediction accuracy [38, 23, 16].

3. Bayesian approaches Bayesian theory states that the posterior probability is related
to likelihood and prior. If replacing likelihood estimation with posterior probability
estimation, the result will contain prior information about the dataset. Intuitively, this
kind of approaches are more mathematically convincing, and they have been proven to
have outstanding compression performance [56, 39].

2-2 Bayesian Learning

As introduced in the previous section, although DNNs can surpass humans in various do-
mains, they are generally prone to overfitting on datasets with a small number of training
examples and a complex model. In addition, the nature of the neural network determines
that it is a black box model. To put it another way, the entire model lacks interpretability
due to its complexity. In this case, a black box model that can give accurate predictions
is meaningless. As illustrated before, we will design a novel model to explore closed-form
mathematical expressions from data in this thesis. This model also has a neural network like
structure which may suffer from overfitting. The Bayesian method can serve as a natural and
elegant solution to address this issue because it yields posterior distribution instead of point
estimation for each weight, making it convincing to distinguish the necessary connections and
playing a role of information screening [6, 36, 1, 41]. Figure 2-5 illustrates the difference
between traditional neural networks and neural networks with Bayesian learning. All weights
in the traditional neural networks are specific values which will be updated through gradi-
ent descent of the loss function. However, Bayesian learning provides a statistical modelling
method for learning from data because weights are calculated as posterior distributions. In
other works, uncertainty is introduced in the weight of the neural network.
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Figure 2-5: Comparison between a traditional neural network and a Bayesian neural network[7]

Specifically, for the latent variables W (including all the weights and biases to be optimized)
that are of interest in a model, a prior distribution p(W ) could be specified depending on the
basic estimation before observing the data D. The likelihood can be represented as p(D|W ).
According to the Bayesian theory, the posterior distribution can be calculated as:

p(W |D) = p(D|W )p(W )
p(D)

∝ p(D|W )p(W )
(2-2)

where the distribution of data D is independent of parameter W so the term P (D) can be
removed. Although the main concept is easy to understand, the posterior distribution for ma-
chine learning models is always intractable. In order to perform Bayesian inference practically,
several approaches have been proposed over the past decades[36, 26], including Markov Chain
Monte Carlo (MCMC)[41], variational inference (VI)[33] and Laplace approximation[51].

In the following part, these typical approximation approaches for Bayesian learning will be
introduced with their pros and cons.

2-2-1 Markov Chain Monte Carlo

As a sampling-based method, Markov Chain Monte Carlo (MCMC) can converge to the
true posterior distribution after enough iterative sampling process. The operating process of
MCMC starts from drawing the random parameters W0 from the initial distribution p (W0)
or p (W0 | D). Then a stochastic transition operator would be applied to the randomly chosen
parameters so as to optimize Wt iteratively:

Wt ∼ q (Wt |Wt−1,D) (2-3)

With a suitable transition function and sufficient operating times, the final result WT will
converge to the exact posterior p(W | D). However, the drawback of MCMC is also obvious
that it is hard to estimate how many times is sufficient for convergence and the training
process will take a long time in practice.
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2-2-2 Variational Inference

Variational inference uses the mathematical idea of variation, estimating the true posterior
distribution p(W |D) with a fixed form of distribution qφ(W ). KL divergence between the
true posterior and the estimated posterior will be reduced by minimising the loss function.
The KL divergence can be represented as:

DKL(qφ(W )‖p(W | D)) =
∫
qφ(W ) log qφ(W )

p(W | D)dW

= Eqφ(W ) log qφ(W )
p(W | D)

(2-4)

After applying Bayes’s rule to p(W | D) with p(W ) denoting the prior, Eq. 2-4 can be
rewritten as:

DKL(qφ(W )‖p(W | D)) = Eqφ(W ) log qφ(W )
p(D |W )p(W )p(D)

= DKL(qφ(W )‖p(W ))− Eqφ(W ) log p(D |W ) + log p(D)
= −L(φ) + log p(D)

(2-5)

where L is known as the evidence lower bound (ELBO). Considering that log p(D) is non-
negative and our aim is to minimize the KL divergence, L is the lower bound of log p(D).
Therefore, the optimization objective is to maximize ELBO:

L(φ) = Eqφ(W ) log p(D |W )−DKL(qφ(W )‖p(W )) (2-6)

The advantage of variational inference is that it has a specific optimization objective and can
be faster in most cases [48]. However, since it is an approximation method, the optimization
result of VI will always have errors.

2-2-3 Laplace Approximation

Similar to variational inference, Laplace approximation takes use of a Gaussian approxima-
tion to a probability density defined over a set of continuous variables [5]. To facilitate the
explanation of the basic idea behind Laplace approximation method, a simple distribution
p(z) will be used as an example. How to learn from this idea for estimating the distribution
of parameters in a model will be thoroughly clarified in chapter ??. Supposing p(z) is defined
by:

p(z) = 1
Z
f(z) (2-7)

where Z is the unknown normalization coefficient. Laplace method will use a mode z0 of the
distribution as the mean value of the approximated Gaussian distribution q(z), which means
that:

df(z)
dz

∣∣∣∣
z=z0

= 0 (2-8)

Since the logarithm of a Gaussian distribution is a quadratic function of variables, a second-
order Taylor expansion of ln f(z) centered on mode z0 can be written as:

ln f(z) ' ln f (z0)− 1
2A (z − z0)2 (2-9)
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where
A = − d2

dz2 ln f(z)
∣∣∣∣∣
z=z0

(2-10)

Due to the reason that z0 is the local maximum value of p(z), the first-order term in the
Taylor expansion does not appear. With the exponential, it can be obtained that:

f(z) ' f (z0) exp
{
−A2 (z − z0)2

}
(2-11)

Then the estimated Gaussian distribution q(z) can be acquired with the help of the normal-
ization of a Gaussian:

q(z) =
(
A

2π

)1/2
exp

{
−A2 (z − z0)2

}
(2-12)

2-2-4 Conclusion

To make a conclusion about these methods, each has both advantages and disadvantages. As
shown in figure 2-1, MCMC is asymptotically exact to the true distribution, but it is also
computationally expensive and not compatible with deep learning frameworks such as Py-
Torch and TensorFlow. As two approximation methods, both VI and Laplace approximation
are fast and can be implemented on mainstream deep learning frameworks. At the same
time, both can only give the approximate solution. The difference between them is that the
Laplace approximation method can be employed for deep neural network models. But the
VI method can only works for shallow neural networks. Besides, Laplace approximation in-
cludes the Hessian matrix which will help optimize and compress a network[8]. However, the
extra drawback of Laplace is that it is sensitive to the initialization because the calculation
of mean and variance depends on the decision of mode, making it necessary to do repeated
experiments to avoid the local optimal solution.

Table 2-1: Comparison between different Bayesian learning methods

Bayesian Learning Method Advantages Disadvantages

Markov Chain Monto Carlo Asymptotically exact
1. Computationally expensive
2. Not compatible with deep
learning frameworks

Variational Inference
1. Fast to implement
2. Compatible with deep
learning frameworks

1. Approximate result
2. Not suitable for deep
networks

Laplace Approximation

1. Fast to implement
2. Compatible with deep
learning frameworks
3. Hessian matrix helping
optimization

1. Approximate result
2. Sensitive to initialization

For the work of this thesis, we adopt Laplace approximation method for that it is easy to
deploy and we can use the concept of cycle to accelerate training (more details about how to
implement Laplace approximation for our model are in Chapter 6).
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Chapter 3

Video Information Extraction

Given the video of a moving object, it is necessary to extract the physical information from
the frames for identifying the system dynamics. This chapter will discuss about how to
extract the positional information of the moving objects in the video. It should be noted that
the extracted pixel position has no physical meaning. Therefore, a transformation between
the pixel coordinates and the physical states of interest needs to be applied. However, the
transformation process differs a lot for different dynamic systems and may require some prior
information. The specific physical state transformation process for each testing example will
be introduced in the experiment result section.

Since the aim of our end-to-end framework is to discover the physical law, the underlying
assumption is that the system governing equation can be reflected in the dynamics of an object
across different time steps. Therefore, an efficient and robust object detection algorithm is
required to determine the localization of the moving object. There are several methods to
realise the physical information extraction function. For example, a pretrained Mask R-
CNN[25] was deployed to extract the bounding box of the moving object and the center of
the bounding box can be considered as the object location[13]. L. Luan’s work took use of a
semantic segmentation model (i.e., U-Net[45]), whose result would be encoded into the pixel
coordinate of the object[34]. These two schemes take the advantage of deep neural networks
and have a strong generalization ability for different inputs. However, training and deploying
a large neural network for pose detection or semantic segmentation always requires a large
amount of computation resources. Besides, labelling the dataset for network training also
demands significant time cost. Under this circumstance, some traditional methods for image
processing and feature extraction are of great necessity, especially considering the assumption
that only a small part of each frame is the region of interest.

In this chapter, I would like to introduce the methods for video preprocessing to highlight
the main area of the moving object. Then an edge detection algorithm would be applied to
discover the target contour which could be followed by a feature extraction part to describe
the position of the target object.
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14 Video Information Extraction

3-1 Video Preprocessing

It is always easy for the human eye to recognize the moving object from a video. However,
each frame of a video is processed as a digit matrix by a computer. How to help computers
understand the picture and detect the area of importance would be an interesting topic.
Figure 3-1 gives the examples of a simulated and a real pendulum system. In figure 3-1(a),
the simulated red pendulum should be distinguished from the white background, while in
figure 3-1(b), the green real pendulum needs to be identified from the complex background
environment.

(a) Simulated pendulum (b) Real pendulum

Figure 3-1: Examples of a frame from the simulated or real pendulum video

There are two methods to solve the problem of object recognition. The first one is to utilize
the feature that the color of the pendulum is different from the background color so that a
mask can be built according to a color filter. The second method is to subtract the background
image from the frame of the dataset video. To make the explanation clear, an artificial image
was rendered to represent a ball with a complex background environment.

(a) original image (b) color filter (c) background subtraction

Figure 3-2: The difference between the two methods for object recognition

As shown in figure 3-2(a), a yellow ball is generated with a background of an abstract painting.
Method one would detect the ball through traversing the entire image to detect the pixels
with similar HSV color of the target object. The result is as illustrated in figure 3-2(b)
which is a binary mask with the white area indicating the target object. At the same time,
figure 3-2(c) gives the result of subtracting the background image from the original dataset.
Because that background part is not changed, it is set to black while the color different in
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3-1 Video Preprocessing 15

the yellow area is reflected. Both methods have their own advantages and are suitable for
different cases. For instance, Method one requires the target object has a relatively uniform
color distribution that can also be distinguished from the environment. For method two, a
background photo that is strictly same as the video background environment is necessary.
Simulated dataset with an artificial moving object is suitable for method one. However, a
real video with limited picture quality and interference factors in the background would have
a more accurate detection result with method two.

Algorithm 1 Canny Edge Detection
1: Transfer the three-channel RGB image into a one-channel gray-scale image.

V alue = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B

2: Applying a Gaussian blur to get rid of the noise on the image. The Gaussian filter matrix
would be generated with the following distribution function:

g(x, y) = 1
2πσ2 e

−x
2+y2

2×σ2

where x and y indicate the position in the Gaussian matrix, and σ is variance.

3: Calculate the gradient of pixels’ intensity to detect the edge intensity and direction. The
derivatives Ix and Iy w.r.t x and y can be calculated through convolving the image I with
Sobel kernels Kx and Ky. Then the magnitude G and the slope θ of the gradient can be
calculated.

Kx =

 −1 0 1
−2 0 2
−1 0 1

 ,Ky =

 1 2 1
0 0 0
−1 −2 −1


|G| =

√
I2
x + I2

y

θ(x, y) = arctan
(
Iy
Ix

)
4: Non-maximum suppression would be performed to thin out weak edges. This step goes

through all points on the gradient intensity matrix and find the local maximum value in
the corresponding edge direction detected in the previous step.

5: A double threshold detection would identify whether each pixel contributes to the final
edge according to the magnitude G and the two thresholds. Strong pixels whose intensity
higher than the high threshold and weak pixels whose intensity smaller than the low
threshold would be determined as edge points and non-relevant points. Those medium
pixels whose values are between the two thresholds would be augmented into strong pixels
if they are connected to strong pixels or if they can be connected to a strong pixel by
passing through a medium pixel.

Till now, the region of interest has been distinguished from the background environment. The
next step is to determine the shape of the target object to find the centroid (assuming the
object mass is evenly distributed) or to extract the specific features such as the slope (if the
angle of the target object is a parameter that should be considered). Canny edge detection is
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one of the most widely used edge detection algorithms and has been proved to have the best
performance in most cases[11, 43]. The specific calculation process is shown in Algorithm 1

Figure 3-3 shows the processing result of Canny edge detection algorithm. The left image
is the original one while the right image shows the detection result. All edges including
the small ones can be represented on the result image. However, most of the edges in the
example image are not important and do not contribute to the necessary information such as
centroid position and slope. The solution is to extract the main features from the detected
edge pattern.

(a) original image (b) Result image

Figure 3-3: The result of Canny edge detection algorithm

3-2 Feature Extraction

Two methods can be used for feature extraction from the detected edges, which are contour
detection and Hough transform. Both methods have their own advantages and are suitable
for different application scenarios. This section will introduce the principles of two methods
and their characteristics.

3-2-1 Contour Detection

(a) original image (b) Result image

Figure 3-4: The result of Canny edge detection algorithm

Contours can be explained as a curve joining all continuous points with same intensity. This
theory can help detect closed curves on the edges. Usually the outermost contour is the true
shape of the object. Figure 3-4(a) uses the blue line to indicate the shape of the irregularly
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shaped pattern, which can be further processed into a minimum enclosing circle or rectangle
(as shown in figure 3-4(b)). This method is especially suitable for an irregular target object
whose center position is difficult to determine because that the enclosing regular pattern can
act as the ideal situation to simplify the problem.

3-2-2 Hough Transform

Hough transform is another wildly used method for pattern recognition, especially for line
and circle recognition[3]. Through transforming image space into parameter space, Hough
transform takes parameters as variables to fit the given data to the specified shape. Taking
straight line detection as an example, the formula y = kx + b can be interpreted as a point
(k, b) in the parameter space. Then all points from the original straight line have their
corresponding straight lines in the parameter space which will intersect at a point representing
the correct parameter. To avoid situations where the slope is infinite, Hesse norm form
r = x cos θ+y sin θ is used so that Hough line detection can be generalized for all straight lines
in a plane. The principle of using Hough transform for circle detection is similar. The formula
r2 = (x− x0)2 + (y− y0)2 contains three parameters, which means that all the corresponding
curve in the 3D parameter space would intersect at the correct point. It is worth mentioning
that for practical scenarios, all edge points will participate in the transform from pixel space
to parameter space and vote for the final intersection point. This process makes the method
robust because it ignores small noises and repairs disappeared or misplaced pixels on the
edges. To put it another way, Hough transform is especially suitable for detecting obvious
regular patterns from noisy environment.

3-2-3 Comparison between Contour Detection and Hough Transform

In order to compare the effects of these two detection methods, two simulated videos were
generated, which are a free falling ball with initial velocities and a swinging pendulum.

Since the free fall equation is related to the position of the ball in both x and y directions, the
precision of the position information detected in these two directions will affect the accuracy
of the equation exploration. Figure 3-5(a) and 3-5(b) shows the detected distance of the two
methods compared with the desired values. In general, the detection results of these two
methods are both precise and close to the real value except that for some frames the detected
positions have obvious noise (the enlarged area in the figures), where contour detection has a
better performance. This may be because Hough circle detection is more sensitive to noise.
This level of error for both methods is acceptable, because the overall error is maintained at
a low level, as shown in table 3-1.

Furthermore, a video of a swinging pendulum is used to test the difference between Hough
line detection and contour detection. Since Hough transform can fit the given data into a
specific shape, the slope can be extracted directly as the swing angle for a pendulum. On the
other hand, contour detection can only give the minimum enclosing rectangle, which could
be further processed to determine the rotation angle. Figure 3-5(c) compares the detected
swing angle of the simulated pendulum of the two methods with the real values. It can
be concluded that both methods perform well except that when the angular velocity of the
pendulum changes drastically there will be some small detection errors. The last row of
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table 3-1 also proves that the mean square errors of both methods are in the same order of
magnitude.

To sum up, both methods perform well on the simulated videos. Nevertheless, for real videos,
contour detection and Hough transform have their pros and cons, so they have more suitable
conditions. It is also worth noting that in the process of generating videos from accurate
data, noise has been encoded due to the image resolution limitation.

(a) Detected x distance of a free falling ball (b) Detected y distance of a free falling ball

(c) Detected swing angle θ of a pendulum

Figure 3-5: Detected position results of a simulated free falling ball video and a swinging pen-
dulum compared with ideal values

Table 3-1: Mean square error of the detected results of two detection methods on two simulated
videos generated from the motion of a free falling ball and a swinging pendulum.

Variable to be detected Contour detection Hough transform

Free falling ball - x distance 9.30e-07 1.96e-06
Free falling ball - y distance 9.82e-07 1.13e-06

Swinging pendulum - swing angle θ 5.15e-05 4.43e-05
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3-3 Conclusion

Figure 3-6 gives a schematic diagram of the whole process of extracting the positional infor-
mation from the original video. Firstly, the region of interest will be determined to eliminate
the influence of useless background and remain the area of target object. Then a Canny algo-
rithm will be applied to detect all the edges which would be used for contour detection. There
are two methods to extract the physical feature from the edge pattern. If the shape of the
target object is irregular, contour detection would be suitable because a minimum enclosing
circle or rectangle would serve as an ideal alternative pattern. Under the case of noisy or
discontinuous edges, Hough transform will be a solution to determine the target shape.

Figure 3-6: Schematic diagram of physical information extraction process
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Chapter 4

Physical Law Discovery

This chapter will give an introduction to the physical law discovery module which can learn
the underlying governing equations from the extracted physical information. More specifically,
we design the Mathematical Operation Network (MathONet), which has a neural network-
like hierarchical structure as shown in Figure 4-2. Similar to multilayer perceptrons (MLP),
MathONet is consist of of hidden layers and hidden neurons. The difference is that MathONet
uses two substructures, Polynomial-Network (PolyNet) and Operational-Network (OperNet),
to replace the weight scalar and activation function of MLP. The PolyNet and OperNet
includes binary operations (e.g., ×, +) and unary operations (e.g., sin, log), respectively. An
initialized MathONet is always composed of redundant operations and needs to be pruned to
find the optimal subgraph to denote the governing equation.

In this section, traditional feedforward neural networks will be reviewed as the motivation.
Then, the specific structure of MathONet will be explained. Finally, a simple example will be
given to show how to correlate the mathematical expression and the sub-graph of MathONet
after pruning.

4-1 Multilayer Perceptrons

As the prototype of MathONet, multilayer perceptrons (MLPs), or deep feedforward neural
networks will be introduced in this part, as well as the training process of networks. On top of
that, the origin of the loss function will also be discussed. They are the optimization theory
foundation of DNN, which can be viewed as a kind of gradient-based learning.

Multilayer perceptrons are the quintessential deep learning models[20]. The purpose of a
MLP is to approximate the optimal function f∗(·) that can fit the given dataset. Taking the
classifier as an example, y = f∗(x) defines a mapping relationship that categorizes the input
x into a class y. Generally, the MLP would try to learn a mapping y = f(x;w) through
updating parameter matrix w so as to achieve the best function approximation. The reason
why these models are called feedforward is that all the information flows through intermediate
functions from the input x to the output y without any feedback.
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Usually, a MLP is consist of several linear layers and each layer is followed by an activation
function to improve the model’s fitting ability to nonlinear dataset. Figure 4-1 gives an
example of an MLP with one hidden layer. With x1, x2...xn being the input of the model,
the output of the kth neuron hk from the linear layer is the weighted sum of all inputs. As
shown in this figure, the kth output of the first hidden layer can be represented as:

h1
k =

n∑
i=1

(
w1
ikxi + b1k

)
(4-1)

where b1k is the bias which is not shown in the figure for simplicity. Since the weighted sum
operation can only result in outputs that are the linear combination of inputs, nonlinear
activation functions like ReLU, tanh and sigmoid are necessary to improve the expressive
ability of the network. The model in the figure uses ReLU as the activation function, which
has the following expression:

ReLU(x) = max(0, x) (4-2)

After applying the activation function, the output a1
k can be represented as:

a1
k = ReLU

(
h1
k

)
(4-3)

In conclusion, as a linear model with one hidden layer, the optimization objective is to train
f(x;w, b) = ReLU(x>w + b) to match the best estimation f∗(x).

Figure 4-1: An example of a multilayer perceptron

The training process of a MLP can be summarized as three main steps. After initializing the
weights of a model, the first step is to present a training sample for the model including the
input and the corresponding label. Then the calculated result would be compared with the
true label. Finally all the weights will be updated iterative by minimizing the loss function
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until converging. To facilitate the following introduction, we can assume the loss function as
the mean squared error L(x;y;w) = 1

n

∑n
i=1 (f (xi)− yi)2. Since the aim is to minimise the

loss function, this can be realised by moving the inherent parameters w in f(x,w) in the
opposite sign of the gradient ∇wL(x;y;w). Thus the updated parameter can be represented
by w′ = w − ε∇wL(x;y;w), where ε is the learning rate. However, in the case of huge
dataset, it is impractical to compute the gradient for all samples 1

m

∑m
i=1 L

(
x(i); y(i);w

)
. As

a solution, stochastic gradient descent(SGD) uses the gradient from a small number of samples
m′ as an approximation. Now, parameters can be updated taking use of the gradient of the
mini-batch: w′ = w − ε 1

m′
∑m′
i=1∇wL

(
x(i); y(i);w

)
.

It is also worth mentioning how to choose the loss function from the perspective of probabilistic
model[20]. Intuitively, a qualified loss function should provide suitable gradients that can
help converge quickly when far away from the global optimal solution. In this case, maximum
likelihood estimation can serve as the optimization objective. Given the dataset of m samples
X =

{
x(1), x(2), . . . , x(m)

}
, the true but unknown distribution can be represented as pdata (x)

under the assumption of independent and identical distribution. Our model can be viewed as
a family of probability distributions pmodel (x;w) parameterized by w.

wML = arg max
w

pmodel (X;w)

= arg max
w

m∏
i=1

pmodel
(
x(i);w

)
= arg max

w

m∑
i=1

log pmodel
(
x(i);w

)
= arg max

w
Ex∼p̂data [log pmodel (x;w)]

(4-4)

As shown in equation4-4, the maximum likelihood estimation wML represents the value of
w that maximizes the probability distribution in terms of all data samples. Due to that the
product of small values between 0 and 1 would be very close to 0, log likelihood can transfer
the multiplications into sums. Dividing bym does not change the maximum estimation result,
so wML can be rewritten as expectation with respect to the empirical distribution p̂data .
Maximum likelihood can be interpreted from the perspective of cross-entropy. LetH represent
entropy and D be KL divergence which can measure the distance between two distributions.
Because that the entropy of pdata is independent of the cross-entropy between pdata and pmodel,
the cross entropy is proportional to the KL divergence:

H (pdata , pmodel ) = H (pdata ) +D (pdata ||pmodel )
∝ D (pdata ‖pmodel )

(4-5)

The KL divergence term can be rewritten in terms of the expectation of data samples. Similar
to the entropy term, log pdata (x) does not depend on the model, so it can be omitted:

D (pdata ||pmodel ) =
m∑
i=1

p̂data
(
x(i)

)
log

 pdata
(
x(i)

)
pmodel

(
x(i))


= Ex∼p̂data [log pdata (x)− log pmodel (x)]
∝ Ex∼p̂data [− log pmodel (x)]

(4-6)
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It can be observed that minimizing the cross-entropy is same with maximizing the likelihood:

w∗ = arg max
w

Ex∼p̂data [log pmodel (x;w)]

= arg min
w
−Ex∼p̂data [log pmodel (x;w)]

(4-7)

Most of the modern neural networks are trained with maximum likelihood, while the specific
forms of loss functions are determined by the selection of pmodel . Actually, this is the advan-
tage of maximum likelihood that it removes the burden of designing cost function for each
model[20].After calculating the loss through the feedforward network, the gradient would be
propagated backwards for each layer to update parameters until convergence.

4-2 Model Design

The structure of MathONet is inspired by MLPs and it is a neural network-like hierarchical
structure. As shown in figure 4-2, the original weight connection within the MLPs is replaced
by a special linear layer called polynomial-network (PolyNet). And the original activation
function within the MLPs is replaced by the operation network (OperNet) which is composed
by several basic mathematical operations. PolyNets are shown as the blue blockers in the
figure, which are independent trainable sub-networks. For instance, w1

nk is the weight to
connect input xn and output h1

k in the MLP. In MathONet, the output p1
nk of the PolyNet

PN1
nk is equivalent to the traditional weight w1

nk while its value p1
nk is related to all input

variables. It needs to be mentioned that besides the original input variables of the system (x1,
x2,...,xn), the input of the PolyNet PN1

nk contains an extra constant to represent the variable-
invariant term in the governing equation. As an alternative of activation functions, OperNets
are represented as the yellow blockers. Though the objective is also to induce nonlinearity,
OperNets can improve the interpretability of the model for its intuitive expression form.

Figure 4-2: Mathematical operation network (MathONet)

4-2-1 Polynomial-Network

The structure of PolyNet is a simple Fully-Connected layer without any hidden layer or
activation function. The input of each PolyNet is exactly the same as the whole model,
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including the original system input variables and the constant term. Figure 4-3(a) illustrates
PN1

nk, whose output p1
nk is multiplication result between the input xn and the output h1

k of
the kth neuron.

(a) Polynomial-network (PolyNet) (b) Operation-network (OperNet)

Figure 4-3: The structure of the Polynomial-network (PolyNet) and [Operation-network (Oper-
Net)

Since h1
k is the weighted sum of all inputs:

h1
k =

n∑
i=1

(
p1
ikxi + b1k

)
+ p1

(n+1)k (4-8)

and each weight p1
ik is also the weighted sum of all inputs:

p1
ik =

n∑
j=1

(
w1
jixj + b1ik

)
+ w1

(n+1)ik (4-9)

the final output of the model can be expressed as the polynomial of input variables, which em-
bodies the addition and multiplication between any two input variables including the constant
term. To put it another way, PolyNet can represent the binary operations in the governing
equation of a dynamic system. On top of that, the introduced constant term can be used
to represent the linear equation of one variable, as well as a constant term irrelevant to the
variables. Obviously, one hidden layer can produce at most quadratic terms. If the physical
equation to be identified has a higher order, the hierarchical structure is necessary to stack
several hidden layers and more PolyNets.

4-2-2 Operation-Network

PolyNet can only provide the ability to fit the dataset whose governing equations are polyno-
mials. Under this case, the subset of Operation-Network (OperNet) can serve as the activation
function to find the polynomial boundary through distorting the feature space.
An example structure of OperNet is as shown in figure 4-3(b), it is a linear combination of
several unary mathematical operations instead of one fixed activation function. Taking ON1

k
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which connects the hidden output h1
k and the output of this sub-network a1

k as an instance,
a1
k can be represented as:

a1
k = ON1

k

(
h1
k

)
=
O∑
o=1

w1
okfo

(
hlk

)
(4-10)

, where fo denotes the unary functions, e.g., sin, cos, exp. An identity function is also
necessary to remain the input in case that no nonlinear operation is required.
For a hierarchical structure, several PolyNets and OperNets are concatenated to approximate
high-dimensional and complex functions. The output of the kth neuron from the lth activation
function layer alk is

∑O
o=1w

l
okfo

(
hlk

)
where hlk is the output of the lth hidden linear layer

hlk =
∑n
i=1

(
plika

l−1
i + blk

)
+ pl(n+1)k.

4-2-3 Model Compression

From the introduction above, it can be concluded that MathONet includes all potential binary
and unary operations that may make up of the accurate physical law. Under this case, the
initialized MathONet is possible to be a redundant structure and the model compression
method is necessary to prune useless connections.
Figure 4-4 illustrates how MathONet can be interpreted as a closed-form mathematical ex-
pression after model compression. Compared with figure 4-2, figure 4-4(a) uses dashed lines
to represent unnecessary connections that will be pruned in the compression process. Specif-
ically, in this example most of the hidden neurons are pruned and only kth one is reserved
together with its corresponding OperNet. Not only the main structure will be compressed, the
two sub-networks, PolyNets and OperNets, will also be tailored to fit the linear and nonlinear
properties of the governing function. Figure 4-4(b) gives a parse example of the PolyNet to
calculate p1

nk: p1
nk = w1

1nkx1 +w1
nnkxn. When it comes to the OperNet, figure 4-4(c) shows an

example. Since other hidden neurons have been pruned, the final output of the whole model
equals to the output a1

k of PolyNet ON1
k , which can be represented as w1

1k sin h1
k + w1

3kh
1
k.

To put it another way, the compressed structure uses a sine function to reflect the nonlinear
periodic characteristics and remains the identity channel to retain the linear expression.

(a) A pruned main structure
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(b) A pruned PolyNet (c) A pruned OperNet

Figure 4-4: An example of MathONet after model compression

4-3 Dependency between connections

For neural network design and neural architecture search, it is often necessary to prune the
redundant connections to address the overfitting problem[56, 32, 10]. Suppose a connection
has two states {ON,OFF}, representing the reserved state and the redundant state, respec-
tively. The common criterium of determining connection state is only based on its attributes,
e.g. the magnitude of weight. However, this criterium ignores the dependencies between a
connection and its predecessors and successors. It may result in a disconnected graph where
some redundant structure cannot be identified.
As shown in Figure 4-5(a), we use a Directed Acyclic Graph (DAG) to represent a neural
network. The number in the circle indicates the index of each neuron. The connection between
neuron i and neuron k is denoted as eik. The colored edges (e25, e47) represent two types of
disconnected connections. For e25, no information is passed in it since the predecessor (e12)
has been deleted. For e47, no information is passed out from it since the successor (e78) has
been deleted. Both edges should be pruned because neither of them performs the function of
transmitting information within the network. However, their states may still be justified as
ON if we mistreat the dependencies between connections. To address this problem, we first
have the proposition 1:

Proposition 1. The state {ON,OFF} of a connection elik as shown in Figure 4-5(b) is
determined by whether it can transmit information within the neural network. Specifically,
elik can be retained if and only if elik is ON, at least one predecessor connection of node i is
ON and at least one successor connection of node k is also ON.

(a) Two types of disconnected graph caused
by mistreated of the dependencies.

(b) A multi-in-multi-output motif to show
the dependencies between connections

Figure 4-5: An illustration for the dependencies between connections.
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Figure 4-5(b) shows a multi-in-multi-output motif for the connection elik which is used to
encode the dependency. Assume slik represents the state of elik, proposition 1 can be encoded
as following logic: ⋃

a

sl−1
ai ∩ s

l
ik ∩

⋃
b

sl+1
kb or

⋃
a

sl−1
ai ∪ sl

ik ∪
⋃
b

sl+1
kb (4-11)

where a is the neuron index for the predecessors with a ∈ (1, . . . , nl−1). b is the neuron index
for successors with b ∈ (1, . . . , nl+1). The logic (4-11) can be expressed with two intuitive
methods.
One method is to calculate the joint probability distribution of each connection which is
affected by dependencies. To ease notation, W l

ik is used to represent the weight parameter
within the motif. We assume a Normal distribution over W l

ik with p(W l
ik) = N (W l

ik|0, ηlik).
ηlik is the variance which also stands for the uncertainty of W l

ik. A larger ηlik means more
confidence in the importance of W l

ik. With the assumption that the initialized distribution of
each connection is independent, the joint distribution over W l

ik,W
l−1
ai ,W l+1

kb can be expressed
as:

p(c(W l
ik,W

l−1
ai ,W l+1

kb ))

, N (W l
ik|0, ηlik)

nl−1∑
a=1
N (W l−1

ai |0, η
l−1
ai )

nl+1∑
b=1
N (W l+1

kb |0, η
l+1
kb )

= N

W l
ik

nl−1∑
a=1

ηl−1
ai W

l−1
ai∑nl−1

a=1 η
l−1
ai

nl+1∑
b=1

ηl+1
kb W

l+1
kb∑nl+1

b=1 η
l+1
kb

|0, η̄lik


(4-12)

where

η̄lik ,

(
1∑nl−1

a=1 η
l−1
ai

+ 1∑nl+1
b=1 η

l+1
kb

+ 1
ηlik

)−1

(4-13)

if κη is the threshold for uncertainty, the connection with η̄lik smaller than κη will be deter-
mined as redundant.
The other method is to calculate the magnitude of weight in consideration of dependencies.
The larger the magnitude of an edge, the more critical the edge is. Let’s define κw as the weight
threshold. As shown in the logic (4-11), the connection elik will be regarded as redundant if
at least one of the following three conditions is satisfied: a) the magnitude of W l

ik is smaller
than κw; b) the magnitude of all its predecessors W l−1

ai is smaller than κw; c) the magnitude
of all its successors W l+1

kb is smaller than κw. The redundancy of elik could be justified by the
sign function sgn(W l

ik):

sgn(W l
ik) = sgn(|W l

ik|)
nl−1∑
a=1

sgn(|W l−1
ai |)

nl+1∑
b=1

sgn(|W l+1
kb |) (4-14)

where sgn(|x|) =
{

0, |x| ≤ κw
1, |x| > κw

. By combining the uncertainty and magnitude of W l
ik, slik

could be determined by:

slik =
{

OFF, η̄lik < κη or sgn(W l
ik) = 0

ON, others
(4-15)
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4-4 Specific Example

In this section, a specific example of a governing function will be given to explain how to
identify the physical law. Considering the following equation:

z = k4 sin
(
k1x+ k2x

2
)

+ k5 cos
(
k3y

3
)

+ k6 (4-16)

This is a closed-form formula whose right-hand side has the highest order of three and contains
linear and nonlinear operations (e.g., +,× and sin, cos). Since the aim is to represent the
formula in a hierarchical expression that can be interpreted with MathONet, this formula
should be decomposed into basic mathematical operations, as shown in figure 4-6(a). Figure
4-6(b) illustrates the consistent hierarchical representation of this decomposition procedure,
which is equivalent to a compressed MathONet with two hidden layers. It can be noticed that
this is not the only way to decompose and represent this specific formula. In the practical
training process, all possible combinations of these operations have the probability to appear
as the pruned model structure. However, this degree of freedom will not influence the simplest
expression of final compressed model.

(a) Decomposition procedure into mathematical operations

(b) Hierarchical representation of a formula

Figure 4-6: An example of a specific formula
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4-5 Conclusion

By replacing the linear weights and activation functions with PolyNet and OperNet, the
MathONet can construct the governing function of a dynamic system. This model has the
following advantages:

• Compared with conventional neural networks which are black-box models, MathONet
takes advantage of the sparse Bayesian algorithm to break the bottleneck of inter-
pretability. In other words, this model reserves the necessary mathematical operations
which make up of the governing function so that each weight is explainable.

• The MathONet has a considerable expression space even with a simple structure. For a
MathONet with two input variables and only one hidden layer with one hidden neuron
and two nonlinear operations, around 28 different mathematical expressions can be
represented by model compression.

• Both linear and nonlinear dynamic system can be identified with MathONet. As shown
in figure 4-7(a) and figure 4-7(b), a linear system z = x + y and a nonlinear system
z = sin zy + 1 can be represented in the form of a hierarchical structure.

(a) Linear dynamic system (b) Nonlinear dynamic system

Figure 4-7: The identification examples of linear and nonlinear system

• Since the MathONet is inspired by conventional neural networks, the optimization
method such as SGD can be utilized to train the model. At the same time, those
commonly used deep learning frameworks (e.g., PyTorch, TensorFlow) to realise auto-
matic differentiation and training acceleration can be implemented directly.

It should also be noted that the complexity of an initialized MathONet is determined by three
hyperparamaters that need to be defined before training the network:

• The number of hidden layers, which is similar to the number of layers in a traditional
neural network. This value denotes the initialized model order and limits the depth of
the MathONet.

• The number of hidden neurons in a layer, which also affects the complexity of network
expression

• The number of unary functions in OperNet, which provides the ability to fit equations
involving complex calculations.
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It is intuitive that a more complex model has a stronger fitting ability and have a greater
chance of containing the unknown path of correct answers. However, a complex model also
requires a powerful discovery algorithm to avoid falling into a local optimal solution. This fol-
lowing chapter would introduce our optimization and compression algorithm based on Laplace
approximation.
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Chapter 5

Sparse Bayesian Learning Algorithm

Since an initialized MathONet is overparameterized and has randomly specified weights, how
to train the network and prune unnecessary weights to make sure that the remaining con-
nections can represent the physical law will be a question of interest. A Bayesian learning
framework was adopted for MathONet so that all weights in this network would be updated
as posterior distributions instead of a simple point estimation. Given dataset D, W ∈ Rm×1

is used to represent the weight matrix in PolyNet or OperNet. To facilitate the following
introduction, dependency between connections will not be considered in this chapter and it
has been discussed in section 3-3. This chapter will explain how to estimate the posterior
distribution p(W | D) together with the principles of Bayesian compression.

5-1 Laplace Approximation

Given the dataset D = (X,Y ) = {(Xk, Yk)}Kk=1, assuming the targets Y are sampled from a
model with additive zero-mean Gaussian noise σ2, then the training objective of our network
is to fit the following equation:

Yk = Net(Xk;W ) + εk (5-1)

Thus, the likelihood can be defined in the form of a Gaussian distribution:

p(D |W,σ2) =
K∏
k=1
N (Yk | Net(Xk,W ), σ2)

= (2πσ2)
K
2 exp(− 1

2σ2

K∑
k=1

(Yk −Net(Xk,W ))2)

= (2πσ2)−
K
2 exp(−E(W,σ2))

(5-2)

Here E(W, σ2) is denoted as the energy function, or the mean square error of the network
given dataset D. For further computation of the intractable integral of evidence, the energy
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function can be expanded according to a second-order Taylor series expansion around a local
optimal solution W ∗:

E(W,σ2) ≈E(W ∗, σ2) + (W −W ∗)>g(W ∗, σ2)

+ 1
2(W −W ∗)>H(W ∗, σ2)(W −W ∗)

(5-3)

where g(·) = ∇E(W,σ2) |W ∗ is the gradient of the energy function and H(·) = ∇∇E(W,σ2) |W ∗
is the Hessian matrix. Then (5-2) would be rewritten as the following form:

p(D |W,σ2) = (2πσ2)
K
2 · exp

{
− 1

2σ2

K∑
k=1

(Yk −Net(Xk,W ))2
}

≈(2πσ2)
K
2 · exp

{
−(E(W ∗, σ2) + (W −W ∗)>g(W ∗, σ2) + 1

2(W −W ∗)>H(W ∗, σ2)(W −W ∗))
}

=a(W ∗, σ2) · exp
{
−(W>ĝ(W ∗, σ2) + 1

2W
>H(W ∗, σ2)W )

}
(5-4)

with

ĝ(W ∗, σ2) , g(W ∗, σ2)−H(W ∗, σ2)W ∗

a(W ∗, σ2) , (2πσ2)
K
2 exp

{
−(E(W ∗, σ2)−W ∗>g(W ∗, σ2) + 1

2W
∗>H(W ∗, σ2)W ∗)

}
A Gaussian prior distribution p(W ) is imposed on the weights for regularization:

p(W ) = N (W | 0,Υ) =
m∏
i=1
N (Wi | 0, ηi) (5-5)

where Υ = diag[υ] and υ , [η1, η2, . . . , ηm] ∈ Rm×1
+ , which can be calculated through max-

imizing the evidence (evidence maximization is illustrated in section 4-2). According to the
Bayesian theory, the posterior distribution is proportional to the multiplication of likelihood
and prior:

p(W | D, σ2) ≈ p(D |W,σ2)p(W ) (5-6)

Considering the Gaussian prior ((5-5)) and approximated likelihood ((5-4)), the posterior also
belongs to a Gaussian distribution by the effect of the conjugacy rule:

p(W | D, σ2) = N (W | µW ,ΣW ) (5-7)

where
µW = ΣW ·

[
g(W ∗, σ2) + H(W ∗, σ2)W ∗

]
,ΣW =

[
H(W ∗, σ2) + Υ−1

]−1

5-2 Evidence Maximization

Considering that the given prior p(W ) is defined by hyperparameters, namely, the variances
of zero-mean Gaussian distributions, it can be rewritten as p(W | Υ). The hyperparameter
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Υ = diag[υ] as well as the weight matrixW can be obtained through maximizing the marginal
likelihood or evidence:

Ŵ , υ̂ = argmax
υ≥0,W

∫
p(D |W,σ2)p(W | υ)dW

= argmax
υ≥0,W

p(D)
(5-8)

This problem is known as type II maximum likelihood or evidence maximization. By substi-
tuting the likelihood estimated by Laplace approximation ((5-4)) and the Gaussian distributed
prior ((5-5)), the model evidence can be interpreted as the Gaussian posterior volume accord-
ing to David MacKay’s Bayesian framework [35]:

p(D) =
∫
p(Y |W,σ2)p(W | Υ)dW =

∫
p(Y |W,σ2)N (W | 0,Υ)dW

= a(W ∗, σ2)
(2π)m/2|Υ|1/2

∫
exp

{1
2W

>H(W ∗, σ2)W +W>ĝ(W ∗, σ2) + 1
2W

>Υ−1W

}
dW

(5-9)
The optimization objective is to maximize (5-9) through training hyperparameters υ and
weight matrix W . Although the direct integral operation is intractable and hard to derive,
the standard result for a normalized Gaussian distribution can be utilized to simplify the
integral calculation [5]:

p(D) ∝ a(W ∗, σ2)
(2π)m/2|Υ|1/2

exp
{1

2W
>H(W ∗, σ2)W +W>ĝ(W ∗, σ2) + 1

2W
>Υ−1W

}
|ΣW |

1
2

(5-10)
It should be noted that W in (5-10) denotes all possible values which we want to obtain
by optimization. Then Ŵ could be acquired through maximizing the objective function as
follows:

argmax
υ≥0,W

a(W ∗, σ2)
(2π)m/2|Υ|1/2

exp
{1

2W
>H(W ∗, σ2)W +W>ĝ(W ∗, σ2) + 1

2W
>Υ−1W

}
|ΣW |

1
2

(5-11)
Applying a −2 log(·) transformation to Eq. 5-11:

argmin
υ≥0,W

− 2 log( a(W ∗, σ2)
(2π)m/2|Υ|1/2

exp
{1

2W
>H(W ∗, σ2)W +W>ĝ(W ∗, σ2) + 1

2W
>Υ−1W

}
|ΣW |

1
2 )

∝ argmin
υ≥0,W

− 2a(W ∗, σ2) + log |Υ|+ log |ΣW |+
1
2W

>H(W ∗, σ2)W +W>ĝ(W ∗, σ2) + 1
2W

>Υ−1W

∝ argmin
υ≥0,W

W>H(W ∗, σ2)W + 2W>ĝ(W ∗, σ2) +W>Υ−1W + log |Υ|+ log
∣∣∣H(W ∗, σ2) + Υ−1

∣∣∣
(5-12)

Therefore, evidence maximization is equivalent to minimizing the following objective function:

L(W,Υ) = W>HW + 2W> (g−HW ∗) +W>Υ−1W + log |Υ|+ log
∣∣∣H + Υ−1

∣∣∣ (5-13)

5-3 Regularization Update Rules

As an optimization objective, (5-13) has two parameters W ans Υ to be trained. This section
will explain why the training objective is equivalent to including a regularizer on the model
complexity and how the regularized loss function helps update parameters.
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(5-13) is composed of two parts, u(W,Υ) = W>HW +2W> (g−HW ∗)+W>Υ−1W which is
convex jointly in W ans Υ and v(Υ) = log |Υ|+ log

∣∣H + Υ−1∣∣ which is concave in Υ. Then,
the optimization problem can be solved as convex-concave procedure (CCCP). The proof is
as follows.

For the convex part:

u(W,Υ) = W>HW + 2W> (g−HW ∗) +W>Υ−1W (5-14)

u(W,Υ) is a convex function as it is the sum of a monotonic function and two convex functions
with the form of f(X,Y ) = X>Y −1X. As for the concave part, it can be rewritten as a log-
determinant of an affine function of semidefinite matrix Υ:

v(Υ) = log |Υ|+ log
∣∣∣H + Υ−1

∣∣∣
= log

(∣∣∣Υ‖Υ−1 + H
(
W ∗, σ2

)∣∣∣)
= log

∣∣∣∣∣
(

H
(
W ∗, σ2)

−Υ

)∣∣∣∣∣
= log

∣∣∣Υ + H−1
(
W ∗, σ2

)∣∣∣+ log
∣∣∣H (

W ∗, σ2
)∣∣∣

(5-15)

Till now, the optimization procedure of (5-13) can be solved with a CCCP. To be specific, Υ
andW can be updated through computing the gradient of v(Υ) and u(W,Υ) respectively [55]:

Υ = arg min
Υ�0

u(W,Υ) +∇Υv(Υ)>|Υ=Υ∗Υ (5-16)

W = arg min
W

u(W,Υ) (5-17)

According to the chain rule, the last term in the right-hand side of (5-16) can be analysed as:

α , ∇Υv(Υ)>|Υ=Υ∗ = ∇Υ
(
log

∣∣∣Υ−1 + H
(
W ∗, σ2

)∣∣∣+ log |Υ|
)>
|Υ=Υ∗

= −diag
{

(Υ∗)−1
}
◦ diag

{(
(Υ∗)−1 + H

(
W ∗, σ2

))−1
}
◦ diag

{
(Υ∗)−1

}
+ diag

{
(Υ∗)−1

}
= diag

{[
α1 · · · αm

]}
(5-18)

where Υ and H are symmetric matrices and ◦ represents the element-wise product. Thus Υ
can be updated as:

Υ = arg min
Υ�0

u(W,Υ) +αΥ

= arg min
Υ≥0

W>HW + 2W> (g−HW ∗) +W>Υ−1W +αΥ

= arg min
Υ�0

W>Υ−1W +αΥ

(5-19)

Since W 2
i
ηi

+ αiηi ≥ 2
∣∣√αi ·Wi

∣∣, for each i, the optimal ηi can be represented as:

ηi = |Wi|√
αi

(5-20)
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It can be found that each ηi can be determined once Wi is given. Then, Wi can be obtained
according to the following objective function, with the definition β ,

√
α:

W = arg min
W

1
2W

>HW +W> (g−HW ∗) + 1
2

m∑
i=1
‖βi ·Wi‖`1

∝ arg min
W

E
(
W ∗, σ2

)
+ (W −W ∗)> g

(
W ∗, σ2

)
+ 1

2 (W −W ∗)>H
(
W ∗, σ2

)
(W −W ∗)

+ 1
2

m∑
i=1
‖βi ·Wi‖`1

≈ arg min
W

E(W,σ2) + 1
2

m∑
i=1
‖βi ·Wi‖`1

(5-21)
Till now,W can be calculated according to (5-21), and the hyperparameter Υ can be updated
correspondingly according to (5-20). It is worth mentioning that W obtained at time t is just
the W ∗ at time t+ 1 for the reason that the updated W and Υ can be viewed as a temporary
local optimum.

Considering the loss function (5-21), it includes a mean square error E(W,σ2) and an extra
regularization term which is similar to a L1 regularization. However, the regularizer contains
a coefficient βi that can be trained for each element Wi. In the training process, Υ =
diag[η1, η2, . . . , ηm] is adopted as the criteria to prune redundant connections and explore the
optimal structure because each ηi denotes the uncertainty for the weight Wi. Since the prior
for weight is defined as a zero-centered Gaussian distribution, a small variance ηi means a
high confidence that the corresponding weight Wi has a high probability of being zero and
does not contribute to the final result. Then, a binary mask matrix C can be generated with
the same dimension of W and it will be optimized in the training stage. The value of C can
be determined as:

C =
{

0, ηi < κη or |Wi| < κw

1, others
(5-22)

where κη stands for the threshold and each weightWi with a variance smaller than the thresh-
old would be pruned and no longer involved in the training process. At the same time, each
weightWi with absolute value smaller than the threshold κw would also be compressed. After
the whole training and pruning process, a sparse structure would be remained to represent
the explored physical law.

5-3-1 Conclusion

The pseudo code for illustrating the process of sparse Bayesian learning is as shown in algo-
rithm 2. Two consistent terminologies (epoch and cycle) need to be defined as they are used
in the training strategy. Same as conventional neural networks, one epoch means that each
sample in the entire dataset has an opportunity to update the parameters in MathONet. The
number of epochs will be represented as Nepoch. Regarding cycle, it includes Nepoch epochs,
and the network pruning is performed at the last epoch of each cycle. Since the computa-
tion of Hessian matrix requires huge computation resource, the definition of cycle can help
reduce the amount of calculations and speed up the training process. Obviously, the degree
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of network training depends on Ncycle. A Ncycle that is too large will consume more time
and lead to overfitting, while a Ncycle that is too small will result in underfitting. In our
training process, an early stopping is implemented to limit overfitting. In addition, a tuning
hyper-parameter λ is also introduced to control the degree of compression.

Algorithm 2 Bayesian learning discovery algorithm
Initialize: hyper-parameters β, η = I; threshold for pruning κη, κw ∈ R+; regularization
tuning parameter λ ∈ R+; Ncycle ∈ Z+ denotes the maximum cycles; Nepoch ∈ Z+ denotes
the number of epochs in each cycle.
for i = 1 to Ncycle for j = 1 to Nepoch

1. Update the weight W by applying the gradient decent with loss function as

arg min
W

E(W,σ2) + λ
m∑
i=1
‖βi ·Wi‖`1

end for

2. Update υ as Eq. 5-16.

3. Update mask C as Eq. 5-22.

end for
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Chapter 6

Experiment Result

To evaluate the performance of the proposed method, we implemented the whole video to
physical law framework on videos of three dynamic systems, including a free-falling ball, a
Duffing oscillator and a swinging pendulum. Synthetic videos were generated for three cases
and real videos of a free-falling ball were recorded to test the feasibility of the framework for
practical scenarios.

Figure 6-1: Description of the synthetic visual physical dataset

Figure 6-1 gives a table which overviews the trajectory and the basic properties of each syn-
thetic visual dataset. For all simulated and real videos, the discovered results are closed-form
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mathematical expressions with specific coefficients for each term in the expression, making it
intuitive to compare the proposed approach with the ground truth. This chapter will intro-
duce the experiments on three dynamic systems, including the analysis and the discovered
results with the proposed method.

6-1 Free Falling Ball

As a canonical dynamic model, the free fall motion can be viewed as a common phenomenon
in life, but it represents the core of classical physics theory. When the object is in the air,
it is only affected by the gravity of the earth in the downward direction. Defining that to
the right is the positive direction of the x-axis, and downward is the positive direction of the
y-axis. Let g represents the acceleration of gravity, vx0 and vy0 stand for the initial velocity,
x and y be the relative position from the initial point, the free fall equation can be described
as:

x = vx0t

y = vy0t+ 1
2gt

2 (6-1)

This experiment was inspired by Newton. According to rumors, his idea of writing Mathe-
matical Principles of Nature Philosophy [42] was inspired by seeing an apple drop. Similarly,
our proposed framework should distill the physical law of motion (6-1) from a video of a
free-falling ball. For this task, both synthetic dataset and real dataset are tested to discover
the topology and parameters of a physical equation. The following section will introduce the
generation process of the two datasets, together with how to extract the physical information
form the videos. Then, the extracted data would be used to train and evaluate MathONet.

6-1-1 Synthetic Dataset

In this section, we generate a synthetic video with the dataset calculated from the standard
mathematical formula ((6-1)) to simulated the process of a free-falling ball. Then, this syn-
thetic video would be used to evaluate our end-to-end framework, including a comparison
between our optimization algorithm with a widely used L1 regularization and no regulariza-
tion technique.

Video Generation

The size of each frame in the video is 720x720 pixels. The time step to calculate the vertical
and horizontal positions of the ball is 1

240s, and the frame rate of the video is also 240 frames
per second. 150 frames are included in a video. With a randomly initialized velocities vx0
and yy0, and a random start position in the upper left area, the ball reaches the lower right
corner of the video within 150 frames. Some screenshots from the video are shown in figure
6-2.

In order to show our experiments and comparison results more clearly, all the following
experiments on this dataset are based on the initial velocity: vx0 = 2m/s2, vy0 = −3m/s2,
with the right being the positive x axis and downward being the positive y axis. Earth’s
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gravitational acceleration g is determined as 9.8m/s2. The scale between real world and a
synthetic video is 300 pixels per meter. It should be be noted that the movement of objects
in the real world is a continuous process, while a video is discrete. Thus, some inevitable
derivations will be included in the video.

Figure 6-2: Visualization of the generated synthetic video frame of free falling fall

Physical Information Extraction

As illustrated in chapter 2, both contour detection and Hough transform perform well on the
synthetic video. In this case, contour detection was chosen to detect the pixel coordinates of
the ball.

(a) Detected x distance of a free falling ball (b) Detected y distance of a free falling ball

Figure 6-3: Comparison between the extracted physical position and the true position

The only information that can be directly obtained from the video is the pixel coordinates
and their corresponding timestamps, but this information has no physical meaning. What
we want to discover is the relationship between the distance and time the ball moves in
the horizontal and vertical directions. Therefore, a conversion between a pixel coordinate
system and a physical coordinate system is necessary. The conversion relationship between the
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physical coordinates and the picture coordinate system usually includes translation, scaling,
and rotation. Because both the generated video and the real world are based on sea level,
the rotation factor can be ignored. The distance that the ball moves is measured between the
current position and the starting point, while the extracted pixel position from the video takes
the upper left corner as the origin point. Then, the translation can be operated according
to the position of the ball in the first frame. In regard to the scaling information, it can
obtained through the calibration of videos and real world. Since this is a synthetic video ,
the scale is known as 300 pixels per meter. So far, all physical information we care about has
been extracted. Figure 6-3 shows the detected vertical and horizontal distance of the ball,
compared with the true values generated from the mathematical formula.

Physical Law Discovery Experiment Setup

After the physical information of interest is extracted, the governing functions should be
distilled from the MathONet. Because the governing equations describe the relationship
between time and positions, the input variable for MathONet is the timestamp t corresponding
to each frame in the video and the constant term. Two models will be trained separately to
explore the two functions for vertical and horizontal distances. For the initialized MathONet,
we tried several model hyperparameters (as illustrated in section 4-5) to test if the discovery
algorithm can find the correct physical equations. The model structures we implemented are
as shown in table A-2. To be specific, all experiments have 1 hidden layer and the number of
neurons in the hidden layer varies from 1 to 3. In the OperNet, the alternative mathematical
operations are also added from the simplest ident to other complex operation selections such
as exp and sin.

Table 6-1: Different experiment setups for free fall dataset

Experiment setup Number of
hidden layers

Number of
hidden neurons Unary functions

Structure 1 1 1 ident
Structure 2 1 3 ident
Structure 3 1 3 ident, exp, log
Structure 4 1 3 ident, exp, log, sin, cos

Normally, an initialized model with higher complexity will have a stronger ability to fit a
more complex dataset. However, the over-redundancy may also lead to overfitting, which can
be addressed by the network compression technique. In our experiment, we tuned the hyper-
parameter λ to control the degree of compression. It is chosen as the following four values:
1e−6, 1e−4, 1e−2, 1e0, 1e2. Each value of λ is repeated for 10 times to prevent falling into
a local optimal solution. In addition, we also implemented the conventional L1 regularization
method using the same λ values and a traditional optimization with no regularization. For
each model structure, the first 20 results with the smallest validation loss will be considered
as the most probable solutions. In the case of similar losses, the simplest, that is, the most
sparse network structure is viewed as the optimal solution.
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Result Analysis

Since the video is generated with initial velocity: vx0 = 2m/s2 and vy0 = −3m/s2, the specific
equation needs to be identified is:

x = 2t
y = −3t+ 4.9t2

(6-2)

Because the second equation is more complex and contains the topology of the first formula,
the following discussion is based on the discovery process of y = −3t + 4.9t2. As illustrated
before, we adopted different experiment settings (Table A-2). Impressively, both the topol-
ogy and parameters of the correct model y can be identified correctly for all experiments
except structure 4. Specifically, the successfully identified result for the most complex model
(structure 3) is as followed:

(a) Identified MathONet

(b) Identified PolyNet (c) Identified OperNet

Figure 6-4: Identified governing equation for free fall dataset

The initialized MathONet has a hidden layer with three neurons, and there are 3 different
mathematical operations (identity, exp and log) in the OperNet. At the same time, the input
variables are timestamp t and the linear item. After the training stage finished, there is only
one hidden neuron left and all connections related to the linear item are also pruned. As for
the OperNet, only the identity operation is remained while other redundant mathematical
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operations are compressed. The specific distilled equation from our model is :

y = −1.90489× t (−2.59463× t+ 1.58197)
≈ −3.01347× t+ 4.9425× t2

(6-3)

which has the same topology as the correct solution while the parameters are approximated
to the true values. It is also acceptable to not get very accurate model parameters, because
this video-to-equation task is essentially unsupervised learning. To put it another way, the
information provided to discover the physical formula is only a video, making the discovered
result encoded with the physical information extraction error.

(a) Sparsity and predictive ability of MathONet in
each cycle

(b) The number of nonzero weights in the model

(c) Comparison between predicted output and the
extracted information

Figure 6-5: The sparsity and predictive ability of MathONet for synthetics free fall dataset

Figure 6-5 visualizes the sparsity and predictive ability of MathONet generated in each cycle.
The red line in Figure 6-5(a) demonstrates the changes of network predictive ability in the
form of minus log error, while the green line indicates the sparsity of the compressed model.
It can be concluded that after fluctuations, the network gradually fits the given data set
and performs better on the validation set until convergence. At the same time, the network
becomes more and more sparse at the end of each cycle, reaching a sparsity of about 50%at
the end of the training process, where sparsity is defined as the remaining number of nonzero
weight parameters over the number of all parameters in the initialized model. Figure 6-
5(c) also proves the change of sparsity by visualising how the weight matrix changes in the
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model along with the training process. The x axis denotes the number of nonzero weights
in the model, while the y axis is the index of training cycles. The wight area in the picture
represents weights with values of 0. It is obvious that with the increasing of training cycles,
the number of nonzero weights in the model is decreasing gradually, which means that the
correct expression path is gradually explored. Figure 6-5(b) shows the comparison between
the predicted output and the measured data extracted from the video, representing that the
predicted trajectory basically coincides with the real trajectory.

In addition to our discovery algorithm, we also test MathONet of the same structure with
other optimization methods to evaluate the rationality of Bayesian deep learning. A con-
ventional L1 regularization is applied to the loss function to check whether the redundant
connections can be compressed. The pruning threshold is 1e − 3, which will be compared
with the absolute value of weights. Besides, the conventional training without regularization
is also applied to compare the results. Figure 6-6(a) and 6-6(b) illustrate the sparsity and
predictive ability of MathONet at each cycle with L1 regularization and no regularization.
Neither method compresses redundant connections in the network, so MathONet with both
methods still keeps the sparsity of 100%. In another work, unnecessary mathematical op-
erations such as log and sin are still kept in the network, making the discovered governing
function lengthy and useless (the detailed result can be found in Appendix A-1). It can be
concluded that the Bayesian learning algorithm has a better performance for relieving over-
fitting and makes more contribution to the physical law discovery network when the model is
redundant.

(a) Training result with L1 regularization (b) Training result with no regularization

Figure 6-6: Sparsity and predictive ability of MathONet with different optimization methods

Optimization Method Validation Loss

Bayesian Deep Learning 9.121822e-7
L1 Regularization 1.206884e-6
No Regularization 2.637105e-6

Table 6-2: Mean square error of the detected results of two detection methods

Table A-2 shows the validation loss of each method after the whole training stage finishes.
MathONet optimized with Bayesian deep learning method has the smallest validation loss,
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while both training methods with L1 regularization and no regularization have larger vali-
dation loss. Considering the fact that only the Bayesian algorithm successfully explored the
correct governing equation and achieved the smallest validation loss, another conclusion could
be drawn, that is, the smaller the validation loss, the higher the probability that the physical
laws are accurately recognized.

6-1-2 Real Dataset

After evaluating our framework in idealization conditions with synthetic data, we also test
the validity in practice. A real video of a free falling ball is recorded on a smart phone with
a frame rate of 240 frames per second. Figure 6-7 shows some screenshots from the video,
which indicates that the ball is thrown flat without an initial velocity in the vertical direction.

Figure 6-7: Visualization of the real dataset of free fall

Considering the fact that the thrown object is not a standard circle but has a color different
from the background, contour detection is the best solution for physical information extraction
in this task. Figure 6-8(a) shows the detected results with the yellow circle representing the
minimum enclosing circle for the green object and the red dot being viewed as the centroid.
The picture 6-8(b) gives the plot of the detected position for each frame, which is a unsmooth
parabola encoded with detection noise..

(a) Contour detection result (b) Detected x and y position

Figure 6-8: Detection result for the real free fall dataset
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For a real video shot recorded by an ordinary mobile phone, there is no way to get the real
initial velocity of the ball. For the same reason, we don’t have an accurate equipment to
calibrate the camera’s external parameters which can provide the scale between an image and
the real world. Therefore, the explored governing equation should have the same topology as
the standard dynamic formula, but all parameters will be multiplied by an unknown zoom
scale. Under this condition, all data used to train and evaluate our framework is the raw
video. For specific experiment settings, the hyperparameters in Table A-2 are adopted. The
result shows that the most complex model structure 3 (3 hidden neurons and 3 mathematical
operations) can identify the equation successfully. The distilled equations are as followed:

x = −3.095503× t
y = 5.029509× t2 − 0.0026104

(6-4)

(a) Sparsity and predictive ability of Math-
ONet in each cycle

(b) The number of nonzero weights in the
model

(c) Comparison between predicted output
and the extracted information

Figure 6-9: The sparsity and predictive ability of MathONet for real free fall dataset

Since the ball is thrown flat and has no initial speed in the y axis, the identified equation for
vertical distance should be proportional to 1

2gt
2. However, the second equation in Eq. 6-4

has a very small constant term. It may be caused by the noise from the physical extraction
module. Another reason is that human throwing behavior does not occur strictly in a two-
dimensional plane, which may lead to unpredictable input on the y axis. Even so, this result
can prove the robustness of our model for being not disturbed by the noise. Figure 6-9(c) also
provides support for this conclusion. The red line in the picture represents the trajectory of
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the extracted data form the raw video, which is unsmooth and has small fluctuations. Instead
of fitting the irregular noise encoded in the data, MathONet found a concise solution close to
the real equation with the help of Bayesian compression.

6-2 Duffing Oscillator

Duffing oscillator is a non-linear second-order differential equation used to model certain
damped and driven oscillators. The equation can be described as:

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt) (6-5)

with δ controlling the amount of damping, α determining the linear stiffness, β controlling
the amount of nonlinearity in the restoring force and γ being the amplitude of the periodic
driving force. If γ = 0, the dynamic system has no external force and will evolve itself. If
δ > 0, Duffing oscillator will exhibits limit cycle vibration. If δ < 0, the system will be chaotic
and the phase diagram will have unpredictable attractors. For our work, the characteristics of
Duffing oscillator are not worthy of attention. What should be discovered is that whether the
governing function for the dynamic system can be discovered from a related video. Assuming
the dynamic system has no driving force, δ = 0.1, α = 1 and β = 3, (6-5) can be rewritten as
the form of state space expression:

ẋ = y

ẏ = −0.1y − x− 2x3 (6-6)

Then, this system equation can be viewed as a first-order ordinary differential function with
the candidate function polynomial order being 3. This is also the factor that distinguishes
this system from the free fall system. Apart form the position, the first order information
speed also needs to be extracted from the video. In addition, one hidden layer in MathONet
can fit at most a second-order polynomial, which means that at least two hidden layers are
enough for a third-order polynomial.

6-2-1 Synthetic Video Generation

Letting x and y denote the distance in the horizontal and vertical position in the Cartesian
coordinate, ẋ and ẏ can represent the velocity in the x and y axes. With the given initial
position, the Duffing oscillator can evolve itself without any external force. Then, a synthetic
video can be generated to represent the evolution process accordingly. The initial position
x0 and y0 is generated randomly from the range [−0.8, 0.8]. The following experiments are
all based on the initial condition: x0 = 0.2 and y0 = 0.4. It should be noted that the values
of x and y are not in meters, for that it should depend on the environment of the oscillator.
When creating the synthetic video, the frame size is chosen as 720× 720 pixels, and the scale
is 720 pixels per unit.

Zixuan Wan Master of Science Thesis



6-2 Duffing Oscillator 49

(a) Trajectory of a Duffing oscillator (b) Schematic diagram of the generated
synthetic video

Figure 6-10: Trajectory and the simplified video diagram of a Duffing oscillator

There is no doubt that the smaller the time step, the more accurate the data generated.
However, as shown in Figure 6-10(a), the trajectory of the state space of a Duffing oscillator
will gradually converge to the original point. It may lead to that the the position detected in
two adjacent frames will not change, because the pixel information must be integers. In this
case, a time step of 0.01s is applied, while the frame rate is chosen as 20 frames per second.
The generated synthetic video lasts from 30 seconds and includes 600 frames. Figure 6-10(b)
illustrates how the synthetic video looks like. The black ball represents the current sate of
the oscillator and it moves following the trajectory to the left.

6-2-2 Physical Information Extraction

Given the raw video, how to extract the physical states and derive the first-order differential
information is the topic for this section. Contour detection is utilized for determining the
centroid of the ball. The next step is to take advantage of translation and scaling to transform
the pixel coordinates to physical states. Same as the free fall dataset, the scale is known as 720
pixels per unit. However, the problem is that the coordinate origin is the upper left corner of
the picture while the physical state origin cannot be distinguished directly from the trajectory.
In this case, the initial state of the Duffing oscillator is given as a prior information. The
distance of translation in the horizontal and vertical axis can be calculated through comparing
the detected initial position of the object from the first frame and the given initial state of
the dynamic system. Regarding the extraction of differential information ẋ and ẏ, they are
solved by the first-order forward Euler method.

Figure 6-11 shows the error of the directly extracted y and the derived ẏ respectively. It can
be observed that y is basically consistent with the real value, but the derived ẏ has some
noise when approaching the local extremes. This phenomena also applies for x and ẋ. Table
6-3 shows the mean square error for the four variables. Obviously, ẋ and ẏ have larger error
comparing with x and y.
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(a) Detected y and desired y vs time (b) Derived ẏ and desired ẏ vs time

Figure 6-11: Error of extracted y and ẏ

Table 6-3: Mean square error of the detected results for the four variables

Mean Square Error

x 3.747374e-6
y 4.466127e-6
ẋ 9.759904e-5
ẏ 9.711813e-5

6-2-3 Physical Law Discovery Experiment Setup

Since the equation to be discovered is a three-order polynomial, two hidden layers are nec-
essary to fit the dataset. As shown in table 6-4, we tested two structures. Both have two
neurons in the first and second hidden layer, while structure 1 has only one unary function
(ident) and structure 2 has two (ident and log). According to the assumption that we know

Table 6-4: Different experiment setups for Duffing oscillator dataset

Experiment setup Number of
hidden layers

Number of
hidden neurons Unary functions

Structure 1 2 2, 2 ident
Structure 2 2 2, 2 ident, log

the variables that will contribute to the governing equation, the input for MathONet would
be x, y and the linear item. For the two outputs, ẋ ans ẏ are trained separately. The number
of frames is 900 with 90% of the data for training and 10% for validation.

6-2-4 Result Analysis

The experiment result shows that only the distilled result from structure 1 is close to the
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correct answer. The discover equations are:

ẋ = 0.993245y
ẏ = −1.914316x3 + 0.199283x2y + 0.073783xy2 − 1.007207x− 0.070319y

(6-7)

It needs to be noted that (6-7) are simplified polynomials since the result obtained directly
from MathONet is lengthy and complex. In addition, we find that some items have small
coefficients, making them not contribute to the final expression. Therefore, the terms of
the polynomial with coefficients less than 0.05 were removed from the explored governing
functions. Comparing (6-7) with (6-6), it can be found that the discovered result for the
first equation has both correct topology and correct parameter. However, the second distilled
equation has two redundant expression terms though it also contains the correct equation
structure and approximately correct parameters. Figure 6-12(a) to 6-12(c) illustrate the
sparsity and predictive ability of the trained MathONet for the first equation. Since this
equation is relatively simple, the final pruned model has a sparsity of under 50%. In addition,
since the calculated position for the moving objects must be rounded as integers to be plotted
on a frame, some adjacent frames may have the object at the same position especially when
the speed of the object is small. This will lead to jagged derived velocity ẋ and ẏ. As shown
in figure 6-12(c) and 6-12(f), the orange lines represent the noisy extracted data from the
video, while the blue lines indicate the fitting result of MathONet which is more smooth and
closer to the true shape. Another interesting thing is that the sparsity of the model to fit the
second governing equation does not drop a lot. That is because the initialized structure we
used is simple and does not contain many unnecessary connections.

(a) Sparsity and predicative abil-
ity of MathONet for training ẍ

(b) The number of nonzero
weights in the model for training
ẋ

(c) Comparison between pre-
dicted ẋ and the extracted
information

(d) Sparsity and predicative abil-
ity of MathONet for training ÿ

(e) The number of nonzero
weights in the model for training
ẏ

(f) Comparison between predicted
ẏ and the extracted information

Figure 6-12: The sparsity and predictive ability of MathONet when training the video dataset
of Duffing oscillator

Master of Science Thesis Zixuan Wan



52 Experiment Result

As for the distilled function itself, we also designed two experiments to discuss whether it
is reasonable and why it has extra expression terms. The first experiment is to explore the
importance of each mathematical expression term in the distilled equation, while the second
experiment is to use the noiseless true dataset to test the performance of our physical law
discovery method.

The first experiment is implemented for exploring the importance of each term in the second
equation of (6-7). The result is shown as in Table 6-5. For each term, we calculated the
changed validation loss, which refers to the prediction loss on the validation dataset of the
distilled equation after removing the corresponding expression term. Then, the importance
is defined as the changed validation loss over the original validation loss. Obviously, a higher
importance means that the corresponding expression term makes more contribution to match
the given dataset. This table is sorted by the importance of each term. It can be found
that all necessary terms have importance higher (all more than 15%) than the redundant
expression terms (all smaller than 0.1%). Therefore, it can be concluded that the importance
can act as the criterion for checking if the corresponding term makes contribution to the
correct solution. On the other hand, this experiment also proves that although the distilled
function is reasonable though it contains redundant terms.

Table 6-5: The importance analysis for different expression terms in the second distilled equation

Expression Item Changed Validation Loss Importance

−1.007207x 8.827e-3 11597.455%
−0.070319y 4.189e-5 55.039%
−1.914316x3 1.214e-5 15.953%
0.199283x2y 3.09e-8 0.041%
0.073783xy2 2.80e-8 0.037%

1 Changed validation loss indicates the prediction accuracy of the retained ex-
pression, which is obtained by removing the corresponding expression term.

2 Importance is calculated by the changed validation loss over original valida-
tion loss

In addition, a possible factor to raise redundant expression terms in the distilled equation
may be the quality of the extracted data. As introduced in the synthetic video generation
process, determining the pixel coordinate from physical states needs to round the decimals,
which may cause the loss of some information. Therefore, we designed the second experiment
to test our method on the noiseless dataset. With using the true dataset for generating the
synthetic video to train MathONet, the distilled functions are:

ẋ = 1.000y
ẏ = −1.998x3 − 1.000x− 0.099y

(6-8)

(6-8) is nearly same as the correct solution. Comparing the discovered result from the video
dataset and the true dataset, we can get the conclusion that the accuracy of the discovered
result depends on the quality of the training dataset.

Table 6-6 compares the validation loss and the number of cycles needed to finish the training
process for different optimization methods, e.g., Bayesian approach, L1 regularization and no
regularization. For the video dataset, all these three optimization methods can have similar
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performance that can identify mathematical expressions with almost the same loss . At the
same time, for the true dataset, the Bayesian approach has obvious advantages with a smaller
validation loss, but it requires more training cycles to converge. It is also worth mentioning
that although L1 and no regularization have more validation loss, both of them can identify
the governing functions with correct topology and nearly accurate parameters. Details of the
identified results of models trained with L1 and no regularization can be found in Appendix
A-2. In general, a Bayesian approach can always achieve training results that are not worse
than L1. In addition, all models trained with L1 and no regularization in Table 6-6 are not
sparse. In other words, no connection is removed from the model. However, this cannot be
used as evidence of the bad performance of L1 and no regularization, because the initialized
model has no redundant unary operation. Another conclusion can be achieved that under
the case of no redundant connections, Bayesian approach, L1 and no regularization can have
similar performance because the ability to fit the data set is mainly provided by the model.

Table 6-6: The validation loss and the number of training cycles for distilled equations from two
dataset with different optimization methods

Bayesian optimization L1 regularization No regularization

First distilled equation
for video dataset 6.631e-5 & 5 6.767e-5 & 5 6.756e-5 & 4

Second distilled equation
for video dataset 7.551e-5 & 6 7.819e-5 & 5 7.673e-5 & 9

First distilled equation
for true dataset 1.603e-17 & 8 3.022e-10 & 3 8.954e-10 & 3

Second distilled equation
for true dataset 1.782e-12 & 6 4.288e-9 & 4 1.169e-7 & 4

6-3 Swinging Pendulum

As an instrument that can display many mechanical phenomena, the pendulum has been
studied for many years, and it can even be used as scientific tools such as the accelerom-
eter and seismometer. The most obvious property of a swinging pendulum is its periodic
oscillation. Using the governing function of a swinging pendulum as an example to test, our
experiments on a synthetic video of pendulum can help demonstrate the ability of our model
to fit periodic functions. In addition, we also implemented our method on a real-recorded
video of a pendulum, details are in Appendix B.

6-3-1 Synthetic Video Generation

The synthetic video of a pendulum is generated based on the environment from OpenAI gym,
which provides a powerful physical engine to simulate object motion. The schematic diagram
of the simulated video of a pendulum is as shown in Figure 6-13. The pendulum will swing
around the black frictionless pivot, while the upward direction is recorded as the origin of the
angle θ. The length of the pendulum is l and the mass is m. Initialized at a random position,
the pendulum will swing because of the gravity mg.
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(a) Schematic diagram of the video ẍ (b) Properties of the pendulum

Figure 6-13: Synthetics video of a swinging pendulum

Then, the governing equation of the system should describe the swinging process, which
is related to the angle θ, angular velocity θ̇ and angular acceleration θ̈. According to the
equation that the angular acceleration θ̈ equals to the torqueM over the moment of inertia I.
Since the torque is raised by the gravity, it can be represented as M = l

2mg sin θ. As for the
moment of inertia of a rod about end, it can be expressed as I = 1

3ml
2. Then, the governing

equation can be written as:

δθ̇(t+ 1) = θ̈(t+ 1) · dt = 3g
2l sin(θ(t)) · dt (6-9)

With g = 10, l = 1, and the time step dt = 0.05s, the specific equation needs to be identified
as:

δθ̇(t+ 1) = 0.05θ̈(t+ 1) = 0.75 sin(θ(t)) (6-10)

To be consistent with the time step, the frame rate of the video is 20 frames per second. 500
frames are included in the synthetic video with 90% for training and 10% for validation. The
initial swinging angle is set as 1 rad and the initial angular velocity is 0 rad/s.

6-3-2 Physical Information Extraction

According to our assumption that we know the variables of the physical law to be explored,
the swinging angle θ and the angular acceleration θ̈ of the pendulum needs to be detected
from the video. However, the angular acceleration should be derived from the angle velocity
θ̇, making it necessary to detect θ̇.

Both contour detection and Hough transform are implemented for extracting the physical
information to compare the accuracy. Hough transform can extract the slope of the pendulum
directly, while the angular velocity needs to be derived with a first-order Euler method. As
for the contour detection, the pixel position of the black pivot can be detected firstly as the
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Table 6-7: Mean square error of the detected results for the three variables with two detection
methods

Extracted variables Contour Detection Hough Transform

Swinging angle θ 5.146e-05 4.434e-05
Angular velocity θ̇ 0.007 0.031

Angular acceleration θ̈ 7.044 36.294

Figure 6-14: Comparison of the derived angular acceleration θ̈ between two methods

original point. Then, the vertical and horizontal position of the pendulum centroid for each
frame in the video can be acquired by determining a minimal enclosing rectangle. After
that, the slope of the pendulum can be calculated by the two pixel positions. Similarly, the
angular velocity can be achieved through calculating the positional change of two adjacent
frames. In other words, Hough transform can extract the angle θ from the video directly,
while contour detection is able to extract the positional information θ together with the
first-order information velocity θ̇ from the frames. As for the angular acceleration, both
methods cannot extract it directly from the video, so Euler-method is implemented. Table
6-7 compared the accuracy of the extracted variables with two methods. It can be found
that both methods perform similarly on the angle detection. However, contour detection
has a obvious advantage when detecting the angular velocity, and mean square error of the
angular acceleration detected with contour detection is also much smaller. As a picture to
illustrate the difference of the extracted angular acceleration θ̈ with two methods, Figure 6-14
also proves that both methods will produce large noise but contour detection has a better
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performance in general. In the following experiments, the dataset for training is generated
from contour detection.

Figure 6-15 shows the process of detecting the centroid position of a pendulum from a given
frame. Figure 6-15(b) is the mask indicating the area of interest, which is used for edge
detection and contour detection. The detected result is as shown by the blue contour in
Figure 6-15(c), while the blue point is the center of the minimal enclosing rectangle, which
indicates the pendulum centroid.

(a) The original frame (b) The processed mask (c) The detected result

Figure 6-15: The detection process of the positional information of the pendulum with contour
detection

6-3-3 Experiment Setup

According to the governing function, the angle of the pendulum at the current state is the
input variables of our model, while the angular velocity at the next state is the output.
However, the work [57] has proven that neural networks are always hard to learn periodic
functions for that DNNs with periodic functions as activation functions are easy to be trapped
in the local optima. We also implemented some experiments with one of activation functions
set as sin, the result shows that our model not always can discover the correct function.
More specific details can be viewed in Appendix A-3. As an alternative solution, encoding
the periodic characteristics of the pendulum system as the prior information in the input
variables can help us discover the governing function successfully. Then, the input variables of
MathONet are θ, sin(θ) and the constant term. Therefore, this problem has been transferred
into discovering a linear function from discovering a periodic function. The model structures
we tested are as follows:

Table 6-8: Different experiment setups for swinging pendulum dataset

Experiment setup Number of
hidden layers

Number of
hidden neurons Unary functions

Structure 1 1 2 ident
Structure 2 1 2 ident, log, exp
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6-3-4 Result Analysis

Both experiments successfully identify the governing equations although the extracted angular
acceleration θ̈ has much noise. For structure 2, the distilled function is:

θ̈(t+ 1) · dt = 0.752sin(θ(t)) (6-11)

Clearly, the distilled result has the same structure and similar parameters to the correct
solution. The sparsity and predictive ability of our model in each cycle is as shown in Figure
6-16(a). Since the initialized MathONet is over-parameterized and contains redundant unary
operations (e.g., log and exp), the sparsity of MathONet decreases obviously to almost 30%,
which can also be reflected on Figure 6-16(b). At the same time, the predictive ability of
our model increases steadily with the training of the network. Figure 6-16(c) compares the
predicted output of our model and the extracted data, where the blue smooth line represents
the model inference result and the noisy orange line denotes the extracted information from
the video. Although MathONet is trained on the noisy dataset, our Bayesian learning method
can compress all redundant connections and surpass the overfitting completely.

(a) Sparsity and predictive ability of the model in
each cycle

(b) The number of non-zero weights in the model
in each cycle

(c) Comparison between predicted result and ex-
tracted data

Figure 6-16: Sparsity and predictive ability of MathONet for the swinging pendulum dataset

To evaluate the performance of our discovery algorithm, we also implemented L1 and no
regularization for training MathONet with the same structure. The validation loss of the
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predicted results from the three optimization methods are as shown in Table 6-9. The ex-
periment results show that only the Bayesian approach can discover the correct governing
equation. However, the validation loss of these three methods does not differ a lot and even
the Bayesian method has the highest one. The reason is that the data used for calculating
the validation loss is the noisy extracted data. A small validation loss may even mean that
the model is overfitting.

Table 6-9: Validation loss and number of cycles needed to train MathONet for different opti-
mization methods

Optimization Method Validation Loss Number of cycles

Bayesian Learning 0.018 8
L1 Regularization 0.015 14
No Regularization 0.014 20

(a) Sparsity and predictive ability of the model
trained with L1 regularization

(b) Predicted result of the model trained with L1
regularization

(c) Sparsity and predictive ability of the model
trained with no regularization

(d) Predicted result of the model trained with no
regularization

Figure 6-17: Predicted results of the control group model trained with L1 and no regularization

Figure 6-17 illustrates the sparsity and predictive ability of models trained with L1 and no
regularization. It is clear that L1 regularization only leads to a limited decrease in terms of
sparsity, and there still retains some redundant connections which may result in overfitting.
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As shown in Figure 6-17(b), despite the fact that the overall predicted result is smooth
and close to the correct curve, there is still overfitting in the green box area. Similarly, no
redundant connection is pruned by a training process with no regularization method, which
will lead to a more complex mathematical expression compared with Bayesian method and
L1 regularization. The obvious overfitting can be observed in Figure 6-17(d).

To sum up, for this noisy swinging pendulum dataset, the Bayesian learning method has a bet-
ter performance to compress the redundant operations in an over-parameterized MathONet
and suppress overfitting, which can provide an accurate equation discovery.
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Chapter 7

Conclusion

In this thesis, an end-to-end framework is designed to distill physical laws from raw videos.
The whole framework is composed of a video information extraction module and a physical
law discovery module. In the video information extraction module, a video can be divided
into contiguous frames for object position detection. The two methods we discussed and
compared are contour detection and Hough transform. The first one is especially suitable
for object detection with irregular shapes, while the second method is more useful when
detecting lines or circles in a complex background. Experiments in this thesis adopted contour
detection for its better performance. Then, the extracted pixel position information would be
transformed into physical states (e.g., distance, velocity, and angle), which serve as the dataset
for discovering the governing equation. In the physical law discovery module, we designed a
novel deep neural network like model Mathematical Operation Network (MathONet), which
is stacked with binary operations and unary operations. MathONet can learn the closed-
form expression of the governing equations of dynamic systems. An initialized MathONet
is over-parameterized and contains various possible mathematical operations. A Bayesian
learning algorithm is proposed to compress redundant connections and give a sparse solution
to explore the physical law. We implemented the proposed framework on synthetic videos
of three dynamic systems, which are a free falling ball, a Duffing oscillator and a swinging
pendulum. A real-recorded video of a free falling ball was also tested to prove the validity of
our method in practice. The experiment result shows that the proposed method effectively
identifies the governing equations for all dataset.

7-1 Discussion

From the experiment result, the pros and cons of our framework can be summarized as:

Advantages

• The video information method is easy to deploy and implement. Instead of utilizing
neural networks to extract positional features, our object position detection algorithm
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is based on traditional image processing methods, which does not require complex en-
vironment deployment and a large amount of computing resource consumption.

• We proposed an interpretable deep neural network model to represent the governing
equation. MathONet is consisted of possible mathematical operations coming up of the
mathematical expression of the governing equation. The physical law discovery problem
can be transformed into searching the optimal substructure of an over-parameterized
model.

• A Bayesian deep learning approach is implemented as the discovery algorithm to com-
press redundant operations and discover the sparse solution. Bayesian learning algo-
rithm is a powerful approach for model compression and overfitting suppression. Apply-
ing a Bayesian optimization for MathONet, the physical law can be discovered without
any prior knowledge on the underlying equation.

Disadvantages

• The video information extraction module cannot be generalized to all dynamic systems
because the decision of the object position detection method depends on the properties
of the system. Besides, the transformation from pixel coordinate to physical states may
require some prior information, e.g., scale and initial position.

• Using unary mathematical operations such as sin and log to be the activation function
of a neural network may have some intrinsic drawbacks. For example, a model with
periodic function as the activation function tends to fall into the local optima, while log
cannot process negative input.

• Since the Bayesian learning approach we used is based on Laplace approximation, which
is sensitive to the initialization. Many repeated experiments are necessary to avoid a
local optimal solution.

7-2 Further Works

In this section, we suggest several next step topics to explore. We come up with these ideas
during conducting the thesis.

• The transformation parameters between pixel position and physical state can be learned
through a generative model instead of relying on the prior information.

• More experiments can be implemented to evaluate our model and discovery algorithm.
Especially, dynamic systems with the governing equation containing log or exp can be
tested. In addition, dataset with high input dimensionality would be another topic
worthy paying attention.

• The expressive ability of the model can be improved to fit some special operations such
as division and periodic function.
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Supplement Experiment result

The proposed method is demonstrated on a free falling ball, a Duffing oscillator and a swinging
pendulum. The following is some supplement results for the three datasets.

A-1 Free Fall

The governing equation to be discovered for the synthetic video of a free falling ball is:

x = 2t
y = −3t+ 4.9t2

(A-1)

In our experiment, MathONet is initialized with the following structure:

Table A-1: Experiment setup for free fall dataset trained with L1 and no regularization

Number of
hidden layers

Number of
hidden neurons Unary functions

1 3 ident, exp, log

A-1-1 Distilled results of L1 regularization

The distilled result of MathONet trained with L1 regularization is:

x =− 0.598t2 + 0.612− 0.908× exp(0.253t2 − 0.557t)− 0.351× exp(0.7t2 − 0.403t)

− 0.814× log(
∣∣∣0.253t2 − 0.557t+ 0.376

∣∣∣)− 0.541× log(
∣∣∣0.7t2 − 0.403t− 0.449

∣∣∣) + 0.032

y =0.097t2 + 0.304t+ 0.022× exp(−0.691t2 + 0.258t)− 0.502 ∗ exp(0.287t2 + 0.796t)

+ 0.015× log(
∣∣∣−0.691t2 + 0.258t+ 0.212

∣∣∣) + 0.613× log(
∣∣∣0.287t2 + 0.796t+ 0.349

∣∣∣) + 0.142
(A-2)
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It is clear that the discovered result does not contain the correct solution and still has unneces-
sary exponential and logarithmic operations. The sparsity and predictive ability of MathONet
after training the dataset with L1 regularization is as shown in Figure A-1. For training the
first equation which is related to x and t, the model prunes only around 5% connections
and remains a lot of unnecessary operations. As for the second equation related to y, no
connection is compressed. Generally, for the initialized over-parameterized MathONet, L1
regularization does not have enough compression ability to suppress overfitting. Though Fig-
ure A-1(c) and A-1(f) shows that the predictive result of two models is close to the validation
dataset, this is due to the strong fitting ability of the neural network but not the contribution
of L1 regularization.

(a) Sparsity and predicative abil-
ity of MathONet for training x

(b) The number of nonzero
weights in the model for training
x

(c) Comparison between pre-
dicted x and the extracted
information

(d) Sparsity and predicative abil-
ity of MathONet for training y

(e) The number of nonzero
weights in the model for training
y

(f) Comparison between predicted
y and the extracted information

Figure A-1: The sparsity and predictive ability of MathONet trained with L1 regularization for
the dataset of a free falling ball

A-1-2 Distilled results of no regularization

The distilled result of MathONet trained with no regularization is:

x =0.145t+ 0.387× exp(−0.175t2 − 0.105t) + 0.75× exp(0.07t2 + 0.56t)

+ 0.254× exp(0.318t2 − 0.181t) + 0.455× log(
∣∣∣0.07t2 + 0.56t+ 0.716

∣∣∣)
+ 0.516× log(

∣∣∣0.175t2 + 0.105t+ 0.051
∣∣∣) + 0.12× log(

∣∣∣0.318t2 − 0.181t+ 0.806
∣∣∣) + 0.333

y =3.89t2 − 2.32t+ 0.351× exp(0.058t2 − 0.192t) + 1.176× exp(1.478t2 − 0.873t)

+ 0.272× log(
∣∣∣−1.478t2 + 0.873t+ 0.564

∣∣∣) + 0.128× log(
∣∣∣0.058t2 − 0.192t+ 0.888

∣∣∣)− 1.357
(A-3)
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Similar to the result of L1 regularization, the result of MathONet trained with no regular-
ization does not include the correct answer and contains redundant mathematical expression
terms. The sparsity and predictive ability of MathONet after training the dataset with L1
regularization is as shown in Figure A-2.

(a) Sparsity and predicative abil-
ity of MathONet for training x

(b) The number of nonzero
weights in the model for training
x

(c) Comparison between pre-
dicted x and the extracted
information

(d) Sparsity and predicative abil-
ity of MathONet for training y

(e) The number of nonzero
weights in the model for training
y

(f) Comparison between predicted
y and the extracted information

Figure A-2: The sparsity and predictive ability of MathONet trained with no regularization for
the dataset of a free falling ball

A-2 Duffing Oscillator

The governing equation needs to be discovered is:

ẋ = y

ẏ = −0.1y − x− 2x3 (A-4)

In our experiment, MathONet is initialized with the following structure:

Table A-2: Experiment setup for free fall dataset trained with L1 and no regularization

Number of
hidden layers

Number of
hidden neurons Unary functions

2 2 ident
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A-2-1 Distilled results of L1 regularization

Video dataset

For the video dataset, the distilled result of MathONet trained with L1 regularization is:

x =0.985y − 0.061x3 + 0.083x2y + 0.18y3

y =− 1.711x3 − 1.027x− 0.071y + 0.15x2y + 0.210xy2 (A-5)

Similar to the experiment results trained with Bayesian learning method, expression terms
with coefficients smaller than 0.05 have been removed. Both discovered functions contain the
correct solution but have some redundant expression terms. Same as the discussion for the
results of a Bayesian method, the redundant terms are raised by the noise in the extracted
dataset from the video. Figure A-3 shows the sparsity and predictive ability of MathONet
trained with L1 regularization.

(a) Sparsity and predicative abil-
ity of MathONet for training x

(b) The number of nonzero
weights in the model for training
x

(c) Comparison between pre-
dicted x and the extracted
information

(d) Sparsity and predicative abil-
ity of MathONet for training y

(e) The number of nonzero
weights in the model for training
y

(f) Comparison between predicted
y and the extracted information

Figure A-3: The sparsity and predictive ability of MathONet trained with L1 regularization for
the dataset of a Duffing oscillator

Noiseless dataset

The distilled result for the noiseless dataset is:
x =0.999y
y =− 1.993x3 + 1.001x− 0.101y

(A-6)

The distilled result is almost same as the correct answer, which is similar to the result of a
Bayesian approach.
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A-2-2 Distilled results of no regularization

Video dataset

For the video dataset, the distilled result of MathONet trained with no regularization is:

x =0.983y + 0.089xy2 + 0.206y3

y =− 1.890x3 − 1.008x− 0.071y + 0.188x2y + 0.089xy2 (A-7)

Obviously, the distilled result is close to the results of L1 regularization and Bayesian approach
for that it contains the correct solution and includes redundant expression terms. The sparsity
and predictive ability of MathONet trained with no regularization is shown in Figure ??.

(a) Sparsity and predicative abil-
ity of MathONet for training x

(b) The number of nonzero
weights in the model for training
x

(c) Comparison between pre-
dicted x and the extracted
information

(d) Sparsity and predicative abil-
ity of MathONet for training y

(e) The number of nonzero
weights in the model for training
y

(f) Comparison between predicted
y and the extracted information

Figure A-4: The sparsity and predictive ability of MathONet trained with no regularization for
the dataset of a Duffing oscillator

Noiseless dataset

The distilled result for the noiseless dataset is:

x =0.999y
y =− 1.994x3 − 1.001x− 0.100y

(A-8)

It is nearly the same the correct answer. Considering that the initialed structure of Math-
ONet is not over-parameterized, whether the model can discover the correct answer does not
dependent on the discovery algorithm, but due to the fitting ability of a neural network.
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A-3 Swinging Pendulum

To explore the ability of our method to recognize periodic functions, we defined two experi-
ments. The first one is using θ as input and δθ̇ as output to train MathONet. The equation
to be discovered is:

δθ̇(t+ 1) = 0.75 sin(θ(t)) (A-9)

The model is initialized with one hidden layer with one hidden neuron, and OperNet has only
ident operation.

The second experiment is using ˙θ(t) and θ(t) and input variables and ˙θ(t+ 1) and output to
train MathONet. Then, the equation to be discovered is :

θ̇(t+ 1) = θ̇(t+ 1) + 0.75 sin(θ(t)) (A-10)

The model is initialized with one hidden layer with two hidden neurons, and the OperNet has
two operations ident and sin.

A-3-1 Experiment 1

The distilled result is:
δθ̇(t+ 1) = 0.751× sin(0.998θ) (A-11)

The discovered result is almost close to the correct answer although the activation function
is sin. Figure A-5 shows the sparsity and predictive ability of MathONet trained with input
θ and output δθ̇.

(a) Sparsity and predictive ability
of the model in each cycle

(b) The number of non-zero
weights in the model in each cy-
cle

(c) Comparison between pre-
dicted result and extracted
data

Figure A-5: Sparsity and predictive ability of MathONet for the swinging pendulum dataset
(Experiment 1)

A-3-2 Experiment 2

The distilled result is

θ̇(t+ 1) = 1.000θ̇ − 0.448 sin(0.965θ − 2.975)− 0.163θ(t) + 0.502 (A-12)

Our method only finds part of the correct answer and the periodic function part has wrong
coefficients and redundant expression terms. The sparsity and predictive ability of our model
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is as shown in Figure A-6. Although the predicted result can nearly fit the validation set,
the discovered result is far from the correct solution. This may be raised by the intrinsic of
a sinusoidal function for that it has many local optimal solutions.

(a) Sparsity and predictive ability
of the model in each cycle

(b) The number of non-zero
weights in the model in each cy-
cle

(c) Comparison between pre-
dicted result and extracted
data

Figure A-6: Sparsity and predictive ability of MathONet for the swinging pendulum dataset
(Experiment 2)
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Appendix B

Real Dataset for Pendulum

We also implemented our method on a real pendulum dataset, which was recorded with a
ROS framework. The data collection process and the experiment result are as follows.

B-1 Data Collection

B-1-1 ROS framework

As shown in Figure B-1, the real pendulum is fixed on a KUKA robot, while there is an
optical tracking system to capture the ground truth of the position of the pendulum in the
Cartesian coordinate system. The video is recorded through a RealSense stereo camera with
a frame rate of 60 frames per second. These sensors are all connected to a ROS framework
so that a new ROS node can be established to subscribe to the message from all sensors.

Figure B-1: A screenshot of the video dataset of a real pendulum
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Our new ROS node subscribes to three ros topics. The first one is ’kuka_ee’, which records
the vertical and horizontal position of the manipulator of the KUKA robot. The second topic
is ’/vrpn_client_node/RigidBody1/pose’, recording the Cartesian coordinate position of the
pendulum from the optical tracking system. The last one is ’/camera/color/image_raw’
representing the images from the RealSense node. At the same time, our node publishes the
action command to the topic ’iiwa/CustomControllers/command’ to cotrol the next step of
the manipulator of CUKA robot. Since the pendulum is released with an initial angle, the
action command keeps being stable.

B-1-2 Python code

1
2 import numpy as np
3 import time # CC
4 import rospy # CC
5 import cv2
6 import cv_bridge
7 import os
8 from cv_bridge import CvBridge
9 from std_msgs . msg import String # CC

10 from sensor_msgs . msg import JointState
11 from sensor_msgs . msg import Image
12 from std_msgs . msg import Float64MultiArray
13 from geometry_msgs . msg import PoseStamped
14
15
16 def kukaee_call ( data ) : #robot pose
17 global position
18 position = data . data
19
20 def body_call ( data ) : #Pendulum pose
21 #rospy.loginfo(rospy.get_caller_id() + "I heard pose %s", data.pose)
22 global alpha , xB , yB
23 xB = data . pose . position . x
24 yB = data . pose . position . y
25
26 img_count = 0
27 bridge = CvBridge ( )
28 img_path = ’realsense_dataset/pendulum/dataset3_action2/img/’
29 data_path = ’realsense_dataset/pendulum/dataset3_action2’
30 if not os . path . exists ( img_path ) :
31 os . makedirs ( img_path )
32 file = open (os . path . join ( data_path , ’data’ ) , ’w’ )
33 flag = 0
34
35 def img_call ( img ) :
36 global img_count , bridge , img_path , data_path , flag , action
37 if flag == 1 :
38 img_count += 1
39 cv_image = bridge . imgmsg_to_cv2 (img , ’bgr8’ )
40 image_name = str ( img_count ) + ’.jpg’
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41
42 img_savepath = img_path + image_name
43
44 cv2 . imwrite ( img_savepath , cv_image )
45 cv2 . imshow (’frame’ , cv_image )
46 cv2 . waitKey (3 )
47 rospy . loginfo (’Image %d saved!’ , img_count )
48
49 file . write (’%s %d %.10f %.10f %.10f %.10f %.10f\n’ % (

img_savepath , action , float (xB ) , float (yB ) , float ( position [ 0 ] )
, float ( position [ 1 ] ) , float ( position [ 2 ] ) ) )

50
51 def reset ( ) :
52 global count , posrequest , restart_flag , nomove
53 count = 0
54 pose1 . data = [0 , np . pi / 2 , 0 , 0 . 65 , 0 . 2 , 0 . 6 ]
55 posrequest = [ 0 . 6 5 , 0 . 2 , 1 ]
56 pub_pos . publish ( pose1 )
57 rospy . sleep ( 5 . 0 )
58 #state = get_state()
59 restart_flag = True
60 nomove = False
61 #return [state]
62
63 def get_state ( ) :
64 global alpha , alpha_1 , xB1 , xB2_r_1 , position , fish_1
65 fish = position [ 1 ] − xB1
66 fish_vel = fish − fish_1
67 velocity = np . array ( position ) − np . array ( position_1 )
68 state = np . array ( [ position [ 1 ] , velocity [ 1 ] , fish , fish_vel ] )
69 position = position_1
70 fish_1 = fish
71
72 return state
73
74 def step ( action ) :
75 global count , posrequest , yB1 , restart_flag , nomove , posnomove
76 poslimit = [ 0 . 6 5 , 0 . 65 , −0.3 , 0 . 3 , 1 , 1 ] # xlow xup ylow yup zlow zup
77 delta = 1.5
78 """if not nomove:
79 posnomove = position[1]
80 if action == 0:
81 posrequest[1] = position[1] - delta
82 nomove = False
83 if action == 1: # CC
84 posrequest[1] = position[1] + delta
85 nomove = False
86 if action == 2:
87 posrequest[1] = posnomove
88 nomove = True"""
89 if not nomove :
90 posnomove = position [ 1 ]
91 if action == 0 :
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92 posrequest [ 1 ] = position [ 1 ] − delta
93 nomove = False
94 if action == 1 : # CC
95 posrequest [ 1 ] = position [ 1 ] − delta/3
96 nomove = False
97 if action == 2 :
98 posrequest [ 1 ] = posnomove
99 nomove = True

100 if action == 3 :
101 posrequest [ 1 ] = position [ 1 ] + delta/3
102 nomove = False
103 if action == 4 : # CC
104 posrequest [ 1 ] = position [ 1 ] + delta
105 nomove = False
106 #print(poslimit)
107 #print(posrequest)
108 posrequest [ 1 ] = poslimit [ 2 ] if posrequest [ 1 ] < poslimit [ 2 ] else

posrequest [ 1 ]
109 posrequest [ 1 ] = poslimit [ 3 ] if posrequest [ 1 ] > poslimit [ 3 ] else

posrequest [ 1 ]
110 posrequest [ 2 ] = poslimit [ 4 ] if posrequest [ 2 ] < poslimit [ 4 ] else

posrequest [ 2 ]
111 posrequest [ 2 ] = poslimit [ 5 ] if posrequest [ 2 ] > poslimit [ 5 ] else

posrequest [ 2 ]
112 pose1 . data = [0 , np . pi / 2 , 0 , posrequest [ 0 ] , posrequest [ 1 ] ,

posrequest [ 2 ] ]
113
114 #state = get_state()
115
116 """while restart_flag or yB1 > position[2]:
117 pose1.data = [0, np.pi / 2, 0, 0.6, 0.2, 0.6]
118 pub_pos.publish(pose1)
119 rospy.sleep(0.1)
120 #print(11111)
121 state = get_state() #
122 if yB1 > position[2]:
123 restart_flag = False"""
124 pub_pos . publish ( pose1 )
125 count = count + 1
126
127 #return state
128
129 def main ( ) :
130 global alpha , alpha_1 , position , position_1 , pub_pos , pose1 ,

posrequest , xB1 , fish_1 , h_joy , flag , action
131 rospy . init_node (’teleop’ , anonymous=True )
132 rospy . Subscriber ("kuka_ee" , Float64MultiArray , kukaee_call )
133 rospy . Subscriber ("/vrpn_client_node/RigidBody1/pose" , PoseStamped ,

body_call )
134 rospy . Subscriber ("/camera/color/image_raw" , Image , img_call )
135 pub_pos = rospy . Publisher ("iiwa/CustomControllers/command" ,

Float64MultiArray , queue_size=1)
136 pose1 = Float64MultiArray ( )
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137 time . sleep (3 )
138 pose1 . data = [0 ∗ np . pi / 4 , np . pi / 2 , 0 , position [ 0 ] , position [ 1 ] ,

position [ 2 ] ]
139 pub_pos . publish ( pose1 )
140 posrequest = [ 0 . 6 5 , position [ 1 ] , position [ 2 ] ] # position[0]
141 reset ( )
142 ee = Float64MultiArray ( )
143 r = rospy . Rate (50) # frquency
144 action = 2
145 timer = 0
146 while ( True ) :
147 flag = 1
148 step ( action )
149 timer += 1
150 r . sleep ( )
151 if rospy . is_shutdown ( ) :
152 print (’shutdown’ )
153 break
154
155 if __name__ == "__main__" :
156 main ( )

B-2 Video Information Extraction

Since the background environment of the pendulum is complex and contains other straight
lines, a background subtraction is applied to eliminate the influence of the complex back-
ground and remain the area of interest. Then, a Hough transform can be utilized to detect
the slope of the existing line in the figure.

(a) Original frame of a pendulum (b) The processed result of back-
ground subtraction

(c) The detected result of Hough
transform (red dots) vs captured
result from optical system (green
dots)

Figure B-2: The process of video information extraction of the real pendulum video

Figure B-2(a) is the original frame from the video, while Figure B-2(b) shows the background
subtraction result. Nearly all unnecessary information has been removed from the figure and
only the silhouette of the pendulum is retained. Figure B-2(c) illustrates the detected result,
with the x axis being the index of frames and y axis being the angle θ. The red dots represent
the detected angle from Hough transform while the green dots stand for the captured value
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from optical system. Due to the limitations of the optical tracking system, some captured
values are constants. However, according to the valid real value information, it can be found
that the Hough transform detection result is basically close to the real value.

B-3 Experiment Result

For the governing equation to be discovered, an extra unknown resistance is applied to the
pendulum compared with (6-9). With the moment inertia still being I = 1

3ml
2, the torque is

raised by the gravity and resistance M = 1
2mg sin θ+ ur. Then, the angular acceleration can

be represented as:
θ̈(t+ 1) = 3g

2l sin θ(t) + 3ur
ml2

(B-1)

However, the resistance torque ur is unknown and varied, which means that the specific
equation cannot be distilled when missing the information of the extra resistance torque. The
experiment result also proves the conclusion. With sin θ(t) and the constant term as input
variable, and θ̈(t+ 1) · dt as output variable, the discovered result is:

θ̈(t+ 1) · dt = 0.023 sin θ(t)2 + 0.037 sin θ(t) + 0.003 (B-2)

which only tries to fit the dataset but does not have physical meaning.
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